WO2006041524A2 - Nucleic acid detection system - Google Patents
Nucleic acid detection system Download PDFInfo
- Publication number
- WO2006041524A2 WO2006041524A2 PCT/US2005/011977 US2005011977W WO2006041524A2 WO 2006041524 A2 WO2006041524 A2 WO 2006041524A2 US 2005011977 W US2005011977 W US 2005011977W WO 2006041524 A2 WO2006041524 A2 WO 2006041524A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- labeled
- hapten
- target nucleic
- specific binding
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2565/00—Nucleic acid analysis characterised by mode or means of detection
- C12Q2565/60—Detection means characterised by use of a special device
- C12Q2565/625—Detection means characterised by use of a special device being a nucleic acid test strip device, e.g. dipsticks, strips, tapes, CD plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the invention relates to the field of high sensitivity detection of nucleic acid molecules by using a lateral flow nucleic acid detection system.
- Flaviviridae contains almost 70 viruses including those causing yellow fever, dengue fever, West Nile fever and Japanese encephalitis. Due to increases in global travel, outbreaks of these viruses have begun occurred outside the tropics with greater frequency. In the continental US, outbreaks of St. Louis encephalitis virus and a recent outbreak of West Nile virus which started in New York City and expanded to the whole eastern coast of US. In addition, two mosquito vectors, Aedes Aegypti and Aedes albopictus, are present in the US and under certain circumstances, each could transmit dengue viruses.
- Dengue fever and DHF/DSS have emerged as the most important arthropod-borne viral diseases of humans (Gubler and Clark, Emerg Infect Dis. 1995 Apr-Jun;l(2):55-7).
- dengue virus types DEN-I, DEN-2, DEN-3, and DEN-4
- the conserved 3'-noncoding sequences of four dengue virus serotypes have been successfully utilized to develop a TaqMan-based RT-PCR (funded by MIDRP STO AJL from 2002-2003) to quantitatively identify dengue viruses from different regions of the world.
- PCR polymerase chain reaction
- the present invention is directed to a signal amplification system such as europium encapsulated microparticles and/or electroconductivity in conjunction with chromatographic lateral flow assay.
- This system is an improved nucleic acid detection system that retains all of the advantages of conventional immunochromatographic assay: 1) One step 2) Field-usable 3) Utilizes stable reagents 4) No special storage requirements 5) Rapid results.
- the amplified signal is measured by a small portable reader, which gives quantitative or qualitative results.
- the invention is directed to scale up production of a fluorogenic nucleic acid reagent kit for serotype-specific target nucleic acid detection.
- the invention is further directed to lyophilized kit components, which are sensitive, specific and stable.
- Various concentrations of cultured pathogens such as viruses which include dengue virus or dengue virus cDNA may be detected.
- the inventive system employs ready to use lyophilized reagent pads for gene amplification.
- Reaction matrix may include buffers, dNTP's, RNAase inhibitor, reverse transcriptase, labeled specific primers such as dengue virus serotype specific primers (DEN-I, -2, -3, -4), lower primers, Biotin dUTP, Taq polymerase, internal control mRNA, and control mRNA specific primers.
- Biotin dUTP is added to label the nucleic acid amplified product in order to detect using a lateral flow assay and to amplify the indicator signal.
- Fluorogenic primers are designed to increase their fluorescence intensity when incorporated into the double-stranded PCR product (Nazarenko et al., Nucleic Acids Res. 2002 May l;30(9):e37) and to apply the PCR products to the lateral flow immunochromatographic assay to identify the dengue serotype.
- a time-resolved fluorescence technology is used, preferably a system based on europium embedded micro particles conjugated with anti- hapten antibody and time-resolved confocal scanning device for signal detection.
- This feature provides additional sensitivity of assay.
- This highly sensitive chromatographic lateral flow signal amplification system requires less threshold cycle number (C 1 ) than the fluorescence detection system.
- the inventive PCR product detection system is rapid ( ⁇ 30 min), a one step format, and stable (storage at ⁇ 30 degrees C for more than 1 year).
- the assay is easy to operate, inexpensive, portable, uses heat-stable reagents, and has no special storage requirements.
- the inventive detection system may also be applied to detect any organism, including but not limited to pathogens such as militarily significant virus, including Flavivirus, such as Japanese Encephalitis virus, Yellow Fever virus, West Nile virus, small pox and so on. Other pathogens include bacteria, such as Bacillus anthracis.
- pathogens such as militarily significant virus, including Flavivirus, such as Japanese Encephalitis virus, Yellow Fever virus, West Nile virus, small pox and so on.
- Other pathogens include bacteria, such as Bacillus anthracis.
- the present invention is also directed to non gene amplification based target nucleic acid based detection by using Europium based and/or electroconductivity based methods of target nucleic acid detection.
- the inventive nucleic acid based detection system amplifies a signal from the low concentration of specific genomic DNA sequences from biological pathogens without rigorous sample preparation, complex reactive components of limited shelf life, sophisticated hardware, a complex detection process, or trained personnel.
- This method is also unique, specific, simple, and the amplifying system is easy to operate in a field-deployable detection module.
- the invention is directed to a real ⁇ time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) technology of the dengue 3'-noncoding region based assay system into ready-to-use dengue virus detection and diagnosis system.
- RT-PCR Real ⁇ time Reverse Transcriptase Polymerase Chain Reaction
- a field deployable and user-friendly diagnostics device using, lateral flow immunochromatographic assay is shown with and without real-time fluorogenic thermal cycler.
- the present invention allows dual application to the real time PCR and/or conventional PCR.
- the invention is further directed to the detailed analysis result of serotype specific information in conjunction with the RT reactions.
- Multiplex PCR reaction may be carried out in a single tube (Fig. 4). All reaction components for RT reaction and PCR reaction are lyophilized in the matrix with proper formulation. Biotin dUTP or labeled oligonucleotide primers and fluorescent labeled beacon primers are added to label the PCR product and to detect using real time fluorogenic thermal cycler or lateral flow detection kit.
- Four serotypes of dengue virus can be identified in a single PCR reaction. This reaction kit can be stored at room temperature for more than one year.
- any suitable detection system may be used, including fluorescent, chemiluminescent, enzymatic or any other dye based system, so long as the binding of the probe to the target nucleic acid in a sample can be detectably assayed using the inventive lateral flow system.
- a dye system may include a molecular beacon type system with fluorescein based label, or it may contain other labels such as a biotin label with a colloidal gold conjugated avidin or streptavidin partner or any other detectable conjugable chemical such as a lanthanide element such as europium.
- Other types of detection labels and methods are within the purview of the invention.
- the invention is further directed to a self-performing device.
- This rapid nucleic acid detection system contains all reagents and components in precise quantities to generate test results after sample addition.
- the system also may also have a built in heating pad to precisely match nucleotide target sequence identification based on probe oligonucleotide composition.
- the target DNA of biological pathogen in the sample may react with the europium particle-labeled oligonucleotides, the europium particle-labeled Peptide Nucleic Acids (PNAs) with Light Addressable Direct Electrical Readout (LADER), or electro conductivity.
- PNAs europium particle-labeled Peptide Nucleic Acids
- LADER Light Addressable Direct Electrical Readout
- This europium labeled oligomer and electroconductivity detection method working in conjunction in a lateral flow assay system can increase sensitivity 10 to 1,000 times compared with colloidal gold microparticle. (Fig. 5)
- combining these detection systems with chromatographic lateral flow assays can increase the sensitivity by more than 10 times compared to an equilibrium plate assay (Hampl etal. Anal Biochem 2001; 176-187).
- the invention is directed to a lateral flow device for detecting target nucleic acid comprising: a reservoir area, a dye area and a test area, wherein the reservoir area comprises ready to use nucleic acid amplification mix comprising primer labeled with a hapten and/or dNTP labeled with a hapten; the dye area comprises a specific binding partner to a first type of hapten linked to a reporter dye; and the test area comprises a specific binding partner to a second type of hapten.
- the device may contain a reservoir with more than one different second type of hapten where multiple forms of the target nucleic acid is being detected.
- the first type of hapten may be biotin, and its specific binding partner may be streptavidin, and the reporter dye may be europium or gold.
- the second type of hapten may be biotin, fluorophore, or oligopeptide, and its specific binding partner may be streptavidin or an antibody specific to the flurophore or oligopeptide if a single form of the target nucleic acid is being detected.
- the second type of hapten may be multiple types of fluorophores or oligopeptides and its specific binding partner may be an antibody specific to each type of fluorophore or oligopeptide.
- the source of the target nucleic acid may be a pathogen, which may be a virus such as dengue virus and the serotypes of the dengue virus particle may be detected by using different second types of hapten.
- the primer may be molecular beacon type.
- the present invention is also directed to a method of assaying for the presence of a target nucleic acid in a sample, comprising contacting the sample to the reservoir area of the device according described above, wherein if the target nucleic acid is present in the sample, the target nucleic acid is amplified and labeled with at least two types of hapten, and is transported to the dye area where the first hapten is bound to its specific binding partner linked to a reporter dye, and is further transported through the test area by capillary action, and is bound to the second type of hapten-specific binding partner on the test area, the detection of which indicates that the target nucleic acid is present in the sample.
- the reservoir may include more than one different second type of hapten where multiple forms of the target nucleic acid is being detected.
- the first type of hapten may be biotin, and its specific binding partner may be streptavidin, and the reporter dye may be europium or gold.
- the second type of hapten may be biotin, fluorophore, or oligopeptide, and its specific binding partner may be streptavidin or an antibody specific to the flurophore or oligopeptide if a single form of the target nucleic acid is being detected.
- the second type of hapten may be multiple types of fluorophores or multiple types of oligopeptides and their specific binding partner may be an antibody specific to each type of fluorophore or oligopeptide.
- the source of the target nucleic acid may be a pathogen.
- the present invention is further directed to a method of assaying for the presence of a target nucleic acid in a sample, comprising contacting the sample to a reservoir area of a lateral flow device wherein if the target nucleic acid is present in the sample, the target nucleic acid is amplified and labeled with at least one type of hapten, and is transported to a dye area where the hapten is bound to its specific binding partner linked to a reporter dye, and is further transported through the test area by capillary action, and is bound to target specific oligonucleotide in the test area, the detection of which indicates that the target nucleic acid is present in the sample, wherein the detection is by light addressable direct electrical readout or by detection of the reporter dye.
- the hybridization in the test area may be controlled by built in heating pad in the lateral flow device.
- the hapten may be biotin, and its specific binding partner is streptavidin, and the reporter dye may be europium or gold.
- the invention is also directed to a method of assaying for the presence of a target nucleic acid in a sample, comprising contacting a sample to a reservoir area of a lateral flow device wherein if the target nucleic acid is present in the sample, the target nucleic is transported through the test area by capillary action and is bound to target specific oligonucleotide labeled with Europium. Further, the target nucleic acid may be amplified before being transported to the test area. Amplification may not be necessary if using as sensitive an assay where electroconductivity and europium detection are being used.
- Figures IA and IB show A. modified serotype-specif ⁇ c upper primers; and B. hairpin structure made using the primers.
- Figure 2 shows structure of molecular beacon dengue virus serotype specific upper primers.
- Figure 3 shows lower primers for PCR anti-sense primer and RT reaction primer.
- Figure 4 shows diagram of multiplex PCR amplification.
- Figures 5A-5B show the inventive assay system.
- 5(A) shows the test device of the system before testing.
- the device has at least two main parts, Sample well at the bottom part of device and result reading window at the middle of the device.
- 5(B) shows the test results after assay. Two lines indicate a positive and one line a negative.
- the control line serves as an internal built-in control. It should appear if assay is performed properly.
- Figure 6 shows a multiplex PCR product identification assay.
- Figure 7 shows a picture of PCR product identification device.
- Figure 8 shows a configuration of the lateral flow device.
- Figure 9 shows a structure of 5' amino modifier linked type 2 forward primer
- Figure 10 shows a configuration pf immunochromatographic PCR product identification assay with labeled PCR product (strip format).
- Figure 11 shows a configuration of immunochromatographic PCR product identification assay with labeled PCR product (device format).
- Figure 12 shows a structure of 5' biotinylated forward primer.
- Figure 13 shows a structure of 5' rhodamine red labeled reverse primer.
- Figure 14 shows a structure of 5' synthetic oligopeptide labeled forward primer.
- Figure 15 shows an assay procedure for the strip test.
- Figure 16 shows an assay procedure for device format assay.
- Figure 17 shows comparison results of real-time PCR and rapid PCR product analysis kit for Dengue virus serotype 1 detection. Both tests performed with 1.5mM MgCl 2.
- Lane A 4,340,000 copies/test
- Lane B 868,000 copies/test
- Lane C 173,600 copies/test
- Lane D 34,720 copies/test
- Lane E 6,944 copies/test
- Lane F 1,388 copies/test
- Lane G
- Figure 18 shows comparison results of real-time PCR and rapid PCR product analysis kit for Dengue virus serotype 2 detection. Lane A: 3,720,000 copies/test, Lane B:
- Lane F 15,300 copies/test
- Lane G 5,100 copies/test
- Lane H 1,700 copies/test
- Lane I 567 copies/test
- Lane J 189 copies/test
- Lane K 63 copies/test
- Figure 19 shows comparison results of real-time PCR and rapid PCR product analysis kit for Dengue virus serotype 3 detection. Both tests performed with 1.5mM MgCl 2. Lane A: 5,090,000 copies/test, Lane B: 1,018,000 copies/test, Lane C: 203,600 copies/test,
- Lane D 40,720 copies/test
- Lane E 8,144 copies/test
- Lane F 1,628 copies/test
- Lane G
- Figure 20 shows principles of Light Addressable Direct Electrical Readout
- Figure 21 illustrates a schematic of the reader device and a blow-up of the contact head for the CBT chips in EDDA format.
- Figure 22 shows the electrochemical behavior of an electrode modified with 20 nucleotide long capture probe and covalently attached Os-label before and after hybridization with the matching target that itself is modified with a ferrocenium (FcAc) label.
- Figure 23 shows a configuration of self-performing rapid nucleic acid detection system using electroconductive assay.
- Figure 24 shows a diagram of assay principle for detection of biological pathogen specific DNA sequence using time-resolved fluorescent emission and/or conductivity change detection.
- Figures 25A-25B show configurations for heating system.
- Figures 26 A and B show a configuration for a heating system.
- Figures 27 A and B show a configuration for a heating system.
- Figure 28 shows a diagram of a test device with places for instrument connector.
- Figure 29 shows gene point of care testing (GPOCT) device, which is an integrated DNA sampler.
- GPSOCT gene point of care testing
- Figure 30 shows a detailed embodiment of the GPOCT device.
- Figure 31 shows a detailed embodiment of the GPOCT device.
- multiple forms of target nucleic acid refers to multiple isoforms or serotypes of a target nucleic acid, such as dengue virus, which may have four serotypes.
- nucleic acid or “oligonucleotide” as the terms are used in the probe setting refers to any string of nucleotides. Thus, DNA, RNA or PNA are included.
- nucleic acid amplification refers to polymerase chain reaction (PCR), ligase chain reaction (LCR), Q ⁇ replicase, strand displacement assay (SDA), nucleic acid sequence-based amplification (NASBA), or cascade rolling circle amplification (CRCA).
- PCR polymerase chain reaction
- LCR ligase chain reaction
- SDA strand displacement assay
- NASBA nucleic acid sequence-based amplification
- CRCA cascade rolling circle amplification
- ready to use in the context of nucleic acid amplification refers to all of the necessary reagents and enzymes to carry out the target nucleic acid amplification upon contact with the sample that includes the target nucleic acid.
- the invention is directed to raising signal for nucleic acid detection.
- the method may comprise using a variety of labels or haptens to sensitively measure the signal.
- the ready-to-use nucleic acid amplification pre-mix may be included in a container.
- the sample may be added to the pre-mix and the nucleic acid amplification carried out.
- the pre-mix may contain reagents for nucleic acid amplification including primers that are differentially labeled at the 5' and/or 3' ends.
- primers that are differentially labeled at the 5' and/or 3' ends.
- the 5' and 3' ends of a single primer may be differentially labeled in the molecular beacon style with a fluorophore at one end and a quencher at the other end.
- Each of these labels may be considered haptens as antibodies against these labels are available and may be generated.
- the body of the amplified product may be optionally labeled with a hapten labeled dNTP, such as biotin.
- the pre-mix may be dried or freeze-dried, and the pre- mix may be suitable for amplification by isothermal amplification PCR and/or real time PCR.
- the haptenized or labeled amplified nucleic acid or non- amplified genomic DNA containing the target nucleic acid (usually cut) that is able to flow to the dye area is contacted on the lateral flow assay device at the reservoir area, which contains reagents that are suitable for hybridization conditions or antibody/antigen binding conditions or other specific binding pair conditions.
- the nucleic acid may then travel to the dye area, which contains a specific binding partner to the target nucleic acid complex of nucleic acid and the haptens that are attached to the nucleic acid.
- the specific binding partner may be a target-specific oligonucleotide, an antibody to one of the haptens or a high affinity ligand such as streptavidin, which binds with high affinity to biotin.
- the specific binding partner may be linked or conjugated to a dye, preferably a highly sensitive dye, such as europium or gold to form a complex of target nucleic-specific binding partner-dye.
- the specific binding partner may be further haptenized with a different label.
- the label may be europium, fluorophore, FITC, biotin, oligopeptide and so on, so long as the label is detectable by any means.
- the test area may be immobilized with another specific binding partner to one of the other haptens in the target nucleic acid complex such as an oligonucleotide specific for the target nucleic acid, whereupon the binding of the complex to the different specific binding partner on the test area indicates the presence of the target nucleic acid.
- the oligonucleotide that is used in the dye area and immobilized in the test area may be a peptide nucleic acid or RNA.
- the test area may be irr ⁇ mobilized with a target specific oligonucleotide and/or at least one other specific binding partner for one of the haptens to further differentiate and specify the target nucleic acid.
- a specific binding partner to one of the haptens on the target nucleic acid such as specific to either the 5' label or the 3' label may be immobilized in the test area, and an oligonucleotide probe to the target nucleic acid may also be immobilized so that detection the target nucleic acid is made with greater specificity.
- RT-PCR Reverse Transcriptase Polymerase Chain Reaction
- the inventive system optimizes and scales up production of the RT-PCR reagent kits for generic and serotype-specific microorganism detection, including dengue virus detection.
- Special freeze-drying protocol is developed to generate dried and ready-to-use dengue assay kits that contain all the components for RT reaction multiplex PCR reaction in a single tube.
- the kits can be used in either general thermal cyclers or real time PCR thermal cyclers such as fluorogenic PCR thermal cyclers.
- Viral RNAs are extracted from virus suspensions of the virus infected sera, such as dengue-infected sera according to QiAamp Viral RNA Handbook (Qiagen Inc. Valencia, CA 91355).
- Molecular beacons are "hairpin" oligonucleotides that form a stem-and-loop structure and possess an internal reporter signal, such as fluorescent reporter and quencher molecule. When they form a hairpin structure, the fluorescent reporters and the quencher molecules are close together and the fluorescence is suppressed. When they bind to complementary target sequence, they undergo a conformational transition that switches on their fluorescence (Bonnet et al., Proc Natl Acad Sci U S A. 1999 May 25;96(l l):6171-6.).
- the hairpin molecular beacon can be used as a fluorogenic PCR primer or a fluorogenic probe.
- the oligonucleotide primer When the oligonucleotide primer is modified to form hairpin structure with fluorophore, this primer can provide a low initial fluorescence of the primers that increases up to 8-fold upon formation of the PCR product (Nazarenko et al., Nucleic Acids Res. 2002 May l;30(9):e37).
- the hairpin oligonucleotides may be as efficient as linear primers and provide additional specificity to the PCR by preventing primer-dimers and mispriming.
- upper primers may be modified to form a hairpin structure (Fig. 1). To make a hairpin primer, 5' tail is extended that is complementary to the 3' end of the primer.
- the 5' tail forms a blunt-end hairpin at temperature below its melting point.
- Reporter fluoresceins (6-FAMTM (520 nm), HEXTM (556 nm), Texas Red® (603 nm), Bodipsy® (640 nm), etc) are labeled to the third or fourth base (T) from the 3' end.
- Quencher fluorescein (Iowa blackTM quenching range from 520nm to 700nm)) is labeled to the extended 5' end, complementary sequence to the 3' end. All reporter dyes and quenchers are available from Integrated DNA Technology, Inc. (Coralville, IA) and Molecular Probes, Inc. (Eugene, OR).
- the fluorescein also functions as a hapten antigen to react with anti-hapten antibody to identify serotype specific PCR products using lateral flow rapid one step identification test kit.
- a generic anti-sense primer DV-Ll (nucleotide residue 368-388) with good homology among 3'-noncoding sequences of dengue 1-3 are designated as the RT primer for these viruses. Even though the dengue 4 genome shares significant homology with DV-Ll sequence, there are five nucleotide mismatches within the DV-Ll primer as shown in Fig. 3.
- a separate anti-sense primer DV-L2 is specifically used in the RT reaction for dengue 4 virus detection.
- These two anti-sense primers (DV-Ll and DV-L2) are used as the generic RT primer set to transcribe RNA for all four dengue virus serotypes (Houng et al.,
- PCR reaction may be carried out in a single tube (Fig. 4). All reaction components for RT reaction and PCR reaction are lyophilized in the matrix with proper formulation. Biotin dUTP and labeled oligonucleotide primers and fluorescent labeled beacon primers are added to label the PCR product and to detect using real time fluorogenic thermal cycler or lateral flow detection kit. Four serotypes of dengue virus can be identified in a single PCR reaction. This reaction kit can be stored at room temperature for more than one year.
- a commercially available real time fluorogenic PCR system can be used for this ready-to-use kit.
- a ready-to-use kit can be adjusted for customization.
- this kit can be used under non-ideal laboratory conditions without a real time thermal cycler.
- the lateral flow immunochromatographic assay is an alternative system to identify amplified PCR products. This method is unique, specific, and easy to operate in a field-deployable system. This system works for virtually all biological pathogens and viruses and provides a secure result in the field or in "real-time" conditions such as in the event of a
- FIG. 23 A configuration of a rapid, self-performing nucleic acid detection system is shown in Fig. 23, which contains all reagents and components in precise quantities to generate test results after sample addition.
- the system also has a built in heating pad to precisely match nucleotide target sequence identification based on probe oligonucleotide composition.
- the assay principle is described in the diagram (Fig. 24). The sample passes first through the reservoir pad that contains buffer to optimize the pH of the sample, detergents to suspend all components in the sample, and a porous filter to generate proper flow through the device.
- the sample subsequently flows, by capillary action, to the dye area where target DNA of biological pathogen in the sample react with the europium particle-labeled oligonucleotides or Peptide Nucleic Acids (PNAs).
- PNAs Peptide Nucleic Acids
- Ultra-sensitive time-resolved fluorescent (TRF) dye is used in the lateral flow assay format. This ensures improved sensitivity while maintaining the beneficial aspects of a lateral flow assay.
- Nanosized TRF dye contains 30,000-2,000,000 europium molecules entrapped by ⁇ -diketones, which possess one of the highest quantum yields of the known lanthanide chelators (Harma, Technology Review 126/2002, TEKES, National Technology Agency, Helsinki 2002). This encapsulation has substantially no effect on the fluorescence efficiency of the dye. For a typical 100 nm size europium particle, the fluorescence yield is equivalent to about 3,000 molecules of fluorescein.
- phycobiliprotein B-PE (perhaps the most fluorescent substance known) has a fluorescence yield equivalent to about 30 fluorescein molecules. Since a 100 nm particle is about 10 times the diameter of phycobiliprotein B-PE and a thousand times greater in volume/mass, Seradyn europium particles are 100 times more fluorescent than B-PE on a molar basis, but only 10% as fluorescent on a volume/mass basis (Seradyn, Color-RichTM Dyed and Fluoro-MaxTM Florescent Microparticles Technical Bulletins 1999).
- the lateral flow assay with this TRF dye particle can increase detection sensitivity up to pg/ml level which means that threshold cycle number (Ct) can be decreased up to 10 cycles. This feature provides additional specificity.
- the system requires a simple and self-performing one-step method that does not require complicated and expensive automated instrument.
- An example of a small plastic piece that contains an inventive self-performing assay strip and its test outcome is shown in Figure 5.
- Multiple analyte detection with single sampling and no further procedural steps is possible with the assay system provided herein.
- An immunochromatography assay system is preferred. If various antibody-dye conjugates are embedded in the dye pad area and antibody specific for each reporter dye is respectively immobilized in separate zone on membrane, each test line will provide distinctive information for each specific dengue serotypes (Fig. 6).
- Field deployable detection system is preferred.
- a strip reader may be used to detect the presence of the sample.
- an instrument for measuring time-resolved lanthanide emission may be used, which is equipped with a nitrogen laser, a diffraction grating spectrometer, a charge coupled device (CCD) and a mechanical chopper for time gating.
- CCD charge coupled device
- HEXTM (556 nm), TAMRATM (573nm), Texas Red® (603 nm), Bodipsy® (640 nm), etc) are labeled to the third or fourth base (T) from the 3 ' end.
- Quencher fluorescein (Iowa blackTM quenching range from 520nm to 700nm)) are labeled to the extended 5' end, complementary sequence to the 3 ' end. All reporter dyes and quenchers are available from Integrated DNA
- the ready-to-use kit contains Ing of rabbit globin mRNA and each of two globin-specific PCR primers as an internal reaction control.
- the PCR product of rabbit globin mRNA is detected by lateral flow identification kit at the control zone. This control zone intensity can be used as a reference for a semi quantitative result.
- Various matrix media such cellulose, glass fiber, polyester or rayon and so forth are evaluated.
- the formulated components listed below are dried under a constant vacuum in a lyophilizer.
- the matrix is selected with respect to optimal reagent reconstitution and RT-
- Biotin dUTP Biotin-16-dUTP or Biotin-21-dUTP
- labeled dengue virus serotype specific primers (type 1, 2, 3, 4)
- the main purpose of this step is to find the optimal freeze-drying and key components storage conditions combined with release of all components and reconstitution under RT-PCR reaction.
- Various combinations of the chemicals such as but not limited to buffers, detergents, sugars and polymers and biological materials such as proteins and other biological polymers are tested to find the best conditions.
- Ready-to-use RT-PCR kit is tested by a iCycler IQTM (BioRad) and ABI 7700 real-time fluorogenic thermal cycler.
- MgCl 2 concentration is a significant factor for a successful lateral flow assay.
- the preferred range for MgCl 2 concentration is not higher than about 1.5 mM as above a certain amount Of MgCl 2 primer dimmers and false positive results are seen.
- Addition of Biotin dUTP increases sensitivity because of either more capturing or more indicator binding capability (Table 1). Substrate inhibition was overcome by controlling the labeled and unlabeld ratio and applying excessive capture and indicator amount.
- Table 1 shows comparison data between amplified PCR results with labeled primers and amplified PCR result with labeled primers and biotin dUTP incorporation for Dengue virus serotype 2 detection.
- the inventive test kit is designed to be a self-performing device.
- Lateral flow rapid PCR product identification test kit such as depicted in Fig. 7 contains all reagents and components in precise quantities at the reservoir pad to generate test results after sample addition.
- the assay principle and configuration is described in Figure 8.
- the sample passes first through a reservoir pad that contains buffer to optimize the pH of the sample, detergents to suspend all components in the sample, separation column materials such as sepharose beads, and so on to separate un-reacted substrates such as labeled primers and biotinylated dUTP and a porous reservoir to generate proper flow through the device.
- the sample subsequently flows, by capillary action, to the dye area where serotype specific PCR products of dengue virus DNA in the sample react with the europium particle-labeled streptavidin.
- the reaction complex thus formed then migrates through the wicking membrane embedded with anti-fluorescent dye antibody test area as well as a control area.
- test may be performed on-site by a person with minimal training and rapid results are available within 10 minutes after adding one or two drops of DNA extracted sample to the disposable test card.
- the labeled streptavidin and target DNA complex is captured by test and control areas.
- Test area distinguishes each serotype specific PCR products and this area can be detected by a reader equipped with a time-resolved fluorescence scanning device when Europium is used as the signal detection label.
- a separate control area detects any amplified PCR product as an internal quality control system. This control area reaction assures that the key test components are functioning properly.
- Antibodies to fluorescent dyes provide unique opportunities both for signal enhancement and for secondary detection of PCR products labeled with fluorescent dyes.
- Each antibody is printed using a printing machine (BioDot Corp.) at various concentrations between 0.5 and 2 mg/ml with a thickness of 0.5 to 1 mm.
- the quality of the visible bands and binding characteristics of antibodies can be checked by Ponceau's method (Hassan, J., et al, J. Clin. Lab. Immunol., 24:104, 1987).
- Antibody or streptavidin was added 5 mg/L. After 2 hour incubation, the antibody or streptavidin coated particles were washed three times with 50 mM MES buffer, pH 6.1.
- the covalent cross-linking is also determined. Conjugation yield and scale-up feasibility are important decision factors in selecting an optimized system.
- the main purpose of this step is to find optimal dye-streptavidin or hapten- antibody conjugate storage conditions combined with release of the labeled streptavidin or the antibody under wet assay conditions.
- Various combinations of chemicals such as but not limited to buffers, detergents, sugars and polymers and biological materials such as proteins and other biological polymers are tested to find the best conditions.
- the sample is applied to the reservoir area, the sample is conditioned to optimal condition for assay with various combinations of the chemicals and biological materials.
- this component facilitates the capillary migration of the nucleic acid sample, it should efficiently mobilize nucleic acid, allow immuno-reaction between the labeled target nucleic acid bound to the capture streptavidin and provide strong capillary action for a prolonged time period. Finding optimum concentrations of detergent with proper stabilizers is also important.
- Configuration of this system is similar to the antigen-antibody immuno- chromatographic assay, but streptavidin is conjugated to the colloidal gold particle and the signal can be generated by streptavidin-biotin interaction.
- Serotype 2 specific primer was labeled with fluorescent hapten such as rhodamine red.
- Anti-rhodamine red antibody was immobilized onto the nitrocellulose membrane. The sample passes first through the reservoir pad and flows, by capillary action, to the dye area where serotype specific PCR products of dengue virus react with the colloidal gold conjugated streptavidin. The reaction complex thus formed then migrates through the wicking membrane where anti-fluorescent dye antibody embedded test and control area.
- the reported dengue virus serotype 2 tests can be performed on-site by a person with minimal training and rapid results are available within 10 minutes after adding PCR products to the disposable test card. Also, this system is a simple and self-performing one- step method that does not require complicated and expensive laboratory conditions.
- Fluorecein isothiocyanate was purchased from Sigma. For the conjugation,
- Streptavidin is conjugated to the colloidal gold particle and the signal can be generated by antigen-antibody reaction.
- Biotin molecule is conjugated at the 5'end of reverse primer (DV. Ll).
- FITC molecule is conjugated at the 5' end of forward primer (DV2.U).
- Amplified PCR products with those modified forward and reverse primer contain both biotin and FITC molecules.
- Biotin dUTP is incorporated during the PCR amplification.
- biotin tags of amplified PCR products react with colloidal gold conjugated with streptavidin. And then the PCR product-gold conjugate complex migrate through the nitrocellulose membrane by chromatographic capillary power.
- the complex is captured by the immobilized anti-FITC antibody. Depending on the amount of captured gold or europium particle, visible signal is generated (Fig.10). Device format construction is shown in Fig. 11.
- Biotin molecule was conjugated at the 5' end of Dengue virus forward primers (DVl .U,
- Each forward primer was modified with six carbon chain (C6) linker at the 5' (Fig. 12).
- Reverse primer was modified with rhodamine red molecule conjugated at the 5' end of reverse primer (DV.L1) (Fig. 13).
- Amplified PCR product at the various template concentrations, gold or europium conjugate and buffer are mixed, and are contacted added on a nitrocellulose membrane.
- PBS containing detergent was prepared following conventional methods.
- PBS containing detergent was prepared using conventional methods and a couple of drop of a developer solution specific for the signal detection label are contacted with the device on the nitrocellulose.
- Fig. 17, 18, and 19 present comparison results of real-time PCR and rapid PCR product analysis kit for Dengue serotype 1, 2, and 3.
- LADER Light Addressable Direct Electrical Readout
- a molecular electrical circuit is build up by connecting the capture probes to an electrode, attaching an electron-donor/-acceptor complex (DA) and adding a dissolved active component.
- DA electron-donor/-acceptor complex
- the electron-donor/-acceptor complex acts as a second, light induced switch. Incident light induces a charge transfer from D to A and from there the electron can be transferred to the electrode, if the probe is hybridised.
- Charge refilling of the DA-complex by the active component closes the circle and continuous cycling generates a highly amplified read-out signal.
- LADER principle is described in EP 1144685 Bl, which describes protecting photosynthetic reaction centers and similar systems as electrochemical complexes for the LADER technology, and DE 19921940 C2, the contents of which are incorporated by reference herein in their entirety with regard to the operation of the electroconductivity technology.
- Donor/acceptor complex works well in pigment/protein complex known in photosynthesis as a reaction centre, capable of transferring an electron from the porphyrin- donor to the chinon-acceptor within lOOps after light induction.
- This pigment/protein complex can be easily divided into the chinon-acceptor and the remaining (apo-)protein.
- the chinon-acceptor is modified in a way that it can be covalently attached to the oligonucleotide capture probe on the one hand and to the (apo-)protein on the other hand after reconstitution of the apo-protein to the probe-bound chinon-acceptor.
- the approach is described in the reaction scheme of Figure 20.
- the ubiquinone (UQ) depleted photosynthetic reaction centre is reconstituted and crosslinked to UQ that is bound to double stranded DNA.
- the donor is represented by the porphyrin system P while the ubiquinone moiety forms the acceptor A.
- Illumination in a first step (1) creates an excited state P* -UQ which proceeds in a further step (2) to the temporarily stable charge separated state P + -UQ " . From this state an electron is withdrawn over the DNA (3) to the electrode (4) oxidising P + -UQ " to P + -UQ and resulting in the measurable anodic photocurrent.
- the cycle back to the initial state is closed by the reducing agent cytochrome C 2+ (X) which itself is oxidised by reducing (5) the system to P-UQ.
- FIG. 21 illustrates a schematic of the reader device and a blow-up of the contact head for the CBT chips in EDDA format.
- the reader is partially developed and capable of all liquid handling steps necessary to perform by a simple "press bottom” approach.
- Reference measurement data (before hybridization) of the bar-coded chips are stored in an internal buffer and compared with the actual measurement data after hybridization.
- the difference value per electrode is displayed on an external computer screen and can be further processed.
- FIG. 22 shows the electrochemical behavior of an electrode modified with 20 nucleotide long capture probe and covalently attached Os-label before and after hybridization with the matching target that itself is modified with a ferrocenium (FcAc) label.
- FcAc ferrocenium
- Configuration of self-performing rapid nucleic acid detection system contains all reagents and components in precise quantities to generate test results after sample addition.
- the system also has a built-in heating pad to precisely match nucleotide target sequence identification based on probe oligonucleotide composition.
- the assay principle is described in the diagram in Fig. 24.
- the sample passes first through the reservoir pad that contains buffer to optimize the pH of the sample, detergents to suspend all components in the sample, and a porous filter to generate proper flow through the device.
- the sample subsequently flows, by capillary action, to the dye area where target DNA of biological pathogen in the sample react comprising europium particle-labeled oligonucleotides.
- the reaction complex thus formed migrates through the wicking membrane where capture oligonucleotides are embedded suitable for conductive test and control area.
- Initial europium labeled probe reaction allows for the opening of the target nucleotide sequence.
- the proposed test may be performed on-site by a person with minimal training and rapid results are available within 30 minutes after adding one or two drops of DNA extracted sample to the disposable test card.
- the labeled oligonucleotide probe and target DNA complex is captured by conductivity labeled test and control area.
- Test area displays target sequence and this area can be detected by a reader equipped with a time-resolved fluorescence scanning device and/or conductivity reader.
- a separate control area displays counter oligonucleotides sequences of europium-labeled oligonucleotides. This control area reaction assures that the key test components are functioning properly.
- the chromatographic lateral flow assay is an amplification system. The target DNAs in liquid sample are steadily concentrated by electric affinity to the charged testing area on a membrane when they are moving through the membrane by capillary power. Even where molecules exist at very low concentration, the actual concentration of the molecule in the test area is much higher than the one in the sample.
- Lateral flow assay can be mounted on the heating PCB/PCP (printed circuit paper), which is printed high resistance metal (e.g. Nickel/Chrome alloy is available for heating purpose) on a base board.
- PCB/PCP printed circuit paper
- High resistance metal e.g. Nickel/Chrome alloy is available for heating purpose
- This system could have relatively precise temperature monitor and control at low price. Sample configurations are shown in Figs. 25A-25C, Figs.
- a test kit is made of a disposable plastic case with two windows, one to view the control and test area, and the other providing a well to receive the sample as shown in Fig. 28.
- the test strip Inside the device is a test strip with two pads.
- the first pad contains buffers, detergents, and chemicals to ensure consistent test results, and also it contains target oligonucleotides conjugated europium particles in a specially formulated buffer system.
- the second pad is for removing the excess fluid that has already passed through the reaction membrane.
- Two types of oligonucleotides are separately immobilized on the test and control area of the nitrocellulose membrane as thin lines.
- the oligonucleotides specific to the target biological pathogens are immobilized in the test area, while the other oligonucleotides specific to europium labeled probe are immobilized in the control area.
- Instrument connectors are also included so that instruments for measuring time-resolved fluorescence or conductivity in situations where conductivity labels are used can be linked to the device.
- Example 4 All of the methods and procedures described in Example 4 using nucleic acid as the probe for detecting target DNA is applicable for using peptide nucleic acid as the probe as well, including the use of various heat pads and test devices described therein.
- the HLA-DQ ⁇ 2 genetic locus can be used for forensic analysis of individual identification as a genetic marker. A variety of analytic techniques have been used to detect genetic variation in PCR-amplified DNA.
- Various haptens or fluorescent haptens may be labeled at the primers and probes. Accordingly, various sequences and size of oligopeptides may be used as a hapten; other small molecules, which may act as an epitope, may be used as a hapten, and various fluorescent haptens such as those listed in Table 2 may be used. [00193] Table 2
- Anti-hapten antibodies are used as a counter part of the above haptens. Many anti- hapten antibodies are commercially available from such companies as Molecular Probes, Inc.
- anti-hapten antibodies may be immobilized on to a solid matrix or conjugated with various particles.
- various particles it is meant colloidal gold, latex particles, magnetic or paramagnetic particles, europium embedded latex particles and so on.
- the invention is directed to a gene point of care testing device (GPOCT), which purpose is to provide a one step or simple step integrated genetic analysis system.
- the absorbent pad is connected to a matrix, which is connected to a reaction pad, wherein the captured antibody or antigen is immobilized on the matrix as a line or dot lateral flow assay for gene point of care test device.
- a reaction pad On the reaction pad is a reagent zone where the reaction sample (amplified sample) is applied and migrates to the next media.
- Embodiment 1 Sample extraction system.
- an extraction system may include:
- Reservoir system to remove solution and buffer components to concentrate DNA or RNA samples may comprise multi layer absorbent with special treatment, and extraction solution containing without limitation detergent and alkaline buffer.
- This buffer can destroy the cell wall or membrane and expose genetic samples like
- DNA or RNA into the solution DNA or RNA into the solution. It is contemplated that a protease may be added to remove histone like protein and cell walls. Alternatively, a separate solution capsule or multilayer film may be used.
- the filter may be a semipermeable membrane with a molecular cutoff ranger from
- the filter system removes all potential inhibitors, small molecules, ions, and proteins. As a result, sample can be concentrated 10 to 1000 times from original extraction solution.
- Embodiment 2 Integrated system from crude sample or extracted DNA sample.
- the integrated system comprises a sample input area, which is connected to multi-layered filter system, in which the filter unit absorbs most of the ions and small molecules and proteins. This portion works as a functional filtration and concentrator.
- the filter system is further connected to a very thin tube for fast thermal transfer just like a capillary tube. To control temperature easily and quickly, built-in metal printing on surface of the tube may work like hot coil. Inside the thin tube may be an area for housing certain components embedded into the solid matrix and freeze-dried.
- the thin tube is connected to a reaction pad, which is further connected to nitrocellulose membrane, and which is further connected to an absorbent pad.
- Embodiment 3 Amplification and Detection Part Overview.
- Purified sample is applied, and in an alternative embodiment, the sample is applied and passed through a roller system, which controls the rate of flow of the sample.
- the sample then passes through a thermal sensor and heat control circuit, and passes through an amplification chamber, which may be comprised of 1. pad containing all required reagents; 2. freeze-dried preformulated reagent pad; and 3. for PCR reaction, this chamber (pad) contains Taq polymerase, dNTP, primers (tagged), other labeling monomer and so forth.
- this chamber contains Taq polymerase, dNTP, primers (tagged), other labeling monomer and so forth.
- the sample passes out of the amplification chamber, it is contacted with a reaction pad of the lateral flow assay. While on the lateral flow assay, the sample flows through a result window, wherein the result can be displayed by dot or line or any kind of detectable signal and flows on to absorbent pad.
- Various kinds of conductive ink can be printed out on the surface of flexible matrix such as polyester, polycarbonate or polystyrene.
- various kinds of conductive ink such as carbon, carbon/silver blend, silver, silver/silver chloride, gold, platinum, UV cured dielectric, heat cured dielectric conductive ink may be printed on the substrate and generate proper heat to perform thermocycling variable temperature range from 30 0 C to 100°C.
- temperature sensor and temperature control can be achieved by detecting and controlling their current and resistance.
- Thermocycling may be achieved by setting two or three different temperatures and cycling at the temperature repeatedly 20-40 times. Thermocycling condition needs to be optimized depending on their primer sequence. [00213] 2. Amplification pad
- the amplification pad contains all reagents for isothermal amplification such as PCR or RFPCR. All reagents may be premixed and optimally formulated and freeze-dried. By all reagents, it means essential components for the amplification reaction. Such reagents may contain without limitation, following components: reverse transcriptase, DNA polymerase, Taq polymerase, PNAs primers, labled primers, dNTPs, labeled dUTP, buffers, and stabilizers such as proteins, BSA (Bovine Serum Albumin), and EDTA.
- the amplification pad further may be reconstituted with specific volume of sample application.
- Primers may be immobilized with glass bead or latex bead to enhance amplification reaction and prevent substrate inhibition.
- substrate inhibition it is meant that non-reacted primer can inhibit the reaction between anti-tag antibody and polymerized primer.
- primer it is meant oligonucleotide or PNA (peptide nucleic acid) and oligonucleotide hybrid.
- glass bead or “latex particle” it is meant microparticles. Microparticles may be available in a size range of 0.01-10.0 ⁇ m in diameter. Preferably, the diameter for this embodiment of the invention may be in a range of 0.1-10.0 ⁇ m.
- U. S. Patent No. 6,153,425 discloses a detection system, however, the '425 patent fails to disclose or suggest that a microparticle in the amplification pad may be used for preventing substrate inhibition.
- the invention is directed to a protein chip and gene chip.
- the device may comprise a nucleic acid extractor connected to a DNA or RNA purification chamber, which is further connected to an amplification or hybridization chamber, which is connected to a result window to view the signal generated (Fig. 30).
- the gene point of care testing device may incorporate the testing strip described above.
- a sample is added into an extraction buffer container.
- Extracted DNA sample may be further added to Gene POCT, and the results may be read in 30 minutes by naked eye or a signal reader (Fig. 31).
- Gene POCT method is rapid and highly sensitive.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Virology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2562775A CA2562775C (en) | 2004-04-07 | 2005-04-07 | Nucleic acid detection system |
JP2007507534A JP2008500820A (en) | 2004-04-07 | 2005-04-07 | Nucleic acid detection system |
EP05817602.5A EP1737985B1 (en) | 2004-04-07 | 2005-04-07 | Nucleic acid detection system |
KR1020107014586A KR101270676B1 (en) | 2004-04-07 | 2005-04-07 | Nucleic acid detection kit |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56019704P | 2004-04-07 | 2004-04-07 | |
US60/560,197 | 2004-04-07 | ||
US56784504P | 2004-05-03 | 2004-05-03 | |
US60/567,845 | 2004-05-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006041524A2 true WO2006041524A2 (en) | 2006-04-20 |
WO2006041524A3 WO2006041524A3 (en) | 2009-04-02 |
Family
ID=36148753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/011977 WO2006041524A2 (en) | 2004-04-07 | 2005-04-07 | Nucleic acid detection system |
Country Status (7)
Country | Link |
---|---|
US (1) | US20050227275A1 (en) |
EP (1) | EP1737985B1 (en) |
JP (2) | JP2008500820A (en) |
KR (1) | KR101270676B1 (en) |
CN (1) | CN105087777A (en) |
CA (1) | CA2562775C (en) |
WO (1) | WO2006041524A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007043997A (en) * | 2005-08-11 | 2007-02-22 | Tosoh Corp | New kit for amplifying target nucleic acid |
DE102007029772A1 (en) * | 2007-06-22 | 2008-12-24 | Aj Innuscreen Gmbh | Method and rapid test for the detection of specific nucleic acid sequences |
WO2011051735A3 (en) * | 2009-11-02 | 2011-08-18 | The Secretary Of State For Environment, Food & Rural Affairs .. | Device and apparatus |
WO2011112068A1 (en) * | 2010-03-08 | 2011-09-15 | Universiti Sains Malaysia (U.S.M.) | Lateral flow device and method of detection of nucleic acid sequence |
WO2011124684A1 (en) * | 2010-04-08 | 2011-10-13 | Aj Innuscreen Gmbh | Method for detecting specific nucleic acid sequences |
WO2011095888A3 (en) * | 2010-01-29 | 2011-10-13 | Selfdiagnostics OÜ | Method and rapid test device for detection of target molecule |
WO2015024948A1 (en) * | 2013-08-19 | 2015-02-26 | General Electric Company | Detection of nucleic acid amplification in a porous substrate |
EP3164510A4 (en) * | 2014-07-01 | 2017-11-29 | General Electric Company | Method, substrate and device for separating nucleic acids |
EP3164511A4 (en) * | 2014-07-01 | 2018-02-14 | General Electric Company | Methods for amplifying nucleic acids on substrates |
US10870845B2 (en) | 2014-07-01 | 2020-12-22 | Global Life Sciences Solutions Operations UK Ltd | Methods for capturing nucleic acids |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541166B2 (en) * | 2003-09-19 | 2009-06-02 | Microfluidic Systems, Inc. | Sonication to selectively lyse different cell types |
WO2005028635A2 (en) * | 2003-09-19 | 2005-03-31 | Microfluidic Systems Inc. | Microfluidic differential extraction cartridge |
US8053214B2 (en) * | 2004-09-09 | 2011-11-08 | Microfluidic Systems, Inc. | Apparatus and method of extracting and optically analyzing an analyte from a fluid-based sample |
WO2006029387A1 (en) * | 2004-09-09 | 2006-03-16 | Microfluidic Systems Inc. | A handheld and portable microfluidic device to automatically prepare nucleic acids for analysis |
US7785868B2 (en) * | 2004-12-02 | 2010-08-31 | Microfluidic Systems, Inc. | Apparatus to automatically lyse a sample |
US8470608B2 (en) * | 2008-05-20 | 2013-06-25 | Rapid Pathogen Screening, Inc | Combined visual/fluorescence analyte detection test |
US8669052B2 (en) | 2008-06-10 | 2014-03-11 | Rapid Pathogen Screening, Inc. | Lateral flow nucleic acid detector |
KR100699862B1 (en) * | 2005-08-26 | 2007-03-27 | 삼성전자주식회사 | Dual reference input receiver of semiconductor device and method for receiving input data signal |
US20100136531A1 (en) * | 2006-04-10 | 2010-06-03 | Tecra International Pty Ltd | Nucleic acid detection using lateral flow methods |
US8206923B2 (en) * | 2006-04-24 | 2012-06-26 | Elvira Garza Gonzalez | Method for detection and multiple, simultaneous quantification of pathogens by means of real-time polymerase chain reaction |
US20090047673A1 (en) | 2006-08-22 | 2009-02-19 | Cary Robert B | Miniaturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids |
US8980561B1 (en) | 2006-08-22 | 2015-03-17 | Los Alamos National Security, Llc. | Nucleic acid detection system and method for detecting influenza |
US7858366B2 (en) * | 2006-08-24 | 2010-12-28 | Microfluidic Systems, Inc | Integrated airborne substance collection and detection system |
US20080050724A1 (en) * | 2006-08-24 | 2008-02-28 | Microfluidic Systems, Inc. | Method of detecting one or more limited copy targets |
US7705739B2 (en) * | 2006-08-24 | 2010-04-27 | Microfluidic Systems, Inc. | Integrated airborne substance collection and detection system |
US7633606B2 (en) * | 2006-08-24 | 2009-12-15 | Microfluidic Systems, Inc. | Integrated airborne substance collection and detection system |
EP2089545A2 (en) * | 2006-09-12 | 2009-08-19 | 3M Innovative Properties Company | Nucleic acid detection using flow through methods |
JPWO2008096564A1 (en) * | 2007-02-07 | 2010-05-20 | コニカミノルタエムジー株式会社 | Microchip inspection system, microchip inspection apparatus and program |
US8465951B2 (en) * | 2007-06-01 | 2013-06-18 | Council Of Scientific & Industrial Research | Method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system |
WO2008155529A1 (en) * | 2007-06-16 | 2008-12-24 | Enigma Diagnostics Limited | Compositions |
GB0711683D0 (en) * | 2007-06-16 | 2007-07-25 | Enigma Diagnostics Ltd | Compositions |
US9063130B2 (en) * | 2007-09-11 | 2015-06-23 | Kaneka Corporation | Nucleic acid detection method and nucleic acid detection kit |
DE102007062441A1 (en) * | 2007-12-20 | 2009-06-25 | Aj Innuscreen Gmbh | Mobile rapid test system for nucleic acid analysis |
EP3067694A1 (en) | 2008-05-05 | 2016-09-14 | Los Alamos National Security, LLC | Lateral flow-based nucleic acid sample preparation device, integrated with passive fluid flow control |
US8815609B2 (en) | 2008-05-20 | 2014-08-26 | Rapid Pathogen Screening, Inc. | Multiplanar lateral flow assay with diverting zone |
US20130196310A1 (en) | 2008-05-20 | 2013-08-01 | Rapid Pathogen Screening, Inc. | Method and Device for Combined Detection of Viral and Bacterial Infections |
US8609433B2 (en) * | 2009-12-04 | 2013-12-17 | Rapid Pathogen Screening, Inc. | Multiplanar lateral flow assay with sample compressor |
US8962260B2 (en) | 2008-05-20 | 2015-02-24 | Rapid Pathogen Screening, Inc. | Method and device for combined detection of viral and bacterial infections |
US9068981B2 (en) | 2009-12-04 | 2015-06-30 | Rapid Pathogen Screening, Inc. | Lateral flow assays with time delayed components |
US20110086359A1 (en) * | 2008-06-10 | 2011-04-14 | Rapid Pathogen Screening, Inc. | Lateral flow assays |
US8133451B2 (en) * | 2008-08-28 | 2012-03-13 | Microfluidic Systems, Inc. | Sample preparation apparatus |
US8263388B2 (en) | 2010-06-10 | 2012-09-11 | The Hong Kong Polytechnic University | Method and apparatus for detecting specific DNA sequences |
US8685649B2 (en) * | 2010-06-10 | 2014-04-01 | The United States Of America As Represented By The Secretary Of The Navy | RT-LAMP assay for the detection of pan-serotype dengue virus |
US9945850B2 (en) | 2010-08-12 | 2018-04-17 | Takara Bio Usa, Inc. | Lateral flow assays for non-diagnostic analytes |
WO2012125125A1 (en) * | 2011-03-15 | 2012-09-20 | Agency For Science, Technology And Research | Nucleic acids and methods for determining the outcome of dengue |
US10519492B2 (en) | 2011-04-20 | 2019-12-31 | Mesa Biotech, Inc. | Integrated device for nucleic acid detection and identification |
US20150031577A1 (en) * | 2012-03-20 | 2015-01-29 | UNIVERSITé LAVAL | Nucleic acid detection method comprising target specific indexing probes (tsip) comprising a releasable segment to be detected via fluorescence when bound to a capture probe |
US9423399B2 (en) | 2012-09-28 | 2016-08-23 | Takara Bio Usa, Inc. | Lateral flow assays for tagged analytes |
US9939438B2 (en) * | 2012-10-23 | 2018-04-10 | Robert Bosch Gmbh | Sensor integration in lateral flow immunoassays and its applications |
JP6154126B2 (en) * | 2012-12-20 | 2017-06-28 | 功 宮崎 | Inspection kit and inspection method |
JP5904153B2 (en) * | 2013-03-29 | 2016-04-13 | ソニー株式会社 | Sample preparation method for nucleic acid amplification reaction, nucleic acid amplification method, reagent for solid phase nucleic acid amplification reaction, and microchip |
WO2015079709A1 (en) * | 2013-11-29 | 2015-06-04 | 静岡県 | Anti-fluorescent-pigment monoclonal antibody |
US10195610B2 (en) | 2014-03-10 | 2019-02-05 | Click Diagnostics, Inc. | Cartridge-based thermocycler |
EP3230477B1 (en) * | 2014-12-11 | 2024-01-17 | Global Life Sciences Solutions Operations UK Ltd | Methods for capturing nucleic acids |
EP4029606A1 (en) | 2014-12-31 | 2022-07-20 | Visby Medical, Inc. | Molecular diagnostic testing |
SG10202005427PA (en) | 2015-04-24 | 2020-07-29 | Mesa Biotech Inc | Fluidic test cassette |
JP6829198B2 (en) * | 2015-08-26 | 2021-02-10 | 株式会社カネカ | Nucleic acid detection device and nucleic acid detection method |
FR3040999B1 (en) * | 2015-09-11 | 2020-01-31 | Etablissement Francais Du Sang | METHOD AND DEVICE FOR GENOTYPING SNP |
CN105301237A (en) * | 2015-10-12 | 2016-02-03 | 武汉中帜生物科技股份有限公司 | Method for detecting nucleic acid by colloidal gold chromatography technology and reagent kit |
US10808287B2 (en) | 2015-10-23 | 2020-10-20 | Rapid Pathogen Screening, Inc. | Methods and devices for accurate diagnosis of infections |
WO2017185067A1 (en) | 2016-04-22 | 2017-10-26 | Click Diagnostics, Inc. | Printed circuit board heater for an amplification module |
WO2017197040A1 (en) | 2016-05-11 | 2017-11-16 | Click Diagnostics, Inc. | Devices and methods for nucleic acid extraction |
MX2018015889A (en) | 2016-06-29 | 2019-05-27 | Click Diagnostics Inc | Devices and methods for the detection of molecules using a flow cell. |
USD800331S1 (en) | 2016-06-29 | 2017-10-17 | Click Diagnostics, Inc. | Molecular diagnostic device |
USD800914S1 (en) | 2016-06-30 | 2017-10-24 | Click Diagnostics, Inc. | Status indicator for molecular diagnostic device |
USD800913S1 (en) | 2016-06-30 | 2017-10-24 | Click Diagnostics, Inc. | Detection window for molecular diagnostic device |
ES2931536T3 (en) * | 2017-08-31 | 2022-12-30 | Somaprobes Sl | Lateral flow assay to detect the presence of a specific mammalian cell or bacteria in a biological sample |
CA3078976A1 (en) | 2017-11-09 | 2019-05-16 | Visby Medical, Inc. | Portable molecular diagnostic device and methods for the detection of target viruses |
CN108333350A (en) * | 2017-12-19 | 2018-07-27 | 宝瑞源生物技术(北京)有限公司 | Immunological probe degradation PCR chromatographs nucleic acid detection method |
CN112899350B (en) * | 2018-05-14 | 2023-01-24 | 北京艾克伦医疗科技有限公司 | Nucleic acid detection method and kit |
GB201912866D0 (en) * | 2019-09-06 | 2019-10-23 | Cambridge Molecular Diagnostics Ltd | Miltiply labelled polymetric molecule for detection assays |
CN110794130A (en) * | 2019-10-22 | 2020-02-14 | 中科佑隆(杭州)食安标准科技有限公司 | Nucleic acid two-in-one immune gold-labeled rapid detection card, preparation method and detection method thereof |
WO2021138544A1 (en) | 2020-01-03 | 2021-07-08 | Visby Medical, Inc. | Devices and methods for antibiotic susceptibility testing |
CN114517236A (en) * | 2022-03-15 | 2022-05-20 | 北京华诺奥美基因医学检验实验室有限公司 | PCR primer, kit and detection method for detecting klebsiella pneumoniae |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU629845B2 (en) * | 1988-08-30 | 1992-10-15 | Abbott Laboratories | Detection and amplification of target nucleic acid sequences |
US6037127A (en) * | 1994-03-31 | 2000-03-14 | E. I. Du Pont De Nemours And Company | Method for detection of non-denatured nucleic acid fragments |
ATE215993T1 (en) * | 1995-05-19 | 2002-04-15 | Abbott Lab | DETECTION OF NUCLEIC ACIDS WITH WIDE DYNAMIC RANGE USING AGGREGATE PRIMER SERIES |
US6153425A (en) * | 1995-07-13 | 2000-11-28 | Xtrana, Inc. | Self-contained device integrating nucleic acid extraction, amplification and detection |
US5989813A (en) * | 1995-07-13 | 1999-11-23 | Molecular Innovations, Inc. | Detection of amplified nucleic acid sequences using bifunctional haptenization and dyed microparticles |
WO1999030131A1 (en) * | 1997-12-11 | 1999-06-17 | Quidel Corporation | One-step fluorescent immunosensor test |
JP2000055919A (en) * | 1998-08-03 | 2000-02-25 | Nitto Denko Corp | Method and reagent for inspecting substance to be inspected |
US6440706B1 (en) * | 1999-08-02 | 2002-08-27 | Johns Hopkins University | Digital amplification |
JP2001046061A (en) * | 1999-08-04 | 2001-02-20 | Handai Biseibutsubiyou Kenkyukai | Weakened dengue virus and dengue fever vaccine using the same |
EP1224282A2 (en) * | 1999-10-07 | 2002-07-24 | Genentech, Inc. | Novel polypeptides, their nucleic acids, and methods for their use in angiogenesis and vascularization |
SE9904175D0 (en) * | 1999-11-18 | 1999-11-18 | Pharmacia & Upjohn Diag Ab | Assay device and use thereof |
ES2180416B1 (en) * | 2001-03-12 | 2004-06-01 | BIOTOOLS BIOTECHNOLOGICAL & MEDICAL LABORATORIES, S.A. | PROCEDURE FOR THE PREPARATION OF STABILIZED REACTION MIXTURES, TOTAL OR PARTIALLY DESIRED, THAT INCLUDE, AT LEAST, ONE ENZYME, REACTION MIXES AND KITS CONTAINING THEM. |
US6822073B2 (en) * | 2001-12-20 | 2004-11-23 | Kimberly-Clark Worldwide, Inc. | Modular peptide-based reagent |
JP2005532827A (en) * | 2002-07-12 | 2005-11-04 | ブリティッシュ・バイオセル・インターナショナル・リミテッド | Device and method for lateral flow assay |
ES2363501T3 (en) * | 2003-05-07 | 2011-08-05 | Coris Bioconcept Sprl | OLIGOCROMÁTIC DEVICE OF A STEP AND PROCEDURE OF USE. |
-
2005
- 2005-04-07 US US11/102,001 patent/US20050227275A1/en not_active Abandoned
- 2005-04-07 KR KR1020107014586A patent/KR101270676B1/en active IP Right Grant
- 2005-04-07 WO PCT/US2005/011977 patent/WO2006041524A2/en active Application Filing
- 2005-04-07 EP EP05817602.5A patent/EP1737985B1/en active Active
- 2005-04-07 CN CN201510441341.7A patent/CN105087777A/en active Pending
- 2005-04-07 JP JP2007507534A patent/JP2008500820A/en active Pending
- 2005-04-07 CA CA2562775A patent/CA2562775C/en active Active
-
2011
- 2011-07-25 JP JP2011161517A patent/JP5705674B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of EP1737985A4 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007043997A (en) * | 2005-08-11 | 2007-02-22 | Tosoh Corp | New kit for amplifying target nucleic acid |
DE102007029772B4 (en) * | 2007-06-22 | 2011-12-08 | Aj Innuscreen Gmbh | Method and rapid test for the detection of specific nucleic acid sequences |
DE102007029772A1 (en) * | 2007-06-22 | 2008-12-24 | Aj Innuscreen Gmbh | Method and rapid test for the detection of specific nucleic acid sequences |
WO2009000764A2 (en) * | 2007-06-22 | 2008-12-31 | Aj Innuscreen Gmbh | Method and rapid test for the detection of specific nucleic acid sequences |
WO2009000764A3 (en) * | 2007-06-22 | 2009-04-30 | Aj Innuscreen Gmbh | Method and rapid test for the detection of specific nucleic acid sequences |
US10287636B2 (en) | 2007-06-22 | 2019-05-14 | Aj Innuscreen Gmbh | Method and rapid test for the detection of specific nucleic acid sequences |
WO2011051735A3 (en) * | 2009-11-02 | 2011-08-18 | The Secretary Of State For Environment, Food & Rural Affairs .. | Device and apparatus |
CN102655938A (en) * | 2009-11-02 | 2012-09-05 | 环境,食品及农村国务部,由动物卫生和兽医实验所代理 | Device and apparatus |
CN102655938B (en) * | 2009-11-02 | 2014-09-17 | 环境,食品及农村国务部,由动物卫生和兽医实验所代理 | Device and apparatus |
US9163279B2 (en) | 2009-11-02 | 2015-10-20 | The Secretary Of State For Environment, Food & Rural Affairs, Acting Through The Animal Health And Veterinary Laboratories Agency | Device and apparatus |
WO2011095888A3 (en) * | 2010-01-29 | 2011-10-13 | Selfdiagnostics OÜ | Method and rapid test device for detection of target molecule |
WO2011112068A1 (en) * | 2010-03-08 | 2011-09-15 | Universiti Sains Malaysia (U.S.M.) | Lateral flow device and method of detection of nucleic acid sequence |
WO2011124684A1 (en) * | 2010-04-08 | 2011-10-13 | Aj Innuscreen Gmbh | Method for detecting specific nucleic acid sequences |
US11209368B2 (en) | 2010-04-08 | 2021-12-28 | Ist Innuscreen Gmbh | Method for detecting specific nucleic acid sequences |
WO2015024948A1 (en) * | 2013-08-19 | 2015-02-26 | General Electric Company | Detection of nucleic acid amplification in a porous substrate |
US9714447B2 (en) | 2013-08-19 | 2017-07-25 | General Electric Company | Detection of nucleic acid amplification in a porous substrate |
EP3164510A4 (en) * | 2014-07-01 | 2017-11-29 | General Electric Company | Method, substrate and device for separating nucleic acids |
EP3164511A4 (en) * | 2014-07-01 | 2018-02-14 | General Electric Company | Methods for amplifying nucleic acids on substrates |
US10870845B2 (en) | 2014-07-01 | 2020-12-22 | Global Life Sciences Solutions Operations UK Ltd | Methods for capturing nucleic acids |
Also Published As
Publication number | Publication date |
---|---|
JP2011250792A (en) | 2011-12-15 |
CA2562775C (en) | 2015-08-04 |
EP1737985A4 (en) | 2010-07-07 |
EP1737985A2 (en) | 2007-01-03 |
US20050227275A1 (en) | 2005-10-13 |
KR20070000511A (en) | 2007-01-02 |
WO2006041524A3 (en) | 2009-04-02 |
JP2008500820A (en) | 2008-01-17 |
JP5705674B2 (en) | 2015-04-22 |
KR101270676B1 (en) | 2013-06-07 |
KR20100082037A (en) | 2010-07-15 |
CN105087777A (en) | 2015-11-25 |
EP1737985B1 (en) | 2015-12-30 |
CA2562775A1 (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2562775C (en) | Nucleic acid detection system | |
US10458978B2 (en) | Miniaturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids | |
Yuan et al. | A rapid and sensitive CRISPR/Cas12a based lateral flow biosensor for the detection of Epstein–Barr virus | |
TWI655419B (en) | Assay test device, kit and method of using | |
KR102523355B1 (en) | 2-piece vector probe | |
US20100167294A1 (en) | Methods for detecting nucleic acids in a sample | |
US20160266118A1 (en) | Methods and compositions of non-enzymatic amplification and direct detection of nucleic acids | |
JP2006501817A (en) | New high-density array and sample analysis method | |
Dong et al. | A signal-flexible gene diagnostic strategy coupling loop-mediated isothermal amplification with hybridization chain reaction | |
Cirino et al. | Multiplex diagnostic platforms for detection of biothreat agents | |
KR102336454B1 (en) | A method to detect nucleic acids | |
WO2023284514A1 (en) | Ultrasensitive antibody detection method | |
Alam et al. | Diagnostic approaches for the rapid detection of Zika virus–A review | |
CN101426931A (en) | Nucleic acid detection system | |
Lei et al. | Non-canonical CRISPR/Cas12a-based technology: A novel horizon for biosensing in nucleic acid detection | |
Lehmusvuori et al. | Homogeneous duplex polymerase chain reaction assay using switchable lanthanide fluorescence probes | |
JP2009060862A (en) | Label nucleic acid for preventing sample from being mixed-up | |
EP3967772A1 (en) | Tools & methods usefool for detection of lactose intolerance and uses thereof | |
Nazari-Vanani et al. | Lateral flow genochromatographic strip for naked-eye detection of mycobacterium tuberculosis PCR products with gold nanoparticles as a reporter | |
Zhang et al. | A high-throughput DNA analysis method based on isothermal amplification on a suspension microarray for detecting mpox virus and viruses with comparable symptoms | |
KR20060136481A (en) | Nucleic acid detection system | |
JPWO2009054320A1 (en) | Method for forming nucleic acid probe and probe polymer | |
Moulton et al. | ampliPHOX colorimetric detection on a DNA microarray for influenza | |
WO2021258024A9 (en) | Sensitive and multiplexed detection of nucleic acids and proteins for large scale serological testing | |
Wang et al. | A systematic review of rapid SARS-CoV-2 detection methods for mitigating future outbreaks of emerging or historical pathogens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007507534 Country of ref document: JP Ref document number: 2562775 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020067023354 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005817602 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580016495.6 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067023354 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005817602 Country of ref document: EP |