JP3837928B2 - Member for resin molding apparatus and method for manufacturing the same - Google Patents

Member for resin molding apparatus and method for manufacturing the same Download PDF

Info

Publication number
JP3837928B2
JP3837928B2 JP23589798A JP23589798A JP3837928B2 JP 3837928 B2 JP3837928 B2 JP 3837928B2 JP 23589798 A JP23589798 A JP 23589798A JP 23589798 A JP23589798 A JP 23589798A JP 3837928 B2 JP3837928 B2 JP 3837928B2
Authority
JP
Japan
Prior art keywords
resin
resin molding
fluorine
mold
single layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23589798A
Other languages
Japanese (ja)
Other versions
JP2000061952A (en
Inventor
久典 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23589798A priority Critical patent/JP3837928B2/en
Publication of JP2000061952A publication Critical patent/JP2000061952A/en
Application granted granted Critical
Publication of JP3837928B2 publication Critical patent/JP3837928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂成形に用いられる成形金型及び成形装置のうちの樹脂と接する部品に関するものであり、特に耐摩耗性と離型性に優れた樹脂成形装置用部材及びその製造方法に関する。
【0002】
【従来の技術】
集積回路(IC)などの半導体素子を樹脂材料にて封止成形する場合や、樹脂製の光学素子を製造する際には、樹脂成形用の金型を用いた射出成形装置などにより成形が行われている。しかし、かかる樹脂成形においては、金型や成形装置の樹脂と接する表面に樹脂が付着しやすく、その離型性を改善することが望まれていた。
【0003】
従来から、樹脂と接触する金型若しくは成形装置部品の表面の離型性を改善する方法として、離型剤などの非粘着物質を金型などの表面に塗布する方法か、又は非粘着層を金型表面に設ける方法が一般的に採用されている。
【0004】
例えば、特開昭60−73816号公報には、フッ素などのハロゲン元素を含んだ離型剤を金型表面に塗布する方法が提案されている。また、特開昭61−16823号公報には、フッ素樹脂又はシリコーン樹脂を金型表面に被着する方法が開示されている。しかしながら、これらの方法は、いずれも有機物からなる離型層を金型表面に形成する方法であるため、離型層が耐摩耗性に劣り、早期にその効果が失われるという欠点があった。
【0005】
また、特開平6−179218号公報では、炭素鋼、高速度工具鋼、合金工具鋼、超硬合金、ステンレス鋼などから構成された炭素を含有する金型の表面に、フッ素又はニッケルのイオンを注入することにより、離型性を向上させる方法が提案されている。しかし、この方法においても、離型性の向上は実現できるが、金型表面の耐摩耗性は何ら向上されない。
【0006】
更に、特開平9−290423号公報には、表面がフッ素を含有するグラファイトの層間化合物で被覆された金型が提案されている。この金型の製造方法として、鉄やクロムなどを主成分とするSUS系鋼材又は亜鉛などの非鉄金属材料などからなる金型母材の表面に、炭素薄膜を形成した後、フッ素などのハロゲンイオンをイオン注入するか、又は炭素イオン注入とハロゲンイオン注入を併用する方法が開示されている。しかしながら、この方法もまた、離型性の向上は達成されるものの、耐摩耗性の向上には何ら効果が認められなかった。
【0007】
【発明が解決しようとする課題】
このように、従来提案された金型の離型性を向上させる方法では、いずれも離型層が低硬度材料であって、金型使用中における傷の発生を抑制するような耐摩耗性に乏しいという共通の欠点があった。従って、使用開始当初には離型性向上の効果が得られても、使用回数が増えるに伴って軟質な離型層が徐々に剥がれ落ち、次第にその効果が失われるのである。
【0008】
特に半導体素子の封止成形を行う場合、樹脂中に添加されたフィラーと呼ばれる各種硬質微粉末と擦れあうことによって、金型表面の摩耗が一層顕著に起こりやすいため、離型層の効果も早期に失われていた。このため、半導体素子の樹脂封止の分野においては、特に離型性と同時に耐摩耗性にも優れた金型の開発が望まれていた。
【0009】
本発明は、このような従来の事情に鑑み、優れた離型性を備えると同時に耐摩耗性にも優れ、その離型性を長期間にわたって維持できる金型などの樹脂成形装置用部材を提供することを目的とする。
【0010】
【課題を達成するための手段】
上記目的を達成するため、本発明が提供する樹脂成形装置用部材は、表面が樹脂と接する金型その他の樹脂成形装置用部材であって、その金属製母材の少なくとも樹脂と接する表面に、元素周期律表の4A族、5A族、6A族元素の窒化物、炭化物、炭窒化物のうちの少なくとも1種からなる単層の又は該単層を積層した硬質被膜を有しており、該硬質被膜の表面がフッ素のみ又はフッ素と炭素の両方をイオン注入した表面改質層であることを特徴とする。
【0011】
また、本発明の上記樹脂成形装置用部材の製造方法は、その金属製母材の少なくとも樹脂と接する表面に、元素周期律表の4A族、5A族、6A族元素の窒化物、炭化物、炭窒化物のうちの少なくとも1種からなる単層の又は該単層を積層した硬質被膜を形成した後、該硬質被膜の表面にフッ素のみ又はフッ素と炭素の両方をイオン注入することを特徴とする。
【0012】
尚、本発明において、樹脂成形装置用部材とは、樹脂成形装置に用いる全ての金属製の部材であって、金型、射出ノズルなどを含む意味で使用する。
【0013】
【発明の実施の形態】
樹脂に対する粘着性が低く、樹脂成形金型や成形装置部品の表面に形成する非粘着性の離型層として、炭素とフッ素を主成分とする化合物、例えばフッ化グラファイトやポリテトラフルオロエチレン(PTFE)などが知られている。しかしながら、これらの炭素−フッ素系化合物はいずれも材料としての硬度が低く、耐摩耗性に劣っている。従って、これらの炭素−フッ素系化合物を、そのまま離型層として金型などの表面に形成しても、長期間にわたる離型効果が得られないことは既に述べた通りである。
【0014】
そこで本発明においては、樹脂成形装置用部材を構成する金属製母材の少なくとも樹脂と接する表面に、まず最初に、元素周期律表の4A族、5A族、6A族元素の窒化物、炭化物、炭窒化物のうちの少なくとも1種からなる単層の又は該単層を積層した硬質被膜を形成する。その後、この硬質被膜の表面にフッ素のみ又はフッ素と炭素の両方をイオン注入することにより、内部にフッ素又はフッ化グラファイトなどの炭素−フッ素系化合物を分散させ、耐摩耗性を有する硬質被膜の表面に離型性に優れた表面改質層を形成する。
【0015】
上記硬質被膜は、4A族、5A族、6A族元素の窒化物、炭化物、又は炭窒化物の単独又はこれらの2種以上で構成される層からなり、また単層であっても、単層を2以上積層したものであってもよい。4A族、5A族、及び6A族元素の中では、価格などの面からチタンやクロムが好ましい。尚、これらの硬質被膜の形成方法としては、熱CVD法やプラズマCVD法のようなCVD法、又はスパッタリング法やイオンプレーティング法などのPVD法など、公知の方法により行うことができる。
【0016】
元素周期律表の4A族、5A族、6A族元素の窒化物、炭化物、炭窒化物は、いずれも硬度がビッカース硬度で1000kg/mm2以上あり、それら自身が優れた耐摩耗性を有していることが知られている。また、これらの化合物からなる硬質被膜の膜厚としては、十分な耐摩耗性を得るために0.5μm以上必要であるが、30μmを越えて厚く形成しても耐摩耗性の更なる向上が得られないので、0.5〜30μmの範囲とすることが好ましい。
【0017】
このような耐摩耗性を有する硬質被膜は、その表面にフッ素のイオンのみ又はフッ素と炭素の両方のイオンを注入することにより、フッ素あるいはPTFEやフッ化グラファイトなどの離型性付与物質が表面内部に分散された形で形成される。このような離型性付与物質が分散した表面改質層を有する硬質被膜は、優れた耐摩耗性と離型性を同時に実現することができ、長期にわたって安定した樹脂成形を可能とするものである。
【0018】
【実施例】
実施例1
高速度鋼SKH51からなる樹脂封止成形用金型の入れ子として、外形寸法が縦30mm×横30mm×厚み10mmで、30mm×30mmの表面に15mm×15mm×深さ4mmの凹部を放電加工により形成した入り子(抜きテーパー角度10°)を16個用意した。これらの入れ子の幾つかについて、下記表1に示す表面処理を施して、単層又は積層の硬質被膜の形成及び/又はイオン注入を行った。尚、形成した硬質被膜の膜厚はいずれも約2μmに統一した。
【0019】
【表1】
(1) 炭窒化チタン(TiCN)の単層硬質被膜
四塩化チタンと、メタンガス、窒素ガス、水素ガスを原料として、熱CVD法により形成
(2) 炭化バナジウム(VC)の単層硬質被膜
金属バナジウムとメタンガスを原料として、スパッタイオンプレーティング法により形成
(3) 窒化クロム(CrN)の単層硬質被膜
金属クロムと窒素ガスを原料として、アークイオンプレーティング法により形成
(4) 炭化ジルコニウム(ZrC)の単層硬質被膜
金属ジルコニウムとメタンガスを原料として、アークイオンプレーティング法により形成
(5) 窒化ニオブ(NbN)の単層硬質被膜
金属ニオブと窒素ガスを原料として、スパッタイオンプレーティング法により形成
(6) 炭化モリブデン(MoC)の単層硬質被膜
モリブデンのカルボニル化合物を原料として、熱CVD法により形成
(7) 炭窒化ハフニウム(HfCN)の単層硬質被膜
金属ハフニウムと、メタンガス、窒素ガスを原料として、アークイオンプレーティング法により形成
(8) 窒化タンタル(TaN)の単層硬質被膜
金属タンタルと窒素ガスを原料として、スパッタイオンプレーティング法により形成
(9) 炭化タングステン(WC)の単層硬質被膜
六フッ化タングステンと、水素ガス、ベンゼンガスを原料として、熱CVD法により形成
(10) 炭窒化チタン(TiCN)と窒化クロム(CrN)の積層硬質被膜
金属チタンと金属クロム、窒素ガス、メタンガスを原料として、アークイオンプレーティング法により、層厚0.5μmの窒化クロム層と層厚0.5μmの炭窒化チタン層とを交互に2回ずつ積層して形成
(11) 炭化タングステン(WC)と窒化チタン(TiN)の積層硬質被膜
炭化タングステンと金属チタン、窒素ガスを原料として、スパッタイオンプレーティング法により、層厚0.3μmの窒化チタン層と層厚0.2μmの炭窒化チタン層とを交互に4回ずつ積層して形成
(12) フッ素(F)のイオン注入
質量分離したフッ素の一価の正イオンを、イオン加速エネルギー70keV、注入量2×1017ions/cm2で注入
(13) フッ素(F)の多重イオン注入
質量分離したフッ素の一価の正イオンを、イオン加速エネルギー80keV、注入量1.7×1017ions/cm2で注入した後、イオン加速エネルギー35keV、注入量2.5×1016ions/cm2として注入
(14) 炭素(C)のイオン注入
質量分離した炭素の一価の正イオンを、イオン加速エネルギー50keV、注入量2.5×1017ions/cm2で注入
(15) 炭素(C)の多重イオン注入
質量分離した炭素の一価の正イオンを、イオン加速エネルギー50keV、注入量1.9×1017ions/cm2で注入した後、イオン加速エネルギー18keV、注入量2.3×1016ions/cm2として注入
【0020】
下記表2に示すように上記表1の各表面処理を組み合わせて施した入れ子、及び全く表面処理を施していない入れ子について、射出成型機を用い、2酸化ケイ素フイラーを約80重量%含有する熱硬化性エポキシ樹脂による射出成型を実施した。他に離型剤を施すことなく、連続的に射出成形を行い、離型不良が発生した時点での成形回数を表2に併せて示した。
【0021】
【表2】

Figure 0003837928
【0022】
上記の結果から分かるように、本発明における各試料においては、優れた耐摩耗性と離型性が同時に達成されているため、いずれも17〜25万ショットの長期間にわたって安定した樹脂成形が実施できた。しかし、比較例の各試料では、初期のみ離型性の向上は認められたものの、1万回未満の極めて少ないショット数でその効果が失われ、離型不良が発生した。
【0023】
実施例2
光学素子成形用の金型として、析出硬化型ステンレス鋼からなる凹面形状の金型4個を用意し、前記実施例1における試料1、10、12、15と同様の表面処理を施した後、アクリル樹脂にて射出成型を行った。離型不良が発生した時点での成形回数を、下記表3に示した。
【0024】
【表3】
Figure 0003837928
【0025】
この結果から分かるように、本発明の各試料では、いずれも優れた耐摩耗性と離型性が同時に達成されているため、極めて長期間にわたって安定した樹脂成形を行うことができた。他方、比較例の各試料においては、初期のみ離型性向上が認められたものの、1万回未満の極めて少ないショット数でその効果が失われ、離型不良が発生した。
【0026】
【発明の効果】
本発明によれば、樹脂成形において問題となっていた金型などの部材の離型性が向上するのみならず、優れた耐摩耗性を兼ね備えることによって、その離型性が長期間にわたって維持されれるため、樹脂成形加工における生産性を大幅に向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding die used for resin molding and a part in contact with a resin among molding apparatuses, and particularly relates to a member for a resin molding apparatus excellent in wear resistance and releasability and a method for manufacturing the same.
[0002]
[Prior art]
When a semiconductor element such as an integrated circuit (IC) is encapsulated with a resin material, or when an optical element made of a resin is manufactured, it is molded by an injection molding apparatus using a resin molding die. It has been broken. However, in such resin molding, the resin tends to adhere to the surface in contact with the resin of the mold or the molding apparatus, and it has been desired to improve the mold releasability.
[0003]
Conventionally, as a method of improving the mold releasability of the surface of a mold or molding apparatus part that comes in contact with a resin, a method of applying a non-adhesive substance such as a mold release agent to the surface of a mold or the like, or a non-adhesive layer A method of providing on the mold surface is generally employed.
[0004]
For example, Japanese Patent Application Laid-Open No. 60-73816 proposes a method of applying a release agent containing a halogen element such as fluorine to the mold surface. Japanese Patent Laid-Open No. 61-16823 discloses a method of depositing a fluororesin or a silicone resin on the mold surface. However, all of these methods are methods for forming a release layer made of an organic substance on the mold surface, so that the release layer is inferior in wear resistance and has a disadvantage that its effect is lost at an early stage.
[0005]
In JP-A-6-179218, fluorine or nickel ions are applied to the surface of a mold containing carbon composed of carbon steel, high-speed tool steel, alloy tool steel, cemented carbide, stainless steel, or the like. There has been proposed a method for improving mold releasability by injection. However, even with this method, an improvement in mold releasability can be realized, but the wear resistance of the mold surface is not improved at all.
[0006]
Further, JP-A-9-290423 proposes a mold whose surface is coated with an intercalation compound of graphite containing fluorine. As a manufacturing method of this mold, after forming a carbon thin film on the surface of a mold base material made of a SUS steel material mainly composed of iron or chromium or a non-ferrous metal material such as zinc, halogen ions such as fluorine Or a combination of carbon ion implantation and halogen ion implantation is disclosed. However, this method also achieved improvement in releasability, but no effect was observed in improving wear resistance.
[0007]
[Problems to be solved by the invention]
As described above, in all of the conventionally proposed methods for improving the mold releasability, the release layer is a low-hardness material, and the wear resistance is such that the generation of scratches during use of the mold is suppressed. There was a common drawback of being scarce. Therefore, even if the effect of improving the releasability is obtained at the beginning of use, the soft release layer gradually peels off as the number of uses increases, and the effect is gradually lost.
[0008]
Especially when encapsulating semiconductor elements, the mold surface is more prone to wear by rubbing with various hard fine powders called fillers added to the resin, so the effect of the release layer is also early. Was lost. For this reason, in the field of resin sealing of semiconductor elements, there has been a demand for the development of a mold having excellent wear resistance as well as releasability.
[0009]
In view of such conventional circumstances, the present invention provides a member for a resin molding apparatus, such as a mold, which has excellent releasability and at the same time has excellent wear resistance and can maintain the releasability over a long period of time. The purpose is to do.
[0010]
[Means for achieving the object]
In order to achieve the above object, the member for a resin molding apparatus provided by the present invention is a mold or other member for a resin molding apparatus whose surface is in contact with a resin, and at least a surface of the metal base material in contact with the resin, Having a single layer composed of at least one of nitrides, carbides, carbonitrides of group 4A, 5A, and 6A elements of the periodic table, or a hard film in which the single layers are laminated, The surface of the hard film is a surface modified layer in which only fluorine or both fluorine and carbon are ion-implanted.
[0011]
Further, in the method for producing a member for a resin molding apparatus according to the present invention, at least a surface of the metal base material in contact with the resin is nitride, carbide, charcoal of elements 4A, 5A, and 6A of the periodic table. After forming a hard film of a single layer made of at least one of nitrides or by laminating the single layer, only fluorine or both fluorine and carbon are ion-implanted into the surface of the hard film. .
[0012]
In the present invention, the resin molding device member is any metal member used in the resin molding device, and is used to include a mold, an injection nozzle, and the like.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As a non-adhesive mold release layer formed on the surface of resin molding dies and molding equipment parts, it has a low adhesiveness to resin, such as compounds mainly composed of carbon and fluorine, such as graphite fluoride and polytetrafluoroethylene (PTFE). ) Etc. are known. However, any of these carbon-fluorine compounds has a low hardness as a material and is inferior in wear resistance. Therefore, as described above, even if these carbon-fluorine compounds are directly formed on the surface of a mold or the like as a release layer, a release effect over a long period of time cannot be obtained.
[0014]
Therefore, in the present invention, at least on the surface of the metal base material constituting the resin molding apparatus member that comes into contact with the resin, first, nitrides, carbides of elements 4A, 5A, 6A of the periodic table of elements, A hard film made of a single layer or a laminate of at least one of carbonitrides is formed. Thereafter, only the fluorine or both fluorine and carbon is ion-implanted into the surface of the hard coating to disperse the inside of the carbon-fluorine compound such as fluorine or graphite fluoride. A surface modified layer having excellent releasability is formed.
[0015]
The hard coating comprises a layer composed of nitrides, carbides, or carbonitrides of 4A group, 5A group, and 6A group elements, or a single layer or a single layer. 2 or more may be laminated. Among the 4A group, 5A group, and 6A group elements, titanium and chromium are preferable from the viewpoint of price and the like. The hard film can be formed by a known method such as a CVD method such as a thermal CVD method or a plasma CVD method, or a PVD method such as a sputtering method or an ion plating method.
[0016]
The nitrides, carbides, and carbonitrides of elements 4A, 5A, and 6A of the Periodic Table of Elements all have a Vickers hardness of 1000 kg / mm 2 or more, and themselves have excellent wear resistance. It is known that Further, the film thickness of the hard coating composed of these compounds is required to be 0.5 μm or more in order to obtain sufficient wear resistance, but even if it is formed thicker than 30 μm, the wear resistance is further improved. Since it cannot be obtained, the range of 0.5 to 30 μm is preferable.
[0017]
The hard coating having such abrasion resistance is formed by injecting only fluorine ions or both fluorine and carbon ions into the surface so that the release property imparting substance such as fluorine or PTFE or fluorinated graphite is inside the surface. Formed in a dispersed form. Such a hard film having a surface-modified layer in which a release property-imparting substance is dispersed can simultaneously realize excellent wear resistance and release property, and enables stable resin molding over a long period of time. is there.
[0018]
【Example】
Example 1
As a nesting of a mold for resin sealing molding made of high-speed steel SKH51, the outer dimensions are 30 mm long x 30 mm wide x 10 mm thick, and a recess of 15 mm x 15 mm x 4 mm depth is formed on the surface of 30 mm x 30 mm by electrical discharge machining Sixteen nests (extraction taper angle 10 °) were prepared. Some of these inserts were subjected to the surface treatment shown in Table 1 below to form a single-layer or multi-layer hard coating and / or ion implantation. Note that the thickness of the hard coating formed was unified to about 2 μm.
[0019]
[Table 1]
(1) Titanium carbonitride (TiCN) single layer hard coating Titanium tetrachloride and methane gas, nitrogen gas, hydrogen gas as raw materials, formed by thermal CVD method
(2) Vanadium carbide (VC) single layer hard coating Metal vanadium and methane gas as raw materials, formed by sputter ion plating method
(3) Chromium nitride (CrN) single layer hard coating Formed by arc ion plating method using chromium metal and nitrogen gas as raw materials
(4) Zirconium carbide (ZrC) single layer hard coating Formed by arc ion plating method using metal zirconium and methane gas as raw materials
(5) Niobium Nitride (NbN) single layer hard coating Formed by sputtering ion plating method using niobium gas and nitrogen gas as raw materials
(6) Molybdenum carbide (MoC) single layer hard coating Molybdenum carbonyl compound as raw material, formed by thermal CVD method
(7) Hafnium carbonitride (HfCN) single layer hard coating Metal hafnium, formed by arc ion plating method using methane gas and nitrogen gas as raw materials
(8) Tantalum nitride (TaN) single layer hard coating Formed by sputtering ion plating method using metal tantalum and nitrogen gas as raw materials
(9) Tungsten carbide (WC) single layer hard coating Tungsten hexafluoride, hydrogen gas, benzene gas as raw materials, formed by thermal CVD method
(10) Laminated hard coating of titanium carbonitride (TiCN) and chromium nitride (CrN) Metal titanium, metal chromium, nitrogen gas, and methane gas as raw materials, and a chromium nitride layer having a layer thickness of 0.5 μm by arc ion plating method Formed by alternately laminating titanium carbonitride layers with a thickness of 0.5μm twice.
(11) Laminated hard coating of tungsten carbide (WC) and titanium nitride (TiN) Tungsten carbide with a thickness of 0.3 μm and a layer thickness of 0 by sputtering ion plating using tungsten carbide, metal titanium, and nitrogen gas as raw materials. .4 μm alternately layered with 2 μm titanium carbonitride layers
(12) Fluorine (F) ion implantation Mass-separated monovalent positive ions of fluorine are implanted at an ion acceleration energy of 70 keV and an implantation amount of 2 × 10 17 ions / cm 2 .
(13) Fluorine (F) multiple ion implantation Mass-separated monovalent positive ions of fluorine are implanted at an ion acceleration energy of 80 keV and an implantation amount of 1.7 × 10 17 ions / cm 2 , and then an ion acceleration energy of 35 keV, Injection with an injection volume of 2.5 × 10 16 ions / cm 2
(14) Carbon (C) ion implantation Mass-separated carbon monovalent positive ions are implanted at an ion acceleration energy of 50 keV and an implantation amount of 2.5 × 10 17 ions / cm 2 .
(15) Carbon (C) multiple ion implantation Mass-separated carbon monovalent positive ions are implanted at an ion acceleration energy of 50 keV and an implantation amount of 1.9 × 10 17 ions / cm 2 , and then an ion acceleration energy of 18 keV, Injection with an injection amount of 2.3 × 10 16 ions / cm 2
As shown in Table 2 below, a heat containing about 80% by weight of silicon dioxide filler using an injection molding machine for a nesting formed by combining the surface treatments in Table 1 and a nesting not subjected to any surface treatment. Injection molding with a curable epoxy resin was performed. Table 2 also shows the number of moldings at the time when mold release failure occurred continuously by performing injection molding without applying any other release agent.
[0021]
[Table 2]
Figure 0003837928
[0022]
As can be seen from the above results, in each sample in the present invention, excellent wear resistance and release properties were achieved at the same time, and therefore, stable resin molding was carried out over a long period of 17 to 250,000 shots. did it. However, in each sample of the comparative example, although an improvement in the releasability was recognized only in the initial stage, the effect was lost with a very small number of shots of less than 10,000 times, and a release failure occurred.
[0023]
Example 2
After preparing four concave-shaped molds made of precipitation hardening stainless steel as molds for optical element molding, and after performing the same surface treatment as Samples 1, 10, 12, and 15 in Example 1, Injection molding was performed with acrylic resin. Table 3 shows the number of moldings at the time when mold release failure occurred.
[0024]
[Table 3]
Figure 0003837928
[0025]
As can be seen from these results, each of the samples of the present invention achieved excellent wear resistance and release properties at the same time, and thus it was possible to perform stable resin molding over an extremely long period of time. On the other hand, in each sample of the comparative example, although an improvement in the releasability was recognized only in the initial stage, the effect was lost with an extremely small number of shots of less than 10,000 times, and a release failure occurred.
[0026]
【The invention's effect】
According to the present invention, not only the mold releasability of a member such as a mold, which has been a problem in resin molding, is improved, but the mold releasability is maintained for a long time by combining excellent wear resistance. Therefore, productivity in the resin molding process can be greatly improved.

Claims (4)

表面が樹脂と接する樹脂成形装置用部材であって、その金属製母材の少なくとも樹脂と接する表面に、元素周期律表の4A族、5A族、6A族元素の窒化物、炭化物、炭窒化物のうちの少なくとも1種からなる単層の又は該単層を積層した硬質被膜を有しており、該硬質被膜の表面がフッ素のみ又はフッ素と炭素の両方をイオン注入した表面改質層であることを特徴とする樹脂成形装置用部材。A member for a resin molding apparatus whose surface is in contact with a resin, and a nitride, carbide, carbonitride of elements 4A, 5A, and 6A of the periodic table of elements on at least a surface of the metal base material in contact with the resin A hard coating comprising a single layer of at least one of the above or a laminate of the single layers, and the surface of the hard coating is a surface modified layer in which only fluorine or both fluorine and carbon are ion-implanted A member for a resin molding apparatus. 前記硬質被膜が、チタン又はクロムの窒化物、炭化物、炭窒化物のうちの少なくとも1種からなる単層の又は該単層を積層した硬質被膜であることを特徴とする、請求項1に記載の樹脂成形装置用部材。2. The hard film according to claim 1, wherein the hard film is a single layer made of at least one of nitrides, carbides, and carbonitrides of titanium or chromium, or a hard film formed by laminating the single layers. A member for resin molding equipment. 表面が樹脂と接する樹脂成形装置用部材の製造方法であって、その金属製母材の少なくとも樹脂と接する表面に、元素周期律表の4A族、5A族、6A族元素の窒化物、炭化物、炭窒化物のうちの少なくとも1種からなる単層の又は該単層を積層した硬質被膜を形成した後、該硬質被膜の表面にフッ素のみ又はフッ素と炭素の両方をイオン注入することを特徴とする樹脂成形装置用部材の製造方法。A method for producing a member for a resin molding apparatus having a surface in contact with a resin, wherein at least a surface of the metal base material in contact with the resin is a nitride, carbide or carbide of elements 4A, 5A, 6A of the periodic table After forming a hard film of a single layer made of at least one kind of carbonitride or a laminate of the single layer, only fluorine or both fluorine and carbon are ion-implanted into the surface of the hard film. A method for manufacturing a member for a resin molding apparatus. 前記硬質被膜として、チタン又はクロムの窒化物、炭化物、炭窒化物のうちの少なくとも1種からなる単層の又は該単層を積層した硬質被膜を形成することを特徴とする、請求項3に記載の樹脂成形装置用部材の製造方法。The hard film is formed of a single layer composed of at least one of nitrides, carbides, and carbonitrides of titanium or chromium, or a laminate of the single layers, as the hard film. The manufacturing method of the member for resin molding apparatuses of description.
JP23589798A 1998-08-21 1998-08-21 Member for resin molding apparatus and method for manufacturing the same Expired - Fee Related JP3837928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23589798A JP3837928B2 (en) 1998-08-21 1998-08-21 Member for resin molding apparatus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23589798A JP3837928B2 (en) 1998-08-21 1998-08-21 Member for resin molding apparatus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000061952A JP2000061952A (en) 2000-02-29
JP3837928B2 true JP3837928B2 (en) 2006-10-25

Family

ID=16992868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23589798A Expired - Fee Related JP3837928B2 (en) 1998-08-21 1998-08-21 Member for resin molding apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3837928B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193610A (en) * 2004-01-09 2005-07-21 Towa Corp Composite material and resin molding tool
JP4720373B2 (en) * 2005-08-25 2011-07-13 パナソニック電工株式会社 Stainless steel sink
JP6096147B2 (en) * 2014-03-31 2017-03-15 出光興産株式会社 Method for manufacturing compression mold and method for manufacturing compression molded body
TWI756696B (en) * 2018-03-28 2022-03-01 日商三菱化學股份有限公司 Molding apparatus for fiber-reinforced composite material and method for producing fiber-reinforced composite material molded article

Also Published As

Publication number Publication date
JP2000061952A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
EP1598441B1 (en) Amorphous carbon film and process for producing the same
JP2984228B2 (en) Mold for epoxy resin molding
JP3189347B2 (en) Resin mold, resin mold manufacturing method, and resin molding method
JP2007070667A (en) Formed article with hard multilayer film of diamond-like carbon, and production method therefor
JP2002256415A (en) Compact with hard multilayer of diamond-like carbon, and manufacturing method therefor
JP3292199B2 (en) Rubber mold, method for manufacturing rubber mold, and method for molding rubber
CN108070857A (en) Super thick DLC coatings
US6417480B2 (en) Method of processing a surface of a mold using electric discharge, an electrode used in such processing and a method of manufacturing such an electrode
JP3837928B2 (en) Member for resin molding apparatus and method for manufacturing the same
JP2004137541A (en) Dlc gradient structural hard film, and its manufacturing method
JP5226826B2 (en) Method for producing diamond-like carbon hard multilayer film molded body
JP5463216B2 (en) Chromium hard coating, mold having chromium hard coating formed on the surface, and method for producing chromium hard coating
KR102314870B1 (en) Complex material and preparing methods thereof
JP4096373B2 (en) Hard coating and manufacturing method thereof
JP2005068499A (en) Metallic product provided with hard film having excellent adhesion, method of producing the metallic product, and cutting tool and die coated with the hard film
KR100533070B1 (en) Method for increasing wear-resistibility of metal products using plasma ion implantation method
JP5745437B2 (en) Die for pellet manufacturing
US20040043101A1 (en) Injection mold
JP2914142B2 (en) Gradient composition film, method for producing the same, and tool
JP3791034B2 (en) Polished hard film and its manufacturing method
JP3236385B2 (en) Mold for ceramic powder molding
JP4870451B2 (en) Powder molding die and manufacturing method thereof
JP4010691B2 (en) Method for producing steel material with surface modified layer
JP2001058326A (en) Resin molding die and manufacture thereof
JP2000225620A (en) Mold for molding resin and production of mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees