WO2006041140A1 - 3d measurement sensor - Google Patents

3d measurement sensor Download PDF

Info

Publication number
WO2006041140A1
WO2006041140A1 PCT/JP2005/018889 JP2005018889W WO2006041140A1 WO 2006041140 A1 WO2006041140 A1 WO 2006041140A1 JP 2005018889 W JP2005018889 W JP 2005018889W WO 2006041140 A1 WO2006041140 A1 WO 2006041140A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
row
output
light receiving
Prior art date
Application number
PCT/JP2005/018889
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Sato
Susumu Shibata
Original Assignee
Japan Science And Technology Agency
Spacevision, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Spacevision, Inc. filed Critical Japan Science And Technology Agency
Priority to US11/665,417 priority Critical patent/US7560680B2/en
Publication of WO2006041140A1 publication Critical patent/WO2006041140A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning

Definitions

  • the present invention relates to a sensor for measuring a three-dimensional shape of an object.
  • Shape measurement of a three-dimensional object using an optical system is being used in various industrial fields.
  • a light cutting method as a method considered to be highly practical.
  • the reflected light on the surface of the object when the object is irradiated with slit-shaped or spot-shaped light is captured by the camera, and each point on the surface of the object is determined by the principle of triangulation based on the positional relationship between the light source and the camera. Find the three-dimensional coordinates of.
  • Non-Patent Document 1 As an apparatus for measuring a three-dimensional shape by the optical cutting method, for example, there is an apparatus shown in Non-Patent Document 1 (see particularly "3.2.3 Image Encoder").
  • this device an image obtained when the slit light is swept over an object is captured by a CCD camera, and a video signal output from the camera is input to an image encoder.
  • the image encoder receives a code signal indicating the projection angle of the slit light.
  • the image encoder performs luminance peak hold processing for each pixel in real time on the input video signal, and detects the timing at which each pixel takes the maximum luminance by the peak hold processing.
  • the code signal By storing the code signal at, as a coded value of the pixel, a code image that can be applied to the light cutting method is formed.
  • Non-Patent Document 1 is based on the premise that the projection position of the slit light does not substantially change during one readout scanning period of the CCD camera.
  • the readout scanning must be repeated while gradually changing the position of the slit light. Since the readout scan of a general CCD camera is about 1Z30 seconds or 1Z60 seconds, it takes a very long time to obtain the three-dimensional shape of one object with this device, and it is practically not applicable to moving objects.
  • Patent Document 1 This device is equipped with a non-scanning image sensor with an element memory for each photodetector. Each element memory is connected to a bus carrying a time lapse signal t. Then, the light receiving output generated when the light detector detects the slit light is given as a trigger to the element memory, whereby the element memory is also supplied with the bus force and latches the value of the time lapse signal t. According to this configuration, while the slit light is swept once with respect to the object, information corresponding to the time when the slit light hits the corresponding photodetector is stored in each element memory of the image sensor.
  • Non-Patent Document 2 shows a conventional technique that takes another approach to solve the above problem. This is intended to enhance the real-time capability by reading out the image sensor at high speed.
  • a signal for four frames for each pixel one pixel with four color photodetectors.
  • a CMOS sensor having an analog memory array capable of storing the memory and a comparator and an output latch for each column of the memory array is used.
  • the signal of each pixel is read out at a high frame rate of 3.3 kfps (kilo 'frame per second), and the read signal is stored in the cell of the corresponding frame of the analog memory array.
  • the output latch holds the value ⁇ 0 '', and when the signal has a negative value of 0 (this is the peak of the slit light on the pixel)
  • the timing is held at “1” in the output latch. If the output latch of each column is read out at high speed, it is possible to determine whether or not the slit light peak is applied to each pixel every frame (one readout scanning period of the photodetector array).
  • the frame number is slit This sensor can determine the frame number at which each pixel detects the slit light peak, so that the three-dimensional shape of the object can be obtained.
  • Non-Patent Document 2 is expected to improve the aperture ratio of the photodetector array by providing circuit configurations such as an analog memory array, a comparator, and an output latch outside the photodetector array.
  • analog signal memory for 4 frames per pixel is necessary, and there is a problem that the circuit scale of the entire device becomes large. Even if 4 frames per pixel is an example, if the peak of the slit light is obtained from the temporal difference of the received light signal of the same pixel, the principle is adopted. Analog signal memory for the frame is necessary.
  • Patent Document 2 as an imaging device for three-dimensional measurement, a plurality of pixels are two-dimensionally arranged, and each pixel force has a shape that is long in the sweep direction on the imaging surface of S-slit light.
  • a pixel in which pixels adjacent in a direction orthogonal to the sweep direction are shifted in the sweep direction is disclosed.
  • this document compares the output values of adjacent pixels and memorizes the spatial position on the image sensor where the difference is inverted, which slit light hits which pixel! A method to identify whether or not is disclosed! (See paragraphs 7 and 26).
  • Patent Document 2 does not show a specific hardware circuit configuration for realizing the method.
  • Patent Document 3 as a device for obtaining a three-dimensional shape of an object, a zero-order moment calculator and a first-moment calculator calculate at each position in the direction in which the light pattern light extends.
  • An apparatus is disclosed in which a zeroth-order moment and a first-order moment in a direction perpendicular to the direction are obtained by integrating digital signals corresponding to output signals obtained at substantially the same time by a light receiving element array.
  • the photoelectric output of each light receiving element of the photodetector array is converted into a multivalued digital signal, and moment calculation processing is performed on the digital signal.
  • Patent Document 3 requires a complicated circuit configuration for various processes such as analog-to-digital conversion of the photoelectric output of each light receiving element and parallel reading of the obtained digital value. The manufacturing cost was high.
  • Non-Patent Document 1 Toru Yoshizawa, “Three Dimensional Optics, One Optical Three Dimensional Measurement”, First Edition, New Technology Co., Ltd. The Fusions, March 1993, p. 38- 51
  • Non-Patent Document 2 Toshinobu Sugiyama, 3 others, “C MOS sensor capable of color video imaging and real-time 3D measurement”, The Institute of Image Information and Television Engineers Technical Report, The Institute of Image Information Media, 2002 3 May 18, 26th, 26th, p. 1-6
  • Patent Document 1 Japanese Patent Publication No. 6-025653
  • Patent Document 2 JP 2001-053261 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-365022
  • the present invention provides a sensor capable of collecting data used for measuring a three-dimensional shape of a target with a relatively simple circuit configuration.
  • a three-dimensional measurement sensor is a sensor that acquires information for calculating a three-dimensional shape by a light cutting method, and is a photodetector configured by arranging photodetectors in a matrix. Select the array and the row signal line provided for each row of the photodetector array and connected to the output of each photodetector belonging to the corresponding row, and the photodetector of the photodetector array by column. The output signal of each of the photodetectors is output to the corresponding row signal line, and the image on the photodetector array of the slit light scanned for the light cutting method is substantially stationary.
  • a row scanning circuit that switches a selected column in order from one end of the row to the other during a row scanning period that is short enough to be considered, and a light receiving position detection circuit that is provided for each row signal line.
  • the corresponding row signal line flows A light receiving position detection circuit that detects a peak of the signal in the row scanning period and obtains information on a light receiving position in the row of the photodetector array in the row scanning period based on a timing at which the peak is detected; And an output circuit that outputs information on the light receiving position obtained by each light receiving position detection circuit for each scanning period.
  • the selection of “in units of columns” of the photodetectors in the row scanning circuit is not limited to one column, but a plurality of consecutive columns may be selected together.
  • each light receiving position detection circuit holds a peak hold circuit that holds a peak level of a signal on the corresponding row signal line, and a differential that differentiates an output of the peak hold circuit.
  • a circuit, an integration circuit for integrating a predetermined reference signal, and the differentiation circuit A control element that discharges the charge accumulated in the integration circuit when the output of the circuit is turned on, and accumulates the charge in the integration circuit while the output of the differentiation circuit is at the off level.
  • the output circuit outputs the output of the integrating circuit at the completion of the row scanning period as information on the light receiving position.
  • the light receiving position detection circuit holds a peak hold circuit that holds the peak level of the signal on the corresponding row signal line, and a differentiation circuit that differentiates the output of the peak hold circuit.
  • a light receiving position signal generating circuit for generating a light receiving position signal having a signal level corresponding to the elapsed time of the starting force of the row scanning period, and the light receiving position signal at the time of the trigger, triggered by the output of the differentiating circuit.
  • a sample hold circuit that samples and holds the signal, and the output circuit outputs a signal held by the sample hold circuit when the row scanning period is completed as information on the light receiving position.
  • the three-dimensional measurement sensor includes an angle counter for obtaining a projection angle of the slit light with respect to the measurement target, information on the light reception position obtained by each light reception position detection circuit during the row scanning period, and A storage processing unit for storing the output value of the peak hold circuit when the row scanning period is completed in association with the count value of the angle counter in the row scanning period;
  • the three-dimensional shape sensor of this aspect can provide information on the value of the angle counter and the light receiving position as data that is the basis for the calculation of the three-dimensional coordinates based on the principle of trigonometry. Furthermore, by combining the light receiving position information provided by this sensor with the output value of the peak hold circuit, a luminance image showing the luminance distribution of the measurement object can be formed.
  • FIG. 1 is a diagram for explaining the principle of three-dimensional shape measurement by a light cutting method.
  • FIG. 2 is a diagram for explaining the measurement principle of the three-dimensional measurement sensor in the embodiment.
  • FIG. 3 is a diagram showing a circuit configuration example of a three-dimensional measurement sensor in the embodiment.
  • FIG. 4 is a diagram showing a circuit configuration example of a peak hold circuit and a timing detection circuit.
  • FIG. 5 is a diagram showing a timing chart of signals in each part of the circuit configuration example of FIG. 3.
  • FIG. 6 is a diagram showing a system configuration example of a three-dimensional shape measuring apparatus using the sensor of the embodiment.
  • FIG. 7 is a diagram showing a main part of another example of the circuit configuration of the three-dimensional measurement sensor.
  • FIG. 8 is a diagram showing a main part of still another example of the circuit configuration of the three-dimensional measurement sensor.
  • FIG. 9 is a diagram showing a main part of still another example of the circuit configuration of the three-dimensional measurement sensor.
  • FIG. 10 is a diagram showing a main part of still another example of the circuit configuration of the three-dimensional measurement sensor.
  • slit light 5 is emitted from a laser 1 and a lens system 2 with equal power, and the slit light 5 is reflected by a deflecting device 3 such as a polygon mirror.
  • a deflecting device 3 such as a polygon mirror.
  • Target Project onto object 4.
  • the surface of the target object 4 is illuminated in a slit shape.
  • the reflected light from the surface of the target object 4 is focused by the lens system of the imaging device 7 and forms an image on the imaging surface 8 of the imaging device.
  • an image is formed in which only the slit-like portion 9 corresponding to the slit-like illuminated portion 6 on the surface of the target object 4 is bright and the other portions are dark.
  • the three-dimensional coordinates of the point on the illuminated part 6 on the object 4 are the two-dimensional position of the point on the slit-like part 9 on the imaging surface 8 corresponding to the point, the light source (laser 1 ) And the position of the imaging surface 8 and the projection direction (angle) of the slit light 5 at that time, it is obtained by the principle of triangulation. Then, by rotating the reflecting surface of the deflecting device 3, the surface of the target object 4 is scanned with the slit light 5 to one end force to the other end.
  • a three-dimensional measurement sensor suitable for three-dimensional shape measurement by this optical cutting method is provided.
  • the measurement principle of this embodiment will be described with reference to FIG.
  • slit light is incident on the position of each pixel (photodetector) on the imaging surface 8.
  • Data of the specified time is generated.
  • the time when the slit light is incident on the pixel indicates the projection angle of the slit light. Since the position of each pixel on the imaging surface 8 and the position of the light source are known, if the time is known, the three-dimensional coordinates of the point on the target object 4 corresponding to that pixel can be calculated.
  • This concept itself is the same as in Patent Document 1.
  • Patent Document 1 there is a problem in terms of cost and other points that a circuit for detecting the incidence of slit light and holding the time is provided for each pixel, and this embodiment aims to improve that point.
  • FIG. 2 schematically shows one row of a matrix (array) of photodetectors 10 (for example, photodiodes) arranged on the imaging surface 8 of the imaging device 7.
  • Each photodetector 10 belonging to this row is connected to a common signal line 12 and is configured to output a detection signal generated by the light detection to the signal line 12.
  • the direction of this row is the same as the direction in which the slit light is scanned by the optical force cutting method. That is, this is a case where the imaging device 7 is installed so that the row direction is parallel to the slit light scanning direction. In this case, the slit light image on the imaging surface 8 crosses each row of the matrix of the photodetectors 10 on the imaging surface 8.
  • the slit light scanning direction refers to the direction in which the slit light imaged on the imaging surface of the imaging device 7 moves in accordance with the slit light scanning by the deflection device 3.
  • the intensity pattern of the slit light incident at a certain moment with respect to the rows in which the groups of the photodetectors 10 are arranged is a pattern having one steep peak, for example, an incident intensity pattern 100 shown in the figure. It becomes. This is because one slit light crosses the line. Therefore, in a short time that the slit light can be considered to be stationary, the readout scan of the row, that is, the output of each photo detector 10 is applied to the one end force of the row in sequence to the other end of the signal line 12 one by one. As shown in the figure, an output signal 200 having one large peak flows through the signal line 12 (strictly speaking, the photodetectors 10 that output signals are sequentially turned off). The output signal on the signal line 12 does not become smooth as shown in the figure because it changes, and the general tendency is as shown in the figure).
  • the illustrated example is an output signal 200 when the photodetector 10 is selected in order from left to right.
  • the readout scanning for one row is performed by the horizontal scanning circuit 14.
  • the horizontal scanning circuit 14 is composed of, for example, a parallel output shift register.
  • one stage of the shift register is set to H (high) level ( ⁇ 1 ⁇ ) and the other stage is set to L (low) level ( ⁇ 0 ⁇ ), and this is the clock supplied from the timing control unit 16 According to the signal, one end force is shifted to the other end in order.
  • the switch that intermittently connects between the output of each corresponding photodetector 10 and the signal line 12 is opened and closed.
  • the stage corresponding to the fifth photodetector 10 from the left is at the high level, so the output of the fifth photodetector 10 (a low level signal close to 0) is output to the signal line 12. Is done.
  • the position of the peak of the incident light in the row at that time is obtained.
  • the peak position can be obtained, for example, by counting the clock signal used as a reference for the shift operation of the horizontal scanning circuit 14 with a counter and obtaining the count value of the counter at the timing when the signal peak is detected. If the counter is cleared every horizontal scanning period, the counter value indicates the time A from the start of horizontal scanning to the peak detection time.
  • the method for obtaining the peak position is not limited to this, and other examples will be described later.
  • the peak position of incident light on a row is obtained.
  • the recording processing unit 22 records this peak position in association with the count value of the counter 20 for obtaining the slit light projection angle.
  • the counter 20 may be incremented by one every horizontal scanning period of the horizontal scanning circuit 14, and the count value may be cleared every time scanning of the slit light is completed.
  • a pixel matrix (array) of the imaging surface 8 can be configured.
  • one horizontal scanning circuit 14, timing control unit 16, counter 20 and recording processing unit 22 may be provided for the plurality of rows.
  • the force that explained the processing in one horizontal scanning period If this processing is repeated during the scanning period of the slit light, the time at which the slit light is incident on each pixel position during the slit light scanning is calculated. You can ask for data. Thereby, basic data necessary for calculating the three-dimensional shape of the entire target object 4 can be collected. [0037] Note that, in the above, the description has been given of the case where the row direction of the pixel matrix is parallel to the slit scanning direction. In principle, if the image of the slit light crosses each row of the matrix, the above data collection processing can be executed. Therefore, when it is parallel, the force is the best mode, but it does not have to be parallel.
  • the pixel circuits 11 are arranged in a matrix, and a plurality of (four in the illustrated example) pixel circuits 11 belonging to the same row (horizontal line) are connected to a common signal line. Connected to 12.
  • the pixel circuit 11 includes a photodetector 10 and a switch for switching between the output of the photodetector 10 and the signal line 12. This switch is turned on and off in response to a control signal supplied from the horizontal scanning circuit 14 via the address line 15.
  • the switches of a plurality (four in the illustrated example) of pixel circuits 11 belonging to the same column are connected to a common address line 15 and turned on and off at the same time.
  • the horizontal scanning circuit 14 supplies an ON signal (for example, an H level signal) only to the address line 15 of one column (or a predetermined number of consecutive columns) of the columns of the pixel circuit 11 group, and OFF to the other columns. Supply a signal (eg L level). Then, the horizontal scanning circuit 14 shifts the column to which the ON signal is supplied in one direction (for example, the right force is also to the left) by one column at regular intervals according to the clock signal supplied from the timing control unit 16. To go. By such a shift operation, during one horizontal running period, one row end force of the matrix and each column up to the other row end are selected in order. By such horizontal scanning, an output signal as illustrated in FIG. 2 indicating the position of the intensity peak of incident light in each row is output to the signal line 12 in each row.
  • an ON signal for example, an H level signal
  • Each signal line 12 is connected to the peak hold circuit 30, and the output of the peak hold circuit 30 is connected to the input of the timing detection circuit 32.
  • These peak hold times A set of the path 30 and the timing detection circuit 32 corresponds to the position detection unit 18 in the principle configuration of FIG.
  • the peak hold circuit 30 holds and outputs the peak value of the signal input from the signal line 12.
  • the output of each peak hold circuit 30 is input to the corresponding timing detection circuit 32.
  • the timing detection circuit 32 generates a peak timing signal based on the output of the peak hold circuit 30, and generates and outputs a distance signal from the generated peak timing signal.
  • the distance signal is the distance from the pixel in the row of pixels corresponding to the signal line 12 (ie, the pixel to which slit light is incident) to one end of the row (in this example, the right end). It is a signal which shows.
  • the peak hold circuit 30 in the illustrated example is a general peak hold circuit including two voltage follower circuits for impedance conversion of input and output and a capacitor C1 for holding a peak voltage.
  • the signal line 12 is connected to the non-inverting input terminal of the operational amplifier OP 1 constituting the first voltage follower circuit.
  • the output terminal of the operational amplifier OP1 is connected to the anode of the rectifying diode D1.
  • the force sword side of the diode D1 is connected to the inverting input terminal of the operational amplifier OP1, thereby forming a first voltage follower circuit.
  • the force sword side of the diode D1 is connected to the non-inverting input terminal of the op amp OP2 of the second voltage follower circuit.
  • One end of a peak voltage holding capacitor C1 is connected to the non-inverting input terminal of the operational amplifier OP2 connected to the anode side of the diode D1, and the other end of the capacitor C1 is connected to the ground terminal.
  • the output terminal of the operational amplifier OP2 is connected to the inverting input terminal of the operational amplifier OP2 itself, thereby forming a second voltage follower circuit.
  • the output from the output terminal of the operational amplifier OP2 becomes the output of the peak hold circuit 30.
  • the timing detection circuit 32 includes a differentiation circuit 322 and a distance signal generation circuit 324.
  • the differentiation circuit 322 is a general differentiation circuit using an operational amplifier. One end of the capacitor C2 constituting the differentiation circuit 322 is connected to the output of the S peak hold circuit 30 and the other end is connected to the inverting input terminal of the operational amplifier OP3. Non-inverting input terminal of operational amplifier OP3 The child is connected to ground, and the output terminal is connected to the inverting input terminal of the operational amplifier OP3. A signal obtained by differentiating the output signal of the peak hold circuit 30 is output from the output terminal of the operational amplifier OP3.
  • the distance signal generation circuit 324 also includes a transistor TR1, a capacitor C3, a resistor Rl, and an operational amplifier OP4.
  • the transistor TR1 in the example circuit is an NPN type, the base is connected to the output of the differentiating circuit 322, that is, the output terminal of the operational amplifier OP3, and the emitter is connected to the ground.
  • the collector of transistor TR1 is connected to the non-inverting input terminal of operational amplifier OP4.
  • One end of the resistor R1 is connected to the non-inverting input terminal of the operational amplifier OP4 connected to the collector of the transistor TR1, and the other end of the resistor R1 is connected to the horizontal scanning signal output terminal of the timing controller 16.
  • the horizontal scanning signal is a signal indicating a horizontal scanning period, and is, for example, a signal that becomes H level during the horizontal scanning period.
  • the non-inverting input terminal of the operational amplifier OP4 is connected to one end of a capacitor C3 that accumulates charges according to the horizontal scanning signal input via the resistor R1. The other end of the capacitor C3 is connected to ground.
  • the output terminal of the operational amplifier OP4 is connected to the inverting input terminal of the operational amplifier OP4 itself to form a voltage follower circuit.
  • the output signal from the output terminal of this operational amplifier OP4 is a distance signal indicating the peak position force of incident light in the pixel row and the distance to the end of the row.
  • (a) is a timing chart of the horizontal scanning signal supplied from the timing control unit 16 to the distance signal generation circuit 324.
  • This horizontal scanning signal becomes H level during the horizontal scanning period of the sensor, and is reset and becomes L level until the next horizontal scanning period starts.
  • (B) is a timing chart of an input signal to the peak hold circuit 30, that is, a signal on the signal line 12, and an output signal of the peak hold circuit 30. Since the photodetectors 10 that output optical detection signals by horizontal scanning are sequentially switched, the input signal from the signal line 12 becomes a signal having several peaks as shown by the solid line in the figure, and the peak of the incident light The maximum peak occurs at the timing when a signal is output from the photodetector 10 where the light is incident. Pea The output signal of the hold circuit 30 is a signal as shown by a broken line (it should be understood that the section where the broken line is not visible overlaps the solid line).
  • (c) is a timing chart of the output signal of the differentiating circuit 322. Since this signal is a signal obtained by differentiating the peak hold output signal indicated by the broken line in (b), the peak value of the input signal on the signal line 12 is held at the L level during the hold period. If the level of the input signal rises more than that, it becomes H level. The force level rises and falls several times before reaching the maximum peak of the input signal. After the maximum peak is exceeded, it is at the L level until the end of the horizontal running period.
  • (d) is a timing chart of the distance signal output from the distance signal generation circuit 324.
  • the distance signal is a signal having a level corresponding to the charge accumulated in the capacitor C3 by the horizontal scanning signal.
  • differential output the output signal of the differentiating circuit 322
  • the charge accumulated in the capacitor C3 is discharged to the ground through the transistor TR1. Therefore, every time the differential output becomes H level, the distance signal level is reset to the lowest value (0).
  • the differential output does not become H level until the end of the horizontal scanning period, so the charge is gradually accumulated in the capacitor C3, The level of the distance signal increases with time.
  • a distance signal of a level corresponding to the distance to the end position of the row (corresponding to time B in FIG. 2) is also output as the positional force of the photodetector 10 on which the slit light is incident. It will be.
  • the distance signal output from the timing detection circuit 32 is converted into digital data by the AZD conversion 34.
  • the AZD conversion has a bit number having a resolution equal to or higher than the number of pixels in one row, the incident position of the slit light on the row can be converted into data that can be discriminated with an accuracy higher than the pixel unit.
  • a latch (not shown) is provided at the subsequent stage of the AZD converter 34, and the digital data indicating the distance signal is latched by the latch circuit at the end timing of the horizontal scanning period.
  • the latch at the end of each row holds digital data indicating the magnitude of the distance signal indicating the peak position of the incident light in the corresponding row at the end of the horizontal scanning period.
  • the latch value is cleared.
  • the horizontal scanning signal is supplied from the timing control unit 16 to the latch circuit, for example, and the output of the AZD converter 34 is latched at the falling timing of the horizontal scanning signal, and at the rising timing. Clear the latched data.
  • the recording processing unit 22 shown in FIG. 2 sequentially reads out the data held by the latches of each row through the data output line 36 after the end of the horizontal scanning period and before the start of the next horizontal scanning period. . Then, for each latch of each row, the data obtained for the latch force (this indicates the peak position of the incident light in that row, that is, the highest luminance position), the number of that row, and the slit light projection at that time. The combination with the count value of the counter 20 indicating the angle is stored in a predetermined storage device. If this operation is repeated for one scanning period of slit light, the data necessary to calculate the three-dimensional shape of the target object 4 is obtained.
  • the pixel position corresponding to the combination of the row number of each row obtained for each horizontal scanning period and the highest luminance position of each row (i.e., how many rows and columns) is specified, and the pixel corresponding to that pixel location
  • the corresponding count value data may be adopted as the value of.
  • a projection angle image indicates a count value (equivalent to the projection angle of the slit light) for each pixel on the imaging surface when that pixel reaches the maximum luminance.
  • the three-dimensional shape of the target object 4 can be calculated based on the projection angle image and the known arrangement position information of the light source and the imaging device.
  • the output signal of the peak hold circuit 30 can be simply input to the timing detection circuit 32. It can also be output as it is and used as a luminance signal.
  • the luminance signal is converted into a digital value by an AZD converter (not shown) and then input to a latch circuit (not shown). That is, in this case, similarly to the AZD converter 34 and the latch circuit for the distance signal, the AZD converter and the latch circuit for the luminance signal are provided for each row.
  • the latch circuit latches the output of the AZD change at the falling edge of the horizontal scanning signal and clears it at the next rising edge.
  • the recording processing unit 22 stores the data (luminance value) held by the latch circuits in each row during a period in which the horizontal scanning signal is at the reset level (that is, from the end of the horizontal scanning period to the start of the next horizontal scanning period. (The period of time), and the corresponding row number and the count value of the counter 20 are stored in a predetermined storage device in association with each other. If this operation is repeated during the scanning period of the slit light, the maximum brightness value of each row at the count value timing is obtained for each count value of the counter 20.
  • the recording processing unit 22 records the distance signal data (that is, the peak position of the incident light) of each row corresponding to each count value of the counter 20, so that each count value will be counted from now on.
  • the position of the highest luminance in each row at the timing corresponding to is known. Therefore, it is possible to obtain a combination of the highest luminance value and the position on the row where the highest luminance value is obtained for each counter value timing (ie, for each projection angle of the slit light) and for each row. it can.
  • an image (referred to as a “luminance image”) corresponding to the maximum luminance of each pixel in that period is obtained. Obtainable. This image is close to an image obtained when the target object 4 is illuminated with a normal light source (not slit light).
  • the data value of the distance signal and the data value of the luminance signal have been described as being individually recorded by the recording processing unit 22. However, these are associated with the count value of the counter 20 together. It is also preferable to record them.
  • FIG. 6 a configuration example of a measurement apparatus using the three-dimensional measurement sensor of the present embodiment will be described.
  • the measuring device 100 includes a measuring circuit chip 110, an optical system 120, a scanning control device 130, a line light source 132, and a deflecting device 134.
  • the optical system 120 is a system composed of optical components such as a lens, and forms an image of reflected light from the target object on the imaging surface of the measurement sensor 112.
  • the measurement sensor 112 is a sensor including the circuit group illustrated in FIG. 3, that is, a matrix of pixel circuits 11, a horizontal scanning circuit 14, a peak hold circuit 30, a timing detection circuit 32, an A / D converter 34, and a latch circuit. is there.
  • the processing circuit 114 is a circuit that provides the functions of the timing control unit 16, the counter 20, and the recording processing unit 22 in the configuration of FIG. 2 and the function for controlling the operation of the slit light.
  • the processing circuit 114 outputs the above-described projection angle image (and a luminance image when a luminance image is generated) to the subsequent image capturing device 200.
  • These measurement sensor 112 and processing circuit 114 may be integrated on a one-chip. It can. Further, the measurement sensor 112 and the processing circuit 114 can be integrated into one chip, and the measurement circuit chip 100 can be configured.
  • the scanning control device 130 is a circuit that performs scanning control of slit light, and a linear light source that emits slit light in response to various control signals such as a horizontal scanning signal and a scanning clock signal supplied from the processing circuit 114.
  • the on / off control of 132 and the mirror deflection angle in the deflecting device 134 are controlled.
  • the image capturing device 200 acquires a projection angle image and a luminance image from the processing circuit 114, and calculates the three-dimensional shape of the target object 4 from the projection angle image.
  • the image capturing device 200 can display the calculated three-dimensional shape or luminance image on an attached display device or save it as a file.
  • the three-dimensional measurement sensor of the present embodiment can generate a projection angle image equivalent to the prior art disclosed in Patent Document 1 and Non-Patent Document 2 with a relatively small circuit scale.
  • a frame memory for 4 frames and a comparison circuit are required for each pixel, whereas in this embodiment, a peak hold circuit 30, a timing detection circuit 32, Since it is sufficient to provide the AZD conversion circuit 34 and the like, the circuit scale can be made smaller than that of Non-Patent Document 2.
  • circuit configurations shown in FIGS. 3, 4 and the like are merely examples, and various modifications are possible within the scope of the present invention.
  • the horizontal scanning signal is integrated to generate the distance signal, but this is merely an example.
  • waveform data equivalent to the time waveform of the distance signal generated by the distance signal generation circuit 324 of FIG. is plotted on the horizontal axis, and each counter value is Waves plotted with the value of the distance signal output at the end of the horizontal scanning period as the value on the vertical axis when the maximum peak of incident light is detected at the timing of the counter value Shape data.
  • the value of the distance signal registered in the waveform memory 40 is sequentially output.
  • the analog signal is converted to an analog signal and input to the sample and hold circuit 44 in each row.
  • the sample hold circuit 44 is provided with a peak timing detection signal, that is, an output signal of the differentiating circuit 322 in the configuration of FIG. 4, as a control signal for controlling the sample / hold operation.
  • a peak timing detection signal that is, an output signal of the differentiating circuit 322 in the configuration of FIG. 4, as a control signal for controlling the sample / hold operation.
  • the output of the differentiation circuit 322 has a level corresponding to a small peak until the input signal from the signal line 12 reaches the maximum peak in the horizontal scanning period. Force that repeats up and down When the maximum peak is reached, the H level force After falling to the L level, the L level is maintained until the end of the horizontal scanning period.
  • the sample-and-hold circuit 44 holds the signal input from the DZA conversion 42 at the falling edge of the rectangular pulse, the sample-and-hold circuit 44 starts from the end of the final horizontal scanning period. Thus, a distance signal having the same magnitude as that of the distance signal generation circuit 324 in FIG. 4 is output.
  • the configuration of FIG. 7 can be regarded as a configuration in which the distance signal generation circuit 324 in the configurations of FIGS. 3 and 4 is replaced with the waveform memory 40, the DZA converter 42, and the sample hold circuit 44. it can.
  • the structure after the sample hold circuit 44 is omitted in illustration. This may be the same structure as that of the above embodiment described with reference to FIGS. It will be understood that processing similar to that in FIGS. 3 and 4 can be performed with such a configuration.
  • the level value of the distance signal read from the waveform memory 40 is converted into an analog signal and held by the sample hold circuit 44.
  • the configuration of FIG. 8 shows the distance (that is, the peak position of incident light). The digital value is processed.
  • a counter 50 instead of the distance signal generation circuit 324, the AZD converter 34, and the latch circuit (not shown) in the configurations of FIGS. 3 and 4, a counter 50, a lookup table (LUT) 52, and A digital memory 54 is provided.
  • LUT lookup table
  • the counter 50 is reset at the start of the horizontal scanning period, and counts up the clock signal for horizontal scanning supplied from the timing control unit 16.
  • the count value of this counter 50 is from the start of the horizontal scanning period to when the peak of incident light is detected. Indicates the time to a point, which is in principle proportional to the distance from the scanning start end of the row of the pixel matrix to the position of the peak of incident light in that row. Therefore, in principle, if the count value of the counter 50 is latched in the digital memory 54 at the fall timing of the peak timing detection signal, that is, the output of the differentiating circuit 322, the maximum input signal from the signal line 12 is obtained.
  • the counter value held in the digital memory 54 may be updated several times above and below the differential output corresponding to the small peak up to the peak of, the end of the horizontal scanning period is not updated after the maximum peak. At that time, the counter value indicating the peak position of the incident light in the row in principle is held in the digital memory 54. Therefore, by reading the value held in the digital memory 54 of each row at the end of the horizontal scanning period, information on the highest luminance position of each row in that period can be obtained.
  • the elapsed time from the start point of the horizontal scanning period to the peak detection point of the incident light is not necessarily proportional to the distance from the scanning start side end of the row to the peak position of the incident light. .
  • a LUT 52 is provided to absorb such nonlinearity and individual differences in the relationship between elapsed time and distance.
  • a value of “distance from the scanning start side edge of the row to the peak position of the incident light” corresponding to the count value of the counter 50 is registered.
  • the LUT 52 outputs a distance value corresponding to the count value input from the counter 50.
  • the value of this distance is latched in the digital memory 54 at the falling timing of the peak timing detection signal.
  • FIG. 9 shows still another example of the circuit configuration.
  • the same components as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the timing control horizontal scanning unit 14a is a combination of the horizontal scanning circuit 14 and the timing control unit 16 in the circuit configuration of FIG. Are displayed together.
  • the configuration of FIG. 9 includes the peak hold circuit 30, the timing detection circuit 32 in the configuration of FIG.
  • An AZD converter 60 a data latch 62, a comparator 64, a data memory 66, and a counter circuit 68 are provided instead of the AZD converter 34 and the data latch. Of these, A / D converter 60
  • the AZD converter 60 samples the signal flowing through the signal line 12 at every predetermined sample timing, converts it into a digital value, and outputs it.
  • the output of the AZD translation 60 is input to the comparator 64 and the data latch 62.
  • the comparator 64 compares the output of the A / D converter 60 with the digital value supplied from the data latch 62. As a result of comparison, if the former is greater than the latter, an H level signal is output. If the former is smaller than the latter, an L level signal is output.
  • the data latch 62 latches the digital value supplied from the AZD conversion 60 at that time.
  • the data latch 62 continues to hold the previously held digital value.
  • the data latch 62 is reset after the end of one horizontal scanning period and before the start of the next horizontal scanning period. According to such an operation of the data latch 62, at a certain point in time in one horizontal scanning period, the data latch 62 is informed until the point of the signal flowing through the signal line 12 corresponding to the latch 62 (more strictly). Holds the maximum value (before the immediately preceding sample timing). Comparator 64 compares the maximum value held by data latch 62 with the value of the signal on signal line 12 at the current sample timing. Therefore, the comparator 64 outputs a signal that is almost the same as the differential output of FIG. 5C.
  • the counter circuit 68 counts the count values at regular intervals from the start to the end of one horizontal scanning period. Count up.
  • the count interval of the count value is a period shorter than the time interval (that is, the time obtained by dividing the horizontal scanning period by the number of pixels in one line) that can identify individual pixel circuits 11 on one line.
  • the count value of the counter circuit 68 is reset in accordance with timing control and a timing signal input from the horizontal scanning unit 14a between the end of one horizontal scanning period and the start of the next one horizontal scanning period. Therefore, the count value output from the counter circuit 68 is a value indicating the horizontal position on one line.
  • the count value of the counter circuit 68 is supplied to the data memory 66 corresponding to each signal line 12.
  • the data memory 66 latches the count value at the falling timing of the signal input from the comparator 64.
  • each data memory 66 holds a count value corresponding to the incident position of the slit light on the corresponding signal line 12. That's true.
  • the subsequent processing may be the same as that shown in FIG.
  • FIG. 10 shows still another circuit configuration.
  • elements corresponding to the elements shown in FIG. 10 are identical to the elements shown in FIG. 10.
  • a signal flowing through the signal line 12 is input to the comparator 72 and the latch 70.
  • the comparator 72 compares the signal on the signal line 12 with the signal supplied from the latch 70. If the former is larger than the latter as a result of the comparison, the comparator 72 compares the signal at the H level, and if the former is smaller than the latter, the comparator 72 compares the signal at the L level. The signal is output.
  • the latch 70 holds the signal supplied from the signal line 12 at that time.
  • Such a latch 70 can be configured as a sample and hold circuit, and the output of the comparator 72 serves as a trigger signal for instructing the sample operation for this circuit.
  • the latch 70 continues to hold the signal level previously held and supplies the signal to the comparator 72. Also, latch 70 has 1 water It is reset after the end of the horizontal scanning period and before the start of the next horizontal scanning period.
  • each data memory 66 holds a count value corresponding to the incident position of the slit light on the corresponding signal line 12.
  • the subsequent processing may be the same as that shown in FIG. Therefore, with this circuit configuration as well, the information of the three-dimensional shape can be obtained in the same manner as the configurations of FIGS.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

In a matrix of photo-detectors (10) constituting a 3D measurement sensor, outputs of photo-sensors belonging to the same row are connected to the same signal line (12). Outputs of the photo-detectors (10) are read successively from left to right to a signal line (12) while being scanned by a horizontal scan circuit (14) during a short horizontal scan period of such an order that the slit light of the light cutting method can be considered to be substantially in a stop state. A position detection unit (18) determines the time from the moment of start of the horizontal scan period to detection of the maximum peak of the signal on the signal line (12). This time indicates the distance from the end of the scan start side of the row to the photo-detector (10) which has detected the peak of the slit light. A recording unit (22) records the value of the distance obtained by the position detection unit (18) while correlating it with the value of the counter (20) indicating the projection angle of the slit light.

Description

明 細 書  Specification
三次元計測センサ  3D measurement sensor
技術分野  Technical field
[0001] 本発明は、対象物の三次元形状を計測するためのセンサに関する。  The present invention relates to a sensor for measuring a three-dimensional shape of an object.
背景技術  Background art
[0002] 光学系を利用した三次元物体の形状計測は、様々な産業分野で利用されつつあ る。その中で、実用性が高いと考えられている手法として光切断法がある。光切断法 では、スリット状又はスポット状の光を対象物に照射したときの対象物表面の反射光 をカメラで捉え、光源とカメラの位置関係から、三角測量の原理で対象物表面の各点 の三次元座標を求める。  [0002] Shape measurement of a three-dimensional object using an optical system is being used in various industrial fields. Among them, there is a light cutting method as a method considered to be highly practical. In the light cutting method, the reflected light on the surface of the object when the object is irradiated with slit-shaped or spot-shaped light is captured by the camera, and each point on the surface of the object is determined by the principle of triangulation based on the positional relationship between the light source and the camera. Find the three-dimensional coordinates of.
[0003] 光切断法による三次元形状計測のための装置として、例えば、非特許文献 1 (特に 「3. 2. 3 イメージエンコーダ」参照)に示される装置がある。この装置では、対象物 に対してスリット光を掃引したときの画像を CCDカメラで撮像し、そのカメラの出力す るビデオ信号をイメージエンコーダに入力する。イメージエンコーダには、そのビデオ 信号の他に、スリット光の投光角度を示すコードィ匕信号が入力される。イメージェンコ ーダは、入力されるビデオ信号に対して、各画素ごとに輝度のピークホールド処理を リアルタイムで行うと共に、そのピークホールド処理により各画素が最大輝度を取った タイミングを検出し、そのタイミングにおけるコードィ匕信号を当該画素のコード化値とし て記憶することで、光切断法が適用可能なコードィ匕画像を形成する。  [0003] As an apparatus for measuring a three-dimensional shape by the optical cutting method, for example, there is an apparatus shown in Non-Patent Document 1 (see particularly "3.2.3 Image Encoder"). In this device, an image obtained when the slit light is swept over an object is captured by a CCD camera, and a video signal output from the camera is input to an image encoder. In addition to the video signal, the image encoder receives a code signal indicating the projection angle of the slit light. The image encoder performs luminance peak hold processing for each pixel in real time on the input video signal, and detects the timing at which each pixel takes the maximum luminance by the peak hold processing. By storing the code signal at, as a coded value of the pixel, a code image that can be applied to the light cutting method is formed.
[0004] しかし、この非特許文献 1に示される装置は、 CCDカメラの 1読出走査期間の間は 、スリット光の投影位置が実質的に変化しないことを前提としており、物体の形状計測 にはスリット光の位置を徐々に変えながらその読出走査を繰り返し行わなければなら ない。一般的な CCDカメラは読出走査が 1Z30秒や 1Z60秒程度なので、この装置 で 1つの物体の三次元形状を求めるには非常に時間がかかり、動いている物体には 実質上適用できない。  However, the apparatus shown in Non-Patent Document 1 is based on the premise that the projection position of the slit light does not substantially change during one readout scanning period of the CCD camera. The readout scanning must be repeated while gradually changing the position of the slit light. Since the readout scan of a general CCD camera is about 1Z30 seconds or 1Z60 seconds, it takes a very long time to obtain the three-dimensional shape of one object with this device, and it is practically not applicable to moving objects.
[0005] このような問題に対し、本発明の発明者の一人は、特許文献 1に示す装置を提案し た。この装置は光検出器ごとに要素メモリを備えた非走査型の撮像素子を備えており 、各要素メモリは時間経過信号 tを伝えるバスに接続されている。そして、光検出器が スリット光を検出した時に発する受光出力をトリガとして要素メモリに与え、これにより 要素メモリがその時バス力も供給されて 、る時間経過信号 tの値をラッチする。この構 成によれば、対象物に対してスリット光を 1回掃引する間に、撮像素子の各要素メモリ には、対応する光検出器にスリット光が当たった時刻に対応する情報が記憶される。 すなわちこの装置では、スリット光 1掃引の間に撮像素子の要素メモリ群に対し、非特 許文献 1のイメージエンコーダの生成するコードィ匕画像と同等の情報が蓄積される。 したがって、スリット光 1掃引につき 1度撮像素子のメモリ群の読出走査を行えばよい 。このように、特許文献 1の装置によれば、撮像素子の読出走査と同等の速度でスリ ット光を掃引しても形状計測ができるので、リアルタイムに近い形状計測が可能にな つた o [0005] To solve such a problem, one of the inventors of the present invention has proposed an apparatus shown in Patent Document 1. This device is equipped with a non-scanning image sensor with an element memory for each photodetector. Each element memory is connected to a bus carrying a time lapse signal t. Then, the light receiving output generated when the light detector detects the slit light is given as a trigger to the element memory, whereby the element memory is also supplied with the bus force and latches the value of the time lapse signal t. According to this configuration, while the slit light is swept once with respect to the object, information corresponding to the time when the slit light hits the corresponding photodetector is stored in each element memory of the image sensor. The That is, in this apparatus, information equivalent to the code image generated by the image encoder of Non-Patent Document 1 is accumulated in the element memory group of the image sensor during one slit light sweep. Therefore, it is only necessary to perform reading scanning of the memory group of the image sensor once per slit light sweep. As described above, according to the apparatus of Patent Document 1, shape measurement can be performed even when the slit light is swept at a speed equivalent to the reading scanning of the image sensor, so that shape measurement near real time can be performed.
[0006] しかし、この特許文献 1の装置では、撮像素子の各光検出器ごとに要素メモリを設 ける必要があるため、撮像素子の大型化を招いたり、製造のしゃすさの点で不利に なったりといった問題があった。  [0006] However, in the apparatus of Patent Document 1, it is necessary to provide an element memory for each photodetector of the image sensor, which leads to an increase in the size of the image sensor or a disadvantage in terms of manufacturing. There was a problem such as becoming.
[0007] また、上記問題の解決のために別のアプローチをとつた従来技術として、非特許文 献 2に示すものがある。これは撮像素子を高速読み出しすることでリアルタイム対応 能力を高めようとするものであり、光検出器アレイに加えて、各画素 (4色の光検出器 で 1画素)ごとに 4フレーム分の信号を記憶できるアナログメモリアレイと、そのメモリア レイの列ごとに比較器及び出力ラッチと、を備えた CMOSセンサを用いている。この センサでは、各画素の信号が 3. 3kfps (キロ'フレーム毎秒)の高いフレームレートで 読み出され、読み出された信号がアナログメモリアレイの対応フレームのセルに記憶 される。そして、アレイ各列の画素ごとに順に、その列の比較器によりアナログメモリア レイに記憶された 4フレーム分の信号のうちの時間的に後の 2フレーム分の和から前 の 2フレーム分の和を引 ヽた差信号を求め、この信号が 0の時は出力ラッチに値「0」 を保持させ、その信号が負値力 0になった時 (これがスリット光のピークが当該画素 上にあるタイミングである)には出力ラッチに「1」を保持させる。各列の出力ラッチを高 速に読み出せば、 1フレーム (光検出器アレイの 1読出走査期間)ごとに、各画素にス リット光のピークが当たっているか否かを求めることができる。フレームの番号がスリツ ト光の投影角度に対応しており、このセンサにより各画素が何フレーム目でスリット光 ピークを検出したかが分力るので、対象物の三次元形状を求めることができる。 [0007] Further, Non-Patent Document 2 shows a conventional technique that takes another approach to solve the above problem. This is intended to enhance the real-time capability by reading out the image sensor at high speed. In addition to the photodetector array, a signal for four frames for each pixel (one pixel with four color photodetectors). A CMOS sensor having an analog memory array capable of storing the memory and a comparator and an output latch for each column of the memory array is used. In this sensor, the signal of each pixel is read out at a high frame rate of 3.3 kfps (kilo 'frame per second), and the read signal is stored in the cell of the corresponding frame of the analog memory array. Then, in order for each pixel in each column of the array, the sum of the previous two frames from the sum of the later two frames of the four frames of signals stored in the analog memory array by the comparator of that column. When this signal is 0, the output latch holds the value `` 0 '', and when the signal has a negative value of 0 (this is the peak of the slit light on the pixel) The timing is held at “1” in the output latch. If the output latch of each column is read out at high speed, it is possible to determine whether or not the slit light peak is applied to each pixel every frame (one readout scanning period of the photodetector array). The frame number is slit This sensor can determine the frame number at which each pixel detects the slit light peak, so that the three-dimensional shape of the object can be obtained.
[0008] 非特許文献 2のセンサは、アナログメモリアレイや比較器、出力ラッチなどの回路構 成を光検出器アレイの外に設けることにより、光検出器アレイの開口率の向上を見込 めるが、 1画素当たり 4フレーム分のアナログ信号メモリが必要であり、素子全体として の回路規模が大きくなるという問題がある。 1画素当たり 4フレーム分というのが仮に 一例であるとしても、同一画素の受光信号の時間的な差分からスリット光のピークを 求めると 、う原理を採用して 、る以上、 1画素当たり少なくとも 2フレーム分のアナログ 信号メモリは必要である。  [0008] The sensor of Non-Patent Document 2 is expected to improve the aperture ratio of the photodetector array by providing circuit configurations such as an analog memory array, a comparator, and an output latch outside the photodetector array. However, the analog signal memory for 4 frames per pixel is necessary, and there is a problem that the circuit scale of the entire device becomes large. Even if 4 frames per pixel is an example, if the peak of the slit light is obtained from the temporal difference of the received light signal of the same pixel, the principle is adopted. Analog signal memory for the frame is necessary.
[0009] また、特許文献 2には、三次元計測のための撮像素子として、複数の画素が二次 元配列され、各画素力 Sスリット光の撮像面上での掃引方向に長い形状を有し、掃引 方向と直交する方向に隣り合う画素同士が掃引方向にずれて配置されているものが 開示されている。また、この文献には、隣接する画素の出力値を比較してその差分が 反転した撮像素子上での空間位置を記憶することで、スリット光がどの画素に当たつ て!、るかを特定する方式が開示されて!、る (第 7段落及び第 26段落参照)。  In Patent Document 2, as an imaging device for three-dimensional measurement, a plurality of pixels are two-dimensionally arranged, and each pixel force has a shape that is long in the sweep direction on the imaging surface of S-slit light. In addition, a pixel in which pixels adjacent in a direction orthogonal to the sweep direction are shifted in the sweep direction is disclosed. In addition, this document compares the output values of adjacent pixels and memorizes the spatial position on the image sensor where the difference is inverted, which slit light hits which pixel! A method to identify whether or not is disclosed! (See paragraphs 7 and 26).
[0010] し力しながら、特許文献 2にはその方式を実現するための具体的なハードウェア回 路構成は示されていない。  [0010] However, Patent Document 2 does not show a specific hardware circuit configuration for realizing the method.
[0011] また、特許文献 3には、対象物の三次元形状を求めるための装置として、 0次モーメ ント演算器と 1次モーメント演算器とにより、ライトパターン光が伸びる方向における各 位置での該方向に対して垂直の方向での 0次モーメント、 1次モーメントを、受光素子 アレイにて略同時刻に得られた出力信号に相当するデジタル信号を積分して求める 装置が開示されている。この装置では、光検出器アレイの各受光素子の光電出力を 、それぞれ多値のデジタル信号に変換し、そのデジタル信号に対してモーメント演算 処理を施している。  [0011] Further, in Patent Document 3, as a device for obtaining a three-dimensional shape of an object, a zero-order moment calculator and a first-moment calculator calculate at each position in the direction in which the light pattern light extends. An apparatus is disclosed in which a zeroth-order moment and a first-order moment in a direction perpendicular to the direction are obtained by integrating digital signals corresponding to output signals obtained at substantially the same time by a light receiving element array. In this device, the photoelectric output of each light receiving element of the photodetector array is converted into a multivalued digital signal, and moment calculation processing is performed on the digital signal.
[0012] 特許文献 3の装置は、各受光素子の光電出力をアナログ ·デジタル変換したり、得 られたデジタル値をパラレル読み出ししたりするなど、様々な処理のために複雑な回 路構成が必要であり、製造コストが高力つた。  [0012] The device of Patent Document 3 requires a complicated circuit configuration for various processes such as analog-to-digital conversion of the photoelectric output of each light receiving element and parallel reading of the obtained digital value. The manufacturing cost was high.
[0013] 非特許文献 1 :吉澤徹編「三次元光学 1一光三次元計測」,初版,株式会社新技術コ ミュ-ケーシヨンズ, 1993年 3月, p. 38- 51 [0013] Non-Patent Document 1: Toru Yoshizawa, “Three Dimensional Optics, One Optical Three Dimensional Measurement”, First Edition, New Technology Co., Ltd. The Fusions, March 1993, p. 38- 51
非特許文献 2 :杉山寿伸、外 3名, 「カラー動画撮像と実時間 3次元計測が可能な C MOSセンサー」,社団法人映像情報メディア学会技術報告,社団法人映像情報メ ディア学会, 2002年 3月 18日,第 26卷,第 26号, p. 1—6  Non-Patent Document 2: Toshinobu Sugiyama, 3 others, “C MOS sensor capable of color video imaging and real-time 3D measurement”, The Institute of Image Information and Television Engineers Technical Report, The Institute of Image Information Media, 2002 3 May 18, 26th, 26th, p. 1-6
特許文献 1 :特公平 6— 025653号公報  Patent Document 1: Japanese Patent Publication No. 6-025653
特許文献 2 :特開 2001— 053261号公報  Patent Document 2: JP 2001-053261 A
特許文献 3:特開 2002 - 365022号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-365022
発明の開示  Disclosure of the invention
[0014] 本発明は、比較的簡素な回路構成で対象の三次元形状の計測に用いるデータを 収集できるセンサを提供する。  [0014] The present invention provides a sensor capable of collecting data used for measuring a three-dimensional shape of a target with a relatively simple circuit configuration.
[0015] 本発明に係る三次元計測センサは、光切断法による三次元形状の計算のための 情報を取得するセンサであって、光検出器が行列状に配列されて構成される光検出 器アレイと、光検出器アレイの行ごとに設けられ、対応する行に属する各光検出器の 出力に接続された行信号ラインと、光検出器アレイの光検出器を列単位で選択し、 選択された各光検出器の出力信号をそれぞれ対応する行信号ラインへと出力させる と共に、光切断法のために走査されるスリット光の光検出器アレイ上での像が実質上 静止していると見なせる程度に短い行走査期間の間に、選択する列を行の一方端か ら他方端へと順に切り換える行走査回路と、行信号ラインごとに設けられる受光位置 検出回路であって、行走査期間ごとに、対応する行信号ラインを流れる信号の、その 行走査期間におけるピークを検出し、このピークを検出したタイミングに基づき、その 行走査期間での光検出器アレイの当該行における受光位置の情報を求める受光位 置検出回路と、行走査期間ごとに各受光位置検出回路が求めた受光位置の情報を 出力する出力回路と、を備える。  [0015] A three-dimensional measurement sensor according to the present invention is a sensor that acquires information for calculating a three-dimensional shape by a light cutting method, and is a photodetector configured by arranging photodetectors in a matrix. Select the array and the row signal line provided for each row of the photodetector array and connected to the output of each photodetector belonging to the corresponding row, and the photodetector of the photodetector array by column. The output signal of each of the photodetectors is output to the corresponding row signal line, and the image on the photodetector array of the slit light scanned for the light cutting method is substantially stationary. A row scanning circuit that switches a selected column in order from one end of the row to the other during a row scanning period that is short enough to be considered, and a light receiving position detection circuit that is provided for each row signal line. Each time, the corresponding row signal line flows A light receiving position detection circuit that detects a peak of the signal in the row scanning period and obtains information on a light receiving position in the row of the photodetector array in the row scanning period based on a timing at which the peak is detected; And an output circuit that outputs information on the light receiving position obtained by each light receiving position detection circuit for each scanning period.
[0016] ここで、行走査回路での光検出器の「列単位で」の選択は、 1列ごとに限るものでは なぐ連続する複数の列をまとめて選択するようにしてもょ 、。  Here, the selection of “in units of columns” of the photodetectors in the row scanning circuit is not limited to one column, but a plurality of consecutive columns may be selected together.
[0017] 本発明の 1つの態様では、前記各受光位置検出回路が、対応する前記行信号ライ ン上の信号のピークレベルを保持するピークホールド回路と、該ピークホールド回路 の出力を微分する微分回路と、所定の基準信号を積分する積分回路と、前記微分回 路の出力がオンレベルになった時に前記積分回路が蓄積した電荷を放電させ、前 記微分回路の出力がオフレベルにある間は前記積分回路に電荷を蓄積させる制御 素子と、を備え、前記出力回路は、前記行走査期間完了時の前記積分回路の出力 を前記受光位置の情報として出力する。 In one aspect of the present invention, each light receiving position detection circuit holds a peak hold circuit that holds a peak level of a signal on the corresponding row signal line, and a differential that differentiates an output of the peak hold circuit. A circuit, an integration circuit for integrating a predetermined reference signal, and the differentiation circuit A control element that discharges the charge accumulated in the integration circuit when the output of the circuit is turned on, and accumulates the charge in the integration circuit while the output of the differentiation circuit is at the off level. The output circuit outputs the output of the integrating circuit at the completion of the row scanning period as information on the light receiving position.
[0018] 本発明の別の態様では、前記受光位置検出回路が、対応する前記行信号ライン上 の信号のピークレベルを保持するピークホールド回路と、該ピークホールド回路の出 力を微分する微分回路と、行走査期間の開始力 の経過時刻に応じた信号レベルを 持つ受光位置信号を生成する受光位置信号生成回路と、前記微分回路の出力によ つてトリガされ、トリガの時点における前記受光位置信号をサンプリングして保持する サンプルホールド回路と、を備え、前記出力回路は、前記行走査期間完了時に前記 サンプルホールド回路が保持する信号を、前記受光位置の情報として出力する。  In another aspect of the present invention, the light receiving position detection circuit holds a peak hold circuit that holds the peak level of the signal on the corresponding row signal line, and a differentiation circuit that differentiates the output of the peak hold circuit. And a light receiving position signal generating circuit for generating a light receiving position signal having a signal level corresponding to the elapsed time of the starting force of the row scanning period, and the light receiving position signal at the time of the trigger, triggered by the output of the differentiating circuit. A sample hold circuit that samples and holds the signal, and the output circuit outputs a signal held by the sample hold circuit when the row scanning period is completed as information on the light receiving position.
[0019] 更に別の態様では、三次元計測センサは、計測対象に対するスリット光の投影角度 を求めるための角度カウンタと、行走査期間において各受光位置検出回路が求めた 受光位置の情報と、その行走査期間完了時の前記ピークホールド回路の出力値とを 、その行走査期間における前記角度カウンタのカウント値と対応づけて記憶する記憶 処理部と、を更に備える。  In yet another aspect, the three-dimensional measurement sensor includes an angle counter for obtaining a projection angle of the slit light with respect to the measurement target, information on the light reception position obtained by each light reception position detection circuit during the row scanning period, and A storage processing unit for storing the output value of the peak hold circuit when the row scanning period is completed in association with the count value of the angle counter in the row scanning period;
[0020] この態様の三次元形状センサは、三角法の原理に基づく三次元座標の計算のた めの基礎となるデータとして、角度カウンタの値と受光位置の情報を提供することが できる。更に、このセンサが提供する受光位置の情報とピークホールド回路の出力値 を組み合わせれば、計測対象の輝度分布を示す輝度画像を形成することができる。 図面の簡単な説明  [0020] The three-dimensional shape sensor of this aspect can provide information on the value of the angle counter and the light receiving position as data that is the basis for the calculation of the three-dimensional coordinates based on the principle of trigonometry. Furthermore, by combining the light receiving position information provided by this sensor with the output value of the peak hold circuit, a luminance image showing the luminance distribution of the measurement object can be formed. Brief Description of Drawings
[0021] [図 1]光切断法による三次元形状計測の原理を説明するための図である。 FIG. 1 is a diagram for explaining the principle of three-dimensional shape measurement by a light cutting method.
[図 2]実施形態における三次元計測センサの計測原理を説明するための図である。  FIG. 2 is a diagram for explaining the measurement principle of the three-dimensional measurement sensor in the embodiment.
[図 3]実施形態における三次元計測センサの回路構成例を示す図である。  FIG. 3 is a diagram showing a circuit configuration example of a three-dimensional measurement sensor in the embodiment.
[図 4]ピークホールド回路とタイミング検出回路の回路構成例を示す図である。  FIG. 4 is a diagram showing a circuit configuration example of a peak hold circuit and a timing detection circuit.
[図 5]図 3の回路構成例の各部での信号のタイミングチャートを示す図である。  5 is a diagram showing a timing chart of signals in each part of the circuit configuration example of FIG. 3.
[図 6]実施形態のセンサを用いた三次元形状計測装置のシステム構成例を示す図で ある。 [図 7]三次元計測センサの回路構成の別の例の主要部を示す図である。 FIG. 6 is a diagram showing a system configuration example of a three-dimensional shape measuring apparatus using the sensor of the embodiment. FIG. 7 is a diagram showing a main part of another example of the circuit configuration of the three-dimensional measurement sensor.
[図 8]三次元計測センサの回路構成の更に別の例の主要部を示す図である。  FIG. 8 is a diagram showing a main part of still another example of the circuit configuration of the three-dimensional measurement sensor.
[図 9]三次元計測センサの回路構成の更に別の例の主要部を示す図である。  FIG. 9 is a diagram showing a main part of still another example of the circuit configuration of the three-dimensional measurement sensor.
[図 10]三次元計測センサの回路構成の更に別の例の主要部を示す図である。  FIG. 10 is a diagram showing a main part of still another example of the circuit configuration of the three-dimensional measurement sensor.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、図面を参照しつつ本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023] まず、本発明に係る三次元計測センサが適用される光切断法による三次元形状計 測の原理を、図 1を参照して説明する。  [0023] First, the principle of three-dimensional shape measurement by the light cutting method to which the three-dimensional measurement sensor according to the present invention is applied will be described with reference to FIG.
[0024] 図 1に示すように、光切断法では、レーザ 1及びレンズ系 2等力 なる光源からスリツ ト光 5を発し、そのスリット光 5をポリゴンミラーなどの偏向装置 3などで反射させて対象 物体 4に投影する。これにより対象物体 4の表面がスリット状に照明される。対象物体 4の表面からの反射光は、撮像装置 7のレンズ系で集束され、撮像素子の撮像面 8に 結像する。撮像面 8には、対象物体 4表面のスリット状の被照明部分 6に対応するスリ ット状部分 9のみが明るぐ他の部分は暗くなつた像が形成される。このとき、対象物 体 4上の被照明部分 6上の点の三次元座標は、その点に対応する撮像面 8上のスリ ット状部分 9上の点の二次元位置、光源(レーザ 1)と撮像面 8の位置、及びその時の スリット光 5の投影方向(角度)から三角測量の原理で求められる。そして、偏向装置 3の反射面を回転させることにより、スリット光 5で対象物体 4の表面を一方端力 他方 端へと走査する。原理上、対象物体 4表面のすべての点 (もちろん光学系の構成上 影になる部分は除く)は、この 1回の走査の間に一回だけスリット光により照明される ので、上述の三角測量の原理でその三次元位置を特定できる。  [0024] As shown in Fig. 1, in the light cutting method, slit light 5 is emitted from a laser 1 and a lens system 2 with equal power, and the slit light 5 is reflected by a deflecting device 3 such as a polygon mirror. Target Project onto object 4. Thereby, the surface of the target object 4 is illuminated in a slit shape. The reflected light from the surface of the target object 4 is focused by the lens system of the imaging device 7 and forms an image on the imaging surface 8 of the imaging device. On the imaging surface 8, an image is formed in which only the slit-like portion 9 corresponding to the slit-like illuminated portion 6 on the surface of the target object 4 is bright and the other portions are dark. At this time, the three-dimensional coordinates of the point on the illuminated part 6 on the object 4 are the two-dimensional position of the point on the slit-like part 9 on the imaging surface 8 corresponding to the point, the light source (laser 1 ) And the position of the imaging surface 8 and the projection direction (angle) of the slit light 5 at that time, it is obtained by the principle of triangulation. Then, by rotating the reflecting surface of the deflecting device 3, the surface of the target object 4 is scanned with the slit light 5 to one end force to the other end. In principle, all the points on the surface of the target object 4 (except of course the part that becomes a shadow on the structure of the optical system) are illuminated by the slit light only once during this one scan, so the triangulation mentioned above The three-dimensional position can be specified by the principle of.
[0025] 以上、概略を説明したが、光切断法の原理や大まかなシステム構成については、 上述の各先行技術文献 (特に非特許文献 1)や、井口征治 ·佐藤宏介共著「三次元 画像計測」,初版,昭晃堂, 1990年 11月 20日発行, p36—40 (2. 2. 2 スリット光 投影法)に示されており、周知のものであるので、これ以上の説明は省く。  [0025] Although the outline has been described above, the principle of the optical cutting method and the rough system configuration are described in the above-mentioned prior art documents (especially non-patent document 1), Seiji Iguchi and Kosuke Sato, "Three-dimensional image measurement" “First edition, Shosodo, published on November 20, 1990, p36-40 (2.2.2 Slit light projection method), and is well known, so further explanation is omitted.
[0026] 本実施形態では、この光切断法による三次元形状計測に好適な三次元計測セン サを提供する。本実施形態の計測原理を、図 2を参照して説明する。  In the present embodiment, a three-dimensional measurement sensor suitable for three-dimensional shape measurement by this optical cutting method is provided. The measurement principle of this embodiment will be described with reference to FIG.
[0027] 本実施形態の装置は、撮像面 8上の各画素(光検出器)の位置にスリット光が入射 した時刻のデータを生成する。画素にスリット光が入射した時刻はスリット光の投影角 度を示す。各画素の撮像面 8上での位置及び光源の位置は既知なので、その時刻 が分かれば、その画素に対応する対象物体 4上の点の三次元座標が計算できる。こ の考え方自体は、特許文献 1と同じものである。特許文献 1の方式では、スリット光の 入射を検出してその時刻を保持する回路を画素ごとに設ける点がコストその他の点 で問題であったので、本実施形態ではその点の改善を目指す。 In the apparatus of this embodiment, slit light is incident on the position of each pixel (photodetector) on the imaging surface 8. Data of the specified time is generated. The time when the slit light is incident on the pixel indicates the projection angle of the slit light. Since the position of each pixel on the imaging surface 8 and the position of the light source are known, if the time is known, the three-dimensional coordinates of the point on the target object 4 corresponding to that pixel can be calculated. This concept itself is the same as in Patent Document 1. In the method of Patent Document 1, there is a problem in terms of cost and other points that a circuit for detecting the incidence of slit light and holding the time is provided for each pixel, and this embodiment aims to improve that point.
[0028] 図 2に模式的に示すのは、撮像装置 7の撮像面 8に並んだ光検出器 10 (例えばフ オトダイオード)の行列(アレイ)のうちの 1つの行である。この行に属する各光検出器 10は、共通の信号ライン 12に接続されており、光の検出により生じた検出信号をそ の信号ライン 12に出力する構成となっている。  FIG. 2 schematically shows one row of a matrix (array) of photodetectors 10 (for example, photodiodes) arranged on the imaging surface 8 of the imaging device 7. Each photodetector 10 belonging to this row is connected to a common signal line 12 and is configured to output a detection signal generated by the light detection to the signal line 12.
[0029] ここでは、この行の方向力 光切断法でスリット光を走査する方向と同じであるものと する。すなわちこれは、行の方向がスリット光走査方向と平行になるように撮像装置 7 を設置した場合である。この場合、撮像面 8上のスリット光の像は、撮像面 8の光検出 器 10の行列の各行を横切ることになる。なお、ここでスリット光の走査方向と言ってい るのは、偏向装置 3によるスリット光の走査に応じて撮像装置 7の撮像面に結像される スリット光が移動する方向のことである。  Here, it is assumed that the direction of this row is the same as the direction in which the slit light is scanned by the optical force cutting method. That is, this is a case where the imaging device 7 is installed so that the row direction is parallel to the slit light scanning direction. In this case, the slit light image on the imaging surface 8 crosses each row of the matrix of the photodetectors 10 on the imaging surface 8. Here, the slit light scanning direction refers to the direction in which the slit light imaged on the imaging surface of the imaging device 7 moves in accordance with the slit light scanning by the deflection device 3.
[0030] このような光検出器 10群の並ぶ行に対しある瞬間に入射するスリット光の強度バタ ーンは、例えば図示の入射強度パターン 100のように、 1つの急峻なピークを持った パターンとなる。 1本のスリット光が行を横切っているからである。したがって、スリット 光が静止していると見なせるほどの短い時間の間に、行の読出走査、すなわち、各 光検出器 10の出力を行の一方端力 他方端へと順に 1つずつ信号ライン 12に読み 出す走査を行えば、信号ライン 12には図示のように 1つの大きなピークをもつ出力信 号 200が流れることになる(なお、厳密には、信号を出力する光検出器 10を順に切り 換えていくため信号ライン 12上の出力信号は図示のような滑らかなものとはならない 力 大略的な傾向は図示の通りである)。なお、図示例は、左から右に順に光検出器 10を選択していったときの出力信号 200である。  [0030] The intensity pattern of the slit light incident at a certain moment with respect to the rows in which the groups of the photodetectors 10 are arranged is a pattern having one steep peak, for example, an incident intensity pattern 100 shown in the figure. It becomes. This is because one slit light crosses the line. Therefore, in a short time that the slit light can be considered to be stationary, the readout scan of the row, that is, the output of each photo detector 10 is applied to the one end force of the row in sequence to the other end of the signal line 12 one by one. As shown in the figure, an output signal 200 having one large peak flows through the signal line 12 (strictly speaking, the photodetectors 10 that output signals are sequentially turned off). The output signal on the signal line 12 does not become smooth as shown in the figure because it changes, and the general tendency is as shown in the figure). The illustrated example is an output signal 200 when the photodetector 10 is selected in order from left to right.
[0031] そして、 1回の読出走査 (すなわち水平走査 (或いは行走査))の開始時点力 ピー クまでの時間 A、或いはピークから読出走査の終了時点までの時間 Bを計測すれば 、 1行の中でのピークの位置を求めることができる。 [0031] Then, if the time A from the start point power peak of one reading scan (that is, horizontal scanning (or row scanning)) or the time B from the peak to the end point of the reading scan is measured. The position of the peak in one line can be obtained.
[0032] 1行の読出走査は、水平走査回路 14により行われる。水平走査回路 14は例えばパ ラレル出力のシフトレジスタで構成される。この場合、シフトレジスタのうちの 1段を H ( ハイ)レベル (〃1〃)とし他の段を L (ロー)レベル (〃0〃)として、それをタイミング制御部 1 6から供給されるクロック信号に従って一方端力 他方端へと順にシフトして 、く。そし て、各段の出力により、それぞれ対応する各光検出器 10の出力と信号ライン 12との 間を断続するスィッチを開閉する。なお図示の瞬間は、左から 5番目の光検出器 10 に対応する段のみがハイレベルなので、その 5番目の光検出器 10の出力(0に近い 低いレベルの信号)が信号ライン 12に出力される。  [0032] The readout scanning for one row is performed by the horizontal scanning circuit 14. The horizontal scanning circuit 14 is composed of, for example, a parallel output shift register. In this case, one stage of the shift register is set to H (high) level (〃1〃) and the other stage is set to L (low) level (〃0〃), and this is the clock supplied from the timing control unit 16 According to the signal, one end force is shifted to the other end in order. Then, according to the output of each stage, the switch that intermittently connects between the output of each corresponding photodetector 10 and the signal line 12 is opened and closed. At the moment shown, only the stage corresponding to the fifth photodetector 10 from the left is at the high level, so the output of the fifth photodetector 10 (a low level signal close to 0) is output to the signal line 12. Is done.
[0033] この信号ライン 12上の信号を位置検出部 18で処理することで、その時点でのその 行における入射光のピークの位置を求める。ピーク位置は、例えば、水平走査回路 1 4のシフト動作の基準とするクロック信号をカウンタでカウントし、信号のピークを検出 したタイミングでのそのカウンタのカウント値を取得することにより求めることができる。 カウンタを 1水平走査期間ごとにクリアするようにすれば、カウンタの値は水平走査の 開始時点からピーク検出時点までの時間 Aを示す。なお、ピーク位置の求め方はこ れに限るものではなぐ後で他の例も説明する。  [0033] By processing the signal on the signal line 12 by the position detection unit 18, the position of the peak of the incident light in the row at that time is obtained. The peak position can be obtained, for example, by counting the clock signal used as a reference for the shift operation of the horizontal scanning circuit 14 with a counter and obtaining the count value of the counter at the timing when the signal peak is detected. If the counter is cleared every horizontal scanning period, the counter value indicates the time A from the start of horizontal scanning to the peak detection time. The method for obtaining the peak position is not limited to this, and other examples will be described later.
[0034] 以上のような構成により、行上での入射光のピーク位置が求められる。このピーク位 置を、記録処理部 22が、スリット光の投影角度を求めるためのカウンタ 20のカウント 値と対応づけて記録する。このカウンタ 20は、例えば、水平走査回路 14の 1水平走 查期間ごとに 1つカウントアップし、スリット光の 1回の走査が終了するごとにカウント値 をクリアすればよい。  With the configuration as described above, the peak position of incident light on a row is obtained. The recording processing unit 22 records this peak position in association with the count value of the counter 20 for obtaining the slit light projection angle. For example, the counter 20 may be incremented by one every horizontal scanning period of the horizontal scanning circuit 14, and the count value may be cleared every time scanning of the slit light is completed.
[0035] 以上、 1行の構成を説明した力 この行を複数並べれば、撮像面 8の画素行列(ァ レイ)を構成できる。この場合、水平走査回路 14,タイミング制御部 16,カウンタ 20及 び記録処理部 22はそれら複数の行に対して 1つ設ければよい。  As described above, the force explaining the configuration of one row. If a plurality of rows are arranged, a pixel matrix (array) of the imaging surface 8 can be configured. In this case, one horizontal scanning circuit 14, timing control unit 16, counter 20 and recording processing unit 22 may be provided for the plurality of rows.
[0036] また以上では、 1水平走査期間における処理を説明した力 この処理をスリット光の 走査期間の間繰り返せば、スリット光走査の間に各画素位置に対してスリット光が入 射した時刻のデータを求めることができる。これにより、対象物体 4全体の三次元形状 の計算に必要な基礎データが収集できる。 [0037] なお、以上では、画素行列の行の方向をスリット走査方向に平行にした場合を説明 した力 原理的にはスリット光の像が行列の各行を横切れば上記のデータ収集処理 が実行できるので、平行にする場合力もっとも良好な態様ではあるが、必ずしも平行 でなくてもかまわない。 Further, in the above, the force that explained the processing in one horizontal scanning period If this processing is repeated during the scanning period of the slit light, the time at which the slit light is incident on each pixel position during the slit light scanning is calculated. You can ask for data. Thereby, basic data necessary for calculating the three-dimensional shape of the entire target object 4 can be collected. [0037] Note that, in the above, the description has been given of the case where the row direction of the pixel matrix is parallel to the slit scanning direction. In principle, if the image of the slit light crosses each row of the matrix, the above data collection processing can be executed. Therefore, when it is parallel, the force is the best mode, but it does not have to be parallel.
[0038] また以上では、 1行の中で同時に読み出すのは 1つの光検出器 10のみであつたが 、感度向上等のために隣り合う複数個の光検出器 10の出力を同時に読み出すよう にすることちでさる。  [0038] In the above, only one photodetector 10 is read out simultaneously in one row, but the outputs of a plurality of adjacent photodetectors 10 are read out simultaneously in order to improve sensitivity. I'll do it for you.
[0039] 次に、図 3を参照して、本実施形態の三次元計測センサの回路構成の例を説明す る。図 2の原理構成における構成要素に該当する回路要素には、それぞれ同一の符 号を付す。  Next, an example of the circuit configuration of the three-dimensional measurement sensor of the present embodiment will be described with reference to FIG. Circuit elements corresponding to the components in the principle configuration of Fig. 2 are given the same symbols.
[0040] 図 3に示す回路構成では、画素回路 11が行列状に配列されており、同じ行 (水平ラ イン)に属する複数(図示例では 4個)の画素回路 11は、共通の信号ライン 12に接続 されている。図示は省略するが、画素回路 11は、光検出器 10と、その光検出器 10 の出力と信号ライン 12との間を断続するためのスィッチを備えている。このスィッチは 、水平走査回路 14からアドレスライン 15を介して供給される制御信号に応じ、オン' オフされる。同じ列に属する複数(図示例では 4個)の画素回路 11同士のスィッチは 、共通のアドレスライン 15に接続され、同時にオン'オフされる。水平走査回路 14は 、画素回路 11群の列のうちの 1列(又は連続する所定数の列)のアドレスライン 15に のみオン信号 (例えば Hレベル信号)を供給し、他の列にはオフ信号 (例えば Lレべ ル)の信号を供給する。そして、水平走査回路 14は、オン信号を供給する列を、一方 向(例えば右力も左)に向かって、タイミング制御部 16から与えられるクロック信号に 応じて一定周期ごとに 1列ずつ、シフトしていく。このようなシフト動作により、 1水平走 查期間の間に、行列の一方の行端力 他方の行端までの各列が順に選択されること になる。このような水平走査により、各行の信号ライン 12に対し、それぞれその行に おける入射光の強度ピークの位置を示す図 2に例示したような出力信号が出力され る。  In the circuit configuration shown in FIG. 3, the pixel circuits 11 are arranged in a matrix, and a plurality of (four in the illustrated example) pixel circuits 11 belonging to the same row (horizontal line) are connected to a common signal line. Connected to 12. Although not shown, the pixel circuit 11 includes a photodetector 10 and a switch for switching between the output of the photodetector 10 and the signal line 12. This switch is turned on and off in response to a control signal supplied from the horizontal scanning circuit 14 via the address line 15. The switches of a plurality (four in the illustrated example) of pixel circuits 11 belonging to the same column are connected to a common address line 15 and turned on and off at the same time. The horizontal scanning circuit 14 supplies an ON signal (for example, an H level signal) only to the address line 15 of one column (or a predetermined number of consecutive columns) of the columns of the pixel circuit 11 group, and OFF to the other columns. Supply a signal (eg L level). Then, the horizontal scanning circuit 14 shifts the column to which the ON signal is supplied in one direction (for example, the right force is also to the left) by one column at regular intervals according to the clock signal supplied from the timing control unit 16. To go. By such a shift operation, during one horizontal running period, one row end force of the matrix and each column up to the other row end are selected in order. By such horizontal scanning, an output signal as illustrated in FIG. 2 indicating the position of the intensity peak of incident light in each row is output to the signal line 12 in each row.
[0041] 各信号ライン 12は、それぞれピークホールド回路 30に接続され、ピークホールド回 路 30の出力はタイミング検出回路 32の入力に接続される。これらピークホールド回 路 30及びタイミング検出回路 32の組が、図 2の原理構成における位置検出部 18に 該当する。 Each signal line 12 is connected to the peak hold circuit 30, and the output of the peak hold circuit 30 is connected to the input of the timing detection circuit 32. These peak hold times A set of the path 30 and the timing detection circuit 32 corresponds to the position detection unit 18 in the principle configuration of FIG.
[0042] ピークホールド回路 30は、信号ライン 12から入力される信号のピーク値を保持して 出力する。各ピークホールド回路 30の出力は、それぞれ対応するタイミング検出回 路 32に入力される。タイミング検出回路 32は、ピークホールド回路 30の出力に基づ きピークタイミング信号を生成し、生成したピークタイミング信号から、距離信号を生 成して出力する。距離信号は、当該信号ライン 12に対応する画素の行においてもつ とも明る 、画素 (すなわちスリット光が入射して 、る画素)から、その行の一方の端部( この例では右端)までの距離を示す信号である。  The peak hold circuit 30 holds and outputs the peak value of the signal input from the signal line 12. The output of each peak hold circuit 30 is input to the corresponding timing detection circuit 32. The timing detection circuit 32 generates a peak timing signal based on the output of the peak hold circuit 30, and generates and outputs a distance signal from the generated peak timing signal. The distance signal is the distance from the pixel in the row of pixels corresponding to the signal line 12 (ie, the pixel to which slit light is incident) to one end of the row (in this example, the right end). It is a signal which shows.
[0043] ピークホールド回路 30及びタイミング検出回路 32の回路構成の一例を、図 4を参 照して説明する。  An example of the circuit configuration of the peak hold circuit 30 and the timing detection circuit 32 will be described with reference to FIG.
[0044] 図示例のピークホールド回路 30は、入出力のインピーダンス変換のための 2つのボ ルテージホロワ回路とピーク電圧保持のための容量 C1から構成される、一般的なピ ークホールド回路である。信号ライン 12は、第 1のボルテージホロワ回路を構成する オペアンプ OP 1の非反転入力端子に接続される。オペアンプ OP 1の出力端子は整 流用のダイオード D1のアノードに接続される。ダイオード D1の力ソード側は、ォペア ンプ OP1の反転入力端子に接続され、これにより第 1のボルテージホロワ回路が構 成される。また、ダイオード D1の力ソード側は、第 2のボルテージホロワ回路のォペア ンプ OP2の非反転入力端子に接続される。このダイオード D1のアノード側に接続さ れたオペアンプ OP2の非反転入力端子には、ピーク電圧保持用の容量 C1の一端 が接続され、この容量 C1の他端はグランド端子に接続されている。オペアンプ OP2 の出力端子は、そのオペアンプ OP2自身の反転入力端子に接続され、これにより第 2のボルテージホロワ回路が構成される。このオペアンプ OP2の出力端子からの出 力が、ピークホールド回路 30の出力となる。  The peak hold circuit 30 in the illustrated example is a general peak hold circuit including two voltage follower circuits for impedance conversion of input and output and a capacitor C1 for holding a peak voltage. The signal line 12 is connected to the non-inverting input terminal of the operational amplifier OP 1 constituting the first voltage follower circuit. The output terminal of the operational amplifier OP1 is connected to the anode of the rectifying diode D1. The force sword side of the diode D1 is connected to the inverting input terminal of the operational amplifier OP1, thereby forming a first voltage follower circuit. The force sword side of the diode D1 is connected to the non-inverting input terminal of the op amp OP2 of the second voltage follower circuit. One end of a peak voltage holding capacitor C1 is connected to the non-inverting input terminal of the operational amplifier OP2 connected to the anode side of the diode D1, and the other end of the capacitor C1 is connected to the ground terminal. The output terminal of the operational amplifier OP2 is connected to the inverting input terminal of the operational amplifier OP2 itself, thereby forming a second voltage follower circuit. The output from the output terminal of the operational amplifier OP2 becomes the output of the peak hold circuit 30.
[0045] タイミング検出回路 32は、微分回路 322と距離信号生成回路 324から構成される。 The timing detection circuit 32 includes a differentiation circuit 322 and a distance signal generation circuit 324.
[0046] 微分回路 322は、オペアンプを用いた一般的な微分回路である。微分回路 322を 構成する容量 C2の一方端力 Sピークホールド回路 30の出力に接続され、他方端がォ ぺアンプ OP3の反転入力端子に接続されて 、る。オペアンプ OP3の非反転入力端 子はグランドに接続され、出力端子はそのオペアンプ OP3の反転入力端子に接続さ れている。オペアンプ OP3の出力端子からは、ピークホールド回路 30の出力信号を 微分した信号が出力される。 The differentiation circuit 322 is a general differentiation circuit using an operational amplifier. One end of the capacitor C2 constituting the differentiation circuit 322 is connected to the output of the S peak hold circuit 30 and the other end is connected to the inverting input terminal of the operational amplifier OP3. Non-inverting input terminal of operational amplifier OP3 The child is connected to ground, and the output terminal is connected to the inverting input terminal of the operational amplifier OP3. A signal obtained by differentiating the output signal of the peak hold circuit 30 is output from the output terminal of the operational amplifier OP3.
[0047] 距離信号生成回路 324は、トランジスタ TR1、容量 C3、抵抗 Rl、オペアンプ OP4 力も構成される。例示の回路におけるトランジスタ TR1は NPN型であり、ベースが、 微分回路 322の出力、すなわちオペアンプ OP3の出力端子に接続され、ェミッタが グランドに接続されている。またトランジスタ TR1のコレクタはオペアンプ OP4の非反 転入力端子に接続される。このトランジスタ TR1のコレクタに接続されたオペアンプ O P4の非反転入力端子には抵抗 R1の一端が接続され、抵抗 R1の他端はタイミング 制御部 16の水平走査信号出力端子に接続されている。水平走査信号は、水平走査 期間を示す信号であり、例えば水平走査期間の間 Hレベルとなる信号である。また、 オペアンプ OP4の非反転入力端子には、抵抗 R1を介して入力される水平走査信号 に応じて電荷を蓄積する容量 C3の一端が接続される。容量 C3の他端はグランドに 接続される。オペアンプ OP4の出力端子は、そのオペアンプ OP4自身の反転入力 端子に接続され、ボルテージホロワ回路を構成している。このオペアンプ OP4の出力 端子からの出力信号が、画素の行における入射光のピーク位置力 その行の端部ま での距離を示す距離信号である。  [0047] The distance signal generation circuit 324 also includes a transistor TR1, a capacitor C3, a resistor Rl, and an operational amplifier OP4. The transistor TR1 in the example circuit is an NPN type, the base is connected to the output of the differentiating circuit 322, that is, the output terminal of the operational amplifier OP3, and the emitter is connected to the ground. The collector of transistor TR1 is connected to the non-inverting input terminal of operational amplifier OP4. One end of the resistor R1 is connected to the non-inverting input terminal of the operational amplifier OP4 connected to the collector of the transistor TR1, and the other end of the resistor R1 is connected to the horizontal scanning signal output terminal of the timing controller 16. The horizontal scanning signal is a signal indicating a horizontal scanning period, and is, for example, a signal that becomes H level during the horizontal scanning period. The non-inverting input terminal of the operational amplifier OP4 is connected to one end of a capacitor C3 that accumulates charges according to the horizontal scanning signal input via the resistor R1. The other end of the capacitor C3 is connected to ground. The output terminal of the operational amplifier OP4 is connected to the inverting input terminal of the operational amplifier OP4 itself to form a voltage follower circuit. The output signal from the output terminal of this operational amplifier OP4 is a distance signal indicating the peak position force of incident light in the pixel row and the distance to the end of the row.
[0048] 次に、ピークホールド回路 30とタイミング検出回路 32の動作を、図 5の信号タイミン グチャートを参照しながら説明する。  Next, operations of the peak hold circuit 30 and the timing detection circuit 32 will be described with reference to the signal timing chart of FIG.
[0049] 図 5において、(a)は、タイミング制御部 16から距離信号生成回路 324に供給され る水平走査信号のタイミングチャートである。この水平走査信号は、センサの水平走 查期間の間 Hレベルとなり、その後次の水平走査期間が始まるまではリセットされて L レベルとなる。  In FIG. 5, (a) is a timing chart of the horizontal scanning signal supplied from the timing control unit 16 to the distance signal generation circuit 324. This horizontal scanning signal becomes H level during the horizontal scanning period of the sensor, and is reset and becomes L level until the next horizontal scanning period starts.
[0050] (b)は、ピークホールド回路 30への入力信号、すなわち信号ライン 12上の信号と、 ピークホールド回路 30の出力信号のタイミングチャートである。水平走査により光検 出信号を出力する光検出器 10を順に切り換えていくので、信号ライン 12からの入力 信号は、図に実線で示すようにいくつかのピークを持つ信号となり、入射光のピーク が入射した光検出器 10から信号が出力されるタイミングで最大のピークとなる。ピー クホールド回路 30の出力信号は、破線で示すような信号となる (破線が見えない区 間は、実線と重なっているものと理解されたい)。 (B) is a timing chart of an input signal to the peak hold circuit 30, that is, a signal on the signal line 12, and an output signal of the peak hold circuit 30. Since the photodetectors 10 that output optical detection signals by horizontal scanning are sequentially switched, the input signal from the signal line 12 becomes a signal having several peaks as shown by the solid line in the figure, and the peak of the incident light The maximum peak occurs at the timing when a signal is output from the photodetector 10 where the light is incident. Pea The output signal of the hold circuit 30 is a signal as shown by a broken line (it should be understood that the section where the broken line is not visible overlaps the solid line).
[0051] (c)は、微分回路 322の出力信号のタイミングチャートである。この信号は、(b)に ぉ 、て破線で示したピークホールド出力信号を微分した信号なので、信号ライン 12 力 の入力信号のピーク値がホールドされている期間は Lレベルとなり、ホールドされ た値よりも入力信号のレベルが上がると、 Hレベルとなる。入力信号の最大ピークに 達するまでには何度力レベルの上下がある力 最大ピークを越えた後はその水平走 查期間の最後までずつと Lレベルである。  [0051] (c) is a timing chart of the output signal of the differentiating circuit 322. Since this signal is a signal obtained by differentiating the peak hold output signal indicated by the broken line in (b), the peak value of the input signal on the signal line 12 is held at the L level during the hold period. If the level of the input signal rises more than that, it becomes H level. The force level rises and falls several times before reaching the maximum peak of the input signal. After the maximum peak is exceeded, it is at the L level until the end of the horizontal running period.
[0052] (d)は、距離信号生成回路 324から出力される距離信号のタイミングチャートである 。距離信号は、水平走査信号により容量 C3に蓄積された電荷に応じたレベルの信 号となる。ここで、微分回路 322の出力信号 (以下、微分出力という)が Hレベルにな つてトランジスタ TR1がオン状態になると、容量 C3に蓄積された電荷がトランジスタ T R1を通ってグランドに放電される。したがって、微分出力が Hレベルになるごとに、距 離信号のレベルは最低値 (0)にリセットされる。しかし、信号ライン 12からの入力信号 が最大のピークに到達した以降は、水平走査期間の終わりまで微分出力が Hレベル となることはないので、その間容量 C3には電荷が徐々に蓄積されいき、時間の経過 に従って距離信号のレベルは増大していく。したがって、水平走査期間の終了時点 では、スリット光が入射した光検出器 10の位置力も行の終端位置までの距離(図 2に おける時間 Bに対応)に対応したレベルの距離信号が出力されることになる。  [0052] (d) is a timing chart of the distance signal output from the distance signal generation circuit 324. The distance signal is a signal having a level corresponding to the charge accumulated in the capacitor C3 by the horizontal scanning signal. Here, when the transistor TR1 is turned on when the output signal of the differentiating circuit 322 (hereinafter referred to as differential output) becomes H level, the charge accumulated in the capacitor C3 is discharged to the ground through the transistor TR1. Therefore, every time the differential output becomes H level, the distance signal level is reset to the lowest value (0). However, after the input signal from the signal line 12 reaches the maximum peak, the differential output does not become H level until the end of the horizontal scanning period, so the charge is gradually accumulated in the capacitor C3, The level of the distance signal increases with time. Therefore, at the end of the horizontal scanning period, a distance signal of a level corresponding to the distance to the end position of the row (corresponding to time B in FIG. 2) is also output as the positional force of the photodetector 10 on which the slit light is incident. It will be.
[0053] 再び図 3に戻り、タイミング検出回路 32から出力される距離信号は、 AZD変翻 3 4でデジタルデータに変換される。 AZD変 として、例えば 1行の画素数以上 の分解能を持つビット数のものをもち 、れば、行上でのスリット光の入射位置を画素 単位以上の精度で判別可能なデータに変換できる。  Returning to FIG. 3 again, the distance signal output from the timing detection circuit 32 is converted into digital data by the AZD conversion 34. For example, if the AZD conversion has a bit number having a resolution equal to or higher than the number of pixels in one row, the incident position of the slit light on the row can be converted into data that can be discriminated with an accuracy higher than the pixel unit.
[0054] AZD変換器 34の後段にはラッチ(図示省略)が設けられており、この距離信号を 示すデジタルデータは、水平走査期間の終了のタイミングでそのラッチ回路にラッチ される。これにより、各行の終端のラッチには、水平走査期間の終了時点では、それ ぞれ対応する行における入射光のピーク位置を示す距離信号の大きさを示すデジタ ルデータが保持されることになる。また、次の水平走査期間の開始のタイミングで、そ のラッチの値はクリアされる。このような動作を実現するため、ラッチ回路には、例えば タイミング制御部 16から、水平走査信号が供給され、水平走査信号の立ち下がりタイ ミングで AZD変換器 34の出力をラッチし、立ち上がりタイミングでラッチしたデータ をクリアする。 A latch (not shown) is provided at the subsequent stage of the AZD converter 34, and the digital data indicating the distance signal is latched by the latch circuit at the end timing of the horizontal scanning period. As a result, the latch at the end of each row holds digital data indicating the magnitude of the distance signal indicating the peak position of the incident light in the corresponding row at the end of the horizontal scanning period. In addition, at the start of the next horizontal scanning period, The latch value is cleared. In order to realize such an operation, the horizontal scanning signal is supplied from the timing control unit 16 to the latch circuit, for example, and the output of the AZD converter 34 is latched at the falling timing of the horizontal scanning signal, and at the rising timing. Clear the latched data.
[0055] 図 2に示した記録処理部 22は、水平走査期間の終了後、次の水平走査期間の開 始までに、これら各行のラッチの保持するデータを順にデータ出力ライン 36を介して 読み出す。そして、各行のラッチごとに、そのラッチ力 取得したデータ(これはその 行での入射光のピーク位置、すなわち最高輝度位置を示す)と、その行の番号と、そ の時点でのスリット光投影角度を示すカウンタ 20のカウント値との組合せを、所定の 記憶装置に記憶する。この動作をスリット光 1走査の期間繰り返せば、対象物体 4の 三次元形状を計算するのに必要なデータが揃うことになる。すなわち、水平走査期 間ごとに得られた各行の行番号及び各行の最高輝度位置の組合せに対応する画素 位置 (すなわち何行何列目の画素か)を特定し、その画素位置に対応する画素の値 として、対応するカウント値のデータを採用すればよい。これにより、撮像面の画素ご とにその画素が最高輝度となったときのカウント値 (スリット光の投影角度と等価)を示 す画像(「投影角度画像」と呼ぶ)を生成することができる。後続の処理装置では、こ の投影角度画像と、光源及び撮像装置の既知の配置位置情報に基づき、対象物体 4の三次元形状を計算できる。  The recording processing unit 22 shown in FIG. 2 sequentially reads out the data held by the latches of each row through the data output line 36 after the end of the horizontal scanning period and before the start of the next horizontal scanning period. . Then, for each latch of each row, the data obtained for the latch force (this indicates the peak position of the incident light in that row, that is, the highest luminance position), the number of that row, and the slit light projection at that time The combination with the count value of the counter 20 indicating the angle is stored in a predetermined storage device. If this operation is repeated for one scanning period of slit light, the data necessary to calculate the three-dimensional shape of the target object 4 is obtained. That is, the pixel position corresponding to the combination of the row number of each row obtained for each horizontal scanning period and the highest luminance position of each row (i.e., how many rows and columns) is specified, and the pixel corresponding to that pixel location The corresponding count value data may be adopted as the value of. As a result, it is possible to generate an image (referred to as a “projection angle image”) that indicates a count value (equivalent to the projection angle of the slit light) for each pixel on the imaging surface when that pixel reaches the maximum luminance. . In the subsequent processing device, the three-dimensional shape of the target object 4 can be calculated based on the projection angle image and the known arrangement position information of the light source and the imaging device.
[0056] なお、図 4で説明したピークホールド回路 30とタイミング検出回路 32を備える位置 検出部 18の構成において、ピークホールド回路 30の出力信号は、タイミング検出回 路 32に入力されるだけでなぐそのまま出力して輝度信号として用いることもできる。 この場合、その輝度信号を図示省略した AZD変換器でデジタル値に変換した後、 図示省略したラッチ回路に入力する。すなわち、この場合、距離信号のための AZD 変換器 34及びラッチ回路と同様、輝度信号用の AZD変換器及びラッチ回路を行ご とに設けるのである。ラッチ回路は、水平走査信号の立ち下がりのタイミングで AZD 変^^の出力をラッチし、次の立ち上がりのタイミングでクリアする。記録処理部 22は 、それら各行のラッチ回路の保持するデータ (輝度値)を、水平走査信号がリセットレ ベルにある期間(すなわち水平走査期間終了後から次の水平走査期間の開始まで の期間)に順に読み出し、これを対応する行の番号と、カウンタ 20のカウント値とを対 応づけて所定の記憶装置に記憶する。この動作を、スリット光の走査期間の間繰り返 せば、カウンタ 20のカウント値ごとに、そのカウント値のタイミングでの各行の最高輝 度の値が得られることになる。 Note that in the configuration of the position detection unit 18 including the peak hold circuit 30 and the timing detection circuit 32 described with reference to FIG. 4, the output signal of the peak hold circuit 30 can be simply input to the timing detection circuit 32. It can also be output as it is and used as a luminance signal. In this case, the luminance signal is converted into a digital value by an AZD converter (not shown) and then input to a latch circuit (not shown). That is, in this case, similarly to the AZD converter 34 and the latch circuit for the distance signal, the AZD converter and the latch circuit for the luminance signal are provided for each row. The latch circuit latches the output of the AZD change at the falling edge of the horizontal scanning signal and clears it at the next rising edge. The recording processing unit 22 stores the data (luminance value) held by the latch circuits in each row during a period in which the horizontal scanning signal is at the reset level (that is, from the end of the horizontal scanning period to the start of the next horizontal scanning period. (The period of time), and the corresponding row number and the count value of the counter 20 are stored in a predetermined storage device in association with each other. If this operation is repeated during the scanning period of the slit light, the maximum brightness value of each row at the count value timing is obtained for each count value of the counter 20.
[0057] ここで、前述したように記録処理部 22はカウンタ 20の各カウント値に対応する各行 の距離信号のデータ(すなわち入射光のピーク位置)を記録して 、るので、これから 各カウント値に対応するタイミングにおける各行での最高輝度の位置がわかる。した がって、各カウンタ値のタイミングごと (すなわちスリット光の投影角度ごと)に、そして 行ごとに、最高輝度値とその最高輝度値をとる行上での位置との組み合わせを求め ることができる。したがって、その組合せを、スリット光の走査期間にわたって収集し、 画素行列の各行各列の画素にマッピングすれば、その期間における各画素の最高 輝度カゝらなる画像(「輝度画像」と呼ぶ)を得ることができる。この画像は、(スリット光で はない)通常の光源で対象物体 4を照明したときに得られる画像に近いものになる。  [0057] Here, as described above, the recording processing unit 22 records the distance signal data (that is, the peak position of the incident light) of each row corresponding to each count value of the counter 20, so that each count value will be counted from now on. The position of the highest luminance in each row at the timing corresponding to is known. Therefore, it is possible to obtain a combination of the highest luminance value and the position on the row where the highest luminance value is obtained for each counter value timing (ie, for each projection angle of the slit light) and for each row. it can. Therefore, if the combination is collected over the scanning period of the slit light and mapped to the pixels in each row and each column of the pixel matrix, an image (referred to as a “luminance image”) corresponding to the maximum luminance of each pixel in that period is obtained. Obtainable. This image is close to an image obtained when the target object 4 is illuminated with a normal light source (not slit light).
[0058] なお、以上では、距離信号のデータ値と、輝度信号のデータ値とを、記録処理部 2 2で個別に記録するとして説明したが、これらを併せてカウンタ 20のカウント値に対応 づけて記録するようにすることも好適である。  In the above description, the data value of the distance signal and the data value of the luminance signal have been described as being individually recorded by the recording processing unit 22. However, these are associated with the count value of the counter 20 together. It is also preferable to record them.
[0059] 次に図 6を参照して、本実施形態の三次元計測センサを用いた計測装置の構成例 を説明する。  Next, referring to FIG. 6, a configuration example of a measurement apparatus using the three-dimensional measurement sensor of the present embodiment will be described.
[0060] 図 6の例では、計測装置 100は、計測回路チップ 110,光学系 120,走査 '制御装 置 130,ライン状光源 132,偏向装置 134を備えている。光学系 120は、レンズなど の光学部品からなるシステムであり、対象物体からの反射光を計測センサ 112の撮 像面に結像させる。計測センサ 112は、図 3に例示した回路群、すなわち画素回路 1 1の行列、水平走査回路 14,ピークホールド回路 30,タイミング検出回路 32, A/D 変換器 34及びラッチ回路を備えたセンサである。処理回路 114は、図 2の構成にお けるタイミング制御部 16やカウンタ 20,記録処理部 22の機能と、スリット光の操作制 御のための機能を提供する回路である。処理回路 114は、前述の投影角度画像を( 輝度画像を生成する場合は輝度画像も)後段の画像取り込み装置 200に出力する。  In the example of FIG. 6, the measuring device 100 includes a measuring circuit chip 110, an optical system 120, a scanning control device 130, a line light source 132, and a deflecting device 134. The optical system 120 is a system composed of optical components such as a lens, and forms an image of reflected light from the target object on the imaging surface of the measurement sensor 112. The measurement sensor 112 is a sensor including the circuit group illustrated in FIG. 3, that is, a matrix of pixel circuits 11, a horizontal scanning circuit 14, a peak hold circuit 30, a timing detection circuit 32, an A / D converter 34, and a latch circuit. is there. The processing circuit 114 is a circuit that provides the functions of the timing control unit 16, the counter 20, and the recording processing unit 22 in the configuration of FIG. 2 and the function for controlling the operation of the slit light. The processing circuit 114 outputs the above-described projection angle image (and a luminance image when a luminance image is generated) to the subsequent image capturing device 200.
[0061] これら計測センサ 112や処理回路 114は、それぞれワン'チップに集積することが できる。また計測センサ 112と処理回路 114とをまとめてワン'チップィ匕し、計測回路 チップ 100として構成することもできる。 [0061] These measurement sensor 112 and processing circuit 114 may be integrated on a one-chip. it can. Further, the measurement sensor 112 and the processing circuit 114 can be integrated into one chip, and the measurement circuit chip 100 can be configured.
[0062] 走査'制御装置 130は、スリット光の走査制御を行う回路であり、処理回路 114から 供給される水平走査信号や走査クロック信号などの各種制御信号に応じ、スリット光 を発するライン状光源 132のオン'オフ制御や、偏向装置 134におけるミラーの偏向 角度の制御を行う。 The scanning control device 130 is a circuit that performs scanning control of slit light, and a linear light source that emits slit light in response to various control signals such as a horizontal scanning signal and a scanning clock signal supplied from the processing circuit 114. The on / off control of 132 and the mirror deflection angle in the deflecting device 134 are controlled.
[0063] 画像取り込み装置 200は、処理回路 114から投影角度画像や輝度画像を取得し、 投影角度画像から対象物体 4の三次元形状を計算する。画像取り込み装置 200は、 計算した三次元形状や輝度画像を、付属の表示装置に表示したり、ファイルとして保 存したりすることができる。  The image capturing device 200 acquires a projection angle image and a luminance image from the processing circuit 114, and calculates the three-dimensional shape of the target object 4 from the projection angle image. The image capturing device 200 can display the calculated three-dimensional shape or luminance image on an attached display device or save it as a file.
[0064] 以上、本発明の好適な実施の形態を説明した。以上説明したように、本実施形態 の三次元計測センサは、比較的小さい回路規模で、特許文献 1や非特許文献 2に示 された従来技術と同等の投影角度画像を生成することができる。例えば非特許文献 2の回路構成では、画素ごとに 4フレーム分のフレームメモリと比較回路が必要となる のに対し、本実施形態では、画素の行ごとにピークホールド回路 30,タイミング検出 回路 32, AZD変換回路 34等を設ければ足りるので、非特許文献 2よりも回路規模 を小さくできる。  [0064] The preferred embodiment of the present invention has been described above. As described above, the three-dimensional measurement sensor of the present embodiment can generate a projection angle image equivalent to the prior art disclosed in Patent Document 1 and Non-Patent Document 2 with a relatively small circuit scale. For example, in the circuit configuration of Non-Patent Document 2, a frame memory for 4 frames and a comparison circuit are required for each pixel, whereas in this embodiment, a peak hold circuit 30, a timing detection circuit 32, Since it is sufficient to provide the AZD conversion circuit 34 and the like, the circuit scale can be made smaller than that of Non-Patent Document 2.
[0065] なお、図 3, 4等に示した回路構成はあくまで一例に過ぎず、本発明の範囲内で様 々な変形が可能である。  Note that the circuit configurations shown in FIGS. 3, 4 and the like are merely examples, and various modifications are possible within the scope of the present invention.
[0066] 例えば図 3, 4等に示した構成では、距離信号を生成するのに水平走査信号を積 分したが、これはあくまで一例である。この代替となる構成として図 7及び図 8にそれ ぞれ示す構成がある。 For example, in the configuration shown in FIGS. 3, 4 and the like, the horizontal scanning signal is integrated to generate the distance signal, but this is merely an example. As an alternative configuration, there are configurations shown in FIGS. 7 and 8, respectively.
[0067] 図 7の構成において、波形メモリ 40には、図 4の距離信号生成回路 324で生成され る距離信号の時間波形と同等の波形データを登録されている。登録する波形データ は、水平走査期間内での入射光のピーク位置を求めるためのカウンタのカウンタ値( すなわち水平走査期間の開始力 の経過時間)を横軸にとり、それら各カウンタ値に 対し、そのカウンタ値のタイミングで入射光の最大ピークを検出した場合に水平走査 期間の終了時点において出力される距離信号の値を縦軸の値としてプロットした波 形データである。 In the configuration of FIG. 7, waveform data equivalent to the time waveform of the distance signal generated by the distance signal generation circuit 324 of FIG. For the waveform data to be registered, the counter value for obtaining the peak position of incident light within the horizontal scanning period (that is, the elapsed time of the starting force in the horizontal scanning period) is plotted on the horizontal axis, and each counter value is Waves plotted with the value of the distance signal output at the end of the horizontal scanning period as the value on the vertical axis when the maximum peak of incident light is detected at the timing of the counter value Shape data.
[0068] タイミング制御部 16から発せられる水平走査のクロックに従い、この波形メモリ 40に 登録された距離信号の値が順に出力される。
Figure imgf000018_0001
In accordance with the horizontal scanning clock issued from the timing control unit 16, the value of the distance signal registered in the waveform memory 40 is sequentially output.
Figure imgf000018_0001
よりアナログ信号に変換され、各行のサンプルホールド回路 44に入力される。  The analog signal is converted to an analog signal and input to the sample and hold circuit 44 in each row.
[0069] このサンプルホールド回路 44には、サンプル.ホールド動作を制御するための制御 信号として、ピークタイミング検出信号、すなわち図 4の構成における微分回路 322 の出力信号が与えられる。ここで、微分回路 322の出力は、図 5の(c)に示したように 、信号ライン 12からの入力信号が水平走査期間における最大ピークに達するまでの 間は、小さいピークに応じてレベルの上下を繰り返す力 最大のピークに達した時点 で Hレベル力 Lレベルに立ち下がった以降は水平走査期間の終了時点まで Lレべ ルを維持する。したがって、サンプルホールド回路 44が矩形パルスの立ち下がりに ぉ 、て DZA変翻42から入力される信号をホールドするようにすれば、最終的な 水平走査期間の終了時点では、サンプルホールド回路 44からは、図 4の距離信号 生成回路 324と同じ大きさの距離信号が出力されることになる。  [0069] The sample hold circuit 44 is provided with a peak timing detection signal, that is, an output signal of the differentiating circuit 322 in the configuration of FIG. 4, as a control signal for controlling the sample / hold operation. Here, as shown in FIG. 5 (c), the output of the differentiation circuit 322 has a level corresponding to a small peak until the input signal from the signal line 12 reaches the maximum peak in the horizontal scanning period. Force that repeats up and down When the maximum peak is reached, the H level force After falling to the L level, the L level is maintained until the end of the horizontal scanning period. Therefore, if the sample-and-hold circuit 44 holds the signal input from the DZA conversion 42 at the falling edge of the rectangular pulse, the sample-and-hold circuit 44 starts from the end of the final horizontal scanning period. Thus, a distance signal having the same magnitude as that of the distance signal generation circuit 324 in FIG. 4 is output.
[0070] このように図 7の構成は、図 3及び図 4の構成における距離信号生成回路 324を、 波形メモリ 40, DZA変換器 42,及びサンプルホールド回路 44に代えたものと捉え ることができる。サンプルホールド回路 44以降の構成は図示を省略した力 これは図 3と図 4を用いて説明した上記実施形態と同様の構成でよい。このような構成でも図 3 及び図 4と同様の処理が実行可能なことは了解されるであろう。  As described above, the configuration of FIG. 7 can be regarded as a configuration in which the distance signal generation circuit 324 in the configurations of FIGS. 3 and 4 is replaced with the waveform memory 40, the DZA converter 42, and the sample hold circuit 44. it can. The structure after the sample hold circuit 44 is omitted in illustration. This may be the same structure as that of the above embodiment described with reference to FIGS. It will be understood that processing similar to that in FIGS. 3 and 4 can be performed with such a configuration.
[0071] 図 7は波形メモリ 40から読み出した距離信号のレベル値をいつたんアナログ信号に 変換しサンプルホールド回路 44にてホールドしたが、図 8の構成は距離 (すなわち入 射光のピーク位置)をデジタル値のまま処理するものである。  In FIG. 7, the level value of the distance signal read from the waveform memory 40 is converted into an analog signal and held by the sample hold circuit 44. The configuration of FIG. 8 shows the distance (that is, the peak position of incident light). The digital value is processed.
[0072] 図 8の構成では、図 3及び図 4の構成における距離信号生成回路 324, AZD変換 器 34及びラッチ回路(図示省略)に代えて、カウンタ 50,ルックアップテーブル (LUT ) 52,及びデジタルメモリ 54が設けられている。  In the configuration of FIG. 8, instead of the distance signal generation circuit 324, the AZD converter 34, and the latch circuit (not shown) in the configurations of FIGS. 3 and 4, a counter 50, a lookup table (LUT) 52, and A digital memory 54 is provided.
[0073] 図 8の構成において、カウンタ 50は、水平走査期間の開始時にリセットされ、タイミ ング制御部 16から供給される水平走査のためのクロック信号をカウントアップする。こ のカウンタ 50のカウント値は水平走査期間の開始時点から入射光のピークの検出時 点までの時間を示し、これは原理的には、画素行列の行の走査開始側の端から、そ の行における入射光のピークの位置までの距離に比例する。したがって、原理的に は、カウンタ 50のカウント値を、ピークタイミング検出信号、すなわち微分回路 322の 出力、の立ち下がりのタイミングでデジタルメモリ 54にラッチすれば、信号ライン 12か らの入力信号の最大のピークまでの小さなピークに対応する微分出力の上下で何度 かデジタルメモリ 54に保持されるカウンタ値は更新される可能性はあるものの、最大 のピーク以降は更新されないので、水平走査期間の終了時点では、その行における 入射光のピーク位置を原理的に示すカウンタ値がデジタルメモリ 54に保持されてい ることになる。したがって、水平走査期間の終了時点で各行のデジタルメモリ 54が保 持する値を読み出せば、その期間における各行の最高輝度位置の情報を得ることが できる。 In the configuration of FIG. 8, the counter 50 is reset at the start of the horizontal scanning period, and counts up the clock signal for horizontal scanning supplied from the timing control unit 16. The count value of this counter 50 is from the start of the horizontal scanning period to when the peak of incident light is detected. Indicates the time to a point, which is in principle proportional to the distance from the scanning start end of the row of the pixel matrix to the position of the peak of incident light in that row. Therefore, in principle, if the count value of the counter 50 is latched in the digital memory 54 at the fall timing of the peak timing detection signal, that is, the output of the differentiating circuit 322, the maximum input signal from the signal line 12 is obtained. Although the counter value held in the digital memory 54 may be updated several times above and below the differential output corresponding to the small peak up to the peak of, the end of the horizontal scanning period is not updated after the maximum peak. At that time, the counter value indicating the peak position of the incident light in the row in principle is held in the digital memory 54. Therefore, by reading the value held in the digital memory 54 of each row at the end of the horizontal scanning period, information on the highest luminance position of each row in that period can be obtained.
[0074] ただし、水平走査期間の開始時点力 の入射光のピーク検出時点までの経過時間 と、行の走査開始側端部から入射光のピーク位置までの距離とは必ずしも比例する とは限らない。また、その経過時間と距離との関係に計測センサごとの個体差ができ ることも考えられる。そこで、図 8の例では、そのような経過時間と距離との関係の非 線形性や個体差を吸収すベぐ LUT52を設けている。 LUT52には、カウンタ 50の カウント値に対応する「行の走査開始側端部カゝら入射光のピーク位置までの距離」の 値が登録されている。 LUT52は、カウンタ 50から入力されるカウント値に対応する距 離の値を出力する。この距離の値力 ピークタイミング検出信号の立ち下がりのタイミ ングでデジタルメモリ 54にラッチされるわけである。このように LUT52を用いることで 、より正確なピーク位置の情報を求めることができる。  [0074] However, the elapsed time from the start point of the horizontal scanning period to the peak detection point of the incident light is not necessarily proportional to the distance from the scanning start side end of the row to the peak position of the incident light. . In addition, there may be individual differences for each measurement sensor in the relationship between the elapsed time and distance. Therefore, in the example of FIG. 8, a LUT 52 is provided to absorb such nonlinearity and individual differences in the relationship between elapsed time and distance. In the LUT 52, a value of “distance from the scanning start side edge of the row to the peak position of the incident light” corresponding to the count value of the counter 50 is registered. The LUT 52 outputs a distance value corresponding to the count value input from the counter 50. The value of this distance is latched in the digital memory 54 at the falling timing of the peak timing detection signal. By using the LUT 52 in this way, more accurate peak position information can be obtained.
[0075] このような構成でも図 3及び図 4と同様の処理が実行可能なことは了解されるであろ  [0075] It will be understood that processing similar to that in FIGS. 3 and 4 can be performed with such a configuration.
[0076] なお、上述のように LUT52を用いることにより個体差等を校正する効果が得られる 力 図 7の構成でも、波形メモリ 40に登録する波形データを調整することで同様の校 正効果を得ることができる。また、図 3及び図 4のセンサ構成では、三角法に基づく座 標演算を行う後段の演算装置に距離信号の値と実際のピーク位置との関係を示す ルックアップテーブルを持たせ、 AZD変^ ^34でデジタル化されたデータを、その 演算装置で補正してから座標演算を行うようにすれば、同様の校正が可能である。 [0076] Note that the effect of calibrating individual differences and the like can be obtained by using the LUT 52 as described above. Even in the configuration of Fig. 7, the same calibration effect can be obtained by adjusting the waveform data registered in the waveform memory 40. Obtainable. In the sensor configuration in Figs. 3 and 4, the subsequent calculation unit that performs coordinate calculation based on trigonometry is provided with a lookup table that shows the relationship between the distance signal value and the actual peak position. ^ 34 digitized data If the coordinate calculation is performed after the correction by the calculation device, the same calibration is possible.
[0077] 図 9に、更に別の回路構成の例を示す。図 9において、図 3と同じ構成要素には同 一符号を付し、詳細な説明は省略する。  FIG. 9 shows still another example of the circuit configuration. In FIG. 9, the same components as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0078] 図 9の回路構成において、タイミング制御.水平走査部 14aは、図 3の回路構成に おける水平走査回路 14とタイミング制御部 16とを合わせたものであり、図示の都合 上、このようにまとめて表示した。 In the circuit configuration of FIG. 9, the timing control horizontal scanning unit 14a is a combination of the horizontal scanning circuit 14 and the timing control unit 16 in the circuit configuration of FIG. Are displayed together.
[0079] 図 9の構成は、図 3の構成におけるピークホールド回路 30,タイミング検出回路 32[0079] The configuration of FIG. 9 includes the peak hold circuit 30, the timing detection circuit 32 in the configuration of FIG.
, AZD変換器 34及びデータラッチの代わりに、 AZD変換器 60,データラッチ 62, コンパレータ 64,データメモリ 66,カウンタ回路 68を備える。このうち A/D変換器 60, An AZD converter 60, a data latch 62, a comparator 64, a data memory 66, and a counter circuit 68 are provided instead of the AZD converter 34 and the data latch. Of these, A / D converter 60
,データラッチ 62,コンパレータ 64及びデータメモリ 66は、各信号ライン 12に対して, Data latch 62, comparator 64 and data memory 66 for each signal line 12.
1つずつ設けられる。 One by one.
[0080] AZD変換器 60は、信号ライン 12を流れる信号を、所定のサンプルタイミングごと にサンプリングし、デジタル値に変換して出力する。 AZD変翻60の出力は、コン パレータ 64とデータラッチ 62に入力される。コンパレータ 64は、 A/D変^^ 60の 出力と、データラッチ 62から供給されるデジタル値とを比較する。そして、比較の結 果前者が後者より大きければ Hレベルの信号を、前者が後者より小さければ Lレベル の信号を出力する。データラッチ 62は、コンパレータ 64から Hレベルの信号が入力さ れた場合、そのとき AZD変翻60から供給されているデジタル値をラッチする。ま た、コンパレータ 64力 Lレベルの信号が入力されているときは、データラッチ 62は、 以前から保持しているデジタル値を保持し続ける。またデータラッチ 62は、 1水平走 查期間の終了後、次の 1水平走査期間が始まるまでの間にリセットされる。このような データラッチ 62の動作によれば、 1水平走査期間内のある時点では、データラッチ 6 2には、そのラッチ 62に対応する信号ライン 12を流れた信号のその時点まで (より厳 密にはその時点の直前のサンプルタイミング以前)の最大値が保持されることになる 。コンパレータ 64は、データラッチ 62が保持するその最大値と、現サンプルタイミング での信号ライン 12上の信号の値とを比較するのである。したがって、コンパレータ 64 力らは、図 5の(c)の微分出力とほぼ同様の信号が出力されることになる。  [0080] The AZD converter 60 samples the signal flowing through the signal line 12 at every predetermined sample timing, converts it into a digital value, and outputs it. The output of the AZD translation 60 is input to the comparator 64 and the data latch 62. The comparator 64 compares the output of the A / D converter 60 with the digital value supplied from the data latch 62. As a result of comparison, if the former is greater than the latter, an H level signal is output. If the former is smaller than the latter, an L level signal is output. When an H level signal is input from the comparator 64, the data latch 62 latches the digital value supplied from the AZD conversion 60 at that time. In addition, when the comparator 64 force L level signal is input, the data latch 62 continues to hold the previously held digital value. The data latch 62 is reset after the end of one horizontal scanning period and before the start of the next horizontal scanning period. According to such an operation of the data latch 62, at a certain point in time in one horizontal scanning period, the data latch 62 is informed until the point of the signal flowing through the signal line 12 corresponding to the latch 62 (more strictly). Holds the maximum value (before the immediately preceding sample timing). Comparator 64 compares the maximum value held by data latch 62 with the value of the signal on signal line 12 at the current sample timing. Therefore, the comparator 64 outputs a signal that is almost the same as the differential output of FIG. 5C.
[0081] カウンタ回路 68は、 1水平走査期間の開始から終了まで、一定間隔でカウント値を カウントアップしていく。カウント値のカウント間隔は、 1ライン上の個々の画素回路 11 を識別出来る時間間隔 (すなわち水平走査期間を 1ラインの画素数で割った時間)よ り短い期間とする。カウンタ回路 68のカウント値は、 1水平走査期間の終了から次の 1 水平走査期間の開始までの間に、タイミング制御,水平走査部 14aから入力されるタ イミング信号に応じてリセットされる。したがって、カウンタ回路 68が出力するカウント 値は、 1ライン上での水平方向位置を示した値となる。カウンタ回路 68のカウント値は 、各信号ライン 12に対応するデータメモリ 66に供給されている。データメモリ 66は、 そのカウント値を、コンパレータ 64から入力される信号の立ち下がりのタイミングでラ ツチする。 [0081] The counter circuit 68 counts the count values at regular intervals from the start to the end of one horizontal scanning period. Count up. The count interval of the count value is a period shorter than the time interval (that is, the time obtained by dividing the horizontal scanning period by the number of pixels in one line) that can identify individual pixel circuits 11 on one line. The count value of the counter circuit 68 is reset in accordance with timing control and a timing signal input from the horizontal scanning unit 14a between the end of one horizontal scanning period and the start of the next one horizontal scanning period. Therefore, the count value output from the counter circuit 68 is a value indicating the horizontal position on one line. The count value of the counter circuit 68 is supplied to the data memory 66 corresponding to each signal line 12. The data memory 66 latches the count value at the falling timing of the signal input from the comparator 64.
[0082] このような回路構成によれば、 1水平走査期間終了時点では、各データメモリ 66に は、それぞれ対応する信号ライン 12上でのスリット光の入射位置に相当するカウント 値が保持されること〖こなる。以降の処理は、図 3の構成と同じでよい。  According to such a circuit configuration, at the end of one horizontal scanning period, each data memory 66 holds a count value corresponding to the incident position of the slit light on the corresponding signal line 12. That's true. The subsequent processing may be the same as that shown in FIG.
[0083] この回路構成でも、図 3, 7, 8の構成と同様に、三次元形状の情報を求めることが できる。  [0083] With this circuit configuration as well, the information of the three-dimensional shape can be obtained as in the configurations of FIGS.
[0084] 更に別の回路構成を図 10に示す。図 10において、図 9に示した要素に相当する 要素には同一符号を付して詳細な説明を省略する。  FIG. 10 shows still another circuit configuration. In FIG. 10, elements corresponding to the elements shown in FIG.
[0085] 上記図 9の回路構成では、各信号ライン 12の信号を AZD変換器 60でデジタルィ匕 し、コンパレータ 64で比較していた力 この図 10の回路構成では、その比較をアナ口 グで実行する。以下詳細に説明する。  In the circuit configuration of FIG. 9 above, the power of the signal line 12 digitalized by the AZD converter 60 and compared by the comparator 64 In the circuit configuration of FIG. 10, the comparison is analyzed. Run with. This will be described in detail below.
[0086] 信号ライン 12を流れる信号は、コンパレータ 72とラッチ 70に入力される。コンパレ ータ 72は、信号ライン 12上の信号と、ラッチ 70から供給される信号とを比較し、比較 の結果前者が後者より大きければ Hレベルの信号を、前者が後者より小さければ Lレ ベルの信号を出力する。ラッチ 70は、コンパレータ 72から Hレベルの信号が入力さ れた場合、そのとき信号ライン 12から供給されている信号を保持する。このようなラッ チ 70はサンプル 'ホールド回路として構成することができ、コンパレータ 72の出力が この回路に対するサンプル動作を指示するトリガ信号となる。また、コンパレータ 72か ら Lレベルの信号が入力されているときは、ラッチ 70は、以前力 保持している信号 レベルを保持し続け、その信号をコンパレータ 72に供給する。またラッチ 70は、 1水 平走査期間の終了後、次の 1水平走査期間が始まるまでの間にリセットされる。 A signal flowing through the signal line 12 is input to the comparator 72 and the latch 70. The comparator 72 compares the signal on the signal line 12 with the signal supplied from the latch 70. If the former is larger than the latter as a result of the comparison, the comparator 72 compares the signal at the H level, and if the former is smaller than the latter, the comparator 72 compares the signal at the L level. The signal is output. When an H level signal is input from the comparator 72, the latch 70 holds the signal supplied from the signal line 12 at that time. Such a latch 70 can be configured as a sample and hold circuit, and the output of the comparator 72 serves as a trigger signal for instructing the sample operation for this circuit. When an L level signal is input from the comparator 72, the latch 70 continues to hold the signal level previously held and supplies the signal to the comparator 72. Also, latch 70 has 1 water It is reset after the end of the horizontal scanning period and before the start of the next horizontal scanning period.
[0087] このような回路構成でも、図 9の回路構成におけるコンパレータ 64の出力と同様の 信号をコンパレータ 72からデータメモリ 66に供給することができる。したがって、図 9 と同様、 1水平走査期間終了時点では、各データメモリ 66には、それぞれ対応する 信号ライン 12上でのスリット光の入射位置に相当するカウント値が保持されることにな る。以降の処理は、図 3の構成と同じでよい。したがって、この回路構成でも、図 3, 7 , 8, 9の構成と同様に、三次元形状の情報を求めることができる。 Even with such a circuit configuration, a signal similar to the output of the comparator 64 in the circuit configuration of FIG. 9 can be supplied from the comparator 72 to the data memory 66. Therefore, as in FIG. 9, at the end of one horizontal scanning period, each data memory 66 holds a count value corresponding to the incident position of the slit light on the corresponding signal line 12. The subsequent processing may be the same as that shown in FIG. Therefore, with this circuit configuration as well, the information of the three-dimensional shape can be obtained in the same manner as the configurations of FIGS.
[0088] 以上説明したように、本発明に各実施形態によれば、非特許文献 2や特許文献 1に 示された回路構成よりも簡素な回路構成で、同等のデータを獲得することができる三 次元形状計測センサ、及びこれを用いた計測装置を提供することができる。 As described above, according to each embodiment of the present invention, equivalent data can be obtained with a simpler circuit configuration than the circuit configurations shown in Non-Patent Document 2 and Patent Document 1. A three-dimensional shape measurement sensor and a measurement apparatus using the same can be provided.

Claims

請求の範囲 The scope of the claims
[1] 光切断法による三次元形状の計算のための情報を取得するセンサであって、 光検出器が行列状に配列されて構成される光検出器アレイと、  [1] A sensor for obtaining information for calculating a three-dimensional shape by a light section method, a photodetector array configured by arranging photodetectors in a matrix,
光検出器アレイの行ごとに設けられ、対応する行に属する光検出器の出力に接続 された行信号ラインと、  A row signal line provided for each row of the photodetector array and connected to the output of the photodetector belonging to the corresponding row;
光検出器アレイの光検出器を列単位で選択し、選択された各光検出器の出力信号 をそれぞれ対応する行信号ラインへと出力させると共に、光切断法のために走査され るスリット光の光検出器アレイ上での像が実質上静止して 、ると見なせる程度に短 ヽ 行走査期間の間に、選択する列を行の一方端から他方端へと順に切り換える行走査 回路と、  The photodetectors of the photodetector array are selected in units of columns, the output signals of the selected photodetectors are output to the corresponding row signal lines, and the slit light to be scanned for the optical cutting method is selected. A row scanning circuit that sequentially switches a selected column from one end of the row to the other during a short row scanning period such that the image on the photodetector array can be considered substantially stationary;
行信号ラインごとに設けられる受光位置検出回路であって、行走査期間ごとに、対 応する行信号ラインを流れる信号の、その行走査期間におけるピークを検出し、この ピークを検出したタイミングに基づき、その行走査期間での光検出器アレイの当該行 における受光位置の情報を求める受光位置検出回路と、  A light receiving position detection circuit provided for each row signal line, and for each row scanning period, detects a peak in the row scanning period of a signal flowing through the corresponding row signal line, and based on the timing at which this peak is detected. A light receiving position detection circuit for obtaining information of the light receiving position in the row of the photodetector array in the row scanning period;
行走査期間ごとに各受光位置検出回路が求めた受光位置の情報を出力する出力 回路と、  An output circuit that outputs information on the light receiving position obtained by each light receiving position detection circuit for each row scanning period; and
を備える三次元計測センサ。  A three-dimensional measuring sensor.
[2] 前記行走査回路の動作基準であるクロック信号をカウントするカウンタを更に備え、 前記各受光位置検出回路が、前記ピークを検出したタイミングにおける前記カウン タのカウント値を前記受光位置の情報として出力する、  [2] The counter further includes a counter that counts a clock signal that is an operation reference of the row scanning circuit, and each light receiving position detection circuit uses the count value of the counter at the timing when the peak is detected as information on the light receiving position. Output,
請求項 1記載の三次元計測センサ。  The three-dimensional measurement sensor according to claim 1.
[3] 前記行走査回路の動作基準であるクロック信号をカウントするカウンタと、 [3] a counter that counts a clock signal that is an operation reference of the row scanning circuit;
前記カウンタのカウント値に対応する受光位置の情報を記憶したルックアップテー ブルと、  A look-up table storing information on the light receiving position corresponding to the count value of the counter;
を更に備え、  Further comprising
前記各受光位置検出回路は、前記カウンタのカウント値に対応する受光位置の情 報を前記ルックアップテーブル力も読み出して出力する、  Each of the light receiving position detection circuits reads out and outputs the information of the light receiving position corresponding to the count value of the counter as well as the lookup table force.
請求項 1記載の三次元計測センサ。 The three-dimensional measurement sensor according to claim 1.
[4] 前記各受光位置検出回路が、前記ピークを検出したタイミングに基づき、前記受光 位置に対応する信号レベルを有する信号を前記受信位置の情報として生成する、請 求項 1記載の三次元計測センサ。 [4] The three-dimensional measurement according to claim 1, wherein each of the light reception position detection circuits generates a signal having a signal level corresponding to the light reception position as information on the reception position based on the timing at which the peak is detected. Sensor.
[5] 前記各受光位置検出回路が、  [5] Each of the light receiving position detection circuits
対応する前記行信号ライン上の信号のピークレベルを保持するピークホールド回 路と、  A peak hold circuit for holding the peak level of the signal on the corresponding row signal line;
該ピークホールド回路の出力を微分する微分回路と、  A differentiating circuit for differentiating the output of the peak hold circuit;
所定の基準信号を積分する積分回路と、  An integrating circuit for integrating a predetermined reference signal;
前記微分回路の出力がオンレベルになった時に前記積分回路が蓄積した電荷を 放電させ、前記微分回路の出力がオフレベルにある間は前記積分回路に電荷を蓄 積させる制御素子と、  A control element that discharges the charge accumulated in the integrating circuit when the output of the differentiating circuit is turned on, and accumulates charge in the integrating circuit while the output of the differentiating circuit is at the off level;
を備え、前記出力回路は、前記行走査期間完了時の前記積分回路の出力を前記 受光位置の情報として出力する、請求項 4記載の三次元計測センサ。  5. The three-dimensional measurement sensor according to claim 4, wherein the output circuit outputs an output of the integrating circuit when the row scanning period is completed as information on the light receiving position.
[6] 前記受光位置検出回路が、 [6] The light receiving position detection circuit
対応する前記行信号ライン上の信号のピークレベルを保持するピークホールド回 路と、  A peak hold circuit for holding the peak level of the signal on the corresponding row signal line;
該ピークホールド回路の出力を微分する微分回路と、  A differentiating circuit for differentiating the output of the peak hold circuit;
行走査期間の開始からの経過時刻に応じた信号レベルを持つ受光位置信号を生 成する受光位置信号生成回路と、  A light receiving position signal generation circuit for generating a light receiving position signal having a signal level corresponding to the elapsed time from the start of the row scanning period;
前記微分回路の出力によってトリガされ、トリガの時点における前記受光位置信号 をサンプリングして保持するサンプルホールド回路と、  A sample and hold circuit that is triggered by the output of the differentiating circuit and samples and holds the light receiving position signal at the time of the trigger;
を備え、前記出力回路は、前記行走査期間完了時に前記サンプルホールド回路が 保持する信号を、前記受光位置の情報として出力する、請求項 4記載の三次元計測 センサ。  5. The three-dimensional measurement sensor according to claim 4, wherein the output circuit outputs a signal held by the sample hold circuit when the row scanning period is completed as information on the light receiving position.
[7] 計測対象に対するスリット光の投影角度を求めるための角度カウンタと、  [7] An angle counter for obtaining the projection angle of the slit light on the measurement target;
行走査期間において各受光位置検出回路が求めた受光位置の情報を、その行走 查期間における前記角度カウンタのカウント値と対応づけて記憶する記憶処理部と、 を更に備える請求項 1に記載の三次元計測センサ。 計測対象に対するスリット光の投影角度を求めるための角度カウンタと、 行走査期間において各受光位置検出回路が求めた受光位置の情報と、その行走 查期間完了時の前記ピークホールド回路の出力とを、その行走査期間における前記 角度カウンタのカウント値と対応づけて記憶する記憶処理部と、 The tertiary processing according to claim 1, further comprising: a storage processing unit that stores light reception position information obtained by each light reception position detection circuit in a row scanning period in association with a count value of the angle counter in the row scanning period. Former measuring sensor. An angle counter for obtaining the projection angle of the slit light with respect to the measurement target, information on the light receiving position obtained by each light receiving position detection circuit during the row scanning period, and an output of the peak hold circuit when the row running period is completed, A storage processing unit for storing in association with the count value of the angle counter in the row scanning period;
を更に備える請求項 5又は 6に記載の三次元計測センサ。  The three-dimensional measurement sensor according to claim 5 or 6, further comprising:
PCT/JP2005/018889 2004-10-15 2005-10-13 3d measurement sensor WO2006041140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/665,417 US7560680B2 (en) 2004-10-15 2005-10-13 3D measurement sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004302215A JP3774225B2 (en) 2004-10-15 2004-10-15 3D measurement sensor
JP2004-302215 2004-10-15

Publications (1)

Publication Number Publication Date
WO2006041140A1 true WO2006041140A1 (en) 2006-04-20

Family

ID=36148427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018889 WO2006041140A1 (en) 2004-10-15 2005-10-13 3d measurement sensor

Country Status (3)

Country Link
US (1) US7560680B2 (en)
JP (1) JP3774225B2 (en)
WO (1) WO2006041140A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135388A1 (en) * 2022-12-21 2024-06-27 パナソニックIpマネジメント株式会社 Detection circuit and image generation device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042194B2 (en) 2008-10-27 2012-10-03 インターナショナル・ビジネス・マシーンズ・コーポレーション Apparatus and method for updating speaker template
US8254725B2 (en) * 2009-07-28 2012-08-28 Ncr Corporation Apparatus, method and system for elongating pixel data
TWI488485B (en) * 2011-05-03 2015-06-11 Au Optronics Corp Three-dimensional image synthesis method and three-dimensional image synthesis circuit applying the same method
US9049433B1 (en) 2012-01-06 2015-06-02 John H. Prince High-speed railroad inspection using coordinated 3D cameras
JP5956411B2 (en) 2013-04-01 2016-07-27 株式会社神戸製鋼所 Shape measuring device
WO2015059514A1 (en) * 2013-10-21 2015-04-30 Freescale Semiconductor, Inc. Signal processing unit and method for searching for peaks in a two-dimensional matrix
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
US10036801B2 (en) 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
US9866816B2 (en) 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis
JP7279469B2 (en) * 2019-03-28 2023-05-23 セイコーエプソン株式会社 Three-dimensional measuring device and robot system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160050A (en) * 1997-11-27 1999-06-18 Suzuki Motor Corp Measurement device for three-dimensional shape
JP2002365022A (en) * 2001-06-05 2002-12-18 Hamamatsu Photonics Kk Image measuring camera

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625653A (en) 1992-07-09 1994-02-01 Akebono Brake Res & Dev Center Ltd Paper friction material
US6323942B1 (en) 1999-04-30 2001-11-27 Canesta, Inc. CMOS-compatible three-dimensional image sensor IC
JP2001053261A (en) 1999-08-11 2001-02-23 Sony Corp Three-dimensional measurement device and solid-state image sensing element used for it
JP2001304962A (en) * 2000-04-26 2001-10-31 Sony Corp Optical detecting device and range finding device using it
JP4730928B2 (en) 2001-06-05 2011-07-20 浜松ホトニクス株式会社 Image measurement camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160050A (en) * 1997-11-27 1999-06-18 Suzuki Motor Corp Measurement device for three-dimensional shape
JP2002365022A (en) * 2001-06-05 2002-12-18 Hamamatsu Photonics Kk Image measuring camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135388A1 (en) * 2022-12-21 2024-06-27 パナソニックIpマネジメント株式会社 Detection circuit and image generation device

Also Published As

Publication number Publication date
JP2006112978A (en) 2006-04-27
US7560680B2 (en) 2009-07-14
JP3774225B2 (en) 2006-05-10
US20090045326A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2006041140A1 (en) 3d measurement sensor
JP6899005B2 (en) Photodetection ranging sensor
CN110596721B (en) Flight time distance measuring system and method of double-shared TDC circuit
US5677522A (en) Method and apparatus for non-contact reading of a relief pattern
US20200217965A1 (en) High dynamic range direct time of flight sensor with signal-dependent effective readout rate
US8878978B2 (en) Dimensioning system
JP4578686B2 (en) 3D camera
CN110308451B (en) Dual mode stacked photomultiplier suitable for remote time-of-flight applications
CN110596725A (en) Time-of-flight measurement method and system based on interpolation
CN107238727B (en) Photoelectric type rotation speed sensor based on dynamic vision sensor chip and detection method
CN110596723A (en) Method and system for measuring flight time distance during dynamic histogram drawing
KR20170057110A (en) Image apparatus and operation method thereof
WO2001069169A1 (en) Displacement sensor
CN112740065B (en) Imaging device, method for imaging and method for depth mapping
CA1298380C (en) Method and system for increasing the effective dynamic range of a photosensor
US20220244391A1 (en) Time-of-flight depth sensing with improved linearity
WO2021112763A1 (en) Time of flight sensing method
JP5520562B2 (en) Three-dimensional shape measuring system and three-dimensional shape measuring method
JP2022021296A (en) Light detection system
CN116481488A (en) Laser triangulation ranging device and method based on single photon avalanche diode
Yokoyama et al. Realtime range imaging using adjustment-free photo-VLSI-silicon range finder
US20190128732A1 (en) Optical sensor and detection method
US5892985A (en) Eye ball detecting device
JP2021025810A (en) Distance image sensor, and distance image measurement device
CN112526528B (en) Photodetector and distance measuring device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11665417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793203

Country of ref document: EP

Kind code of ref document: A1