WO2006038589A1 - 血圧測定装置および血圧測定方法 - Google Patents

血圧測定装置および血圧測定方法 Download PDF

Info

Publication number
WO2006038589A1
WO2006038589A1 PCT/JP2005/018293 JP2005018293W WO2006038589A1 WO 2006038589 A1 WO2006038589 A1 WO 2006038589A1 JP 2005018293 W JP2005018293 W JP 2005018293W WO 2006038589 A1 WO2006038589 A1 WO 2006038589A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
blood pressure
cuff
blood
detected
Prior art date
Application number
PCT/JP2005/018293
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Habu
Kouji Hagi
Hitoshi Ozawa
Kimihisa Aihara
Naoe Tatara
Shinji Mino
Hiroshi Koizumi
Original Assignee
Terumo Kabushiki Kaisha
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004294308A external-priority patent/JP4455971B2/ja
Priority claimed from JP2004294307A external-priority patent/JP4657666B2/ja
Application filed by Terumo Kabushiki Kaisha, Nippon Telegraph And Telephone Corporation filed Critical Terumo Kabushiki Kaisha
Priority to US11/664,690 priority Critical patent/US20080243008A1/en
Priority to EP05788055A priority patent/EP1808123B1/en
Priority to AT05788055T priority patent/ATE498357T1/de
Priority to DE602005026424T priority patent/DE602005026424D1/de
Publication of WO2006038589A1 publication Critical patent/WO2006038589A1/ja
Priority to US13/422,837 priority patent/US20120172735A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • A61B5/02241Occluders specially adapted therefor of small dimensions, e.g. adapted to fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • A61B5/02255Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds the pressure being controlled by plethysmographic signals, e.g. derived from optical sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present invention relates to a technique that enables highly accurate blood pressure derivation, particularly in blood pressure measurement using the outer ear and its peripheral portion as a measurement site.
  • Patent Document 1 Japanese Patent No. 3240324
  • Patent Document 2 Japanese Patent Publication No. 6-18555
  • the present invention has been made in view of the above-described problems, and can reduce annoyance caused by remeasurement by acquiring an appropriate pulse wave signal for enabling blood pressure measurement with high accuracy. And a blood pressure measurement device and a blood pressure measurement method capable of reducing the physical burden on the user due to the cuff pressure.
  • the first pulse wave detector which detects the pulse wave of the cuff attached to the outer ear and its peripheral part, and the pulse wave of the part compressed by the cuff and is influenced differently by the characteristics of the body movement
  • a second pulse wave detector a body motion detecting means for detecting a feature of the body motion, and the first pulse wave detector and the second pulse based on the feature of the body motion detected by the body motion detecting means.
  • a pulse wave selecting means for selecting from any one of the pulse waves detected by the wave detector, and a blood pressure value deriving means for deriving a blood pressure value based on the pulse wave selected by the pulse wave selecting means.
  • the body motion detection means has level detection means for detecting the magnitude of body motion
  • the pulse wave selection means derives blood pressure based on the magnitude of body motion detected by the level detection means. Select the pulse wave to use.
  • the body motion detecting means further includes a period detecting means for detecting the period of the body motion, and the pulse wave selecting means is detected by the magnitude and period detecting means of the body motion detected by the level detecting means.
  • the pulse wave used for blood pressure derivation is selected based on the cycle of body movement.
  • the first cuff attached to the outer ear and its peripheral part and the pulse wave of the portion compressed by the first cuff are detected, and the first and second cuffs are influenced differently by the characteristics of body movement.
  • One of the pulse wave forces detected by the detector and the second pulse wave detector, and a blood pressure value based on the pulse wave selected by the first pulse wave selecting means and the pulse wave selected by the first pulse wave selecting means A first blood pressure value deriving means for deriving the blood pressure, a second cuff attached at a different location from the first cuff, Blood pressure determination means for determining a blood pressure by detecting a pulse wave of a part compressed by the second cuff, and pressure control means for synchronizing the pressurization of the first cuff and the second cuff.
  • the blood pressure determination means detects the pulse wave of the part compressed by the second cuff, and the third pulse wave detector and the fourth pulse wave detection are affected differently depending on the characteristics of the body motion. And a second pulse wave selected from any one of the pulse waves detected by the third pulse wave detector and the fourth pulse wave detector based on the feature of the body motion detected by the body motion detecting means. And a second blood pressure value deriving unit for deriving a blood pressure value based on the pulse wave selected by the second pulse wave selecting unit.
  • a cuff attached to the outer ear and its peripheral part, a pulse wave detector for detecting a pulse wave at a site compressed by the cuff, and a level control means for controlling the signal level of the pulse wave If the pulse wave signal level detected by the pulse wave detector when the cuff is boosted is outside the predetermined range, the level control means adjusts the signal level to be within the predetermined range, and when the cuff is lowered, Blood pressure value deriving control means for deriving a blood pressure value based on the pulse wave detected by the pulse wave detector.
  • the blood pressure value derivation control means derives the blood pressure value based on the pulse wave when the signal level of the pulse wave detected by the pulse wave detector when the cuff is boosted is within a predetermined range. End the measurement operation.
  • the pulse wave detected by the pulse wave detector is a photoelectric volume pulse wave obtained by light absorption and reflection by blood in the blood vessel.
  • the level control means includes a light amount adjusting means for adjusting an output light amount of light emitting element power for irradiating light in blood in the blood vessel, and absorption of light irradiated by the light emitting element by the blood in the blood vessel. And a gain control means for controlling the signal level from the light receiving element for detecting reflection.
  • a cuff attached to the outer ear and its peripheral part, a pulse wave detector for detecting a pulse wave at a site compressed by the cuff, and a level control means for controlling the signal level of the pulse wave If the pulse wave signal level detected by the pulse wave detector before the cuff boosting or at the beginning of boosting is outside the predetermined range, the level control means adjusts the signal level to be within the predetermined range. Detected by pulse wave detector during subsequent cuff pressurization Blood pressure value deriving control means for deriving a blood pressure value based on the pulse wave.
  • the pulse wave detected by the pulse wave detector is a photoelectric volume pulse wave obtained by light absorption and reflection by blood in the blood vessel.
  • the level control means includes a light amount adjusting means for adjusting an output light amount of the light emitting element force for irradiating light in the blood in the blood vessel, and absorption and reflection of light irradiated by the light emitting element by the blood in the blood vessel. And at least one of gain control means for controlling the signal level from the light receiving element for detecting.
  • a first cuff attached to the outer ear and its peripheral part, a pulse wave detector for detecting a pulse wave at a site compressed by the first cuff, and a signal level of the pulse wave If the signal level of the pulse wave detected by the pulse wave detector when the first cuff is boosted is outside the predetermined range, the level control means determines that the signal level is within the predetermined range.
  • the blood pressure value derivation control means for deriving the blood pressure value based on the pulse wave detected by the pulse wave detector when the first cuff is stepped down is attached to a location different from the first cuff.
  • a second cuff a blood pressure determination means for determining a blood pressure by detecting a pulse wave of a portion compressed by the second cuff, and a pressurization control hand for synchronizing the pressurization of the first cuff and the second cuff Having a stage.
  • the first cuff attached to the outer ear and its peripheral part, the pulse wave detector for detecting the pulse wave of the part compressed by the first cuff, and the signal level of the pulse wave If the signal level of the pulse wave detected by the pulse wave detector before the boosting of the first cuff or at the initial stage of boosting is outside the predetermined range, the signal level is controlled by the level control means.
  • the blood pressure value deriving control means for deriving the blood pressure value based on the pulse wave detected by the pulse wave detector during the subsequent pressure increase of the first cuff after being adjusted to be within the predetermined range is different from the first cuff.
  • a second cuff attached to the place a blood pressure determining means for determining a blood pressure by detecting a pulse wave of a portion compressed by the second cuff, and pressurization of the first cuff and the second cuff.
  • Pressure control means for synchronization.
  • the first pulse wave and the second pulse wave that are affected differently by the characteristics of body motion are detected by detecting a pulse wave of a portion compressed by a cuff attached to the outer ear and its peripheral part.
  • a detection step for detecting a pulse wave, a body motion detection step for detecting characteristics of body motion, and a body motion A pulse wave selection step of selecting one of the first pulse wave and the second pulse wave based on the feature of the body motion detected by the detection step, and a pulse selected by the pulse wave selection step.
  • a blood pressure value deriving step for deriving a blood pressure value based on the wave.
  • the body motion detection step has a level detection step of detecting the magnitude of body motion
  • the pulse wave selection step is based on the magnitude of body motion detected by the level detection step. Select the pulse wave used for derivation.
  • the body motion detection step further includes a cycle detection step for detecting the cycle of body motion, and the pulse wave selection step is detected by the size and cycle detection step of the body motion detected by the level detection step.
  • the pulse wave used for blood pressure derivation is selected based on the cycle of body movement.
  • a pulse wave detection process at the time of pressurization for detecting a pulse wave at a portion pressed by the cuff when the cuff attached to the outer ear and its peripheral part is pressurized, and a pulse wave detection process at the time of pressurization are detected.
  • the level control process for controlling the signal level so that the signal level is within the predetermined range, and the pulse wave of the part compressed by the force when the cuff is lowered Blood pressure value for deriving a blood pressure value based on a pulse wave whose signal level detected by the step-down pulse wave detection step and the step-up pulse wave detection step or step-down pulse wave detection step is within a predetermined range A derivation step.
  • the level control step and the step-down pulse wave detection step are not performed, and the blood pressure value deriving step is performed.
  • a blood pressure value based on the pulse wave detected by the boosting pulse wave detection step is derived.
  • the pulse wave detected by the step-up pulse wave detection step and the step-down pulse wave detection step is a photoelectric volume pulse wave obtained by light absorption and reflection by blood in the blood vessel.
  • the level control step includes a light amount adjustment step for adjusting the output light amount of the light emitting element force for irradiating light to blood in the blood vessel, and absorption and reflection of light irradiated by the light emitting element by the blood in the blood vessel. At least one of a gain control step for controlling a signal level from the light receiving element for detecting the light.
  • the pulse wave detected by the pulse wave detection step is a photoelectric volume pulse wave obtained by light absorption and reflection by blood in the blood vessel.
  • the level control step includes a light amount adjustment step for adjusting the output light amount from the light emitting element that irradiates light to blood in the blood vessel, and the absorption and reflection of the light irradiated by the light emitting element by the blood in the blood vessel. At least one of a gain control step for controlling a signal level from the light receiving element for detecting the light.
  • FIG. 1 is an internal block diagram of a blood pressure measurement device according to a first embodiment.
  • FIG. 2 is a diagram showing the structure and operation in the cuff.
  • FIG. 3 is an external perspective view of a blood pressure measurement device according to the first embodiment.
  • FIG. 4A is an operation flowchart of the blood pressure measurement device according to the first embodiment.
  • FIG. 4B is an operation flowchart of the blood pressure measurement device according to the first embodiment.
  • FIG. 5 is a diagram exemplarily showing pulse wave selection based on body movement characteristics of the blood pressure measurement device according to the second embodiment.
  • FIG. 6 is an internal block diagram of a blood pressure measurement device according to a third embodiment.
  • FIG. 7 is a diagram showing a cuff attached to the tragus and its surroundings.
  • FIG. 8 is an internal block diagram of a blood pressure measurement device according to a fourth embodiment.
  • FIG. 9A is an operation flowchart of the blood pressure measurement device according to the fourth embodiment.
  • FIG. 9B is an operation flowchart of the blood pressure measurement device according to the fourth embodiment.
  • FIG. 10 is an operation flowchart of signal level adjustment of the blood pressure measurement device according to the fourth embodiment.
  • FIG. 11 is a diagram exemplarily showing a cuff pressure and a pulse wave signal during blood pressure measurement.
  • FIG. 12 is an exemplary circuit diagram relating to signal level adjustment.
  • FIG. 13A is an operation flowchart of the blood pressure measurement device according to the fifth embodiment.
  • FIG. 13B is an operation flowchart of the blood pressure measurement device according to the fifth embodiment.
  • FIG. 14 is an internal block diagram of a blood pressure measurement device according to a sixth embodiment.
  • a blood pressure monitor using the tragus and its peripheral part as a measurement site will be described below as an example.
  • FIG. 1 is an internal block diagram of the blood pressure measurement device according to the first embodiment.
  • Fig. 2 is a diagram showing the structure and operation of the cuff.
  • Reference numeral 1 denotes a cuff, which is fixed to a blood pressure measurement site so that a blood vessel can be compressed.
  • 2 is a rubber tube that forms a flow path of air into the cuff 1.
  • 3 is a pressure pump, which sends pressurized air into the cuff 1.
  • 4 is a quick drain valve that rapidly reduces the pressure in the cuff 1.
  • 5 is a fine exhaust valve that reduces the pressure in the cuff 1 at a constant speed (for example, 2 to 3 mmHg / sec).
  • 6 is a pressure sensor that changes the electrical parameters according to the pressure in the cuff 1.
  • a pressure pulse wave detection amplifier (AMP) 7 detects an electrical parameter of the pressure sensor 6, converts it into an electrical signal, amplifies it, and outputs an analog cuff pressure signal P.
  • AMP pressure pulse wave detection amplifier
  • [0038] 8 is a pulse wave sensor installed in the cuff 1, LE that irradiates light to the pulsating vascular blood flow D8a and a phototransistor 8b that detects the reflected light from the blood flow.
  • Reference numeral 9 denotes a photoelectric pulse wave detection amplifier (AMP), which amplifies the output signal of the phototransistor 8b and outputs an analog pulse wave signal M.
  • the LED 8a is connected to a light amount control unit 18 that automatically changes the light amount, while the pulse wave detection amplifier 9 is connected to the gain control unit 19a that changes the gain and the time constant of the amplifier 9 is changed.
  • the constant control unit 19b is connected.
  • Reference numeral 10 denotes AZD conversion (AZD), which converts analog signals M, P, and A (not shown) into digital data D (not shown).
  • AZD AZD conversion
  • Reference numeral 11 denotes a control unit (CPU), which performs main control of the blood pressure measurement device.
  • the CPU 11 has an adjustment pressure register 11a for storing the adjustment pressure. Details of the control will be described later.
  • 1 2 is a ROM that stores, for example, the control program shown in FIG. 13 is a RAM, which includes a data memory and an image memory.
  • a liquid crystal display (LCD) 14 displays the contents of the image memory.
  • Reference numeral 16 denotes a keyboard, which can be used to set a measurement start command, adjustment pressure value, etc. by user operation.
  • 15 is a buzzer that informs the user that the device has sensed that a key in the keyboard 16 has been pressed, or that the measurement has been completed.
  • an adjustment pressure storage unit may be provided in the force RAM 13 provided with the adjustment pressure register 11a in the CPU 11.
  • FIG. 3 is an external perspective view of the blood pressure measurement device according to the first embodiment.
  • Reference numeral 17 denotes a sphygmomanometer body, which includes a configuration excluding the cuff 1 and the pulse wave sensor 8 of FIG.
  • the rubber tube 2 air tube
  • the LCD display panel 14 uses a dot matrix type display panel, and therefore can display a variety of information (for example, characters, figures, signal waveforms, etc.).
  • 20 is a power switch
  • the keyboard 16 has a measurement start switch (ST) and a numeric keypad for inputting a cuff pressure value and the like.
  • ST measurement start switch
  • FIG. 7 is a diagram showing a cuff attached to the tragus and its periphery.
  • the measurement part including the cuff is configured to press the tragus from both sides. Note that the movement of the measurement site has the most influence on blood pressure determination.
  • the acceleration sensor 20 as the body motion detection means be provided near or integrally with the measurement unit.
  • 4A and 4B are operation flowcharts of the blood pressure measurement device according to the first embodiment.
  • step S401 the cuff pressure P is read, and in step S402, it is determined whether or not the residual pressure of cuff 1 is within a specified value. If the residual pressure exceeds the specified value, “residual pressure error” is displayed on LCD14 in step S423. If the residual pressure is within the specified value, a cuff pressurization value (for example, a value greater than the maximum blood pressure value of 120 to 210 mmHg) is set using the keyboard 16 in step S403, and the light amount and gain are set to a predetermined value in step S404. Set to value.
  • a cuff pressurization value for example, a value greater than the maximum blood pressure value of 120 to 210 mmHg
  • step S407 the driving of the pressure pump 3 is started and pressurization (pressure increase) is started.
  • step S408 it is determined whether or not the cuff pressure is higher than the pressurization value U set in S403.
  • step S410 the fine exhaust valve 5 is opened. This is the start of the measurement process at the time of pressure reduction (pressure reduction), and the cuff pressure starts decreasing at a constant speed (for example, 2 to 3 mmHg / sec).
  • detection of acceleration by the body motion detection means is started, and detection of pulse waves is started by the first blood pressure determining means (photoelectric pulse wave method) and the second blood pressure determining means (pressure pulse wave method). Is done.
  • the first blood pressure determining means light is emitted to the blood vessel by the light emitting element 8a, and the reflected light reflected by the blood flow is received by the light receiving element 8b, and this received light amount data (varies depending on the blood flow in the blood vessel).
  • the second blood pressure determining means detects the air pressure in the cuff, that is, the vibration amplitude that changes according to the amount of compression (the vibration of the blood vessel wall corresponding to the pulsation passes through the cuff).
  • the pressure sensor detects the air pressure in the vibrating cuff as a pressure pulse wave.
  • step S411 data processing by each functional block is performed in step S411, and the photoelectric pulse wave signal
  • step S412 it is determined whether or not a minimum blood pressure value is detected during decompression.
  • step S413 it is determined whether the force pressure is lower than a predetermined value L (for example, 40 mmHg). If P ⁇ L, it is still in the normal measurement range, and the flow returns to step S411. On the other hand, when P and L, the cuff pressure is already lower than the normal measurement range! When both the photoelectric pulse wave signal and the pressure pulse wave signal are not able to acquire normal data (for example, the determined maximum value).
  • the hypertension force OmmHg or less displays “Measurement error” on the LCD 14 in step S414. At that time, if necessary, display detailed information such as “signal anomaly during decompression”.
  • step S415 the quick release valve 4 is opened.
  • step S416 the systolic blood pressure value and the diastolic blood pressure value determined based on whether or not the value obtained by the acceleration sensor exceeds a predetermined value C that is preliminarily set is determined based on whether or not the photoelectric pulse wave force is determined. Selects between the maximum and minimum blood pressure values determined from the pressure pulse wave! At this time, if it exceeds the predetermined value C, there is a large body movement during the measurement, and it is judged that accurate blood pressure cannot be obtained depending on the pressure pulse wave! /, And the maximum blood pressure determined from the photoelectric pulse wave It is desirable to select the maximum blood pressure value and the minimum blood pressure value determined from the pressure pulse wave if the value and the minimum blood pressure value are selected.
  • the blood pressure value to be displayed is selected, but after selecting the pulse wave data of the photoelectric pulse wave and the pressure pulse wave, A blood pressure value may be derived.
  • step S417 the selected maximum blood pressure value and minimum blood pressure value are displayed on the LCD 14, and in step S418, a buzzer is sounded to notify the user of the end of measurement.
  • the blood pressure measurement result of the photoelectric pulse wave system that is the first blood pressure determining means and the blood pressure measurement of the pressure pulse wave system that is the second blood pressure determining means are obtained.
  • the signal intensity of the acceleration sensor which is a body motion detection means, it is possible to objectively select the appropriate blood pressure to be displayed as a result of determining whether the force exceeds the threshold corresponding to the predetermined acceleration. It becomes possible. Note that the effect of head movement cannot be ignored for the measurement of the tragus and its surroundings, so it is particularly effective, and this also makes it easy to apply to continuous blood pressure measurement. to be born. [0051] (Second Embodiment)
  • the second embodiment further has a function of calculating body motion cycle components using the CPU 11 using data of an acceleration sensor as the body motion cycle detection means. Therefore, in step S416, when selecting the blood pressure value to be displayed and output from the blood pressure value determined from the photoelectric pulse wave and the blood pressure value determined from the pressure pulse wave, the selection is made more effectively for the following reason. I can do it.
  • the pressure pulse wave method is generally detected via air because of its measurement principle, and therefore the cycle is shorter ( Disturbance vibration due to body motion is attenuated by air and is not easily affected.
  • the photoelectric pulse wave method is susceptible to body motion with a short period. Therefore, it is more desirable to determine the blood pressure by the pressure pulse wave method for measurement when the body motion level is smaller than the predetermined value and the cycle is short, and the (speed) body motion exists.
  • FIG. 5 is a diagram exemplarily showing pulse wave selection based on the characteristics of body motion of the blood pressure measurement device according to the second embodiment.
  • the pressure pulse wave may be detected more stably depending on the force measurement site configured to select the photoelectric pulse wave when the noise is small. In this case, the noise is small! / In this case, you may select the pressure pulse wave.
  • a blood pressure measurement device capable of simultaneously measuring a plurality of parts.
  • FIG. 6 is an internal block diagram of the blood pressure measurement device according to the third embodiment.
  • a light irradiator see Fig. 6: LEDs 8a and 23a
  • a light-receiving unit see Fig. 6: phototransistors 8b and 23b
  • the two cuffs are configured to be pressurized simultaneously by a single pressure pump 3, allowing simultaneous measurement of the blood pressure on the tragus and Z or its surroundings, ie the back and front of the tragus.
  • Sensors that use different measurement principles may be used for blood pressure measurement. Since other configurations and operations are the same as those in the first and second embodiments, the description thereof will be omitted.
  • the tragus and the blood vessels (arterioles) at or around Z are close to the blood vessels in the brain Is known, and it is thought that changes in blood pressure originating in the brain can be measured.
  • the blood pressure measurement device makes it possible to select the results objectively by providing the most accurate blood pressure measurement results by a plurality of methods based on the characteristics of body movement during the blood pressure measurement period. Blood pressure can be measured with high accuracy in the surrounding area.
  • a photoelectric volume pulse sphygmomanometer with an appropriate location in the outer ear and its peripheral part as a measurement site will be described below as an example.
  • FIG. 8 is an internal block diagram of the blood pressure measurement device according to the fourth embodiment.
  • Reference numeral 1 denotes a cuff, which is fixed to a blood pressure measurement site, preferably the tragus, in the periphery of the outer ear so that the outer ear and blood vessels (arterioles) in the periphery thereof can be compressed.
  • 2 is a rubber tube (air tube) that forms an air flow path into the cuff 1.
  • 3 is a pressure pump, which sends pressurized air into the cuff 1.
  • 4 is a quick drain valve that rapidly reduces the pressure in the cuff 1.
  • 5 is a fine exhaust valve that reduces the pressure in the cuff 1 at a constant rate (eg 2 to 3 mmHg / sec).
  • Reference numeral 7 denotes a pressure detection amplifier (AMP) that detects an electrical parameter of the pressure sensor 6, converts it into an electrical signal, amplifies it, and outputs an analog cuff pressure signal P.
  • AMP pressure detection amplifier
  • [0059] 8 is a pulse wave sensor installed in the cuff 1, and includes a LED 8a that irradiates light to the pulsating vascular blood flow and a phototransistor 8b that detects reflected light from the vascular blood flow (FIG. 2). ).
  • a pulse wave detection amplifier (AMP) 9 amplifies the output signal of the phototransistor 8b and outputs an analog pulse wave signal M.
  • the LED 8a is connected with a light amount control unit 18 for automatically changing the light amount, while the pulse wave detection amplifier 9 is provided with a gain control unit 19a for automatically changing the gain and a pulse wave detection filter / amplifier.
  • a time constant control unit 19b for changing the time constants of filter amplifiers 91 and 92, which will be described later, constituting 9 is connected.
  • 10 is AZD transformation ( AZD), which converts analog signals M and P (not shown) into digital data D (not shown).
  • Reference numeral 11 denotes a control unit (CPU), which performs main control of the photoelectric volume pulse wave sphygmomanometer.
  • the CPU 11 has an adjustment pressure register 1 la for storing the adjustment pressure. Details of this control will be described later.
  • Reference numeral 12 denotes a ROM, which stores a program executed by the CPU 11 for performing the control shown in FIGS. 9A, 9B, and 10, for example.
  • Reference numeral 13 denotes a RAM, which includes a data memory and an image memory.
  • a liquid crystal display (LCD) 14 displays the contents of the image memory.
  • Reference numeral 16 denotes a keyboard, which can be used to set a measurement start command, adjustment pressure value, etc. by user operation. 15 is a buzzer that informs the user that the device has sensed a key press in the keyboard 16 and that the measurement has been completed.
  • an adjustment pressure storage unit may be provided in the force RAM 13 provided with the adjustment pressure register 1 la in the CPU 11.
  • the measurement part including the cuff is configured to press the tragus from both sides as shown in Fig. 7.
  • FIGS 9A and 9B are operation flowcharts of the blood pressure measurement device according to the fourth embodiment.
  • the apparatus is turned on by the power switch 20, first, self-initial diagnosis processing (not shown) is performed, and the initial value of the apparatus is set. After that, press the measurement start switch ST to start the process.
  • step S901 the cuff pressure P is read, and in step S902, it is determined whether or not the residual pressure of cuff 1 is within a specified value. If the residual pressure exceeds the specified value, “residual pressure error” is displayed on LCD14 in step S923. If the residual pressure is within the specified value, the cuff pressure upper limit value (for example, a value larger than the maximum blood pressure value of 120 to 280 mmHg) is set using the keyboard 16 in step S903, and the light intensity and gain are set in step S904. Set to a predetermined value.
  • the cuff pressure upper limit value for example, a value larger than the maximum blood pressure value of 120 to 280 mmHg
  • step S907 the drive of the pressure pump 3 is started and pressurization (pressure increase) is started. This is the start of the measurement process during pressurization, and the cuff pressure begins to increase at a constant rate (eg 2 to 3 mmHg / sec).
  • a constant rate eg 2 to 3 mmHg / sec.
  • step S908 Processing is performed to measure the minimum blood pressure and the maximum blood pressure.
  • the pressure pump 3 is stopped in step S912.
  • step S910 it is determined whether or not the cuff pressure is higher than the pressurization value U set in S903. If P> U, it is still in the normal measurement range and measurement is continued. On the other hand, when P> U, the cuff pressure is already higher than the set value, so “measurement error” is displayed on the LCD 14 in step S911. If necessary, display detailed information such as “signal anomaly during pressurization”. In step S914, the light amount and gain are adjusted based on the signal level of the pulse wave signal obtained during pressurization.
  • step S915. This is the start of the measurement process when the pressure is reduced (decrease), and the cuff pressure starts decreasing at a constant rate (for example, 2 to 3 mmHg / sec).
  • a constant rate for example, 2 to 3 mmHg / sec.
  • step S 917 it is determined whether or not a minimum blood pressure value is detected during decompression. If not detected, continue measurement.
  • step S918 it is determined whether or not the cuff pressure is lower than a predetermined value L (for example, 40 mmHg).
  • step S917 When the measurement is completed in step S917, the measurement process is completed in the normal measurement range.
  • step S920 the maximum blood pressure value and the minimum blood pressure value measured are displayed on the LCD 14, and the buzzer is displayed in step S921.
  • different tone signals are sent after normal termination and abnormal termination.
  • step S922 the remaining air of cuff 1 is quickly exhausted and waits for the start of the next measurement.
  • FIG. 11 is a diagram exemplarily showing the cuff pressure and the pulse wave signal during blood pressure measurement.
  • the starting force of measurement during pressurization (step S908) also shows the state of the pulse wave signal when using the cuff pressure and speed (change amount detection) sensor in the time until the end of measurement during depressurization (step S916).
  • the blood pressure value is derived in the following manner in accordance with the change in the pulse wave signal shown in FIG. That is, in the measurement at the time of pressurization, the cuff pressure at the point (a) at which the change in the magnitude of the pulse wave signal has started is set as the minimum blood pressure, and the cuff pressure at the point (b) when the pulse wave signal disappears is set as the maximum blood pressure.
  • blood pressure measurement during decompression is the opposite of blood pressure measurement during pressurization, and the pulse wave signal is not
  • the cuff pressure is the highest blood pressure
  • the cuff pressure at point (d) where the change in the magnitude of the pulse wave signal is eliminated is the lowest blood pressure.
  • FIG. 10 is an operation flow chart of signal level adjustment of the blood pressure measurement device according to the fourth embodiment.
  • FIG. 12 is an exemplary circuit diagram relating to signal level adjustment.
  • step S1102 the time constants of the pulse wave filter amplifiers 91 and 92 are halved by turning ON the SW1 to SW2 in FIG.
  • the carrier level is detected in step S1102, and in step S1103, it is checked whether the pulse wave carrier is within the standard value (20 to 40% of the full scale of AZD10). If it is less than the standard value, the process proceeds to step S1104, where it is checked whether or not the light quantity is maximum. If not, the light quantity control unit 18 is controlled in step S1106 to increase the light quantity. If the amount of light is maximum, the gain is increased by controlling the feedback of amplifier 90 in step S1105. After the process of step S1105 or S1106, the process returns to step S1102 and the carrier wave level check is repeated again.
  • step S 1107 determines whether the gain is minimum. If not, in step S 1109, the gain controller 19 a causes the amplifier 90 to Control the feedback to lower the gain. If it is minimum, decrease the light intensity in step S1108.
  • step S1108 or S1109 the process returns to step S1102 to check the carrier level again. If the carrier level is within the standard value in step S1103, SW1 to SW2 are opened in step S1110, the time constants of pulse wave filter amplifiers 91 to 92 are restored, and the pulse wave gain is amplified in step SI111. Adjust with to return.
  • the transmitted light instead of the force shown in the example of detecting the reflected light by the blood in the blood vessel, the transmitted light may be detected.
  • the photoelectric volume pulse wave sphygmomanometer of the present embodiment makes it possible to adjust the signal level so that the signal level of the pulse wave signal is within a predetermined standard range, thereby enabling highly accurate measurement.
  • it provides a photoelectric volumetric pulse wave sphygmomanometer that makes it possible to reduce the physical burden on the user due to cuff pressure by shortening the blood pressure measurement time.
  • the light amount and the gain are adjusted based on the pulse wave signal obtained prior to the blood pressure measurement at the time of pressurization, and the blood pressure measurement is provided with high accuracy only by the measurement at the time of pressurization.
  • the configuration of the apparatus, the method of attaching to the measurement site, the blood pressure calculation operation, and the detailed operation of the apparatus light amount and gain adjustment are the same as those in the fourth embodiment, and thus description thereof is omitted.
  • FIG. 13A and 13B are operation flowcharts of the blood pressure measurement device according to the fifth embodiment.
  • self-initial diagnosis processing (not shown) is performed to initialize the device. Thereafter, the process is started by pressing the measurement start switch ST.
  • step S1301 the cuff pressure P is read, and in step S1302, it is determined whether or not the residual pressure of cuff 1 is within a specified value. If the residual pressure exceeds the specified value, “residual pressure error” is displayed on LCD14 in step S1322. If the residual pressure is within the specified value, a cuff pressure value (for example, a value greater than the maximum blood pressure value of 120 to 210 mmHg) is set using the keyboard 16 in step S1303, and the light intensity and gain are set in step S1304. Set to the value of.
  • a cuff pressure value for example, a value greater than the maximum blood pressure value of 120 to 210 mmHg
  • step S1307 driving of the pressure pump 3 is started and pressurization (pressure increase) is started.
  • step S 1308 it is determined whether or not the cuff pressure is higher than the pressure value C set in S 1303. If P> C, pressurize continuously. On the other hand, when P> C, the pressurizing pump 3 is stopped in step S1309. In step S 1310, the sensor 8 is used to acquire a pulse wave signal, and in step S 1311, the light quantity and gain values are reset so as to obtain a predetermined signal level. In step S1312, the pressure pump 3 starts to be driven and pressurization is started again. This is the start of the measurement process during pressurization, and the cuff pressure starts increasing at a constant rate (for example, 2 to 3 mmHg / sec).
  • a constant rate for example, 2 to 3 mmHg / sec.
  • step S1313 data processing by each functional block is performed in step S1313, and the minimum blood pressure and the maximum blood pressure are measured.
  • step S1314 the pressurizing pump 3 is stopped in step S131 7, and the remaining air in the cuff 1 is rapidly exhausted in step S1318.
  • step S 1315 it is determined whether or not the cuff pressure is higher than the pressurization value U set in S 1303. If P> U, it is still in the normal measurement range and measurement is continued. On the other hand, when P> U, the cuff pressure is already higher than the set value, so “measurement error” is displayed on the LCD 14 in step S1316. If necessary, detailed information such as “signal abnormality during pressurization” is additionally displayed.
  • step S1314 When the measurement is completed in step S1314, the measurement process is completed in the normal measurement range.
  • step S1319 the maximum blood pressure value and the minimum blood pressure value measured are displayed on the LCD 14, and the buzzer is displayed in step S1320.
  • different tone signals are sent after normal termination and abnormal termination.
  • the photoelectric volume pulse wave sphygmomanometer of the present embodiment has a signal level so that the signal level of the pulse wave signal is within a predetermined standard range in order to enable appropriate blood pressure measurement. At the same time as being adjustable, it has the effect of reducing the probability of blood pressure remeasurement during decompression. By making it possible to further shorten the blood pressure measurement time, it is possible to provide a photoelectric volume pulse wave sphygmomanometer that can reduce the physical burden on the user due to the cuff pressure.
  • a blood pressure measurement device capable of simultaneously measuring a plurality of parts.
  • FIG. 14 is an internal block diagram of a blood pressure measurement device according to the sixth embodiment.
  • Both the eyebrow and Z or a pair of cuffs sandwiching the periphery thereof have a light irradiation part (LEDs 8a and 21a in FIG. 14) and a light receiving part (phototransistors 8b and 21b in FIG. 14) for detecting reflected light.
  • the two cuffs are configured to be pressurized simultaneously by a single pressure pump 3 and are located at multiple locations in the tragus and Z or its periphery, ie, on the back (inside) and front (outside) of the tragus Blood pressure at two measurement sites can be measured simultaneously.
  • the blood pressure measurement device includes a pulse wave sensor 21 in the other cuff 20 in addition to the device configuration of the fourth embodiment (FIG. 8).
  • a pulse wave sensor 21 in the other cuff 20 in addition to the device configuration of the fourth embodiment (FIG. 8).
  • LED 21a Inside the cuff 20, there is an LED 21a that irradiates light to the pulsating vascular blood flow, and reflected light from the vascular blood flow. It has a detection phototransistor 21b.
  • Sensors that use different measurement principles may be used for blood pressure measurement. Since other configurations and operations are the same as those in the first and second embodiments, the description thereof will be omitted.
  • the tragus and the blood vessels (arterioles) in or around Z or the vicinity thereof are close to blood vessels in the brain, and it is considered that changes in blood pressure originating in the brain can be measured.
  • the tragus there are also arteries (superficial temporal artery) directly connected to the heart in addition to blood vessels (arterioles) present in the cartilage of the ear (mainly the tragus). Therefore, there is an advantage that blood pressure having different information (that is, blood pressure derived from the brain and blood pressure derived from the heart) can be simultaneously measured with a small device in the peripheral part of the tragus.
  • the photoelectric volume pulse wave sphygmomanometer of the present embodiment makes it possible to adjust the signal level of the pulse wave signal so that it falls within a predetermined standard range, and it is possible to measure blood pressure with high accuracy around the outer ear. . At the same time, it is possible to provide a photoelectric volume pulse wave sphygmomanometer that makes it possible to reduce the physical burden on the user due to cuff pressure by making it possible to shorten the blood pressure measurement time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Otolaryngology (AREA)
  • Dentistry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 高い精度での血圧測定を可能とするための適切な脈波信号を取得可能とし、再測定による煩わしさ、および、カフ圧による利用者への身体的負担を軽減する血圧測定技術を提供する。  血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフにより圧迫される部位の脈波を検出し体動の特徴によりそれぞれ異なる影響を受ける第1の脈波検出器および第2の脈波検出器と、体動の特徴を検出する体動検出手段と、体動検出手段により検出された体動の特徴に基づいて第1の脈波検出器および第2の脈波検出器により検出された何れか一方の脈波から選択する脈波選択手段と、脈波選択手段により選択された脈波に基づいて血圧値を導出する血圧値導出手段とを有する。

Description

血圧測定装置および血圧測定方法
技術分野
[0001] 本発明は、特に外耳およびその周辺部を測定部位とする血圧測定において、高精 度な血圧導出を可能とする技術に関するものである。
背景技術
[0002] 従来の脈波を利用した血圧測定装置は、測定原理により、光電脈波方式、圧脈波 方式およびコロトコフ方式に大別される。光電脈波方式はカフによる圧迫部を流れる 血液による反射光を受光センサで脈波信号として取得し、圧脈波方式はカフによる 圧迫部を流れる血液による血管壁の振動を圧力センサで脈波信号として取得し、コ ロトコフ方式は、カフによる圧迫により生じるコロトコフ音をカフ周辺部に配備されたマ イク口フォンで脈波信号として取得する。取得した脈波信号の経時変化を利用して血 圧の測定を行っている。
[0003] ただし、上述の 、ずれの測定原理にぉ 、ても、体動による直接的または間接的要 因により測定ノイズが発生するため、特許文献 1のように異なる原理に基づく複数の 測定方式を併用もしくは切り替えて測定を行い、最も確からしい結果を人が判断して 選択する方法も提案されて!ヽた。
[0004] また、何等かの理由により脈波信号が小さいか又は大きく飽和してしまう場合には、 適切な血圧測定が行えないため、エラー信号を出して脈波検出センサの取り付け位 置の変更を促し再度加圧を行 ヽ血圧測定を行うか、又は特許文献 2に示されるように 信号増幅等により信号レベル調整を行った後、再度加圧を行 ヽ血圧測定を行って!/ヽ た。
特許文献 1:特許 3240324号公報
特許文献 2 :特公平 6— 18555号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、従来、適切な脈波信号が取得されな力つた場合には、例えばカフの 取り付け位置の変更等を行った後に再測定を行わなければならないという煩わしさが あった。また、その結果、被測定者には複数回の測定動作つまり複数回のカフによる 圧迫がなされることになり身体的負担にもなつていた。
[0006] 本発明は上記問題点に鑑みてなされたものであり、高い精度での血圧測定を可能 とするための適切な脈波信号を取得可能することにより、再測定による煩わしさの軽 減、および、カフ圧による利用者への身体的負担の軽減を可能とする血圧測定装置 及び血圧測定方法を提供するものである。
課題を解決するための手段
[0007] 血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフにより圧 迫される部位の脈波を検出し体動の特徴によりそれぞれ異なる影響を受ける第 1の 脈波検出器および第 2の脈波検出器と、体動の特徴を検出する体動検出手段と、体 動検出手段により検出された体動の特徴に基づいて第 1の脈波検出器および第 2の 脈波検出器により検出された何れか一方の脈波から選択する脈波選択手段と、脈波 選択手段により選択された脈波に基づいて血圧値を導出する血圧値導出手段とを 有する。
[0008] ここで、体動検出手段は体動の大きさを検出するレベル検出手段を有しており、脈 波選択手段はレベル検出手段により検出された体動の大きさに基づいて血圧導出 に使用する脈波を選択する。
[0009] また、体動検出手段はさらに体動の周期を検出する周期検出手段を有しており、脈 波選択手段はレベル検出手段により検出された体動の大きさおよび周期検出手段 により検出された体動の周期に基づいて血圧導出に使用する脈波を選択する。
[0010] 血圧測定装置において、外耳およびその周辺部に装着される第 1のカフと、第 1の カフにより圧迫される部位の脈波を検出し体動の特徴によりそれぞれ異なる影響を受 ける第 1の脈波検出器および第 2の脈波検出器と、体動の特徴を検出する体動検出 手段と、体動検出手段により検出された体動の特徴に基づいて、第 1の脈波検出器 および第 2の脈波検出器により検出された何れか一方の脈波力 選択する第 1の脈 波選択手段と、第 1の脈波選択手段により選択された脈波に基づいて血圧値を導出 する第 1の血圧値導出手段と、第 1のカフとは異なる場所に装着される第 2のカフと、 第 2のカフにより圧迫される部位の脈波を検出し血圧を決定する血圧決定手段と、第 1のカフと第 2のカフとの加圧を同期させる加圧制御手段とを有する。
[0011] ここで、血圧決定手段は、第 2のカフにより圧迫される部位の脈波を検出し体動の 特徴によりそれぞれ異なる影響を受ける第 3の脈波検出器および第 4の脈波検出器 と、体動検出手段により検出された体動の特徴に基づいて第 3の脈波検出器および 第 4の脈波検出器により検出された何れか一方の脈波から選択する第 2の脈波選択 手段と、第 2の脈波選択手段により選択された脈波に基づいて血圧値を導出する第 2の血圧値導出手段とを有する。
[0012] 血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフにより圧 迫される部位の脈波を検出する脈波検出器と、脈波の信号レベルを制御するレベル 制御手段と、カフの昇圧時に脈波検出器により検出された脈波の信号レベルが所定 の範囲外であった場合レベル制御手段により信号レベルが所定の範囲内となるよう 調整を行いカフの降圧時に前記脈波検出器により検出された脈波に基づいた血圧 値を導出する血圧値導出制御手段とを有する。
[0013] ここで、血圧値導出制御手段は、カフの昇圧時に脈波検出器により検出された脈 波の信号レベルが所定の範囲内であった場合、該脈波に基づいて血圧値を導出し 測定動作を終了する。
[0014] また、脈波検出器により検出される脈波は血管内の血液による光の吸収および反 射により得られる光電容積脈波である。
[0015] さらに、レベル制御手段は、血管内の血液に光を照射する発光素子力 の出力光 量を調整する光量調整手段と、発光素子により照射された光の前記血管内の血液に よる吸収および反射を検出する受光素子からの信号レベルを制御するゲイン制御手 段との少なくとも一方を有する。
[0016] 血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフにより圧 迫される部位の脈波を検出する脈波検出器と、脈波の信号レベルを制御するレベル 制御手段と、カフの昇圧前あるいは昇圧初期に脈波検出器により検出された脈波の 信号レベルが所定の範囲外であった場合、レベル制御手段により信号レベルが所定 の範囲内となるよう調整を行い引き続くカフの昇圧時に脈波検出器により検出された 脈波に基づいた血圧値を導出する血圧値導出制御手段とを有する。
[0017] ここで、脈波検出器により検出される脈波は血管内の血液による光の吸収および反 射により得られる光電容積脈波である。
[0018] さらに、レベル制御手段は、血管内の血液に光を照射する発光素子力 の出力光 量を調整する光量調整手段と、発光素子により照射された光の血管内の血液による 吸収および反射を検出する受光素子からの信号レベルを制御するゲイン制御手段と の少なくとも一方を有する。
[0019] 血圧測定装置において、外耳およびその周辺部に装着される第 1のカフと、第 1の カフにより圧迫される部位の脈波を検出する脈波検出器と、脈波の信号レベルを制 御するレベル制御手段と、第 1のカフの昇圧時に脈波検出器により検出された脈波 の信号レベルが所定の範囲外であった場合レベル制御手段により信号レベルが所 定の範囲内となるよう調整を行い第 1のカフの降圧時に脈波検出器により検出された 脈波に基づいた血圧値を導出する血圧値導出制御手段と、第 1のカフとは異なる場 所に装着される第 2のカフと、第 2のカフにより圧迫される部位の脈波を検出し血圧を 決定する血圧決定手段と、第 1のカフと第 2のカフとの加圧を同期させる加圧制御手 段とを有する。
[0020] 血圧測定装置において、外耳およびその周辺部に装着される第 1のカフと、第 1の カフにより圧迫される部位の脈波を検出する脈波検出器と、脈波の信号レベルを制 御するレベル制御手段と、第 1のカフの昇圧前あるいは昇圧初期に脈波検出器によ り検出された脈波の信号レベルが所定の範囲外であった場合レベル制御手段により 信号レベルが所定の範囲内となるよう調整を行い引き続く第 1のカフの昇圧時に脈波 検出器により検出された脈波に基づいた血圧値を導出する血圧値導出制御手段と、 第 1のカフとは異なる場所に装着される第 2のカフと、第 2のカフにより圧迫される部 位の脈波を検出し血圧を決定する血圧決定手段と、第 1のカフと第 2のカフとの加圧 を同期させる加圧制御手段とを有する。
[0021] 血圧測定方法において、外耳およびその周辺部に装着されるカフにより圧迫される 部位の脈波を検出し体動の特徴によりそれぞれ異なる影響を受ける第 1の脈波およ び第 2の脈波を検出する検出工程と、体動の特徴を検出する体動検出工程と、体動 検出工程により検出された体動の特徴に基づいて第 1の脈波および第 2の脈波の何 れか一方の脈波を選択する脈波選択工程と、脈波選択工程により選択された脈波に 基づいて血圧値を導出する血圧値導出工程とを有する。
[0022] ここで、体動検出工程は体動の大きさを検出するレベル検出工程を有しており、脈 波選択工程は、レベル検出工程により検出された体動の大きさに基づいて血圧導出 に使用する脈波を選択する。
[0023] また、体動検出工程はさらに体動の周期を検出する周期検出工程を有しており、脈 波選択工程はレベル検出工程により検出された体動の大きさおよび周期検出工程 により検出された体動の周期に基づいて血圧導出に使用する脈波を選択する。
[0024] 血圧測定方法において、外耳およびその周辺部に装着されるカフの昇圧時にカフ により圧迫される部位の脈波を検出する昇圧時脈波検出工程と、昇圧時脈波検出ェ 程により検出された脈波の信号レベルが所定の範囲外であった場合信号レベルが 所定の範囲内となるよう信号レベルを制御するレベル制御工程と、カフの降圧時に力 フにより圧迫される部位の脈波を検出する降圧時脈波検出工程と、昇圧時脈波検出 工程または降圧時脈波検出工程により検出された信号レベルが所定の範囲内であ る脈波に基づいた血圧値を導出する血圧値導出工程とを有する。
[0025] ここで、昇圧時脈波検出工程により検出された脈波の信号レベルが所定の範囲内 であった場合レベル制御工程および降圧時脈波検出工程を行わず、血圧値導出ェ 程は昇圧時脈波検出工程により検出された脈波に基づいた血圧値を導出する。
[0026] また、昇圧時脈波検出工程および前記降圧時脈波検出工程により検出される脈波 は、血管内の血液による光の吸収および反射により得られる光電容積脈波である。
[0027] さらに、レベル制御工程は、血管内の血液に光を照射する発光素子力 の出力光 量を調整する光量調整工程と、発光素子により照射された光の血管内の血液による 吸収および反射を検出する受光素子からの信号レベルを制御するゲイン制御工程と の少なくとも一方を有する。
[0028] 血圧測定方法において、外耳およびその周辺部に装着されるカフの昇圧前あるい は昇圧初期に、カフにより圧迫される部位の脈波を検出する初期脈波検出工程と、 初期脈波検出工程により検出された脈波の信号レベルが所定の範囲外であった場 合信号レベルが所定の範囲内となるよう信号レベルを制御するレベル制御工程と、 引き続くカフの昇圧時にカフにより圧迫される部位の脈波を検出する脈波検出工程 と、脈波検出工程により検出された脈波に基づいた血圧値を導出する血圧値導出ェ 程とを有する。
[0029] ここで、脈波検出工程により検出される脈波は、血管内の血液による光の吸収およ び反射により得られる光電容積脈波である。
[0030] また、レベル制御工程は、血管内の血液に光を照射する発光素子からの出力光量 を調整する光量調整工程と、発光素子により照射された光の血管内の血液による吸 収および反射を検出する受光素子からの信号レベルを制御するゲイン制御工程との 少なくとも一方を有する。
発明の効果
[0031] 本発明によれば、血圧測定を可能とするため適切な脈波信号を容易に取得するこ とのできる技術を提供することができる。
[0032] 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明ら かになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ 参照番号を付す。
図面の簡単な説明
[0033] 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、そ の記述と共に本発明の原理を説明するために用いられる。
[図 1]第 1実施形態に係る血圧測定装置の内部ブロック図である。
[図 2]カフ内の構造および動作を示した図である。
[図 3]第 1実施形態に係る血圧測定装置の外観斜視図である。
[図 4A]第 1実施形態に係る血圧測定装置の動作フローチャートである。
[図 4B]第 1実施形態に係る血圧測定装置の動作フローチャートである。
[図 5]第 2実施形態に係る血圧測定装置の体動の特徴に基づく脈波選択を例示的に 示した図である。
[図 6]第 3実施形態に係る血圧測定装置の内部ブロック図である。
[図 7]カフを耳珠およびその周辺部に装着した様子を示す図である。 [図 8]第 4実施形態に係る血圧測定装置の内部ブロック図である。
[図 9A]第 4実施形態に係る血圧測定装置の動作フローチャートである。
[図 9B]第 4実施形態に係る血圧測定装置の動作フローチャートである。
[図 10]第 4実施形態に係る血圧測定装置の信号レベル調整の動作フローチャートで ある。
[図 11]血圧測定時のカフ圧と脈波信号を例示的に示す図である。
[図 12]信号レベル調整に係る例示的な回路図である。
[図 13A]第 5実施形態に係る血圧測定装置の動作フローチャートである。
[図 13B]第 5実施形態に係る血圧測定装置の動作フローチャートである。
[図 14]第 6実施形態に係る血圧測定装置の内部ブロック図である。
発明を実施するための最良の形態
[0034] 以下に、図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明す る。ただし、この実施の形態に記載されている構成要素はあくまで例示であり、この発 明の範囲をそれらのみに限定する趣旨のものではない。
[0035] (第 1実施形態)
本発明に係る血圧測定装置の第 1実施形態として、耳珠およびその周辺部を測定 部位とする血圧計を例に挙げて以下に説明する。
[0036] <装置構成 >
図 1は、第 1実施形態に係る血圧測定装置の内部ブロック図である。また、図 2は、 カフ内の構造および動作を示した図である。
[0037] 1はカフであり、血管を圧迫可能となるよう血圧測定部位に固定する。 2はゴム管で あり、カフ 1内への空気の流路を成す。 3は圧力ポンプであり、カフ 1内に圧力空気を 送り込む。 4は急排弁であり、カフ 1内の圧力を急速に減少させる。 5は微排弁であり 、カフ 1内の圧力を一定速度(例えば 2〜3mmHg/sec)で減少させる。 6は圧力センサ であり、カフ 1内の圧力に応じて電気的パラメータを変化させる。 7は圧脈波検出アン プ (AMP)であり、圧力センサ 6の電気的パラメータを検出し、これを電気的信号に変 換し、かつ増幅してアナログのカフ圧信号 Pを出力する。
[0038] 8はカフ 1内に設置された脈波センサであり、脈動する血管血流に光を照射する LE D8aと、該血管血流による反射光を検出フォトトランジスタ 8bを含む。 9は光電脈波 検出アンプ (AMP)であり、フォトトランジスタ 8bの出力信号を増幅してアナログの脈 波信号 Mを出力する。ここで、 LED8aには光量を自動的に変化させる光量制御部 1 8が接続され、一方脈波検出アンプ 9には、ゲインを変化させるゲイン制御部 19aとァ ンプ 9の時定数を変化させる時定数制御部 19bとが接続されている。また、体動を検 知するために加速度センサ 20および体動検出アンプ (AMP) 21を有し、加速度信 号 Aを出力する。 10は AZD変翻 (AZD)であり、アナログ信号 M、 P、 A (不図示 )をデジタルデータ D (不図示)に変換する。
[0039] 11は制御部(CPU)であり、本血圧測定装置の主制御を行う。 CPU11は調整圧力 を記憶する調整圧力レジスタ 11aを有している。制御の詳細については後述する。 1 2は ROMであり、 CPU11が実行する例えば図 3の制御プログラムを格納している。 1 3は RAMであり、データメモリや画像メモリ等を備える。 14は液晶表示器 (LCD)で あり、画像メモリの内容を表示する。 16はキーボードであり、使用者の操作により測定 開始指令や調整圧力値の設定等を行える。 15はブザーであり、使用者に対して装 置がキーボード 16内のキーの押し下げを感知したことや測定終了等を知らせる。尚 、本例では、 CPU11に調整圧力レジスタ 11aを設けた力 RAM13に調整圧力記憶 部を設けてもよい。
[0040] 図 3は、第 1実施形態に係る血圧測定装置の外観斜視図である。 17は血圧計本体 であり、内部には第 1図のカフ 1および脈波センサ 8を除く構成が含まれる。ここで、ゴ ム管 2 (エアチューブ)は脈波センサ 8との信号線 (不図示)を含み、不図示のカフ 1お よび脈波センサ 8に接続している。 LCDの表示パネル 14は、ドットマトリックス方式の 表示パネルを使用しており、従って多様な情報 (例えば文字,図形,信号波形等)を 表示できる。また 20は電源スィッチで、キーボード 16は測定開始スィッチ(ST)とカフ の圧力値等を入力するためのテンキーとを有して 、る。
[0041] <測定部位への装着方法 >
図 7は、カフを耳珠およびその周辺部に装着した様子を示す図である。耳珠および その周辺を測定部位とするために、カフを含む測定部は耳珠を両側から挟んで圧迫 するよう構成されている。なお、測定部位の動きが血圧値判定に最も影響を及ぼすこ とを鑑みて、体動検出手段としての加速度センサ 20は、測定部が装着された近辺ま たは一体ィ匕して設けることが好ま 、。
[0042] <装置の動作 >
図 4Aおよび図 4Bは、第 1実施形態に係る血圧測定装置の動作フローチャートであ る。
[0043] 装置に電源投入すると、まず不図示の自己初期診断処理を行い装置の初期値ィ匕 が行われる。その後、測定開始スィッチ STを押すことにより処理が開始される。
[0044] ステップ S401ではカフ圧 Pを読み取り、ステップ S402でカフ 1の残圧が規定値以 内か否かを判別する。残圧が規定値を超えていれば、ステップ S423で LCD14に「 残圧エラー」を表示する。残圧が規定値以内であればステップ S403でカフの加圧値 (例えば 120〜210mmHgの最高血圧値より大きい値)をキーボード 16を使用して設 定し、ステップ S404で光量およびゲインを所定の値に設定する。
[0045] 加圧値および光量 *ゲインの設定が終わると、ステップ S405, S406では急排弁 4 および微排弁 5を閉じる。ステップ S407では圧力ポンプ 3を駆動開始し加圧 (昇圧) を開始する。
[0046] ステップ S408ではカフ圧が S403で設定した加圧値 Uより高いか否かを判別する。
P>Uでなければ引き続き加圧を行う。 P>Uの時はステップ S409で加圧ポンプ 3を 停止する。
[0047] ステップ S410では微排弁 5を開く。これが減圧(降圧)時の計測行程の開始であり 、カフ圧は一定速度 (例えば 2〜3mmHg/sec)で減少を開始する。同時に体動検出 手段 (加速度センサ)による加速度の検出が開始され、第 1の血圧決定手段 (光電脈 波方式)と第 2の血圧決定手段 (圧脈波方式)により、脈波の検出が開始される。なお 、第 1の血圧決定手段では、発光素子 8aにより血管に光が照射され、血流により反 射された反射光を受光素子 8bで受光し、この受光量データ (血管内の血流量により 変化する反射量)を光電脈波として検出し、同時に、第 2の血圧決定手段では、カフ 内の空気圧、つまり圧迫量に応じて変化する振動振幅 (脈動に対応する血管壁の振 動がカフを通じて振動するカフ内の空気圧)を圧力センサが圧脈波として検出する。 この間にステップ S411で各機能ブロックによるデータ処理が行われ、光電脈波信号 および圧脈波信号のそれぞれに所定のアルゴリズムを適用して最高血圧および最低 血圧の測定が行われる。ステップ S412では減圧時の最低血圧値の検出の有無を判 別する。光電脈波データおよび圧脈波データのそれぞれから測定される最低血圧値 について双方が検出完了していなければ引き続き計測を行う。ステップ S413では力 フ圧が所定値 L (例えば 40mmHg)より低 、か否かを判別する。 P< Lでなければまだ 正常測定範囲にあり、フローはステップ S411に戻る。一方、 Pく Lの時はもはやカフ 圧が正常測定範囲よりも低!、ので、光電脈波信号および圧脈波信号の双方とも正常 なデータが取得できな力つた場合 (例えば決定された最高血圧値力 OmmHg以下等 )は、ステップ S414で LCD14に「測定エラー」を表示する。その際、必要なら「減圧 時信号異常」等の詳細情報を付記表示する。ステップ S415では急排弁 4を開く。
[0048] ステップ S416では加速度センサにより得られた値があら力じめ設定された所定値 Cを超えている力否かにより、光電脈波力 決定された最高血圧値と最低血圧値もし くは圧脈波から決定された最高血圧値と最低血圧値の!/、ずれかを選択する。なおこ の時、所定値 Cを超えていた場合は測定中に大きな体動が有り、圧脈波によっては 正確な血圧が得られな!/、と判断し、光電脈波から決定された最高血圧値と最低血圧 値を選択し、所定値 C以下であれば、圧脈波から決定された最高血圧値と最低血圧 値を選択するのが望ましい。なお、ここでは、光電脈波および圧脈波のそれぞれから 血圧値を導出した後に、表示する血圧値の選択を行っているが、光電脈波および圧 脈波の脈波データを選択した後、血圧値を導出するようにしても良い。
[0049] ステップ S417では選択された、最高血圧値と最低血圧値を LCD 14に表示し、ス テツプ S418でブザーを鳴動させ測定終了を利用者に通知する。
[0050] 以上説明したように、本実施形態の血圧計により、第 1の血圧決定手段である光電 脈波方式の血圧測定結果と、第 2の血圧決定手段である圧脈波方式の血圧測定結 果から、体動検出手段である加速度センサの信号強度から、所定の加速度に対応す る閾値を超えた力否かを判断材料として、結果として表示する妥当な血圧の選択を 客観的に行うことが可能となる。なお、耳珠およびその周辺部の測定に対しては頭部 の動きによる影響が無視できないため特に有効である効果もあり、さらにこの事により 、血圧の連続測定に適用が容易となるという効果も生まれる。 [0051] (第 2実施形態)
第 2実施形態では、体動周期検出手段として加速度センサのデータを用い体動周 期成分を CPU 11を用いて算出する機能をさらに有している。そのため、ステップ S4 16において、光電脈波から決定された血圧値および圧脈波から決定された血圧値 から、表示出力する血圧値を選択する際、以下の理由によりより効果的に選択するこ とが出来る。
[0052] 血圧測定方法において光電脈波方式と圧脈波方式を比較するとその測定原理か ら、一般的には圧脈波方式の方がエアーを介して検出しているため、周期の短い (速 い)体動による外乱振動はエアーで減衰されるので影響を受けにくいが、一方、光電 脈波方式は周期の短い体動による影響を受けやすいという性質がある。そのため、 体動レベルが所定値より小さくかつ周期の短 、 (速 、)体動の存在する場合の測定 にお!/、ては、圧脈波方式による血圧決定がより望ま 、。
[0053] 図 5は、第 2実施形態に係る血圧測定装置の体動の特徴に基づく脈波選択を例示 的に示した図である。なお、本実施例では、ノイズが小さい場合に光電脈波を選択す るよう構成した力 測定部位によっては圧脈波のほうが安定して検出できる場合もあ る。この場合にはノイズが小さ!/、場合に圧脈波を選択してもよ ヽ。
[0054] (第 3実施形態)
第 3実施形態では、複数の部位を同時に計測可能な血圧測定装置について説明 する。
[0055] 図 6は、第 3実施形態に係る血圧測定装置の内部ブロック図である。耳珠および Z またはその周辺部を挟む一対のカフの双方に光の照射部(図 6参照: LED8aおよび 23a)と反射光を検出する受光部(図 6参照:フォトトランジスタ 8bおよび 23b)とを有し ている。 2つのカフは、 1つの圧力ポンプ 3により同時に加圧されるよう構成されており 、耳珠および Zまたはその周辺部における複数の部位、つまり耳珠の裏側および表 側の血圧を同時に計測可能としている。なお、血圧測定に異なる測定原理 (圧脈波 を用いる方法等)を用いるセンサを利用しても良 、。その他の構成および動作にっ ヽ ては第 1および第 2の実施形態と共通であるので説明を省略する。
[0056] 耳珠および Zまたはその周辺部の血管(細動脈)は脳内の血管に近接していること が知られており、脳内に由来する血圧変化が測定可能と考えられている。一方、耳珠 周辺部には、耳の軟骨部(主に耳珠)に存在する血管(細動脈)の他に、心臓に直結 する動脈 (浅側頭動脈)も位置する。そのため、耳珠周辺部においては小さな装置で 異なる情報 (つまり脳内由来の血圧と心臓由来の血圧)をもつ血圧を同時に測定可 能であるという利点がある。本実施形態の血圧測定装置により、血圧測定期間にお ける体動の特徴に基づ 、て複数の方式による血圧測定結果力も最も確力もし 、結果 を客観的に選択することが可能となり、外耳周辺部の精度の高い血圧測定が可能と なる。
[0057] (第 4実施形態)
本発明に係る電子血圧計の第 4実施形態として、外耳およびその周辺部の適所を 測定部位とする光電容積脈波血圧計を例に挙げて以下に説明する。
[0058] <装置構成 >
図 8は、第 4実施形態に係る血圧測定装置の内部ブロック図である。 1はカフであり 、外耳およびその周辺部の血管(細動脈)を圧迫可能となるよう外耳周辺部の血圧測 定部位好ましくは耳珠に固定する。 2はゴム管(エアチューブ)であり、カフ 1内への空 気の流路を成す。 3は圧力ポンプであり、カフ 1内に圧力空気を送り込む。 4は急排弁 であり、カフ 1内の圧力を急速に減少させる。 5は微排弁であり、カフ 1内の圧力を一 定速度(例えば 2〜3mmHg/sec)で減少させる。 6は圧力センサであり、カフ 1内の圧 力に応じて電気的パラメータを変化させる。 7は圧力検出アンプ (AMP)であり、圧力 センサ 6の電気的パラメータを検出し、これを電気的信号に変換し、かつ増幅してァ ナログのカフ圧信号 Pを出力する。
[0059] 8はカフ 1内に設置された脈波センサであり、脈動する血管血流に光を照射する LE D8aと、該血管血流による反射光を検出するフォトトランジスタ 8bを含む(図 2)。 9は 脈波検出アンプ (AMP)であり、フォトトランジスタ 8bの出力信号を増幅してアナログ の脈波信号 Mを出力する。ここで、 LED8aには光量を自動的に変化させる光量制 御部 18が接続され、一方脈波検出アンプ 9には、ゲインを自動的に変化させるゲイ ン制御部 19aと脈波検出フィルタ ·アンプ 9を構成する後述するフィルタアンプ 91 , 9 2の時定数を変化させる時定数制御部 19bとが接続されている。 10は AZD変翻( AZD)であり、アナログ信号 M, P (不図示)をデジタルデータ D (不図示)に変換す る。
[0060] 11は制御部(CPU)であり、本光電容積脈波血圧計の主制御を行う。 CPU11は調 整圧力を記憶する調整圧力レジスタ 1 laを有して 、る。この制御の詳細にっ ヽては 後述する。 12は ROMであり、 CPU11が実行する例えば図 9A、図 9B、図 10に示さ れる制御を行うプログラムを格納している。 13は RAMであり、データメモリや画像メモ リ等を備える。 14は液晶表示器 (LCD)であり、画像メモリの内容を表示する。 16は キーボードであり、使用者の操作により測定開始指令や調整圧力値の設定等を行え る。 15はブザーであり、使用者に対して装置がキーボード 16内のキーの押し下げを 感知したことや測定終了等を知らせる。尚、本例では、 CPU 11に調整圧力レジスタ 1 laを設けた力 RAM13に調整圧力記憶部を設けてもよい。
[0061] <測定部位への装着方法 >
耳珠およびその周辺を測定部位とするために、カフを含む測定部は図 7に示される 通り、耳珠を両側から挟んで圧迫するよう構成されている。
[0062] <装置の動作 >
図 9Aおよび図 9Bは、第 4実施形態に係る血圧測定装置の動作フローチャートであ る。装置に電源スィッチ 20により電源投入すると、まず不図示の自己初期診断処理 を行い装置の初期値ィ匕が行われる。その後、測定開始スィッチ STを押すことにより 処理が開始される。
[0063] ステップ S901ではカフ圧 Pを読み取り、ステップ S902でカフ 1の残圧が規定値以 内か否かを判別する。残圧が規定値を超えていれば、ステップ S923で LCD14に「 残圧エラー」を表示する。残圧が規定値以内であればステップ S 903でカフの加圧上 限値(例えば 120〜280mmHgの最高血圧値より大きい値)をキーボード 16を使用し て設定し、ステップ S904で光量及びゲインを所定の値に設定する。
[0064] 加圧値および光量 'ゲインの設定が終わると、ステップ S905, S906では急排弁 4 及び微排弁 5を閉じる。ステップ S907では圧力ポンプ 3を駆動開始し加圧 (昇圧)を 開始する。これが加圧時の計測行程の開始であり、カフ圧は一定速度 (例えば 2〜3 mmHg/sec)で増加開始する。この間にステップ S908で各機能ブロックによるデータ 処理が行われ、最低血圧及び最高血圧の測定が行われる。最高血圧が測定される ( S909)とステップ S 912でカ卩圧ポンプ 3を停止する。ステップ S910ではカフ圧が S90 3で設定した加圧値 Uより高 、か否かを判別する。 P >Uでなければまだ正常測定範 囲にあり、引き続き測定を行う。一方、 P>Uの時はもはやカフ圧が設定値よりも高い のでステップ S911で LCD14に「測定エラー」を表示する。必要なら「加圧時信号異 常」等の詳細情報を付記表示する。ステップ S914では加圧時に得られた脈波信号 の信号レベルを元に光量及びゲインの調整を行う。
[0065] 光量 'ゲインの調整が終わると、ステップ S915では微排弁 5を開く。これが減圧(降 圧)時の計測行程の開始であり、カフ圧は一定速度 (例えば 2〜3mmHg/sec)で減少 開始する。この間にステップ S916で各機能ブロックによるデータ処理が行われ、最 高血圧及び最低血圧の測定が行われる。ステップ S 917では減圧時の最低血圧値 の検出の有無を判別する。検出されていなければ引き続き計測を行う。ステップ S91 8ではカフ圧が所定値 L (例えば 40mmHg)より低いか否かを判別する。 P<Lでなけ ればまだ正常測定範囲にあり、フローはステップ S916に戻る。一方、 P<Lの時はも はやカフ圧が正常測定範囲よりも低いのでステップ S919で LCD14に「測定エラー」 を表示する。必要なら「減圧時信号異常」等の詳細情報を付記表示する。
[0066] また、ステップ S917の判別で測定終了の時は正常測定範囲で計測行程終了した ことになり、ステップ S 920で LCD14に測定した最高血圧値及び最低血圧値を表示 し、ステップ S921でブザー 15にトーン信号を送る。好ましくは、正常終了後と異常終 了時とでは異るトーン信号を送る。ステップ S922ではカフ 1の残りの空気を急速排気 し、次の測定開始を待つ。
[0067] 図 11は、血圧測定時のカフ圧と脈波信号を例示的に示す図である。加圧時測定( ステップ S908)の開始力も減圧時測定 (ステップ S916)の終了までの時間における カフ圧と速度 (変化量検出)センサを用いた際の脈波信号の様子を示して 、る。
[0068] 図 11に示される脈波信号の変化に対応して血圧値の導出はおおよそ以下のように 行われる。すなわち、加圧時測定においては、脈波信号の大きさの変化が始まった 点 (a)のカフ圧を最低血圧、脈波信号の消失時点 (b)のカフ圧を最高血圧とする。一 方、減圧時の血圧測定は加圧時の血圧測定とは逆となり、脈波信号の出現時点 (c) のカフ圧を最高血圧、脈波信号の大きさの変化が無くなった点 (d)のカフ圧を最低 血圧とする。
[0069] <装置光量及びゲインの調整の詳細動作 >
図 10は、第 4実施形態に係る血圧測定装置の信号レベル調整の動作フローチヤ ートである。また、図 12は、信号レベル調整に係る例示的な回路図である。
[0070] まず、光量及びゲイン調整時には、ステップ S1101で図 12の SW1〜SW2を ON にして閉じ抵抗値を半分にすることにより、脈波フィルタアンプ 91, 92の時定数を半 分にする。この状態で、ステップ S 1102で搬送波レベルを検出し、ステップ S1103で 脈波の搬送波が規格値 (AZD10のフルスケールの 20〜40%)内か否かがチェック される。規格値以下の場合はステップ S 1104に進んで光量が最大カゝ否かをチェック し、最大でなければステップ S1106で光量制御部 18を制御して光量を上げる。光量 が最大の場合は、ステップ S1105でアンプ 90のフィードバックを制御してゲインを上 げる。ステップ S1105あるいは S1106の処理後は、ステップ S1102に戻って再度搬 送波レベルのチェックを繰り返す。
[0071] 一方、ステップ S 1103で搬送波レベルが規格値以上の場合は、ステップ S 1107で ゲインが最小か否かがチェックされ、最小でな 、ならばステップ S1109でゲイン制御 部 19aによりアンプ 90のフィードバックを制御してゲインを下げる。最小ならばステツ プ S1108で光量を下げる。ステップ S1108あるいは S1109の処理が終ると、ステツ プ S1102に戻って再度搬送波レベルがチェックされる。ステップ S 1103で搬送波レ ベルが規格値内であれば、ステップ S1110で SW1〜SW2を開いて、脈波フィルタ アンプ 91〜92の時定数を元に戻し、ステップ SI 111で脈波ゲインをアンプ 93で調 整してリターンする。
[0072] 本実施形態では血管内の血液による反射光を検出する例を示した力 替わりに透 過光を検出するものであってもよい。
[0073] 以上説明したように、本実施形態の光電容積脈波血圧計により、脈波信号の信号 レベルが所定の規格範囲内に収まるよう信号レベルを調整可能とし、精度の高い測 定を可能とすると同時に、血圧測定時間の短縮を可能とすることにより、カフ圧による 利用者への身体的負担を軽減することを可能にする光電容積脈波血圧計を提供す ることができる。なお、耳珠およびその周辺部は痛みに対し鈍感な部分であるため、 カフ圧による痛みが軽減できるという効果もあり、さらにこの事により、血圧の連続測 定に適用が容易となるという効果も生まれる。
[0074] (第 5実施形態)
第 5実施形態では、加圧時の血圧測定時に先立って得られる、脈波信号を元に光 量及びゲインの調整を行 、加圧時測定のみで精度の高 、血圧測定を提供して 、る
[0075] なお、装置の構成、測定部位への装着方法、血圧の算出動作および装置光量及 びゲインの調整の詳細動作は第 4実施形態と同様であるため説明は省略する。
[0076] <装置の動作 >
図 13Aおよび図 13Bは、第 5実施形態に係る血圧測定装置の動作フローチャート である。装置に電源スィッチ 20により電源投入すると、まず不図示の自己初期診断 処理を行い装置の初期値化が行われる。その後、測定開始スィッチ STを押すことに より処理が開始される。
[0077] ステップ S1301ではカフ圧 Pを読み取り、ステップ S1302でカフ 1の残圧が規定値 以内か否かを判別する。残圧が規定値を超えていれば、ステップ S1322で LCD14 に「残圧エラー」を表示する。残圧が規定値以内であればステップ S 1303でカフの加 圧値(例えば 120〜210mmHgの最高血圧値より大きい値)をキーボード 16を使用し て設定し、ステップ S 1304で光量及びゲインを所定の値に設定する。
[0078] 加圧値および光量 'ゲインの設定が終わると、ステップ S1305, S1306では急排弁 4及び微排弁 5を閉じる。ステップ S1307では圧力ポンプ 3を駆動開始し加圧 (昇圧) を開始する。
[0079] ステップ S 1308ではカフ圧が S 1303で設定した加圧値 Cより高いか否かを判別す る。 P>Cでなければ引き続き加圧を行う。一方、 P >Cの時はステップ S 1309で加圧 ポンプ 3を停止する。ステップ S 1310ではセンサ 8を使用して、脈波信号を取得し、ス テツプ S1311で所定の信号レベルを得られる光量及びゲインの値に再設定する。ス テツプ S 1312では圧力ポンプ 3を駆動開始し再び加圧を開始する。これが加圧時の 計測行程の開始であり、カフ圧は一定速度 (例えば 2〜3mmHg/sec)で増加開始す る。この間にステップ S1313で各機能ブロックによるデータ処理が行われ、最低血圧 及び最高血圧の測定が行われる。最高血圧が測定される (S1314)とステップ S131 7で加圧ポンプ 3を停止し、ステップ S 1318ではカフ 1の残りの空気を急速排気する。
[0080] ステップ S 1315ではカフ圧が S 1303で設定した加圧値 Uより高!、か否かを判別す る。 P>Uでなければまだ正常測定範囲にあり、引き続き測定を行う。一方、 P>Uの 時はもはやカフ圧が設定値よりも高いのでステップ S1316で LCD14に「測定エラー 」を表示する。必要なら「加圧時信号異常」等の詳細情報を付記表示する。
[0081] ステップ S1314の判別で測定終了の時は正常測定範囲で計測行程終了したこと になり、ステップ S 1319で LCD 14に測定した最高血圧値及び最低血圧値を表示し 、ステップ S 1320でブザー 15にトーン信号を送る。好ましくは、正常終了後と異常終 了時とでは異るトーン信号を送る。
[0082] 以上説明したように、本実施形態の光電容積脈波血圧計により、適切な血圧測定 が可能とするため脈波信号の信号レベルが所定の規格範囲内に収まるよう信号レべ ルを調整可能とすると同時に、減圧時の血圧再測定の確率を低減させる効果を持つ 。さらなる血圧測定時間の短縮を可能とすることにより、カフ圧による利用者への身体 的負担を軽減することを可能にする光電容積脈波血圧計を提供することができる。
[0083] (第 6実施形態)
第 6実施形態では、複数の部位を同時に計測可能な血圧測定装置について説明 する。
[0084] 図 14は、第 6実施形態に係る血圧測定装置の内部ブロック図である。耳珠及び Z またはその周辺部を挟む一対のカフの双方に光の照射部(図 14の LED8a及び 21a )と反射光を検出する受光部(図 14のフォトトランジスタ 8b及び 21b)とを有している。 2つのカフは、 1つの圧力ポンプ 3により同時に加圧されるよう構成されており、耳珠 および Zまたはその周辺部における複数の部位、つまり耳珠の裏側(内側)及び表 側(外側)における 2つの測定部位における血圧を同時に計測可能としている。
[0085] 図 14に示されるように、第 6の実施形態に係る血圧測定装置は、第 4実施形態の装 置構成(図 8)に加え、もう一方のカフ 20内に脈波センサ 21を有している。カフ 20内 部には脈動する血管血流に光を照射する LED21aと、該血管血流による反射光を 検出フォトトランジスタ 21bを有している。なお、血圧測定に異なる測定原理 (圧脈波 を用いる方法等)を用いるセンサを利用しても良 、。その他の構成及び動作にっ ヽ ては第 1及び第 2の実施形態と共通であるので説明を省略する。
[0086] 耳珠および Zまたはその周辺部の血管(細動脈)は脳内の血管に近接していること が知られており、脳内に由来する血圧変化が測定可能と考えられている。一方、耳珠 周辺部には、耳の軟骨部(主に耳珠)に存在する血管(細動脈)の他に、心臓に直結 する動脈 (浅側頭動脈)も位置する。そのため、耳珠周辺部においては小さな装置で 異なる情報 (つまり脳内由来の血圧と心臓由来の血圧)をもつ血圧を同時に測定可 能であるという利点がある。本実施形態の光電容積脈波血圧計により、脈波信号の 信号レベルが所定の規格範囲内に収まるよう信号レベルとすることが可能となり、外 耳周辺部の精度の高い血圧測定が可能となる。同時に、血圧測定時間の短縮を可 能とすることにより、カフ圧による利用者への身体的負担を軽減することを可能にする 光電容積脈波血圧計を提供することができる
本発明は上記実施の形態に制限されるものではなぐ本発明の精神及び範囲から 離脱することなぐ様々な変更及び変形が可能である。従って、本発明の範囲を公に するために、以下の請求項を添付する。
優先権の主張
[0087] 本願は、 2004年 10月 6日提出の日本国特許出願特願 2004— 294307及び 2004 年 10月 6日提出の日本国特許出願特願 2004— 294308を基礎として優先権を主 張するものであり、その記載内容の全てを、ここに援用する。

Claims

請求の範囲
[1] 外耳およびその周辺部に装着されるカフと、
前記カフにより圧迫される部位の脈波を検出し、体動の特徴によりそれぞれ異なる 影響を受ける第 1の脈波検出器および第 2の脈波検出器と、
体動の特徴を検出する体動検出手段と、
前記体動検出手段により検出された体動の特徴に基づいて、前記第 1の脈波検出 器および前記第 2の脈波検出器により検出された何れか一方の脈波力 選択する脈 波選択手段と、
前記脈波選択手段により選択された脈波に基づいて血圧値を導出する血圧値導 出手段と、
を有することを特徴とする血圧測定装置。
[2] 前記体動検出手段は、体動の大きさを検出するレベル検出手段を有しており、 前記脈波選択手段は、前記レベル検出手段により検出された体動の大きさに基づ いて血圧導出に使用する脈波を選択することを特徴とする請求項 1に記載の血圧測 定装置。
[3] 前記体動検出手段は、さらに体動の周期を検出する周期検出手段を有しており、 前記脈波選択手段は、前記レベル検出手段により検出された体動の大きさおよび 前記周期検出手段により検出された体動の周期に基づいて血圧導出に使用する脈 波を選択することを特徴とする請求項 2に記載の血圧測定装置。
[4] 外耳およびその周辺部に装着される第 1のカフと、
前記第 1のカフにより圧迫される部位の脈波を検出し、体動の特徴によりそれぞれ 異なる影響を受ける第 1の脈波検出器および第 2の脈波検出器と、
体動の特徴を検出する体動検出手段と、
前記体動検出手段により検出された体動の特徴に基づいて、前記第 1の脈波検出 器および前記第 2の脈波検出器により検出された何れか一方の脈波力 選択する第 1の脈波選択手段と、
前記第 1の脈波選択手段により選択された脈波に基づいて血圧値を導出する第 1 の血圧値導出手段と、 前記第 1のカフとは異なる場所に装着される第 2のカフと、
前記第 2のカフにより圧迫される部位の脈波を検出し血圧を決定する血圧決定手 段と、
前記第 1のカフと前記第 2のカフとの加圧を同期させる加圧制御手段と、 を有することを特徴とする血圧測定装置。
[5] 前記血圧決定手段は、
前記第 2のカフにより圧迫される部位の脈波を検出し、体動の特徴によりそれぞれ 異なる影響を受ける第 3の脈波検出器および第 4の脈波検出器と、
前記体動検出手段により検出された体動の特徴に基づいて、前記第 3の脈波検出 器および前記第 4の脈波検出器により検出された何れか一方の脈波力 選択する第 2の脈波選択手段と、
前記第 2の脈波選択手段により選択された脈波に基づいて血圧値を導出する第 2 の血圧値導出手段と、
を有することを特徴とする請求項 4に記載の血圧測定装置。
[6] 外耳およびその周辺部に装着されるカフと、
前記カフにより圧迫される部位の脈波を検出する脈波検出器と、
前記脈波の信号レベルを制御するレベル制御手段と、
前記カフの昇圧時に前記脈波検出器により検出された脈波の信号レベルが所定の 範囲外であった場合、前記レベル制御手段により該信号レベルが所定の範囲内とな るよう調整を行い、前記カフの降圧時に前記脈波検出器により検出された脈波に基 づ!、た血圧値を導出する血圧値導出制御手段と、
を有することを特徴とする血圧測定装置。
[7] 前記血圧値導出制御手段は、前記カフの昇圧時に前記脈波検出器により検出さ れた脈波の信号レベルが所定の範囲内であった場合、該脈波に基づ!、て血圧値を 導出し、測定動作を終了することを特徴とする請求項 6に記載の血圧測定装置。
[8] 前記脈波検出器により検出される脈波は、血管内の血液による光の吸収および反 射により得られる光電容積脈波であることを特徴とする請求項 6に記載の血圧測定装 置。
[9] 前記レベル制御手段は、
前記血管内の血液に光を照射する発光素子からの出力光量を調整する光量調整 手段と、前記発光素子により照射された光の前記血管内の血液による吸収および反 射を検出する受光素子力 の信号レベルを制御するゲイン制御手段との少なくとも 一方を有することを特徴とする請求項 8に記載の血圧測定装置。
[10] 外耳およびその周辺部に装着されるカフと、
前記カフにより圧迫される部位の脈波を検出する脈波検出器と、
前記脈波の信号レベルを制御するレベル制御手段と、
前記カフの昇圧前あるいは昇圧初期に前記脈波検出器により検出された脈波の信 号レベルが所定の範囲外であった場合、前記レベル制御手段により該信号レベルが 所定の範囲内となるよう調整を行い、引き続く前記カフの昇圧時に前記脈波検出器 により検出された脈波に基づいた血圧値を導出する血圧値導出制御手段と、 を有することを特徴とする血圧測定装置。
[11] 前記脈波検出器により検出される脈波は、血管内の血液による光の吸収および反 射により得られる光電容積脈波であることを特徴とする請求項 10に記載の血圧測定 装置。
[12] 前記レベル制御手段は、
前記血管内の血液に光を照射する発光素子からの出力光量を調整する光量調整 手段と、前記発光素子により照射された光の前記血管内の血液による吸収および反 射を検出する受光素子力 の信号レベルを制御するゲイン制御手段との少なくとも 一方を有することを特徴とする請求項 11に記載の血圧測定装置。
[13] 外耳およびその周辺部に装着される第 1のカフと、
前記第 1のカフにより圧迫される部位の脈波を検出する脈波検出器と、 前記脈波の信号レベルを制御するレベル制御手段と、
前記第 1のカフの昇圧時に前記脈波検出器により検出された脈波の信号レベルが 所定の範囲外であった場合、前記レベル制御手段により該信号レベルが所定の範 囲内となるよう調整を行い、前記第 1のカフの降圧時に前記脈波検出器により検出さ れた脈波に基づいた血圧値を導出する血圧値導出制御手段と、 前記第 1のカフとは異なる場所に装着される第 2のカフと、
前記第 2のカフにより圧迫される部位の脈波を検出し血圧を決定する血圧決定手 段と、
前記第 1のカフと前記第 2のカフとの加圧を同期させる加圧制御手段と、 を有することを特徴とする血圧測定装置。
[14] 外耳およびその周辺部に装着される第 1のカフと、
前記第 1のカフにより圧迫される部位の脈波を検出する脈波検出器と、 前記脈波の信号レベルを制御するレベル制御手段と、
前記第 1のカフの昇圧前あるいは昇圧初期に前記脈波検出器により検出された脈 波の信号レベルが所定の範囲外であった場合、前記レベル制御手段により該信号レ ベルが所定の範囲内となるよう調整を行い、引き続く前記第 1のカフの昇圧時に前記 脈波検出器により検出された脈波に基づいた血圧値を導出する血圧値導出制御手 段と、
前記第 1のカフとは異なる場所に装着される第 2のカフと、
前記第 2のカフにより圧迫される部位の脈波を検出し血圧を決定する血圧決定手 段と、
前記第 1のカフと前記第 2のカフとの加圧を同期させる加圧制御手段と、 を有することを特徴とする血圧測定装置。
[15] 外耳およびその周辺部に装着されるカフにより圧迫される部位の脈波を検出し、体 動の特徴によりそれぞれ異なる影響を受ける第 1の脈波および第 2の脈波を検出す る検出工程と、
体動の特徴を検出する体動検出工程と、
前記体動検出工程により検出された体動の特徴に基づいて、前記第 1の脈波およ び前記第 2の脈波の何れか一方の脈波を選択する脈波選択工程と、
前記脈波選択工程により選択された脈波に基づいて血圧値を導出する血圧値導 出工程と、
を有することを特徴とする血圧測定方法。
[16] 前記体動検出工程は、体動の大きさを検出するレベル検出工程を有しており、 前記脈波選択工程は、前記レベル検出工程により検出された体動の大きさに基づ いて血圧導出に使用する脈波を選択することを特徴とする請求項 15に記載の血圧 測定方法。
[17] 前記体動検出工程は、さらに体動の周期を検出する周期検出工程を有しており、 前記脈波選択工程は、前記レベル検出工程により検出された体動の大きさおよび 前記周期検出工程により検出された体動の周期に基づいて血圧導出に使用する脈 波を選択することを特徴とする請求項 16に記載の血圧測定方法。
[18] 外耳およびその周辺部に装着されるカフの昇圧時に、該カフにより圧迫される部位 の脈波を検出する昇圧時脈波検出工程と、
前記昇圧時脈波検出工程により検出された脈波の信号レベルが所定の範囲外で あった場合、該信号レベルが所定の範囲内となるよう信号レベルを制御するレベル 制御工程と、
前記カフの降圧時に、該カフにより圧迫される部位の脈波を検出する降圧時脈波 検出工程と、
前記昇圧時脈波検出工程または前記降圧時脈波検出工程により検出された、信 号レベルが所定の範囲内である脈波に基づいた血圧値を導出する血圧値導出工程 と、
を有することを特徴とする血圧測定方法。
[19] 前記昇圧時脈波検出工程により検出された脈波の信号レベルが所定の範囲内で あった場合、前記レベル制御工程および前記降圧時脈波検出工程を行わず、前記 血圧値導出工程は前記昇圧時脈波検出工程により検出された脈波に基づいた血圧 値を導出することを特徴とする血圧測定方法。
[20] 前記昇圧時脈波検出工程および前記降圧時脈波検出工程により検出される脈波 は、血管内の血液による光の吸収および反射により得られる光電容積脈波であること を特徴とする請求項 18に記載の血圧測定方法。
[21] 前記レベル制御工程は、
前記血管内の血液に光を照射する発光素子からの出力光量を調整する光量調整 工程と、前記発光素子により照射された光の前記血管内の血液による吸収および反 射を検出する受光素子力 の信号レベルを制御するゲイン制御工程との少なくとも 一方を有することを特徴とする請求項 20に記載の血圧測定方法。
[22] 外耳およびその周辺部に装着されるカフの昇圧前あるいは昇圧初期に、該カフに より圧迫される部位の脈波を検出する初期脈波検出工程と、
前記初期脈波検出工程により検出された脈波の信号レベルが所定の範囲外であ つた場合、該信号レベルが所定の範囲内となるよう信号レベルを制御するレベル制 御工程と、
引き続く前記カフの昇圧時に、該カフにより圧迫される部位の脈波を検出する脈波 検出工程と、
前記脈波検出工程により検出された脈波に基づいた血圧値を導出する血圧値導 出工程と、
を有することを特徴とする血圧測定方法。
[23] 前記脈波検出工程により検出される脈波は、血管内の血液による光の吸収および 反射により得られる光電容積脈波であることを特徴とする請求項 22に記載の血圧測 定方法。
[24] 前記レベル制御工程は、
前記血管内の血液に光を照射する発光素子からの出力光量を調整する光量調整 工程と、前記発光素子により照射された光の前記血管内の血液による吸収および反 射を検出する受光素子力 の信号レベルを制御するゲイン制御工程との少なくとも 一方を有することを特徴とする請求項 23に記載の血圧測定方法。
PCT/JP2005/018293 2004-10-06 2005-10-03 血圧測定装置および血圧測定方法 WO2006038589A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/664,690 US20080243008A1 (en) 2004-10-06 2005-10-03 Blood Pressure Measuring Apparatus and Blood Pressure Measuring Method
EP05788055A EP1808123B1 (en) 2004-10-06 2005-10-03 Blood pressure measuring device and blood pressure measuring method
AT05788055T ATE498357T1 (de) 2004-10-06 2005-10-03 Blutdruckmessgerät und blutdruckmessverfahren
DE602005026424T DE602005026424D1 (de) 2004-10-06 2005-10-03 Blutdruckmessgerät und blutdruckmessverfahren
US13/422,837 US20120172735A1 (en) 2004-10-06 2012-03-16 Blood pressure measuring apparatus and blood pressure measuring method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-294308 2004-10-06
JP2004294308A JP4455971B2 (ja) 2004-10-06 2004-10-06 血圧測定装置および血圧測定方法、並びに制御プログラムおよびコンピュータ読取可能な記憶媒体
JP2004-294307 2004-10-06
JP2004294307A JP4657666B2 (ja) 2004-10-06 2004-10-06 血圧測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/422,837 Division US20120172735A1 (en) 2004-10-06 2012-03-16 Blood pressure measuring apparatus and blood pressure measuring method

Publications (1)

Publication Number Publication Date
WO2006038589A1 true WO2006038589A1 (ja) 2006-04-13

Family

ID=36142662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018293 WO2006038589A1 (ja) 2004-10-06 2005-10-03 血圧測定装置および血圧測定方法

Country Status (6)

Country Link
US (2) US20080243008A1 (ja)
EP (1) EP1808123B1 (ja)
AT (1) ATE498357T1 (ja)
DE (1) DE602005026424D1 (ja)
TW (1) TWI369972B (ja)
WO (1) WO2006038589A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102262A (ja) * 2004-10-06 2006-04-20 Terumo Corp 血圧測定装置及び血圧測定方法、並びに制御プログラム及びコンピュータ読取可能な記憶媒体
EP1859730A1 (de) * 2006-05-24 2007-11-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor zur Messung eines Vitalparameters eines Lebewesens
JPWO2009001449A1 (ja) * 2007-06-27 2010-08-26 パイオニア株式会社 聴取装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098721B2 (ja) * 2008-03-14 2012-12-12 オムロンヘルスケア株式会社 血圧測定装置、血圧導出プログラムおよび血圧導出方法
KR101081659B1 (ko) * 2010-01-29 2011-11-09 이병훈 병명이 표시되는 혈압기
JP5821658B2 (ja) * 2012-01-25 2015-11-24 オムロンヘルスケア株式会社 測定装置および測定方法
EP3630234B1 (en) 2017-05-25 2021-07-21 West Pharmaceutical Services, Inc. Detection and communication of plunger position using induction
JP7027458B2 (ja) 2017-06-06 2022-03-01 ウエスト ファーマスーティカル サービシーズ インコーポレイテッド 埋込み電子機器を有するエラストマーアーティクルおよびその製造方法
US20200330038A1 (en) * 2019-04-19 2020-10-22 42 Health Sensor Holdings Ltd Wearable cardiovascular monitoring device
CN113545762B (zh) * 2020-04-23 2023-12-19 疆域康健创新医疗科技成都有限公司 血压测量方法和血压测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256727A (ja) * 1991-02-06 1992-09-11 Hikari Giken Kk 血圧検出器
JPH04259448A (ja) 1991-02-15 1992-09-16 Omron Corp 電子血圧計
JPH05146415A (ja) * 1991-11-01 1993-06-15 Ueda Seisakusho:Kk 血圧測定装置
JPH0618555A (ja) 1992-06-30 1994-01-25 Meisei Denshi Kogyo Kk マイクロスプリングコンタクト、マイクロスプリングコンタクトの集合体、該マイクロスプリングコンタクトの集合体からなる電気的接続用端子及びマイクロスプリングコンタクトの製造方法
JPH07241279A (ja) * 1994-03-07 1995-09-19 Nippon Koden Corp 脈波検出センサ
JP2001008909A (ja) * 1999-06-28 2001-01-16 Omron Corp 電子血圧計
EP1212979A2 (en) 2000-12-06 2002-06-12 Kabushiki Gaisha K-and-S Pulse wave measuring apparatus and pulse wave measuring method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140110A (en) * 1976-12-27 1979-02-20 American Optical Corporation Systolic pressure determining apparatus and process using integration to determine pulse amplitude
GB2104223B (en) * 1981-08-21 1984-11-21 Nat Res Dev Blood pressure measurement
US5267566A (en) * 1991-03-07 1993-12-07 Maged Choucair Apparatus and method for blood pressure monitoring
US5971931A (en) * 1994-03-29 1999-10-26 Raff; Gilbert Lewis Biologic micromonitoring methods and systems
EP0845241B1 (en) * 1996-06-12 2004-08-18 Seiko Epson Corporation Body temperature measuring apparatus
US6565515B2 (en) * 1999-05-06 2003-05-20 Colin Corporation Pulse-wave-propagation-velocity-relating-information obtaining apparatus and blood-pressure-index measuring apparatus
DE19963633A1 (de) * 1999-12-29 2001-07-12 Braun Gmbh Blutdruckmeßgerät mit Neigungssensor
AU2001221391A1 (en) * 2000-01-26 2001-08-07 Vsm Medtech Ltd. Continuous blood pressure monitoring method and apparatus
US6699199B2 (en) * 2000-04-18 2004-03-02 Massachusetts Institute Of Technology Photoplethysmograph signal-to-noise line enhancement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256727A (ja) * 1991-02-06 1992-09-11 Hikari Giken Kk 血圧検出器
JPH04259448A (ja) 1991-02-15 1992-09-16 Omron Corp 電子血圧計
JP3240324B2 (ja) 1991-02-15 2001-12-17 オムロン株式会社 電子血圧計
JPH05146415A (ja) * 1991-11-01 1993-06-15 Ueda Seisakusho:Kk 血圧測定装置
JPH0618555A (ja) 1992-06-30 1994-01-25 Meisei Denshi Kogyo Kk マイクロスプリングコンタクト、マイクロスプリングコンタクトの集合体、該マイクロスプリングコンタクトの集合体からなる電気的接続用端子及びマイクロスプリングコンタクトの製造方法
JPH07241279A (ja) * 1994-03-07 1995-09-19 Nippon Koden Corp 脈波検出センサ
JP2001008909A (ja) * 1999-06-28 2001-01-16 Omron Corp 電子血圧計
EP1212979A2 (en) 2000-12-06 2002-06-12 Kabushiki Gaisha K-and-S Pulse wave measuring apparatus and pulse wave measuring method
JP2002172095A (ja) * 2000-12-06 2002-06-18 K & S:Kk 脈波測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102262A (ja) * 2004-10-06 2006-04-20 Terumo Corp 血圧測定装置及び血圧測定方法、並びに制御プログラム及びコンピュータ読取可能な記憶媒体
EP1859730A1 (de) * 2006-05-24 2007-11-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor zur Messung eines Vitalparameters eines Lebewesens
JPWO2009001449A1 (ja) * 2007-06-27 2010-08-26 パイオニア株式会社 聴取装置
JP5185265B2 (ja) * 2007-06-27 2013-04-17 パイオニア株式会社 聴取装置

Also Published As

Publication number Publication date
DE602005026424D1 (de) 2011-03-31
EP1808123B1 (en) 2011-02-16
TWI369972B (en) 2012-08-11
US20080243008A1 (en) 2008-10-02
TW200714254A (en) 2007-04-16
US20120172735A1 (en) 2012-07-05
ATE498357T1 (de) 2011-03-15
EP1808123A1 (en) 2007-07-18
EP1808123A4 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
WO2006038589A1 (ja) 血圧測定装置および血圧測定方法
JP5151690B2 (ja) 血圧情報測定装置および指標取得方法
US8348851B2 (en) Blood pressure measurement device and control method of the same
WO2010106994A1 (ja) 血圧情報測定装置
CN100493446C (zh) 血压测量装置和血压测量方法
JP2006289088A (ja) 脈拍検出装置および方法
WO2006109519A1 (ja) 血圧測定装置および血圧測定方法
JPH0763450B2 (ja) 光電容積脈波血圧計
EP3187106A1 (en) Blood pressure measuring auxiliary device, blood pressure measuring device, and design method therefor
KR20100103350A (ko) 병명이 표시되는 혈압기
US20040171941A1 (en) Blood flow amount estimating apparatus
JP2010194108A (ja) 血圧情報測定装置および動脈硬化度指標算出プログラム
JP4874002B2 (ja) 電子血圧計
US20150374248A1 (en) Device and method for measuring blood pressure
JP2006280392A (ja) 血圧測定システム
JP2012152372A (ja) 血圧測定装置および血圧測定方法
CN101502417B (zh) 电子式血压测量装置
JP4563766B2 (ja) 血圧測定装置および血圧測定方法、並びに制御プログラムおよびコンピュータ読取可能な記憶媒体
JP5092885B2 (ja) 電子血圧計
JP4673030B2 (ja) 血圧測定装置
US20230125180A1 (en) Blood pressure measurement system utilizing auscultatory signal acquisition
JP2006102252A (ja) 循環器機能計測装置及び循環器機能計測方法、並びに制御プログラム及びコンピュータ読取可能な記憶媒体
JP2011206322A (ja) 血圧測定装置および血圧測定用プログラム
JP3830603B2 (ja) 運動療法装置
JP4745705B2 (ja) 血圧測定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580033732.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005788055

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005788055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11664690

Country of ref document: US