WO2006038549A1 - Power supply control circuit - Google Patents

Power supply control circuit Download PDF

Info

Publication number
WO2006038549A1
WO2006038549A1 PCT/JP2005/018092 JP2005018092W WO2006038549A1 WO 2006038549 A1 WO2006038549 A1 WO 2006038549A1 JP 2005018092 W JP2005018092 W JP 2005018092W WO 2006038549 A1 WO2006038549 A1 WO 2006038549A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply voltage
circuit
voltage
control circuit
Prior art date
Application number
PCT/JP2005/018092
Other languages
French (fr)
Japanese (ja)
Inventor
Ryouichi Sugita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006038549A1 publication Critical patent/WO2006038549A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the present invention relates to a power supply control circuit that supplies a stable power supply to an internal circuit having a plurality of power supplies.
  • an inserted memory card performs contact-type communication (hereinafter referred to as contact communication) in which the conductive metal terminals are in physical contact with an external host, and simultaneously with another external host and electromagnetic waves.
  • contact communication contact-type communication
  • non-contact communication there are multiple power supply systems to the memory card controller when simultaneous communication using multiple interfaces is realized.
  • FIG. 12 shows a power supply circuit configuration of a conventional memory card controller, which includes a contact terminal 11, an antenna 13, a rectifier circuit 14, and an internal circuit 20.
  • the contact terminal 11 is a terminal to which a power supply voltage is applied during contact communication.
  • the antenna 13 generates an induced electromotive force by an electromagnetic wave generated by a host that supports non-contact communication.
  • the rectifier circuit 14 is a circuit that rectifies the induced electromotive force generated as described above.
  • the internal circuit 20 is a memory arithmetic circuit that processes data as a memory card controller, and it is necessary to supply a stable power supply voltage to the internal circuit 20 regardless of the communication state.
  • FIG. 13 shows a specific configuration example of the antenna 13 and the rectifier circuit 14.
  • the induced electromotive force (alternating voltage) generated in the antenna 13 is converted into a positive component voltage by the diode 131 a in FIG. 13 and flattened by the smoothing capacitor 132.
  • the flattened voltage is clamped to a constant voltage by the shunt regulator 133, output as the power supply voltage 21, and supplied to the internal circuit 20.
  • contact communication is stopped in a state where contactless communication is started, contactless communication is started, and then contactless communication is performed. .
  • the power supply voltage 21 supplied to the internal circuit 20 in the communication state described above is supplied from both the contact terminal 11 and the rectifier circuit 14 simultaneously with the start of non-contact communication from the state supplied from the contact terminal 11. Further, when the contact communication is stopped, the power supply voltage is supplied only from the rectifier circuit 14.
  • the voltage applied to the contact terminal 11 is an arbitrary voltage equal to or lower than the voltage level necessary for the operation of the internal circuit 20. This is because, for example, when contact communication is performed with a mobile phone, it is assumed that the contact communication is stopped due to battery exhaustion.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-123140
  • the power supply control circuit includes a contact terminal to which a voltage is applied from the outside, and a first power supply voltage having the same potential as the contact terminal.
  • a power supply separation circuit that separates a second power supply voltage generated from the circuit, and a state control circuit that controls the state of the power supply separation circuit from the output of the voltage detection circuit and the output of the rectification operation detection circuit. It is characterized by that.
  • a power supply control circuit is characterized in that, in the first aspect, a resistor for connecting the first power supply voltage and a ground level is provided.
  • the power supply control circuit of the invention according to claim 3 includes a contact terminal to which a voltage is also applied to an external force, a voltage detection circuit that detects a first power supply voltage having the same potential as the contact terminal, and the first A regulator that steps down the power supply voltage of 1 and outputs a third power supply voltage; an antenna that generates induced electromotive force by electromagnetic waves; a rectifier circuit that rectifies the induced electromotive force; and an operating state of the rectifier circuit is detected.
  • a rectifying operation detection circuit that performs the operation, a power supply separation circuit that separates the third power supply voltage and the second power supply voltage generated from the rectification circuit, an output of the voltage detection circuit, and an output of the rectification operation detection circuit And a state control circuit for controlling the state of the separation circuit.
  • the power supply control circuit of the invention according to claim 4 is characterized in that, in claim 3, a resistor for connecting the first power supply voltage and a ground level is provided.
  • the power supply control means of the invention according to claim 5 is characterized in that, in claim 3, the power supply control means includes a resistor for connecting the third power supply voltage and a ground level.
  • the power supply control circuit of the invention according to claim 6 includes a contact terminal to which a voltage is also applied to an external force, an antenna that generates an induced electromotive force by electromagnetic waves, and a fifth power supply that rectifies the induced electromotive force.
  • a rectifier circuit that outputs a voltage, and a diode that connects a fourth power supply voltage and a fifth power supply voltage that have the same potential as the contact terminal are provided.
  • the power supply control circuit of the invention includes a contact terminal to which a voltage is also applied to an external force, a clock terminal for inputting a clock signal from the outside, a plurality of capacitors and transistors, The power supply voltage and the clock signal are input, and the charge pump for boosting the power supply voltage of 6 using the charge / discharge of the capacitor to generate the seventh power supply voltage, and the induced electromotive force is generated by electromagnetic waves.
  • An antenna and a rectifier circuit that rectifies the induced electromotive force and outputs the seventh power supply voltage.
  • a power supply control circuit stage is characterized in that, in the seventh aspect, a resistor for connecting the sixth power supply voltage and a ground level is provided.
  • FIG. 1 is a diagram showing a power supply control circuit according to a first embodiment of the present invention.
  • FIG. 2 is an internal circuit diagram of the state control circuit 18 in the first embodiment.
  • FIG. 3 is an internal circuit diagram of the power supply separation circuit 19 in the first embodiment.
  • FIG. 4 is a diagram showing a power supply control circuit according to Modification 1 of Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing a power supply control circuit according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a power supply control circuit according to Modification 1 of Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing a power supply control circuit according to a second modification of the second embodiment of the present invention.
  • FIG. 8 shows a power supply control circuit according to Embodiment 3 of the present invention.
  • FIG. 9 shows a power supply control circuit according to Embodiment 4 of the present invention.
  • FIG. 10 is an internal circuit diagram of charge pump 114 in the fourth embodiment of FIG.
  • FIG. 11 is a diagram showing a power supply control circuit according to Modification 1 of Embodiment 4 of the present invention.
  • FIG. 12 shows a conventional power supply control circuit.
  • FIG. 13 is an internal circuit diagram of rectifier circuit 14 in the first embodiment.
  • FIG. 1 is a configuration diagram showing a power supply control circuit according to the first embodiment of the present invention.
  • a contact terminal 11 is a terminal to which a voltage is applied from the outside, and the applied voltage supplies a power supply voltage to the power supply separation circuit 19 via the first power supply voltage 16.
  • Voltage The detection circuit 12 is a detection circuit that detects that the voltage of the first power supply voltage 16 has reached a certain level or more.
  • the antenna 13 generates an induced electromotive force by an electromagnetic wave generated from a host that supports non-contact communication.
  • the rectifier circuit 14 rectifies the induced electromotive force generated as described above, and supplies a power supply voltage to the internal circuit 20 via the second power supply voltage 17.
  • the rectification operation detection circuit 15 is a circuit that detects that the above-described rectification circuit 14 is performing the rectification operation.
  • the state control circuit 18 is a circuit that controls the power supply separation circuit 19 using the voltage detection signal 1A generated from the voltage detection circuit 12 and the rectification operation detection signal 1B generated from the rectification operation detection circuit 15.
  • the power supply separation circuit 19 is a circuit that receives the power supply separation circuit control signal 1C from the state control circuit 18 and separates and conducts the first power supply voltage 16 and the second power supply voltage 17.
  • a power supply voltage is applied to the contact terminal 11 from an external contact communication compatible host (not shown), and the power supply voltage described above is applied to the first power supply voltage 16 via the contact terminal 11. Propagated and applied to the power supply separation circuit 19.
  • the diode 131a shown in FIG. 13 stops backflow to the antenna 13, and the output from the rectifier circuit 14 to the second power supply voltage 17 becomes high impedance.
  • FIG. 3 shows the inside of the power supply separation circuit 19.
  • the power supply separation circuit 19 includes a PMOS transistor 31 having a first power supply voltage 16 and a second power supply voltage 17 as a source and a drain and a substrate voltage as a second power supply voltage 17 and a first power supply. It is composed of a NAND logic gate 34 that inputs a signal whose voltage 16 is waveform-shaped by NOT logic gates 32 and 33 and a power supply separation circuit control signal 1C, and inputs the output to the gate of the PMOS transistor 31 described above. Yes.
  • the voltage detection circuit 12 of FIG. 1 outputs “H” as the voltage detection signal 1A from the time when the first power supply voltage 16 becomes equal to or higher than a certain level. When it is below a certain level, "L" is output.
  • the above-mentioned constant level is the power supply voltage level at which the internal circuit 20 can operate normally.
  • the rectification operation detection circuit 15 outputs “L” as the rectification operation detection signal 1B to the state control circuit 18 in response to the fact that the rectification circuit 14 is not operating.
  • the state control circuit 18 receives the voltage detection signal 1A and the rectification operation detection signal IB, performs an operation, and outputs a signal to the power supply separation circuit 19 as the power supply separation circuit control signal 1C.
  • FIG. 2 shows a specific circuit example of the state control circuit 18. From the above situation, in FIG. 2, the rectification operation detection signal 1B is “L”, the voltage detection signal 1A is “H”, the first power supply voltage 16 is “H”, and the second power supply Since the voltage 17 reaches the voltage at which the arithmetic element operates, the power supply separation circuit control signal 1C is fixed to “H”.
  • the gate control signal 35 in FIG. 3 becomes “H”, and the source and drain of the PMOS transistor 31 become conductive.
  • the first power supply voltage 16 becomes completely conductive with the second power supply voltage 17, and the voltage applied to the contact terminal 11 in FIG. 1 can be stably supplied to the internal circuit 20. It becomes possible.
  • An induced electromotive force is generated in the antenna 13 by electromagnetic waves transmitted from a host corresponding to non-contact communication (not shown), and the voltage is supplied to the second power supply voltage 17 via the rectifier circuit 14. Is done. Since the operations of the antenna 13 and the rectifier circuit 14 are as described in the prior art, they are not described here.
  • the rectifier operation detection circuit 15 receives “H” as the rectifier operation detection signal 1 B as the state control circuit 18. Is input.
  • the voltage detection signal 1A that does not change in the voltage detection circuit 12 remains “H”.
  • the power supply separation circuit control signal 1C output to the power supply separation circuit 19 remains “H”.
  • the first power supply voltage 16 and the second power supply voltage 17 remain conductive.
  • the voltage detection circuit 12 detects this drop in the power supply voltage and changes the voltage detection signal 1A to “L”. At this time, the voltage level detected by the voltage detection circuit 12 is set to a voltage level at which the internal circuit 20 can operate.
  • the rectification operation detection signal 1B remains “H”. Since the voltage detection signal 1A is “L” and the rectification operation detection signal IB is “ ⁇ ”, the power supply separation circuit control signal 1C is changed to “L” in the state control circuit 18 shown in FIG. As the power supply separation circuit control signal 1C changes to “L”, the gate control signal 35 in the power supply separation circuit 19 shown in FIG. 3 becomes “ ⁇ ”, and the PMOS transistor 31 causes the first power supply voltage 16 to be The second power supply voltage 17 is separated.
  • the internal circuit supplies a stable power supply voltage from the rectifier circuit 14 in which the first power supply voltage 16 and the second power supply voltage 17 do not collide. Can be supplied to 20.
  • An induced electromotive force is generated in the antenna 13 by an electromagnetic wave transmitted from a host corresponding to non-contact communication (not shown), and the voltage is supplied to the second power supply voltage 17 via the rectifier circuit 14. Is done.
  • the first power supply voltage 16 is at or near the ground level because contact communication has not started.
  • the second power supply voltage 17 rises.1S In the PMOS transistor 31 of FIG. 3, the base and the drain that are the second power supply voltage 17 are Not conducting.
  • the second power supply voltage 17 rises until the arithmetic circuit driven thereby operates normally.
  • the first power supply voltage 16 is near the ground level, so that the gate control signal 35 becomes the “H” level and P In the MOS transistor 31, the first power supply voltage 16 and the second power supply voltage 17 are separated.
  • the second power supply voltage 17 can supply a stable power supply voltage to the internal circuit 20 that does not collide with the first power supply voltage 16.
  • a resistor 41 is provided between the first power supply voltage 16 and the ground level as shown in the first modification of the first embodiment in FIG. To do.
  • the resistor 41 is a resistor that flows a current that allows the internal circuit 20 to operate normally.
  • the first power supply voltage 16 can be reliably set to the ground level, and the power supply can be separated. A malfunction of the circuit 19 can be prevented.
  • the contact terminal to which a voltage is applied from the outside, and the first power supply voltage having the same potential as the contact terminal are provided.
  • the power supply control circuit according to the second embodiment of the present invention is different from the power supply control circuit according to the first embodiment in that the power supply voltage on the contact terminal 11 side and the power supply voltage on the rectifier circuit 14 side (second Power supply voltage 17) is to be separated by the power supply separation circuit 19, and is the power supply voltage on the contact terminal 11 side that is a signal directly input to the power supply separation circuit 19 (the first The regulator 51 is inserted between the power supply voltage 52) of FIG. 3 and the first power supply voltage 16 which is the voltage at the contact terminal 11. Furthermore, the voltage detected by the voltage detection circuit 12 is the voltage at the contact terminal 11 and the internal circuit 20 operates normally with the first power supply voltage 16 applied to the contact terminal 11.
  • the first power supply voltage 16 is stepped down by the regulator 51, input to one input of the power supply separation circuit 19, and controlled by the state control circuit 18 to obtain the first power supply voltage 16
  • the power supply is separated or connected between the antenna 13 and the second power supply voltage 17 on the rectifier circuit 14 side.
  • the voltage level detected by the voltage detection circuit 12 is set to the first power supply voltage 16 or less and the second power supply voltage 17 or more.
  • the detection level of the voltage detection circuit 12 is set to 2V.
  • the voltage detection circuit 12 detects that the contact communication is stopped, and the power supply separation circuit 19 separates the second power supply voltage 17 and the first power supply voltage 16, so that the internal circuit 20 It is possible to prevent a decrease in voltage supplied to.
  • a resistor 61 is provided between the first power supply voltage 16 and the ground level.
  • the resistor 61 is a resistor that allows a current to flow so that the internal circuit 20 operates normally. In this way, even if contact communication is performed, even if the contact terminal 11 is in a high impedance state, the first power supply voltage 16 can be reliably set to the ground level. The malfunction of the regulator 51 can be prevented.
  • a resistor 71 is provided between the third power supply voltage 52 and the ground level.
  • Resistor 71 is a resistor that allows current to flow to the extent that internal circuit 20 operates normally. In this way, the third power supply voltage 52 is reliably set to the ground level even when the regulator 51 is stopped in a state where contact communication is not performed and the output becomes high impedance due to the circuit configuration. Thus, malfunction of the power supply separation circuit 19 and the state control circuit 18 can be prevented.
  • a contact terminal to which a voltage is applied from the outside a voltage detection circuit that detects a first power supply voltage having the same potential as the contact terminal, An antenna that generates an induced electromotive force by electromagnetic waves, a rectifier circuit that rectifies the induced electromotive force, a rectifier operation detection circuit that detects an operating state of the rectifier circuit, and the first power supply voltage and the rectifier circuit
  • a power supply separation circuit that separates the second power supply voltage
  • a state control circuit that controls the state of the power supply separation circuit from the output of the voltage detection circuit and the output of the rectification operation detection circuit.
  • the first power supply voltage falls below a certain level after the first power supply voltage starts to decrease.
  • the voltage detection times There was detected, until the first power supply line and the power separation circuit and the second power supply line are separated, the power supply voltage becomes below a certain level is propagated to the second power supply line, subjected to an internal circuit
  • the contact communication is stopped after the contact communication stops and the first power supply voltage level starts to gradually decrease. There is an effect that a stable power supply voltage can be supplied to the internal circuit until the voltage detection circuit detects it.
  • a resistance is applied between the first power supply voltage and the ground level, and this resistance is such that the internal circuit operates normally. If the contact current is set to a resistance, the first power supply voltage must be set to the ground level reliably even when contact communication is not performed and the contact terminal is in a high-impedance state. And can prevent malfunction of the regulator, and as in Modification 2 of Embodiment 2, a resistor is added between the third power supply voltage and the ground level. In addition, if this resistor is a resistor that allows a current that allows the internal circuit to operate normally, the regulator stops when contact communication is not performed, and the output of the circuit is high impedance depending on the circuit configuration. Even if it becomes third The power supply voltage can be reliably set to the ground level, and malfunctions of the power supply separation circuit and the state control circuit can be prevented.
  • FIG. 8 is a configuration diagram of a power supply control circuit according to the third embodiment of the present invention.
  • a contact terminal 11 is a terminal to which a voltage is applied from the outside, and is connected to a diode 81 via a fourth power supply voltage 82.
  • the output of the diode 81 is connected to the internal circuit 20 as the fifth power supply voltage 83.
  • the configurations of the antenna 13 and the rectifier circuit 14 are the same as in the conventional example, and their outputs are connected to the fifth power supply voltage 83.
  • the power supply voltage applied to the contact terminal 11 is in the ground level or the no-impedance state.
  • the fourth power supply voltage 82 input to the diode 81 is at or near the ground level.
  • the antenna 13 and the rectifier circuit 14 The fifth power supply voltage 83 is supplied with a power supply voltage at which the internal circuit 20 can operate.
  • the power supply voltage applied to the fifth power supply voltage 83 by the diode 81 does not flow into the fourth power supply voltage 82. Thereby, a stable power supply voltage can be supplied to the internal circuit 20.
  • a contact terminal to which a voltage is applied from the outside, an antenna that generates an induced electromotive force by electromagnetic waves, and the induced electromotive force Since the rectifier circuit that rectifies and outputs the fifth power supply voltage and the diode that connects the fourth power supply voltage and the fifth power supply voltage, which have the same potential as the contact terminal, are provided, non-contact communication is possible.
  • any voltage at the level near or near the ground level applied to the contact terminal is the fourth power supply voltage. This prevents the collision with the fifth power supply voltage supplied to the internal circuit, and provides an effect of supplying a stable power supply voltage to the internal circuit.
  • FIG. 9 is a configuration diagram of a power supply control circuit according to the fourth embodiment of the present invention.
  • a clock input terminal 91 indicates an external host (not shown) or a terminal to which an internally generated clock waveform signal is input.
  • the clock waveform signal input to the clock input terminal 91 is input to the charge pump 94 via the clock line 92.
  • the contact terminal 11 is a terminal to which a power supply voltage is applied from an external host (not shown) as in the prior art, and the applied power supply voltage is propagated to the sixth power supply voltage 93.
  • the sixth power supply voltage 93 is input to the charge pump 94.
  • the charge pump 94 to which the clock waveform signal and the sixth power supply voltage 93 are input connects the output to the internal circuit 20 as the seventh power supply voltage 95.
  • the configurations of the antenna 13 and the rectifier circuit 14 are the same as in the conventional example, and their outputs are connected to the seventh power supply voltage 95.
  • a power supply voltage is applied to the contact terminal 11 in FIG. 9 from an external host (not shown). This applied power supply voltage is applied to the charge pump 94 as the sixth power supply voltage 93.
  • the clock input from the clock input terminal 91 The waveform signal is input to the charge pump 94 via the clock line 92.
  • FIG. 10 shows a circuit example of the charge pump 94, and the voltage that has risen from the sixth power supply voltage 93 by the clock waveform signal supplied from the clock line 92 is changed to the seventh power supply voltage 95. Applied.
  • the applied seventh power supply voltage 95 is supplied to the internal circuit 20 of FIG.
  • reference numeral 102 denotes a NOT logic gate.
  • the induced electromotive force is generated at antenna 13 in FIG. 11 by electromagnetic waves transmitted from a host corresponding to non-contact communication shown in FIG.
  • the voltage is supplied to the seventh power supply voltage 95 via the rectifier circuit 14. Since the operations of the antenna 13 and the rectifier circuit 14 are as described in the prior art, they are not described here.
  • the supplied seventh power supply voltage 95 supplies a power supply voltage to the internal circuit 20.
  • the contact terminal 11 is at or near the ground level, and in the conventional technology, the sixth power supply voltage 93 and the seventh power supply voltage 95, which are at the same potential as the contact terminal 11, cause a voltage level collision and The circuit 20 was unable to supply a stable power supply voltage.
  • the charge pump 94 is inserted between the sixth power supply voltage 93 and the seventh power supply voltage 95, and the seventh power supply in FIG.
  • the NMOS transistor 105 to which the voltage 95 is connected can avoid a voltage level collision, and a stable power supply voltage can be supplied to the internal circuit 20.
  • resistor 111 is connected between sixth power supply voltage 93 and the ground level.
  • the resistor 111 is a resistor that allows a current to flow so that the internal circuit 20 operates normally.
  • the sixth power supply voltage 93 can be reliably set to the ground level, and the malfunction of the charge pump 94 can be prevented. It is possible to prevent this.
  • the seventh power supply is configured by changing the contact terminal to which a voltage is applied from the outside and the sixth power supply voltage having the same potential as the contact terminal.
  • a power supply voltage adjusting circuit charge pump
  • the contact terminal is at or near the ground level, and in the prior art, the sixth power source that is at the same potential as the contact terminal.
  • the charge pump is 6th power supply voltage
  • the contact terminal is connected to the ground level or any voltage at or near the ground level. Even if it is applied, it is possible to prevent collision between an arbitrary voltage and the power supply voltage supplied from the rectifier circuit to the internal circuit by the charge pump, and the power supply voltage can be stably supplied to the internal circuit.
  • the voltage level is reduced by the NMOS transistor to which the seventh power supply voltage is connected.
  • a stable power supply voltage can be supplied to the internal circuit.
  • a resistor is connected between the sixth power supply voltage and the ground level, and this resistor is a resistor that flows a current that allows the internal circuit to operate normally, contact communication is performed. Even if the contact terminal is in a high-impedance state in V, N, etc., the sixth power supply voltage can be reliably set to the ground level, and malfunction of the charge pump can be prevented.
  • the power supply control circuit of the present invention is effective for an IC card or the like having a plurality of communication interfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Near-Field Transmission Systems (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power supply control circuit comprises a voltage detecting circuit (12) for detecting a first power supply voltage (16) to be applied to a contact terminal (11); a rectifying circuit (14) for rectifying an induced electromotive force occurring in an antenna (13) to output a second power supply voltage (17); a power supply separating circuit (19) for separating the first power supply voltage (16) from the second power supply voltage (17); and a status control circuit (18) for controlling, based on a detection result of the voltage detecting circuit (12) and a rectifying operation detecting circuit (15), the power supply separating circuit (19) such that during operation of the rectifying circuit (14), the power supply separating circuit (19) separates the first power supply voltage (16) from the second power supply voltage (17) when the first power supply voltage (16) falls below a given level. This can prevent the collision between any voltage and the second power supply voltage (17) when that voltage is applied to the contact terminal (11).

Description

明 細 書  Specification
電源制御回路  Power control circuit
技術分野  Technical field
[0001] 本発明は、複数の電源を備えた内部回路に対し、安定した電源を供給する電源制 御回路に関する。  The present invention relates to a power supply control circuit that supplies a stable power supply to an internal circuit having a plurality of power supplies.
背景技術  Background art
[0002] 携帯電話等において、挿入したメモリカードが、導通する金属端子同士を物理的に 接触させた接触式通信 (以下接触通信とする)を外部ホストと行いつつ、同時に別の 外部ホストと電磁波を用いた非接触式通信 (以下非接触通信とする)を実施すると 、 う、複数のインターフェースによる同時通信を実現する場合、メモリカードコントローラ への電源供給系統も複数存在する。  [0002] In a mobile phone or the like, an inserted memory card performs contact-type communication (hereinafter referred to as contact communication) in which the conductive metal terminals are in physical contact with an external host, and simultaneously with another external host and electromagnetic waves. When implementing non-contact communication (hereinafter referred to as non-contact communication) using multiple interfaces, there are multiple power supply systems to the memory card controller when simultaneous communication using multiple interfaces is realized.
[0003] 図 12は従来のメモリカードコントローラの電源回路構成を示しており、接触端子 11 、アンテナ 13、整流回路 14、および内部回路 20から構成されている。接触端子 11 は接触通信時に電源電圧を印加される端子を示す。アンテナ 13は非接触通信に対 応したホストより発生される電磁波により、誘導起電力を発生する。整流回路 14は前 述の発生させた誘導起電力を整流する回路を示す。内部回路 20はメモリカードコン トローラとしてデータを処理する記憶演算回路を示し、この内部回路 20に対し通信状 態に左右されずに安定した電源電圧を供給することが必要である。  FIG. 12 shows a power supply circuit configuration of a conventional memory card controller, which includes a contact terminal 11, an antenna 13, a rectifier circuit 14, and an internal circuit 20. The contact terminal 11 is a terminal to which a power supply voltage is applied during contact communication. The antenna 13 generates an induced electromotive force by an electromagnetic wave generated by a host that supports non-contact communication. The rectifier circuit 14 is a circuit that rectifies the induced electromotive force generated as described above. The internal circuit 20 is a memory arithmetic circuit that processes data as a memory card controller, and it is necessary to supply a stable power supply voltage to the internal circuit 20 regardless of the communication state.
[0004] 以上のように構成された電源回路について、その動作の概要を説明する。接触通 信時には、接触端子 11に印加された電圧が、電源電圧 21として内部回路 20に供給 される。  An outline of the operation of the power supply circuit configured as described above will be described. At the time of contact communication, the voltage applied to the contact terminal 11 is supplied to the internal circuit 20 as the power supply voltage 21.
[0005] 非接触通信時にはアンテナ 13にて発生された誘導起電力を整流回路 14にて整流 する。図 13は、アンテナ 13および整流回路 14の具体的な構成例を示している。アン テナ 13にて発生した誘導起電力(交流電圧)は、図 13におけるダイオード 131aによ つて、プラス成分の電圧に変換され、また平滑容量 132によって平坦ィ匕される。この 平坦ィ匕された電圧は、シャントレギュレータ 133によって一定の電圧にクランプされ、 電源電圧 21として出力され、内部回路 20に供給される。 [0006] この際、接触通信を実施している状態で、非接触通信が開始され、その後非接触 通信が実施されて ヽる状態のまま、接触通信が停止すると ヽぅ通信状況も想定される 。前述の通信状態において内部回路 20へ供給される電源電圧 21は、接触端子 11 より供給されている状態から、非接触通信開始と同時に接触端子 11および整流回路 14の両者より供給される。さらに接触通信が停止した段階で、電源電圧は整流回路 14からのみの供給となる。 [0005] During non-contact communication, the induced electromotive force generated by the antenna 13 is rectified by the rectifier circuit 14. FIG. 13 shows a specific configuration example of the antenna 13 and the rectifier circuit 14. The induced electromotive force (alternating voltage) generated in the antenna 13 is converted into a positive component voltage by the diode 131 a in FIG. 13 and flattened by the smoothing capacitor 132. The flattened voltage is clamped to a constant voltage by the shunt regulator 133, output as the power supply voltage 21, and supplied to the internal circuit 20. [0006] At this time, if contact communication is stopped in a state where contactless communication is started, contactless communication is started, and then contactless communication is performed. . The power supply voltage 21 supplied to the internal circuit 20 in the communication state described above is supplied from both the contact terminal 11 and the rectifier circuit 14 simultaneously with the start of non-contact communication from the state supplied from the contact terminal 11. Further, when the contact communication is stopped, the power supply voltage is supplied only from the rectifier circuit 14.
[0007] この非接触通信が実施中で接触通信が停止という通信状態において、接触端子 1 1に印加される電圧は、内部回路 20の動作に必要な電圧レベル以下の任意の電圧 となる。これは例えば接触通信を携帯電話と行う場合、電池切れによる接触通信停 止を想定して 、るためである。  [0007] In the communication state in which the non-contact communication is being performed and the contact communication is stopped, the voltage applied to the contact terminal 11 is an arbitrary voltage equal to or lower than the voltage level necessary for the operation of the internal circuit 20. This is because, for example, when contact communication is performed with a mobile phone, it is assumed that the contact communication is stopped due to battery exhaustion.
特許文献 1:特開 2000— 123140号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-123140
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上記従来の構成においては、非接触通信時に接触通信が停止し、接触端子 11に 内部回路 20が動作に必要な電圧レベル以下の電源電圧 (たとえば接地レベル)が 印加されている場合、整流回路 14より供給されている電源電圧と、接触端子 11の電 源電圧とが衝突し、内部回路 20に対して安定した電源電圧を供給することができな い、という問題があった。 [0008] In the above conventional configuration, when contact communication is stopped at the time of non-contact communication, and a power supply voltage (for example, a ground level) lower than the voltage level required for the operation of the internal circuit 20 is applied to the contact terminal 11, The power supply voltage supplied from the rectifier circuit 14 and the power supply voltage of the contact terminal 11 collide, and there is a problem that a stable power supply voltage cannot be supplied to the internal circuit 20.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するために、請求項 1にかかる発明の電源制御回路は、外部から 電圧を印加される接触端子と、前記接触端子と同電位の第 1の電源電圧を検出する 電圧検出回路と、電磁波により誘導起電力を発生するアンテナと、前記誘導起電力 を整流する整流回路と、前記整流回路の動作状態を検出する整流動作検出回路と 、前記第 1の電源電圧と前記整流回路から発生する第 2の電源電圧を分離する電源 分離回路と、前記電圧検出回路の出力と前記整流動作検出回路の出力から前記電 源分離回路の状態を制御する状態制御回路と、を備えたことを特徴とする。  In order to solve the above-described problem, the power supply control circuit according to the first aspect of the present invention includes a contact terminal to which a voltage is applied from the outside, and a first power supply voltage having the same potential as the contact terminal. A detection circuit; an antenna that generates an induced electromotive force by electromagnetic waves; a rectifier circuit that rectifies the induced electromotive force; a rectification operation detection circuit that detects an operating state of the rectifier circuit; the first power supply voltage and the rectifier. A power supply separation circuit that separates a second power supply voltage generated from the circuit, and a state control circuit that controls the state of the power supply separation circuit from the output of the voltage detection circuit and the output of the rectification operation detection circuit. It is characterized by that.
[0010] また請求項 2にかかる発明の電源制御回路は、請求項 1において、前記第 1の電源 電圧と接地レベルを接続する抵抗を備えたことを特徴とする。 [0011] また請求項 3にかかる発明の電源制御回路は、外部力も電圧を印加される接触端 子と、前記接触端子と同電位の第 1の電源電圧を検出する電圧検出回路と、前記第 1の電源電圧を降圧して第 3の電源電圧を出力するレギユレータと、電磁波により誘 導起電力を発生するアンテナと、前記誘導起電力を整流する整流回路と、前記整流 回路の動作状態を検出する整流動作検出回路と、前記第 3の電源電圧と前記整流 回路から発生する第 2の電源電圧を分離する電源分離回路と、前記電圧検出回路 の出力と前記整流動作検出回路の出力から前記電源分離回路の状態を制御する状 態制御回路と、を備えたことを特徴とする。 [0010] A power supply control circuit according to a second aspect of the present invention is characterized in that, in the first aspect, a resistor for connecting the first power supply voltage and a ground level is provided. [0011] The power supply control circuit of the invention according to claim 3 includes a contact terminal to which a voltage is also applied to an external force, a voltage detection circuit that detects a first power supply voltage having the same potential as the contact terminal, and the first A regulator that steps down the power supply voltage of 1 and outputs a third power supply voltage; an antenna that generates induced electromotive force by electromagnetic waves; a rectifier circuit that rectifies the induced electromotive force; and an operating state of the rectifier circuit is detected. A rectifying operation detection circuit that performs the operation, a power supply separation circuit that separates the third power supply voltage and the second power supply voltage generated from the rectification circuit, an output of the voltage detection circuit, and an output of the rectification operation detection circuit And a state control circuit for controlling the state of the separation circuit.
[0012] また請求項 4に力かる発明の電源制御回路は、請求項 3において、前記第 1の電源 電圧と接地レベルを接続する抵抗を備えたことを特徴とする。  [0012] The power supply control circuit of the invention according to claim 4 is characterized in that, in claim 3, a resistor for connecting the first power supply voltage and a ground level is provided.
[0013] また請求項 5にかかる発明の電源制御手段は、請求項 3において、前記第 3の電源 電圧と接地レベルを接続する抵抗を備えたことを特徴とする。  [0013] Further, the power supply control means of the invention according to claim 5 is characterized in that, in claim 3, the power supply control means includes a resistor for connecting the third power supply voltage and a ground level.
[0014] また請求項 6にかかる発明の電源制御回路は、外部力も電圧を印加される接触端 子と、電磁波により誘導起電力を発生するアンテナと、前記誘導起電力を整流し第 5 の電源電圧を出力する整流回路と、前記接触端子と同電位である第 4の電源電圧と 第 5の電源電圧を接続するダイオードを備えたことを特徴とする。  [0014] Further, the power supply control circuit of the invention according to claim 6 includes a contact terminal to which a voltage is also applied to an external force, an antenna that generates an induced electromotive force by electromagnetic waves, and a fifth power supply that rectifies the induced electromotive force. A rectifier circuit that outputs a voltage, and a diode that connects a fourth power supply voltage and a fifth power supply voltage that have the same potential as the contact terminal are provided.
[0015] また請求項 7にかかる発明の電源制御回路は、外部力も電圧を印加される接触端 子と、外部からクロック信号を入力するクロック端子と、コンデンサ及びトランジスタを 複数有し、前記第 6の電源電圧と前記クロック信号とを入力し、前記コンデンサの充 放電利用して前記 6の電源電圧を昇圧して第 7の電源電圧を発生するチャージボン プと、電磁波により誘導起電力を発生するアンテナと、前記誘導起電力を整流し前記 第 7の電源電圧を出力する整流回路と、を備えたことを特徴とする。  [0015] Further, the power supply control circuit of the invention according to claim 7 includes a contact terminal to which a voltage is also applied to an external force, a clock terminal for inputting a clock signal from the outside, a plurality of capacitors and transistors, The power supply voltage and the clock signal are input, and the charge pump for boosting the power supply voltage of 6 using the charge / discharge of the capacitor to generate the seventh power supply voltage, and the induced electromotive force is generated by electromagnetic waves. An antenna and a rectifier circuit that rectifies the induced electromotive force and outputs the seventh power supply voltage.
[0016] また請求項 8にかかる発明の電源制御回路段は、請求項 7において、前記第 6の電 源電圧と接地レベルを接続する抵抗を備えたことを特徴とする。  [0016] A power supply control circuit stage according to an eighth aspect of the invention is characterized in that, in the seventh aspect, a resistor for connecting the sixth power supply voltage and a ground level is provided.
発明の効果  The invention's effect
[0017] 本発明にかかる電源制御回路によれば、接触通信が停止し、非接触通信が実施さ れているとき、接触通信用電源端子に接地レベルまたはそれに近いレベルの電圧が 印加されていても、内部回路に対して安定した電源電圧を供給することができる。 図面の簡単な説明 [0017] According to the power supply control circuit of the present invention, when contact communication is stopped and contactless communication is being performed, a voltage at the ground level or a level close thereto is applied to the contact communication power supply terminal. In addition, a stable power supply voltage can be supplied to the internal circuit. Brief Description of Drawings
[0018] [図 1]図 1は、本発明の実施の形態 1による電源制御回路を示す図  [0018] FIG. 1 is a diagram showing a power supply control circuit according to a first embodiment of the present invention.
[図 2]図 2は、上記実施の形態 1における状態制御回路 18の内部回路図  FIG. 2 is an internal circuit diagram of the state control circuit 18 in the first embodiment.
[図 3]図 3は、上記実施の形態 1における電源分離回路 19の内部回路図  FIG. 3 is an internal circuit diagram of the power supply separation circuit 19 in the first embodiment.
[図 4]図 4は、本発明の実施の形態 1の変形例 1による電源制御回路を示す図 FIG. 4 is a diagram showing a power supply control circuit according to Modification 1 of Embodiment 1 of the present invention.
[図 5]図 5は、本発明の実施の形態 2による電源制御回路を示す図 FIG. 5 is a diagram showing a power supply control circuit according to a second embodiment of the present invention.
[図 6]図 6は、本発明の実施の形態 2の変形例 1による電源制御回路を示す図 FIG. 6 is a diagram showing a power supply control circuit according to Modification 1 of Embodiment 2 of the present invention.
[図 7]図 7は、本発明の実施の形態 2の変形例 2による電源制御回路を示す図FIG. 7 is a diagram showing a power supply control circuit according to a second modification of the second embodiment of the present invention.
[図 8]図 8は、本発明の実施の形態 3による電源制御回路を示す図 FIG. 8 shows a power supply control circuit according to Embodiment 3 of the present invention.
[図 9]図 9は、本発明の実施の形態 4による電源制御回路を示す図  FIG. 9 shows a power supply control circuit according to Embodiment 4 of the present invention.
[図 10]図 10は、図 9の実施の形態 4におけるチャージポンプ 114の内部回路図 [FIG. 10] FIG. 10 is an internal circuit diagram of charge pump 114 in the fourth embodiment of FIG.
[図 11]図 11は、本発明の実施の形態 4の変形例 1による電源制御回路を示す図FIG. 11 is a diagram showing a power supply control circuit according to Modification 1 of Embodiment 4 of the present invention.
[図 12]図 12は、従来の電源制御回路を示す図 [FIG. 12] FIG. 12 shows a conventional power supply control circuit.
[図 13]図 13は、上記実施の形態 1における整流回路 14の内部回路図 符号の説明  FIG. 13 is an internal circuit diagram of rectifier circuit 14 in the first embodiment.
[0019] 11 接触端子  [0019] 11 Contact terminal
12 電圧検出回路  12 Voltage detection circuit
13 アンテナ  13 Antenna
14 整流回路  14 Rectifier circuit
15 整流動作検出回路  15 Rectification operation detection circuit
16 第 1の電源電圧  16 First supply voltage
17 第 2の電源電圧  17 Second supply voltage
18 状態制御回路  18 State control circuit
19 電源分離回路  19 Power supply separation circuit
20 内部回路  20 Internal circuit
1A 電圧検出信号  1A voltage detection signal
1B 整流動作検出信号  1B Rectification operation detection signal
1C 電源分離回路制御信号 21, 22, 23, 24 論理ゲート 1C Power supply separation circuit control signal 21, 22, 23, 24 Logic gate
31 PMOSトランジスタ  31 PMOS transistor
32, 33, 34 論理ゲート  32, 33, 34 logic gate
35 ゲート制御信号  35 Gate control signal
41 抵抗  41 Resistance
51 レギユレータ  51 Regulator
61 抵抗  61 resistance
71 抵抗  71 resistance
81 ダイオード  81 diode
82 第 4の電源電圧  82 Fourth power supply voltage
83 第 5の電源電圧  83 Fifth power supply voltage
91 クロック入力端子  91 Clock input terminal
92 クロックライン  92 clock lines
93 第 6の電源電圧  93 6th power supply voltage
94 チャージポンプ  94 Charge pump
95 第 7の電源電圧  95 7th power supply voltage
102 論理ゲート  102 logic gate
111 抵抗  111 resistance
131a ダイオード  131a diode
132 平滑コンデンサ  132 Smoothing capacitor
133 シャントレギユレータ  133 Chantreguirator
105 NMOSトランジスタ  105 NMOS transistor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021] (実施の形態 1) [0021] (Embodiment 1)
図 1は、本発明の実施の形態 1による電源制御回路を示す構成図である。  FIG. 1 is a configuration diagram showing a power supply control circuit according to the first embodiment of the present invention.
[0022] 図 1において、接触端子 11は、外部より電圧を印加される端子であり、印加された 電圧は、第 1の電源電圧 16を介して電源分離回路 19に電源電圧を供給する。電圧 検出回路 12は、前述の第 1の電源電圧 16の電圧が一定レベル以上になったことを 検出する検出回路である。一方、アンテナ 13は、非接触通信に対応したホストより発 生される電磁波により、誘導起電力を発生する。整流回路 14は、前述の発生させた 誘導起電力を整流し、第 2の電源電圧 17を介して、内部回路 20に電源電圧を供給 する。整流動作検出回路 15は、前述の整流回路 14が整流動作を実施していること を検出する回路である。状態制御回路 18は、電圧検出回路 12より発生した電圧検 出信号 1Aと、整流動作検出回路 15より発生した整流動作検出信号 1Bとを用いて、 電源分離回路 19を制御する回路である。電源分離回路 19は、状態制御回路 18か らの電源分離回路制御信号 1Cを受けて、第 1の電源電圧 16と、第 2の電源電圧 17 の分離 ·導通を行う回路である。 In FIG. 1, a contact terminal 11 is a terminal to which a voltage is applied from the outside, and the applied voltage supplies a power supply voltage to the power supply separation circuit 19 via the first power supply voltage 16. Voltage The detection circuit 12 is a detection circuit that detects that the voltage of the first power supply voltage 16 has reached a certain level or more. On the other hand, the antenna 13 generates an induced electromotive force by an electromagnetic wave generated from a host that supports non-contact communication. The rectifier circuit 14 rectifies the induced electromotive force generated as described above, and supplies a power supply voltage to the internal circuit 20 via the second power supply voltage 17. The rectification operation detection circuit 15 is a circuit that detects that the above-described rectification circuit 14 is performing the rectification operation. The state control circuit 18 is a circuit that controls the power supply separation circuit 19 using the voltage detection signal 1A generated from the voltage detection circuit 12 and the rectification operation detection signal 1B generated from the rectification operation detection circuit 15. The power supply separation circuit 19 is a circuit that receives the power supply separation circuit control signal 1C from the state control circuit 18 and separates and conducts the first power supply voltage 16 and the second power supply voltage 17.
[0023] 上記のような構成を有する本実施の形態 1の電源制御回路の動作を、以下に説明 する。 The operation of the power supply control circuit according to the first embodiment having the above configuration will be described below.
[0024] まず、接触端子 11より電源電圧が印加される接触通信が実施され、非接触通信が 停止している状態について、動作説明をする。  First, an operation will be described for a state in which contact communication to which a power supply voltage is applied from the contact terminal 11 is performed and non-contact communication is stopped.
[0025] 接触通信開始時に、図示されていない外部接触通信対応ホストより、電源電圧が 接触端子 11に印加され、前述の電源電圧は、接触端子 11を介して、第 1の電源電 圧 16に伝播し、電源分離回路 19に印加される。一方、非接触通信は行われていな いため、アンテナ 13に対して、電磁波は発生しておらず、誘導起電力は発生しない 。これにより、図 13に示されるダイオード 131aが、アンテナ 13への逆流を停止し、整 流回路 14から、第 2の電源電圧 17に対する出力はハイインピーダンスとなる。  [0025] At the start of contact communication, a power supply voltage is applied to the contact terminal 11 from an external contact communication compatible host (not shown), and the power supply voltage described above is applied to the first power supply voltage 16 via the contact terminal 11. Propagated and applied to the power supply separation circuit 19. On the other hand, since non-contact communication is not performed, no electromagnetic wave is generated with respect to the antenna 13, and no induced electromotive force is generated. As a result, the diode 131a shown in FIG. 13 stops backflow to the antenna 13, and the output from the rectifier circuit 14 to the second power supply voltage 17 becomes high impedance.
[0026] このような状態における電源分離回路 19の動作を、説明する。図 3は、電源分離回 路 19の回路内部を示している。本電源分離回路 19は、第 1の電源電圧 16、および 第 2の電源電圧 17を、ソース'ドレインとし、基板電圧を、第 2の電源電圧 17とした P MOSトランジスタ 31と、第 1の電源電圧 16を NOT論理ゲート 32, 33により波形整形 した信号と、電源分離回路制御信号 1Cとを入力とし、その出力を、前述の PMOSト ランジスタ 31のゲートに入力する NAND論理ゲート 34によって構成されている。図 3 における第 1の電源電圧 16力 徐々に上昇していき、 PMOSトランジスタ 31のソース '基板間の PN接合閾値以上に電圧が上昇した際、第 1の電源電圧 16は、 PMOSト ランジスタ 31のソース'基板を介して第 2の電源電圧 17に伝播する。これにより、第 1 の電源電圧 16の上昇に伴い、第 2の電源電圧 17をもって動作する演算素子が正常 に動作し始める。 The operation of the power supply separation circuit 19 in such a state will be described. FIG. 3 shows the inside of the power supply separation circuit 19. The power supply separation circuit 19 includes a PMOS transistor 31 having a first power supply voltage 16 and a second power supply voltage 17 as a source and a drain and a substrate voltage as a second power supply voltage 17 and a first power supply. It is composed of a NAND logic gate 34 that inputs a signal whose voltage 16 is waveform-shaped by NOT logic gates 32 and 33 and a power supply separation circuit control signal 1C, and inputs the output to the gate of the PMOS transistor 31 described above. Yes. The first power supply voltage 16 in FIG. 3 gradually increases, and when the voltage rises above the PN junction threshold between the source and the substrate of the PMOS transistor 31, the first power supply voltage 16 It propagates to the second power supply voltage 17 through the source 'substrate of the transistor 31. As a result, as the first power supply voltage 16 increases, the arithmetic element operating with the second power supply voltage 17 starts to operate normally.
[0027] この時、図 1の電圧検出回路 12は、第 1の電源電圧 16が一定レベル以上になった 時点から、 "H"を電圧検出信号 1Aとして出力する。一定レベル以下になっている場 合は、 "L"を出力する。前述の一定レベルは、内部回路 20が正常動作可能な電源 電圧レベルとする。  At this time, the voltage detection circuit 12 of FIG. 1 outputs “H” as the voltage detection signal 1A from the time when the first power supply voltage 16 becomes equal to or higher than a certain level. When it is below a certain level, "L" is output. The above-mentioned constant level is the power supply voltage level at which the internal circuit 20 can operate normally.
[0028] 一方、非接触通信は行われていないため、アンテナ 13に対して、電磁波は発生し ておらず、誘導起電力は発生しない。これにより、整流動作検出回路 15は、整流回 路 14が動作していないことを受けて、 "L"を整流動作検出信号 1Bとして、状態制御 回路 18に出力する。  [0028] On the other hand, since non-contact communication is not performed, no electromagnetic waves are generated with respect to the antenna 13, and no induced electromotive force is generated. Accordingly, the rectification operation detection circuit 15 outputs “L” as the rectification operation detection signal 1B to the state control circuit 18 in response to the fact that the rectification circuit 14 is not operating.
[0029] 状態制御回路 18は、電圧検出信号 1A、および整流動作検出信号 IBを受けて、 演算を行い、電源分離回路制御信号 1Cとして、電源分離回路 19に信号を出力する 。図 2は、状態制御回路 18の具体的な回路例を示している。前記状況より、図 2にお いて、整流動作検出信号 1Bが" L"、電圧検出信号 1Aが" H"、第 1の電源電圧 16は "H"となっており、また、第 2の電源電圧 17が演算素子が動作する電圧に達している ことから、電源分離回路制御信号 1Cは" H"に固定される。  [0029] The state control circuit 18 receives the voltage detection signal 1A and the rectification operation detection signal IB, performs an operation, and outputs a signal to the power supply separation circuit 19 as the power supply separation circuit control signal 1C. FIG. 2 shows a specific circuit example of the state control circuit 18. From the above situation, in FIG. 2, the rectification operation detection signal 1B is “L”, the voltage detection signal 1A is “H”, the first power supply voltage 16 is “H”, and the second power supply Since the voltage 17 reaches the voltage at which the arithmetic element operates, the power supply separation circuit control signal 1C is fixed to “H”.
[0030] 前記電源分離回路制御信号 1Cを受けて、図 3におけるゲート制御信号 35は" H"と なり、 PMOSトランジスタ 31のソース'ドレインが導通状態となる。これにより、第 1の電 源電圧 16は、第 2の電源電圧 17と完全に導通状態となり、図 1における接触端子 11 に印加された電圧は、内部回路 20に安定して供給されることが可能となる。  In response to the power supply separation circuit control signal 1C, the gate control signal 35 in FIG. 3 becomes “H”, and the source and drain of the PMOS transistor 31 become conductive. As a result, the first power supply voltage 16 becomes completely conductive with the second power supply voltage 17, and the voltage applied to the contact terminal 11 in FIG. 1 can be stably supplied to the internal circuit 20. It becomes possible.
[0031] 次に、接触通信が継続された状態で、非接触通信が開始された状況における電源 制御回路の動作を説明する。  [0031] Next, the operation of the power supply control circuit in a state in which contactless communication is started while contact communication is continued will be described.
[0032] 図示していない非接触通信に対応したホストより発信された電磁波により、アンテナ 13にて誘導起電力が発生し、整流回路 14を介して、第 2の電源電圧 17に電圧が供 給される。アンテナ 13および整流回路 14の動作については、従来の技術に記載さ れている通りであるため、ここでは記述しない。整流回路 14が動作していることを受け 、整流動作検出回路 15より、整流動作検出信号 1Bとして、 "H"が状態制御回路 18 に入力される。これに対し、接触通信も継続して行われていることから、電圧検出回 路 12において変化はなぐ電圧検出信号 1Aは、依然" H"のままとなる。図 4に示す 状態制御回路 18においては、電圧検出信号 1A力 S"H"であることから、電源分離回 路 19に出力される電源分離回路制御信号 1Cは、 "H"のままであり、電源分離回路 1 9において、第 1の電源電圧 16と、第 2の電源電圧 17は導通状態のままとなる。 An induced electromotive force is generated in the antenna 13 by electromagnetic waves transmitted from a host corresponding to non-contact communication (not shown), and the voltage is supplied to the second power supply voltage 17 via the rectifier circuit 14. Is done. Since the operations of the antenna 13 and the rectifier circuit 14 are as described in the prior art, they are not described here. In response to the operation of the rectifier circuit 14, the rectifier operation detection circuit 15 receives “H” as the rectifier operation detection signal 1 B as the state control circuit 18. Is input. On the other hand, since the contact communication is continuously performed, the voltage detection signal 1A that does not change in the voltage detection circuit 12 remains “H”. In the state control circuit 18 shown in FIG. 4, since the voltage detection signal 1A force S "H", the power supply separation circuit control signal 1C output to the power supply separation circuit 19 remains "H". In the power supply separation circuit 19, the first power supply voltage 16 and the second power supply voltage 17 remain conductive.
[0033] 次に、前述の接触通信および非接触通信が実施されている状態から、接触通信が 停止し、非接触通信のみ継続される状況における電源制御回路の動作にっ 、て説 明する。 [0033] Next, the operation of the power supply control circuit in a situation where the contact communication is stopped and only the non-contact communication is continued from the state where the contact communication and the non-contact communication are performed will be described.
[0034] 接触通信が停止することにより、図示されていない接触通信に対応した外部ホスト 力ゝらの電源供給が停止し、図 1の接触端子 11へ印加される電源電圧は、接地レベル またはそれに近 、レベルとなる。  [0034] When the contact communication is stopped, the power supply from the external host corresponding to the contact communication (not shown) is stopped, and the power supply voltage applied to the contact terminal 11 in FIG. It becomes a level soon.
[0035] 従来の技術においては、接触端子 11に接地レベルの電源電圧が印加される場合 、アンテナ 13および整流回路 14より供給される電源電圧 21と、接触端子 11に印加 される接地レベルとで衝突を起こし、内部回路 20に対して安定した電源を供給する ことが不可能となる。  In the conventional technique, when a ground level power supply voltage is applied to the contact terminal 11, the power supply voltage 21 supplied from the antenna 13 and the rectifier circuit 14 and the ground level applied to the contact terminal 11 are A collision occurs and it becomes impossible to supply a stable power to the internal circuit 20.
[0036] これに対し本実施の形態 1においては、以下の動作をすることにより、前述の課題 を回避することができる。  On the other hand, in the first embodiment, the above-described problems can be avoided by performing the following operations.
[0037] 接触端子 11に印加される電源電圧が低下することにより、第 1の電源電圧 16もそ れに準じて低下する。この電源電圧の低下を、電圧検出回路 12が検知し、電圧検出 信号 1Aを、 "L"に変化させる。この際、電圧検出回路 12が検知する電圧レベルは、 内部回路 20が動作可能な電圧レベルに設定する。  [0037] When the power supply voltage applied to the contact terminal 11 decreases, the first power supply voltage 16 also decreases accordingly. The voltage detection circuit 12 detects this drop in the power supply voltage and changes the voltage detection signal 1A to “L”. At this time, the voltage level detected by the voltage detection circuit 12 is set to a voltage level at which the internal circuit 20 can operate.
[0038] 一方、非接触通信は «続しているため、整流動作検出信号 1Bは" H"のままである 。この電圧検出信号 1Aが" L"、整流動作検出信号 IBカ 'Η"であることで、図 2に示 す状態制御回路 18において、電源分離回路制御信号 1Cが" L"に変化する。この電 源分離回路制御信号 1Cが" L"に変化したことにより、図 3に示す電源分離回路 19に おけるゲート制御信号 35が" Η"となり、 PMOSトランジスタ 31によって、第 1の電源 電圧 16と、第 2の電源電圧 17が分離される。  On the other hand, since the non-contact communication continues, the rectification operation detection signal 1B remains “H”. Since the voltage detection signal 1A is “L” and the rectification operation detection signal IB is “Η”, the power supply separation circuit control signal 1C is changed to “L” in the state control circuit 18 shown in FIG. As the power supply separation circuit control signal 1C changes to “L”, the gate control signal 35 in the power supply separation circuit 19 shown in FIG. 3 becomes “Η”, and the PMOS transistor 31 causes the first power supply voltage 16 to be The second power supply voltage 17 is separated.
[0039] 以上のように第 1の電源電圧 16と、第 2の電源電圧 17が分離されることにより、接触 端子 11に印加される電圧が、接地レベルとなった場合でも、第 1の電源電圧 16と、 第 2の電源電圧 17とが衝突を起こすことなぐ整流回路 14より安定した電源電圧を内 部回路 20に供給することができる。 [0039] As described above, the first power supply voltage 16 and the second power supply voltage 17 are separated, so that the contact Even when the voltage applied to the terminal 11 is at the ground level, the internal circuit supplies a stable power supply voltage from the rectifier circuit 14 in which the first power supply voltage 16 and the second power supply voltage 17 do not collide. Can be supplied to 20.
[0040] 次に、非接触通信、および接触通信が停止しており、電源電圧が供給されていな い状態から、非接触通信が開始した状況における電源制御回路の動作について説 明する。 [0040] Next, the operation of the power supply control circuit in a state in which contactless communication and contact communication are stopped and power supply voltage is not supplied to start contactless communication will be described.
[0041] 図示していない非接触通信に対応したホストより発信された電磁波により、アンテナ 13にて誘導起電力が発生し、整流回路 14を介して、第 2の電源電圧 17に電圧が供 給される。  An induced electromotive force is generated in the antenna 13 by an electromagnetic wave transmitted from a host corresponding to non-contact communication (not shown), and the voltage is supplied to the second power supply voltage 17 via the rectifier circuit 14. Is done.
[0042] アンテナ 13および整流回路 14の動作については、従来の技術に記載されている 通りであるため、ここでは記述しない。  [0042] The operations of the antenna 13 and the rectifier circuit 14 are as described in the prior art, and are not described here.
[0043] この際、第 1の電源電圧 16は、接触通信が開始されていないため、接地レベルまた はそれに近いレベルとなっている。このような状態で、第 2の電源電圧 17が上昇する 1S 図 3の PMOSトランジスタ 31においては、第 1の電源電圧 16であるソースに対し 、第 2の電源電圧 17である基盤およびドレインは、導通しない。これにより、第 2の電 源電圧 17は、これにより駆動する演算回路が正常に動作するまで上昇する。第 2の 電源電圧 17が、演算回路の正常動作可能なレベルまで上昇した時点で、第 1の電 源電圧 16は、接地レベル付近であるため、ゲート制御信号 35は" H"レベルとなり、 P MOSトランジスタ 31において、第 1の電源電圧 16と、第 2の電源電圧 17が分離され る。  At this time, the first power supply voltage 16 is at or near the ground level because contact communication has not started. In this state, the second power supply voltage 17 rises.1S In the PMOS transistor 31 of FIG. 3, the base and the drain that are the second power supply voltage 17 are Not conducting. As a result, the second power supply voltage 17 rises until the arithmetic circuit driven thereby operates normally. When the second power supply voltage 17 rises to a level at which the arithmetic circuit can operate normally, the first power supply voltage 16 is near the ground level, so that the gate control signal 35 becomes the “H” level and P In the MOS transistor 31, the first power supply voltage 16 and the second power supply voltage 17 are separated.
[0044] 以上のような動作により、第 2の電源電圧 17は、第 1の電源電圧 16と衝突すること なぐ内部回路 20に対し、安定した電源電圧を供給することができる。  By the operation as described above, the second power supply voltage 17 can supply a stable power supply voltage to the internal circuit 20 that does not collide with the first power supply voltage 16.
[0045] 本実施の形態 1においては、好ましくは、図 4の本実施の形態 1の変形例 1に示す ように、第 1の電源電圧 16と、接地レベルとの間に、抵抗 41を付与する。この抵抗 41 は、内部回路 20が正常に動作する程度の電流を流す抵抗とする。これにより、接触 通信が実施されて 、な 、状態で、接触端子 11がハイインピーダンス状態であつたと しても、第 1の電源電圧 16を、接地レベルに確実に設定することができ、電源分離回 路 19の誤動作を防ぐことができる。 [0046] 以上のような本実施の形態 1、およびその変形例 1による電源制御回路によれば、 外部から電圧を印加される接触端子と、前記接触端子と同電位の第 1の電源電圧を 検出する電圧検出回路と、電磁波により誘導起電力を発生するアンテナと、前記誘 導起電力を整流する整流回路と、前記整流回路の動作状態を検出する整流動作検 出回路と、前記第 1の電源電圧と前記整流回路力 発生する第 2の電源電圧を分離 する電源分離回路と、前記電圧検出回路の出力と前記整流動作検出回路の出力か ら前記電源分離回路の状態を制御する状態制御回路と、を備えたものとしたので、 接触通信が停止し、非接触通信が実施されているとき、接触通信用電源端子に接地 レベルの電圧が印加されていても、内部回路に対して安定した電源電圧を供給する ことができる効果が得られる。 [0045] In the first embodiment, preferably, a resistor 41 is provided between the first power supply voltage 16 and the ground level as shown in the first modification of the first embodiment in FIG. To do. The resistor 41 is a resistor that flows a current that allows the internal circuit 20 to operate normally. As a result, even when contact communication is performed, even if the contact terminal 11 is in a high impedance state, the first power supply voltage 16 can be reliably set to the ground level, and the power supply can be separated. A malfunction of the circuit 19 can be prevented. [0046] According to the power supply control circuit according to the first embodiment and the modification 1 as described above, the contact terminal to which a voltage is applied from the outside, and the first power supply voltage having the same potential as the contact terminal are provided. A voltage detection circuit to detect; an antenna that generates an induced electromotive force by electromagnetic waves; a rectification circuit that rectifies the induced electromotive force; a rectification operation detection circuit that detects an operating state of the rectification circuit; and the first A power supply separation circuit that separates the power supply voltage and the second power supply voltage generated, and a state control circuit that controls the state of the power supply separation circuit from the output of the voltage detection circuit and the output of the rectification operation detection circuit Therefore, when contact communication is stopped and contactless communication is being performed, even if a ground level voltage is applied to the contact communication power supply terminal, the internal circuit is stable. Supply power supply voltage Effect that can be obtained.
[0047] (実施の形態 2) [0047] (Embodiment 2)
本発明の実施の形態 2による電源制御回路は、図 5に示すように、上記実施の形態 1の電源制御回路では、接触端子 11側の電源電圧と、整流回路 14側の電源電圧( 第 2の電源電圧 17)とを、電源分離回路 19により分離すべきであるところの、接触端 子 11側の電源電圧であって、電源分離回路 19に直接入力される信号である電源電 圧 (第 3の電源電圧 52)と、接触端子 11での電圧である第 1の電源電圧 16との間に 、レギユレータ 51を挿入したものである。さら〖こ、電圧検出回路 12が検出する電圧は 、接触端子 11での電圧としたまま、この接触端子 11に印加する電圧である第 1の電 源電圧 16を、内部回路 20が正常に動作する電圧より高く設定し、レギユレータ 51に よって、上記第 1の電源電圧 16を降圧し、電源分離回路 19の一方の入力に入力し、 状態制御回路 18による制御により、第 1の電源電圧 16と、アンテナ 13および整流回 路 14側の第 2の電源電圧 17との間での、電源の分離、あるいは接続を行うようにした ものである。  As shown in FIG. 5, the power supply control circuit according to the second embodiment of the present invention is different from the power supply control circuit according to the first embodiment in that the power supply voltage on the contact terminal 11 side and the power supply voltage on the rectifier circuit 14 side (second Power supply voltage 17) is to be separated by the power supply separation circuit 19, and is the power supply voltage on the contact terminal 11 side that is a signal directly input to the power supply separation circuit 19 (the first The regulator 51 is inserted between the power supply voltage 52) of FIG. 3 and the first power supply voltage 16 which is the voltage at the contact terminal 11. Furthermore, the voltage detected by the voltage detection circuit 12 is the voltage at the contact terminal 11 and the internal circuit 20 operates normally with the first power supply voltage 16 applied to the contact terminal 11. The first power supply voltage 16 is stepped down by the regulator 51, input to one input of the power supply separation circuit 19, and controlled by the state control circuit 18 to obtain the first power supply voltage 16 The power supply is separated or connected between the antenna 13 and the second power supply voltage 17 on the rectifier circuit 14 side.
[0048] ここで、上記電圧検出回路 12が検出する電圧レベルは、第 1の電源電圧 16以下、 かつ第 2の電源電圧 17以上に設定する。例えば、第 1の電源電圧 16が 3. 3Vであり 、第 2の電源電圧 17が 1. 8Vであった場合、電圧検出回路 12の検出レベルを、 2V に設定する。  Here, the voltage level detected by the voltage detection circuit 12 is set to the first power supply voltage 16 or less and the second power supply voltage 17 or more. For example, when the first power supply voltage 16 is 3.3V and the second power supply voltage 17 is 1.8V, the detection level of the voltage detection circuit 12 is set to 2V.
[0049] このような構成において、接触通信が停止した瞬間、第 1の電源電圧 16は電圧が 低下し始めるが、内部回路 20に電圧を印加する第 2の電源電圧 17はまだ低下しな い。この段階で、電圧検出回路 12は接触通信が停止することを検出し、電源分離回 路 19において第 2の電源電圧 17と、第 1の電源電圧 16とを分離することで、内部回 路 20に供給する電圧の低下を防ぐことが可能となる。 In such a configuration, at the moment when contact communication stops, the first power supply voltage 16 is Although the voltage starts to decrease, the second power supply voltage 17 that applies the voltage to the internal circuit 20 has not yet decreased. At this stage, the voltage detection circuit 12 detects that the contact communication is stopped, and the power supply separation circuit 19 separates the second power supply voltage 17 and the first power supply voltage 16, so that the internal circuit 20 It is possible to prevent a decrease in voltage supplied to.
[0050] この際、図 6の本実施の形態 2の変形例 1による電源制御回路に示すように、第 1の 電源電圧 16と、接地レベルとの間に抵抗 61を付与するようにし、この抵抗 61は、内 部回路 20が正常に動作する程度の電流を流す抵抗とする。このようにすると、接触 通信が実施されて 、な 、状態で、接触端子 11がハイインピーダンス状態であつたと しても、第 1の電源電圧 16を、接地レベルに確実に設定することができ、レギユレータ 51の誤動作を防ぐことができる。  At this time, as shown in the power supply control circuit according to the first modification of the second embodiment in FIG. 6, a resistor 61 is provided between the first power supply voltage 16 and the ground level. The resistor 61 is a resistor that allows a current to flow so that the internal circuit 20 operates normally. In this way, even if contact communication is performed, even if the contact terminal 11 is in a high impedance state, the first power supply voltage 16 can be reliably set to the ground level. The malfunction of the regulator 51 can be prevented.
[0051] さらに、図 7の本実施の形態 2の変形例 2による電源制御回路に示す通り、第 3の電 源電圧 52と、接地レベルとの間に、抵抗 71を付与するようにし、この抵抗 71は、内部 回路 20が正常に動作する程度の電流を流す抵抗とする。このようにすると、接触通 信が実施されていない状態で、レギユレータ 51が停止し、回路の構成によって出力 がハイインピーダンスになる場合でも、第 3の電源電圧 52を確実に接地レベルに設 定することができ、電源分離回路 19、および状態制御回路 18の誤動作を防ぐことが できる。 Furthermore, as shown in the power supply control circuit according to the second modification of the second embodiment in FIG. 7, a resistor 71 is provided between the third power supply voltage 52 and the ground level. Resistor 71 is a resistor that allows current to flow to the extent that internal circuit 20 operates normally. In this way, the third power supply voltage 52 is reliably set to the ground level even when the regulator 51 is stopped in a state where contact communication is not performed and the output becomes high impedance due to the circuit configuration. Thus, malfunction of the power supply separation circuit 19 and the state control circuit 18 can be prevented.
[0052] このような本実施の形態 2による電源制御回路によれば、外部から電圧を印加され る接触端子と、前記接触端子と同電位の第 1の電源電圧を検出する電圧検出回路と 、電磁波により誘導起電力を発生するアンテナと、前記誘導起電力を整流する整流 回路と、前記整流回路の動作状態を検出する整流動作検出回路と、前記第 1の電源 電圧と前記整流回路から発生する第 2の電源電圧を分離する電源分離回路と、前記 電圧検出回路の出力と前記整流動作検出回路の出力から前記電源分離回路の状 態を制御する状態制御回路と、を備えたものとしたので、実施の形態 1の回路では、 非接触通信が行われている状態で、接触通信が停止したとき、第 1の電源電圧が低 下し始めてから、第 1の電源電圧が一定レベル以下になったことを電圧検出回路が 検出し、第 1の電源ラインと第 2の電源ラインを電源分離回路が分離するまでの間に 、一定レベル以下になった電源電圧が第 2の電源ラインに伝播して、内部回路に供 給される電圧が低下する可能性があつたが、本実施の形態 2では、接触通信が停止 して、第 1の電源電圧のレベルが徐々に低下し始めてから、接触通信が停止したこと を電圧検出回路が検出するまでの間でも、内部回路に安定した電源電圧を供給する ことができる効果がある。 [0052] According to such a power supply control circuit according to the second embodiment, a contact terminal to which a voltage is applied from the outside, a voltage detection circuit that detects a first power supply voltage having the same potential as the contact terminal, An antenna that generates an induced electromotive force by electromagnetic waves, a rectifier circuit that rectifies the induced electromotive force, a rectifier operation detection circuit that detects an operating state of the rectifier circuit, and the first power supply voltage and the rectifier circuit A power supply separation circuit that separates the second power supply voltage; and a state control circuit that controls the state of the power supply separation circuit from the output of the voltage detection circuit and the output of the rectification operation detection circuit. In the circuit of the first embodiment, when contact communication is stopped in a state where non-contact communication is performed, the first power supply voltage falls below a certain level after the first power supply voltage starts to decrease. The voltage detection times There was detected, until the first power supply line and the power separation circuit and the second power supply line are separated, the power supply voltage becomes below a certain level is propagated to the second power supply line, subjected to an internal circuit However, in the second embodiment, the contact communication is stopped after the contact communication stops and the first power supply voltage level starts to gradually decrease. There is an effect that a stable power supply voltage can be supplied to the internal circuit until the voltage detection circuit detects it.
[0053] また、本実施の形態 2の変形例 1のように、第 1の電源電圧と、接地レベルとの間に 抵抗を付与するようにし、この抵抗は、内部回路が正常に動作する程度の電流を流 す抵抗とするようにすると、接触通信が実施されていない状態で、接触端子がハイイ ンピーダンス状態であったとしても、第 1の電源電圧を、接地レベルに確実に設定す ることができ、レギユレータの誤動作を防ぐことができるものであり、また、本実施の形 態 2の変形例 2のように、第 3の電源電圧と、接地レベルとの間に、抵抗を付与するよ うにし、この抵抗は、内部回路が正常に動作する程度の電流を流す抵抗とするように すると、接触通信が実施されていない状態で、レギユレータが停止し、回路の構成に よって出力がハイインピーダンスになる場合でも、第 3の電源電圧を確実に接地レべ ルに設定することができ、電源分離回路、および状態制御回路の誤動作を防ぐこと ができるものである。  Further, as in Modification 1 of Embodiment 2, a resistance is applied between the first power supply voltage and the ground level, and this resistance is such that the internal circuit operates normally. If the contact current is set to a resistance, the first power supply voltage must be set to the ground level reliably even when contact communication is not performed and the contact terminal is in a high-impedance state. And can prevent malfunction of the regulator, and as in Modification 2 of Embodiment 2, a resistor is added between the third power supply voltage and the ground level. In addition, if this resistor is a resistor that allows a current that allows the internal circuit to operate normally, the regulator stops when contact communication is not performed, and the output of the circuit is high impedance depending on the circuit configuration. Even if it becomes third The power supply voltage can be reliably set to the ground level, and malfunctions of the power supply separation circuit and the state control circuit can be prevented.
[0054] (実施の形態 3)  [Embodiment 3]
図 8は、本発明の実施の形態 3による電源制御回路の構成図である。  FIG. 8 is a configuration diagram of a power supply control circuit according to the third embodiment of the present invention.
[0055] 図 8において、接触端子 11は、外部より電圧を印加される端子であり、第 4の電源 電圧 82を介して、ダイオード 81に接続する。ダイオード 81の出力は、第 5の電源電 圧 83として内部回路 20に接続する。アンテナ 13および整流回路 14の構成について は、従来例と同様であり、その出力を第 5の電源電圧 83に接続する。  In FIG. 8, a contact terminal 11 is a terminal to which a voltage is applied from the outside, and is connected to a diode 81 via a fourth power supply voltage 82. The output of the diode 81 is connected to the internal circuit 20 as the fifth power supply voltage 83. The configurations of the antenna 13 and the rectifier circuit 14 are the same as in the conventional example, and their outputs are connected to the fifth power supply voltage 83.
[0056] このような構成において、従来の技術では内部回路 20に安定した電源電圧を供給 できな ヽ、接触通信が停止し非接触通信が継続されて!ヽる状況における電源制御 回路の動作にっ 、て説明する。  [0056] In such a configuration, the conventional technology cannot supply a stable power supply voltage to the internal circuit 20, but the contact communication is stopped and the non-contact communication is continued! I will explain.
[0057] 本実施の形態 3においては、接触通信が停止したとき、接触端子 11に印加される 電源電圧は、接地レベルまたはノ、ィインピーダンス状態となる。これにより、ダイォー ド 81に入力される第 4の電源電圧 82は、接地レベルかそれに近い電圧となる。これ に対し、非接触通信は実施されているため、アンテナ 13および整流回路 14により、 第 5の電源電圧 83には、内部回路 20が動作可能な電源電圧が供給される。 In the third embodiment, when the contact communication is stopped, the power supply voltage applied to the contact terminal 11 is in the ground level or the no-impedance state. As a result, the fourth power supply voltage 82 input to the diode 81 is at or near the ground level. On the other hand, since non-contact communication is carried out, the antenna 13 and the rectifier circuit 14 The fifth power supply voltage 83 is supplied with a power supply voltage at which the internal circuit 20 can operate.
[0058] この際、ダイオード 81により、第 5の電源電圧 83に印加されている電源電圧は、第 4の電源電圧 82に流れ込むことはない。これにより、安定した電源電圧を内部回路 2 0に供給することができる。  At this time, the power supply voltage applied to the fifth power supply voltage 83 by the diode 81 does not flow into the fourth power supply voltage 82. Thereby, a stable power supply voltage can be supplied to the internal circuit 20.
[0059] このような本発明の実施の形態 3による電源制御回路によれば、外部から電圧を印 加される接触端子と、電磁波により誘導起電力を発生するアンテナと、前記誘導起電 力を整流し第 5の電源電圧を出力する整流回路と、前記接触端子と同電位である第 4の電源電圧と第 5の電源電圧を接続するダイオードを備えたものとしたので、非接 触通信が行われている状態で、接触通信が停止したときに、第 4の電源電圧であると ころの、接触端子に印加される接地レベルまたはそれに近 、レベルの任意の電圧が 、整流回路力 内部回路に供給される第 5の電源電圧と衝突するのを防いで、内部 回路に安定した電源電圧を供給することができる効果が得られる。  [0059] According to such a power supply control circuit according to the third embodiment of the present invention, a contact terminal to which a voltage is applied from the outside, an antenna that generates an induced electromotive force by electromagnetic waves, and the induced electromotive force Since the rectifier circuit that rectifies and outputs the fifth power supply voltage and the diode that connects the fourth power supply voltage and the fifth power supply voltage, which have the same potential as the contact terminal, are provided, non-contact communication is possible. When contact communication is stopped in the current state, any voltage at the level near or near the ground level applied to the contact terminal is the fourth power supply voltage. This prevents the collision with the fifth power supply voltage supplied to the internal circuit, and provides an effect of supplying a stable power supply voltage to the internal circuit.
[0060] (実施の形態 4)  [0060] (Embodiment 4)
図 9は、本発明の実施の形態 4による電源制御回路の構成図である。  FIG. 9 is a configuration diagram of a power supply control circuit according to the fourth embodiment of the present invention.
[0061] 図 9において、クロック入力端子 91は、図示されていない外部ホスト、もしくは内部 で発生したクロック波形信号を入力される端子を示す。このクロック入力端子 91に入 力されたクロック波形信号は、クロックライン 92を介して、チャージポンプ 94に入力さ れる。接触端子 11は、従来と同様、図示されていない外部ホストから電源電圧を印 カロされる端子であり、印加された電源電圧は第 6の電源電圧 93に伝播される。第 6の 電源電圧 93は、チャージポンプ 94に入力される。クロック波形信号、および第 6の電 源電圧 93が、入力されたチャージポンプ 94は、その出力を、第 7の電源電圧 95とし て、内部回路 20に接続する。アンテナ 13および整流回路 14の構成については、従 来例と同様であり、その出力を、第 7の電源電圧 95に接続する。  In FIG. 9, a clock input terminal 91 indicates an external host (not shown) or a terminal to which an internally generated clock waveform signal is input. The clock waveform signal input to the clock input terminal 91 is input to the charge pump 94 via the clock line 92. The contact terminal 11 is a terminal to which a power supply voltage is applied from an external host (not shown) as in the prior art, and the applied power supply voltage is propagated to the sixth power supply voltage 93. The sixth power supply voltage 93 is input to the charge pump 94. The charge pump 94 to which the clock waveform signal and the sixth power supply voltage 93 are input connects the output to the internal circuit 20 as the seventh power supply voltage 95. The configurations of the antenna 13 and the rectifier circuit 14 are the same as in the conventional example, and their outputs are connected to the seventh power supply voltage 95.
[0062] このような構成になる本実施の形態 4による電源制御回路の動作を、以下に説明す る。  The operation of the power supply control circuit according to the fourth embodiment having such a configuration will be described below.
[0063] 接触通信が開始されると、図 9における接触端子 11に対して、図示していない外部 ホストより電源電圧が印加される。この印加された電源電圧は、第 6の電源電圧 93と してチャージポンプ 94に印加される。一方、クロック入力端子 91より入力されるクロッ ク波形信号は、クロックライン 92を介してチャージポンプ 94に入力される。 When contact communication is started, a power supply voltage is applied to the contact terminal 11 in FIG. 9 from an external host (not shown). This applied power supply voltage is applied to the charge pump 94 as the sixth power supply voltage 93. On the other hand, the clock input from the clock input terminal 91 The waveform signal is input to the charge pump 94 via the clock line 92.
[0064] 図 10は、前記チャージポンプ 94の回路例を示しており、クロックライン 92より供給さ れるクロック波形信号により、第 6の電源電圧 93より上昇した電圧が、第 7の電源電圧 95に印加される。印加された第 7の電源電圧 95は、図 11の内部回路 20に供給され る。なお、図 10において、 102は NOT論理ゲートである。 FIG. 10 shows a circuit example of the charge pump 94, and the voltage that has risen from the sixth power supply voltage 93 by the clock waveform signal supplied from the clock line 92 is changed to the seventh power supply voltage 95. Applied. The applied seventh power supply voltage 95 is supplied to the internal circuit 20 of FIG. In FIG. 10, reference numeral 102 denotes a NOT logic gate.
[0065] 以下、チャージポンプ 94の詳細について図 10を用いて説明する。チャージポンプ 94は、クロック波形信号力 ' H"の状態で、第 6の電源電圧 93がライン Aに印加される と、ライン Aとライン Bは導通状態となり、ライン Bに第 6の電源電圧が伝播する。この 状態でクロック波形信号を" L"にすると、ライン Bとライン Bに接続されたコンデンサと は直列状態になることから、コンデンサが放電してライン Bの電圧が第 6の電源電圧 9 3の 2倍になる。これ〖こより、ライン Aとライン Bとの間の NMOSトランジスタが閉じ、ライ ン Aにライン Bの電圧が伝播することはない。この状態でライン Cとライン Bとの間の N MOSトランジスタは開いており、ライン Cにはライン Bの電圧が伝播する。ここで、クロ ック波形信号を" H"にすると、ライン Cとライン Cに接続されたコンデンサとは直列状 態となることから、ライン Bの電圧と第 6の電源電圧 93の合計がライン Cの電圧となる。 このとき、ライン Cの電圧の方がライン Bの電圧より大きくなるため、ライン Bとラインじと の間の NMOSトランジスタは閉じた状態となり、ライン Cの電圧はライン Bに伝播しな い。以上のように、チャージポンプ 94は、 NMOSトランジスタとコンデンサとを複数段 備え、コンデンサの放電を利用して入力した電圧 (第 6の電源電圧)よりも高 、電圧 ( 第 7の電源電圧)を発生する。さらに、第 7の電源電圧 95に接続する NMOSトランジ スタ 105によって、第 6の電源電圧 93と第 7の電源電圧 95との衝突を防ぐ。 Hereinafter, details of the charge pump 94 will be described with reference to FIG. When the sixth power supply voltage 93 is applied to the line A and the charge pump 94 is in the state of the clock waveform signal power 'H', the line A and the line B are turned on, and the sixth power supply voltage is applied to the line B. If the clock waveform signal is set to “L” in this state, the capacitors connected to line B and line B will be in series, so the capacitor will discharge and the voltage on line B will become the sixth power supply voltage. 9 Doubled from 3. Because of this, the NMOS transistor between line A and line B is closed, and the voltage of line B does not propagate to line A. In this state, line C and line B The NMOS transistor between the two is open and the voltage of line B propagates to line C. Here, if the clock waveform signal is set to “H”, the capacitors connected to line C and line C are Since it is in series, the voltage on line B The total of the power supply voltage 93 of 6 becomes the voltage of line C. At this time, the voltage of line C becomes larger than the voltage of line B, so the NMOS transistor between line B and the line is closed. The voltage of line C does not propagate to line B. As described above, the charge pump 94 has a plurality of stages of NMOS transistors and capacitors, and the voltage input using the discharge of the capacitor (the sixth power supply voltage). ), And the NMOS transistor 105 connected to the seventh power supply voltage 95 causes a collision between the sixth power supply voltage 93 and the seventh power supply voltage 95. prevent.
[0066] 一方、非接触通信が開始された場合は、図示して!/ヽな ヽ非接触通信に対応したホ ストより発信された電磁波により、図 11におけるアンテナ 13にて、誘導起電力が発生 し、整流回路 14を介して、第 7の電源電圧 95に、電圧が供給される。アンテナ 13お よび整流回路 14の動作については、従来の技術に記載されている通りであるため、 ここでは記述しない。供給された第 7の電源電圧 95は、内部回路 20に電源電圧を供 給する。 On the other hand, when non-contact communication is started, the induced electromotive force is generated at antenna 13 in FIG. 11 by electromagnetic waves transmitted from a host corresponding to non-contact communication shown in FIG. The voltage is supplied to the seventh power supply voltage 95 via the rectifier circuit 14. Since the operations of the antenna 13 and the rectifier circuit 14 are as described in the prior art, they are not described here. The supplied seventh power supply voltage 95 supplies a power supply voltage to the internal circuit 20.
[0067] この非接触通信が実施されている際に、接触通信が停止している場合、接触端子 11は、接地レベルか、それに近いレベルとなり、従来の技術では接触端子 11と同電 位である第 6の電源電圧 93と、第 7の電源電圧 95とで、電圧レベルの衝突を起こし、 内部回路 20に対し、安定した電源電圧の供給を行うことができな力つた。 [0067] When the non-contact communication is being performed and the contact communication is stopped, the contact terminal 11 is at or near the ground level, and in the conventional technology, the sixth power supply voltage 93 and the seventh power supply voltage 95, which are at the same potential as the contact terminal 11, cause a voltage level collision and The circuit 20 was unable to supply a stable power supply voltage.
[0068] これに対し、本実施の形態 4においては、チャージポンプ 94を、第 6の電源電圧 93 と、第 7の電源電圧 95との間に挿入しており、図 10の第 7の電源電圧 95が接続され ている NMOSトランジスタ 105により、電圧レベルの衝突を避けられ、内部回路 20に 対して、安定した電源電圧の供給を行うことができる。  In contrast, in the fourth embodiment, the charge pump 94 is inserted between the sixth power supply voltage 93 and the seventh power supply voltage 95, and the seventh power supply in FIG. The NMOS transistor 105 to which the voltage 95 is connected can avoid a voltage level collision, and a stable power supply voltage can be supplied to the internal circuit 20.
[0069] 好ましくは、図 11の本実施の形態 4の変形例 1に示すように、第 6の電源電圧 93と 、接地レベルとの間に、抵抗 111を接続する。この抵抗 111は、内部回路 20が正常 に動作する程度の電流を流す抵抗とする。これにより、接触通信が実施されていない 状態で、接触端子 11がハイインピーダンス状態であったとしても、第 6の電源電圧 93 を、接地レベルに確実に設定することができ、チャージポンプ 94の誤動作を、防ぐこ とがでさる。  Preferably, as shown in Modification 1 of Embodiment 4 in FIG. 11, resistor 111 is connected between sixth power supply voltage 93 and the ground level. The resistor 111 is a resistor that allows a current to flow so that the internal circuit 20 operates normally. As a result, even when contact communication is not being performed and the contact terminal 11 is in a high impedance state, the sixth power supply voltage 93 can be reliably set to the ground level, and the malfunction of the charge pump 94 can be prevented. It is possible to prevent this.
[0070] このような本実施の形態 4による電源制御回路によれば、外部から電圧を印加され る接触端子と、前記接触端子と同電位である第 6の電源電圧を変化させ第 7の電源 電圧を出力する電源電圧調整回路 (チャージポンプ)と、電磁波により誘導起電力を 発生するアンテナと、前記誘導起電力を整流し前記第 7の電源電圧を出力する整流 回路と、を備えたものとしたので、この非接触通信が実施されている際に、接触通信 が停止している場合、接触端子は、接地レベルかそれに近いレベルとなり、従来技術 では接触端子と同電位である第 6の電源電圧と、第 7の電源電圧とで電圧レベルの 衝突を起こし、内部回路に対し安定した電源電圧の供給を行うことができな力つたが 、この本実施の形態 4においては、チャージポンプを、第 6の電源電圧と第 7の電源 電圧との間に挿入していることにより、この非接触通信が行なわれている状態で接触 通信が停止したとき、接触端子に接地レベルまたはそれに近 、レベルの任意の電圧 が印加されても、チャージポンプによって任意の電圧と整流回路から内部回路に供 給される電源電圧とが衝突するのを防ぐことができ、内部回路に安定して電源電圧を 供給することができる。  [0070] According to such a power supply control circuit according to the fourth embodiment, the seventh power supply is configured by changing the contact terminal to which a voltage is applied from the outside and the sixth power supply voltage having the same potential as the contact terminal. A power supply voltage adjusting circuit (charge pump) that outputs a voltage; an antenna that generates an induced electromotive force by electromagnetic waves; and a rectifier circuit that rectifies the induced electromotive force and outputs the seventh power supply voltage. Therefore, when contact communication is stopped when this non-contact communication is being carried out, the contact terminal is at or near the ground level, and in the prior art, the sixth power source that is at the same potential as the contact terminal. Although the voltage level and the seventh power supply voltage collided with each other and the power supply voltage could not be stably supplied to the internal circuit, in this fourth embodiment, the charge pump is 6th power supply voltage When the contact communication is stopped while this non-contact communication is being performed, the contact terminal is connected to the ground level or any voltage at or near the ground level. Even if it is applied, it is possible to prevent collision between an arbitrary voltage and the power supply voltage supplied from the rectifier circuit to the internal circuit by the charge pump, and the power supply voltage can be stably supplied to the internal circuit.
[0071] すなわち、第 7の電源電圧が接続されている NMOSトランジスタにより、電圧レベル の衝突を避けることができ、内部回路に対して、安定した電源電圧の供給を行うこと ができる。 [0071] That is, the voltage level is reduced by the NMOS transistor to which the seventh power supply voltage is connected. Thus, a stable power supply voltage can be supplied to the internal circuit.
[0072] また、第 6の電源電圧と接地レベルとの間に抵抗を接続するようにし、この抵抗を内 部回路が正常に動作する程度の電流を流す抵抗とすれば、接触通信が実施されて V、な 、状態で接触端子がハイインピーダンス状態であったとしても、第 6の電源電圧 を接地レベルに確実に設定することができ、チャージポンプの誤動作を、防ぐことが できる。  [0072] Further, if a resistor is connected between the sixth power supply voltage and the ground level, and this resistor is a resistor that flows a current that allows the internal circuit to operate normally, contact communication is performed. Even if the contact terminal is in a high-impedance state in V, N, etc., the sixth power supply voltage can be reliably set to the ground level, and malfunction of the charge pump can be prevented.
産業上の利用可能性  Industrial applicability
[0073] 本発明における電源制御回路は、複数の通信インターフェースを持つ ICカード等 に対して有効である。 [0073] The power supply control circuit of the present invention is effective for an IC card or the like having a plurality of communication interfaces.

Claims

請求の範囲 The scope of the claims
[1] 外部から電圧を印加される接触端子と、  [1] A contact terminal to which voltage is applied from the outside,
前記接触端子と同電位の第 1の電源電圧を検出する電圧検出回路と、 電磁波により誘導起電力を発生するアンテナと、  A voltage detection circuit for detecting a first power supply voltage having the same potential as that of the contact terminal; an antenna for generating an induced electromotive force by electromagnetic waves;
前記誘導起電力を整流する整流回路と、  A rectifier circuit for rectifying the induced electromotive force;
前記整流回路の動作状態を検出する整流動作検出回路と、  A rectification operation detection circuit for detecting an operation state of the rectification circuit;
前記第 1の電源電圧と前記整流回路が発生する第 2の電源電圧を分離する電源分 離回路と、  A power supply separation circuit for separating the first power supply voltage and the second power supply voltage generated by the rectifier circuit;
前記電圧検出回路の出力と前記整流動作検出回路の出力から前記電源分離回 路の状態を制御する状態制御回路と、  A state control circuit for controlling the state of the power supply separation circuit from the output of the voltage detection circuit and the output of the rectification operation detection circuit;
を備えたことを特徴とする電源制御回路。  A power supply control circuit comprising:
[2] 請求項 1記載の電源制御回路において、 [2] In the power supply control circuit according to claim 1,
前記第 1の電源電圧と接地レベルとを接続する抵抗を、  A resistor connecting the first power supply voltage and the ground level;
備えたことを特徴とする電源制御回路。  A power supply control circuit comprising:
[3] 外部から電圧を印加される接触端子と、 [3] a contact terminal to which voltage is applied from the outside;
前記接触端子と同電位の第 1の電源電圧を検出する電圧検出回路と、 前記第 1の電源電圧を降圧して第 3の電源電圧を出力するレギユレータと、 電磁波により誘導起電力を発生するアンテナと、  A voltage detection circuit for detecting a first power supply voltage having the same potential as the contact terminal; a regulator for stepping down the first power supply voltage and outputting a third power supply voltage; and an antenna for generating an induced electromotive force by electromagnetic waves When,
前記誘導起電力を整流する整流回路と、  A rectifier circuit for rectifying the induced electromotive force;
前記整流回路の動作状態を検出する整流動作検出回路と、  A rectification operation detection circuit for detecting an operation state of the rectification circuit;
前記第 3の電源電圧と前記整流回路が発生する第 2の電源電圧を分離する電源分 離回路と、  A power supply separation circuit that separates the third power supply voltage and the second power supply voltage generated by the rectifier circuit;
前記電圧検出回路の出力と前記整流動作検出回路の出力から前記電源分離回 路の状態を制御する状態制御回路と、  A state control circuit for controlling the state of the power supply separation circuit from the output of the voltage detection circuit and the output of the rectification operation detection circuit;
を備えたことを特徴とする電源制御回路。  A power supply control circuit comprising:
[4] 請求項 3記載の電源制御回路において、 [4] In the power supply control circuit according to claim 3,
前記第 1の電源電圧と接地レベルとを接続する抵抗を、  A resistor connecting the first power supply voltage and the ground level;
備えたことを特徴とする電源制御回路。 A power supply control circuit comprising:
[5] 請求項 3記載の電源制御回路において、 [5] The power supply control circuit according to claim 3,
前記第 3の電源電圧と接地レベルを接続する抵抗を、  A resistor connecting the third power supply voltage and the ground level;
備えたことを特徴とする電源制御回路。  A power supply control circuit comprising:
[6] 外部から電圧を印加される接触端子と、  [6] a contact terminal to which voltage is applied from the outside;
電磁波により誘導起電力を発生するアンテナと、  An antenna that generates an induced electromotive force by electromagnetic waves;
前記誘導起電力を整流し第 5の電源電圧を出力する整流回路と、  A rectifier circuit that rectifies the induced electromotive force and outputs a fifth power supply voltage;
前記接触端子と同電位である第 4の電源電圧と第 5の電源電圧を接続するダイォ ードと、  A diode for connecting a fourth power supply voltage and a fifth power supply voltage that have the same potential as the contact terminal;
を備えたことを特徴とする電源制御回路。  A power supply control circuit comprising:
[7] 外部から電圧を印加される接触端子と、 [7] a contact terminal to which voltage is applied from the outside;
外部力 クロック信号を入力するクロック端子と、  Clock terminal for inputting external power clock signal,
コンデンサ及びトランジスタを複数有し、前記第 6の電源電圧と前記クロック信号と を入力し、前記コンデンサの充放電利用して前記 6の電源電圧を昇圧して第 7の電 源電圧を発生するチャージポンプと、  A charge having a plurality of capacitors and transistors, inputting the sixth power supply voltage and the clock signal, and boosting the power supply voltage of 6 using the charge / discharge of the capacitor to generate a seventh power supply voltage A pump,
電磁波により誘導起電力を発生するアンテナと、  An antenna that generates an induced electromotive force by electromagnetic waves;
前記誘導起電力を整流して前記第 7の電源電圧を出力する整流回路と、 を備えたことを特徴とする電源制御回路。  A rectifier circuit that rectifies the induced electromotive force and outputs the seventh power supply voltage.
[8] 請求項 7記載の電源制御回路において、 [8] In the power supply control circuit according to claim 7,
前記第 6の電源電圧と接地レベルを接続する抵抗を、  A resistor connecting the sixth power supply voltage and the ground level;
備えたことを特徴とする電源制御回路。  A power supply control circuit comprising:
PCT/JP2005/018092 2004-10-01 2005-09-30 Power supply control circuit WO2006038549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-289748 2004-10-01
JP2004289748A JP2008005564A (en) 2004-10-01 2004-10-01 Power supply control circuit

Publications (1)

Publication Number Publication Date
WO2006038549A1 true WO2006038549A1 (en) 2006-04-13

Family

ID=36142624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018092 WO2006038549A1 (en) 2004-10-01 2005-09-30 Power supply control circuit

Country Status (2)

Country Link
JP (1) JP2008005564A (en)
WO (1) WO2006038549A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258490B2 (en) * 2008-10-02 2013-08-07 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit and IC card using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148961A (en) * 1998-08-31 2000-05-30 Toshiba Corp Lsi for combination card
JP2001504676A (en) * 1996-08-05 2001-04-03 アンシッド・テクノロジー Microcircuit with contact and contactless operation modes
JP2004078898A (en) * 2002-06-17 2004-03-11 Hitachi Ltd Ic card

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504676A (en) * 1996-08-05 2001-04-03 アンシッド・テクノロジー Microcircuit with contact and contactless operation modes
JP2000148961A (en) * 1998-08-31 2000-05-30 Toshiba Corp Lsi for combination card
JP2004078898A (en) * 2002-06-17 2004-03-11 Hitachi Ltd Ic card

Also Published As

Publication number Publication date
JP2008005564A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US11552564B1 (en) Power conversion circuit with solid-state switches
US8200152B2 (en) Semiconductor integrated circuit and contactless electronic device using the same
JP4786316B2 (en) Semiconductor integrated circuit device and IC card using the same
JP5836898B2 (en) Communication apparatus and operation method thereof
US6853566B2 (en) Charge pump circuit and power supply circuit
US8344791B2 (en) Charge pump circuits and methods
CN116345605A (en) Electronic machine including booster circuit
US7629778B2 (en) Voltage converter
JP5504507B2 (en) Integrated circuit device
US7791327B2 (en) Voltage converter
US6525362B2 (en) IC chip for contactless IC card
US7738272B2 (en) Circuit and method for rectifying and regulating voltages
CN107017758B (en) Controller
TW452797B (en) Charge pump circuit with bypass transistor
US8830706B2 (en) Soft-start circuit
CN105989892A (en) Regulator circuit and semiconductor memory apparatus having the same
US9762225B2 (en) Power supply apparatus and control method thereof
WO2006038549A1 (en) Power supply control circuit
CN107078501B (en) Output discharge technique for load switch
JP5839899B2 (en) Backflow prevention circuit and step-down DC / DC converter using the same, control circuit thereof, charging circuit, electronic device
EP0678800A2 (en) Data output drivers with pull-up devices
US20140159490A1 (en) Power converter, electronic device and method for detecting output power of power converter
JP4609285B2 (en) Semiconductor integrated circuit for power supply and power supply device
JP5915109B2 (en) Bandgap reference power supply circuit and contactless device
JP4690213B2 (en) DC / DC converter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP