WO2006042872A1 - Method of obtaining coatings that protect against high-temperature oxidation - Google Patents

Method of obtaining coatings that protect against high-temperature oxidation Download PDF

Info

Publication number
WO2006042872A1
WO2006042872A1 PCT/ES2004/000399 ES2004000399W WO2006042872A1 WO 2006042872 A1 WO2006042872 A1 WO 2006042872A1 ES 2004000399 W ES2004000399 W ES 2004000399W WO 2006042872 A1 WO2006042872 A1 WO 2006042872A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature oxidation
high temperature
procedure
mcraiy
against high
Prior art date
Application number
PCT/ES2004/000399
Other languages
Spanish (es)
French (fr)
Inventor
Ignacio Fagoaga Altuna
Carlos Vaquero Gonzalez
Georgiy Barykin
Original Assignee
Turbodetco, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbodetco, S.L. filed Critical Turbodetco, S.L.
Priority to US11/662,689 priority Critical patent/US20080057214A1/en
Priority to PCT/ES2004/000399 priority patent/WO2006042872A1/en
Publication of WO2006042872A1 publication Critical patent/WO2006042872A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the present invention relates to a process for the deposition of MCrAIY base powders, on a substrate, to obtain a protective coating against corrosion-oxidation at high temperatures.
  • the process of the invention allows to obtain quality protective layers, with high productivity and low cost.
  • the MCrAIY layer obtained can serve as an anchor for a thermal barrier.
  • MCrAIY base coatings where M is selected from Ni, Co and Fe, are commonly used for the protection of metal components in high temperature environments, such as the blades or housings of a gas turbine.
  • These coatings are intended to protect the metal substrate against corrosion and oxidation at high temperature, which is why sometimes a layer composed of a ceramic thermal insulator or thermal barrier is applied on them.
  • These coatings are deposited by different thermal projection techniques and, especially, by plasma techniques. in vacuum (VPS), plasma air technique (APS), HVOF techniques or detonation processes.
  • VPS vacuum
  • APS plasma air technique
  • HVOF detonation processes.
  • MCrAIY chemical composition of MCrAIY and, in particular, the presence of aluminum and yttrium which, under the conditions of service, act causing the formation of a well-bonded alumina protective layer.
  • Vacuum plasma projection (VPS) techniques produce high quality MCrAIY coatings and high thermal performance since they are coatings with high density and without the presence of oxides, as a result of which they are carried out in a closed chamber with a controlled atmosphere.
  • VPS Vacuum plasma projection
  • thermal projection techniques are used in atmospheric conditions, such as APS techniques or HVOF Detonation techniques are also used, known as D-Gun, according to US Patent 2,714,563 but all of them have had little success, due to their low density in the case of APS techniques or the presence of oxides in the coating, such as for example in the HVOF or D-Gun techniques.
  • HVOF and detonation (D-Gun) techniques produce a high velocity gas flow as a result of a continuous combustion process or pulsed explosions, which is capable of accelerating the projection particles and obtaining very dense coatings.
  • D-Gun detonation
  • MCrAIY coatings are used as an anchor layer for a ceramic coating that acts as a thermal barrier (TBC)
  • TBC thermal barrier
  • a second MCrAIY coating with greater alumina formation capacity is applied on the MCrAIY to improve the adhesion and compatibility of the thermal barrier to be applied on this second layer.
  • a procedure of this type is described for example in European Patent No. 1 327 702.
  • this compositional modification of the MCrAIY in this surface layer can affect its protective capacity against a corrosive medium at high temperature and in any case, It requires a specific deposition increasing the complexity of the process.
  • the process object of the invention allows to obtain a coating against corrosion and oxidation at high temperature based on the thermal projection of commercial MCrAIY powders, using high frequency detonation techniques (HFPD or High Frequency Pulse Detonation), which allow obtaining a High density and low oxidation coating with high productivity and low cost.
  • HFPD high frequency detonation techniques
  • a ceramic layer can be projected on it, using the same HFPD technique, thus achieving a very dense and well bonded thin layer that leaves the MCrAIY prepared with a surface ceramic exterior that presents good compatibility with thermal barriers.
  • Said thermal barriers of porous nature can be deposited using any thermal projection technique.
  • High frequency detonation projection (HFPD) techniques are described for example in the following applications: WO97 / 23299, WO97 / 23301, WO97 / 23302, WO97 / 23303, WO98 / 29191, WO99 / 12653, WO99 / 37406 and WO01 / 30506.
  • HFPD High frequency detonation projection
  • This procedure allows the generation of explosions with a wide range of temperatures using combustion gases such as methane and natural gas or propane, propylene, ethylene or acetylene gases, using oxygen-rich mixtures and controlling the amount of gases involved in each explosion.
  • combustion gases such as methane and natural gas or propane, propylene, ethylene or acetylene gases, using oxygen-rich mixtures and controlling the amount of gases involved in each explosion.
  • This technique allows the deposition of materials of all kinds, from metal alloys to ceramics, achieving good adhesion and compaction, as a result of the detonation process.
  • the deposition of MCrAIY powders by means of the aforementioned high frequency detonation technique, requires the optimization of the process parameters that allow to achieve a high density, a good compaction and adhesion of the coating, with the minimum internal oxidation, thus requiring a low temperature of the detonation process and a low oxygen environment during the projection.
  • gases are used that generate low temperature combustion such as methane or natural gas, mixed with a dilution of inert gases such as nitrogen, argon, helium or others, using oxygen as oxidizer to achieve low oxygen-carbon-carbon ratios.
  • detonation frequencies greater than 60 Hz are used to improve the productivity of the process and optimize the volume of gases used in each explosion.
  • MCrAIY powders are introduced into the barrel of the detonation gun at a point close to its exit, at a distance of the detonation chamber between 100 and 500 mm to reduce its residence time in the gaseous medium of the projection.
  • the MCrAIY coating obtained is subsequently subjected to a heat treatment in a controlled vacuum environment to promote the diffusion process that causes a suitable microstructure for protection against corrosion-oxidation.
  • HFPD high frequency detonation techniques
  • This ceramic layer can be composed of AI 2 O 3 , ZrO2-Y2O3 mixtures of these elements, which can be applied as monolayers, multilayers or layers of gradual composition.
  • high temperature combustion gases such as propane, propylene, ethylene or acetylene with large concentrations of oxygen are used as a oxidizer to achieve high temperature detonation and highly oxidizing environments that allow the fusion of ceramic powders.
  • the frequency of the explosions may be greater than 40 Hz and the ceramic powders are introduced at a point in the barrel near the combustion chamber to force them to cross the entire length of the barrel, thus increasing the residence time and favoring heat transfer of the gaseous mixture to the ceramic powder.
  • the porous thermal barrier can be deposited on the coating obtained using any thermal projection technique such as VPS, APS or HVOF, or even by other techniques, such as PVD.
  • Figure 1.- Shows a microstructure of a coating
  • Figure 2. Shows a microstructure of a MCrAIY coating and on it a dense and small thickness ceramic layer obtained according to the process object of the invention.
  • the CoNiCrAIY (Amdry 9954) were used as powders to obtain the coating.
  • the projection was performed using high frequency detonation techniques with the following parameters:
  • HFPD high frequency detonation techniques

Abstract

The invention relates to a method of obtaining coatings that protect against high-temperature oxidation, based on MCrAlY, wherein M is selected from the group containing Ni, Co or Fe or the alloys thereof, and comprises the thermal spraying of MCrAlY-based powders using high-frequency pulsed detonation (HFPD) techniques. Optionally, a high-density ceramic layer can be deposited on the MCrAlY layer using high-frequency pulsed detonation (HFPD) techniques.

Description

PROCEDIMIENTO DE OBTENCIÓN PE RECUBRIMIENTOS PROTECTORES CONTRA LA OXIDACIÓN A ALTA TEMPERATURA PROCEDURE FOR OBTAINING PE PROTECTIVE COATINGS AGAINST HIGH TEMPERATURE OXIDATION
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se refiere a un procedimiento para Ia deposición de polvos de base MCrAIY, sobre un substrato, para obtener un recubrimiento protector contra Ia corrosión-oxidación a altas temperaturas.The present invention relates to a process for the deposition of MCrAIY base powders, on a substrate, to obtain a protective coating against corrosion-oxidation at high temperatures.
El procedimiento de Ia invención permite obtener capas protectoras de calidad, con una alta productividad y bajo coste.The process of the invention allows to obtain quality protective layers, with high productivity and low cost.
Es también objeto de Ia invención que Ia capa MCrAIY obtenida pueda servir como anclaje para una barrera térmica.It is also the object of the invention that the MCrAIY layer obtained can serve as an anchor for a thermal barrier.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Los revestimientos de base MCrAIY, donde M está seleccionado entre el Ni, Co y Fe, son utilizados habitualmente para Ia protección de componentes metálicos en ambientes de altas temperaturas, como por ejemplo las palas o carcasas de una turbina de gas.MCrAIY base coatings, where M is selected from Ni, Co and Fe, are commonly used for the protection of metal components in high temperature environments, such as the blades or housings of a gas turbine.
Estos recubrimientos tienen por objeto proteger el substrato metálico frente a Ia corrosión y oxidación a alta temperatura, motivo por el cual en ocasiones sobre ellos se aplican una capa compuesta por un aislante térmico de cerámica o barrera térmica.These coatings are intended to protect the metal substrate against corrosion and oxidation at high temperature, which is why sometimes a layer composed of a ceramic thermal insulator or thermal barrier is applied on them.
Estos recubrimientos se depositan mediante las diferentes técnicas de proyección térmica y, en especial, mediante técnicas de plasma en vacío (VPS), técnica de plasma en aire (APS), técnicas de HVOF o procesos de detonación.These coatings are deposited by different thermal projection techniques and, especially, by plasma techniques. in vacuum (VPS), plasma air technique (APS), HVOF techniques or detonation processes.
La validez de estos recubrimientos está directamente relacionada con su densidad y cohesión interna y en general con una microestructura que evite Ia presencia de poros y fisuras que permitan el ataque corrosivo sobre el substrato.The validity of these coatings is directly related to their density and internal cohesion and in general with a microstructure that avoids the presence of pores and fissures that allow the corrosive attack on the substrate.
También es muy importante Ia composición química del MCrAIY y, en especial, Ia presencia de aluminio e itrio que, en las condiciones de servicio, actúan provocando Ia formación de una capa protectora de alúmina bien adherida.Also very important is the chemical composition of MCrAIY and, in particular, the presence of aluminum and yttrium which, under the conditions of service, act causing the formation of a well-bonded alumina protective layer.
En este sentido, Ia generación de óxidos durante Ia deposición por proyección reduce Ia cantidad disponible de aluminio e itrio y por tanto el comportamiento protector del revestimiento en servicio.In this sense, the generation of oxides during projection deposition reduces the available amount of aluminum and yttrium and therefore the protective behavior of the coating in service.
La técnicas de proyección de plasma en vacío (VPS) producen unos recubrimientos MCrAIY de gran calidad y altas prestaciones térmicas puesto que son recubrimientos con alta densidad y sin presencia de óxidos, como consecuencia de que se realizan en una cámara cerrada con una atmósfera controlada. Sin embargo, presentan el inconveniente de su alto precio y baja productividad, así como las limitaciones dimensionales para las piezas a tratar derivadas de Ia necesidad de utilizar cámaras de vacío.Vacuum plasma projection (VPS) techniques produce high quality MCrAIY coatings and high thermal performance since they are coatings with high density and without the presence of oxides, as a result of which they are carried out in a closed chamber with a controlled atmosphere. However, they have the disadvantage of their high price and low productivity, as well as the dimensional limitations for the pieces to be treated derived from the need to use vacuum chambers.
Por estos inconvenientes, las técnicas de plasma en vacío no son utilizadas de forma generalizada en Ia industria para obtener este tipo de revestimientos protectores.Due to these disadvantages, vacuum plasma techniques are not widely used in the industry to obtain this type of protective coatings.
Por este motivo, se utilizan técnicas alternativas de proyección térmica en condiciones atmosféricas, como por ejemplo técnicas de APS o HVOF. También se utilizan técnicas de detonación, conocidas como D-Gun, según Ia Patente US 2.714.563 pero todas ellas han tenido poco éxito, debido a su baja densidad en el caso de las técnicas APS o a Ia presencia de óxidos en el recubrimiento, como por ejemplo en las técnicas HVOF o D- Gun.For this reason, alternative thermal projection techniques are used in atmospheric conditions, such as APS techniques or HVOF Detonation techniques are also used, known as D-Gun, according to US Patent 2,714,563 but all of them have had little success, due to their low density in the case of APS techniques or the presence of oxides in the coating, such as for example in the HVOF or D-Gun techniques.
Las técnicas HVOF y de detonación (D-Gun) producen un flujo de gases a alta velocidad como resultado de un proceso de combustión continua o de explosiones pulsadas, que es capaz de acelerar las partículas de proyección y obtener recubrimientos muy densos. Sin embargo, el control de Ia oxidación de los recubrimientos obtenidos resulta extremadamente difícil dada Ia naturaleza oxidante de las mezclas combustibles necesarias para obtener flujos de alta velocidad.HVOF and detonation (D-Gun) techniques produce a high velocity gas flow as a result of a continuous combustion process or pulsed explosions, which is capable of accelerating the projection particles and obtaining very dense coatings. However, the control of the oxidation of the coatings obtained is extremely difficult given the oxidizing nature of the fuel mixtures necessary to obtain high velocity flows.
En Ia Patente estadounidense n° 5.741.556 se describe un proceso para Ia producción de revestimientos MCrAIY mediante procedimientos de detonación (D-Gun), con dispersión de óxidos en el recubrimiento que sugiere Ia modificación de los polvos de revestimiento, aumentando Ia presencia inicial de aluminio en los polvos para compensar Ia pérdida del mismo por Ia formación de óxidos en el proceso de proyección.In US Patent No. 5,741,556 a process is described for the production of MCrAIY coatings by detonation (D-Gun) procedures, with dispersion of oxides in the coating that suggests the modification of the coating powders, increasing the initial presence of aluminum in the powders to compensate for the loss thereof by the formation of oxides in the projection process.
En Ia Patente US 6.366.134 se describe una familia de polvos MCrAIY diseñados específicamente para Ia proyección por HVOF con niveles aumentados de itrio para compensar Ia atmósfera rica en oxígeno del proceso HVOF y Ia consecuente formación de óxidos de itrio, cuya generación reduciría Ia disponibilidad de itrio necesario para Ia mejora de Ia durabilidad y propiedades de los óxidos protectores generados por las capas MCrAIY en las condiciones de servicio.In US Patent 6,366,134 a family of MCrAIY powders is described specifically designed for projection by HVOF with increased levels of yttrium to compensate for the oxygen-rich atmosphere of the HVOF process and the consequent formation of yttrium oxides, whose generation would reduce the availability of yttrium necessary for the improvement of the durability and properties of the protective oxides generated by the MCrAIY layers in the service conditions.
Los procedimientos descritos en estas dos Patentes presentan el inconveniente de que introducen modificaciones en el balance químico de los diferentes elementos de revestimiento, resultando difícil controlar el grado de oxidación generado durante el procedimiento de proyección que afectan finalmente a las características de los recubrimientos.The procedures described in these two Patents have the disadvantage that they introduce changes in the chemical balance of the different cladding elements, it is difficult to control the degree of oxidation generated during the projection process that ultimately affect the characteristics of the coatings.
Por otro lado, cuando los recubrimientos MCrAIY se usan como capa de anclaje para un recubrimiento cerámico que actúa como barrera térmica (TBC), los óxidos de aluminio formados en el MCrAIY durante el proceso de proyección pueden provocar que Ia capa cerámica se desconche o se desprenda.On the other hand, when MCrAIY coatings are used as an anchor layer for a ceramic coating that acts as a thermal barrier (TBC), the aluminum oxides formed in the MCrAIY during the projection process can cause the ceramic layer to flake or detach
Para solucionar este problema, se aplica sobre el MCrAIY un segundo revestimiento de MCrAIY con mayor capacidad de formación de alúmina para mejorar Ia adhesión y compatibilidad de Ia barrera térmica a aplicar sobre esta segunda capa. Un procedimiento de este tipo se describe por ejemplo en Ia Patente Europea n° 1 327 702. Sin embargo, esta modificación composicional del MCrAIY en esta capa superficial, puede afectar a su capacidad protectora ante un medio corrosivo a alta temperatura y en todo caso, requiere de una deposición específica incrementando Ia complejidad del proceso.To solve this problem, a second MCrAIY coating with greater alumina formation capacity is applied on the MCrAIY to improve the adhesion and compatibility of the thermal barrier to be applied on this second layer. A procedure of this type is described for example in European Patent No. 1 327 702. However, this compositional modification of the MCrAIY in this surface layer can affect its protective capacity against a corrosive medium at high temperature and in any case, It requires a specific deposition increasing the complexity of the process.
También en ocasiones se realizan tratamientos sobre los recubrimientos MCrAIY o se utilizan capas MCrAIY multiestrato o con una composición gradual cuya capa externa presenta una buena adhesión para Ia barrera térmica. Este tipo de revestimientos se describen por ejemplo en las siguientes Patentes: US 5.894.053, DE19842417 y US 5.942.337.Sin embargo, cualquiera de estos procedimientos introduce una complejidad añadida al proceso, incrementando los costes y las dificultades de aplicación.Also sometimes treatments are performed on MCrAIY coatings or multilayer MCrAIY layers are used or with a gradual composition whose outer layer has good adhesion to the thermal barrier. These types of coatings are described, for example, in the following patents: US 5,894,053, DE19842417 and US 5,942,337, however, any of these procedures introduces added complexity to the process, increasing costs and application difficulties.
En cualquier caso, en Ia actualidad no se conoce ningún procedimiento que simultáneamente permita Ia obtención de recubrimientos MCrAIY con altas productividades, alta calidad y reducido precio y sobre los que a su vez pueda aplicarse, con buenas características de adhesión, una capa cerámica que actúa de barrera térmica frente a las altas temperaturas.In any case, at present there is no known procedure that simultaneously allows the obtaining of coatings MCrAIY with high productivities, high quality and low price and on which in turn can be applied, with good adhesion characteristics, a ceramic layer that acts as a thermal barrier against high temperatures.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
El procedimiento objeto de Ia invención permite obtener un recubrimiento frente a Ia corrosión y oxidación a alta temperatura en base a Ia proyección térmica de polvos MCrAIY comerciales, utilizando técnicas de detonación de alta frecuencia (HFPD o High Frequency Pulse Detonation), que permiten obtener un recubrimiento de alta densidad y baja oxidación con elevada productividad y bajo coste.The process object of the invention allows to obtain a coating against corrosion and oxidation at high temperature based on the thermal projection of commercial MCrAIY powders, using high frequency detonation techniques (HFPD or High Frequency Pulse Detonation), which allow obtaining a High density and low oxidation coating with high productivity and low cost.
Además, cuando el MCrAIY va a ser utilizado como capa de anclaje para barrera térmica, se puede proyectar sobre ella una capa cerámica, utilizando las misma técnica HFPD, consiguiendo así una capa fina muy densa y bien adherida que deja el MCrAIY preparado con una superficie exterior cerámica que presenta una buena compatibilidad con las barreras térmicas. Dichas barreras térmicas de naturaleza porosa se pueden depositar utilizando cualquier técnica de proyección térmica.In addition, when the MCrAIY is going to be used as an anchor layer for thermal barrier, a ceramic layer can be projected on it, using the same HFPD technique, thus achieving a very dense and well bonded thin layer that leaves the MCrAIY prepared with a surface ceramic exterior that presents good compatibility with thermal barriers. Said thermal barriers of porous nature can be deposited using any thermal projection technique.
Las técnicas de proyección por detonación de alta frecuencia (HFPD) se describen por ejemplo en las siguientes solicitudes: WO97/23299, WO97/23301, WO97/23302, WO97/23303, WO98/29191 , WO99/12653, WO99/37406 y WO01/30506.High frequency detonation projection (HFPD) techniques are described for example in the following applications: WO97 / 23299, WO97 / 23301, WO97 / 23302, WO97 / 23303, WO98 / 29191, WO99 / 12653, WO99 / 37406 and WO01 / 30506.
Estas técnicas utilizan los flujos de gases producidos durante las explosiones o detonaciones cíclicas para acelerar y proyectar el material de revestimiento y difieren de las técnicas de detonación conocidas como D- Gun, en Ia ausencia de válvulas mecánicas u otros elementos móviles, consiguiéndose el comportamiento pulsado por Ia propia dinámica del proceso de detonación, a partir de un suministro continuo de gases.These techniques use the gas flows produced during the explosions or cyclical detonations to accelerate and project the coating material and differ from the detonation techniques known as D-Gun, in the absence of mechanical valves or other moving elements, achieving the pulsed behavior by the dynamics of the detonation process, from a continuous supply of gases.
De esta manera, se consiguen explosiones de alta frecuencia, controlables electrónicamente, que pueden superar los 100 Hz frente a las frecuencias de un proceso D-Gun que trabaja entre 1 y 10 Hz.In this way, high-frequency, electronically controllable explosions are achieved, which can exceed 100 Hz compared to the frequencies of a D-Gun process that works between 1 and 10 Hz.
Este procedimiento permite Ia generación de explosiones con un amplio rango de temperaturas utilizando gases de combustión como metano y gas natural o bien gases del tipo propano, propileno, etileno o acetileno, utilizando mezclas ricas en oxígeno y controlando Ia cantidad de gases que intervienen en cada explosión.This procedure allows the generation of explosions with a wide range of temperatures using combustion gases such as methane and natural gas or propane, propylene, ethylene or acetylene gases, using oxygen-rich mixtures and controlling the amount of gases involved in each explosion.
Esta técnica permite Ia deposición de materiales de todo tipo, desde aleaciones metálicas a cerámicas consiguiendo una buena adherencia y compactación, como resultado del proceso de detonación.This technique allows the deposition of materials of all kinds, from metal alloys to ceramics, achieving good adhesion and compaction, as a result of the detonation process.
La deposición de polvos MCrAIY, mediante Ia mencionada técnica de detonación a alta frecuencia, requiere Ia optimización de los parámetros del proceso que permitan conseguir una alta densidad, una buena compactación y adherencia del revestimiento, con Ia mínima oxidación interna, requiriendo así una baja temperatura del proceso de detonación y un ambiente bajo en oxígeno durante Ia proyección.The deposition of MCrAIY powders, by means of the aforementioned high frequency detonation technique, requires the optimization of the process parameters that allow to achieve a high density, a good compaction and adhesion of the coating, with the minimum internal oxidation, thus requiring a low temperature of the detonation process and a low oxygen environment during the projection.
En concreto, se utilizan gases que generan combustión a baja temperatura como el metano o el gas natural, mezclados con una dilución de gases inertes como nitrógeno, argón, helio u otros, utilizando como comburente oxígeno para conseguir relaciones oxígeno-carbono-bajas.Specifically, gases are used that generate low temperature combustion such as methane or natural gas, mixed with a dilution of inert gases such as nitrogen, argon, helium or others, using oxygen as oxidizer to achieve low oxygen-carbon-carbon ratios.
Generalmente se utilizan frecuencias de detonación superiores a 60 Hz para mejorar Ia productividad del proceso y optimizar el volumen de gases utilizados en cada explosión. Los polvos de MCrAIY se introducen en el cañón de Ia pistola de detonación en un punto próximo a su salida, a una distancia de Ia cámara de detonación entre 100 y 500 mm para reducir su tiempo de residencia en el medio gaseoso de Ia proyección.Generally, detonation frequencies greater than 60 Hz are used to improve the productivity of the process and optimize the volume of gases used in each explosion. MCrAIY powders are introduced into the barrel of the detonation gun at a point close to its exit, at a distance of the detonation chamber between 100 and 500 mm to reduce its residence time in the gaseous medium of the projection.
Generalmente el revestimiento de MCrAIY obtenido se somete posteriormente a un tratamiento térmico en un ambiente de vacío controlado para promover el proceso de difusión que provoca una microestructura adecuada para Ia protección contra Ia corrosión-oxidación.Generally, the MCrAIY coating obtained is subsequently subjected to a heat treatment in a controlled vacuum environment to promote the diffusion process that causes a suitable microstructure for protection against corrosion-oxidation.
Cuando el recubrimiento de MCrAIY va a ser usado como capa de anclaje para una barrera térmica, sobre ella se proyecta, también mediante técnicas de detonación a alta frecuencia (HFPD), una capa cerámica de alta densidad y pequeño espesor, que mejora Ia adherencia de Ia barrera térmica porosa sobre el MCrAIY.When the MCrAIY coating is going to be used as an anchor layer for a thermal barrier, it is also projected, using high frequency detonation techniques (HFPD), a ceramic layer of high density and small thickness, which improves the adhesion of The porous thermal barrier on the MCrAIY.
Esta capa cerámica puede estar compuesta por AI2O3, ZrO2- Y2O3 mezclas de estos elementos, que pueden aplicarse como monocapas, multicapas o capas de composición gradual.This ceramic layer can be composed of AI 2 O 3 , ZrO2-Y2O3 mixtures of these elements, which can be applied as monolayers, multilayers or layers of gradual composition.
Para Ia proyección de esta capa cerámica densa de pequeño espesor, que actúa como anclaje para Ia barrera térmica, se requieren altas temperaturas de detonación y entornos de proyección ricos en oxígeno, para producir Ia fusión completa de las partículas cerámicas.For the projection of this dense ceramic layer of small thickness, which acts as an anchor for the thermal barrier, high detonation temperatures and oxygen-rich projection environments are required, to produce the complete fusion of the ceramic particles.
En concreto, se utilizan gases de combustión a alta temperatura como el propano, propileno, etileno o acetileno con grandes concentraciones de oxígeno como comburente para conseguir una detonación de alta temperatura y ambientes altamente oxidantes que permiten Ia fusión de los polvos cerámicos. La frecuencia de las explosiones puede ser mayor de 40 Hz y los polvos cerámicos se introducen en un punto del cañón cercanos a Ia cámara de combustión para obligarles a atravesar toda Ia longitud del cañón, aumentando así el tiempo de residencia y favoreciendo Ia transferencia de calor de Ia mezcla gaseosa al polvo cerámico.In particular, high temperature combustion gases such as propane, propylene, ethylene or acetylene with large concentrations of oxygen are used as a oxidizer to achieve high temperature detonation and highly oxidizing environments that allow the fusion of ceramic powders. The frequency of the explosions may be greater than 40 Hz and the ceramic powders are introduced at a point in the barrel near the combustion chamber to force them to cross the entire length of the barrel, thus increasing the residence time and favoring heat transfer of the gaseous mixture to the ceramic powder.
La barrera térmica porosa se puede depositar sobre el revestimiento obtenido utilizando cualquier técnica de proyección térmica como por ejemplo VPS, APS o HVOF, o incluso por otras técnicas, como por ejemplo por PVD.The porous thermal barrier can be deposited on the coating obtained using any thermal projection technique such as VPS, APS or HVOF, or even by other techniques, such as PVD.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, a set of drawings is attached as an integral part of said description, in which, for illustrative and non-limiting purposes, Io has been represented. next:
Figura 1.- Muestra una microestructura de un recubrimientoFigure 1.- Shows a microstructure of a coating
MCrAIY según el procedimiento objeto de Ia invención.MCrAIY according to the method object of the invention.
Figura 2.- Muestra una microestructura de un recubrimiento MCrAIY y sobre éste una capa cerámica densa y de pequeño espesor obtenido según el procedimiento objeto de Ia invención.Figure 2.- Shows a microstructure of a MCrAIY coating and on it a dense and small thickness ceramic layer obtained according to the process object of the invention.
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
A continuación, se describen dos ejemplos de recubrimientos MCrAIY obtenidos de acuerdo con el procedimiento de Ia invención. EJEMPLO 1 : Recubrimiento MCrAIYNext, two examples of MCrAIY coatings obtained in accordance with the process of the invention are described. EXAMPLE 1: MCrAIY Coating
Se utilizaron como polvos para Ia obtención del recubrimiento: CoNiCrAIY (Amdry 9954). La proyección se realizó mediante técnicas de detonación a alta frecuencia con los siguientes parámetros:The CoNiCrAIY (Amdry 9954) were used as powders to obtain the coating. The projection was performed using high frequency detonation techniques with the following parameters:
- Flujo de gas natural (slpm): 59- Natural gas flow (slpm): 59
- Flujo de nitrógeno (slpm): 62- Nitrogen flow (slpm): 62
- Flujo de oxígeno (slpm): 82 - Frecuencia (Hz): 60- Oxygen flow (slpm): 82 - Frequency (Hz): 60
- Gas portador nitrógeno (slpm): 80- Nitrogen carrier gas (slpm): 80
- Distancia de proyección (mm): 150- Projection distance (mm): 150
Con estos parámetros se consiguió un recubrimiento cuya microestructura, tras un tratamiento térmico a alta temperatura, se observa en Ia figura 1.With these parameters a coating was obtained whose microstructure, after a high temperature heat treatment, is observed in Figure 1.
EJEMPLO 2: Recubrimiento MCrAIY + cerámicaEXAMPLE 2: MCrAIY + ceramic coating
Para Ia obtención de Ia capa inferior McrAIY, se utilizó como polvo de proyección CoNiCrAIY (Amdry 9954). La proyección se realizó mediante técnicas de detonación a alta frecuencia (HFPD) con los siguientes parámetros:To obtain the lower layer McrAIY, CoNiCrAIY projection powder (Amdry 9954) was used. The projection was performed using high frequency detonation techniques (HFPD) with the following parameters:
- Flujo de gas natural (slpm): 59- Natural gas flow (slpm): 59
- Flujo de nitrógeno (slpm): 62- Nitrogen flow (slpm): 62
- Flujo de oxígeno (slpm): 82- Oxygen flow (slpm): 82
- Frecuencia (Hz): 60- Frequency (Hz): 60
- Gas portador nitrógeno (slpm): 80 - Distancia de proyección (mm): 150 Para la obtención de Ia capa cerámica superior se utilizó como polvo de proyección AI2O3 (Metco 105SFP). La proyección se realizó mediante técnicas de detonación a alta frecuencia (HFPD) con los siguientes parámetros:- Nitrogen carrier gas (slpm): 80 - Projection distance (mm): 150 To obtain the upper ceramic layer, AI2O3 projection powder (Metco 105SFP) was used. The projection was performed using high frequency detonation techniques (HFPD) with the following parameters:
- Flujo de propileno (slpm): 60- Propylene flow (slpm): 60
- Flujo de oxígeno (slpm): 180- Oxygen flow (slpm): 180
- Frecuencia (Hz): 70- Frequency (Hz): 70
- Gas portador nitrógeno (slpm): 80 - Distancia de proyección (mm): 230- Nitrogen carrier gas (slpm): 80 - Projection distance (mm): 230
Con estos parámetros se consiguió un recubrimiento cuya microestructura, tras un tratamiento térmico a alta temperatura se observa en Ia figura 2. With these parameters, a coating was obtained whose microstructure, after a heat treatment at high temperature, is observed in Figure 2.

Claims

R E I V I N D I C A C I O N E S
1. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura basados en MCrAIY donde M está seleccionado del grupo compuesto por Ni, Co o Fe o sus aleaciones, caracterizado porque comprende Ia proyección térmica de polvos de base MCrAIY, por técnicas de detonación pulsada de alta frecuencia (HFPD).1. Procedure for obtaining protective coatings against high temperature oxidation based on MCrAIY where M is selected from the group consisting of Ni, Co or Fe or its alloys, characterized in that it comprises the thermal projection of MCrAIY base powders, by detonation techniques high frequency pulsed (HFPD).
2. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura, según reivindicación 1 , caracterizado porque Ia proyección térmica se realiza utilizando una mezcla que comprende al menos un combustible y un comburente.2. Procedure for obtaining protective coatings against high temperature oxidation, according to claim 1, characterized in that the thermal projection is carried out using a mixture comprising at least one fuel and one oxidizer.
3. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura, según reivindicaciones 1 y 2, caracterizado porque Ia proyección térmica se realiza utilizando una mezcla gaseosa compuesta por metano o gas natural mezclado con una dilución de gases inertes seleccionados entre Nitrógeno, Argón, Helio u otros y como comburente Oxígeno o aire.3. Procedure for obtaining protective coatings against high temperature oxidation, according to claims 1 and 2, characterized in that the thermal projection is performed using a gaseous mixture composed of methane or natural gas mixed with a dilution of inert gases selected from Nitrogen, Argon , Helium or others and as oxidizer Oxygen or air.
4. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura, según reivindicación 1 , caracterizado porque después de Ia deposición de Ia capa MCrAIY se aplica un tratamiento térmico, en atmósfera controlada, para provocar Ia difusión.4. Procedure for obtaining protective coatings against high temperature oxidation, according to claim 1, characterized in that after the deposition of the MCrAIY layer a heat treatment is applied, in a controlled atmosphere, to cause diffusion.
5. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura, según reivindicación 1 , caracterizado porque sobre Ia capa MCrAIY se deposita una capa cerámica de alta densidad, por proyección térmica, mediante técnicas de detonación pulsada de alta frecuencia (HFPD), constituyendo Ia capa cerámica densa un anclaje para Ia aplicación de barreras térmicas de materiales cerámicos, depositadas mediante cualquier técnica de proyección térmica.5. Procedure for obtaining protective coatings against high temperature oxidation, according to claim 1, characterized in that a high density ceramic layer is deposited on the MCrAIY layer, by thermal projection, using high frequency pulsed detonation (HFPD) techniques, constituting the ceramic layer dense an anchor for the application of thermal barriers of ceramic materials, deposited by any thermal projection technique.
6. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura, según reivindicación 5, caracterizado porque Ia proyección térmica se realiza utilizando una mezcla que comprende al menos un combustible y un comburente.6. Procedure for obtaining protective coatings against high temperature oxidation, according to claim 5, characterized in that the thermal projection is carried out using a mixture comprising at least one fuel and one oxidizer.
7. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura, según reivindicación 6, caracterizado porque Ia proyección térmica se realiza utilizando una mezcla de gases seleccionados entre propano, propileno, etileno o acetileno, y como comburente oxígeno,7. Procedure for obtaining protective coatings against high temperature oxidation, according to claim 6, characterized in that the thermal projection is carried out using a mixture of gases selected from propane, propylene, ethylene or acetylene, and as oxygen oxidizer,
8. Procedimiento de obtención de recubrimientos protectores contra Ia oxidación a alta temperatura, según reivindicación 5, caracterizado porque antes o después de Ia deposición de Ia capa cerámica densa se aplica un tratamiento térmico, en atmósfera controlada, para provocar Ia difusión. 8. Procedure for obtaining protective coatings against high temperature oxidation, according to claim 5, characterized in that before or after the deposition of the dense ceramic layer a thermal treatment is applied, in a controlled atmosphere, to cause diffusion.
PCT/ES2004/000399 2004-09-14 2004-09-14 Method of obtaining coatings that protect against high-temperature oxidation WO2006042872A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/662,689 US20080057214A1 (en) 2004-09-14 2004-09-14 Process For Obtaining Protective Coatings Against High Temperature Oxidation
PCT/ES2004/000399 WO2006042872A1 (en) 2004-09-14 2004-09-14 Method of obtaining coatings that protect against high-temperature oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/000399 WO2006042872A1 (en) 2004-09-14 2004-09-14 Method of obtaining coatings that protect against high-temperature oxidation

Publications (1)

Publication Number Publication Date
WO2006042872A1 true WO2006042872A1 (en) 2006-04-27

Family

ID=36202697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000399 WO2006042872A1 (en) 2004-09-14 2004-09-14 Method of obtaining coatings that protect against high-temperature oxidation

Country Status (2)

Country Link
US (1) US20080057214A1 (en)
WO (1) WO2006042872A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132028A1 (en) * 2006-05-12 2007-11-22 Fundacion Inasmet Method for obtaining ceramic coatings and ceramic coatings obtained
EP2202328A1 (en) 2008-12-26 2010-06-30 Fundacion Inasmet Process for obtaining protective coatings for high temperature with high roughness and coating obtained

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180290934A1 (en) * 2013-06-21 2018-10-11 National Tsing Hua University Refractory metal matrix-ceramic compound multi-component composite material with super-high melting point
TWI561494B (en) * 2013-06-21 2016-12-11 Univ Nat Tsing Hua Multicomponent composites composed of refractory metals and ceramic compounds for superhigh-temperature use
WO2015130526A2 (en) 2014-02-25 2015-09-03 Siemens Aktiengesellschaft Turbine component thermal barrier coating with crack isolating engineered groove features
US9151175B2 (en) 2014-02-25 2015-10-06 Siemens Aktiengesellschaft Turbine abradable layer with progressive wear zone multi level ridge arrays
US9243511B2 (en) 2014-02-25 2016-01-26 Siemens Aktiengesellschaft Turbine abradable layer with zig zag groove pattern
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
US10190435B2 (en) 2015-02-18 2019-01-29 Siemens Aktiengesellschaft Turbine shroud with abradable layer having ridges with holes
EP3259452A2 (en) 2015-02-18 2017-12-27 Siemens Aktiengesellschaft Forming cooling passages in combustion turbine superalloy castings
CN114807823B (en) * 2022-04-13 2023-04-07 四川大学 Preparation method of high-temperature protective coating for hot-end component of gas turbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843587A (en) * 1996-02-16 1998-12-01 Mitsubishi Heavy Industries, Ltd. Process for treating high temperature corrosion resistant composite surface
EP0911422A2 (en) * 1997-10-27 1999-04-28 General Electric Company Method of forming a bond coat for a thermal barrier coating
EP1013788A1 (en) * 1998-12-22 2000-06-28 General Electric Company Repair of high pressure turbine shrouds
EP1122329A1 (en) * 2000-02-07 2001-08-08 General Electric Company A method of providing a protective coating on a metal substrate, and related articles
US6383658B1 (en) * 1999-11-18 2002-05-07 General Electric Company Thermally sprayed coatings having an interface with controlled cleanliness

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269903A (en) * 1979-09-06 1981-05-26 General Motors Corporation Abradable ceramic seal and method of making same
US20030138658A1 (en) * 2002-01-22 2003-07-24 Taylor Thomas Alan Multilayer thermal barrier coating
US6787194B2 (en) * 2002-04-17 2004-09-07 Science Applications International Corporation Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like
US7258934B2 (en) * 2002-09-25 2007-08-21 Volvo Aero Corporation Thermal barrier coating and a method of applying such a coating
US6893750B2 (en) * 2002-12-12 2005-05-17 General Electric Company Thermal barrier coating protected by alumina and method for preparing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843587A (en) * 1996-02-16 1998-12-01 Mitsubishi Heavy Industries, Ltd. Process for treating high temperature corrosion resistant composite surface
EP0911422A2 (en) * 1997-10-27 1999-04-28 General Electric Company Method of forming a bond coat for a thermal barrier coating
EP1013788A1 (en) * 1998-12-22 2000-06-28 General Electric Company Repair of high pressure turbine shrouds
US6383658B1 (en) * 1999-11-18 2002-05-07 General Electric Company Thermally sprayed coatings having an interface with controlled cleanliness
EP1122329A1 (en) * 2000-02-07 2001-08-08 General Electric Company A method of providing a protective coating on a metal substrate, and related articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132028A1 (en) * 2006-05-12 2007-11-22 Fundacion Inasmet Method for obtaining ceramic coatings and ceramic coatings obtained
EP2039796A1 (en) * 2006-05-12 2009-03-25 Fundacion Inasmet Method for obtaining ceramic coatings and ceramic coatings obtained
EP2039796A4 (en) * 2006-05-12 2009-11-11 Fundacion Inasmet Method for obtaining ceramic coatings and ceramic coatings obtained
EP2202328A1 (en) 2008-12-26 2010-06-30 Fundacion Inasmet Process for obtaining protective coatings for high temperature with high roughness and coating obtained

Also Published As

Publication number Publication date
US20080057214A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US8062759B2 (en) Thermal barrier coating systems including a rare earth aluminate layer for improved resistance to CMAS infiltration and coated articles
Ahmadi-Pidani et al. Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4+ V2O5 molten salt
EP1829984B1 (en) Process for making a high density thermal barrier coating
US9034479B2 (en) Thermal barrier coating systems and processes therefor
US9023486B2 (en) Thermal barrier coating systems and processes therefor
JP3579267B2 (en) Method for densifying bond coat for thermal barrier coating system and promoting bonding between particles
JP5209228B2 (en) Method for producing a coating
EP2202328A1 (en) Process for obtaining protective coatings for high temperature with high roughness and coating obtained
US20090169752A1 (en) Method for Improving Resistance to CMAS Infiltration
US20160333455A1 (en) Thermal Barrier Coating with Lower Thermal Conductivity
JP6768513B2 (en) Heat shield coating and coating method
Gonzalez‐Julian et al. Cr2AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges
CN109874330A (en) The method on the layer coating solid substrate surface containing ceramic compound and the substrate of coating obtained
US20130095256A1 (en) Impact and erosion resistant thermal and environmental barrier coatings
US20150233256A1 (en) Novel architectures for ultra low thermal conductivity thermal barrier coatings with improved erosion and impact properties
WO2006042872A1 (en) Method of obtaining coatings that protect against high-temperature oxidation
JP2020523477A (en) Coated turbomachine parts and related manufacturing method
JP2020523488A (en) Coated turbomachine parts and related manufacturing method
EP2322686B1 (en) Thermal spray method for producing vertically segmented thermal barrier coatings
JP2000080464A (en) Low thermal conductivity and heat barrier type ceramic coating, method for depositing ceramic coating and metallic parts protected by this ceramic coating
Mayoral et al. Aluminium depletion in NiCrAlY bond coatings by hot corrosion as a function of projection system
WO2008040678A1 (en) Method for making heat barrier coatings, coatings and structure obtained thereby as well as components coated therewith
US20050026001A1 (en) Shielded ceramic thermal spray coating
Lima et al. Thermal and environmental barrier coatings (TBCs/EBCs) for turbine engines
Góral et al. The technology of plasma spray physical vapour deposition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11662689

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11662689

Country of ref document: US