WO2006038617A1 - Metal mold for hollow molding - Google Patents

Metal mold for hollow molding Download PDF

Info

Publication number
WO2006038617A1
WO2006038617A1 PCT/JP2005/018352 JP2005018352W WO2006038617A1 WO 2006038617 A1 WO2006038617 A1 WO 2006038617A1 JP 2005018352 W JP2005018352 W JP 2005018352W WO 2006038617 A1 WO2006038617 A1 WO 2006038617A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
mold
coating
surface treatment
molding
Prior art date
Application number
PCT/JP2005/018352
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Suzuki
Original Assignee
Suzuka Fuji Xerox Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuka Fuji Xerox Co., Ltd. filed Critical Suzuka Fuji Xerox Co., Ltd.
Publication of WO2006038617A1 publication Critical patent/WO2006038617A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Definitions

  • the present invention relates to a hollow molding die for producing a hollow molded product by injecting (pressing) a pressurized fluid into a molten resin injected into a mold cavity and cooling it.
  • gas assist molding which is a kind of hollow molding method, can produce a hollow molded article without shrinkage or warpage (see, for example, Patent Document 1).
  • gas channel As a passage (hereinafter referred to as “gas channel”) for injecting a pressurized fluid into a molded product, a fluid injection part to the molded product is transferred to a substrate that defines the molded product.
  • ribs having a width and height larger than the wall thickness defining the thickness are formed (for example, see Patent Document 2).
  • this rib is formed with some shrinkage transfer spots and hollow portions in the molded product from the fluid injection portion to the region where the hollow portion is formed (hereinafter referred to as "hollow portion forming region").
  • hollow portion forming region There is a problem of deteriorating appearance such as whitening of time.
  • products where it is difficult to provide ribs due to their function.
  • the predetermined cavity surface of the hollow molding die extending from the fluid injection part to the hollow part forming region is predetermined.
  • a hollow mold having a heat insulating material in the region has been proposed (see, for example, Patent Document 3).
  • This hollow molding die has conventionally been formed with ribs and provided with a heat insulating material at the mold cavity position corresponding to the newly positioned position, thereby delaying cooling compared to the molten resin filled in other regions. Then, a pressurized fluid is injected into the region where the cooling is delayed to form a gas channel.
  • Patent Document 1 Japanese Patent Publication No. 48-041264
  • Patent Document 2 Japanese Patent Laid-Open No. 06-278155
  • Patent Document 3 Japanese Patent Laid-Open No. 07-052183 Disclosure of the invention
  • this heat insulating material must have a lower thermal conductivity than the mold material! /, So a material different from the mold material must be provided in the mold cavity. There is a problem.
  • a heat insulating material of a material different from the mold material for example, bakelite, etc.
  • a severe mold cavities that repeats a high temperature and low temperature cycle and a high pressure and low pressure (atmospheric pressure) pressure cycle.
  • the frequency of maintenance of the mold is increased due to peeling or deterioration of the heat insulating material, and the production cost of the hollow molded product is increased.
  • the present invention has been made in view of such conventional problems, and improves the aesthetics without providing ribs on the molded product, and allows fluid injection at a low cost even for complex patterns (shapes). It is an object of the present invention to provide a hollow molding die that can form a hollow portion reaching a hollow space forming region, and can reliably guide a pressurized fluid to a desired position.
  • the mold for hollow molding according to claim 1 is characterized in that the injection force of the pressurized fluid into the cavity or a force near the cavity is formed on the cavity surface until the hollow part forming region of the molded product or the vicinity thereof. Since a linear (strip-shaped) surface treatment using materials with different thermal conductivities was performed, a flow path of a pressurized fluid was provided at a desired location inside the molten resin along the linear surface treatment. Can be formed. For this reason, ribs are unnecessary on the front surface or the back surface of the molded product, and the appearance of the molded product can be enhanced. Furthermore, in general, the strength of the portion where the hollow portion is formed is weak in the molded product, but the hollow portion can be formed while avoiding the portion where strength is required.
  • the mold cavity itself is subjected to a thin surface treatment, the mold has durability, and it does not take much time to solidify the molten resin in the surface-treated portion. Furthermore, even with complicated flow path patterns, gas flow paths can be formed in the molten resin easily and inexpensively. Can do.
  • the hollow molding die according to claim 2 is characterized in that, in claim 1, since the surface treatment is coating and Z or plating and Z or painting, the surface is complicated by a method such as masking. A processing pattern can be formed. In addition, the adhesion to the mold is strong, and a thin surface treatment pattern can be drawn.
  • the hollow molding die according to claim 3 is characterized in that, in claim 2, since the surface treatment is PVD coating or CVD coating, adhesion to the die can be further strengthened. A thin and complicated surface treatment pattern can be drawn.
  • a hollow molding die according to claim 4 is the hollow molding die according to claims 1 to 3, wherein a linear wrinkle pattern is formed on the cavity surface of the hollow molding die. Since the surface treatment described above is applied to the portion where the fluid is formed, it is possible to more reliably form the flow path of the pressurized fluid along the surface treatment at a desired location inside the molten resin. .
  • surface treatment refers to coating, plating, painting, gas nitriding, gas soft nitriding, plasma nitriding, radical nitriding, ion nitriding, salt bath nitriding, nitriding treatment such as tuftride, and gas erosion.
  • Carburizing treatment such as charcoal and plasma carburizing.
  • the coating refers to a surface treatment using PVD and CVD, and has the effect of improving the wear resistance and mold release of a mold having a very high hardness.
  • Plating refers to dry plating represented by wet plating, thermal spraying, DMD, WPC treatment (Patent No. 1594395) represented by chemical plating or electrical plating, for example, chemical Ni There are metal plating, chemical copper plating, chemical Ag plating, electric Ni plating, electric copper plating, and electric Ag plating. Alternatively, it may be a composite plating in which powders such as BN, SiN, SiC, fluorine resin, silicon resin, etc. are emulsified and suspended in a chemical plating or electric plating bath and simultaneously deposited on the metal surface. Also, dry plating using a method such as spraying by mixing BN, SiN, SiC, or other powder into the alloy is acceptable.
  • Paint refers to painting.
  • thermosetting resin examples include a paint mainly composed of thermosetting resin. Although the thermal conductivity of the thermosetting resin constituting this paint is low, the thermal conductivity can be further increased by adding a substance generally called a pigment such as titanium oxide, potassium titanate, its whisker, iron oxide, or silica. Can be lowered.
  • two or more of the above-mentioned coating, plating, painting, etc. are combined to apply coating or plating on the plating, or to apply plating on the coating.
  • a multilayer structure may be used, such as coatings with different processing temperatures.
  • Nitriding carburizing and plating and Z or coating may be combined.
  • the surface of the mold cavity may be coated with a different material that may be coated or plated on the WPC treatment (trade name).
  • the coating, plating, and painting described above are all thin. Therefore, compared to the mold described in Patent Document 3, the cooling speed of the molten resin in the mold cavity is higher, so the surface of the molded product is used as the costume surface, not only the productivity of the hollow molded product is increased. Can be used.
  • Surface treatment can be directly coated, plated, and Z or painted on mold cavities, inserts, etc. manufactured using materials such as 55C, SKD, pre-hardened, SUS, Al, Ti, copper alloy materials Is common.
  • the adhesion to the mold cavity surface is further increased.
  • PVD diamond deposition
  • CVD chemical vapor deposition
  • thermal spraying ion coating
  • vacuum deposition etc.
  • PVD vapor deposition
  • plating plating or the like is used.
  • metal plating or chemical conversion treatment is performed, hydrogen embrittlement occurs, so baking at 200 ° C for about 4 hours is desirable.
  • baking increases the hardness of the metal!
  • painting In painting, painting techniques such as brush painting, spraying, and electrodeposition are used.
  • the effect of the present invention is that the gas channel can be formed at a desired location inside the molded article by using it together with the surface treatment. Furthermore, it can be ensured.
  • applying TiN or DLC with a thickness of about 5 ⁇ m to the mold cavity surface may improve the fluidity of the molten resin in the mold cavity. it can.
  • Coating with good conductivity for example, TaC with some diamond structure
  • bad coating plating with chemical NiZ Teflon (registered trademark) powder composite coating, painting with painting, etc.
  • this surface treatment acts as a heat insulation layer, preventing the heat of the molten resin injected into the mold cavity from escaping to the mold, and thus reducing the temperature of the molten resin (melting)
  • the viscosity of the resin is reduced, and the fluidity of the molten resin existing in the vicinity of the surface-treated portion in the mold cavity can be improved.
  • the difference in thermal conductivity depends on the average radius of atoms, interatomic distance, material density, crystal structure, and the like.
  • substances composed of the same average radius of atoms can be composed of a single substance.
  • those with a specific power of 1 to 1.25 for example, BN, Al 2 O 3, SiO 2, SiC, AIN, etc.
  • half of average atoms for example, BN, Al 2 O 3, SiO 2, SiC, AIN, etc.
  • Heat with a diameter of 1 ⁇ 25 or more eg W C, TiBN, HfC, HfN, W N ZrO
  • the fluidity of the molten resin in the vicinity of the surface-treated part in the mold cavity is locally improved. Can do. For this reason, due to the cooling delay of the molten resin, it is possible to improve the pressure holding effect during solid molding, the gas pressure holding effect during gas assist molding, and the like. Furthermore, the present invention can also be applied to a place where the draft angle, which is difficult to cope with the texture pattern, is small.
  • thermoplastic resin used as the material of the hollow molded article is not particularly limited as long as it is generally used for molding and is a thermoplastic resin.
  • thermoplastic resins examples include polystyrene resins obtained by polymerizing styrene monomers, such as polystyrene (PS), high impact polystyrene (HIPS, HiPS), nitrile monomers, styrene monomers.
  • PS polystyrene
  • HIPS high impact polystyrene
  • nitrile monomers styrene monomers.
  • Styrenic resin that is a copolymer with a monomer, for example, tali-tolyl 'styrene copolymer (AS), nitrile monomer' styrene monomer 'butadiene rubber Fats, for example, styrene resin such as acrylonitrile 'butadiene' styrene copolymer (ABS, Ab S), polyolefin resin represented by polyethylene (PE), polypropylene (PP), polyphenylene ether (PPE) ), And modified plastics such as PPE, polycarbonate (PC), polyamide (PA), polysulfone (PSF), polyetherimide (PEI), and polymethylol methacrylate (PMMA).
  • a monomer for example, tali-tolyl 'styrene copolymer (AS), nitrile monomer' styrene monomer 'butadiene rubber Fats, for example, styren
  • Polyester resin such as ethylene terephthalate (PET) or polybutylene terephthalate (PBT), vinyl resin such as salt vinyl (PVC), or a mixture of two or more of these thermoplastic resins ( Polymer blends and polymer alloys).
  • the hollow molding method particularly useful in the present invention is: AGI, GPI, CG M, H 2 M from Asahi Kasei Kogyo, GIM from Idemitsu Petrochemical, PFP from Nippon Steel Chemical, Shinpress from UK, G from US AIN Technology, gas such as German air mold, contool, GPI Assist molding method (hollow injection molding method), UCC method of US, USM method, TAF method developed by Toshiba Machine and Asahi Dow, EX—CELL—O company method, Hettinger's foam molding, New -SF, GCP method, Allied Chemical's technique, Co-SF, etc., have supercritical state (body), and are represented by Mucell of US Trexel and A MOTEC of Asahi Kasei.
  • the foam-assisted molding method (foam injection molding method) and the gas-assisted molding method, and the gas-assisted molding of Sumitomo Chemical's SP mold, in-mold molding method, two-color molding, and Sant'Ischie molding.
  • the present invention is also applied to a method in which a molding method is combined.
  • HF77 PS ⁇ A & M styrene HF77 natural color
  • POM polyplastic M270 natural color
  • H 1 / H2 / H3 / H4 180/190/180/170 (° C), mold temperature ( Temperature controller set temperature); 40 ° C, injection pressure setting; 70% (gauge pressure; lOMPa), injection speed setting; 80%, injection time setting;
  • Molten molding resin is injected from the resin injection part 43 into the cavity 42 formed by the upper mold 40 (steel type 55C) and the lower mold 41 (steel class 55C) shown in FIG.
  • a hollow molded product 20 shown in FIG. 2 was obtained by the gas assist molding method.
  • Transparent ABS (Toyolac 920) (trade name) manufactured by Toray was used as the molding resin.
  • a linear D with a width of 15mm is formed on a part of the mold cavity surface of the upper mold 40. Since the LC coating is about 5 m thick, the fluid flow path 25 is about 12-16 mm along the part 46 (corresponding part 21 in the hollow molded product 20) where the coating film is formed. It was confirmed that it was formed with a width. In other words, the shape of the fluid flow path formed in the molded product projected onto the surface of the molded product was substantially the same as the shape of the coating applied to the mold cavity surface.
  • the DLC coating is linearly applied to the cavity surface of the mold, so that the cooling of the molten resin in the DLC coated part is slowed down, and the nitrogen gas enters the molten resin along the coating. It was confirmed that the flow path was formed.
  • Example 4 The difference from Example 4 is only that the TiN coating is used on the cavity surface of the mold.
  • the fluid flow path 25 is formed with a width of about 12 to 16 mm along the coated part 46 (corresponding part 21 in the hollow molded product). I was able to confirm that
  • Toyolac 920 was injected into the mold cavity as a molding resin, and a hollow molded product 30 shown in Fig. 3 was obtained by gas assist molding.
  • the mold for forming the hollow molded product 30 (steel grade is KPM1) has a width of 15 mm and a linear W C coating on the surface of the cavity with a thickness of 7 ⁇ m.
  • the gas injection pin (not shown) was installed in the fluid injection part 32 and nitrogen gas was injected.
  • the hollow part was formed with a width of about 16 to 20 mm along the minute 31).
  • a gas channel such as a rib
  • Toyolac 920 was injected into the mold cavity as a molding material, and as shown in Fig. 4, the mold (steel grade is KPM1) and half of each of the mold (steel grade KPM1) and the core (hollow molded product 10) 12) Corrosion TiN coating 5m was used to obtain a hollow molded product 10 with a plate thickness of 3mm.
  • a rib 13 having a height of 5 mm and a length of 350 mm is formed with the thickness of the base being 60% of the surface on which the rib stands (meat). Further, nitrogen gas as a pressurized fluid was injected from the fluid injection part 14.
  • the width of the hollow portion 15 is widened by 18 to 30 mm.
  • the width of the hollow part 15 was extremely narrow, 5-8 mm. Similar results could be obtained when nitrogen gas was injected from the fluid injection section 11.
  • Teflon (registered trademark) coating (Teflon (registered trademark) coating) was applied to a part of the cavity surface of the mold (steel type KPM1). At this time, a chemical conversion treatment of zinc phosphate was performed to improve the adhesion of Teflon (registered trademark).
  • Example 7 As a result, as in Example 7, the expansion of the hollow portion in the portion 12 corresponding to the cavity portion subjected to Teflon (registered trademark) painting was confirmed.
  • Toyolac 920 As the molding material, it was injected into the mold (the steel type is KPM1) cavity, and as shown in Fig. 5, the mold cavity corresponding to approximately half the surface of the molded product was formed by gas-assisted molding. A 15 mm wide linear pear texture 51 (TH-115) was applied to the part, and a TiN coating of 5 m was applied thereon. A hollow molded product 50 having a thickness of 3 mm was obtained in which a rib 54 having a width of 1.5 mm and a height of 5 mm was provided in the mold cavity corresponding to approximately half of the surface of the molded product. Nitrogen gas as the pressurized fluid was injected from the fluid injection part 52.
  • the nitrogen gas travels along the embossed 51 formed in a linear shape, and travels along the rib 54 after reaching the rib 54. For this reason, the hollow portion 53 is formed along the embossed portion 51 and the rib 54. As a result of confirming the state of the hollow portion 53, in the portion where the embossed pattern 51 is present, the width force Sl5 to 18 mm of the hollow portion 53 is widened, whereas in the portion where the rib 54 is present, the width of the hollow portion 53 is 5%. It was confirmed to be as narrow as ⁇ 9mm.
  • Example 15 Using the mold described in Example 12, it was confirmed that the modified PPE containing 30 wt% glass fiber was injection molded and subjected to surface treatment to reduce the float of the glass fiber and increase the appearance gloss.
  • Example 15
  • TIN was reduced to 2 microns as a material having low thermal conductivity.
  • Surface treatment was performed using the ion coating method, and then the material was coated with BN, which is a material with a high thermal conductivity of 3 microns, using the same ion coating method!
  • Example 16 only the coating in Example 4 was changed from DLC to CrN, and substantially the same result as in DLC was obtained.
  • Example 17 the coating in Example 4 was changed from DLC to Al 2 O 3 MgO.
  • Example 18 the core of the mold in Example 4 and the entire surface of the mold were coated with TiN. It was confirmed that, after applying the coating, the linear DLC part was coated with BN, and the flow path of nitrogen gas was formed along the BN coating shape, creating a hollow part.
  • Example 19 an O-ring was installed on the PL surface of the mold of Example 12 to form a seal mold, and 1.2 MPa gas counter pressure (GCP) was applied to the mold with air.
  • GCP gas counter pressure
  • techno ABS black was used with foaming resin using 0.3% by mass of sodium hydrogen carbonate as a foaming agent.
  • Example 20 is for confirming the transferability of the texture pattern by the surface treatment.
  • Example 19 The mold cavity of Example 19 was subjected to a texture of about TH-113, and a BN coating was applied on DLC, TiN, WC, BN, and TiN, respectively.
  • Example 23 [0071] Almost the same results were obtained using the composite of Example 14 containing 30% by mass of PC glass fiber, 30% by mass of ABS glass fiber, and 10% by mass of HIPS glass fiber. Obtained
  • a force that exemplifies a single linear surface is not limited to these in the present invention. Even if it is a complicated pattern which a linear thing combined, you may give multiple.
  • the surface treatment may be performed not only on the mold surface corresponding to the surface of the molded product but also on the mold surface corresponding to the back surface of the molded product.
  • the pressure holding effect is improved because the temperature of the molten resin is hardly lowered simply by reducing the weld.
  • the molding temperature of the heating cylinder can be lowered by improving the transferability of molded parts, improving dimensional accuracy, and improving fluidity, and the effects such as energy saving are not only gas-assisted molding but also solid molding and foaming. It can be produced by molding or compression molding.
  • the molded product is provided with a gas channel by ribs, the same result as that provided by ribs can be obtained by subjecting the molded product to surface treatment such as coating, plating, painting, etc. Therefore, it can be applied to hollow molded articles with improved aesthetics.
  • FIG. 1 is a cross-sectional view showing a hollow molding die. (Example 4, Example 5)
  • FIG. 2 is a perspective view showing a hollow molded product. (Example 4, Example 5)
  • FIG. 3 is a perspective view showing a hollow molded product. (Example 6)
  • FIG. 4 is a perspective view showing a hollow molded product. (Example 7)
  • FIG. 5 is a perspective view showing a hollow molded product. (Example 11)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

[PROBLEMS] Generally, hollow molded articles produced through gas injection in a molten resin are provided with a rib as a gas flow channel. However, this rib poses such a problem that the hollow molded articles at surfaces suffer appearance deteriorations, such as sink, transfer spots and whitening at hollow formation. [MEANS FOR SOLVING PROBLEMS] There is provided a metal mold for production of a molded article with hollow, which metal mold on its cavity surface from the position of injection of pressurized fluid in the cavity or the vicinity of the injection position to the region for forming of the hollow of the molded article or the vicinity of the forming region is furnished with linear surface treatment with a material of thermal conductance different from that of the material of the metal mold so as to cause the surface treatment to fulfill the function as a gas channel.

Description

明 細 書  Specification
中空成形用金型  Die for hollow molding
技術分野  Technical field
[0001] 本発明は、金型キヤビティ内に射出された溶融榭脂中に加圧流体を注入 (圧入)し て冷却することにより中空成形品を製造するための中空成形用金型に関する。 背景技術  The present invention relates to a hollow molding die for producing a hollow molded product by injecting (pressing) a pressurized fluid into a molten resin injected into a mold cavity and cooling it. Background art
[0002] 中空成形法の一種であるガスアシスト成形は、引け、反りのない中空成形品を製造 できることが知られている(例えば、特許文献 1参照)。  [0002] It is known that gas assist molding, which is a kind of hollow molding method, can produce a hollow molded article without shrinkage or warpage (see, for example, Patent Document 1).
このガスアシスト成形では、成形品内に加圧流体を注入するための通路(以下、「ガ スチャンネル」と称す)として、成形品への流体注入部から、成形品を規定する基体 に、基体を規定する肉厚より幅、高さの大きなリブを形成するのが一般的である(例え ば、特許文献 2参照)。  In this gas assist molding, as a passage (hereinafter referred to as “gas channel”) for injecting a pressurized fluid into a molded product, a fluid injection part to the molded product is transferred to a substrate that defines the molded product. In general, ribs having a width and height larger than the wall thickness defining the thickness are formed (for example, see Patent Document 2).
[0003] しかし、このリブは、流体注入部から中空部が形成される領域 (以下、「中空部形成 領域」と称す)に至る成形品に若干のヒケゃ転写斑、中空部が形成される時の白化な どの外観を悪化させるという問題がある。また、機能上リブを設けることが困難な製品 も多い。  [0003] However, this rib is formed with some shrinkage transfer spots and hollow portions in the molded product from the fluid injection portion to the region where the hollow portion is formed (hereinafter referred to as "hollow portion forming region"). There is a problem of deteriorating appearance such as whitening of time. There are also many products where it is difficult to provide ribs due to their function.
[0004] そこで、リブを無くし、成形品の流体注入部力 中空部形成領域までの外観を向上 させるため、流体注入部から中空部形成領域へと伸びる中空成形用金型のキヤビテ ィ面の所定領域に、断熱材を設けた中空成形用金型が提案されている (例えば、特 許文献 3参照)。  [0004] Therefore, in order to eliminate the ribs and improve the appearance of the fluid injection part force of the molded product to the hollow part forming region, the predetermined cavity surface of the hollow molding die extending from the fluid injection part to the hollow part forming region is predetermined. A hollow mold having a heat insulating material in the region has been proposed (see, for example, Patent Document 3).
[0005] この中空成形用金型は、従来リブを形成して 、た位置に対応する金型キヤビティ位 置に断熱材を設けることにより、他の領域に充填された溶融樹脂よりも冷却を遅延さ せ、この冷却を遅延させた領域内に加圧流体を圧入してガスチャンネルを形成する というものである。  [0005] This hollow molding die has conventionally been formed with ribs and provided with a heat insulating material at the mold cavity position corresponding to the newly positioned position, thereby delaying cooling compared to the molten resin filled in other regions. Then, a pressurized fluid is injected into the region where the cooling is delayed to form a gas channel.
特許文献 1:特公昭 48— 041264号公報  Patent Document 1: Japanese Patent Publication No. 48-041264
特許文献 2:特開平 06— 278155号公報  Patent Document 2: Japanese Patent Laid-Open No. 06-278155
特許文献 3 :特開平 07— 052183号公報 発明の開示 Patent Document 3: Japanese Patent Laid-Open No. 07-052183 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、この断熱材は、金型材料よりも熱伝導率が低 、ものでなければならな!/、の で、金型材料とは異なる材料を金型キヤビティ内に設けなければならな 、と 、う問題 がある。  [0006] However, this heat insulating material must have a lower thermal conductivity than the mold material! /, So a material different from the mold material must be provided in the mold cavity. There is a problem.
[0007] つまり、高温 低温の温度サイクルを繰り返し、かつ高圧 低圧(大気圧)の圧力 サイクルを繰り返す過酷な環境の金型キヤビティ内に、金型材料とは異なる材料の断 熱材 (例えば、ベークライト)を設けることは、断熱材の剥がれ、劣化などにより金型の メンテナンスの頻度を高め、中空成形品の生産コストを高めるという問題がある。  [0007] In other words, a heat insulating material of a material different from the mold material (for example, bakelite, etc.) is used in a severe mold cavities that repeats a high temperature and low temperature cycle and a high pressure and low pressure (atmospheric pressure) pressure cycle. However, there is a problem that the frequency of maintenance of the mold is increased due to peeling or deterioration of the heat insulating material, and the production cost of the hollow molded product is increased.
[0008] また、断熱材は、厚みがあり、冷えにくいので、断熱材に接している部分の溶融榭 脂の固化に時間が力かるという問題がある。  [0008] Further, since the heat insulating material is thick and difficult to cool, there is a problem that it takes time to solidify the molten resin in a portion in contact with the heat insulating material.
さらに、断熱材は、複雑な加工が困難であるため、溶融榭脂内に安価かつ容易に 複雑な加圧流体の流路を形成できな!/、という問題がある。  Furthermore, since the heat-insulating material is difficult to process in a complicated manner, there is a problem that a complicated pressurized fluid flow path cannot be easily and inexpensively formed in the molten resin.
[0009] 本発明は、このような従来の問題点に鑑みてなされたものであり、成形品にリブを設 けずに美観を向上させ、複雑なパターン (形状)であっても安価に流体注入部力 中 空部形成領域に至る中空部を形成し、確実に所望の位置に加圧流体を導くことがで きる中空成形用金型を提供することを目的とする。  [0009] The present invention has been made in view of such conventional problems, and improves the aesthetics without providing ribs on the molded product, and allows fluid injection at a low cost even for complex patterns (shapes). It is an object of the present invention to provide a hollow molding die that can form a hollow portion reaching a hollow space forming region, and can reliably guide a pressurized fluid to a desired position.
課題を解決するための手段  Means for solving the problem
[0010] 請求項 1に記載の中空成形用金型は、キヤビティ面に、キヤビティへの加圧流体の 注入位置またはその近傍力も成形品の中空部形成領域またはその近傍まで、金型 の材料とは熱伝導率が異なる材料を用いた線状 (帯状)の表面処理を施したので、こ の線状の表面処理に沿って、溶融榭脂内部の所望の箇所に加圧流体の流路を形成 することができる。このため、成形品の表面または裏面にはリブが不要であり、成形品 の美観を高めることができる。さらに、成形品は、一般に中空部が形成された箇所の 強度が弱くなるが、強度が必要な箇所を避けて中空部を形成することができる。 [0010] The mold for hollow molding according to claim 1 is characterized in that the injection force of the pressurized fluid into the cavity or a force near the cavity is formed on the cavity surface until the hollow part forming region of the molded product or the vicinity thereof. Since a linear (strip-shaped) surface treatment using materials with different thermal conductivities was performed, a flow path of a pressurized fluid was provided at a desired location inside the molten resin along the linear surface treatment. Can be formed. For this reason, ribs are unnecessary on the front surface or the back surface of the molded product, and the appearance of the molded product can be enhanced. Furthermore, in general, the strength of the portion where the hollow portion is formed is weak in the molded product, but the hollow portion can be formed while avoiding the portion where strength is required.
[0011] また、金型キヤビティ自体に薄い表面処理を施しているため、金型の耐久性があり、 表面処理を施した部分の溶融樹脂の固化にあまり時間が力からない。さらに、複雑な 流路のパターンであっても安価かつ容易に溶融榭脂中にガスの流路を形成すること ができる。 [0011] Further, since the mold cavity itself is subjected to a thin surface treatment, the mold has durability, and it does not take much time to solidify the molten resin in the surface-treated portion. Furthermore, even with complicated flow path patterns, gas flow paths can be formed in the molten resin easily and inexpensively. Can do.
[0012] 請求項 2に記載の中空成形用金型は、請求項 1において、表面処理は、コーティン グおよび Zまたはプレーティングおよび Zまたはペインティングであるため、マスキン グなどの方法によって複雑な表面処理のパターンの形成が可能となる。また、金型へ の付着性が強固であり、細い表面処理のパターンを描くこともできる。  [0012] The hollow molding die according to claim 2 is characterized in that, in claim 1, since the surface treatment is coating and Z or plating and Z or painting, the surface is complicated by a method such as masking. A processing pattern can be formed. In addition, the adhesion to the mold is strong, and a thin surface treatment pattern can be drawn.
[0013] 請求項 3に記載の中空成形用金型は、請求項 2において、表面処理は、 PVDコー ティングまたは CVDコーティングであるため、金型への付着性をより強固にすること ができ、細く複雑な表面処理のパターンを描くことができる。  [0013] The hollow molding die according to claim 3 is characterized in that, in claim 2, since the surface treatment is PVD coating or CVD coating, adhesion to the die can be further strengthened. A thin and complicated surface treatment pattern can be drawn.
[0014] 請求項 4に記載の中空成形用金型は、請求項 1から請求項 3において、中空成形 用金型のキヤビティ面に線状のシボ模様が形成され、さら〖こ、このシボ模様が形成さ れた部分に前記した表面処理が施されているので、より確実に、溶融榭脂内部の所 望の箇所に、表面処理に沿って加圧流体の流路を形成することができる。  [0014] A hollow molding die according to claim 4 is the hollow molding die according to claims 1 to 3, wherein a linear wrinkle pattern is formed on the cavity surface of the hollow molding die. Since the surface treatment described above is applied to the portion where the fluid is formed, it is possible to more reliably form the flow path of the pressurized fluid along the surface treatment at a desired location inside the molten resin. .
発明の効果  The invention's effect
[0015] 金型に線状の表面処理を施すことにより、成形品にリブを設けなくても、成形品内 部の所望の箇所にガスチャンネルを形成することができるため、成形品の材料費およ び重量を低減し、美観を向上させることができる。  [0015] By performing a linear surface treatment on the mold, it is possible to form a gas channel at a desired location inside the molded product without providing ribs on the molded product. And it can reduce weight and improve aesthetics.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 〔表面処理の材料〕 [Surface treatment material]
本発明における、表面処理とは、コーティング、プレーティング、ペインティングと、 ガス窒化、ガス軟窒化、プラズマ窒化、ラジカル窒ィ匕、イオン窒化ゃ塩浴窒化、タフト ライドなどの窒化処理、およびガス侵炭、プラズマ侵炭などの侵炭処理をいう。  In the present invention, surface treatment refers to coating, plating, painting, gas nitriding, gas soft nitriding, plasma nitriding, radical nitriding, ion nitriding, salt bath nitriding, nitriding treatment such as tuftride, and gas erosion. Carburizing treatment such as charcoal and plasma carburizing.
[0017] コーティングとは、 PVD、 CVDをもちいた表面処理をいい、硬度が非常に高ぐ金 型の耐摩耗性の向上および離型性向上の効果がある。 [0017] The coating refers to a surface treatment using PVD and CVD, and has the effect of improving the wear resistance and mold release of a mold having a very high hardness.
また、コーティングでもちいる材料は、例えば、 BN, SiC, Si N (熱伝導率 = 16 W  The materials used for coating are, for example, BN, SiC, Si N (thermal conductivity = 16 W
3 4  3 4
/m-K) , SiO , TiN, TiAlN (TiN/AlN) , TiN/CrN, W C, TiBN, CrAlNX(  / m-K), SiO, TiN, TiAlN (TiN / AlN), TiN / CrN, W C, TiBN, CrAlNX (
2 2  twenty two
X=他の元素) CrN, TiCN, HfC, HfN, DLC, TaCがあげられ、 DLC単結晶(ダ ィャモンド構造)の場合の熱伝導率 = 2, 000W/m-K, a—C :Hの場合の熱伝導 率 =30WZm'K, a— Cの場合の熱伝導率 =6WZm'K) , A1N (熱伝導率 = 14 W/m-K) , ZrO (熱伝導率 = 13 W/m-K) , Al O (熱伝導率 = 16 W/m-K) X = other elements) CrN, TiCN, HfC, HfN, DLC, TaC, thermal conductivity in the case of DLC single crystal (diamond structure) = 2,000W / mK, a—C: in the case of H Thermal conductivity = 30WZm'K, a—C thermal conductivity = 6WZm'K), A1N (thermal conductivity = 14 W / mK), ZrO (thermal conductivity = 13 W / mK), Al O (thermal conductivity = 16 W / mK)
2 2 3  2 2 3
, MgO, Al O MgO, SiO , Si、 W N , BeC, BeO, BeN, BO, Mg C, CrO, Ti  , MgO, Al O MgO, SiO, Si, W N, BeC, BeO, BeN, BO, Mg C, CrO, Ti
2 3 2 3 2 2  2 3 2 3 2 2
C, ZrOなどがある。  C, ZrO, etc.
2  2
[0018] プレーティングとは、化学メツキまたは電気メツキに代表される湿式メツキ、溶射、 D MD, WPC処理(特許第 1594395号)などに代表される乾式メツキのことをいい、例 えば、化学 Niメツキ、化学銅メツキ、化学 Agメツキ、電気 Niメツキ、電気銅メツキ、電 気 Agメツキがある。また、化学メツキまたは電気メツキ浴中に、 BN, SiN, SiC,弗素 榭脂,シリコン榭脂などのパウダーをエマルシヨン、サスペンションさせて同時に金属 表面に析出させる複合メツキであってもよい。また、合金に BN, SiN, SiCなどのパゥ ダーを混ぜ合わせ溶射などの方法を用いての乾式メツキであっても良 、。  [0018] Plating refers to dry plating represented by wet plating, thermal spraying, DMD, WPC treatment (Patent No. 1594395) represented by chemical plating or electrical plating, for example, chemical Ni There are metal plating, chemical copper plating, chemical Ag plating, electric Ni plating, electric copper plating, and electric Ag plating. Alternatively, it may be a composite plating in which powders such as BN, SiN, SiC, fluorine resin, silicon resin, etc. are emulsified and suspended in a chemical plating or electric plating bath and simultaneously deposited on the metal surface. Also, dry plating using a method such as spraying by mixing BN, SiN, SiC, or other powder into the alloy is acceptable.
[0019] ペインティングとは、塗装のことをいう。  [0019] Painting refers to painting.
また、ペインティングで用いる材料は、例えば、熱硬化性榭脂を主成分とした塗料 があげられる。この塗料を構成する熱硬化性榭脂の熱伝導率は低いが、酸化チタン ,チタン酸カリウムやそのゥイスカー、酸化鉄、シリカなど一般に顔料と称せられる物 質を加えることにより、更に熱伝導率を低くすることができる。  Examples of the material used for painting include a paint mainly composed of thermosetting resin. Although the thermal conductivity of the thermosetting resin constituting this paint is low, the thermal conductivity can be further increased by adding a substance generally called a pigment such as titanium oxide, potassium titanate, its whisker, iron oxide, or silica. Can be lowered.
[0020] 〔表面処理の組み合わせ〕  [0020] [Combination of surface treatments]
本発明における表面処理は、前記したコーティング,プレーティング,ペインティン グなどのうち、 2以上を組み合わせて、プレーティングの上にコーティングやプレーテ イングを施すことや、コーティングの上にプレーティングを施す場合、処理温度が異な るコーティングを重ねるなど多層構造にしても良い。  In the surface treatment in the present invention, two or more of the above-mentioned coating, plating, painting, etc. are combined to apply coating or plating on the plating, or to apply plating on the coating. Alternatively, a multilayer structure may be used, such as coatings with different processing temperatures.
また、窒化ゃ侵炭とプレーティングおよび Zまたはコーティングなどと組み合わせて も良い。さらに、金型キヤビティの表面に施したシボカ卩ェゃ WPC処理 (商品名)など の上にコーティングやプレーティングを施しても良ぐ異なる材質を重ねてコーティン グしても良い。  Nitriding carburizing and plating and Z or coating may be combined. In addition, the surface of the mold cavity may be coated with a different material that may be coated or plated on the WPC treatment (trade name).
[0021] 前記したように、コーティング、プレーティング、ペインティングを組み合わせることに より多層構造にすることができることに加え、マスキングによって複雑なパターンの形 成が可能である。  [0021] As described above, in addition to being able to have a multilayer structure by combining coating, plating, and painting, a complicated pattern can be formed by masking.
また、前記したコーティング、プレーティング、ペインティングは、何れも膜厚が薄い ので、特許文献 3に記載された金型と比較すると、金型キヤビティ内の溶融樹脂の冷 却速度が大きいため、中空成形品の生産性が高くなるだけではなぐ成形品の表面 を衣装面として使用することができる。 In addition, the coating, plating, and painting described above are all thin. Therefore, compared to the mold described in Patent Document 3, the cooling speed of the molten resin in the mold cavity is higher, so the surface of the molded product is used as the costume surface, not only the productivity of the hollow molded product is increased. Can be used.
[0022] 〔表面処理の付着性の向上〕 [Improvement of adhesion of surface treatment]
表面処理は、 55C, SKD,プレハードン, SUS, Al, Ti,銅合金材などの材質を用 いて製造された金型のキヤビティ、入れ子などへ直接コーティング、プレーティング、 および Zまたはペインティングされるのが一般的である。  Surface treatment can be directly coated, plated, and Z or painted on mold cavities, inserts, etc. manufactured using materials such as 55C, SKD, pre-hardened, SUS, Al, Ti, copper alloy materials Is common.
[0023] コーティングは、金型のキヤビティ面に化学メツキまたは電気 Niメツキなどのプレー ティングを施し、その上にコーティングを施すと、より金型のキヤビティ面へのコーティ ングの付着性が増す場合がある。 [0023] When coating is applied to the mold surface of the mold, such as chemical plating or electric Ni plating, and coating is applied to the plating, the adhesion of the coating to the mold surface of the mold may increase. is there.
また、ペインティングは、金型のキヤビティ面にリン酸亜鉛などの化成処理を施し、 その上にペインティングを施すと、より金型キヤビティ面への付着性が増す。  Also, in the painting, if the mold surface of the mold is subjected to a chemical conversion treatment such as zinc phosphate and then painted on it, the adhesion to the mold cavity surface is further increased.
[0024] 〔表面処理の方法〕 [Method of surface treatment]
以下に、表面処理を金型のキヤビティ面に施す表面処理の方法について説明する コーティングでは、 PVD、 CVD、溶射、イオンコーティング、真空蒸着などが用いら れる。金型または金型入れ子に焼き入れ,窒化などの熱処理が施されている場合は 、処理温度が低い PVDが望ましい。  Below, PVD, CVD, thermal spraying, ion coating, vacuum deposition, etc. are used in the coating to explain the surface treatment method for applying the surface treatment to the mold cavity surface. When the mold or mold insert is subjected to heat treatment such as quenching or nitriding, PVD with a low processing temperature is desirable.
[0025] プレーティングでは、メツキなどが用いられる。メツキや化成処理を行うと、水素脆ィ匕 するので、 200°Cで 4時間程度のベーキングを行うのが望ましい。また、化学 Niの場 合は、ベーキングすればメツキの硬度が増すと!、う効果が得られる。 [0025] In plating, plating or the like is used. When metal plating or chemical conversion treatment is performed, hydrogen embrittlement occurs, so baking at 200 ° C for about 4 hours is desirable. In the case of chemical Ni, baking increases the hardness of the metal!
[0026] ペインティングでは、刷毛塗り,スプレー,電着などの塗装技法が用いられる。 In painting, painting techniques such as brush painting, spraying, and electrodeposition are used.
これらの表面処理は、金型のキヤビティ面にシボカ卩ェなどを施し、その上に施すこと もできる。シボ加工などを施すと、凹部に残った空気により断熱効果が生じるので、表 面処置と併用することにより、成形品内部の所望の箇所にガスチャンネルを形成する ことができるという本発明の効果をさらに確実なものとすることができる。  These surface treatments can be performed on the mold cavity surface by applying a surface to the surface. When the texture is applied, a heat insulation effect is generated by the air remaining in the recess. Therefore, the effect of the present invention is that the gas channel can be formed at a desired location inside the molded article by using it together with the surface treatment. Furthermore, it can be ensured.
[0027] 〔表面処理の作用〕 [Effect of surface treatment]
次に、これらの表面処理を金型のキヤビティ面に施した場合の作用について説明 する。 Next, an explanation will be given of the action when these surface treatments are applied to the mold cavity surface. To do.
表面処理の広さや厚さにも左右されるが、膜厚 5 μ m程度の TiNや DLCを金型の キヤビティ面に施すと、金型のキヤビティ内の溶融樹脂の流動性を良くすることができ る。  Although it depends on the width and thickness of the surface treatment, applying TiN or DLC with a thickness of about 5 μm to the mold cavity surface may improve the fluidity of the molten resin in the mold cavity. it can.
[0028] その理由は、熱伝導率の低!、表面処理を施した場合と、熱伝導率の高!、表面処理 を施した場合とでは若干異なる。  [0028] The reason is slightly different between low thermal conductivity and surface treatment, and high thermal conductivity and surface treatment.
[0029] 熱伝導率の低い表面処理、例えば、 W C, HfC, DLC{処理の方法によって熱伝 [0029] Surface treatment with low thermal conductivity, eg W C, HfC, DLC {
2  2
導の良い場合 (例えば、一部ダイヤモンド構造を有する TaC等)と、悪い場合とがある }などのコーティング、化学 NiZテフロン (登録商標)パウダー複合メツキなどのプレー ティング、塗装などのペインティングなどの表面処理を施した場合、この表面処理が 断熱層の役割を果たすため、金型のキヤビティ内に射出された溶融樹脂の熱が金型 へ逃げることを妨げるので、溶融樹脂の温度の低下 (溶融榭脂の粘度低下)が妨げら れ、金型のキヤビティ内の表面処理を施した部分の近傍に存する溶融榭脂の流動性 を向上させることができる。  Coating with good conductivity (for example, TaC with some diamond structure) and bad coating, plating with chemical NiZ Teflon (registered trademark) powder composite coating, painting with painting, etc. When surface treatment is applied, this surface treatment acts as a heat insulation layer, preventing the heat of the molten resin injected into the mold cavity from escaping to the mold, and thus reducing the temperature of the molten resin (melting) The viscosity of the resin is reduced, and the fluidity of the molten resin existing in the vicinity of the surface-treated portion in the mold cavity can be improved.
[0030] 金型のキヤビティの一部に熱伝導率の高い表面処理、例えば、アルミニウム、銀、 銅、 BN、 BC、 AIN, A1C、化学或いは電気銅、或いは銀メツキなどを施した場合、金 型のキヤビティ内に射出された溶融樹脂の熱は、表面処理された部分に移動して、 当該部分のみの温度が上昇するので、この部分の近傍に存する溶融榭脂の温度の 低下を妨げる。その結果、金型のキヤビティ内の表面処理を施した部分の近傍に存 する溶融樹脂の流動性を向上させることができる。  [0030] When a part of the mold cavity is subjected to a surface treatment with high thermal conductivity, such as aluminum, silver, copper, BN, BC, AIN, A1C, chemical or electrolytic copper, or silver plating, The heat of the molten resin injected into the mold cavity moves to the surface-treated part and the temperature of only that part rises, preventing the temperature of the molten resin existing in the vicinity of this part from decreasing. As a result, the fluidity of the molten resin existing in the vicinity of the surface-treated portion in the mold cavity can be improved.
[0031] 熱伝導率の違いは、原子の平均半径、原子間距離、物質の密度、結晶構造などに より左右される。  [0031] The difference in thermal conductivity depends on the average radius of atoms, interatomic distance, material density, crystal structure, and the like.
例えば、原子の平均半径が同じものからなる物質 (例えば、 DLC,—部ダイヤモン ド構造をもつ TaC、 Si、 Ag、 Cuなど)は、単体で構成することができる。化合物の場 合には、構成する元素のそれぞれの原子の平均半径の比力 1〜1. 25のもの(例え ば、 BN, Al O , SiO , SiC, AINなど)は、熱伝導率が比較的高ぐ原子の平均半  For example, substances composed of the same average radius of atoms (for example, DLC, TaC, Si, Ag, Cu, etc. having a diamond structure) can be composed of a single substance. In the case of compounds, those with a specific power of 1 to 1.25 (for example, BN, Al 2 O 3, SiO 2, SiC, AIN, etc.) of the average radius of each atom of the constituent elements have a comparative thermal conductivity. Half of average atoms
2 3 2  2 3 2
径が 1· 25以上のもの(例えば、 W C, TiBN, HfC, HfN, W N ZrOなど)の熱  Heat with a diameter of 1 · 25 or more (eg W C, TiBN, HfC, HfN, W N ZrO)
2 3 2, 2  2 3 2, 2
伝導率が低い。 [0032] このように、金型キヤビティ内において、表面処理の有無により溶融樹脂の温度差( 流動性の差 =溶融樹脂の粘度差)が発生するので、ガスアシストの場合、容易に所 望の箇所にガスを導くことができる。 Low conductivity. [0032] Thus, in the mold cavity, the temperature difference of the molten resin (fluidity difference = viscosity difference of the molten resin) occurs depending on the presence or absence of the surface treatment. Gas can be guided to the point.
[0033] つまり、金型のキヤビティ面の一部または全部に表面処理を施すことにより、金型キ ャビティ内における表面処理を施した部分の近傍の溶融樹脂の流動性を局所的に 向上させることができる。このため、溶融樹脂の冷却遅延によって、中実成形時の保 圧効果、ガスアシスト成形時のガス保圧効果などを向上させることができる。更にシボ 模様では対応が困難な抜き勾配が小さいところにも問題なく本発明を適用することが できる。  [0033] That is, by applying a surface treatment to part or all of the mold cavity surface, the fluidity of the molten resin in the vicinity of the surface-treated part in the mold cavity is locally improved. Can do. For this reason, due to the cooling delay of the molten resin, it is possible to improve the pressure holding effect during solid molding, the gas pressure holding effect during gas assist molding, and the like. Furthermore, the present invention can also be applied to a place where the draft angle, which is difficult to cope with the texture pattern, is small.
〔熱可塑性榭脂〕  [Thermoplastic resin]
[0034] 本発明において、中空成形品の材料として使用する熱可塑性榭脂としては、一般 的に成形に用いられて 、る熱可塑性榭脂であれば種類を問わな 、。  [0034] In the present invention, the thermoplastic resin used as the material of the hollow molded article is not particularly limited as long as it is generally used for molding and is a thermoplastic resin.
熱可塑性榭脂を例示すれば、スチレン系単量体を重合せしめて成るポリスチレン系 榭脂、例えばポリスチレン (PS)、耐衝撃性ポリスチレン (HIPS、 HiPS)、二トリル系 単量体、スチレン系単量体との共重合体であるスチレン系榭脂、例えば、アタリ口-ト リル'スチレン共重合体 (AS)、二トリル系単量体'スチレン系単量体'ブタジエン系ゴ ムカも成る榭脂、例えば、アクリロニトリル 'ブタジエン 'スチレン共重合体 (ABS、 Ab S)などのスチレン系榭脂、ポリエチレン (PE)、ポリプロピレン(PP)などに代表される ポリオレフイン系榭脂、ポリフエ-レンエーテル(PPE)、及び変性 PPE、ポリカーボネ ート(PC)、ポリアミド(PA)、ポリスルフォン(PSF)、ポリエーテルイミド(PEI)、ポリメ チノレメタタリレート(PMMA)などのエンジニアリングプラスチック、ポリエチレンテレフ タレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル榭脂、塩ィ匕ビ -ル (PVC)などのビニル系榭脂など、或いは前記熱可塑性榭脂の二種以上の混合 物(ポリマーブレンドやポリマーァロイ)である。  Examples of thermoplastic resins include polystyrene resins obtained by polymerizing styrene monomers, such as polystyrene (PS), high impact polystyrene (HIPS, HiPS), nitrile monomers, styrene monomers. Styrenic resin that is a copolymer with a monomer, for example, tali-tolyl 'styrene copolymer (AS), nitrile monomer' styrene monomer 'butadiene rubber Fats, for example, styrene resin such as acrylonitrile 'butadiene' styrene copolymer (ABS, Ab S), polyolefin resin represented by polyethylene (PE), polypropylene (PP), polyphenylene ether (PPE) ), And modified plastics such as PPE, polycarbonate (PC), polyamide (PA), polysulfone (PSF), polyetherimide (PEI), and polymethylol methacrylate (PMMA). Polyester resin such as ethylene terephthalate (PET) or polybutylene terephthalate (PBT), vinyl resin such as salt vinyl (PVC), or a mixture of two or more of these thermoplastic resins ( Polymer blends and polymer alloys).
〔成形加工法〕  [Molding method]
[0035] 本発明特に特に有用に使用される中空成形法は、旭化成工業の AGI、 GPI、 CG M、 H2M、出光石油化学の GIM、新日鉄化学の PFP、英国のシンプレス、米国の G AIN Technology,独国のエアーモールド、コンツール、 GPIなどに代表されるガス アシスト成形法(中空射出成形法)、及び米国の UCC法、 USM法、或いは、東芝機 械と旭ダウとが開発した TAF法、 EX— CELL— O社法、へッティンガーの発泡成形 や、 New—SF、 GCP法、ァライドケミカル社の技法、 Co— SFなど、更に超臨界状態 の気態(体)をもち、、た米国 トレクセル社の MuCell (ミューセル)や旭化成工業の A MOTECに代表される発泡成形法 (発泡射出成形法)と前記ガスアシスト成形法と融 合された方法、更には住友ィ匕学の SPモールド、インモールド成形法、 2色成形、サン ドイツチ成形との前記ガスアシスト成形法とを融合させた方法にも適用される。 [0035] The hollow molding method particularly useful in the present invention is: AGI, GPI, CG M, H 2 M from Asahi Kasei Kogyo, GIM from Idemitsu Petrochemical, PFP from Nippon Steel Chemical, Shinpress from UK, G from US AIN Technology, gas such as German air mold, contool, GPI Assist molding method (hollow injection molding method), UCC method of US, USM method, TAF method developed by Toshiba Machine and Asahi Dow, EX—CELL—O company method, Hettinger's foam molding, New -SF, GCP method, Allied Chemical's technique, Co-SF, etc., have supercritical state (body), and are represented by Mucell of US Trexel and A MOTEC of Asahi Kasei. The foam-assisted molding method (foam injection molding method) and the gas-assisted molding method, and the gas-assisted molding of Sumitomo Chemical's SP mold, in-mold molding method, two-color molding, and Sant'Ischie molding. The present invention is also applied to a method in which a molding method is combined.
[0036] また、金型のキヤビティの全面に表面処理を施した場合は、中空成形、発泡射出成 形、或 、は従来力 実施されて 、る中実 (ソリッド)成形にぉ 、て溶融榭脂の流動性 を向上させることができるので、ウエルドの低減や、転写性の向上を図ることができる 実施例 1 [0036] Further, when the entire surface of the mold cavity is subjected to a surface treatment, it is conventionally performed by hollow molding, foam injection molding, or solid molding, and melted. Since the fluidity of fat can be improved, it is possible to reduce welds and improve transferability. EXAMPLE 1
[0037] ABS{テクノポリマー 130 自然色(以下、「テクノ ABS」と称する) }を JIS規格に準 拠した板厚 2mmのスパイラルフローの金型をもちいて、シリンダー温度; H1ZH2Z H3/H4 = 220/230/220/200 (°C) ,金型温度(温度調節器の設定温度);30 °C射出圧力設定; 70% (ゲージ圧; lOMPa) ,射出速度設定; 80%,射出時間設 定; 4sec,計量時のスクリュー回転数; 50rpm,計量時のスクリュー背圧; IMPaで成 形加工した流動長さ(MFR)を確認した。  [0037] ABS {Technopolymer 130 Natural color (hereinafter referred to as "Techno ABS")} using a 2mm thick spiral flow mold compliant with JIS standard, cylinder temperature; H1ZH2Z H3 / H4 = 220 / 230/220/200 (° C), mold temperature (temperature controller setting temperature); 30 ° C injection pressure setting; 70% (gauge pressure; lOMPa), injection speed setting; 80%, injection time setting 4 seconds, screw rotation speed during measurement; 50 rpm, screw back pressure during measurement; flow length (MFR) formed by IMPa was confirmed.
[0038] その結果、表面処理なし =455mm、棚沢八光社シボ(TH— 113) =476mm、 Ti Ν 5
Figure imgf000010_0001
DLC 5 m=471mm、 25 mのテフロン(登録商標)コー ティング =488mm、ポリイミドコーティング 40 m=492mm、棚沢八光社シボ(TH — 113)に ϋΙ 5
Figure imgf000010_0002
[0038] As a result, no surface treatment = 455mm, Tanzawa Yakosha Shibo (TH—113) = 476mm, Ti Ν 5
Figure imgf000010_0001
DLC 5 m = 471mm, 25m Teflon (registered trademark) coating = 488mm, polyimide coating 40m = 492mm, Tanazawa Yakosha Shibo (TH — 113) に 5
Figure imgf000010_0002
481mmの MFRを示し、金型のキヤビティ面に表面処理を施すことにより、シボ模様 を施した場合と同様、溶融樹脂の流動性が向上することがわ力 た。  It showed a 481-mm MFR, and it was found that by applying a surface treatment to the mold cavity surface, the fluidity of the molten resin was improved, as was the case with the embossed pattern.
実施例 2  Example 2
[0039] PS {A&Mスチレン HF77 自然色(以下、「HF77」と称する))を、実施例 1とほ ぼ同様に、シリンダー温度; H1ZH2ZH3ZH4 = 200Z210Z210Z200 (°C) , 金型温度 (温度調節器の設定温度) ; 30°C,射出圧力設定; 70% (ゲージ圧; 10MP a) ,射出速度設定; 80%,射出時間設定; 4seC,計量時のスクリュー回転数; 50rpm ,計量時のスクリュー背圧; IMPaで成形加工し、流動長さを確認した。 [0039] PS {A & M styrene HF77 natural color (hereinafter referred to as “HF77”)), as in Example 1, cylinder temperature; H1ZH2ZH3ZH4 = 200Z210Z210Z200 (° C), mold temperature Setting temperature); 30 ° C, injection pressure setting; 70% (gauge pressure; 10MP a), injection speed setting; 80%, injection time setting; 4se C , screw rotation speed during metering; 50rpm, screw back pressure during metering; IMPa was molded and the flow length was confirmed.
[0040] その結果、表面処理なし =640mm、TH— 113 = 666mm、TiN 5
Figure imgf000011_0001
[0040] As a result, no surface treatment = 640mm, TH—113 = 666mm, TiN 5
Figure imgf000011_0001
m、 DLC 5
Figure imgf000011_0002
TH— 113に DLC5 m=672mm、 25 /z mのテフ口 ン(登録商標)コーティング =681mm、ポリイミドコーティング 40 m=692mm、銀 メツキ 15 πι=677πιπι、銅メツキ 15 m=676mmの MFRを示し、金型のキヤ ビティ面に表面処理を施すことにより、シボ模様を施した場合と同様、溶融榭脂の流 動性が向上することがわ力つた。
m, DLC 5
Figure imgf000011_0002
TH-113 shows DFR5 m = 672mm, 25 / zm Teflon (registered trademark) coating = 681mm, polyimide coating 40m = 692mm, silver plating 15 πι = 677πιπι, copper plating 15 m = 676mm MFR, gold By applying a surface treatment to the cavity surface of the mold, it was found that the fluidity of the molten resin was improved as in the case where the texture pattern was applied.
実施例 3  Example 3
[0041] POM (ポリプラスチック M270 自然色)を、実施例 1とほぼ同様に、シリンダー温 度; H 1 /H2/H3/H4 = 180/ 190/ 180/ 170 (°C) ,金型温度(温度調節器 の設定温度) ;40°C,射出圧力設定; 70% (ゲージ圧; lOMPa) ,射出速度設定; 80 %,射出時間設定; 4secで成形加工し、流動長さを確認した。  [0041] POM (polyplastic M270 natural color) was applied to the cylinder temperature in the same way as in Example 1; H 1 / H2 / H3 / H4 = 180/190/180/170 (° C), mold temperature ( Temperature controller set temperature); 40 ° C, injection pressure setting; 70% (gauge pressure; lOMPa), injection speed setting; 80%, injection time setting;
[0042] その結果、表面処理なし = 285mm、TH— 113 = 302mm、TiN 5 ^ πι= 299ιη m、 DLC 5 μ m= 289mm, 25 μ mのテフロン(登録商標)コーティング = 289mm 、ポリイミドコーティング 40 μ m= 306mm,銀メツキ 15 μ m= 297mm,銅メツキ 1 5mm= 2986mの MFRを示し、金型のキヤビティ面に表面処理を施すことにより、シ ボ模様を施した場合と同様、溶融樹脂の流動性が向上することがゎカゝつた。  [0042] As a result, no surface treatment = 285 mm, TH—113 = 302 mm, TiN 5 ^ πι = 299ιη m, DLC 5 μm = 289 mm, 25 μm Teflon (registered trademark) coating = 289 mm, polyimide coating 40 μm M = 306mm, silver plating 15 μm = 297mm, copper plating 1 5mm = 2986m MFR, surface treatment on mold cavity surface, the flow of molten resin is the same as when embossed The improvement in performance was a key factor.
実施例 4  Example 4
[0043] 図 1に示した上型 40 (鋼種は 55C)と下型 41 (鋼種は 55C)で形成されるキヤビティ 42に、溶融状態の成形用榭脂を、榭脂注入部 43から射出し、ガスアシスト成形法に より、図 2に示す中空成形品 20を得た。成形用榭脂として、東レ製の透明 ABS (トヨラ ック 920) (商品名)を使用した。  [0043] Molten molding resin is injected from the resin injection part 43 into the cavity 42 formed by the upper mold 40 (steel type 55C) and the lower mold 41 (steel class 55C) shown in FIG. A hollow molded product 20 shown in FIG. 2 was obtained by the gas assist molding method. Transparent ABS (Toyolac 920) (trade name) manufactured by Toray was used as the molding resin.
[0044] 加圧流体としての窒素ガスの注入位置であるガス注入ピン 44及び 45 (対応する流 体注入部 22及び 23)から、成形品 20の中空部 24を形成する中空部形成領域 47〖こ 至る流体流路形成領域 48における金型のキヤビティ面には、表面処理 46が施され ている。  [0044] From the gas injection pins 44 and 45 (corresponding fluid injection portions 22 and 23) which are the injection positions of nitrogen gas as the pressurized fluid, the hollow portion forming region 47 to form the hollow portion 24 of the molded product 20 A surface treatment 46 is applied to the mold cavity surface in the fluid flow path forming region 48.
[0045] 本実施例においては、上型 40の金型キヤビティ面の一部に 15mmの幅で線状の D LCのコーティングが膜厚 5 m程度施されているため、コーティング膜が形成された 部分 46 (中空成形品 20での対応する部分 21)に沿って、流体流路 25が約 12〜16 mmの幅で形成されることを確認できた。つまり、成形品に形成された流体流路を、 成形品の表面に投影した形状が、金型のキヤビティ面に施したコーティングの形状と 略同じであった。 [0045] In this embodiment, a linear D with a width of 15mm is formed on a part of the mold cavity surface of the upper mold 40. Since the LC coating is about 5 m thick, the fluid flow path 25 is about 12-16 mm along the part 46 (corresponding part 21 in the hollow molded product 20) where the coating film is formed. It was confirmed that it was formed with a width. In other words, the shape of the fluid flow path formed in the molded product projected onto the surface of the molded product was substantially the same as the shape of the coating applied to the mold cavity surface.
[0046] 以上より、金型のキヤビティ面に線状に DLCのコーティングを施すことにより、 DLC コーティングを施した部分の溶融樹脂の冷却が遅くなり、コーティングに沿って溶融 榭脂の内部に窒素ガスの流路が形成されることが確認できた。  [0046] As described above, the DLC coating is linearly applied to the cavity surface of the mold, so that the cooling of the molten resin in the DLC coated part is slowed down, and the nitrogen gas enters the molten resin along the coating. It was confirmed that the flow path was formed.
実施例 5  Example 5
[0047] 実施例 4との相違点は、金型のキヤビティ面に TiNコーティングをもちいた点のみで ある。  [0047] The difference from Example 4 is only that the TiN coating is used on the cavity surface of the mold.
TiNコーティングの場合は、 DLCコーティングの場合と同様に、コーティングが施さ れた部分 46 (中空成形品での対応する部分 21)に沿って、流体流路 25が約 12〜1 6mmの幅で形成されることを確認できた。  In the case of TiN coating, as in the case of DLC coating, the fluid flow path 25 is formed with a width of about 12 to 16 mm along the coated part 46 (corresponding part 21 in the hollow molded product). I was able to confirm that
[0048] 以上より、金型のキヤビティ面に線状に TiNコーティングを施すことにより、 DLCコ 一ティングの場合と同様の作用効果があることが確認できた。 [0048] From the above, it was confirmed that the same effect as in the case of DLC coating was obtained by applying a TiN coating linearly to the cavity surface of the mold.
実施例 6  Example 6
[0049] 成形用榭脂としてトヨラック 920を金型キヤビティに射出し、ガスアシスト成形により、 図 3に示す中空成形品 30を得た。該中空成形品 30を成形する金型 (鋼種は KPM1 )には、キヤビティの表面に 15mmの幅で線状の W Cコーティングが 7 μ mの厚さで  [0049] Toyolac 920 was injected into the mold cavity as a molding resin, and a hollow molded product 30 shown in Fig. 3 was obtained by gas assist molding. The mold for forming the hollow molded product 30 (steel grade is KPM1) has a width of 15 mm and a linear W C coating on the surface of the cavity with a thickness of 7 μm.
2  2
施されており(中空成形品 30での対応する部分 31)、流体注入部 32に図示しないガ ス注入ピンを設置し、窒素ガスを注入した。  The gas injection pin (not shown) was installed in the fluid injection part 32 and nitrogen gas was injected.
[0050] その結果、線状に W Cコーティングを施した部分(中空成形品 30での対応する部 [0050] As a result, the portion in which the W C coating is linearly formed (the corresponding portion in the hollow molded product 30)
2  2
分 31)に沿って、中空部が約 16〜20mmの幅で形成されることを確認できた。すな わち、成形品にリブなどのガスチャンネルが設けられていない場合であっても、成形 品において中空部を形成したい部分に対応する金型キヤビティ面の部分に表面処 理を施すことにより、リブによるガスチャンネルと同様な、窒素ガスを導くという効果が 得られることを確認できた。 実施例 7 It was confirmed that the hollow part was formed with a width of about 16 to 20 mm along the minute 31). In other words, even when the molded product is not provided with a gas channel such as a rib, by performing surface treatment on the part of the mold cavity surface corresponding to the part where the hollow part is to be formed in the molded product. It was confirmed that the effect of introducing nitrogen gas was obtained, similar to the gas channel with ribs. Example 7
[0051] トヨラック 920を成形材料として、金型キヤビティに射出し、図 4に示すように、ガスァ シスト成形により、金型 (鋼種は KPM1)のキヤビティとコアそれぞれの半分(中空成 形品 10での対応する部分 12)〖こ TiNコーティング 5 mを施した金型をもちいて、板 厚 3mmの中空成形品 10を得た。  [0051] Toyolac 920 was injected into the mold cavity as a molding material, and as shown in Fig. 4, the mold (steel grade is KPM1) and half of each of the mold (steel grade KPM1) and the core (hollow molded product 10) 12) Corrosion TiN coating 5m was used to obtain a hollow molded product 10 with a plate thickness of 3mm.
この中空成形品 10の裏面には、根元の厚さはリブが立っている面(天肉)の 60%で 、高さ 5mm、長さ 350mmのリブ 13が形成されている。また、加圧流体としての窒素 ガスは、流体注入部 14から注入した。  On the back surface of the hollow molded article 10, a rib 13 having a height of 5 mm and a length of 350 mm is formed with the thickness of the base being 60% of the surface on which the rib stands (meat). Further, nitrogen gas as a pressurized fluid was injected from the fluid injection part 14.
[0052] リブ 13付近での中空部 15が形成されている状態を確認した結果、 TiNコーティン グを施したキヤビティ部分に対応する部分 12では、中空部 15の幅が 18〜30mmの 広がりがあるのに対し、 TiN12のない部分では、中空部 15の幅が 5〜8mmと極端に 狭くなるのが確認された。窒素ガスを、流体注入部 11から注入した場合も、同様な結 果を得ることができた。  [0052] As a result of confirming that the hollow portion 15 is formed in the vicinity of the rib 13, in the portion 12 corresponding to the cavity portion to which the TiN coating is applied, the width of the hollow portion 15 is widened by 18 to 30 mm. On the other hand, in the part without TiN12, it was confirmed that the width of the hollow part 15 was extremely narrow, 5-8 mm. Similar results could be obtained when nitrogen gas was injected from the fluid injection section 11.
以上より、 TiNは、溶融樹脂の温度を低下させにくいので、加圧流体の注入を容易 にすると 、う作用効果があると 、える。  From the above, TiN is unlikely to lower the temperature of the molten resin. Therefore, it can be said that it is effective to facilitate injection of pressurized fluid.
実施例 8  Example 8
[0053] 実施例 7における TiNコーティングに代えて、金型 (鋼種は KPM1)のキヤビティ面 の一部にテフロン (登録商標)ペインティング (テフロン (登録商標)コーティング)を施 した。この際、テフロン (登録商標)の密着性を向上させるためにリン酸亜鉛の化成処 理を施した。  [0053] In place of the TiN coating in Example 7, Teflon (registered trademark) coating (Teflon (registered trademark) coating) was applied to a part of the cavity surface of the mold (steel type KPM1). At this time, a chemical conversion treatment of zinc phosphate was performed to improve the adhesion of Teflon (registered trademark).
その結果、実施例 7と同様に、テフロン (登録商標)ペインティングを施したキヤビテ ィ部分に対応する部分 12での中空部の広がりを確認した。  As a result, as in Example 7, the expansion of the hollow portion in the portion 12 corresponding to the cavity portion subjected to Teflon (registered trademark) painting was confirmed.
実施例 9  Example 9
[0054] 実施例 7の TiNコーティングの部分を銅メツキに代えても実施例 7および実施例 8と 同様な結果を得た。  [0054] Even when the TiN coating portion of Example 7 was replaced with copper plating, results similar to those of Example 7 and Example 8 were obtained.
実施例 10  Example 10
[0055] 金型の材料である SKD61を焼き入れ処理の後、 520°Cの高温焼き戻しをした後、 キヤビティ面の一部に PVDで TiBNを厚さ 5 μ mのコーティングを施した。コーティン グ前後の硬度が測定 HRcで 48程度であり、 PVDコーティング処理での硬度低下が きわめて少な!/、ことが解った。 [0055] After quenching the SKD61, which is the material of the mold, after tempering at 520 ° C, A part of the cavity surface was coated with TiBN with a thickness of 5 μm by PVD. The hardness before and after coating was measured to be about 48 in HRc, and it was found that there was very little decrease in hardness during PVD coating!
一方、熱処理した SKD61を CVDの処理温度 1, 000°C X 30分の雰囲気に入れた ところ、硬度が HEc = 54を示した。  On the other hand, when the heat-treated SKD61 was placed in an atmosphere with a CVD treatment temperature of 1,000 ° C for 30 minutes, the hardness showed HEc = 54.
この結果力 CVDでのコーティングも可能であることがわかった。  As a result, it was found that coating with force CVD is also possible.
実施例 11  Example 11
[0056] トヨラック 920を成形材料として、金型 (鋼種は KPM1)のキヤビティに射出し、図 5 に示すように、ガスアシスト成形により、成形品の表面の略半分に対応する金型キヤ ビティの部分に幅 15mmの線状の梨地シボ 51 (TH— 115)を施し、さらにその上に TiNコーティング 5 mを施した。成形品の表面の略半分に対応する金型キヤビティ の部分に幅が 1. 5mmで高さが 5mmのリブ 54を設けた板厚 3mmの中空成形品 50 を得た。加圧流体としての窒素ガスは、流体注入部 52から注入した。  [0056] Using Toyolac 920 as the molding material, it was injected into the mold (the steel type is KPM1) cavity, and as shown in Fig. 5, the mold cavity corresponding to approximately half the surface of the molded product was formed by gas-assisted molding. A 15 mm wide linear pear texture 51 (TH-115) was applied to the part, and a TiN coating of 5 m was applied thereon. A hollow molded product 50 having a thickness of 3 mm was obtained in which a rib 54 having a width of 1.5 mm and a height of 5 mm was provided in the mold cavity corresponding to approximately half of the surface of the molded product. Nitrogen gas as the pressurized fluid was injected from the fluid injection part 52.
[0057] 窒素ガスは線状に形成されたシボ 51に沿って進み、かつリブ 54に到達後は、リブ 5 4に沿って進む。このため、中空部 53は、シボ 51およびリブ 54に沿って形成される。 この中空部 53の状態を確認した結果、シボ模様 51のある部分では、中空部 53の幅 力 Sl5〜18mmの広がりがあるのに対し、リブ 54のある部分では、中空部 53の幅が 5 〜 9mmと狭くなるのが確認された。  The nitrogen gas travels along the embossed 51 formed in a linear shape, and travels along the rib 54 after reaching the rib 54. For this reason, the hollow portion 53 is formed along the embossed portion 51 and the rib 54. As a result of confirming the state of the hollow portion 53, in the portion where the embossed pattern 51 is present, the width force Sl5 to 18 mm of the hollow portion 53 is widened, whereas in the portion where the rib 54 is present, the width of the hollow portion 53 is 5%. It was confirmed to be as narrow as ~ 9mm.
窒素ガスを、リブ 54の端部力も注入した場合も、同様な結果を得ることができた。  Similar results could be obtained when nitrogen gas was also injected with the edge force of the ribs 54.
[0058] 以上より、金型キヤビティにお 、て形成した線状のシボ模様と、その上に施した TiN コーティングは、溶融樹脂の温度を低下させにくいので、加圧流体の注入を容易に すると 、う作用効果があると 、える。  [0058] From the above, in the mold cavity, the linear wrinkle pattern formed on the mold cavity and the TiN coating applied thereon are difficult to lower the temperature of the molten resin. If there is an effect, it is possible.
実施例 12  Example 12
[0059] 成形用金型(L= 350mm, W= 200mm,板厚 = 2. 5mm、ゲートは下側 2点のサ イドゲート)の表面に、 DLC, TiN、 W C、ポリイミドコーティング、銀メツキのそれぞれ  [0059] DLC, TiN, WC, polyimide coating, silver plating on the surface of the molding die (L = 350mm, W = 200mm, plate thickness = 2.5mm, the gate is the lower two side gates)
2  2
を施した金型を準備し、テクノ ABSの黒色をもち ヽて成形し表面処理なしの場合に 比べて、ウエルドの発生が少なくなることを確認した。 [0060] 実施例 1記載のスパイラルフローの金型の表面をイオン窒化し、実施例 1と同様の 成形条件で、テクノ ABSの流動性を確認したところ、 469mmと溶融樹脂の流動性が 向上することを確認した。 We prepared a metal mold with, and confirmed that the occurrence of welds was reduced compared to the case of using techno ABS black and molding with no surface treatment. [0060] The surface of the spiral flow mold described in Example 1 was ion-nitrided, and the fluidity of techno ABS was confirmed under the same molding conditions as in Example 1. As a result, the fluidity of the molten resin was improved to 469mm. It was confirmed.
実施例 14  Example 14
[0061] 実施例 12記載の金型をもちいて硝子繊維 30wt%入り変性 PPEを射出成形し、表 面処理を施すことで硝子繊維の浮きが低減され、外観光沢が増すことが確認した。 実施例 15  [0061] Using the mold described in Example 12, it was confirmed that the modified PPE containing 30 wt% glass fiber was injection molded and subjected to surface treatment to reduce the float of the glass fiber and increase the appearance gloss. Example 15
[0062] 実施例 1記載のスパイラルフローの金型入れ子を、鋼材 SKD61をもちいて機械カロ ェし、熱処理して硬度を HRC60程度に高めた後、熱伝導率の低い物質として、 TIN を 2ミクロンイオンコーティングの手法をもちいて表面処理し、更に、その上から熱伝 導率の高!、物質である BNを 3ミクロン同じくイオンコーティングの手法をもち!/ヽてコ一 ティングした。  [0062] After the mold flow of the spiral flow described in Example 1 was mechanically calored using steel SKD61 and heat-treated to increase the hardness to about HRC60, TIN was reduced to 2 microns as a material having low thermal conductivity. Surface treatment was performed using the ion coating method, and then the material was coated with BN, which is a material with a high thermal conductivity of 3 microns, using the same ion coating method!
テクノ ABSの流動性を実施例 1と同様の成形条件で確認したところ、 475mmと溶 融榭脂の流動性が向上することを確認した。  The fluidity of techno ABS was confirmed under the same molding conditions as in Example 1. As a result, it was confirmed that the fluidity of the molten resin was improved by 475 mm.
実施例 16  Example 16
[0063] 本実施例 16は、前記実施例 4におけるコーティングを DLCから、 CrNに変更した だけで、 DLCの場合と略同じ結果を得た。  In Example 16, only the coating in Example 4 was changed from DLC to CrN, and substantially the same result as in DLC was obtained.
CrNのコーティングを施すことにより、 CrNコーティングを施した部分の溶融樹脂の 冷却が遅くなり、コーティングに沿って溶融樹脂の内部に窒素ガスの流路が形成され ることが確認できた。  By applying the CrN coating, it was confirmed that cooling of the molten resin in the CrN-coated part was slow, and a nitrogen gas flow path was formed inside the molten resin along the coating.
実施例 17  Example 17
[0064] 本実施例 17は、前記実施例 4におけるコーティングを DLCから、 Al O MgOに変  [0064] In Example 17, the coating in Example 4 was changed from DLC to Al 2 O 3 MgO.
2 3 更したものである。  2 3 It is a new one.
Al O MgOのコーティングを施すことにより、コーティングに沿って溶融樹脂の内部 By applying Al O MgO coating, the inside of the molten resin along the coating
2 3 twenty three
に窒素ガスの流路が形成されることが確認できた。  It was confirmed that a nitrogen gas flow path was formed.
実施例 18  Example 18
[0065] 本実施例 18は、前記実施例 4における金型のコア、及びキヤビ全面に TiNのコー ティングを施した後、線状の DLCの部分を BNのコーティングを施した場合で、窒素 ガスは BNのコーティング形状に沿って流路が形成され、中空部を作ることが確認で きた。 [0065] In Example 18, the core of the mold in Example 4 and the entire surface of the mold were coated with TiN. It was confirmed that, after applying the coating, the linear DLC part was coated with BN, and the flow path of nitrogen gas was formed along the BN coating shape, creating a hollow part.
実施例 19  Example 19
[0066] 本実施例 19は、前記実施例 12の金型の PL面などに Oリングを設置シール金型に したのと、金型内にエアーで 1. 2MPaのガスカウンタープレッシャー(GCP)をかけ つつ、テクノ ABS黒色に、 0. 3質量%の炭酸水素 Naを発泡剤とした発泡性榭脂をも ちいた場合である。  [0066] In Example 19, an O-ring was installed on the PL surface of the mold of Example 12 to form a seal mold, and 1.2 MPa gas counter pressure (GCP) was applied to the mold with air. In this case, techno ABS black was used with foaming resin using 0.3% by mass of sodium hydrogen carbonate as a foaming agent.
前記実施例 12の中実成形の場合と同様に、表面処理なしの場合に比べて、ゥェ ルドの発生が少なくなることを確認した。  As in the case of solid molding in Example 12, it was confirmed that the occurrence of welds was reduced as compared with the case without surface treatment.
実施例 20  Example 20
[0067] 本実施例 20は、表面処理によってシボ模様の転写性がどうなるかを確認するもの である。  [0067] Example 20 is for confirming the transferability of the texture pattern by the surface treatment.
前記実施例 19の金型キヤビティに TH— 113程度の梨地のシボカ卩ェを施し、 DLC , TiN, W C, BN, TiNの上に BNのコーティングをそれぞれ施した。  The mold cavity of Example 19 was subjected to a texture of about TH-113, and a BN coating was applied on DLC, TiN, WC, BN, and TiN, respectively.
2  2
[0068] その後、テクノ ABS黒色をもちいて中空成形を行ない、シボ模様の転写性が表面 処理が施されて!/、な 、場合 76〜80%程度であつたのに比べ、同一な成形条件でも シボ模様の転写性が 84〜 91 %程度に向上した。  [0068] After that, hollow molding was performed using Techno ABS black, and the transfer characteristics of the texture pattern were surface-treated! /, In the case of about 76 to 80%, the same molding conditions However, the transferability of the texture pattern was improved to about 84-91%.
すなわち、コーティングを施すことにより、溶融樹脂の流動性が損なわれないため、 金型の再現性が良くなることが確認された。  In other words, it was confirmed that the reproducibility of the mold is improved because the fluidity of the molten resin is not impaired by applying the coating.
実施例 21  Example 21
[0069] 実施例 4, 5, 6, 8, 9, 11それぞれにおいて榭脂をトヨラック 920から HF77に代え ても略同様な結果を得ることができる。  [0069] In each of Examples 4, 5, 6, 8, 9, and 11, substantially the same results can be obtained even if the resin is changed from Toyolac 920 to HF77.
実施例 22  Example 22
[0070] 実施例 12, 15, 16, 17, 18, 19それぞれにおいて榭脂を A&Mスチレン製の HI PS榭脂 (A&Mポリスチレン 403R)に代えても略同様な結果を得た。  [0070] In each of Examples 12, 15, 16, 17, 18, and 19, substantially the same results were obtained even when the resin was replaced with HI PS resin (A & M polystyrene 403R) made of A & M styrene.
実施例 23 [0071] 前記実施例 14の榭脂を、 PCの硝子繊維 30質量%入り、 ABSの硝子繊維 30質量 %入り, HIPSの硝子繊維 10質量%入りの複合材をもちいても略同様な結果を得た Example 23 [0071] Almost the same results were obtained using the composite of Example 14 containing 30% by mass of PC glass fiber, 30% by mass of ABS glass fiber, and 10% by mass of HIPS glass fiber. Obtained
[0072] 前記した実施例は、説明のために例示したものであって、本発明としてはそれらに 限定されるものではなぐ特許請求の範囲、発明の詳細な説明および図面の記載か ら当業者が認識することができる本発明の技術的思想に反しない限り、変更および 付カロが可能である。 [0072] The above-described embodiments have been illustrated for the purpose of explanation, and the present invention is not limited thereto. From the scope of the claims, the detailed description of the invention, and the drawings, those skilled in the art will understand. As long as it is not contrary to the technical idea of the present invention that can be recognized, changes and attachments can be made.
[0073] 前記した実施例においては、線状の表面処理として、 1本の直線状のものを例示し た力 本発明においてはこれらに限られず、曲線状のものであっても、曲線状および 直線状のものが組合わさった複雑なパターンであっても良ぐ複数本施しても良い。  [0073] In the above-described embodiments, as a linear surface treatment, a force that exemplifies a single linear surface is not limited to these in the present invention. Even if it is a complicated pattern which a linear thing combined, you may give multiple.
[0074] また、表面処理は、成形品の表面に対応する金型のキヤビティ面だけではなぐ成 形品の裏面に対応する金型のキヤビティ面にも施しても良い。そうすると、ウエルドが 低減するだけでなぐ溶融樹脂の温度が低下しにくいので、保圧効果が良くなる。そ の結果、成形品転写性の向上、寸法精度の向上、流動性の向上により、加熱筒の成 形温度が下げられ、省エネなどの作用効果をガスアシスト成形のみならず、中実成 形や発泡成形、圧縮成形でも奏することができる。  [0074] Further, the surface treatment may be performed not only on the mold surface corresponding to the surface of the molded product but also on the mold surface corresponding to the back surface of the molded product. In this case, the pressure holding effect is improved because the temperature of the molten resin is hardly lowered simply by reducing the weld. As a result, the molding temperature of the heating cylinder can be lowered by improving the transferability of molded parts, improving dimensional accuracy, and improving fluidity, and the effects such as energy saving are not only gas-assisted molding but also solid molding and foaming. It can be produced by molding or compression molding.
産業上の利用可能性  Industrial applicability
[0075] 成形品にリブによるガスチャンネルが設けられて 、な ヽ場合でも、成形品にコーティ ング、プレーティング、ペインティングなどの表面処理を施すことにより、リブを設けた のと同様な結果を得ることができるため、美観を向上させた中空成形品に適用するこ とがでさる。 [0075] Even if the molded product is provided with a gas channel by ribs, the same result as that provided by ribs can be obtained by subjecting the molded product to surface treatment such as coating, plating, painting, etc. Therefore, it can be applied to hollow molded articles with improved aesthetics.
図面の簡単な説明  Brief Description of Drawings
[0076] [図 1]中空成形用金型を示した断面図である。(実施例 4、実施例 5) FIG. 1 is a cross-sectional view showing a hollow molding die. (Example 4, Example 5)
[図 2]中空成形品を示した斜視図である。(実施例 4、実施例 5)  FIG. 2 is a perspective view showing a hollow molded product. (Example 4, Example 5)
[図 3]中空成形品を示した斜視図である。(実施例 6)  FIG. 3 is a perspective view showing a hollow molded product. (Example 6)
[図 4]中空成形品を示した斜視図である。(実施例 7)  FIG. 4 is a perspective view showing a hollow molded product. (Example 7)
[図 5]中空成形品を示した斜視図である。(実施例 11)  FIG. 5 is a perspective view showing a hollow molded product. (Example 11)
符号の説明 中空成形品 表面処理 流体注入部 流体注入部 中空部 流体流路 表面 Explanation of symbols Hollow molded product Surface treatment Fluid injection part Fluid injection part Hollow part Fluid flow path Surface

Claims

請求の範囲 The scope of the claims
[1] 中空部を有する成形品を成形する中空成形用金型において、  [1] In a hollow mold for molding a molded product having a hollow part,
該中空成形用金型のキヤビティ面に、該キヤビティへの加圧流体の注入位置また はその近傍力 前記成形品の中空部形成領域またはその近傍まで、前記中空成形 用金型の材料とは熱伝導率が異なる材料を用いた帯状の表面処理を施したことを特 徴とする中空成形用金型  The position of the pressurized fluid injected into the cavity or the force near the cavity on the cavity surface of the mold for hollow molding is the heat of the material for the mold for hollow molding up to or near the hollow formation area of the molded product. Die for hollow molding, characterized by a band-shaped surface treatment using materials with different conductivities
[2] 前記表面処理は、コーティングおよび Zまたはプレーティングおよび Zまたはペイ ンティングであることを特徴とする請求項 1に記載の中空成形用金型  [2] The mold for hollow molding according to claim 1, wherein the surface treatment is coating and Z or plating and Z or painting.
[3] 前記コーティングは、 PVDコーティングまたは CVDコーティングであることを特徴と する請求項 2に記載の中空成形用金型  [3] The hollow mold according to claim 2, wherein the coating is a PVD coating or a CVD coating.
[4] 前記中空成形用金型のキヤビティ面に帯状のシボ模様が形成され、  [4] A band-like texture pattern is formed on the cavity surface of the hollow molding die,
該シボ模様が形成された部分に前記表面処理が施されていることを特徴とする請 求項 1〜請求項 3に記載の中空成形用金型  4. The hollow molding die according to claim 1, wherein the surface treatment is applied to a portion where the texture pattern is formed.
PCT/JP2005/018352 2004-10-07 2005-10-04 Metal mold for hollow molding WO2006038617A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004294394 2004-10-07
JP2004-294394 2004-10-07
JP2004317130 2004-10-29
JP2004-317130 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006038617A1 true WO2006038617A1 (en) 2006-04-13

Family

ID=36142690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018352 WO2006038617A1 (en) 2004-10-07 2005-10-04 Metal mold for hollow molding

Country Status (1)

Country Link
WO (1) WO2006038617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039256A (en) * 2019-12-12 2020-04-21 江苏大学 A kind of mold and method for preparing nano-layered composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208919A (en) * 1986-03-11 1987-09-14 Matsushita Electric Ind Co Ltd Molding mold core
JPH06246797A (en) * 1992-12-28 1994-09-06 Nippon Steel Chem Co Ltd Prevention of generation of sink in appearance surface of molded product and injection mold
JPH0752183A (en) * 1993-08-11 1995-02-28 Asahi Chem Ind Co Ltd Hollow injection molded piece, molding method thereof, and mold therefor
JPH0866927A (en) * 1994-06-22 1996-03-12 Asahi Chem Ind Co Ltd Matte synthetic resin injection-molded article and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208919A (en) * 1986-03-11 1987-09-14 Matsushita Electric Ind Co Ltd Molding mold core
JPH06246797A (en) * 1992-12-28 1994-09-06 Nippon Steel Chem Co Ltd Prevention of generation of sink in appearance surface of molded product and injection mold
JPH0752183A (en) * 1993-08-11 1995-02-28 Asahi Chem Ind Co Ltd Hollow injection molded piece, molding method thereof, and mold therefor
JPH0866927A (en) * 1994-06-22 1996-03-12 Asahi Chem Ind Co Ltd Matte synthetic resin injection-molded article and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039256A (en) * 2019-12-12 2020-04-21 江苏大学 A kind of mold and method for preparing nano-layered composite material
CN111039256B (en) * 2019-12-12 2022-07-22 江苏大学 A kind of mold and method for preparing nano-layered composite material

Similar Documents

Publication Publication Date Title
CA2763983C (en) Metal-clad polymer article
KR970000922B1 (en) Mold for molding PVC
JP5149069B2 (en) Mold assembly and injection molding method
JP6074513B2 (en) Metal / resin composite structure
KR100186660B1 (en) Matte synthetic resin injection molded article and molding method thereof
JP2001315162A (en) Method for manufacturing electronic equipment housing
US20060210813A1 (en) Coating method
JPH05169459A (en) Mold for resin or rubber, part of resin or rubber molding apparatus and method for molding resin or rubber
WO2000061831A1 (en) Process for applying metals to plastics and the articles produced thereby
WO2006038617A1 (en) Metal mold for hollow molding
JP2008114418A (en) Resin sealing mold for electronic component
JPH0538721A (en) Molding die and molding method using the same
JPH0872086A (en) Low-pressure injection molding method
JP3837928B2 (en) Member for resin molding apparatus and method for manufacturing the same
JPH08169035A (en) Injection molding method for synthetic resin
WO1996007527A1 (en) Low-pressure injection molding method
JP2004137871A (en) Water passing member, water faucet using water passing member, and manufacturing method for the water passing member
JP4687119B2 (en) Manufacturing method of ABS resin molded article having plating film and ABS resin molded article
EP0657267A2 (en) Method for improving surface quality of foamed thermoplastic molded articles
JPH0866927A (en) Matte synthetic resin injection-molded article and manufacture thereof
JPH07117084A (en) Method and mold for injection molding of thermoplastic resin
JPH04345821A (en) Sizing die for extrusion molding
WO2005018902A1 (en) Hollow molded product, method of manufacturing hollow molded product, and metal mold for hollow molding
JP2017209876A (en) Molding die
JPH11314066A (en) Body with coated surface

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP