WO2006038370A1 - Variable valve drive device, engine, and two-wheeled motor vehicle - Google Patents

Variable valve drive device, engine, and two-wheeled motor vehicle Download PDF

Info

Publication number
WO2006038370A1
WO2006038370A1 PCT/JP2005/014089 JP2005014089W WO2006038370A1 WO 2006038370 A1 WO2006038370 A1 WO 2006038370A1 JP 2005014089 W JP2005014089 W JP 2005014089W WO 2006038370 A1 WO2006038370 A1 WO 2006038370A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
cam
shaft
valve
rotation
Prior art date
Application number
PCT/JP2005/014089
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Tsuchida
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Publication of WO2006038370A1 publication Critical patent/WO2006038370A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles

Definitions

  • the present invention relates to a variable valve drive device, an engine, and a motorcycle provided in an engine.
  • variable valve timing mechanism (variable valve driving device) is known as a mechanism for changing the noble overlap.
  • This variable valve timing mechanism includes a coupling (eccentric member) that is provided between a cam drive shaft portion that interlocks with the crank drive and a cam shaft portion that drives the cam by rotating, and causes angular velocity fluctuations.
  • variable valve timing mechanism In such a variable valve timing mechanism, the cam working angle (Duration) is controlled by periodically varying the reduction ratio of the cam angle with respect to the crank angle via the coupling and controlling the fluctuation. : Also called “operating angle”).
  • the variable valve timing mechanism changes the valve overlap by making the working angle of the force variable.
  • Patent Document 1 a cam drive shaft that synchronizes with a crank rotational drive at a predetermined rotational speed is inserted into a cam and a disc-shaped eccentric plate (eccentric member) and provided on the cam drive shaft.
  • a pin is loosely fitted in a groove extending radially in the eccentric plate. Then, due to the rotation of the force drive shaft, the eccentric plate rotates while being eccentric with respect to the cam drive shaft via the pin and the groove, thereby rotating the cam.
  • an eccentric plate which is an eccentric member, is disposed between a sprocket that rotates by a driving force of a crankshaft transmitted via a gear train and a camshaft that is provided integrally with the cam. Has been placed.
  • This eccentric plate is halfway across the center of rotation of the camshaft. Grooves extending in the radial direction are formed. In each of these grooves, a pin provided on the camshaft and a pin provided on the sprocket are slidably fitted freely, and the driving force of the cam drive shaft via the eccentric plate configured in this way is Has been communicated to.
  • Patent Document 3 an annular disk as an eccentric member is arranged in a disk housing, and the center force of the cam drive shaft is decentered through the disk housing to change the angular velocity of the camshaft. By doing so, the operating angle of the intake valve is variably controlled. Note that the center of rotation of the annular disk that is eccentric by the disk housing is located outside the annular disk and substantially parallel to the center of the annular disk. In Patent Document 3, the amount of eccentricity is increased in order to widen the cam operating angle, particularly when the engine shifts to a high speed and high load range.
  • Patent Document 1 Japanese Patent Publication No. 47-020654
  • Patent Document 2 JP-A-3-43611
  • Patent Document 3 Japanese Patent Application Laid-Open No. 6-2515 Incidentally, along with the fluctuation of the angular acceleration of the cam, the acceleration at the time of opening and closing of the valve driven by the cam inevitably varies.
  • the opening timing side is changed.
  • Maximum acceleration and minimum acceleration are gradually increasing acceleration curves.
  • the change due to the angular velocity fluctuation of the acceleration curve becomes large, and the acceleration curve is distorted on the open side and the close side.
  • the closing side timing is substantially fixed.
  • the maximum acceleration and the minimum acceleration increase gradually, and the acceleration curve is often distorted on the opening and closing sides of the variable valve timing.
  • valve behavior such as a phenomenon is likely to occur.
  • This kind of valve behavior (valve behavior) further increases the vibration that occurs when the engine is running at high speed, that is, when the inertial force is large, or immediately increases in proportion to the increase of the inertial force. It will reduce engine performance.
  • Patent Documents 1 to 3 all have an eccentric center that is eccentric to the cam drive shaft or the center force of the cam shaft in order to widen the cam operating angle at high engine speeds. Changes due to fluctuations in the angular velocity of the valve acceleration proportional to the amount of eccentricity during rotation are not taken into account.
  • Patent Document 3 since the shaft is greatly decentered at the time of high engine rotation, there is a possibility that vibration is generated and the stable operation cannot be performed in the valve opening / closing operation at the time of high engine rotation.
  • the present invention has been made in view of the points to be applied, and kinematically, large vibrations are generated due to inertial forces, and valve behavior problems such as jumping phenomenon and bounce phenomenon easily occur.
  • An object of the present invention is to provide a variable valve drive device, an engine and a motorcycle that can reduce vibration and perform valve behavior stably at a high engine speed. Disclosure of the invention
  • the variable valve drive device includes a cam drive member that is rotated by a drive force that is transmitted with a crankshaft force, and a shaft that is in the same direction as the rotation shaft of the cam drive member by driving the cam drive member. And an eccentric member provided so that the shaft is movable from an axial center position of the rotating shaft to an eccentric position, and is disposed coaxially with the rotating shaft, and is rotated about the rotating shaft by the eccentric member.
  • the eccentric member When rotationally driven at the center position, the camshaft in which the rotational phase difference with respect to the cam drive member periodically changes, and the camshaft rotates with the same rotational phase as the camshaft, and the exhaust valve or the intake valve
  • a variable valve driving device including a cam piece for opening and closing the rotation of the crankshaft, wherein the rotational speed detection unit detects the rotational speed of the crankshaft, and the rotational speed of the crankshaft detected by the rotational speed detection unit.
  • variable valve driving device of the present invention includes a cam driving member that rotates by a driving force transmitted by a crankshaft force, and the same direction as the rotating shaft of the cam driving member by driving the cam driving member.
  • An eccentric member provided so as to be movable from an axial center position of the rotating shaft to an eccentric position, and coaxially arranged with the rotating shaft, and the rotating shaft is arranged by the eccentric member.
  • a cam shaft in which a rotational phase difference with respect to the cam drive member periodically varies when the eccentric member is rotationally driven at the eccentric position, and the cam shaft is the same as the cam shaft.
  • a variable valve drive device comprising a cam piece that rotates at a rotational phase and makes the working angle of the exhaust valve or intake valve variable; a rotational speed detector that detects the rotational speed of the crankshaft; and the rotational speed Inspection
  • a controller that controls the position of the shaft of the eccentric member with respect to the rotational shaft of the cam drive member by moving the eccentric member according to the rotation speed of the crankshaft detected by the protruding portion;
  • the control unit force adopts a configuration in which the operating angle of the exhaust valve or the intake valve is maximized when the position of the shaft of the eccentric member coincides with the position of the shaft center of the rotating shaft.
  • variable valve drive device of the present invention includes a cam drive member that rotates by a drive force transmitted by a crankshaft force, and the same direction as the rotation shaft of the cam drive member by driving the cam drive member.
  • An eccentric member provided so as to be movable from an axial center position of the rotating shaft to an eccentric position, and coaxially arranged with the rotating shaft, and the rotating shaft is arranged by the eccentric member. When the eccentric member is rotationally driven at the eccentric position, a rotational phase difference with respect to the cam drive member is a period.
  • a variable valve drive device comprising: a camshaft that fluctuates automatically; and a cam piece that is rotated by the camshaft in the same rotational phase as the camshaft and that changes a working angle of an exhaust valve or an intake valve.
  • a rotational speed detector for detecting the rotational speed of the crankshaft, and the eccentric member is moved in accordance with the rotational speed of the crankshaft detected by the rotational speed detector to
  • a control unit that controls the position of the shaft of the eccentric member, and the control unit matches the position of the shaft of the eccentric member with the axial center position of the rotation shaft at a substantially maximum rotational speed of the crankshaft.
  • the exhaust valve or the intake valve has a maximum working angle.
  • FIG. 1 is an exploded perspective view of a main part of an engine provided with a variable valve drive device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an essential part showing the variable valve driving device.
  • FIG. 3 is an exploded perspective view of the variable valve drive device.
  • FIG. 4 is an exploded perspective view of an eccentric boss.
  • FIG. 5 is a diagram showing a positional relationship among the rotation center of the eccentric boss, the axis of the variable cam drive shaft, and the axis of the eccentric plate.
  • FIG. 6 is a schematic diagram illustrating a control unit of an engine provided with the variable valve drive device.
  • FIG. 7 is a diagram showing an example of the positional relationship between the drive pin and the driven pin in a state where the center of the eccentric plate is eccentric with respect to the cam shaft in the variable valve drive device according to one embodiment of the present invention.
  • FIG. 8 is a diagram showing a working angle of a nozzle corresponding to an engine speed in an engine provided with a variable valve drive device according to an embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a variable state of a valve by a variable valve driving device according to an embodiment of the present invention.
  • FIG. 10 is a view for explaining a modification of the variable state of the valve by the variable valve driving device according to the embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional side view showing a configuration of a main part of a motorcycle including the engine drive mechanism according to the embodiment of the present invention.
  • 12 is a schematic plan view showing a main part of the drive unit in FIG.
  • FIG. 1 is an exploded perspective view of a main part of an engine provided with a variable valve drive apparatus according to an embodiment of the present invention.
  • the engine 100 shown in FIG. 1 is housed in an engine body 110 having a cylinder portion 106 and a cylinder head 104 that house a piston 102 so as to be able to advance and retreat, and a crankcase 112 (see FIGS. 6 and 11). It has a crankshaft 130 and a variable valve drive device 200.
  • the engine 100 provides a periodic phase difference between the rotation of the exhaust cam piece 220 and the intake cam piece 240 by the variable valve drive device 200 disposed substantially parallel to the crankshaft 130, and each rotation The timing of opening and closing corresponding to is variable. As a result, the valve overlap time is variable corresponding to the engine speed.
  • engine 100 will be described as a single-cylinder SOHC (Single Over Head Camshaft) type mounted on starter type motorcycle 500 (see FIG. 11).
  • the engine 100 is not limited to the force described as a single-cylinder SOHC type, and may be any engine as long as it has the variable valve driving device 200.
  • the maximum engine speed mounted on a motorcycle is 8000 rpm or more.
  • the maximum rotation speed obtains a stable output continuously, for example, about 10% overspeed is considered, but instantaneous overspeed is not intended.
  • the piston 102 in the cylinder portion 106 is disposed so as to be movable back and forth (up and down) in the cylinder axial direction in the cylinder portion 106, and on the proximal end side of the piston 102, the connecting rod 10 8 is connected to the crankshaft 130.
  • the connecting rod 108 is rotatably attached to a crank pin (not shown) between the crank webs 132 provided on the crankshaft 130.
  • a timing gear 134 is provided on the crankshaft 130 adjacent to the crank web 132 (specifically, the crank journal).
  • a cam drive chain 133 as a drive force transmission member is wound around the timing gear 134.
  • the cam drive chain 133 is wound around the cam sprocket 211 disposed in the cylinder head 104 in the engine main body 110 together with the timing gear 134, and is connected to the cam pieces 220 and 240 of the variable valve drive device 200. Transmits rotational driving force.
  • the force used as the drive force transmission member as the cam drive chain 133 is not limited to this, and any force may be used as long as the drive force is transmitted from the crankshaft 130 to the force musket 211.
  • a cog belt may be used instead of the cam drive chain 133. In this case, a configuration using a cog wheel instead of the timing gear 134 and the cam sprocket 211 is used.
  • the transmission line (in this embodiment, the chain line) of the cam drive chain 133 is substantially perpendicular to the crankshaft 130 and is connected to the cylinder shaft of the cylinder portion 106 in which the piston 102 moves forward and backward. It is placed at a close position. This is because, due to the structure of the engine, the crank force that drives the piston 102 also prevents the bending force applied to the crank itself from increasing as the cam drive chain 133 is pulled away as the cam drive chain 133 is separated. .
  • the cam drive chain 133 is disposed in a chain case portion 116 that is integrally provided adjacent to the cylinder portion 106 in the engine main body 110.
  • an upper portion 116 a (hereinafter referred to as “case upper portion”) 116 a of the chain case portion 116 is provided integrally with the cylinder head 104.
  • the case upper portion 116a opens in the cylinder head 104 in a direction parallel to the crankshaft 130.
  • One of the openings 116b communicates with the space above the cylinder 106, and the other opening 116c is provided with an annular cylinder head cover (hereinafter referred to as "head cover") 105. ing.
  • head cover 105 annular cylinder head cover
  • one end portion side of the variable valve driving device 200 is disposed, and the variable valve driving device 200 is supported by the head force bar 105 on one end portion side thereof.
  • the variable valve drive device 200 includes a cam sprocket 211, an exhaust cam piece 220, a variable cam shaft 230, an intake cam piece 240, an eccentric plate (eccentric member) 250, an eccentric boss (member moving part) 260, and an eccentric motor. 270.
  • the variable valve driving device 200 is attached to the cylinder head 104 in parallel with the crankshaft 130.
  • one of the valve timings of the intake valve and the exhaust valve is changed with respect to the other valve timing, so that the knob overlap amount is variable.
  • the variable valve driving device 200 changes the closing timing of the intake valve by the intake cam piece 240 (the closing timing), thereby making the intake valve relative to the exhaust valve variable, thereby varying the valve overlap amount. .
  • FIG. 2 is a cross-sectional view of the main part showing the variable valve driving device 200 attached to the cylinder head 104
  • FIG. 3 is an exploded perspective view of the variable valve driving device 200.
  • variable valve drive device 200 In this variable valve drive device 200, the rotation axes of the cam sprocket 211, the exhaust cam piece 220, the variable force shaft 230, the intake cam piece 240, the eccentric plate 250, and the eccentric boss 260 are parallel to each other. .
  • variable valve drive device 200 as shown in FIGS. 1 to 3, the intake cam piece 240 and the exhaust cam piece 220 are disposed in the cylinder head 104 with the variable cam shaft 230 being passed therethrough. It is arranged at the upper part of the cylinder part 106 in this.
  • variable cam shaft 230 is passed through the cam sprocket 211, and the cam sprocket 211 and the eccentric plate 250 are disposed in the upper case 116a!
  • the eccentric boss 260 is rotatably attached to the annular head cover 105.
  • the variable valve driving device 200 is fixed to the cylinder head 104 by fixing the head cover 105 to which the eccentric boss 260 is attached to the cylinder head 104. Note that the opening of the cylinder head 104 to which the head cover 105 on which the eccentric boss 260 is disposed has a diameter that allows the cam sprocket 211 to be inserted.
  • the cam sprocket 211 has the same axis, and has an exhaust cam piece 220 that opens and closes a valve (here, an exhaust valve) and a cylindrical portion 224 by rotating.
  • a valve here, an exhaust valve
  • the cam sprocket 211, the cylindrical portion 224, and the exhaust cam piece 220 form a cam drive body 210 that directly receives the drive force of the crankshaft 130 and rotates.
  • the cam sprocket 211 is driven by the drive of the crankshaft 130 via a timing gear 134 (see Fig. 1) and a cam drive chain 133 (see Fig. 1). Rotates at a constant reduction ratio.
  • the cam sprocket 211 rotates at a speed of 1Z2 of the rotation of the crankshaft 130! /.
  • the shaft centers of the cam sprocket 211 and the exhaust cam piece 220 are camshaft shaft centers, and the force shaft shaft is arranged in parallel with the crankshaft 130 (see FIG. 1) above the cylinder portion 106. Yes.
  • the cam sprocket 211 is driven so as to protrude parallel to the rotational axis direction of the cam sprocket 211 and to the opposite side with respect to the exhaust cam piece 220.
  • Pin 212 is provided.
  • the drive pin 212 is loosely fitted in a drive slot 252 cut out in the radial direction from the center side of the eccentric plate 250.
  • the axis of the drive pin 212 is eccentric with respect to the axis of the cam sprocket 211.
  • the drive pin 212 circulates around the axis of the cam sprocket 211 and rotationally drives the eccentric plate 250 via the slot 252 that is loosely fitted.
  • a through hole 215 penetrating in the axial direction is formed in the same axial center portion of each of the cam sprocket 211, the exhaust cam piece 220, and the cylindrical portion 224, that is, the axial center portion of the cam driving body 210. Is provided.
  • the through hole 215 communicates with a hole 223 opened in the base circle surface 220a of the exhaust cam piece 220 (see FIG. 2).
  • the shaft portion 230a of the variable cam shaft 230 is passed through the through-hole 215 so as to be rotatable in the axial direction.
  • the shaft portion 230a of the variable cam shaft 230 protrudes on both sides in the axial direction from the cam drive body 210 to be threaded, and an intake cam adjacent to the exhaust cam piece 220 is provided on a portion protruding on the exhaust cam piece 220 side.
  • a piece 240 is physically attached.
  • variable cam shaft 230 is provided with a driven pin 232 at a portion of the shaft portion 230a protruding on the cam sprocket 211 side of the cam driver 210.
  • variable camshaft 230 is disposed above the cylinder portion 106 while being passed through the cam driver 210. It is arranged to cross.
  • the variable cam shaft 230 is rotatably supported by a bearing 104a and a bearing 113.
  • variable cam shaft 230 has a through hole 238 that penetrates in the axial direction in the shaft portion 230a, and the through hole 238 is a sliding portion between members constituting the variable valve drive device 200. It is the main oil passage for the lubricating oil to be supplied.
  • the through hole 238 will be described as the main body oil passage 238.
  • the main body oil passage 238 is provided through the rotation shaft of the cam drive 210 (particularly, the cam sprocket 211), and the sliding portion of the intake cam piece 240 on the other end side of the cam drive 210. Lubricating oil is supplied to the sliding portion of the eccentric plate 250 on one end side of the cam driving body 210.
  • the main body oil passage 238 communicates with the outer peripheral surface of the shaft rod 230a through the branch oil passages 239a, 239b, and 239c, and is connected to the end face through the throttle 235 provided on the chain line side in the shaft portion 230a. Opened to the side (eccentric plate 250 side).
  • the branch oil passages 239a, 239b, and 239d are formed on the shaft rod 230a so as to be orthogonal to the main body oil passage 238, and open to the outer surface portion of the shaft portion 230a.
  • Oil sump grooves 236 and 237 formed in a concave shape in the circumferential direction of the shaft portion 230a are provided on the outer surface portion of the shaft portion 230a where the branch oil passages 239a and 239b open. These oil sump grooves 236, 237 are connected to the branch oil passages 239a, 239bi!
  • the branch oil passage 239c is formed in the shaft portion 230a so as to be orthogonal to the main body oil passage 238.
  • the intake cam piece 240 has an opening in the outer surface portion communicating with the hole 245.
  • An oil sump groove 246 is formed along the inner peripheral surface of the opening portion of the intake cam piece 240 in a portion of the intake cam piece 240 that slides on the outer peripheral surface of the shaft portion 230a.
  • variable cam shaft 230 is connected to the cylinder head 104 in the cylinder head 104. It is inserted in the bearing 113 attached to. The portion protruding from the bearing 113 is covered with an oil seal cap 115 via an oil seal portion 117 so that the oil seal portion 117 does not leak lubricating oil outside the cylinder head 104.
  • an oil pump discharge port 118 is provided on one end 111 side of the cylinder head 104.
  • the lubricating oil is press-fitted into the oil reservoir 119 communicating with the opening 230c at one end of the shaft portion 230a through the discharge port 118, and is guided into the main body oil passage 238 through the oil reservoir 119.
  • the oil pump pumps up lubricating oil from a lubricating oil reservoir (for example, an oil pan 6 20 provided in the motorcycle 500 shown in FIG. 11) provided in a vehicle on which the engine 100 is mounted.
  • the intake cam piece 240 is externally fitted to one end side of the shaft portion 230a, and is fixed by fitting the pin 241 into a notch 243 (see FIG. 3) formed in the intake force piece 240. Has been.
  • the intake cam piece 240 is disposed above the cylinder portion 106 together with the exhaust cam piece 220.
  • the intake cam piece 240 rotates about the axis of the variable cam shaft 230, the intake cam piece 240 is driven to rotate about the coaxial axis. Further, as shown in FIG. 2, the intake cam piece 240 is formed with a hole 245 that penetrates the base circle surface 240a and the inner surface of the opening that fits into one end of the shaft portion 230a. The hole portion 245 communicates with the main body oil passage 238 in the shaft portion 230a.
  • a plate 234 protruding perpendicular to the shaft center of the shaft portion 230a is attached.
  • the plate 234 rotates at a position adjacent to the cam sprocket 211 as the shaft portion 230a rotates.
  • a driven pin 232 that protrudes in a direction opposite to the direction in which the shaft portion 230a extends and faces the drive pin 212 across the axis of the shaft portion 230a is provided (see FIG. 1 to Figure 3).
  • the driven pin 232 is disposed on the plate 234 at a position parallel to the axis of the shaft part 230a and eccentric with respect to the axis of the shaft part 230a.
  • this follower pin 232 is arranged at the center of the eccentric plate 250 in the eccentric plate 250.
  • the force is also loosely fitted in the driven slot 254 cut out in the radial direction, and rotates around the axis of the shaft portion 230a by the rotation of the eccentric plate 250. That is, when the drive pin 212 that rotates with the rotation of the cam sprocket 211 drives the eccentric plate 250 to rotate, the variable cam shaft 230 is driven via the driven slot 254 and the driven pin 232, and the intake cam piece 240 is Rotate.
  • the eccentric plate 250 is a plate-shaped (mainly disc-shaped) plate main body 256 disposed opposite to the plate 234 of the variable cam shaft 230, and the opposite side of the plate 234 from the center of the plate main-body 256. And a plate shaft portion 258 projecting vertically.
  • the plate main body 256 is formed on the same straight line so as to extend in the radial direction with the drive slot 252 and the driven slot 254 force plate shaft portion 258 interposed therebetween.
  • a drive pin 212 and a follower pin 232 are loosely fitted in the drive slot 252 and the follower slot 254, respectively.
  • the drive pin 212 and the follower pin 232 are eccentric plates by the rotation of the force mus procket 211. Move on the same straight line passing through 250 axes. That is, a phase angle difference is generated between the rotation of the cam sprocket 211 and the exhaust cam piece 220 and the rotation of the intake cam piece 240 via the drive pin 212 and the driven pin 232.
  • the plate shaft portion 258 is a rotation shaft of the eccentric plate 250 itself, and is rotatably inserted into an eccentric hole 262 formed in the eccentric boss 260 as shown in FIG.
  • the eccentric boss 260 has a boss main body 264 that rotates around the rotation axis parallel to the cam shaft direction (rotation center R shown in FIG. 3) inside the head cover 105.
  • the eccentric boss 260 whose outer diameter is smaller than the outer diameter of the cam sprocket 211 is disposed at a position overlapping the cam sprocket 211 in the rotation axis direction.
  • the eccentric hole 262 in the eccentric boss 260 is formed in the boss main body 264 at a position eccentric with respect to the rotation center.
  • the eccentric boss 260 is opposed to the cam sprocket 211 across the eccentric plate 250 in the direction of the rotation axis of the cam drive 210, and the rotation axis (rotation center) of the eccentric boss 260 is
  • the cam drive 210 is positioned inside the outer peripheral edge of the cam sprocket 211 that faces the eccentric boss 260.
  • the rotation center of the eccentric boss 260 is located inside the outer peripheral edge of the cam sprocket 211.
  • the eccentric plate 250 is eccentric. Mechanical force
  • the entire variable valve drive device 200 that is positioned outward from the outer peripheral edge located in the radial direction in the cam drive 210 is made compact.
  • a rack 266 is provided on a part of the outer periphery of the boss main body 264, and the rack 266 meshes with a worm gear 272 of an eccentric motor 270 attached to the head cover 105.
  • the eccentric boss 260 rotates around the rotation center R (see FIG. 3) by driving the eccentric motor 270 inside the head cover 105.
  • FIG. 4 is an exploded perspective view of the eccentric boss 260.
  • the eccentric boss main body 264 of the eccentric boss 260 has a bottomed cylindrical shape, and a lid 264b is attached to a main body case 264a in which an eccentric hole 262 is formed. Composed.
  • the surrounding wall 262a is provided with a partition wall 265a, 265b, 265c [compartment compartments 267a, 267b, 267c].
  • An air hole 268 is provided in the bottom portion of the compartment 267a so as to communicate the compartment 267 with the back side of the eccentric boss 260, that is, the eccentric plate 250 side.
  • An oil return hole 268a communicating with the outside of the eccentric boss main body 264 is formed in the peripheral wall portion of the compartment 267a.
  • partition walls 265a and 265b are provided with notches 269, so that the compartments 267a and 267b and the compartments 267b and 267c communicate with each other! /.
  • the lid 264b covers the compartments 267a, 267b, 267c.
  • the lid 264b has an opening 264c formed in the ceiling portion of the compartment 267c.
  • the eccentric boss 260 is configured to communicate with the axial direction, that is, the front and back surfaces via the air hole 268, the compartments 267a, 267b, 267c, the notch 269, and the opening 264c. Yes.
  • the eccentric boss 260 is provided with compartments 267a, 267b, 267c as hollow portions that communicate with the cam sprocket 211 in the rotational axis direction.
  • the eccentric boss 260 allows the inside and outside of the cylinder head 104 to communicate with each other when the eccentric boss 260 is attached to the cylinder head 104 via the head cover 105.
  • An oil return hole 105 a is formed in the head cover 105 in parallel with the rotational axis of the eccentric boss 260. As a result, the oil return hole 105a is eccentrically inserted into the eccentric boss 260.
  • the lubricating oil flows from the engine 250 side, the lubricating oil is returned to the engine 100 together with the oil return hole 268a communicating with the compartment 267a. That is, the compartments 267 a, 267 b, and 267 c function as breather chambers that prevent the lubricant in the blow-by gas generated in the engine 100 from being discharged outside the engine 100.
  • the position of the eccentric hole 262 can be moved to a position eccentric with respect to the rotation center R of the boss main body 264.
  • the eccentric boss 260 is disposed adjacent to the eccentric plate 250 on the opposite side to the cam sprocket 211, and the plate shaft portion 258 of the eccentric plate 250 is coaxially positioned with respect to the rotation axis of the cam sprocket 211. Can be moved to a position.
  • FIG. 5 is a diagram showing the positional relationship between the rotation center R of the eccentric boss 260, the axis C of the cam sprocket 211, and the axis E of the eccentric plate 250.
  • Fig. 5 (a) is a schematic front view of the eccentric boss 260, cam sprocket 211 and eccentric plate 250
  • Fig. 5 (b) is the rotation center R and axis C shown in Fig. 5 (a). It is an enlarged view of E part.
  • the eccentric boss 260 is rotatably fitted in the head cover 105, and the center of rotation (boss center) R is centered by the eccentric motor 270 (see FIGS. 1 to 3). Rotate.
  • the rotation center R is fixed on the engine side, and the rotation center (camshaft axis) C of the variable cam shaft 230, the exhaust cam piece 220, and the intake cam piece 240 (center of eccentricity) E It is the center of rotation that rotates.
  • the plate shaft portion 258 (the shaft center E of the eccentric plate 250) is rotatably inserted into the eccentric hole 262 of the eccentric boss 260, the shaft center of the eccentric plate 250 is rotated by the rotation of the eccentric boss 260.
  • (Eccentric center) E moves in a circular arc around the center of rotation (boss center) R.
  • the axis C of the variable cam shaft 230 that is, the axis C of the exhaust cam piece 220 and the intake cam piece 240 is arranged!
  • the rotation of the eccentric boss 260 allows the axis E and the axis C to coincide with each other.
  • the eccentric boss 260 is moved at a position where the shaft center E and the shaft center C coincide with each other, that is, the position of the shaft center E of the eccentric hole 262 of the eccentric boss 260 and the position of the shaft center C of the variable cam shaft 230. Can be fixed. Thereby, the eccentric plate 250 and the variable cam shaft 230 can be rotated around the same axis.
  • the axis E of the eccentric plate 250 moves in an arc shape in the eccentric boss 260, that is, in the opening of the head cover 105, a mechanism for eccentrically locating the axis E of the eccentric plate 250 is accommodated in the head cover 105. It is in the state.
  • the rotational angle position of the eccentric boss 260 in the head cover 105 is detected by angle sensor units 26 and 27 provided on the eccentric boss 260 as shown in FIG.
  • the angle sensor units 26 and 27 can detect the position of the eccentric hole 262, that is, the eccentric position of the eccentric plate 250 by detecting the rotational angle position. Using the information detected in this way, the information obtained from the engine side force such as the engine rotation and the engine load, and the information that the user force is also input via the operation unit (not shown), the eccentric position of the eccentric hole 262 is It is controlled to a preset position by the control unit 150 (see FIG. 6).
  • FIG. 6 is a schematic diagram for explaining a control unit of an engine including the variable valve drive device 200 according to one embodiment of the present invention.
  • engine 100 includes a control unit 150 that drives and controls the engine itself and drives and controls the eccentric motor 270 (see FIGS. 1 and 3) of the variable valve driving device 200.
  • the control unit 150 is connected to an angle sensor unit 27 that detects the rotational angle position of the eccentric boss 260, and determines the eccentric position of the eccentric plate 250 based on information input from the angle sensor 27.
  • control unit 150 is connected to the sensor 114a, and receives the rotational position information of the force musprocket 211 detected by the sensor 114a.
  • the cam sprocket 211 is connected to the crankshaft 13 via a cam drive chain 133 (see FIG. 1).
  • the rotational position of the cam sprocket 211 has a crank stroke (in the case of 4 cycles, the suction stroke).
  • crank angle detection sensor 160 that detects a crank angle of the crankshaft 130 is connected to the control unit 150, and the control unit 150 uses crank angle information detected by the crank angle detection sensor 160. Determine the engine speed.
  • the control unit 150 operates the motor so as to form a cam working angle (Duration: also referred to as "operating angle") corresponding to the engine speed based on information input from each sensor 27, 114a, 160. Sets current and outputs to eccentric motor 270 to drive and control eccentric motor 270
  • the control unit 150 changes the valve timing based on the engine speed so as to obtain a suitable overlap amount corresponding to the actual engine speed.
  • control unit 150 drives the eccentric motor 270 when the engine speed is at or near the maximum, and the axis E of the eccentric plate 250 and the axis C of the variable cam shaft 230 are driven. To be aligned with the axis C. The valve operating angle at this time is the maximum operating angle.
  • Control unit 150 is connected to an injector (not shown), and drives and controls the injector by outputting a fuel injection control signal to the injector. In addition, it is connected to a plug (not shown) and outputs an ignition timing control signal to the plug to control the ignition timing of the plug.
  • variable valve drive apparatus 200 [0103] Next, the operation of the variable valve drive apparatus 200 in the present embodiment will be described.
  • the cam sprocket 211 is driven by the rotation of the crankshaft 130 through the cam drive chain 133 at half the rotation of the crankshaft 130. .
  • the exhaust cam piece 220 that constitutes the cam drive body 210 together with the cam sprocket 211 rotates in synchronization with the rotation of the crankshaft 130.
  • FIG. 7 is a diagram showing an example of the positional relationship between the drive pin and the driven pin in a state where the center of the eccentric plate is eccentric with respect to the cam shaft in the variable valve driving device.
  • FIGS. 7A to 7I show the relative positional relationship between the drive pin 212 and the drive pin 232 in a stepwise manner when the crankshaft is rotated at a predetermined rotation.
  • the slots 252 and 254 (see FIGS. 1 and 3) in which the drive pin 212 and the driven pin 232 are loosely fitted are formed on the same straight line, and therefore are schematically shown as a straight line SL.
  • the slot 254 formed in the plate main body portion 256 of the eccentric plate 250 rotates at a non-uniform speed similarly to the eccentric plate 250. Since the driven pin 232 loosely fitted in the slot 254 is concentric with the cam sprocket 211 and the intake cam piece 240, an inconstant speed motion is transmitted to the driven pin 232 via the slot 254.
  • the shaft portion 230a rotates at a non-uniform speed through the driven pin 232 to which the non-uniform speed motion is transmitted, and the intake cam piece 240 rotates at a non-uniform speed accordingly.
  • the intake cam piece 240 is driven at an angular speed faster than half of the rotational speed of the crankshaft 130 in the vicinity of the crank angle at which the intake cam piece 240 is open.
  • an operating angle for example, 268 degrees
  • the cam rotates more than the operating angle, so the intake valve is opened and closed in a shorter time.
  • the working angle is narrowed. While sucking When the air cam rotates slowly, the working angle can be widened.
  • variable valve drive device 200 the intake cam rotated by the variable cam shaft 230 driven via the eccentric plate 250 with respect to the exhaust cam piece 220 provided integrally with the cam sprocket 211.
  • the rotation phase difference of the piece 240 can be periodically changed.
  • the eccentric plate 250 is eccentric with respect to the camshaft axis, and the operating angle of the intake cam piece 240 is periodically variable.
  • the intake cam piece 240 rotates at an unequal speed, and this rotation
  • the operating angle and opening / closing timing of the intake valve (variable valve) that opens and closes can be varied.
  • variable valve drive 200 when the cam operating angle is increased, the cam rotation speed decreases while the knob is open, and the cam rotation speed when the valve is closed. Go up. If the cam operating angle is reduced, the cam rotation speed increases while the knob is open, and the cam rotation speed decreases when the knob is closed.
  • the intake cam piece 240 can be rotated with a rotational phase difference provided with respect to the exhaust cam piece 220, and this rotational phase difference is appropriately changed as a periodic rotational phase difference.
  • the valve overlap amount can be varied according to the engine stroke.
  • FIG. 8 shows a valve operating angle set corresponding to an engine speed and a mean effective pressure in an engine including a variable valve drive device 200 according to an embodiment of the present invention.
  • the operating angle shown in Fig. 8 is the optimal operating angle according to the engine speed (corresponding to the operating range). For example, when the average effective pressure is 4 at 3000 rpm, the optimum valve working angle is about 210 degrees.
  • the maximum engine speed of engine 100 is 9000 rpm here. Maximum speed is
  • the maximum engine speed can be set based on the maximum piston speed that can be achieved in the engine 100 taking into account torque.
  • the controller 150 controls the center C of the cam sprocket 211 (see FIGS. 3 and 5) and the center of the eccentric plate 250 at an engine speed of 9000 rpm.
  • Match E center of eccentricity, see Fig. 3 and Fig. 5.
  • the control unit 150 rotates and moves the eccentric boss 260 so that a cam operating angle suitable for each rotational speed is set, and the axis C of the cam sprocket 211
  • the force also decenters the center E of the eccentric plate 250 by a predetermined distance.
  • Fig. 9 is a view for explaining the variable state of the valve by the variable valve driving device according to one embodiment of the present invention.
  • the variable valve driving device 200 when the intake force piece 240 is made variable, the opening timing of the intake valve driven by the intake cam piece 240 is substantially fixed, and the closing timing is made variable.
  • Fig. 9 (a) shows the lift curve of the intake valve when the closing timing is variable
  • Fig. 9 (b) shows the acceleration curve of the valve shown in Fig. 9 (a).
  • the opening / closing timing and lift curve of the intake cam piece 240 change from L1 to L3 by changing the intake cam piece 240.
  • the intake piece 240 is varied by rotating the eccentric boss 260 in the variable valve driving device 200 to decenter the axis of the eccentric plate 250 from the camshaft axis.
  • the lift curve L1 in Fig. 9 (a) has the maximum operating angle D1, and at this time, in the variable valve drive device 200, the axis of the cam sprocket 211 (axis E shown in Fig. 5). And the center of the eccentric plate, that is, the center of eccentricity (axis C shown in Fig. 5) substantially coincides.
  • the acceleration of the valve at this time is an acceleration curve A1 shown in Fig. 9 (b).
  • this acceleration curve A1 when the axis of the cam sprocket 211 coincides with the center of the eccentric plate 250, the fluctuation range of acceleration when the valve is opened and closed is close to 0, and the acceleration force curve is on the open side. And a substantially symmetrical shape on the closed side, that is, left and right. In other words, if the axial center of the force mus procket 211 is aligned with the center of the eccentric plate, there will be no distortion on the open side and on the close side in the acceleration curve of the valve.
  • the acceleration curve A1 of the valve that opens and closes is close to 0 due to negative acceleration fluctuations that cause acceleration distortion. Therefore, the valve acceleration exceeds the cam acceleration. Bouncing phenomenon that jumps when seated on the valve seat ring is less likely to occur.
  • the cam profile must have a convex radius, and if the rotational direction is positive, machining is limited so as to reduce the concave radius generated by the increase in positive and negative acceleration in valve opening and closing as much as possible. It has been.
  • variable valve drive device 200 when the operating angle is the maximum, the control unit 105 rotates the eccentric boss 260 so that the position of the axis E of the eccentric hole 262 and the variable cam shaft 230 Overlapping with the position of axis C, control is performed on the same axis.
  • the cam profile can be set based on the valve lift curve on the high operating angle side, and the valve lift curve with a low operating angle that is subject to cam processing limitations is realized by the periodic angular velocity. . This is advantageous from the viewpoint of engine output or fuel efficiency.
  • valve lift curve force cam profile By setting the valve lift curve force cam profile on the high operating angle side, the valve lift curve at the low operating angle is affected by periodic angular velocity fluctuations, and the maximum calorie velocity increases. The absolute value of the minimum acceleration also increases. However, a low lift angle valve lift force has a lower inertia force than that at high engine speed in order to minimize valve overlap, and is often required at low engine speeds.
  • variable valve drive device 200 that realizes a valve lift curve with a low operating angle based on the periodic cam angular velocity, vibration and behavior caused by inertia force as well as driving of the valve system when the cam is variable. It is hard to be affected by.
  • variable valve drive apparatus 200 has low vibration and stable valve behavior at any engine speed. That is, the engine 100 equipped with the variable noble drive device 200 can stably drive the engine in any engine rotation region.
  • blowout can be prevented, hydrocarbons in the exhaust gas can be reduced, and engine output at low engine speed can be increased to improve fuel efficiency.
  • the intake valve is opened wide from the early stage to increase the overlap so that the bombing loss can be reduced, the combustion efficiency can be increased, and the fuel efficiency can be improved. be able to.
  • variable valve drive device 200 the same layout as that of a conventional engine, without a variable valve drive mechanism, and with a specification cam shape and a specification force mechanism with a variable valve drive mechanism. The same shape can be achieved, and the sharing of production equipment and parts can be promoted.
  • variable valve driving device 200 configured as described above is configured such that the exhaust cam piece 220 and the intake cam piece are on the cam axis as compared with a variable valve drive mechanism, that is, a cam shaft without a so-called variable bubble timing mechanism.
  • a variable valve drive mechanism that is, a cam shaft without a so-called variable bubble timing mechanism.
  • the positional relationship between 240 and the cam sprocket 211 remains the same. Therefore, in a conventional motorcycle without a variable valve drive mechanism, for example, an engine structure of a starter, it can be used as an engine having a variable valve function only by changing the camshaft portion to the variable valve drive device 200. .
  • variable valve driving device 200 In detail, in order to mount the variable valve driving device 200, the dimensions and arrangement positions of each member for driving the camshaft such as the crankshaft, the cylinder portion and cylinder head of the engine main body, and the timing gear are specified. There is no change.
  • engine 100 is a single cylinder SOHC (Single Over Head Camshaft). Not only this but also a multi-cylinder SOHC type, DOHC (Double Over Head Camshaft).
  • SOHC Single Over Head Camshaft
  • DOHC Double Over Head Camshaft
  • variable valve drive device 200 As shown in FIG. 9, the intake valve closing timing of the intake valve that is opened and closed by the intake cam piece 240 is made variable so that the rotational position of the intake cam piece 240 relative to the exhaust cam piece 220 Force that periodically changes the phase difference.
  • variable valve drive device 200 when the intake cam piece 240 is made variable,
  • the closing timing of the intake valve driven by the intake cam piece 240 may be substantially fixed, and the opening timing may be variable. An example of this will be described with reference to FIG.
  • Fig. 10 is a view for explaining a modification of the variable state of the valve by the variable valve driving device according to the embodiment of the present invention. Specifically, Fig. 10 (a) shows the lift curve of the intake valve when the opening timing is variable, and Fig. 10 (b) shows the acceleration curve of the valve shown in Fig. 10 (a).
  • the opening / closing timing and lift curve force L4 of the intake cam piece 240 are changed by changing the opening timing and changing the noble timing by the intake cam piece 240.
  • the lift curve L4 in Fig. 10 (a) has the maximum operating angle D4.
  • the axis of the cam sprocket 211 (the axis E shown in Fig. 5).
  • the center of the eccentric plate that is, the center of eccentricity (axis C shown in Fig. 5) substantially coincides.
  • the acceleration of the valve at this time is an acceleration curve A4 shown in Fig. 10 (b).
  • the center of the eccentric plate 250 is decentered with respect to the axis of the cam sprocket 211, it changes as lift curves L5 and L6, and the acceleration curves in these lift curves L5 and L6 are also A5, It changes with A6. That is, as shown in FIG. 10, by making the eccentric plate 250 eccentric with respect to the cam sprocket 211, the maximum acceleration on the closing side increases, the minimum acceleration decreases, and the acceleration curve is distorted.
  • the acceleration curve A4 of the valve that opens and closes is a negative acceleration force SO that causes the speed distortion, so the valve movement is not the regulation of the cam.
  • the bounce phenomenon that jumps when sitting on the floor is less likely to occur.
  • the eccentric center E of the eccentric plate 250 can be obtained at the maximum rotation speed of the crankshaft or at the high rotation speed of the engine near the maximum rotation speed.
  • the position matches the camshaft axis C. Therefore, at the time of high engine rotation, the intake cam piece 240 that does not cause the eccentric plate 250 to be eccentric can be rotationally driven to open and close the intake valve.
  • the inertial force is the largest in terms of kinematics, and stable valve behavior with low vibrations at the time of high engine rotation is likely to cause problematic valve behaviors such as a jumping phenomenon and a bounce phenomenon. Can do.
  • the control unit 150 moves the eccentric plate 250 as appropriate to make it eccentric from the axis C (camshaft axis) of the cam sprocket 211, thereby improving fuel efficiency.
  • the driving for reducing the exhaust gas is performed.
  • the inertial force is small, so the fluctuation in the acceleration of the intake valve due to the eccentricity of the eccentric plate 250 does not matter.
  • variable valve drive device 200 by using the variable valve drive device 200, the entire engine operation range (all All engines have a low vibration and stable valve behavior, and the effective output can be maximized.
  • the engine is also excellent in terms of fuel consumption and exhaust gas.
  • the rotational phase difference of the intake cam piece 240 varies periodically with respect to the exhaust exhaust cam piece 220 that varies the operating angle of the intake valve. Not limited to this. That is, the rotational phase difference of the exhaust cam piece 220 may be periodically changed with respect to the intake cam piece 240.
  • variable valve drive device 200 includes an intake cam piece that drives the intake valve by rotating integrally with the cam sprocket 211, and an exhaust cam that drives the exhaust valve on the variable cam shaft 230.
  • the structure is provided with a piece.
  • the amount of overlap can be changed by varying the operating angle of the exhaust valve, and the same effect as described above can be obtained.
  • the opening timing and closing timing of the exhaust valve, which cause the working angle of the exhaust valve can be set separately, similarly to the setting of the opening timing and closing timing of the intake valve described above.
  • the power on which the vehicle equipped with engine 100 is described as a starter type motorcycle is not limited to this, and any vehicle as long as it is equipped with engine 100 may be used.
  • Fig. 11 is a schematic side view showing a configuration of a main part of a motorcycle including the variable valve drive device for an engine according to one embodiment of the present invention.
  • front, rear, left, and right mean front, rear, left, and right when viewed in the state of being seated on the seat of the motorcycle.
  • the motorcycle in the present embodiment is described as a starter type motorcycle, the present invention is not limited to this, and any vehicle may be used as long as it has a variable valve drive device 200.
  • a motorcycle 500 shown in FIG. 11 is a tandem starter type, and includes a tandem seat 504 on the rear side of a vehicle main body 503 that rotatably supports a handle 502 on the front side.
  • the tandem seat 504 is attached to the trunk space 505 arranged at the lower part so as to be freely opened and closed. Below this trunk space 505, a drive unit 600 is arranged. ing.
  • the front end portion of the drive unit 600 is a pivot shaft (not shown) horizontally disposed in the vehicle width direction at the rear end portion of the front main body 503a extending from the lower side of the handle 502 to the lower side of the tandem seat 504. ) And can be swung up and down.
  • a rear wheel 508 is attached to the rear end portion of the drive unit 600 via an axle 510, and the rear end portion and a frame pivot that supports the rear end portion of the trunk space 505 are rear. Suspension 512 is suspended. Note that the front end of the trunk space 505 is disposed in front of the upper end of the front end of the drive unit 600.
  • FIG. 12 is a schematic plan view showing the main part of the drive unit of FIG.
  • engine 100 is mounted on the front side of the vehicle, and the driving force of engine 100 is applied to axle 510 arranged at the rear end of drive unit 600, with the C VT mechanism.
  • the rear wheel 508 is rotated by being driven to rotate through the part 610.
  • engine 100 has a substantially central portion in the vehicle front-rear direction below trunk space 505, with the axis of cylinder portion 106 being substantially horizontal and crankshaft 130 being substantially parallel to the vehicle width direction. Is located.
  • a CVT mechanism portion 610 extending rearward of the vehicle is disposed on the other end portion side of the crankshaft 130, here, on the left end portion of the vehicle.
  • the binding mechanism 610 is arranged substantially parallel to the cylinder shaft, and includes a pulley 611 attached to the crankshaft 130, a pulley 612 attached to the axle 510, and a benolet 613 spanned between the pulleys 611 and 612. And a centrifugal clutch 61 4.
  • Centrifugal clutch 614 is attached to axle 510.
  • a deceleration gear 615 is attached to the axle 510, and the driving force of the crankshaft 130 transmitted through the pulley 611 and the belt 613 is decelerated.
  • the engine 100 of the present embodiment includes a cam drive body 210 corresponding to a cam drive shaft in a conventional engine configuration, and an exhaust and intake cam piece 220 disposed above the cylinder portion 106, No eccentric plate 250 corresponding to the eccentric member is arranged between the two.
  • eccentric plate 250 and exhaust and intake cam pieces 220 and 240 are arranged on the cam axis with cam drive body 210 interposed therebetween.
  • An eccentric plate 250 and exhaust and intake cam pieces 220 and 240 are arranged on the cam axis along the 11.
  • the exhaust and intake cam pieces 220 and 240 are arranged on the upper part of the cylinder portion 106 along the cylinder axis CL due to the engine structure. Therefore, unlike the conventional configuration, the cylinder axis and the cam chain line are adjacent to each other. The structure is arranged at a position.
  • the chain line L of the engine 100 has a conventional configuration in which an eccentric member is disposed between the cam sprocket 211 and the exhaust and intake cam pieces 220 and 240. Compared to the chain line LA, it is arranged closer to the cylinder axis CL.
  • the belt 613 line of the CVT mechanism 610 disposed outside the chain line L and substantially parallel to the chain line L is closer to the cylinder axis CL than in the conventional structure.
  • the lateral width of the drive unit 600 itself is reduced.
  • the left end surface 600a is closer to the right side than the left side surface 600b when the engine equipped with the conventional variable valve drive device is mounted, as the chain line L approaches the cylinder axis CL. Approach the side.
  • starter type motorcycle 500 is structurally provided with components provided on the outer side of cam drive chain 133 on the crankshaft, such as a sheave for CVT (Continuously Variable Transmission).
  • CVT Continuous Variable Transmission
  • the motorcycle 500 has the same crankcase 112 width as that of the structure without the variable valve timing mechanism.
  • the eccentric mechanism portion such as the eccentric plate 250 is disposed between the exhaust and intake cam pieces 220, 240 and the cam sprocket 211!
  • variable valve drive device 200 is provided by simply removing the variable valve drive device 200 from the cylinder head 104 of the engine body 110 and changing the eccentric plate 250, the variable cam shaft 230, the eccentric boss 260, and the head cover 105. It can be used as an engine.
  • the overlap period can be varied with a simple configuration.
  • the cam operating angle can be varied with a simple configuration without significantly changing the engine configuration to achieve high response and low fuel consumption in the engine. be able to.
  • the motorcycle 500 has the most dynamic force and is stable at low vibrations even at high engine speeds when the engine 100 is prone to valve behavior that causes problems such as jamming and bounce. It is possible to run.
  • engine 100 is a single cylinder SOHC (Single Over Head Camshaft). This is not limited to this type, but is applicable to the multi-cylinder SOHC type and DOHC (Double Over Head Camshaft).
  • SOHC Single Over Head Camshaft
  • variable valve drive device 200 the rotational phase difference of the intake cam piece 240 is periodically changed with respect to the exhaust cam piece 220 that changes the working angle of the intake valve.
  • the rotational phase difference of the exhaust cam piece 220 may be periodically changed with respect to the intake cam piece 240.
  • the variable valve driving device 200 is provided with an intake cam piece for driving the intake valve by rotating integrally with the cam sprocket 211, and an exhaust cam piece for driving the exhaust valve on the variable cam shaft 230. It is set as the structure which provided. With this configuration, it is possible to change the overlap by changing the working angle of the exhaust valve.
  • the variable valve drive apparatus includes a cam drive member that is rotated by a drive force transmitted from a crankshaft, and a rotation shaft of the cam drive member that is driven by the cam drive member.
  • An eccentric member that rotates about an axis in the same direction and that the shaft is movable to an axial center position force eccentric position of the rotary shaft, and is arranged coaxially with the rotary shaft, and is arranged by the eccentric member to
  • a cam shaft that is rotationally driven about a rotation shaft and has a rotational phase difference with respect to the cam drive member periodically when the eccentric member is rotationally driven at the eccentric position; Rotate at the same rotational phase as, and open or close the exhaust valve or intake valve
  • a variable valve drive device including a cam piece to be driven, wherein a rotation speed detection unit that detects a rotation speed of the crankshaft, and a rotation speed of the crankshaft detected by the rotation speed detection unit;
  • a control unit that moves the eccentric member and controls a position of the shaft of the eccentric member with respect to a rotation shaft of the cam drive member, and the control unit has a maximum rotational speed of the crankshaft or a maximum rotation of the crankshaft.
  • a configuration is adopted in which the eccentric member is moved so that the position of the shaft of the eccentric member coincides with the axial position of the rotating shaft at a rotational speed close to a few.
  • the engine having the maximum number of revolutions of the crankshaft or the number of revolutions near the maximum number of revolutions, that is, the maximum number of revolutions of the mounted engine or the number of revolutions around the maximum number of revolutions.
  • the position of the shaft of the eccentric member coincides with the shaft center position of the rotation shaft. This Therefore, the exhaust valve or the intake valve can be driven to open and close by rotating the cam piece that does not decenter the eccentric member at or near the maximum engine speed.
  • the cam piece since the eccentric member is not driven to rotate at the eccentric position at or near the maximum rotational speed of the engine, the cam piece has a rotational phase difference with respect to the cam driving member via the cam shaft.
  • the variable valve driving device includes a cam driving member that rotates by a driving force transmitted from a crankshaft, and a rotating shaft of the cam driving member that is driven by the cam driving member.
  • An eccentric member that rotates about an axis in the same direction and that the shaft is movable to an axial center position force eccentric position of the rotary shaft, and is arranged coaxially with the rotary shaft, and is arranged by the eccentric member to
  • a cam shaft that is rotationally driven about a rotation shaft and has a rotational phase difference with respect to the cam drive member periodically when the eccentric member is rotationally driven at the eccentric position;
  • a variable valve drive device that includes a cam piece that rotates at the same rotational phase as that of the exhaust valve and makes the operating angle of the exhaust valve or intake valve variable, and a rotational speed detector that detects the rotational speed of the crankshaft,
  • a control unit that moves the eccentric member in accordance with the rotational speed of the crankshaft detected by the rotational speed detection unit and controls the position of
  • the operating angle of the exhaust valve or the intake valve is maximized when the position of the shaft of the eccentric member coincides with the position of the shaft center of the rotating shaft. Therefore, the cam profile of the cam piece can be created based on the lift curve on the maximum operating angle side of the exhaust valve or the intake valve in a state where the exhaust valve or the intake valve does not have a periodic angular velocity fluctuation.
  • the exhaust valve or the intake valve is periodically The maximum without generating a negative radius of curvature (concave radius) compared to the case where there is no fluctuation in angular velocity and it is determined based on the lift curve on the low operating angle side of the exhaust valve or intake valve. Large valve lift.
  • a cam piece capable of increasing the maximum output of the mounted engine can be set by using a conventional camshaft method for processing to have a convex radius. This makes it possible to set the cam profile of the cam piece that performs stable valve behavior with low vibration according to the engine speed.
  • the cam profile of the cam piece can be set in this way, the maximum rotational speed of the engine or the maximum inertial force in terms of kinematics, and the valve behavior that causes problems such as the jumping phenomenon and the bounce phenomenon are likely to occur. Even in the vicinity of the maximum speed, stable valve behavior can be achieved with low vibration.
  • variable valve drive apparatus includes a cam drive member that rotates by a drive force that also transmits a crankshaft force, and the force drive member that is driven by the cam drive member.
  • An eccentric member that rotates about an axis in the same direction as the rotating shaft and that the shaft is movable to an eccentric position of the rotating shaft; and an eccentric member that is disposed coaxially with the rotating shaft, the eccentric member And a camshaft in which a rotation phase difference with respect to the cam drive member periodically varies when the eccentric member is rotationally driven at the eccentric position.
  • a variable valve drive device that includes a cam piece that rotates at the same rotation phase as the cam shaft and makes the operating angle of the exhaust valve or intake valve variable, and that detects the rotation speed of the crankshaft.
  • a control unit that moves the eccentric member in accordance with the rotation speed of the crankshaft detected by the rotation speed detection unit, and controls the position of the shaft of the eccentric member with respect to the rotation shaft of the cam drive member; And when the control unit makes the position of the shaft of the eccentric member coincide with the position of the shaft center of the rotating shaft at a substantially maximum rotational speed of the crankshaft, the action of the exhaust valve or the intake valve The corner has the maximum configuration.
  • a variable valve driving device is the above-described configuration, wherein the cam By rotating about a rotation shaft that is substantially parallel to the rotation axis of the drive member and fixed to the engine side, the shaft of the eccentric member is coaxial with the rotation shaft of the cam drive member. An eccentric moving unit that is moved in the direction is provided, and the rotation of the eccentric moving unit is controlled by the control unit.
  • the shaft of the eccentric member can be rotated only by rotating the eccentric moving portion around the rotation shaft that is substantially parallel to the rotation shaft of the cam drive member and fixed to the engine side. Thus, it can be appropriately moved to the eccentric position of the coaxial position force with respect to the rotation axis of the cam drive member.
  • the eccentric moving portion sandwiches the eccentric member with respect to the cam drive member in a rotation axis direction of the cam drive member.
  • the rotating shaft of the eccentric moving part which is disposed to be opposed to the cam driving member is positioned inside the outer peripheral edge of the portion facing the eccentric moving part.
  • the rotation shaft of the eccentricity moving unit is located inside the outer peripheral edge of the portion of the cam drive member that faces the eccentricity moving unit. For this reason, the entire variable valve drive device can be made compact without being located outward from the outer peripheral edge located in the radial direction in the mechanism force cam drive member that eccentrically moves the eccentric member.
  • variable valve drive device is configured such that the eccentric moving portion is inside the outer peripheral edge of a portion of the cam drive member facing the eccentric moving portion.
  • the structure located in is taken.
  • the eccentric moving part is positioned inside the outer peripheral edge of the portion of the cam drive member that faces the eccentric moving part, the eccentric moving part together with the rotation shaft thereof is connected to the cam driving member.
  • the outer peripheral edge located in the radial direction should not be located outward.
  • the eccentric member and the eccentric moving part are arranged so as to overlap the cam driving member in the rotation axis direction of the cam driving member, and the entire variable valve driving device can be made compact.
  • the engine according to the seventh aspect of the present invention employs a configuration having the variable valve drive device configured as described above.
  • the maximum rotational speed of the engine in which the inertial force is the largest in terms of kinematics, and valve behavior that causes problems such as the phenomenon of jumping and the bounce phenomenon is likely to occur.
  • stable driving can be performed with low vibration even in the vicinity of the maximum rotational speed.
  • the motorcycle according to the eighth aspect of the present invention employs a configuration in which the engine configured as described above is mounted.
  • variable valve driving device has the largest inertial force in terms of kinematics, and is likely to cause valve behavior that causes problems such as a jumping phenomenon and a bounce phenomenon. It can perform stable valve behavior with low vibration and is useful as an engine and motorcycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

A cam sprocket (211) is rotatingly driven by drive force transmitted from a crankshaft (130). An eccentric plate (250) is rotated, by the rotation of the cam sprocket (211), about a shaft in the same direction as the rotating shaft of the cam sprocket (211), and the shaft of the eccentric plate is moved, by a control section (150) through an eccentric boss (260), from the position of the axis of the rotating shaft to an eccentric position. When the eccentric plate (250) is rotated at the eccentric position, a rotational phase difference, relative to the cam sprocket (211), of a variable camshaft (230) and a suction cam piece (240) is periodically varied. At the maximum speed or at a speed near the maximum speed of the crankshaft (130), the control section (150) causes the position of the shaft of the eccentric plate (250) to be aligned with the position of the axis of the rotating shaft.

Description

明 細 書  Specification
可変バルブ駆動装置、エンジン及び自動二輪車  Variable valve drive, engine and motorcycle
技術分野  Technical field
[0001] 本発明は、エンジンに設けられる可変バルブ駆動装置、エンジン及び自動二輪車 に関する。  [0001] The present invention relates to a variable valve drive device, an engine, and a motorcycle provided in an engine.
背景技術  Background art
[0002] 従来、 4サイクルエンジンでは、吸気バルブ及び排気バルブが同時に開放されて!ヽ る期間(バルブオーバーラップ)を、エンジンの高回転、低中回転のそれぞれにおい て変更することによって、エンジンの高出力及び低燃費、さらには排ガスの低減が図 られている。  [0002] Conventionally, in a four-cycle engine, the period during which the intake valve and the exhaust valve are simultaneously opened (valve overlap) is changed at each of high engine speed and low / medium engine speed. High output and low fuel consumption, as well as reduction of exhaust gas.
[0003] ノ レブオーバラップを変更するものとして、可変バノレブタイミング(Variable Valve Ti ming)機構 (可変バルブ駆動装置)が知られている。この可変バルブタイミング機構は 、クランク駆動に連動するカム駆動軸部分と、回転することによりカムを駆動するカム 軸部分との間に設けられ、角速度変動を起こさせるカップリング (偏心部材)とを備え る。  [0003] A variable valve timing mechanism (variable valve driving device) is known as a mechanism for changing the noble overlap. This variable valve timing mechanism includes a coupling (eccentric member) that is provided between a cam drive shaft portion that interlocks with the crank drive and a cam shaft portion that drives the cam by rotating, and causes angular velocity fluctuations. The
[0004] このような可変バルブタイミング機構では、カップリングを介して、クランク角に対す るカム角の減速比を周期的に変動させ、その変動を制御することによって、カムの作 用角(Duration:「作動角」ともいう。)が可変となる。可変バルブタイミング機構は、力 ムの作用角を可変にすることによって、バルブオーバラップを変更する。  [0004] In such a variable valve timing mechanism, the cam working angle (Duration) is controlled by periodically varying the reduction ratio of the cam angle with respect to the crank angle via the coupling and controlling the fluctuation. : Also called “operating angle”). The variable valve timing mechanism changes the valve overlap by making the working angle of the force variable.
[0005] 例えば、特許文献 1では、クランクの回転駆動に所定の回転速度で同期するカム駆 動軸が、カム及び円板状の偏心プレート (偏心部材)に挿通され、カム駆動軸に設け たピンが偏心プレートにおいて半径方向に延びる溝部に遊嵌されている。そして、力 ム駆動軸の回転により、偏心プレートは、ピン及び溝を介してカム駆動軸に対して偏 心した状態で回転し、カムを回転する。  [0005] For example, in Patent Document 1, a cam drive shaft that synchronizes with a crank rotational drive at a predetermined rotational speed is inserted into a cam and a disc-shaped eccentric plate (eccentric member) and provided on the cam drive shaft. A pin is loosely fitted in a groove extending radially in the eccentric plate. Then, due to the rotation of the force drive shaft, the eccentric plate rotates while being eccentric with respect to the cam drive shaft via the pin and the groove, thereby rotating the cam.
[0006] また、特許文献 2では、偏心部材である偏心プレートが、ギアトレインを介して伝達 されるクランク軸の駆動力により回転するスプロケットと、カムに一体的に設けたカム 軸との間に配置されている。この偏心プレートには、カム軸の回転中心を挟んで、半 径方向に延びる溝部が形成されている。これら溝部のそれぞれに、カム軸に設けた ピンと、スプロケットに設けたピンとが摺動自在に遊嵌されており、このように構成され た偏心プレートを介してカム駆動軸の駆動力は、カム軸に伝達されている。 [0006] Further, in Patent Document 2, an eccentric plate, which is an eccentric member, is disposed between a sprocket that rotates by a driving force of a crankshaft transmitted via a gear train and a camshaft that is provided integrally with the cam. Has been placed. This eccentric plate is halfway across the center of rotation of the camshaft. Grooves extending in the radial direction are formed. In each of these grooves, a pin provided on the camshaft and a pin provided on the sprocket are slidably fitted freely, and the driving force of the cam drive shaft via the eccentric plate configured in this way is Has been communicated to.
[0007] これら特許文献 1及び 2の構成では、いずれも偏心部材である偏心プレートの移動 によって、偏心中心は、カム駆動軸またはカム軸を中心に移動する。つまり、特許文 献 1及び 2では、偏心中心をカム駆動軸またはカム軸の中心と同心にすることなぐ力 ムの作用角を可変とし、カムの角速度を周期的に変動させて、バルブオーバラップ量 を変更している。  [0007] In the configurations of Patent Documents 1 and 2, the eccentric center moves around the cam drive shaft or the cam shaft by the movement of the eccentric plate which is an eccentric member. In other words, in Patent Documents 1 and 2, the operating angle of the force that makes the center of eccentricity concentric with the cam drive shaft or the center of the cam shaft is variable, and the angular velocity of the cam is periodically varied to create a valve overlap. The amount has changed.
[0008] さらに、特許文献 3は、ディスクハウジング内に偏心部材である環状ディスクを配置 し、ディスクハウジングを介して環状ディスクの中心をカム駆動軸の中心力 偏心させ て、カムシャフトの角速度を変化させることにより、吸気弁の作動角を可変制御してい る。なお、ディスクハウジングにより偏心される環状ディスクの中心の回転中心は、環 状ディスクの外側で、環状ディスクの中心と略平行に位置している。そして、特許文 献 3では、特に、機関が高速高負荷域に移行した場合に、カムの作用角を広げるた め、偏心量を大きくしている。  [0008] Further, in Patent Document 3, an annular disk as an eccentric member is arranged in a disk housing, and the center force of the cam drive shaft is decentered through the disk housing to change the angular velocity of the camshaft. By doing so, the operating angle of the intake valve is variably controlled. Note that the center of rotation of the annular disk that is eccentric by the disk housing is located outside the annular disk and substantially parallel to the center of the annular disk. In Patent Document 3, the amount of eccentricity is increased in order to widen the cam operating angle, particularly when the engine shifts to a high speed and high load range.
特許文献 1:特公昭 47— 020654号公報  Patent Document 1: Japanese Patent Publication No. 47-020654
特許文献 2 :特開平 3—43611号公報  Patent Document 2: JP-A-3-43611
特許文献 3 :特開平 6— 2515号公報 ところで、カムの角加速度変動に伴って、カム が駆動するバルブにおける開閉の際の加速度は必然的に変動する。  Patent Document 3: Japanese Patent Application Laid-Open No. 6-2515 Incidentally, along with the fluctuation of the angular acceleration of the cam, the acceleration at the time of opening and closing of the valve driven by the cam inevitably varies.
[0009] 特許文献 1から 3の構成では、偏心中心をカム駆動軸またはカム軸の中心力 偏心 させることによってカムの角速度を周期的に変動させて 、るため、その偏心量に対応 してバルブの加速度 (加速度カーブ)が変動する。この加速度変動が大きい場合、次 のような問題が生じる。 [0009] In the configurations of Patent Documents 1 to 3, the cam angular velocity is periodically varied by decentering the eccentric center of the cam drive shaft or the central force of the cam shaft, so the valve corresponds to the amount of eccentricity. The acceleration (acceleration curve) of fluctuates. When this acceleration fluctuation is large, the following problems occur.
[0010] 例えば、所定のバルブ (例えば、吸気バルブ)の開きタイミングを略固定して閉じタ イミングを大きく変更することにより所定のバルブを可変にし、バルブオーバラップを 変更する場合、開きタイミング側の最大加速度及び最小加速度は漸次増加する加速 度カーブとなる。つまり、加速度カーブの角速度変動による変化が大きくなり、開き側 と閉じ側とで、加速度カーブに歪みが生じる。一方、閉じ側タイミングを略固定して開 きタイミングを大きく変更する場合も同様に、最大加速度と最小加速度はそれぞれ漸 次増加し、可変となるバルブタイミングの開き側と閉じ側で加速度カーブに歪みが生 じることが多い。 [0010] For example, when changing the valve overlap by changing the closing timing largely by fixing the opening timing of a predetermined valve (for example, intake valve) substantially, the opening timing side is changed. Maximum acceleration and minimum acceleration are gradually increasing acceleration curves. In other words, the change due to the angular velocity fluctuation of the acceleration curve becomes large, and the acceleration curve is distorted on the open side and the close side. On the other hand, the closing side timing is substantially fixed. Similarly, when the timing is greatly changed, the maximum acceleration and the minimum acceleration increase gradually, and the acceleration curve is often distorted on the opening and closing sides of the variable valve timing.
[0011] このような加速度カーブの歪みは慣性力の大きな変動幅となり、振動を生じさせ、ェ ンジン駆動の安定性を低下させてしまう。  [0011] Such distortion of the acceleration curve causes a large fluctuation range of the inertial force, causes vibration, and deteriorates the stability of engine driving.
[0012] また、開閉するバルブでは、加速度カーブの歪みの原因となる負の加速度の増大 により、バルブの運動がカムの規制から外れるジヤンビング現象や、バルブがバルブ シートリングに着座する際に跳ねるバウンス現象等の弁挙動が発生しやすくなる。こ のようなバルブの挙動(弁挙動)は、エンジンの高回転時、つまり、慣性力が大きい状 態において生じやすぐ慣性力の増大に比例して大きくなる振動をさらに大きくしてし ま 、エンジン性能を低下させてしまう。  [0012] In addition, in a valve that opens and closes, due to an increase in negative acceleration that causes distortion of the acceleration curve, a jumping phenomenon in which the valve motion deviates from the cam regulation, or a bouncing bounce when the valve sits on the valve seat ring. Valve behavior such as a phenomenon is likely to occur. This kind of valve behavior (valve behavior) further increases the vibration that occurs when the engine is running at high speed, that is, when the inertial force is large, or immediately increases in proportion to the increase of the inertial force. It will reduce engine performance.
[0013] これに対して、特許文献 1〜3は、いずれもエンジン高回転時では、カムの作用角を 広げるために、偏心中心をカム駆動軸またはカム軸の中心力 偏心させており、高回 転時における偏心量に比例するバルブ加速度の角速度変動による変化については 考慮されていない。  [0013] On the other hand, Patent Documents 1 to 3 all have an eccentric center that is eccentric to the cam drive shaft or the center force of the cam shaft in order to widen the cam operating angle at high engine speeds. Changes due to fluctuations in the angular velocity of the valve acceleration proportional to the amount of eccentricity during rotation are not taken into account.
[0014] 特に特許文献 3では、エンジン高回転時に大きく偏心させているため、エンジン高 回転時のバルブ開閉動作において、振動が発生し安定した動作を行うことができな いという可能性が生じる。  [0014] In particular, in Patent Document 3, since the shaft is greatly decentered at the time of high engine rotation, there is a possibility that vibration is generated and the stable operation cannot be performed in the valve opening / closing operation at the time of high engine rotation.
[0015] 本発明は力かる点に鑑みてなされたものであり、運動力学的に、慣性力に伴い大き な振動が生じやすぐジヤンビング現象及びバウンス現象などの弁挙動の問題が発 生しやすいエンジン高回転時において、振動を低減し、安定して弁挙動を行うことが できる可変バルブ駆動装置、エンジン及び自動二輪車を提供することを目的とする。 発明の開示  [0015] The present invention has been made in view of the points to be applied, and kinematically, large vibrations are generated due to inertial forces, and valve behavior problems such as jumping phenomenon and bounce phenomenon easily occur. An object of the present invention is to provide a variable valve drive device, an engine and a motorcycle that can reduce vibration and perform valve behavior stably at a high engine speed. Disclosure of the invention
[0016] 本発明の可変バルブ駆動装置は、クランク軸力 伝達される駆動力により回転する カム駆動部材と、前記カム駆動部材の駆動によって、前記カム駆動部材の回転軸と 同方向の軸を中心に回転するとともに、前記軸が前記回転軸の軸心位置から偏心位 置に移動可能に設けられる偏心部材と、前記回転軸と同軸上に配置され、前記偏心 部材によって前記回転軸を中心に回転駆動されるとともに、前記偏心部材が前記偏 心位置で回転駆動する際に、前記カム駆動部材に対する回転位相差が周期的に変 動するカム軸と、前記カム軸によって前記カム軸と同じ回転位相で回転し、排気弁ま たは吸気弁を開閉駆動するカム駒とを備える可変バルブ駆動装置であって、前記ク ランク軸の回転数を検出する回転数検出部と、前記回転数検出部により検出される 前記クランク軸の回転数に応じて、前記偏心部材を移動して、前記カム駆動部材の 回転軸に対する前記偏心部材の軸の位置を制御する制御部とを有し、前記制御部 は、前記クランク軸の最大回転数または、前記最大回転数付近の回転数において前 記偏心部材を移動して、前記偏心部材の軸の位置を前記回転軸の軸心位置に一致 させる構成を採る。 [0016] The variable valve drive device according to the present invention includes a cam drive member that is rotated by a drive force that is transmitted with a crankshaft force, and a shaft that is in the same direction as the rotation shaft of the cam drive member by driving the cam drive member. And an eccentric member provided so that the shaft is movable from an axial center position of the rotating shaft to an eccentric position, and is disposed coaxially with the rotating shaft, and is rotated about the rotating shaft by the eccentric member. And the eccentric member is When rotationally driven at the center position, the camshaft in which the rotational phase difference with respect to the cam drive member periodically changes, and the camshaft rotates with the same rotational phase as the camshaft, and the exhaust valve or the intake valve A variable valve driving device including a cam piece for opening and closing the rotation of the crankshaft, wherein the rotational speed detection unit detects the rotational speed of the crankshaft, and the rotational speed of the crankshaft detected by the rotational speed detection unit. A controller that moves the eccentric member to control the position of the shaft of the eccentric member with respect to the rotation shaft of the cam drive member, and the control unit includes a maximum rotational speed of the crankshaft or the A configuration is adopted in which the eccentric member is moved at a rotational speed near the maximum rotational speed so that the position of the shaft of the eccentric member coincides with the axial position of the rotational shaft.
[0017] また、本発明の可変バルブ駆動装置は、クランク軸力 伝達される駆動力により回 転するカム駆動部材と、前記カム駆動部材の駆動によって、前記カム駆動部材の回 転軸と同方向の軸を中心に回転するとともに、前記軸が前記回転軸の軸心位置から 偏心位置に移動可能に設けられる偏心部材と、前記回転軸と同軸上に配置され、前 記偏心部材によって前記回転軸を中心に回転駆動されるとともに、前記偏心部材が 前記偏心位置で回転駆動する際に、前記カム駆動部材に対する回転位相差が周期 的に変動するカム軸と、前記カム軸によって前記カム軸と同じ回転位相で回転し、排 気弁または吸気弁の作用角を可変にするカム駒とを備える可変バルブ駆動装置であ つて、前記クランク軸の回転数を検出する回転数検出部と、前記回転数検出部により 検出される前記クランク軸の回転数に応じて、前記偏心部材を移動して、前記カム駆 動部材の回転軸に対する前記偏心部材の軸の位置を制御する制御部とを有し、前 記制御部力 前記偏心部材の軸の位置を前記回転軸の軸心位置と一致させた際に 、前記排気弁または吸気弁の作用角は最大となる構成を採る。  [0017] Further, the variable valve driving device of the present invention includes a cam driving member that rotates by a driving force transmitted by a crankshaft force, and the same direction as the rotating shaft of the cam driving member by driving the cam driving member. An eccentric member provided so as to be movable from an axial center position of the rotating shaft to an eccentric position, and coaxially arranged with the rotating shaft, and the rotating shaft is arranged by the eccentric member. And a cam shaft in which a rotational phase difference with respect to the cam drive member periodically varies when the eccentric member is rotationally driven at the eccentric position, and the cam shaft is the same as the cam shaft. A variable valve drive device comprising a cam piece that rotates at a rotational phase and makes the working angle of the exhaust valve or intake valve variable; a rotational speed detector that detects the rotational speed of the crankshaft; and the rotational speed Inspection A controller that controls the position of the shaft of the eccentric member with respect to the rotational shaft of the cam drive member by moving the eccentric member according to the rotation speed of the crankshaft detected by the protruding portion; The control unit force adopts a configuration in which the operating angle of the exhaust valve or the intake valve is maximized when the position of the shaft of the eccentric member coincides with the position of the shaft center of the rotating shaft.
[0018] また、本発明の可変バルブ駆動装置は、クランク軸力 伝達される駆動力により回 転するカム駆動部材と、前記カム駆動部材の駆動によって、前記カム駆動部材の回 転軸と同方向の軸を中心に回転するとともに、前記軸が前記回転軸の軸心位置から 偏心位置に移動可能に設けられる偏心部材と、前記回転軸と同軸上に配置され、前 記偏心部材によって前記回転軸を中心に回転駆動されるとともに、前記偏心部材が 前記偏心位置で回転駆動する際に、前記カム駆動部材に対する回転位相差が周期 的に変動するカム軸と、前記カム軸によって前記カム軸と同じ回転位相で回転し、排 気弁または吸気弁の作用角を可変にするカム駒とを備える可変バルブ駆動装置であ つて、前記クランク軸の回転数を検出する回転数検出部と、前記回転数検出部により 検出される前記クランク軸の回転数に応じて、前記偏心部材を移動して、前記カム駆 動部材の回転軸に対する前記偏心部材の軸の位置を制御する制御部とを有し、前 記制御部が、前記クランク軸の略最大回転数において、前記偏心部材の軸の位置を 前記回転軸の軸心位置と一致させた際に、前記排気弁または吸気弁の作用角は最 大となる構成を採る。 [0018] Further, the variable valve drive device of the present invention includes a cam drive member that rotates by a drive force transmitted by a crankshaft force, and the same direction as the rotation shaft of the cam drive member by driving the cam drive member. An eccentric member provided so as to be movable from an axial center position of the rotating shaft to an eccentric position, and coaxially arranged with the rotating shaft, and the rotating shaft is arranged by the eccentric member. When the eccentric member is rotationally driven at the eccentric position, a rotational phase difference with respect to the cam drive member is a period. A variable valve drive device comprising: a camshaft that fluctuates automatically; and a cam piece that is rotated by the camshaft in the same rotational phase as the camshaft and that changes a working angle of an exhaust valve or an intake valve. A rotational speed detector for detecting the rotational speed of the crankshaft, and the eccentric member is moved in accordance with the rotational speed of the crankshaft detected by the rotational speed detector to A control unit that controls the position of the shaft of the eccentric member, and the control unit matches the position of the shaft of the eccentric member with the axial center position of the rotation shaft at a substantially maximum rotational speed of the crankshaft. In this case, the exhaust valve or the intake valve has a maximum working angle.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の一実施の形態に係る可変バルブ駆動装置を備えたエンジンの要部分 解斜視図である。 FIG. 1 is an exploded perspective view of a main part of an engine provided with a variable valve drive device according to an embodiment of the present invention.
[図 2]同可変バルブ駆動装置を示す要部断面図である。  FIG. 2 is a cross-sectional view of an essential part showing the variable valve driving device.
[図 3]同可変バルブ駆動装置の分解斜視図である。 FIG. 3 is an exploded perspective view of the variable valve drive device.
[図 4]偏心ボスの分解斜視図である。 FIG. 4 is an exploded perspective view of an eccentric boss.
[図 5]偏心ボスの回転中心と、可変カム駆動軸の軸心と、偏心プレートの軸心との位 置関係を示す図である。  FIG. 5 is a diagram showing a positional relationship among the rotation center of the eccentric boss, the axis of the variable cam drive shaft, and the axis of the eccentric plate.
[図 6]同可変バルブ駆動装置を備えるエンジンの制御部を説明する模式図である。  FIG. 6 is a schematic diagram illustrating a control unit of an engine provided with the variable valve drive device.
[図 7]本発明の一実施の形態に係る可変バルブ駆動装置においてカム軸に対して偏 心プレートの中心を偏心させた状態の駆動ピンと従動ピンの位置関係の一例を示す 図である。 FIG. 7 is a diagram showing an example of the positional relationship between the drive pin and the driven pin in a state where the center of the eccentric plate is eccentric with respect to the cam shaft in the variable valve drive device according to one embodiment of the present invention.
[図 8]本発明の一実施の形態に係る可変バルブ駆動装置を備えるエンジンにおいて エンジン回転数に対応したノ レブの作用角を示す図である。  FIG. 8 is a diagram showing a working angle of a nozzle corresponding to an engine speed in an engine provided with a variable valve drive device according to an embodiment of the present invention.
[図 9]本発明の一実施の形態に係る可変バルブ駆動装置によるバルブの可変状態を 説明する図である。  FIG. 9 is a diagram for explaining a variable state of a valve by a variable valve driving device according to an embodiment of the present invention.
[図 10]本発明の一実施の形態に係る可変バルブ駆動装置によるバルブの可変状態 の変形例を説明する図である。  FIG. 10 is a view for explaining a modification of the variable state of the valve by the variable valve driving device according to the embodiment of the present invention.
[図 11]本発明の一実施の形態に係るエンジンのノ レブ駆動装置を備える自動二輪 車の要部構成を示す概略側断面図である。 [図 12]図 11の駆動ユニットの要部を示す概略平面図である。 FIG. 11 is a schematic cross-sectional side view showing a configuration of a main part of a motorcycle including the engine drive mechanism according to the embodiment of the present invention. 12 is a schematic plan view showing a main part of the drive unit in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021] 図 1は、本発明の一実施の形態に係る可変バルブ駆動装置を備えたエンジンの要 部分解斜視図である。 FIG. 1 is an exploded perspective view of a main part of an engine provided with a variable valve drive apparatus according to an embodiment of the present invention.
[0022] 図 1に示すエンジン 100は、ピストン 102を進退自在に収納するシリンダ部 106及 びシリンダヘッド 104を有するエンジン本体部 110と、クランクケース 112 (図 6及び図 11参照)に収納されるクランク軸 130と、可変バルブ駆動装置 200とを有する。  The engine 100 shown in FIG. 1 is housed in an engine body 110 having a cylinder portion 106 and a cylinder head 104 that house a piston 102 so as to be able to advance and retreat, and a crankcase 112 (see FIGS. 6 and 11). It has a crankshaft 130 and a variable valve drive device 200.
[0023] なお、エンジン 100は、クランク軸 130と略平行に配置された可変バルブ駆動装置 200によって、排気カム駒 220と吸気カム駒 240との回転に周期的な位相差を設け、 それぞれの回転に対応して開閉するノ レブタイミングは可変となる。これにより、ェン ジン回転数に対応してバルブオーバラップ時間は可変となる。  [0023] It should be noted that the engine 100 provides a periodic phase difference between the rotation of the exhaust cam piece 220 and the intake cam piece 240 by the variable valve drive device 200 disposed substantially parallel to the crankshaft 130, and each rotation The timing of opening and closing corresponding to is variable. As a result, the valve overlap time is variable corresponding to the engine speed.
[0024] 本実施の形態では、エンジン 100は、スタータ型自動二輪車 500 (図 11参照)に搭 載される単気筒 SOHC (Single Over Head Camshaft)型のものとして説明する。なお 、エンジン 100は、単気筒 SOHC型のものとして説明する力 これに限らず、可変バ ルブ駆動装置 200を有するものであれば、どのようなエンジンとしてもよい。一般的に 自動二輪車に搭載されるエンジンの最大回転数は 8000rpm以上である。ここで、最 大回転数は連続して安定した出力を得ることから、例えば 10%程度の過回転をも考 慮されるが、瞬間的な過剰回転は、意図していない。  In the present embodiment, engine 100 will be described as a single-cylinder SOHC (Single Over Head Camshaft) type mounted on starter type motorcycle 500 (see FIG. 11). Note that the engine 100 is not limited to the force described as a single-cylinder SOHC type, and may be any engine as long as it has the variable valve driving device 200. In general, the maximum engine speed mounted on a motorcycle is 8000 rpm or more. Here, since the maximum rotation speed obtains a stable output continuously, for example, about 10% overspeed is considered, but instantaneous overspeed is not intended.
[0025] 図 1に示すように、シリンダ部 106内のピストン 102は、シリンダ部 106内でシリンダ 軸方向に進退動(上下動)自在に配置され、ピストン 102の基端部側で、コンロッド 10 8を介してクランク軸 130に接続される。なお、コンロッド 108は、クランク軸 130に設 けられたクランクウェブ 132間のクランクピン(図示省略)に回動自在に取り付けられる 。これにより、ピストン 102は、クランク軸 130の回転駆動に伴いシリンダ部 106内を進 退動する。  As shown in FIG. 1, the piston 102 in the cylinder portion 106 is disposed so as to be movable back and forth (up and down) in the cylinder axial direction in the cylinder portion 106, and on the proximal end side of the piston 102, the connecting rod 10 8 is connected to the crankshaft 130. The connecting rod 108 is rotatably attached to a crank pin (not shown) between the crank webs 132 provided on the crankshaft 130. As a result, the piston 102 moves back and forth in the cylinder portion 106 as the crankshaft 130 rotates.
[0026] また、クランク軸 130上には、クランクウェブ 132 (詳細には、クランクジャーナル)に 隣接してタイミングギア 134が設けられている。このタイミングギア 134には、駆動力 伝達部材としてのカム駆動チェーン 133が卷回されている。 [0027] このカム駆動チェーン 133は、タイミングギア 134とともに、エンジン本体部 110に おけるシリンダヘッド 104内に配置されるカムスプロケット 211に卷回され、可変バル ブ駆動装置 200のカム駒 220、 240に回転駆動力を伝達する。なお、駆動力伝達部 材としてカム駆動チェーン 133とした力 これに限らず、クランク軸 130から力ムスプロ ケット 211に駆動力を伝達するものであれば、どのようなものであってもよい。例えば、 カム駆動チェーン 133に変えて、コグベルトを用いてもよい。この場合、タイミングギア 134、カムスプロケット 211の変わりにコグホイールを用いた構成と A timing gear 134 is provided on the crankshaft 130 adjacent to the crank web 132 (specifically, the crank journal). A cam drive chain 133 as a drive force transmission member is wound around the timing gear 134. [0027] The cam drive chain 133 is wound around the cam sprocket 211 disposed in the cylinder head 104 in the engine main body 110 together with the timing gear 134, and is connected to the cam pieces 220 and 240 of the variable valve drive device 200. Transmits rotational driving force. Note that the force used as the drive force transmission member as the cam drive chain 133 is not limited to this, and any force may be used as long as the drive force is transmitted from the crankshaft 130 to the force musket 211. For example, a cog belt may be used instead of the cam drive chain 133. In this case, a configuration using a cog wheel instead of the timing gear 134 and the cam sprocket 211 is used.
なる。  Become.
[0028] このカム駆動チェーン 133の伝達ライン (この実施の形態では、チェーンライン)は、 クランク軸 130に対して略直交し、且つ、内部でピストン 102が進退動するシリンダ部 106のシリンダ軸に接近させた位置に配置されている。これは、エンジンの構造上、 ピストン 102を駆動するクランク部力もカム駆動チェーン 133が離間する程、カム駆動 チェーン 133に引っ張り力が加わり、クランク自体に加わる曲げ応力が大きくなるのを 防ぐためである。  [0028] The transmission line (in this embodiment, the chain line) of the cam drive chain 133 is substantially perpendicular to the crankshaft 130 and is connected to the cylinder shaft of the cylinder portion 106 in which the piston 102 moves forward and backward. It is placed at a close position. This is because, due to the structure of the engine, the crank force that drives the piston 102 also prevents the bending force applied to the crank itself from increasing as the cam drive chain 133 is pulled away as the cam drive chain 133 is separated. .
[0029] カム駆動チェーン 133は、エンジン本体部 110においてシリンダ部 106に隣接して 一体的に設けられたチェーンケース部 116内に配置されている。なお、チェーンケー ス部 116の上部(以下、「ケース上部」という) 116aは、シリンダヘッド 104に一体的に 設けられている。このケース上部 116aは、シリンダヘッド 104において、クランク軸 13 0と平行な方向に開口して 、る。  The cam drive chain 133 is disposed in a chain case portion 116 that is integrally provided adjacent to the cylinder portion 106 in the engine main body 110. Note that an upper portion 116 a (hereinafter referred to as “case upper portion”) 116 a of the chain case portion 116 is provided integrally with the cylinder head 104. The case upper portion 116a opens in the cylinder head 104 in a direction parallel to the crankshaft 130.
[0030] これら開口のうち一方の開口部 116bは、シリンダ部 106上方の空間に連通し、他 方の開口部 116cには、環状のシリンダヘッドカバー(以下、「ヘッドカバー」という) 10 5が取り付けられている。この環状のヘッドカバー 105内には、可変バルブ駆動装置 200の一端部側が配置され、可変ノ レブ駆動装置 200は、その一端部側でヘッド力 バー 105に支持されている。  [0030] One of the openings 116b communicates with the space above the cylinder 106, and the other opening 116c is provided with an annular cylinder head cover (hereinafter referred to as "head cover") 105. ing. In this annular head cover 105, one end portion side of the variable valve driving device 200 is disposed, and the variable valve driving device 200 is supported by the head force bar 105 on one end portion side thereof.
[0031] 可変バルブ駆動装置 200は、カムスプロケット 211、排気カム駒 220、可変カム軸 2 30、吸気カム駒 240、偏心プレート (偏心部材) 250、偏心ボス (部材移動部) 260、 偏心用モータ 270を有する。この可変バルブ駆動装置 200は、シリンダヘッド 104に 、クランク軸 130と平行に取り付けられる。 [0032] なお、この可変バルブ駆動装置 200では、吸気バルブ及び排気バルブのバルブタ イミングのうち、一方のバルブタイミングを他方のバルブタイミングに対して変更し、ノ ルブオーバラップ量を可変にする。なお、この可変バルブ駆動装置 200は、吸気カム 駒 240による吸気バルブの閉じ側のタイミング(閉じタイミング)を変更し、これにより 排気バルブに対する吸気バルブを可変として、バルブオーバラップ量を可変させて いる。 [0031] The variable valve drive device 200 includes a cam sprocket 211, an exhaust cam piece 220, a variable cam shaft 230, an intake cam piece 240, an eccentric plate (eccentric member) 250, an eccentric boss (member moving part) 260, and an eccentric motor. 270. The variable valve driving device 200 is attached to the cylinder head 104 in parallel with the crankshaft 130. [0032] It should be noted that in this variable valve drive device 200, one of the valve timings of the intake valve and the exhaust valve is changed with respect to the other valve timing, so that the knob overlap amount is variable. The variable valve driving device 200 changes the closing timing of the intake valve by the intake cam piece 240 (the closing timing), thereby making the intake valve relative to the exhaust valve variable, thereby varying the valve overlap amount. .
[0033] 図 2は、シリンダヘッド 104に取り付けられた可変バルブ駆動装置 200を示す要部 断面図、図 3は、同可変バルブ駆動装置 200の分解斜視図である。  FIG. 2 is a cross-sectional view of the main part showing the variable valve driving device 200 attached to the cylinder head 104, and FIG. 3 is an exploded perspective view of the variable valve driving device 200.
[0034] この可変バルブ駆動装置 200では、カムスプロケット 211、排気カム駒 220、可変力 ム軸 230、吸気カム駒 240、偏心プレート 250、偏心ボス 260のそれぞれの回転軸は 互いに平行となっている。  In this variable valve drive device 200, the rotation axes of the cam sprocket 211, the exhaust cam piece 220, the variable force shaft 230, the intake cam piece 240, the eccentric plate 250, and the eccentric boss 260 are parallel to each other. .
[0035] この可変バルブ駆動装置 200では、図 1から図 3に示すように、吸気カム駒 240及 び排気カム駒 220は、可変カム軸 230が揷通された状態で、シリンダヘッド 104内に おけるシリンダ部 106の上部に配置されている。  In this variable valve drive device 200, as shown in FIGS. 1 to 3, the intake cam piece 240 and the exhaust cam piece 220 are disposed in the cylinder head 104 with the variable cam shaft 230 being passed therethrough. It is arranged at the upper part of the cylinder part 106 in this.
[0036] また、可変カム軸 230は、カムスプロケット 211に揷通され、このカムスプロケット 21 1及び偏心プレート 250はケース上部 116a内に配置されて!、る。  Further, the variable cam shaft 230 is passed through the cam sprocket 211, and the cam sprocket 211 and the eccentric plate 250 are disposed in the upper case 116a!
[0037] そして、偏心ボス 260は、環状のヘッドカバー 105内に回動自在に取り付けられる。  [0037] The eccentric boss 260 is rotatably attached to the annular head cover 105.
偏心ボス 260が取り付けられるヘッドカバー 105がシリンダヘッド 104に固定されるこ とによって、可変バルブ駆動装置 200はシリンダヘッド 104に固定される。なお、偏心 ボス 260が配置されるヘッドカバー 105取り付けられるシリンダヘッド 104の開口部は 、カムスプロケット 211が揷入可能な直径を有する。  The variable valve driving device 200 is fixed to the cylinder head 104 by fixing the head cover 105 to which the eccentric boss 260 is attached to the cylinder head 104. Note that the opening of the cylinder head 104 to which the head cover 105 on which the eccentric boss 260 is disposed has a diameter that allows the cam sprocket 211 to be inserted.
[0038] 図 1から図 3に示すように、カムスプロケット 211は、同一軸心を有し、回転すること によりバルブ (ここでは、排気バルブ)を開閉する排気カム駒 220と筒状部 224を介し て一体的に形成されている。つまり、これらカムスプロケット 211、筒状部 224及び排 気カム駒 220とで、クランク軸 130の駆動力を直接受けて回転するカム駆動体 210を 形成している。  As shown in FIG. 1 to FIG. 3, the cam sprocket 211 has the same axis, and has an exhaust cam piece 220 that opens and closes a valve (here, an exhaust valve) and a cylindrical portion 224 by rotating. Are formed integrally. That is, the cam sprocket 211, the cylindrical portion 224, and the exhaust cam piece 220 form a cam drive body 210 that directly receives the drive force of the crankshaft 130 and rotates.
[0039] カムスプロケット 211は、タイミングギア 134 (図 1参照)及びカム駆動チェーン 133 ( 図 1参照)を介してクランク軸 130の駆動に従動し、クランク軸 130の回転数に対して 一定の減速比で回転する。ここでは、カムスプロケット 211は、クランク軸 130の回転 の 1Z2の速度で回転して!/、る。 [0039] The cam sprocket 211 is driven by the drive of the crankshaft 130 via a timing gear 134 (see Fig. 1) and a cam drive chain 133 (see Fig. 1). Rotates at a constant reduction ratio. Here, the cam sprocket 211 rotates at a speed of 1Z2 of the rotation of the crankshaft 130! /.
[0040] カムスプロケット 211及び排気カム駒 220の軸心は、カムシャフト軸心であり、力ムシ ャフト軸心は、シリンダ部 106の上部でクランク軸 130 (図 1参照)と平行に配置されて いる。 [0040] The shaft centers of the cam sprocket 211 and the exhaust cam piece 220 are camshaft shaft centers, and the force shaft shaft is arranged in parallel with the crankshaft 130 (see FIG. 1) above the cylinder portion 106. Yes.
[0041] また、カムスプロケット 211には、図 1から図 3に示すように、カムスプロケット 211の 回転軸方向と平行に、且つ、排気カム駒 220に対して逆側に向力つて突出する駆動 ピン 212が設けられている。この駆動ピン 212は、偏心プレート 250の中心側から半 径方向に切り欠かれた駆動スロット 252に遊嵌されて 、る。  Further, as shown in FIGS. 1 to 3, the cam sprocket 211 is driven so as to protrude parallel to the rotational axis direction of the cam sprocket 211 and to the opposite side with respect to the exhaust cam piece 220. Pin 212 is provided. The drive pin 212 is loosely fitted in a drive slot 252 cut out in the radial direction from the center side of the eccentric plate 250.
[0042] 駆動ピン 212の軸心は、カムスプロケット 211の軸心に対して偏心している。力ムス プロケット 211が回転すると、駆動ピン 212は、カムスプロケット 211の軸心の回りを周 回し、遊嵌するスロット 252を介して、偏心プレート 250を回転駆動する。  The axis of the drive pin 212 is eccentric with respect to the axis of the cam sprocket 211. When the force mus procket 211 rotates, the drive pin 212 circulates around the axis of the cam sprocket 211 and rotationally drives the eccentric plate 250 via the slot 252 that is loosely fitted.
[0043] なお、このカムスプロケット 211には、半径方向に突出する突起片 114が取り付けら れている。  Note that a projection piece 114 protruding in the radial direction is attached to the cam sprocket 211.
[0044] この突起片 114の回転位置(カムスプロケット 211の回転位置)は、シリンダヘッド 1 [0044] The rotational position of this projection piece 114 (the rotational position of cam sprocket 211) is the cylinder head 1
04に取り付けられたセンサ 114aにより検出される。 Detected by sensor 114a attached to 04.
[0045] また、カムスプロケット 211、排気カム駒 220及び筒状部 224のそれぞれにおける 同一の軸心部分、つまり、カム駆動体 210の軸心部分には、軸方向に貫通する揷通 孔 215が設けられている。なお、この揷通孔 215は、排気カム駒 220のベースサーク ル面 220aに開口する孔部 223と連通して 、る(図 2参照)。 [0045] Further, a through hole 215 penetrating in the axial direction is formed in the same axial center portion of each of the cam sprocket 211, the exhaust cam piece 220, and the cylindrical portion 224, that is, the axial center portion of the cam driving body 210. Is provided. The through hole 215 communicates with a hole 223 opened in the base circle surface 220a of the exhaust cam piece 220 (see FIG. 2).
[0046] 揷通孔 215には、可変カム軸 230の軸部 230aが軸方向に回転自在に揷通されて いる。 [0046] The shaft portion 230a of the variable cam shaft 230 is passed through the through-hole 215 so as to be rotatable in the axial direction.
[0047] 可変カム軸 230の軸部 230aは、揷通されるカム駆動体 210から軸方向に両側で 突出し、排気カム駒 220側で突出する部分には、排気カム駒 220と隣り合う吸気カム 駒 240がー体的に取り付けられている。  [0047] The shaft portion 230a of the variable cam shaft 230 protrudes on both sides in the axial direction from the cam drive body 210 to be threaded, and an intake cam adjacent to the exhaust cam piece 220 is provided on a portion protruding on the exhaust cam piece 220 side. A piece 240 is physically attached.
[0048] また、可変カム軸 230は、軸部 230aにおいて、カム駆動体 210のカムスプロケット 2 11側で突出する部分には従動ピン 232が設けられている。  Further, the variable cam shaft 230 is provided with a driven pin 232 at a portion of the shaft portion 230a protruding on the cam sprocket 211 side of the cam driver 210.
[0049] 可変カム軸 230は、カム駆動体 210に揷通された状態で、シリンダ部 106の上方を 横切るように配置されている。そして、可変カム軸 230は、ベアリング 104a及びべァリ ング 113により回動自在に支持されている。 [0049] The variable camshaft 230 is disposed above the cylinder portion 106 while being passed through the cam driver 210. It is arranged to cross. The variable cam shaft 230 is rotatably supported by a bearing 104a and a bearing 113.
[0050] また、可変カム軸 230は、軸部 230a内に軸方向に貫通する貫通孔 238を有し、こ の貫通孔 238は、可変バルブ駆動装置 200を構成する部材同士の摺動部分に供給 される潤滑油の本体油路となっている。以下では、貫通孔 238を本体油路 238として 説明する。 Further, the variable cam shaft 230 has a through hole 238 that penetrates in the axial direction in the shaft portion 230a, and the through hole 238 is a sliding portion between members constituting the variable valve drive device 200. It is the main oil passage for the lubricating oil to be supplied. Hereinafter, the through hole 238 will be described as the main body oil passage 238.
[0051] この本体油路 238は、カム駆動体 210 (特に、カムスプロケット 211)の回転軸を貫 通して設けられ、カム駆動体 210の他端部側における吸気カム駒 240の摺動部分と 、カム駆動体 210の一端部側における偏心プレート 250の摺動部分とに潤滑油を供 給する。  [0051] The main body oil passage 238 is provided through the rotation shaft of the cam drive 210 (particularly, the cam sprocket 211), and the sliding portion of the intake cam piece 240 on the other end side of the cam drive 210. Lubricating oil is supplied to the sliding portion of the eccentric plate 250 on one end side of the cam driving body 210.
[0052] また、本体油路 238は、分岐油路 239a、 239b, 239cにより軸咅 230aの外周面と 連通するとともに、軸部 230a内のチェーンライン側に設けられた絞り 235を介して一 端面側 (偏心プレート 250側)に開口されて 、る。  [0052] Further, the main body oil passage 238 communicates with the outer peripheral surface of the shaft rod 230a through the branch oil passages 239a, 239b, and 239c, and is connected to the end face through the throttle 235 provided on the chain line side in the shaft portion 230a. Opened to the side (eccentric plate 250 side).
[0053] 分岐油路 239a、 239b, 239dま、軸咅 230aに、それぞれ本体油路 238力ら直交 するように形成され、それぞれ軸部 230aの外面部分に開口している。 [0053] The branch oil passages 239a, 239b, and 239d are formed on the shaft rod 230a so as to be orthogonal to the main body oil passage 238, and open to the outer surface portion of the shaft portion 230a.
[0054] これら分岐油路 239a、 239b力開口する軸部 230aの外面部分には、軸部 230aの 円周方向に窪み状に形成された油だまり溝 236、 237が設けられている。これら油だ まり溝 236、 237【こ分岐油路 239a、 239biま接続されて!ヽる。 [0054] Oil sump grooves 236 and 237 formed in a concave shape in the circumferential direction of the shaft portion 230a are provided on the outer surface portion of the shaft portion 230a where the branch oil passages 239a and 239b open. These oil sump grooves 236, 237 are connected to the branch oil passages 239a, 239bi!
[0055] これら油だまり溝 236、 237は、筒状部 224及び排気カム駒 220の内周面部分を構 成する揷通孔 215の内周面に接触して摺動する部分に形成され、これら摺動する部 分は、分岐油路 239a、 239bに案内される潤滑油により潤滑される。 [0055] These oil sump grooves 236, 237 are formed in the portion that slides in contact with the inner peripheral surface of the through hole 215 constituting the inner peripheral surface portion of the cylindrical portion 224 and the exhaust cam piece 220, These sliding parts are lubricated by the lubricating oil guided to the branch oil passages 239a and 239b.
[0056] また、分岐油路 239cは、軸部 230aに、本体油路 238から直交するように形成され[0056] The branch oil passage 239c is formed in the shaft portion 230a so as to be orthogonal to the main body oil passage 238.
、吸気カム駒 240の孔部 245に連通する外面部分に開口している。 The intake cam piece 240 has an opening in the outer surface portion communicating with the hole 245.
[0057] これにより、分岐油路 239cにより案内される潤滑油は、軸部 230aと吸気カム駒 24[0057] Thereby, the lubricating oil guided by the branch oil passage 239c is transferred to the shaft portion 230a and the intake cam piece 24.
0との摺動部分に供給され、この摺動部分を潤滑する。なお、吸気カム駒 240におい て軸部 230aの外周面上を摺動する部分には、吸気カム駒 240の開口部の内周面に 沿って油だまり溝 246が形成されて 、る。 Supplied to the sliding part with 0 and lubricates this sliding part. An oil sump groove 246 is formed along the inner peripheral surface of the opening portion of the intake cam piece 240 in a portion of the intake cam piece 240 that slides on the outer peripheral surface of the shaft portion 230a.
[0058] また、可変カム軸 230の一端部は、シリンダヘッド 104において、シリンダヘッド 104 に取り付けられたベアリング 113に挿入されている。ベアリング 113から突出する部位 には、オイルシール部 117を介してオイルシールキャップ 115が被せられ、オイルシ ール部 117によりシリンダヘッド 104外部に潤滑油が漏れな 、ようにして!/、る。 In addition, one end of the variable cam shaft 230 is connected to the cylinder head 104 in the cylinder head 104. It is inserted in the bearing 113 attached to. The portion protruding from the bearing 113 is covered with an oil seal cap 115 via an oil seal portion 117 so that the oil seal portion 117 does not leak lubricating oil outside the cylinder head 104.
[0059] なお、シリンダヘッド 104の一端部 111側には、オイルポンプの吐出口 118が設け られている。この吐出口 118を介して潤滑油は、軸部 230aの一端部の開口 230cと 連通するオイル溜まり 119に圧入され、このオイル溜まり 119を介して、本体油路 238 内に案内される。なお、オイルポンプは、潤滑油を、エンジン 100が搭載される車両 が備える潤滑油貯留部(例えば、図 11に示す自動二輪車 500が備えるオイルパン 6 20)力 汲み上げるものである。  Note that an oil pump discharge port 118 is provided on one end 111 side of the cylinder head 104. The lubricating oil is press-fitted into the oil reservoir 119 communicating with the opening 230c at one end of the shaft portion 230a through the discharge port 118, and is guided into the main body oil passage 238 through the oil reservoir 119. The oil pump pumps up lubricating oil from a lubricating oil reservoir (for example, an oil pan 6 20 provided in the motorcycle 500 shown in FIG. 11) provided in a vehicle on which the engine 100 is mounted.
[0060] 吸気カム駒 240は、軸部 230aの一端部側に外嵌されるとともに、ピン 241を吸気力 ム駒 240に形成された切欠部 243 (図 3参照)に嵌合することにより固定されている。 なお、吸気カム駒 240は、排気カム駒 220とともに、シリンダ部 106の上方に配置さ れている。  [0060] The intake cam piece 240 is externally fitted to one end side of the shaft portion 230a, and is fixed by fitting the pin 241 into a notch 243 (see FIG. 3) formed in the intake force piece 240. Has been. The intake cam piece 240 is disposed above the cylinder portion 106 together with the exhaust cam piece 220.
[0061] この吸気カム駒 240は、可変カム軸 230の軸心を中心に回転した際に、同軸心を 中心に回転駆動する。また、吸気カム駒 240には、図 2に示すように、ベースサーク ル面 240aと軸部 230aの一端部に外嵌する開口部内面とを貫通する孔部 245が形 成されている。なお、この孔部 245は、軸部 230a内の本体油路 238と連通している。  [0061] When the intake cam piece 240 rotates about the axis of the variable cam shaft 230, the intake cam piece 240 is driven to rotate about the coaxial axis. Further, as shown in FIG. 2, the intake cam piece 240 is formed with a hole 245 that penetrates the base circle surface 240a and the inner surface of the opening that fits into one end of the shaft portion 230a. The hole portion 245 communicates with the main body oil passage 238 in the shaft portion 230a.
[0062] この構成により、吐出口 118から潤滑油が吐出されると、シリンダヘッド 104内にお いて、潤滑油は、分岐油路 239c、 239b, 239aを介して、吸気カム駒 240、排気カム 駒 220のそれぞれの摺動部分及びそれぞれのカムプロファイル部分に供給される。  [0062] With this configuration, when the lubricating oil is discharged from the discharge port 118, in the cylinder head 104, the lubricating oil passes through the branch oil passages 239c, 239b, 239a, and the intake cam piece 240, the exhaust cam Supplied to each sliding portion of each piece 220 and each cam profile portion.
[0063] この軸部 230aの他端部側には、軸部 230aの軸心と直交して張り出したプレート 23 4が取り付けられている。このプレート 234は、軸部 230aの回転に伴い、カムスプロケ ット 211に隣接する位置で回転する。  [0063] On the other end side of the shaft portion 230a, a plate 234 protruding perpendicular to the shaft center of the shaft portion 230a is attached. The plate 234 rotates at a position adjacent to the cam sprocket 211 as the shaft portion 230a rotates.
[0064] このプレート 234の先端部には、軸部 230aが延びる方向とは逆方向に突出し、軸 部 230aの軸心を挟んで駆動ピン 212と対向する従動ピン 232が設けられている(図 1から図 3参照)。この従動ピン 232は、プレート 234に、軸部 230aの軸心と平行で、 且つ、軸部 230aの軸心に対して偏心した位置に配置されている。  [0064] At the tip of the plate 234, a driven pin 232 that protrudes in a direction opposite to the direction in which the shaft portion 230a extends and faces the drive pin 212 across the axis of the shaft portion 230a is provided (see FIG. 1 to Figure 3). The driven pin 232 is disposed on the plate 234 at a position parallel to the axis of the shaft part 230a and eccentric with respect to the axis of the shaft part 230a.
[0065] そして、この従動ピン 232は、偏心プレート 250において、偏心プレート 250の中心 力も半径方向に切り欠かれた従動スロット 254に遊嵌し、偏心プレート 250の回転に よって、軸部 230aの軸心の回りを周回する。つまり、カムスプロケット 211の回転とと もに回転する駆動ピン 212が偏心プレート 250を回転駆動させると、従動スロット 254 及び従動ピン 232を介して、可変カム軸 230が従動し、吸気カム駒 240は回転する。 [0065] Then, this follower pin 232 is arranged at the center of the eccentric plate 250 in the eccentric plate 250. The force is also loosely fitted in the driven slot 254 cut out in the radial direction, and rotates around the axis of the shaft portion 230a by the rotation of the eccentric plate 250. That is, when the drive pin 212 that rotates with the rotation of the cam sprocket 211 drives the eccentric plate 250 to rotate, the variable cam shaft 230 is driven via the driven slot 254 and the driven pin 232, and the intake cam piece 240 is Rotate.
[0066] 偏心プレート 250は、可変カム軸 230のプレート 234に対向配置される板状(ここで は円盤状)のプレート本体部 256と、プレート本体部 256の中央部からプレート 234と は逆側で垂直に突出するプレート軸部 258とを有する。  [0066] The eccentric plate 250 is a plate-shaped (mainly disc-shaped) plate main body 256 disposed opposite to the plate 234 of the variable cam shaft 230, and the opposite side of the plate 234 from the center of the plate main-body 256. And a plate shaft portion 258 projecting vertically.
[0067] プレート本体部 256には、駆動スロット 252及び従動スロット 254力 プレート軸部 2 58を挟んで半径方向に延びるように、且つ、同一直線上に形成されている。  The plate main body 256 is formed on the same straight line so as to extend in the radial direction with the drive slot 252 and the driven slot 254 force plate shaft portion 258 interposed therebetween.
[0068] これら駆動スロット 252及び従動スロット 254には、それぞれ駆動ピン 212及び従動 ピン 232がそれぞれ遊嵌しており、これら駆動ピン 212及び従動ピン 232は、力ムス プロケット 211の回転によって、偏心プレート 250の軸心を通る同一直線上をそれぞ れ移動する。つまり、これら駆動ピン 212及び従動ピン 232を介して、カムスプロケット 211及び排気カム駒 220の回転と、吸気カム駒 240の回転とに位相角度差が生じて いる。  A drive pin 212 and a follower pin 232 are loosely fitted in the drive slot 252 and the follower slot 254, respectively. The drive pin 212 and the follower pin 232 are eccentric plates by the rotation of the force mus procket 211. Move on the same straight line passing through 250 axes. That is, a phase angle difference is generated between the rotation of the cam sprocket 211 and the exhaust cam piece 220 and the rotation of the intake cam piece 240 via the drive pin 212 and the driven pin 232.
[0069] プレート軸部 258は、偏心プレート 250自体の回転軸であり、図 2に示すように、偏 心ボス 260に形成された偏心孔 262に、回動自在に挿入されている。  [0069] The plate shaft portion 258 is a rotation shaft of the eccentric plate 250 itself, and is rotatably inserted into an eccentric hole 262 formed in the eccentric boss 260 as shown in FIG.
[0070] 偏心ボス 260は、ヘッドカバー 105内部においてカム軸方向と平行な回転軸を中 心(図 3に示す回転中心 R)に回転するボス本体部 264を有する。  [0070] The eccentric boss 260 has a boss main body 264 that rotates around the rotation axis parallel to the cam shaft direction (rotation center R shown in FIG. 3) inside the head cover 105.
[0071] この偏心ボス本体部 264の外径は、カムスプロケット 211の外径より小さぐ偏心ボ ス 260は、カムスプロケット 211に対し、回転軸方向で重なる位置に配置されている。 この偏心ボス 260における偏心孔 262は、ボス本体部 264に、その回転中心に対し て偏心した位置に形成されて!、る。  The eccentric boss 260 whose outer diameter is smaller than the outer diameter of the cam sprocket 211 is disposed at a position overlapping the cam sprocket 211 in the rotation axis direction. The eccentric hole 262 in the eccentric boss 260 is formed in the boss main body 264 at a position eccentric with respect to the rotation center.
[0072] 別言すれば、偏心ボス 260は、カムスプロケット 211に対し、カム駆動体 210の回転 軸方向で偏心プレート 250を挟んで対向配置され、偏心ボス 260の回転軸(回転中 心)は、カム駆動体 210において偏心ボス 260に対向するカムスプロケット 211の外 周縁より内側に位置する。この構成によれば、偏心ボス 260の回転中心は、カムスプ ロケット 211の外周縁より内側に位置する。このため、偏心プレート 250を偏心させる 機構力 カム駆動体 210において半径方向に位置する外周縁から外方に位置する ことがなぐ可変バルブ駆動装置 200全体をコンパクトにしている。 [0072] In other words, the eccentric boss 260 is opposed to the cam sprocket 211 across the eccentric plate 250 in the direction of the rotation axis of the cam drive 210, and the rotation axis (rotation center) of the eccentric boss 260 is The cam drive 210 is positioned inside the outer peripheral edge of the cam sprocket 211 that faces the eccentric boss 260. According to this configuration, the rotation center of the eccentric boss 260 is located inside the outer peripheral edge of the cam sprocket 211. For this reason, the eccentric plate 250 is eccentric. Mechanical force The entire variable valve drive device 200 that is positioned outward from the outer peripheral edge located in the radial direction in the cam drive 210 is made compact.
[0073] そして、このボス本体部 264の外周の一部にラック 266が設けられ、このラック 266 はヘッドカバー 105に取り付けられる偏心用モータ 270のウォームギア 272に歯合さ れる。この構成により、偏心ボス 260は、ヘッドカバー 105内部において、偏心用モ ータ 270の駆動によって回転中心 R (図 3参照)を中心に回転する。  [0073] A rack 266 is provided on a part of the outer periphery of the boss main body 264, and the rack 266 meshes with a worm gear 272 of an eccentric motor 270 attached to the head cover 105. With this configuration, the eccentric boss 260 rotates around the rotation center R (see FIG. 3) by driving the eccentric motor 270 inside the head cover 105.
[0074] 図 4は偏心ボス 260の分解斜視図である。  FIG. 4 is an exploded perspective view of the eccentric boss 260.
[0075] 図 4に示すように、偏心ボス 260の偏心ボス本体部 264は、有底円筒状をなし、内 部に偏心孔 262が形成された本体ケース 264aに、蓋部 264bを取り付けることにより 構成される。  [0075] As shown in Fig. 4, the eccentric boss main body 264 of the eccentric boss 260 has a bottomed cylindrical shape, and a lid 264b is attached to a main body case 264a in which an eccentric hole 262 is formed. Composed.
[0076] 本体ゲース 264a【こ ίま、偏' し 262の周囲【こ隔壁 265a、 265b, 265c【こより仕切ら れた隔室 267a、 267b, 267c力設けられている。  [0076] Around the main body gaze 264a, the surrounding wall 262a is provided with a partition wall 265a, 265b, 265c [compartment compartments 267a, 267b, 267c].
[0077] 隔室 267aの底面部分には、隔室 267と、偏心ボス 260の裏面側、つまり、偏心プレ ート 250側とを連通する空気穴 268が設けられている。また、この隔室 267aの周壁 部には、偏心ボス本体部 264の外部と連通するオイル戻り穴 268aが形成されている  [0077] An air hole 268 is provided in the bottom portion of the compartment 267a so as to communicate the compartment 267 with the back side of the eccentric boss 260, that is, the eccentric plate 250 side. An oil return hole 268a communicating with the outside of the eccentric boss main body 264 is formed in the peripheral wall portion of the compartment 267a.
[0078] また、隔壁 265a、 265bには、切欠咅 269力 ^設けられ、隔室 267aと隔室 267b、隔 室 267bと隔室 267cとを連通させて!/、る。 [0078] Further, the partition walls 265a and 265b are provided with notches 269, so that the compartments 267a and 267b and the compartments 267b and 267c communicate with each other! /.
[0079] 蓋部 264bは、隔室 267a、 267b, 267cを覆う。この蓋部 264bには隔室 267cの天 井部分に開口部 264cが形成されている。 [0079] The lid 264b covers the compartments 267a, 267b, 267c. The lid 264b has an opening 264c formed in the ceiling portion of the compartment 267c.
[0080] このように、偏心ボス 260は、空気穴 268、隔室 267a、 267b, 267c,切欠部 269 及び開口部 264cを介して、軸方向、つまり、表裏面側に連通した構成となっている。 言い換えれば、偏心ボス 260内には、カムスプロケット 211の回転軸方向に連通する 中空部としての隔室 267a、 267b, 267cが設けられている。 As described above, the eccentric boss 260 is configured to communicate with the axial direction, that is, the front and back surfaces via the air hole 268, the compartments 267a, 267b, 267c, the notch 269, and the opening 264c. Yes. In other words, the eccentric boss 260 is provided with compartments 267a, 267b, 267c as hollow portions that communicate with the cam sprocket 211 in the rotational axis direction.
[0081] この構成により、偏心ボス 260は、ヘッドカバー 105を介してシリンダヘッド 104に取 り付けられた状態において、シリンダヘッド 104内外を連通させている。 With this configuration, the eccentric boss 260 allows the inside and outside of the cylinder head 104 to communicate with each other when the eccentric boss 260 is attached to the cylinder head 104 via the head cover 105.
[0082] ヘッドカバー 105内部には、偏心ボス 260の回転軸心と平行に、オイル戻り穴 105 aが形成されている。これにより、オイル戻り穴 105aは、偏心ボス 260内に偏心プレ ート 250側からの潤滑油が流入した場合、隔室 267a内部と連通するオイル戻り穴 26 8aとともに、エンジン 100内部に潤滑油を戻す。つまり、隔室 267a、 267b, 267cは 、エンジン 100内で生じたブローバイガス中の潤滑油をエンジン 100外に排出するこ とを防止するブリーザ室として機能している。 An oil return hole 105 a is formed in the head cover 105 in parallel with the rotational axis of the eccentric boss 260. As a result, the oil return hole 105a is eccentrically inserted into the eccentric boss 260. When lubricating oil flows from the engine 250 side, the lubricating oil is returned to the engine 100 together with the oil return hole 268a communicating with the compartment 267a. That is, the compartments 267 a, 267 b, and 267 c function as breather chambers that prevent the lubricant in the blow-by gas generated in the engine 100 from being discharged outside the engine 100.
[0083] このように構成された偏心ボス 260の回転によって、偏心孔 262の位置は、ボス本 体部 264の回転中心 Rに対して偏心した位置に移動可能となっている。つまり、偏心 ボス 260は、偏心プレート 250に、カムスプロケット 211とは逆側で隣接して配置され 、偏心プレート 250のプレート軸部 258を、カムスプロケット 211の回転軸に対して同 軸位置力 偏心位置に移動させることができる。  By the rotation of the eccentric boss 260 configured as described above, the position of the eccentric hole 262 can be moved to a position eccentric with respect to the rotation center R of the boss main body 264. In other words, the eccentric boss 260 is disposed adjacent to the eccentric plate 250 on the opposite side to the cam sprocket 211, and the plate shaft portion 258 of the eccentric plate 250 is coaxially positioned with respect to the rotation axis of the cam sprocket 211. Can be moved to a position.
[0084] 図 5は、偏心ボス 260の回転中心 Rと、カムスプロケット 211の軸心 Cと、偏心プレー ト 250の軸心 Eとの位置関係を示す図である。詳細には、図 5 (a)は、偏心ボス 260、 カムスプロケット 211及び偏心プレート 250の概略正面図、図 5 (b)は、図 5 (a)に示 す回転中心 R及び軸心 C、 E部分の拡大図である。  FIG. 5 is a diagram showing the positional relationship between the rotation center R of the eccentric boss 260, the axis C of the cam sprocket 211, and the axis E of the eccentric plate 250. Specifically, Fig. 5 (a) is a schematic front view of the eccentric boss 260, cam sprocket 211 and eccentric plate 250, and Fig. 5 (b) is the rotation center R and axis C shown in Fig. 5 (a). It is an enlarged view of E part.
[0085] 図 5に示すように、偏心ボス 260は、ヘッドカバー 105に回動自在に内嵌され、偏心 用モータ 270 (図 1〜図 3参照)により、回転中心 (ボス中心) Rを中心に回転する。な お、回転中心 Rは、エンジン側に固定されており、可変カム軸 230や排気カム駒 220 及び吸気カム駒 240の回転軸心 (カムシャフト軸心) Cに対する軸心 (偏心中心) Eの 回転する回転中心となつている。  [0085] As shown in FIG. 5, the eccentric boss 260 is rotatably fitted in the head cover 105, and the center of rotation (boss center) R is centered by the eccentric motor 270 (see FIGS. 1 to 3). Rotate. The rotation center R is fixed on the engine side, and the rotation center (camshaft axis) C of the variable cam shaft 230, the exhaust cam piece 220, and the intake cam piece 240 (center of eccentricity) E It is the center of rotation that rotates.
[0086] 偏心ボス 260の偏心孔 262には、プレート軸部 258 (偏心プレート 250の軸心 E)が 回動自在に挿入されているため、偏心ボス 260の回転により、偏心プレート 250の軸 心 (偏心中心) Eは、回転中心 (ボス中心) Rを中心に円弧状に移動する。  [0086] Since the plate shaft portion 258 (the shaft center E of the eccentric plate 250) is rotatably inserted into the eccentric hole 262 of the eccentric boss 260, the shaft center of the eccentric plate 250 is rotated by the rotation of the eccentric boss 260. (Eccentric center) E moves in a circular arc around the center of rotation (boss center) R.
[0087] また、この軸心 Eの移動線上に、可変カム軸 230の軸心 C、つまり、排気カム駒 220 及び吸気カム駒 240の軸心 Cが配置されて!、る。  Further, on the movement line of the axis E, the axis C of the variable cam shaft 230, that is, the axis C of the exhaust cam piece 220 and the intake cam piece 240 is arranged!
[0088] この偏心ボス 260のボス中心 Rを中心とする回動により、偏心プレート 250の軸心 E を、可変カム軸 230の軸心 Cと偏心させて、カムスプロケット 211と一体の排気カム駒 220の回転に対して、可変カム軸 230と一体の吸気カム駒 240の回転に位相差を設 けることができる。  [0088] By rotating about the boss center R of the eccentric boss 260, the shaft center E of the eccentric plate 250 is eccentric with the axis C of the variable cam shaft 230, so that the exhaust cam piece integral with the cam sprocket 211 is obtained. With respect to the rotation of 220, a phase difference can be set in the rotation of the intake cam piece 240 integrated with the variable cam shaft 230.
[0089] また、この偏心ボス 260の回動によって、軸心 Eと、軸心 Cとを一致させることができ る。これら軸心 Eと軸心 Cとが一致した位置、つまり、偏心ボス 260における偏心孔 26 2の軸心 Eの位置と可変カム軸 230における軸心 Cの位置とが重なる位置で偏心ボス 260を固定できる。これにより、偏心プレート 250と可変カム軸 230とを、同一軸心を 中心に回転させることができる。また、偏心プレート 250の軸心 Eは、偏心ボス 260内 、つまりヘッドカバー 105の開口部内において、円弧状に移動するため、偏心プレー ト 250の軸心 Eを偏心させる機構がヘッドカバー 105内に納められた状態となってい る。 [0089] Further, the rotation of the eccentric boss 260 allows the axis E and the axis C to coincide with each other. The The eccentric boss 260 is moved at a position where the shaft center E and the shaft center C coincide with each other, that is, the position of the shaft center E of the eccentric hole 262 of the eccentric boss 260 and the position of the shaft center C of the variable cam shaft 230. Can be fixed. Thereby, the eccentric plate 250 and the variable cam shaft 230 can be rotated around the same axis. Further, since the axis E of the eccentric plate 250 moves in an arc shape in the eccentric boss 260, that is, in the opening of the head cover 105, a mechanism for eccentrically locating the axis E of the eccentric plate 250 is accommodated in the head cover 105. It is in the state.
[0090] 偏心ボス 260のヘッドカバー 105内における回転角度位置は、図 2に示すように、 偏心ボス 260に設けられた角度センサ部 26、 27により検出する。  The rotational angle position of the eccentric boss 260 in the head cover 105 is detected by angle sensor units 26 and 27 provided on the eccentric boss 260 as shown in FIG.
[0091] これら角度センサ部 26、 27は、回転角度位置を検出することにより、偏心孔 262の 位置、つまり、偏心プレート 250の偏心位置を検出できる。このように検出された情報 と、エンジン回転及びエンジン負荷等のエンジン側力 得られる情報と、図示しない 操作部を介してユーザ力も入力される情報などを用いて、偏心孔 262の偏心位置は 、制御部 150 (図 6参照)により、予め設定された位置に制御される。  The angle sensor units 26 and 27 can detect the position of the eccentric hole 262, that is, the eccentric position of the eccentric plate 250 by detecting the rotational angle position. Using the information detected in this way, the information obtained from the engine side force such as the engine rotation and the engine load, and the information that the user force is also input via the operation unit (not shown), the eccentric position of the eccentric hole 262 is It is controlled to a preset position by the control unit 150 (see FIG. 6).
[0092] 図 6は、本発明の一実施の形態に係る可変バルブ駆動装置 200を備えるエンジン の制御部を説明する模式図である。  FIG. 6 is a schematic diagram for explaining a control unit of an engine including the variable valve drive device 200 according to one embodiment of the present invention.
[0093] 図 6に示すようにエンジン 100は、エンジン自体を駆動制御するとともに、可変バル ブ駆動装置 200の偏心用モータ 270 (図 1及び 3参照)を駆動制御する制御部 150を 備える。  As shown in FIG. 6, engine 100 includes a control unit 150 that drives and controls the engine itself and drives and controls the eccentric motor 270 (see FIGS. 1 and 3) of the variable valve driving device 200.
[0094] 制御部 150は、偏心ボス 260の回転角度位置を検出する角度センサ部 27が接続 され、この角度センサ 27から入力される情報に基づいて、偏心プレート 250の偏心 位置を判別する。  The control unit 150 is connected to an angle sensor unit 27 that detects the rotational angle position of the eccentric boss 260, and determines the eccentric position of the eccentric plate 250 based on information input from the angle sensor 27.
[0095] また、制御部 150は、センサ 114aに接続され、このセンサ 114aにより検出される力 ムスプロケット 211の回転位置情報が入力される。  In addition, the control unit 150 is connected to the sensor 114a, and receives the rotational position information of the force musprocket 211 detected by the sensor 114a.
[0096] カムスプロケット 211には、カム駆動チェーン 133 (図 1参照)を介してクランク軸 13[0096] The cam sprocket 211 is connected to the crankshaft 13 via a cam drive chain 133 (see FIG. 1).
0の駆動力が直接伝達されるため、カムスプロケット 211の回転位置 (突起片 114の 回転位置に相当)は、クランクの行程に連動する。 Since the driving force of 0 is directly transmitted, the rotational position of the cam sprocket 211 (corresponding to the rotational position of the protruding piece 114) is linked to the stroke of the crank.
[0097] つまり、カムスプロケット 211の回転位置には、クランクの行程 (4サイクルの場合、吸 入行程、圧縮行程、爆発行程及び排気行程)の情報が含まれる。このため、センサ 1[0097] That is, the rotational position of the cam sprocket 211 has a crank stroke (in the case of 4 cycles, the suction stroke). Information on the input stroke, compression stroke, explosion stroke and exhaust stroke). Sensor 1 for this
14aがカムスプロケット 211の突起片 114の位置を検出することによって、制御部 1514a detects the position of the protrusion 114 of the cam sprocket 211, thereby
0は、クランク行程を判別できる。 0 can determine the crank stroke.
[0098] また、制御部 150には、クランク軸 130のクランク角を検出するクランク角検出セン サ 160が接続され、制御部 150は、このクランク角検出センサ 160により検出されるク ランク角情報によりエンジン回転数を判別する。 In addition, a crank angle detection sensor 160 that detects a crank angle of the crankshaft 130 is connected to the control unit 150, and the control unit 150 uses crank angle information detected by the crank angle detection sensor 160. Determine the engine speed.
[0099] 制御部 150は、各センサ 27、 114a, 160から入力される情報に基づいてエンジン 回転数に対応したカム作用角(Duration :「作動角」ともいう。)を形成するようにモータ 作動電流を設定し、偏心用モータ 270に出力して偏心用モータ 270を駆動制御する [0099] The control unit 150 operates the motor so as to form a cam working angle (Duration: also referred to as "operating angle") corresponding to the engine speed based on information input from each sensor 27, 114a, 160. Sets current and outputs to eccentric motor 270 to drive and control eccentric motor 270
[0100] この制御部 150は、エンジンの回転数に基づいて、バルブタイミングを変更し、実ェ ンジン回転数に対応した好適なノ レブオーバラップ量にする。 [0100] The control unit 150 changes the valve timing based on the engine speed so as to obtain a suitable overlap amount corresponding to the actual engine speed.
[0101] また、制御部 150は、エンジンの回転数が最大若しくは、最大付近である場合に、 偏心用モータ 270を駆動し、偏心プレート 250の軸心 Eを、可変カム軸 230の軸心 C に一致させることによって軸心 Cと同一直線上に位置させる。また、このときのバルブ の作用角は最大作用角となっている。  [0101] In addition, the control unit 150 drives the eccentric motor 270 when the engine speed is at or near the maximum, and the axis E of the eccentric plate 250 and the axis C of the variable cam shaft 230 are driven. To be aligned with the axis C. The valve operating angle at this time is the maximum operating angle.
[0102] なお、制御部 150は、図示しないインジェクタに接続され、インジェクタに燃料噴射 制御信号を出力することによって、インジェクタを駆動制御する。また、図示しないプ ラグに接続され、プラグに点火時期制御信号を出力して、プラグの点火時期を制御 する。  [0102] Control unit 150 is connected to an injector (not shown), and drives and controls the injector by outputting a fuel injection control signal to the injector. In addition, it is connected to a plug (not shown) and outputs an ignition timing control signal to the plug to control the ignition timing of the plug.
[0103] 次に、本実施の形態における可変バルブ駆動装置 200の動作について説明する。  [0103] Next, the operation of the variable valve drive apparatus 200 in the present embodiment will be described.
[0104] 図 1〜図 3に示す可変バルブ駆動装置 200では、クランク軸 130の回転より、カム駆 動チェーン 133を介してカムスプロケット 211がクランク軸 130回転の 1/2の回転で駆 動する。カムスプロケット 211の回転に伴い、カムスプロケット 211とともにカム駆動体 210を構成する排気カム駒 220はクランク軸 130の回転に同期して回転する。 In the variable valve drive device 200 shown in FIGS. 1 to 3, the cam sprocket 211 is driven by the rotation of the crankshaft 130 through the cam drive chain 133 at half the rotation of the crankshaft 130. . As the cam sprocket 211 rotates, the exhaust cam piece 220 that constitutes the cam drive body 210 together with the cam sprocket 211 rotates in synchronization with the rotation of the crankshaft 130.
[0105] また、カムスプロケット 211の回転により、偏心プレート 250の入力側スロット 252に 遊嵌された駆動ピン 212が、駆動スロット 252を介して、偏心プレート 250を、プレート 軸部 258を中心に押圧し、偏心プレート 250を回転させる。 [0106] この偏心プレート 250の回転中心、つまり、プレート軸部 258の位置は、偏心用モ ータ 270の駆動により偏心させて 、るため、カムスプロケット 211が等速回転して 、る 場合でも、偏心プレート 250は不等速回転する。 In addition, the drive pin 212 loosely fitted in the input side slot 252 of the eccentric plate 250 by the rotation of the cam sprocket 211 presses the eccentric plate 250 around the plate shaft portion 258 via the drive slot 252. Then, the eccentric plate 250 is rotated. [0106] Since the center of rotation of the eccentric plate 250, that is, the position of the plate shaft portion 258 is decentered by driving the eccentric motor 270, even if the cam sprocket 211 rotates at a constant speed. The eccentric plate 250 rotates at a non-uniform speed.
[0107] 図 7は、本可変バルブ駆動装置において、カム軸に対して偏心プレートの中心を偏 心させた状態の駆動ピンと従動ピンの位置関係の一例を示す図である。  FIG. 7 is a diagram showing an example of the positional relationship between the drive pin and the driven pin in a state where the center of the eccentric plate is eccentric with respect to the cam shaft in the variable valve driving device.
[0108] 図 7 (a)〜 (i)は、クランク軸を所定の回転で回転させた場合の駆動ピン 212及び従 動ピン 232の相対的な位置関係を段階的に示す。なお、駆動ピン 212及び従動ピン 232が遊嵌するスロット 252、 254 (図 1及び図 3参照)は同一直線上に形成されてい るため、概略的に直線 SLとして示す。  FIGS. 7A to 7I show the relative positional relationship between the drive pin 212 and the drive pin 232 in a stepwise manner when the crankshaft is rotated at a predetermined rotation. The slots 252 and 254 (see FIGS. 1 and 3) in which the drive pin 212 and the driven pin 232 are loosely fitted are formed on the same straight line, and therefore are schematically shown as a straight line SL.
[0109] 駆動ピン 212がカムスプロケット 211の軸心 Cに対して偏心プレート 250の中心(回 転軸心) E側にある場合、偏心プレート 250中心と駆動ピン 212中心間の距離力 力 ムスプロケット 211中心と駆動ピン中心間の距離より小さくなる。よって、カムスプロケ ット 211の回転角より、偏心プレート 250の回転角の方が大きくなる。  [0109] When the drive pin 212 is on the center of the eccentric plate 250 with respect to the axis C of the cam sprocket 211 (rotation axis) E side, the distance force between the center of the eccentric plate 250 and the center of the drive pin 212 It is smaller than the distance between the center of 211 and the center of the drive pin. Therefore, the rotation angle of the eccentric plate 250 is larger than the rotation angle of the cam sprocket 211.
[0110] 一方、駆動ピン 212がその反対側、つまり、カムスプロケット 211の軸心 Cに対して 偏心プレート 250の中心力も離間する側にある場合、偏心プレート 250中心と駆動ピ ン 212中心間の距離力 カムスプロケット 211中心と駆動ピン中心間の距離より大きく なる。よって、カムスプロケット 211の回転角より、偏心プレート 250の回転角の方が 小さくなる。  [0110] On the other hand, when the drive pin 212 is on the opposite side, that is, on the side where the central force of the eccentric plate 250 is also away from the axis C of the cam sprocket 211, between the center of the eccentric plate 250 and the center of the drive pin 212. Distance force Becomes larger than the distance between the center of the cam sprocket 211 and the center of the drive pin. Therefore, the rotation angle of the eccentric plate 250 is smaller than the rotation angle of the cam sprocket 211.
[0111] また、偏心プレート 250のプレート本体部 256に形成されたスロット 254は、偏心プ レート 250同様に、不等速回転する。このスロット 254に遊嵌された従動ピン 232は、 カムスプロケット 211及び吸気カム駒 240と同心であるため、スロット 254を介して不 等速運動が従動ピン 232に伝達される。不等速運動が伝達される従動ピン 232を介 して、軸部 230aは不等速な回転を行い、これに伴い吸気カム駒 240は不等速な回 転を行う。  In addition, the slot 254 formed in the plate main body portion 256 of the eccentric plate 250 rotates at a non-uniform speed similarly to the eccentric plate 250. Since the driven pin 232 loosely fitted in the slot 254 is concentric with the cam sprocket 211 and the intake cam piece 240, an inconstant speed motion is transmitted to the driven pin 232 via the slot 254. The shaft portion 230a rotates at a non-uniform speed through the driven pin 232 to which the non-uniform speed motion is transmitted, and the intake cam piece 240 rotates at a non-uniform speed accordingly.
[0112] 例えば、吸気カム駒 240が開いているクランク角付近で、吸気カム駒 240がクランク 軸 130の回転速度の 1/2より速い角速度で駆動しているとする。このとき、クランクが 作用角分 (例えば、 268度)回転する場合に、カムは作用角より多く回転するため、吸 気弁はそれよりも短い時間で開閉される。別言すれば、作用角は狭くなる。一方、吸 気カムが遅く回転する場合には作用角を広くとることができる。 For example, it is assumed that the intake cam piece 240 is driven at an angular speed faster than half of the rotational speed of the crankshaft 130 in the vicinity of the crank angle at which the intake cam piece 240 is open. At this time, when the crank rotates by an operating angle (for example, 268 degrees), the cam rotates more than the operating angle, so the intake valve is opened and closed in a shorter time. In other words, the working angle is narrowed. While sucking When the air cam rotates slowly, the working angle can be widened.
[0113] このように可変バルブ駆動装置 200では、カムスプロケット 211と一体的に設けられ た排気カム駒 220に対して、偏心プレート 250を介して駆動する可変カム軸 230によ り回転する吸気カム駒 240の回転位相差を周期的に変動させることができる。  In this way, in the variable valve drive device 200, the intake cam rotated by the variable cam shaft 230 driven via the eccentric plate 250 with respect to the exhaust cam piece 220 provided integrally with the cam sprocket 211. The rotation phase difference of the piece 240 can be periodically changed.
[0114] つまり、偏心プレート 250がカムシャフト軸心に対して偏心して、吸気カム駒 240の 作用角は周期的に可変、言い換えれば、吸気カム駒 240は不等速に回転し、この回 転により開閉する吸気バルブ (可変バルブ)の作用角及び開閉タイミングは可変とな る。  That is, the eccentric plate 250 is eccentric with respect to the camshaft axis, and the operating angle of the intake cam piece 240 is periodically variable. In other words, the intake cam piece 240 rotates at an unequal speed, and this rotation The operating angle and opening / closing timing of the intake valve (variable valve) that opens and closes can be varied.
[0115] 具体的に可変バルブ駆動装置 200では、カムの作用角を大きくした場合には、ノ ルブが開いている間ではカムの回転速度は減少し、バルブが閉じられるときにカムの 回転速度はあがる。また、カムの作用角を小さくした場合には、ノ レブが開いている 間はカムの回転速度は上がり、ノ レブが閉じられるとカムの回転速度は落ちることと なる。  [0115] Specifically, in the variable valve drive 200, when the cam operating angle is increased, the cam rotation speed decreases while the knob is open, and the cam rotation speed when the valve is closed. Go up. If the cam operating angle is reduced, the cam rotation speed increases while the knob is open, and the cam rotation speed decreases when the knob is closed.
[0116] このように、吸気カム駒 240を、排気カム駒 220に対して回転位相差を設けた状態 で回転させることができるとともに、この回転位相差を周期的な回転位相差として適 宜変更できるため、バルブオーバーラップ量を、エンジン行程に伴い可変させること ができる。  [0116] In this manner, the intake cam piece 240 can be rotated with a rotational phase difference provided with respect to the exhaust cam piece 220, and this rotational phase difference is appropriately changed as a periodic rotational phase difference. As a result, the valve overlap amount can be varied according to the engine stroke.
[0117] なお、吸気カム駒 240を排気カム駒 220に対し、どのタイミングで速く回転させ、ど のタイミングで遅く回転させるかは、カムスプロケット 211中心に対する、偏心プレート [0117] Note that the timing at which the intake cam piece 240 is rotated faster with respect to the exhaust cam piece 220 and at which timing the intake cam piece 240 is rotated slowly depends on the eccentric plate relative to the center of the cam sprocket 211.
250の中心と、カムノーズ及び各スロット 252、 254との位置関係で決定する。 It is determined by the positional relationship between the center of 250 and the cam nose and slots 252 and 254.
[0118] 図 8は、本発明の一実施の形態に係る可変バルブ駆動装置 200を備えるエンジン においてエンジン回転数及び平均有効圧力(Mean Effective Pressure)に対応して 設定されるバルブの作用角を示す図である。 [0118] Fig. 8 shows a valve operating angle set corresponding to an engine speed and a mean effective pressure in an engine including a variable valve drive device 200 according to an embodiment of the present invention. FIG.
[0119] 図 8に示す作用角は、エンジン回転数 (運転領域に相当)に応じて最適な作用角で ある。例えば、 3000rpmにおいて、平均有効圧力を 4とした場合、最適なバルブ作 用角は、約 210度となる。 [0119] The operating angle shown in Fig. 8 is the optimal operating angle according to the engine speed (corresponding to the operating range). For example, when the average effective pressure is 4 at 3000 rpm, the optimum valve working angle is about 210 degrees.
[0120] なお、エンジン 100の最大回転数を、ここでは 9000rpmとしている。最大回転数は[0120] The maximum engine speed of engine 100 is 9000 rpm here. Maximum speed is
、可変ノ レブ駆動装置 200が搭載される所定排気量のエンジン 100において、その エンジン 110に要求される最大出力に基づ 、て設定されるものである。別言すれば、 エンジンの最大回転数は、エンジン 100において、トルクを考慮に入れて実現され得 る最大ピストンスピードに基づ ヽて設定できる。 In the engine 100 with a predetermined displacement mounted with the variable nozzle drive device 200, It is set based on the maximum output required for the engine 110. In other words, the maximum engine speed can be set based on the maximum piston speed that can be achieved in the engine 100 taking into account torque.
[0121] 図 8に示すように、エンジン 100では、制御部 150は、エンジン回転数 9000rpmに おいて、カムスプロケット 211の軸心 C (図 3及び図 5参照)と、偏心プレート 250の中 心 E (偏心中心、図 3及び図 5参照)とを一致させる。そして、 0〜9000rpm未満の間 の回転数においては、制御部 150は、偏心ボス 260を各回転数に好適なカム作用角 が設定されるように回転移動して、カムスプロケット 211の軸心 C力も偏心プレート 25 0の中心 Eを所定距離偏心させる。  [0121] As shown in FIG. 8, in the engine 100, the controller 150 controls the center C of the cam sprocket 211 (see FIGS. 3 and 5) and the center of the eccentric plate 250 at an engine speed of 9000 rpm. Match E (center of eccentricity, see Fig. 3 and Fig. 5). At a rotational speed between 0 and 9000 rpm, the control unit 150 rotates and moves the eccentric boss 260 so that a cam operating angle suitable for each rotational speed is set, and the axis C of the cam sprocket 211 The force also decenters the center E of the eccentric plate 250 by a predetermined distance.
[0122] 図 9は、本発明の一実施の形態に係る可変バルブ駆動装置によるバルブの可変状 態を説明する図である。なお、図 9では、可変バルブ駆動装置 200において、吸気力 ム駒 240を可変にするに際し、吸気カム駒 240により駆動する吸気バルブの開きタイ ミングを略固定にして、閉じタイミングを可変にしている。図 9 (a)は閉じタイミングを可 変とした場合の吸気バルブのリフトカーブを示し、図 9 (b)は、図 9 (a)に示すバルブ の加速度カーブを示して 、る。  [0122] Fig. 9 is a view for explaining the variable state of the valve by the variable valve driving device according to one embodiment of the present invention. In FIG. 9, in the variable valve driving device 200, when the intake force piece 240 is made variable, the opening timing of the intake valve driven by the intake cam piece 240 is substantially fixed, and the closing timing is made variable. . Fig. 9 (a) shows the lift curve of the intake valve when the closing timing is variable, and Fig. 9 (b) shows the acceleration curve of the valve shown in Fig. 9 (a).
[0123] 図 9 (a)に示すように、本可変バルブ駆動装置 200では、吸気カム駒 240の可変に より、吸気カム駒 240の開閉タイミング及びリフトカーブが L1〜L3に変化する。  As shown in FIG. 9 (a), in the present variable valve drive device 200, the opening / closing timing and lift curve of the intake cam piece 240 change from L1 to L3 by changing the intake cam piece 240.
[0124] 吸気駒 240の可変は、可変バルブ駆動装置 200において偏心ボス 260を回転させ 、カムシャフト軸心から偏心プレート 250の軸心を偏心させることにより行われる。  The intake piece 240 is varied by rotating the eccentric boss 260 in the variable valve driving device 200 to decenter the axis of the eccentric plate 250 from the camshaft axis.
[0125] 図 9 (a)におけるリフトカーブ L1は、最大の作用角 D1を有しており、このとき、可変 バルブ駆動装置 200では、カムスプロケット 211の軸心(図 5に示す軸心 E)と、偏心 プレートの中心、つまり、偏心中心(図 5に示す軸心 C)とが略一致している。  [0125] The lift curve L1 in Fig. 9 (a) has the maximum operating angle D1, and at this time, in the variable valve drive device 200, the axis of the cam sprocket 211 (axis E shown in Fig. 5). And the center of the eccentric plate, that is, the center of eccentricity (axis C shown in Fig. 5) substantially coincides.
[0126] このときのバルブの加速度は、図 9 (b)に示す加速度カーブ A1となる。この加速度 カーブ A1から判るように、カムスプロケット 211の軸心と偏心プレート 250の中心とが 一致する場合、バルブ開閉の際における加速度の変動幅は 0に近くなり、加速度力 ーブは、開き側と閉じ側、つまり、左右で略対称な形状となる。言い換えれば、力ムス プロケット 211の軸心と偏心プレートの中心とがー致している場合、バルブの加速度 カーブでは、開き側及び閉じ側でのひずみがな 、。 [0127] よって、吸気カム駒 240の作用角が最大であるリフトカーブ LIを有するノ レブの開 閉タイミングであっても、クランク軸 130の回転に伴う慣性力の大きな変動幅になるこ とがなぐノ レブ開閉により生じる振動は発生しにくい。これにより、エンジンは安定し て駆動する。 [0126] The acceleration of the valve at this time is an acceleration curve A1 shown in Fig. 9 (b). As can be seen from this acceleration curve A1, when the axis of the cam sprocket 211 coincides with the center of the eccentric plate 250, the fluctuation range of acceleration when the valve is opened and closed is close to 0, and the acceleration force curve is on the open side. And a substantially symmetrical shape on the closed side, that is, left and right. In other words, if the axial center of the force mus procket 211 is aligned with the center of the eccentric plate, there will be no distortion on the open side and on the close side in the acceleration curve of the valve. [0127] Therefore, even when the opening / closing timing of the nozzle having the lift curve LI with the maximum operating angle of the intake cam piece 240 is reached, the fluctuation range of the inertial force accompanying the rotation of the crankshaft 130 may be large. Vibrations caused by the opening and closing of the narebu are less likely to occur. As a result, the engine is driven stably.
[0128] また、開閉するバルブの加速度カーブ A1は、加速度の歪みの原因となる負の加速 度変動による変化が 0に近似することから、バルブの加速度がカムの加速度を上回る ジヤンビング現象や、バルブがバルブシートリングに着座する際に跳ねるバウンス現 象が発生しにくい。  [0128] In addition, the acceleration curve A1 of the valve that opens and closes is close to 0 due to negative acceleration fluctuations that cause acceleration distortion. Therefore, the valve acceleration exceeds the cam acceleration. Bouncing phenomenon that jumps when seated on the valve seat ring is less likely to occur.
[0129] このような図 9 (a)に示す最大作用角時リフトカーブ L1に対して、リフトカーブ L2及 び L3では、その低作用角時において、リフトカーブ L1の低作用角時と比較して、加 速度カーブ(図 9 (b)参照)が変形し、最大加速度が大きくなるとともに、最小加速度 力 り小さく(負の加速度が大きく)なる。  [0129] In contrast to the lift curve L1 at the maximum operating angle shown in Fig. 9 (a), the lift curves L2 and L3 have a lower operating angle compared to the lower operating angle of the lift curve L1. As a result, the acceleration curve (see Fig. 9 (b)) deforms, increasing the maximum acceleration and decreasing the minimum acceleration force (negative acceleration increases).
[0130] このように最大加速度が大きくなることによって、例えば、プッシュロッドやロッカーァ ームを備えた SOHC型の動弁系のカムプロファイルでは、バルブの開き始めのタイミ ングまたは閉じタイミングに近 、領域で構造上、凹アールが発生しやすくなる。  [0130] By increasing the maximum acceleration in this way, for example, in the cam profile of a SOHC type valve system equipped with a push rod and a rocker arm, the timing is close to the timing of opening or closing of the valve. Due to the structure, concave rounds are likely to occur.
[0131] このため、凹アールを加工するためにはカム力卩工機や検査設備の改善が必要であ るといったカムをカ卩ェする際の制限から凹アールを生じさせないようにするためには カム駆動における最大加速度を制限せざるを得ない。その結果、カムプロファイルに おいてとりうる最大リフト量が制限されてしまい、最大出力または平均有効圧力が低く なってしまうという問題が生じる。  [0131] For this reason, in order to prevent the formation of a concave radius due to the limitations of cam camshafts, it is necessary to improve the cam power machine and inspection equipment in order to process the concave radius. Has to limit the maximum acceleration in cam drive. As a result, the maximum lift amount that can be taken in the cam profile is limited, and the maximum output or the average effective pressure is lowered.
[0132] また、最小加速度が小さくなることによって、バルブ系の質量 (バルブ及びバルブに 付属する部品の質量)による負の慣性力の絶対値が大きくなる。その結果、弁に異常 な挙動を起こさな 、ように弁パネの反力を大きくするために弁パネ荷重を大きく採ら ざるを得なくなる。このため、摩擦損失が増大し、燃費を悪化させるという問題がある  [0132] Further, as the minimum acceleration decreases, the absolute value of the negative inertia force due to the mass of the valve system (the mass of the valve and parts attached to the valve) increases. As a result, the valve panel load must be increased to increase the reaction force of the valve panel so that the valve does not behave abnormally. For this reason, there is a problem that friction loss increases and fuel consumption deteriorates.
[0133] さらに、直動リフタ式の動弁系とした場合、最小加速度が小さくなることによって、力 スプ(尖点)が生じ、カムプロファイルが成立しなくなる。このため、カスプを生じさせな いようなカムプロファイル作成上の制限によって、最大リフトが制限され、最大出力が 低くなつてしまうという問題が生じる。 [0133] Further, in the case of a direct-acting lifter type valve system, a force sp (point) is generated due to a decrease in minimum acceleration, and a cam profile is not established. For this reason, the maximum lift is limited and the maximum output is limited by cam profile creation restrictions that do not cause cusps. The problem of becoming low occurs.
[0134] このように一般的にカムプロファイルは、凸アールでなければならず、回転方向を正 とするとバルブ開閉における正負の加速度の増加により発生する凹アールを極力減 少するように加工が制限されて 、る。  [0134] As described above, in general, the cam profile must have a convex radius, and if the rotational direction is positive, machining is limited so as to reduce the concave radius generated by the increase in positive and negative acceleration in valve opening and closing as much as possible. It has been.
[0135] これに対し、可変バルブ駆動装置 200では、作用角が最大のときに、制御部 105 は、偏心ボス 260を回転して、偏心孔 262の軸心 Eの位置と可変カム軸 230における 軸心 Cの位置とを重ね、同一軸心上に位置する制御を行っている。  On the other hand, in the variable valve drive device 200, when the operating angle is the maximum, the control unit 105 rotates the eccentric boss 260 so that the position of the axis E of the eccentric hole 262 and the variable cam shaft 230 Overlapping with the position of axis C, control is performed on the same axis.
[0136] つまり、カムプロファイルは高作用角側のバルブリフトカーブをベースに設定するこ とができ、カム加工上の制限を受けやすい低作用角のバルブリフトカーブを、周期的 な角速度により実現する。これにより、エンジン出力の観点力 或いは、燃費の観点 力 有利である。  [0136] In other words, the cam profile can be set based on the valve lift curve on the high operating angle side, and the valve lift curve with a low operating angle that is subject to cam processing limitations is realized by the periodic angular velocity. . This is advantageous from the viewpoint of engine output or fuel efficiency.
[0137] なお、高作用角側のバルブリフトカーブ力 カムプロファイルを設定することによつ て、低作用角のバルブリフトカーブは周期的な角速度変動の影響を受けて、最大カロ 速度は大きぐ最小加速度の絶対値も大きくなる。しかし、低作用角のバルブリフト力 ーブは、バルブオーバーラップ量を極力無くすために慣性力がエンジン高回転時よ りも小さ 、エンジン低回転時に、要求されることが多 、。  [0137] By setting the valve lift curve force cam profile on the high operating angle side, the valve lift curve at the low operating angle is affected by periodic angular velocity fluctuations, and the maximum calorie velocity increases. The absolute value of the minimum acceleration also increases. However, a low lift angle valve lift force has a lower inertia force than that at high engine speed in order to minimize valve overlap, and is often required at low engine speeds.
[0138] このため、低作用角のバルブリフトカーブを周期的なカムの角速度により実現する 可変バルブ駆動装置 200では、カム可変時に、動弁系の駆動とともに慣性力によつ て生じる振動や挙動の影響を受けにくい。  [0138] For this reason, in the variable valve drive device 200 that realizes a valve lift curve with a low operating angle based on the periodic cam angular velocity, vibration and behavior caused by inertia force as well as driving of the valve system when the cam is variable. It is hard to be affected by.
[0139] よって、可変バルブ駆動装置 200は、どのエンジン回転数においても低振動で且 つ、安定したバルブ挙動となる。つまり、可変ノ レブ駆動装置 200を搭載するェンジ ン 100において、どのエンジン回転領域であっても、安定してエンジン駆動を行うこと ができる。  Therefore, the variable valve drive apparatus 200 has low vibration and stable valve behavior at any engine speed. That is, the engine 100 equipped with the variable noble drive device 200 can stably drive the engine in any engine rotation region.
[0140] したがって、オーバラップ量をコントロールして、アイドリング時には、吸気カム駒 24 0によるバルブの開閉を早めに行うことでオーバラップを小さくするまたは無くすことに よって、残留ガス (燃焼ガス)の混入を抑え、ガスの燃焼を安定させることができる。  [0140] Therefore, when the amount of overlap is controlled and the idling cam piece 240 opens and closes the valve early during idling, the overlap is reduced or eliminated, thereby introducing residual gas (combustion gas). And the combustion of gas can be stabilized.
[0141] また、排気脈動の効果による残留ガスの掃気及び吹き返しの低減ィ匕を図ることがで き、さらに、混合気の吸入効果を向上させて、十分な混合気を吸入して、アイドリング の安定化、始動性の向上を図ることができる。 [0141] Further, it is possible to reduce the scavenging and blow-back of the residual gas due to the exhaust pulsation effect, and further improve the intake effect of the air-fuel mixture so that a sufficient air-fuel mixture is sucked and idling is performed. Stabilization and startability can be improved.
[0142] さらに、吹き抜けを防止し、排ガス中の炭化水素を減少させることができるとともに、 エンジン低回転時でのエンジン出力を上げて、燃費の向上を図ることができる。  [0142] Further, blowout can be prevented, hydrocarbons in the exhaust gas can be reduced, and engine output at low engine speed can be increased to improve fuel efficiency.
[0143] 特にエンジン低回転時には、ピストン 102が下死点に位置した時に吸気バルブが 全閉するように吸気カム駒 240を回転させる。  [0143] In particular, when the engine is running at a low speed, the intake cam piece 240 is rotated so that the intake valve is fully closed when the piston 102 is located at the bottom dead center.
[0144] また、エンジン中速回転時(中負荷域)では、吸気バルブを早くから大きく開いてォ ーバラップを大きくとることによりボンビングロスを少なくして、燃焼効率を上げることが できるとともに、燃費向上を図ることができる。  [0144] Also, when the engine is running at medium speed (medium load range), the intake valve is opened wide from the early stage to increase the overlap so that the bombing loss can be reduced, the combustion efficiency can be increased, and the fuel efficiency can be improved. be able to.
[0145] 特に、可変バルブタイミング機構を有するエンジンがモータサイクルに搭載される場 合、従来、モータサイクルでは、作用角を出力重視で決定することが一般的となって いるため、可変バルブタイミング機構を採用する動機は、低速域での燃費や排気の 改善であることが多い。よって、可変バルブタイミング機構の構造におけるバルブリフ トカーブの設定は、従来のエンジンに対して低作用角側で可変にしたいという要求が 大きい。  [0145] In particular, when an engine having a variable valve timing mechanism is mounted in a motorcycle, conventionally, in a motorcycle, it has been common to determine the operating angle with an emphasis on output. The motivation to adopt is often to improve fuel efficiency and exhaust at low speeds. Therefore, there is a great demand for setting the valve lift curve in the structure of the variable valve timing mechanism to be variable on the low working angle side with respect to the conventional engine.
[0146] 本可変バルブ駆動装置 200によれば、従来のエンジンと同じレイアウトで、可変バ ルブ駆動機構を有しな 、仕様のカム形状と、可変バルブ駆動機構を有する仕様の力 ム形状とを同じ形状にすることができ、生産設備や部品の共通化を促進することがで きる。  [0146] According to this variable valve drive device 200, the same layout as that of a conventional engine, without a variable valve drive mechanism, and with a specification cam shape and a specification force mechanism with a variable valve drive mechanism. The same shape can be achieved, and the sharing of production equipment and parts can be promoted.
[0147] さらに、このように構成される可変バルブ駆動装置 200は、可変バルブ駆動機構、 所謂、可変バブルタイミング機構が無いカムシャフトと比べ、カム軸線上において、排 気カム駒 220及び吸気カム駒 240と、カムスプロケット 211との位置関係は変わらな い。よって、可変ノ レブ駆動機構がない従来の自動二輪車、例えば、スタータのェン ジン構造において、カムシャフト部分を可変バルブ駆動装置 200に変更するのみで 、可変ノ レブ機能を備えたエンジンとして利用できる。  Furthermore, the variable valve driving device 200 configured as described above is configured such that the exhaust cam piece 220 and the intake cam piece are on the cam axis as compared with a variable valve drive mechanism, that is, a cam shaft without a so-called variable bubble timing mechanism. The positional relationship between 240 and the cam sprocket 211 remains the same. Therefore, in a conventional motorcycle without a variable valve drive mechanism, for example, an engine structure of a starter, it can be used as an engine having a variable valve function only by changing the camshaft portion to the variable valve drive device 200. .
[0148] 詳細には、可変バルブ駆動装置 200を搭載するために、クランク軸、エンジン本体 のシリンダ部及びシリンダヘッド、タイミングギア等のカム軸を駆動するために各部材 の寸法、配置位置などを変更することがない。  In detail, in order to mount the variable valve driving device 200, the dimensions and arrangement positions of each member for driving the camshaft such as the crankshaft, the cylinder portion and cylinder head of the engine main body, and the timing gear are specified. There is no change.
[0149] 本実施の形態では、エンジン 100は、単気筒 SOHC (Single Over Head Camshaft) 型のものとしている力 これに限らず、多気筒の SOHC型、 DOHC (Double Over He ad Camshaft)としてもよ ヽ。 In the present embodiment, engine 100 is a single cylinder SOHC (Single Over Head Camshaft). Not only this but also a multi-cylinder SOHC type, DOHC (Double Over Head Camshaft).
[0150] 本可変バルブ駆動装置 200では、図 9に示すように、吸気カム駒 240により開閉す る吸気バルブの閉じ側のタイミングを可変にして、排気カム駒 220に対する吸気カム 駒 240の回転位相差を周期的に変動させるものとした力 これに限らない。 [0150] In this variable valve drive device 200, as shown in FIG. 9, the intake valve closing timing of the intake valve that is opened and closed by the intake cam piece 240 is made variable so that the rotational position of the intake cam piece 240 relative to the exhaust cam piece 220 Force that periodically changes the phase difference.
[0151] 例えば、可変バルブ駆動装置 200において、吸気カム駒 240を可変にするに際し[0151] For example, in the variable valve drive device 200, when the intake cam piece 240 is made variable,
、吸気カム駒 240により駆動する吸気バルブの閉じタイミングを略固定にして、開きタ イミングを可変にしてもよい。この一例を変形例として図 10を用いて説明する。 The closing timing of the intake valve driven by the intake cam piece 240 may be substantially fixed, and the opening timing may be variable. An example of this will be described with reference to FIG.
[0152] 図 10は、本発明の一実施の形態に係る可変バルブ駆動装置によるバルブの可変 状態の変形例を説明する図である。詳細には、図 10 (a)は開きタイミングを可変とし た場合の吸気バルブのリフトカーブを示し、図 10 (b)は、図 10 (a)に示すバルブの加 速度カーブを示している。 [0152] Fig. 10 is a view for explaining a modification of the variable state of the valve by the variable valve driving device according to the embodiment of the present invention. Specifically, Fig. 10 (a) shows the lift curve of the intake valve when the opening timing is variable, and Fig. 10 (b) shows the acceleration curve of the valve shown in Fig. 10 (a).
[0153] 図 10 (a)に示すように、開きタイミングを可変として吸気カム駒 240によるノ レブタイ ミングを変更することにより、吸気カム駒 240の開閉タイミング及びリフトカーブ力 L4[0153] As shown in Fig. 10 (a), the opening / closing timing and lift curve force L4 of the intake cam piece 240 are changed by changing the opening timing and changing the noble timing by the intake cam piece 240.
〜L6に変化する。 Change to ~ L6.
[0154] 図 10 (a)におけるリフトカーブ L4は、最大の作用角 D4を有しており、このとき、可 変バルブ駆動装置 200では、カムスプロケット 211の軸心(図 5に示す軸心 E)と、偏 心プレートの中心、つまり、偏心中心(図 5に示す軸心 C)とが略一致している。  [0154] The lift curve L4 in Fig. 10 (a) has the maximum operating angle D4. At this time, in the variable valve drive device 200, the axis of the cam sprocket 211 (the axis E shown in Fig. 5). ) And the center of the eccentric plate, that is, the center of eccentricity (axis C shown in Fig. 5) substantially coincides.
[0155] このときのバルブの加速度は、図 10 (b)に示す加速度カーブ A4となる。  [0155] The acceleration of the valve at this time is an acceleration curve A4 shown in Fig. 10 (b).
[0156] この加速度カーブ A4から判るように、カムスプロケット 211の軸心と偏心プレート 25 0の中心とがー致する場合、バルブ開閉の際における加速度の変動幅は 0に近くなり 、加速度カーブは、開き側と閉じ側、つまり、左右で略対称な形状となる。  [0156] As can be seen from this acceleration curve A4, when the axis of the cam sprocket 211 and the center of the eccentric plate 250 match, the fluctuation range of acceleration when the valve is opened and closed is close to 0, and the acceleration curve is The opening side and the closing side, that is, the left and right sides are substantially symmetrical.
[0157] また、カムスプロケット 211の軸心に対し、偏心プレート 250の中心を偏心させると、 リフトカーブ L5、 L6のように変ィ匕し、これらリフトカーブ L5、 L6における加速度カー ブも A5、 A6と変化する。つまり、図 10に示すように、カムスプロケット 211に対し、偏 心プレート 250を偏心させることによって、閉じ側の最大加速度は大きくなり、最小加 速度は小さくなり、加速度カーブはひずむ。  [0157] Also, if the center of the eccentric plate 250 is decentered with respect to the axis of the cam sprocket 211, it changes as lift curves L5 and L6, and the acceleration curves in these lift curves L5 and L6 are also A5, It changes with A6. That is, as shown in FIG. 10, by making the eccentric plate 250 eccentric with respect to the cam sprocket 211, the maximum acceleration on the closing side increases, the minimum acceleration decreases, and the acceleration curve is distorted.
[0158] このように、カムスプロケット 211の軸心と偏心プレートの中心とがー致している場合 、ノ レブの作用角は、最大作用角 D4となり、その際のバルブの加速度カーブでは、 開き側及び閉じ側でのひずみがな 、。 [0158] When the axis of cam sprocket 211 is aligned with the center of the eccentric plate The operating angle of the nozzle is the maximum operating angle D4, and there is no distortion on the open side and close side in the acceleration curve of the valve at that time.
[0159] よって、吸気カム駒 240の作用角が最大であるリフトカーブ L4を有するノ レブの開 閉タイミングであっても、クランク軸 130の回転に伴う慣性力の大きな変動幅になるこ とがなぐノ レブ開閉により生じる振動は発生しにくい。これにより、エンジンは安定し て駆動する。 [0159] Therefore, even when the opening / closing timing of the knob having the lift curve L4 where the working angle of the intake cam piece 240 is the maximum, the fluctuation range of the inertial force accompanying the rotation of the crankshaft 130 may be large. Vibrations caused by the opening and closing of the narebu are less likely to occur. As a result, the engine is driven stably.
[0160] また、開閉するバルブの加速度カーブ A4は、速度の歪みの原因となる負の加速度 力 SOであることから、バルブの運動がカムの規制から外れるジヤンビング現象や、バル ブがバルブシートリングに着座する際に跳ねるバウンス現象が発生しにくい。  [0160] In addition, the acceleration curve A4 of the valve that opens and closes is a negative acceleration force SO that causes the speed distortion, so the valve movement is not the regulation of the cam. The bounce phenomenon that jumps when sitting on the floor is less likely to occur.
[0161] このようなエンジン 100に設けられる可変バルブ駆動装置 200によれば、クランク軸 の最大回転数または、最大回転数付近であるエンジンの高回転時では、偏心プレー ト 250の偏心中心 Eの位置はカムシャフト軸心 Cに一致する。このため、エンジン高回 転時において、偏心プレート 250を偏心させることなぐ吸気カム駒 240を回転駆動 して、吸気バルブを開閉駆動できる。  [0161] According to the variable valve drive device 200 provided in the engine 100 as described above, the eccentric center E of the eccentric plate 250 can be obtained at the maximum rotation speed of the crankshaft or at the high rotation speed of the engine near the maximum rotation speed. The position matches the camshaft axis C. Therefore, at the time of high engine rotation, the intake cam piece 240 that does not cause the eccentric plate 250 to be eccentric can be rotationally driven to open and close the intake valve.
[0162] つまり、エンジン 100の高回転時において、偏心プレート 250が偏心位置で回転駆 動しないため、可動カム軸 230を介して、吸気カム駒 240力 カムスプロケット 211に 対して回転位相差を持って周期的に変動することがない。これにより、開閉駆動する 排気弁または吸気弁の加速度カーブの角速度変動による変化は極めて小さく(変化 量が 0に近く)なる。  [0162] In other words, since the eccentric plate 250 does not rotate at the eccentric position when the engine 100 is rotating at a high speed, there is a rotational phase difference with respect to the intake cam piece 240 force cam sprocket 211 via the movable cam shaft 230. And does not fluctuate periodically. As a result, the change in the acceleration curve of the exhaust valve or intake valve driven to open or close is very small (the amount of change is close to 0).
[0163] したがって、運動力学的に最も慣性力が大きくなるとともに、ジヤンビング現象及び バウンス現象などの問題となる弁挙動が発生しやすいエンジンの高回転時において 、低振動で安定した弁挙動を行うことができる。  [0163] Accordingly, the inertial force is the largest in terms of kinematics, and stable valve behavior with low vibrations at the time of high engine rotation is likely to cause problematic valve behaviors such as a jumping phenomenon and a bounce phenomenon. Can do.
[0164] また、エンジン低中速回転時においては、制御部 150は偏心プレート 250を適宜 移動することによって、カムスプロケット 211の軸心 C (カムシャフト軸心)から偏心させ るため、燃費の向上及び排ガスの低減ィ匕が図られた駆動が行われる。このようなェン ジン低中速回転時においては、慣性力も小さいため、偏心プレート 250の偏心による 吸気バルブの加速度変動は問題にならない。  [0164] In addition, when the engine is running at low and medium speeds, the control unit 150 moves the eccentric plate 250 as appropriate to make it eccentric from the axis C (camshaft axis) of the cam sprocket 211, thereby improving fuel efficiency. In addition, the driving for reducing the exhaust gas is performed. When the engine is rotating at low and medium speeds, the inertial force is small, so the fluctuation in the acceleration of the intake valve due to the eccentricity of the eccentric plate 250 does not matter.
[0165] よって、可変バルブ駆動装置 200を用いることによって、全エンジン運転領域 (すべ てのエンジン回転数)において低振動で、安定したバルブ挙動となり、有効出力を最 大限発揮できるとともに、燃費及び排ガスの観点からも優れたエンジンとなっている。 [0165] Therefore, by using the variable valve drive device 200, the entire engine operation range (all All engines have a low vibration and stable valve behavior, and the effective output can be maximized. The engine is also excellent in terms of fuel consumption and exhaust gas.
[0166] また、本可変バルブ駆動装置 200では、吸気バルブの作用角を可変させるベぐ排 気カム駒 220に対して、吸気カム駒 240の回転位相差を周期的に変動するものとし た力 これに限らない。つまり、吸気カム駒 240に対して、排気カム駒 220の回転位 相差を周期的に変動するものとしてもよい。  [0166] Further, in this variable valve drive apparatus 200, the rotational phase difference of the intake cam piece 240 varies periodically with respect to the exhaust exhaust cam piece 220 that varies the operating angle of the intake valve. Not limited to this. That is, the rotational phase difference of the exhaust cam piece 220 may be periodically changed with respect to the intake cam piece 240.
[0167] この場合、上記可変バルブ駆動装置 200は、カムスプロケット 211と一体に回転す ることにより吸気バルブを駆動する吸気カム駒を備えるとともに、可変カム軸 230に、 排気バルブを駆動する排気カム駒を備えた構成とする。  In this case, the variable valve drive device 200 includes an intake cam piece that drives the intake valve by rotating integrally with the cam sprocket 211, and an exhaust cam that drives the exhaust valve on the variable cam shaft 230. The structure is provided with a piece.
[0168] この構成により、排気バルブの作用角を可変させることで、オーバラップ量を変更す ることができ、上記と同様の作用効果を有することができる。詳細には、排気バルブの 作用角形成の要因となる排気バルブの開きタイミング及び閉じタイミングを、上述した 吸気バルブでの開きタイミング及び閉じタイミングの設定と同様に、それぞれ別途に 設定することができる。  [0168] With this configuration, the amount of overlap can be changed by varying the operating angle of the exhaust valve, and the same effect as described above can be obtained. In detail, the opening timing and closing timing of the exhaust valve, which cause the working angle of the exhaust valve, can be set separately, similarly to the setting of the opening timing and closing timing of the intake valve described above.
[0169] 次に、この可変バルブ駆動装置 200を備えるエンジン 100が搭載された車両の一 例を具体的に説明する。  [0169] Next, an example of a vehicle equipped with the engine 100 including the variable valve drive device 200 will be described in detail.
[0170] ここでは、エンジン 100を搭載する車両を、スタータ型の自動二輪車として説明する 力 これに限らず、エンジン 100が搭載される車両であればどのような車両でもよい。  Here, the power on which the vehicle equipped with engine 100 is described as a starter type motorcycle is not limited to this, and any vehicle as long as it is equipped with engine 100 may be used.
[0171] 図 11は、本発明の一実施の形態に係るエンジンの可変バルブ駆動装置を備える 自動二輪車の要部構成を示す概略側面図である。なお、本実施の形態において前 、後、左、右とは、上記自動二輪車のシートに着座した状態で見た場合の前、後、左 、右を意味する。また、本実施の形態における自動二輪車は、スタータ型二輪車とし て説明するが、これに限らず、可変バルブ駆動装置 200付きの車両であれば、どの ような車両でも良い。  [0171] Fig. 11 is a schematic side view showing a configuration of a main part of a motorcycle including the variable valve drive device for an engine according to one embodiment of the present invention. In the present embodiment, front, rear, left, and right mean front, rear, left, and right when viewed in the state of being seated on the seat of the motorcycle. Although the motorcycle in the present embodiment is described as a starter type motorcycle, the present invention is not limited to this, and any vehicle may be used as long as it has a variable valve drive device 200.
[0172] 図 11に示す自動二輪車 500は、タンデム型スタータタイプであり、前側でハンドル 5 02を回動自在に支持する車両本体 503の後側にタンデムシート 504を備える。この タンデムシート 504は、下部に配置されたトランクスペース 505に対し開閉自在に取り 付けられている。このトランクスペース 505の下方には、駆動ユニット 600が配置され ている。 A motorcycle 500 shown in FIG. 11 is a tandem starter type, and includes a tandem seat 504 on the rear side of a vehicle main body 503 that rotatably supports a handle 502 on the front side. The tandem seat 504 is attached to the trunk space 505 arranged at the lower part so as to be freely opened and closed. Below this trunk space 505, a drive unit 600 is arranged. ing.
[0173] この駆動ユニット 600の前端部は、ハンドル 502の下方から後方に向けてタンデム シート 504の下方まで延びる前側本体 503aの後端部に、車幅方向に水平配置され たピボット軸(図示せず)を介して上下に揺動自在に取り付けられている。  [0173] The front end portion of the drive unit 600 is a pivot shaft (not shown) horizontally disposed in the vehicle width direction at the rear end portion of the front main body 503a extending from the lower side of the handle 502 to the lower side of the tandem seat 504. ) And can be swung up and down.
[0174] また、駆動ユニット 600の後端部には、後輪 508が車軸 510を介して取り付けられ、 その後端部と、トランクスペース 505の後端部を支持するフレームピボットとの間には リアサスペンション 512が懸架されている。なお、駆動ユニット 600の前端部の上部前 方には、トランクスペース 505の前端部が配置されて 、る。  [0174] Further, a rear wheel 508 is attached to the rear end portion of the drive unit 600 via an axle 510, and the rear end portion and a frame pivot that supports the rear end portion of the trunk space 505 are rear. Suspension 512 is suspended. Note that the front end of the trunk space 505 is disposed in front of the upper end of the front end of the drive unit 600.
[0175] 図 12は、図 11の駆動ユニットの要部を示す概略平面図である。  FIG. 12 is a schematic plan view showing the main part of the drive unit of FIG.
[0176] 図 12に示すように、駆動ユニット 600では、車両の前側にエンジン 100が搭載され 、エンジン 100の駆動力を、駆動ユニット 600の後端部に配置された車軸 510に、 C VT機構部 610を介して回転駆動することによって後輪 508を回転させる。  As shown in FIG. 12, in drive unit 600, engine 100 is mounted on the front side of the vehicle, and the driving force of engine 100 is applied to axle 510 arranged at the rear end of drive unit 600, with the C VT mechanism. The rear wheel 508 is rotated by being driven to rotate through the part 610.
[0177] また、エンジン 100は、そのシリンダ部 106の軸線を略水平にし、且つ、クランク軸 1 30を車幅方向と略平行にして、トランクスペース 505の下方で車両前後方向の略中 央部分に位置されている。  [0177] In addition, engine 100 has a substantially central portion in the vehicle front-rear direction below trunk space 505, with the axis of cylinder portion 106 being substantially horizontal and crankshaft 130 being substantially parallel to the vehicle width direction. Is located.
[0178] クランク軸 130の他端部側、ここでは、車両の左側の端部には、車両後方に延びる CVT機構部 610が配置されている。じ¥丁機構部610は、シリンダ軸と略平行に配置 され、クランク軸 130に取り付けられるプーリ 611と、車軸 510に取り付けられる プーリ 612と、これらプーリ 611、 612と〖こ掛け渡されたべノレト 613と、遠心クラッチ 61 4とを有する。  [0178] A CVT mechanism portion 610 extending rearward of the vehicle is disposed on the other end portion side of the crankshaft 130, here, on the left end portion of the vehicle. The binding mechanism 610 is arranged substantially parallel to the cylinder shaft, and includes a pulley 611 attached to the crankshaft 130, a pulley 612 attached to the axle 510, and a benolet 613 spanned between the pulleys 611 and 612. And a centrifugal clutch 61 4.
[0179] 遠心クラッチ 614は、車軸 510に取り付けられている。また、この車軸 510には、減 速ギア 615が取り付けられ、プーリ 611及びベルト 613を介して伝達されるクランク軸 130の駆動力を減速する。  [0179] Centrifugal clutch 614 is attached to axle 510. In addition, a deceleration gear 615 is attached to the axle 510, and the driving force of the crankshaft 130 transmitted through the pulley 611 and the belt 613 is decelerated.
[0180] モータサイクルでは、排ガス規制問題等により、可変バルブタイミング機構を搭載す ることが考えられ、特に、スタータ型の車両 (以下、「スタータ」という)等においては、 車両寸法の制限上、エンジン構造は、より簡略ィ匕されることが望ましい。  [0180] In motorcycles, it is conceivable to install a variable valve timing mechanism due to exhaust gas regulation problems, etc. Especially in starter type vehicles (hereinafter referred to as “starters”), etc. It is desirable that the engine structure be simplified.
[0181] 本実施の形態のエンジン 100は、従来エンジン構成におけるカム駆動軸に相当す るカム駆動体 210と、シリンダ部 106の上部に配置される排気及び吸気カム駒 220、 240との間には、偏心部材に相当する偏心プレート 250を配置していない。 [0181] The engine 100 of the present embodiment includes a cam drive body 210 corresponding to a cam drive shaft in a conventional engine configuration, and an exhaust and intake cam piece 220 disposed above the cylinder portion 106, No eccentric plate 250 corresponding to the eccentric member is arranged between the two.
[0182] エンジン 100では、カム駆動体 210を挟んで、カム軸線上に、偏心プレート 250と、 排気及び吸気カム駒 220、 240とを配置している。 In engine 100, eccentric plate 250 and exhaust and intake cam pieces 220 and 240 are arranged on the cam axis with cam drive body 210 interposed therebetween.
[0183] すなわち、カム駆動チェーン 133のチェーンライン上に配置されるカムスプロケット 2That is, the cam sprocket 2 arranged on the chain line of the cam drive chain 133
11を挟んで、カム軸線上に、偏心プレート 250と、排気及び吸気カム駒 220、 240と が配置されている。 An eccentric plate 250 and exhaust and intake cam pieces 220 and 240 are arranged on the cam axis along the 11.
[0184] 排気及び吸気カム駒 220、 240は、エンジン構造上、シリンダ部 106の上部に、シリ ンダ軸線 CLに沿って配置されるため、従来構成と異なり、シリンダ軸線と、カムチェ ーンラインは隣り合う位置に配設された構造となっている。  [0184] The exhaust and intake cam pieces 220 and 240 are arranged on the upper part of the cylinder portion 106 along the cylinder axis CL due to the engine structure. Therefore, unlike the conventional configuration, the cylinder axis and the cam chain line are adjacent to each other. The structure is arranged at a position.
[0185] このため、図 12に示すように、エンジン 100のチェーンライン Lは、カムスプロケット 2 11と排気及び吸気カム駒 220、 240との間に偏心部材が配置された従来構成の場 合のチェーンライン LAと比べて、シリンダ軸線 CLに接近した位置に配置される。  Therefore, as shown in FIG. 12, the chain line L of the engine 100 has a conventional configuration in which an eccentric member is disposed between the cam sprocket 211 and the exhaust and intake cam pieces 220 and 240. Compared to the chain line LA, it is arranged closer to the cylinder axis CL.
[0186] これにより、チェーンライン Lの外側で、チェーンライン Lと略平行に配置される CVT 機構 610のベルト 613ラインは、従来構造の場合より、シリンダ軸線 CLに近くなる。  As a result, the belt 613 line of the CVT mechanism 610 disposed outside the chain line L and substantially parallel to the chain line L is closer to the cylinder axis CL than in the conventional structure.
[0187] よって、駆動ユニット 600自体の横幅が小さくなる。詳細には、駆動ユニット 600に おいて、左側端面 600aが、チェーンライン Lがシリンダ軸線 CLに接近する分、従来 構成の可変バルブ駆動装置装備のエンジンを搭載した場合の左側側面 600bよりも 、右側側面に接近する。  [0187] Therefore, the lateral width of the drive unit 600 itself is reduced. Specifically, in the drive unit 600, the left end surface 600a is closer to the right side than the left side surface 600b when the engine equipped with the conventional variable valve drive device is mounted, as the chain line L approaches the cylinder axis CL. Approach the side.
[0188] つまり、スタータ型の自動二輪車 500は、構造上、 CVT (Continuously Variable Tra nsmission:無段階変速装置)用のシーブなどクランク軸上においてカム駆動チェーン 133より外側に設けられる部品を備える。  In other words, starter type motorcycle 500 is structurally provided with components provided on the outer side of cam drive chain 133 on the crankshaft, such as a sheave for CVT (Continuously Variable Transmission).
[0189] このような自動二輪車 500に搭載されるエンジン 100では、カム軸上において、力 ム駆動チェーン 133のチェーンライン Lと、シリンダ軸線 CLとの間に可変バルブ駆動 のための部材を設けることがない。これにより、クランク軸 130上でも、その部材と対応 する分のスペースを設ける必要がなく、従来の可変バルブタイミング機構を備えたェ ンジンと比べて、カムスプロケット 211と各カム駒 220、 240 (図 1〜図 3参照)とが離 間しない。  [0189] In the engine 100 mounted on such a motorcycle 500, a member for driving a variable valve is provided on the cam shaft between the chain line L of the force drive chain 133 and the cylinder axis CL. There is no. As a result, it is not necessary to provide a space corresponding to the member on the crankshaft 130, and the cam sprocket 211 and the cam pieces 220 and 240 (see FIG. 5) are compared with the engine having the conventional variable valve timing mechanism. 1 to 3) are not separated.
[0190] 言い換えれば、クランク軸 130に対して略直交配置されるカム駆動チ ーン 133の チェーンライン L力 シリンダ軸線 CL力も離間することがない。 [0190] In other words, the cam drive chain 133 disposed substantially orthogonal to the crankshaft 130 Chain line L force Cylinder axis CL force is not separated.
[0191] これにより、 自動二輪車 500は、可変バルブタイミング機構を搭載しない構造と同様 のクランクケース 112幅を有するものとなる。  [0191] Thus, the motorcycle 500 has the same crankcase 112 width as that of the structure without the variable valve timing mechanism.
[0192] よって、自動二輪車 500における十分なバンク角を取ることが出来、車両の運動特 性を確保することができる。  [0192] Therefore, a sufficient bank angle in the motorcycle 500 can be obtained, and the motion characteristics of the vehicle can be ensured.
[0193] さらに、可変バルブ駆動装置 200では、偏心プレート 250等の偏心機構部分は、排 気及び吸気カム駒 220、 240とカムスプロケット 211との間に配置されて!、な!/、。  [0193] Furthermore, in the variable valve drive device 200, the eccentric mechanism portion such as the eccentric plate 250 is disposed between the exhaust and intake cam pieces 220, 240 and the cam sprocket 211!
[0194] このため、エンジン 100において、可変バルブ駆動装置 200以外の構造は、可変 バルブ駆動装置 200を備えな 、エンジンと略同様の構成部材を用いることができる。 つまり、エンジン本体部 110のシリンダヘッド 104から可変バルブ駆動装置 200を抜 いて、偏心プレート 250、可変カム軸 230、偏心ボス 260及び、ヘッドカバー 105を 変更するだけで、可変ノ レブ駆動装置 200を備えな 、エンジンとして用いることがで きる。  [0194] For this reason, in the engine 100, structures other than the variable valve driving device 200 can use substantially the same components as the engine without the variable valve driving device 200. That is, the variable valve drive device 200 is provided by simply removing the variable valve drive device 200 from the cylinder head 104 of the engine body 110 and changing the eccentric plate 250, the variable cam shaft 230, the eccentric boss 260, and the head cover 105. It can be used as an engine.
[0195] よって、自動二輪車に搭載する場合でも、従来のエンジンに対して大幅に構造を変 更する必要は生じることがなぐ従来のエンジンと非可変仕様のエンジンでシリンダへ ッドなどの主なエンジン構成部品を共通にすることができる。  [0195] Therefore, even when installed in a motorcycle, there is no need to change the structure significantly compared to the conventional engine. Engine components can be shared.
[0196] また、エンジンに、カムスプロケットと、カム軸との間に偏心プレート等の偏心機構が 配置されて ヽな 、ため、カムスプロケットがシリンダ軸力 離間するために生じるクラン クの曲げ強度の低下が低下することがな!、。  [0196] In addition, since an eccentric mechanism such as an eccentric plate is arranged between the cam sprocket and the camshaft in the engine, the bending strength of the crank that is generated when the cam sprocket is separated from the cylinder axial force. The decline will never drop! ,.
[0197] また、カム駆動軸そのものを軸方向に移動させる構造と異なり、簡易な構成でォー バラップ期間を可変することができる。  [0197] Unlike the structure in which the cam drive shaft itself is moved in the axial direction, the overlap period can be varied with a simple configuration.
[0198] また、本実施の形態の自動二輪車 500においては、エンジン構成を大幅に変更す ることなく、簡易な構成でカムの作用角を可変して、エンジンにおける高レスポンス、 低燃費を実現することができる。また、自動二輪車 500は、動力学的に最も慣性力が 大きくなるとともに、ジヤンビング現象及びバウンス現象などの問題となる弁挙動が発 生しやすいエンジン 100の高回転時においても、低振動で安定して走行できるものと なっている。  [0198] In addition, in the motorcycle 500 of the present embodiment, the cam operating angle can be varied with a simple configuration without significantly changing the engine configuration to achieve high response and low fuel consumption in the engine. be able to. In addition, the motorcycle 500 has the most dynamic force and is stable at low vibrations even at high engine speeds when the engine 100 is prone to valve behavior that causes problems such as jamming and bounce. It is possible to run.
[0199] 本実施の形態では、エンジン 100は、単気筒 SOHC (Single Over Head Camshaft) 型のものとしている力 これに限らず、多気筒の SOHC型、 DOHC (Double Over He ad Camshaft)でも適用可能である。 In the present embodiment, engine 100 is a single cylinder SOHC (Single Over Head Camshaft). This is not limited to this type, but is applicable to the multi-cylinder SOHC type and DOHC (Double Over Head Camshaft).
[0200] なお、本可変バルブ駆動装置 200では、吸気弁の作用角を可変させるベぐ排気 カム駒 220に対して、吸気カム駒 240の回転位相差を周期的に変動するものとした 1S これに限らない。つまり、吸気カム駒 240に対して、排気カム駒 220の回転位相 差を周期的に変動するものとしてもよい。この場合、上記可変バルブ駆動装置 200に おいて、カムスプロケット 211と一体に、回転することにより、吸気弁を駆動する吸気 カム駒を設け、可変カム軸 230に、排気弁を駆動する排気カム駒を設けた構成とする 。この構成により、排気弁の作用角を可変させることで、オーバラップを変更すること ができ、上記 [0200] In this variable valve drive device 200, the rotational phase difference of the intake cam piece 240 is periodically changed with respect to the exhaust cam piece 220 that changes the working angle of the intake valve. Not limited to. That is, the rotational phase difference of the exhaust cam piece 220 may be periodically changed with respect to the intake cam piece 240. In this case, the variable valve driving device 200 is provided with an intake cam piece for driving the intake valve by rotating integrally with the cam sprocket 211, and an exhaust cam piece for driving the exhaust valve on the variable cam shaft 230. It is set as the structure which provided. With this configuration, it is possible to change the overlap by changing the working angle of the exhaust valve.
と同様の作用効果を有することができる。  It can have the same operation effect.
[0201] 本発明の第 1の態様に係る可変バルブ駆動装置は、クランク軸から伝達される駆動 力により回転するカム駆動部材と、前記カム駆動部材の駆動によって、前記カム駆動 部材の回転軸と同方向の軸を中心に回転するとともに、前記軸が前記回転軸の軸心 位置力 偏心位置に移動可能に設けられる偏心部材と、前記回転軸と同軸上に配 置され、前記偏心部材によって前記回転軸を中心に回転駆動されるとともに、前記 偏心部材が前記偏心位置で回転駆動する際に、前記カム駆動部材に対する回転位 相差が周期的に変動するカム軸と、前記カム軸によって前記カム軸と同じ回転位相 で回転し、排気弁または吸気弁を開閉 [0201] The variable valve drive apparatus according to the first aspect of the present invention includes a cam drive member that is rotated by a drive force transmitted from a crankshaft, and a rotation shaft of the cam drive member that is driven by the cam drive member. An eccentric member that rotates about an axis in the same direction and that the shaft is movable to an axial center position force eccentric position of the rotary shaft, and is arranged coaxially with the rotary shaft, and is arranged by the eccentric member to A cam shaft that is rotationally driven about a rotation shaft and has a rotational phase difference with respect to the cam drive member periodically when the eccentric member is rotationally driven at the eccentric position; Rotate at the same rotational phase as, and open or close the exhaust valve or intake valve
駆動するカム駒とを備える可変バルブ駆動装置であって、前記クランク軸の回転数を 検出する回転数検出部と、前記回転数検出部により検出される前記クランク軸の回 転数に応じて、前記偏心部材を移動して、前記カム駆動部材の回転軸に対する前記 偏心部材の軸の位置を制御する制御部とを有し、前記制御部は、前記クランク軸の 最大回転数または、前記最大回転数付近の回転数にお!、て前記偏心部材を移動し て、前記偏心部材の軸の位置を前記回転軸の軸心位置に一致させる構成を採る。  A variable valve drive device including a cam piece to be driven, wherein a rotation speed detection unit that detects a rotation speed of the crankshaft, and a rotation speed of the crankshaft detected by the rotation speed detection unit; A control unit that moves the eccentric member and controls a position of the shaft of the eccentric member with respect to a rotation shaft of the cam drive member, and the control unit has a maximum rotational speed of the crankshaft or a maximum rotation of the crankshaft. A configuration is adopted in which the eccentric member is moved so that the position of the shaft of the eccentric member coincides with the axial position of the rotating shaft at a rotational speed close to a few.
[0202] この構成によれば、クランク軸の最大回転数または、最大回転数付近の回転数、つ まり、搭載されるエンジンの最大回転数または、最大回転数付近の回転数であるェン ジン高回転時では、偏心部材の軸の位置は前記回転軸の軸心位置に一致する。こ のため、エンジンの最大回転数または、最大回転数付近において、偏心部材を偏心 させることなぐカム駒を回転駆動して、排気弁または吸気弁を開閉駆動することがで きる。 [0202] According to this configuration, the engine having the maximum number of revolutions of the crankshaft or the number of revolutions near the maximum number of revolutions, that is, the maximum number of revolutions of the mounted engine or the number of revolutions around the maximum number of revolutions. At the time of high rotation, the position of the shaft of the eccentric member coincides with the shaft center position of the rotation shaft. This Therefore, the exhaust valve or the intake valve can be driven to open and close by rotating the cam piece that does not decenter the eccentric member at or near the maximum engine speed.
[0203] つまり、エンジンの最大回転数または、最大回転数付近において、偏心部材が偏 心位置で回転駆動しないため、カム軸を介して、カム駒が、カム駆動部材に対して回 転位相差を持って周期的に変動することがなぐ開閉駆動する排気弁または吸気弁 の角速度変動は極めて小さくなる。  [0203] That is, since the eccentric member is not driven to rotate at the eccentric position at or near the maximum rotational speed of the engine, the cam piece has a rotational phase difference with respect to the cam driving member via the cam shaft. The fluctuation of the angular velocity of the exhaust valve or intake valve that is driven to open and close, which does not fluctuate periodically, is extremely small.
[0204] したがって、運動力学的に、慣性力に伴い大きな振動が生じ易ぐジヤンビング現 象及びバウンス現象などの問題となる弁挙動が発生しやすいエンジン高回転時にお いて、低振動で安定した弁挙動を行うことができる。  [0204] Therefore, a stable valve with low vibration at kinematics and high engine speed, which tends to cause problematic valve behavior, such as a jumble phenomenon and bounce phenomenon, in which large vibration is likely to occur due to inertial force. Behavior can be performed.
[0205] 本発明の第 2の態様に係る可変バルブ駆動装置は、クランク軸から伝達される駆動 力により回転するカム駆動部材と、前記カム駆動部材の駆動によって、前記カム駆動 部材の回転軸と同方向の軸を中心に回転するとともに、前記軸が前記回転軸の軸心 位置力 偏心位置に移動可能に設けられる偏心部材と、前記回転軸と同軸上に配 置され、前記偏心部材によって前記回転軸を中心に回転駆動されるとともに、前記 偏心部材が前記偏心位置で回転駆動する際に、前記カム駆動部材に対する回転位 相差が周期的に変動するカム軸と、前記カム軸によって前記カム軸と同じ回転位相 で回転し、排気弁または吸気弁の作用角を可変にするカム駒とを備える可変バルブ 駆動装置であって、前記クランク軸の回転数を検出する回転数検出部と、前記回転 数検出部により検出される前記クランク軸の回転数に応じて、前記偏心部材を移動し て、前記カム駆動部材の回転軸に対する前記偏心部材の軸の位置を制御する制御 部とを有し、前記制御部が、前記偏心部材の軸の位置を前記回転軸の軸心位置と 一致させた際に、前記排気弁または吸気弁の作用角は最大となる構成を採る。  [0205] The variable valve driving device according to the second aspect of the present invention includes a cam driving member that rotates by a driving force transmitted from a crankshaft, and a rotating shaft of the cam driving member that is driven by the cam driving member. An eccentric member that rotates about an axis in the same direction and that the shaft is movable to an axial center position force eccentric position of the rotary shaft, and is arranged coaxially with the rotary shaft, and is arranged by the eccentric member to A cam shaft that is rotationally driven about a rotation shaft and has a rotational phase difference with respect to the cam drive member periodically when the eccentric member is rotationally driven at the eccentric position; A variable valve drive device that includes a cam piece that rotates at the same rotational phase as that of the exhaust valve and makes the operating angle of the exhaust valve or intake valve variable, and a rotational speed detector that detects the rotational speed of the crankshaft, A control unit that moves the eccentric member in accordance with the rotational speed of the crankshaft detected by the rotational speed detection unit and controls the position of the shaft of the eccentric member with respect to the rotational shaft of the cam drive member. When the control unit matches the position of the shaft of the eccentric member with the position of the axis of the rotary shaft, the working angle of the exhaust valve or the intake valve is maximized.
[0206] この構成によれば、偏心部材の軸の位置が回転軸の軸心位置と一致している状態 のときに、排気弁または吸気弁の作用角が最大となる。このため、排気弁または吸気 弁が周期的角速度変動のない状態で、且つ、排気弁または吸気弁の最大作用角側 でのリフトカーブに基づいてカム駒のカムプロファイルを作成することができる。  [0206] According to this configuration, the operating angle of the exhaust valve or the intake valve is maximized when the position of the shaft of the eccentric member coincides with the position of the shaft center of the rotating shaft. Therefore, the cam profile of the cam piece can be created based on the lift curve on the maximum operating angle side of the exhaust valve or the intake valve in a state where the exhaust valve or the intake valve does not have a periodic angular velocity fluctuation.
[0207] つまり、カム駒のカムプロファイルを決定する際に、排気弁または吸気弁が周期的 角速度変動のない状態で、且つ、排気弁または吸気弁の低作用角側でのリフトカー ブに基づ 、て決定する場合と比べて、負の曲率半径(凹アール)を発生させることな ぐ最大弁リフトを大きくとれる。 [0207] That is, when determining the cam profile of the cam piece, the exhaust valve or the intake valve is periodically The maximum without generating a negative radius of curvature (concave radius) compared to the case where there is no fluctuation in angular velocity and it is determined based on the lift curve on the low operating angle side of the exhaust valve or intake valve. Large valve lift.
[0208] よって、凸アールを有するように加工する従来のカムカ卩工法を用いて、搭載される エンジンの最大出力を大きくできるカム駒を設定することができる。これにより、ェンジ ンの回転数に応じて、低振動で安定した弁挙動を行うカム駒のカムプロファイルを設 定することができる。  [0208] Therefore, a cam piece capable of increasing the maximum output of the mounted engine can be set by using a conventional camshaft method for processing to have a convex radius. This makes it possible to set the cam profile of the cam piece that performs stable valve behavior with low vibration according to the engine speed.
[0209] このようにカム駒のカムプロファイルを設定できるため、運動力学的に最も慣性力が 大きくなるとともに、ジヤンビング現象及びバウンス現象などの問題となる弁挙動が発 生しやすいエンジンの最大回転数または、最大回転数付近においても、低振動で安 定した弁挙動を行うことができる。  [0209] Since the cam profile of the cam piece can be set in this way, the maximum rotational speed of the engine or the maximum inertial force in terms of kinematics, and the valve behavior that causes problems such as the jumping phenomenon and the bounce phenomenon are likely to occur. Even in the vicinity of the maximum speed, stable valve behavior can be achieved with low vibration.
[0210] また、本発明の第 3の態様に係る可変バルブ駆動装置は、クランク軸力も伝達され る駆動力により回転するカム駆動部材と、前記カム駆動部材の駆動によって、前記力 ム駆動部材の回転軸と同方向の軸を中心に回転するとともに、前記軸が前記回転軸 の軸心位置力 偏心位置に移動可能に設けられる偏心部材と、前記回転軸と同軸 上に配置され、前記偏心部材によって前記回転軸を中心に回転駆動されるとともに、 前記偏心部材が前記偏心位置で回転駆動する際に、前記カム駆動部材に対する回 転位相差が周期的に変動するカム軸と、前記カム軸によって前記カム軸と同じ回転 位相で回転し、排気弁または吸気弁の作用角を可変にするカム駒とを備える可変バ ルブ駆動装置であって、前記クランク軸の回転数を検出する回転数検出部と、前記 回転数検出部により検出される前記クランク軸の回転数に応じて、前記偏心部材を 移動して、前記カム駆動部材の回転軸に対する前記偏心部材の軸の位置を制御す る制御部とを有し、前記制御部が、前記クランク軸の略最大回転数において、前記偏 心部材の軸の位置を前記回転軸の軸心位置と一致させた際に、前記排気弁または 吸気弁の作用角は最大となる構成を採る。  [0210] Further, the variable valve drive apparatus according to the third aspect of the present invention includes a cam drive member that rotates by a drive force that also transmits a crankshaft force, and the force drive member that is driven by the cam drive member. An eccentric member that rotates about an axis in the same direction as the rotating shaft and that the shaft is movable to an eccentric position of the rotating shaft; and an eccentric member that is disposed coaxially with the rotating shaft, the eccentric member And a camshaft in which a rotation phase difference with respect to the cam drive member periodically varies when the eccentric member is rotationally driven at the eccentric position. A variable valve drive device that includes a cam piece that rotates at the same rotation phase as the cam shaft and makes the operating angle of the exhaust valve or intake valve variable, and that detects the rotation speed of the crankshaft. A control unit that moves the eccentric member in accordance with the rotation speed of the crankshaft detected by the rotation speed detection unit, and controls the position of the shaft of the eccentric member with respect to the rotation shaft of the cam drive member; And when the control unit makes the position of the shaft of the eccentric member coincide with the position of the shaft center of the rotating shaft at a substantially maximum rotational speed of the crankshaft, the action of the exhaust valve or the intake valve The corner has the maximum configuration.
[0211] この構成によれば、クランク軸の略最大回転数において徘気弁または吸気弁の作 は ϋ なり、徘気 #または の ^? を極小化するこ がで る 本発明の第 4の態様に係る可変バルブ駆動装置は、上記構成において、前記カム 駆動部材の回転軸と略平行で、且つ、エンジン側に固定される回転軸を中心に回転 することによって、前記偏心部材の軸を、前記カム駆動部材の回転軸に対して同軸 位置力 偏心位置に移動させる偏心移動部を備え、前記偏心移動部の回転は、前 記制御部により制御される構成を採る。 [0211] According to this configuration, the operation of the aeration valve or the intake valve is substantially different at the substantially maximum rotational speed of the crankshaft, and the aspiration # or ^? Can be minimized. A variable valve driving device according to an aspect is the above-described configuration, wherein the cam By rotating about a rotation shaft that is substantially parallel to the rotation axis of the drive member and fixed to the engine side, the shaft of the eccentric member is coaxial with the rotation shaft of the cam drive member. An eccentric moving unit that is moved in the direction is provided, and the rotation of the eccentric moving unit is controlled by the control unit.
[0212] この構成によれば、偏心移動部を、カム駆動部材の回転軸と略平行で、且つ、ェン ジン側に固定される回転軸を中心に回転させるだけで、偏心部材の軸を、カム駆動 部材の回転軸に対して同軸位置力 偏心位置に適宜移動させることができる。  [0212] According to this configuration, the shaft of the eccentric member can be rotated only by rotating the eccentric moving portion around the rotation shaft that is substantially parallel to the rotation shaft of the cam drive member and fixed to the engine side. Thus, it can be appropriately moved to the eccentric position of the coaxial position force with respect to the rotation axis of the cam drive member.
[0213] 本発明の第 5の態様に係る可変バルブ駆動装置は、上記構成において、前記偏心 移動部は、前記カム駆動部材に対し、前記カム駆動部材の回転軸方向で前記偏心 部材を挟んで対向配置され、前記偏心移動部の回転軸は、前記カム駆動部材にお V、て前記偏心移動部に対向する部位の外周縁より内側に位置する構成を採る。  [0213] In the variable valve drive device according to the fifth aspect of the present invention, in the configuration described above, the eccentric moving portion sandwiches the eccentric member with respect to the cam drive member in a rotation axis direction of the cam drive member. The rotating shaft of the eccentric moving part which is disposed to be opposed to the cam driving member is positioned inside the outer peripheral edge of the portion facing the eccentric moving part.
[0214] この構成によれば、偏心移動部の回転軸は、カム駆動部材において偏心移動部に 対向する部位の外周縁より内側に位置する。このため、偏心部材を偏心させる機構 力 カム駆動部材において半径方向に位置する外周縁から外方に位置することがな ぐ可変バルブ駆動装置全体をコンパクトにすることができる。  [0214] According to this configuration, the rotation shaft of the eccentricity moving unit is located inside the outer peripheral edge of the portion of the cam drive member that faces the eccentricity moving unit. For this reason, the entire variable valve drive device can be made compact without being located outward from the outer peripheral edge located in the radial direction in the mechanism force cam drive member that eccentrically moves the eccentric member.
[0215] 本発明の第 6の態様に係る可変バルブ駆動装置は、上記構成において、前記偏心 移動部は、前記カム駆動部材にお 、て前記偏心移動部に対向する部位の外周縁よ り内側に位置する構成を採る。  [0215] In the above configuration, the variable valve drive device according to the sixth aspect of the present invention is configured such that the eccentric moving portion is inside the outer peripheral edge of a portion of the cam drive member facing the eccentric moving portion. The structure located in is taken.
[0216] この構成によれば、偏心移動部が、カム駆動部材において偏心移動部に対向する 部位の外周縁より内側に位置するため、偏心移動部が、その回転軸とともに、カム駆 動部材にお 、て半径方向に位置する外周縁から外方に位置することがな 、。つまり 、カム駆動部材の回転軸方向に、カム駆動部材に重なるように、偏心部材及び偏心 移動部が配置されることとなり、可変バルブ駆動装置全体をコンパクトにすることがで きる。  [0216] According to this configuration, since the eccentric moving part is positioned inside the outer peripheral edge of the portion of the cam drive member that faces the eccentric moving part, the eccentric moving part together with the rotation shaft thereof is connected to the cam driving member. The outer peripheral edge located in the radial direction should not be located outward. In other words, the eccentric member and the eccentric moving part are arranged so as to overlap the cam driving member in the rotation axis direction of the cam driving member, and the entire variable valve driving device can be made compact.
[0217] 本発明の第 7の態様に係るエンジンは、上記構成の可変バルブ駆動装置を有する 構成を採る。  [0217] The engine according to the seventh aspect of the present invention employs a configuration having the variable valve drive device configured as described above.
[0218] この構成によれば、運動力学的に最も慣性力が大きくなるとともに、ジヤンビング現 象及びバウンス現象などの問題となる弁挙動が発生しやすいエンジンの最大回転数 または、最大回転数付近においても、低振動で安定した駆動を行うことができる。 [0218] According to this configuration, the maximum rotational speed of the engine, in which the inertial force is the largest in terms of kinematics, and valve behavior that causes problems such as the phenomenon of jumping and the bounce phenomenon is likely to occur. Alternatively, stable driving can be performed with low vibration even in the vicinity of the maximum rotational speed.
[0219] 本発明の第 8の態様に係る自動二輪車は、上記構成のエンジンが搭載される構成 を採る。  [0219] The motorcycle according to the eighth aspect of the present invention employs a configuration in which the engine configured as described above is mounted.
[0220] この構成によれば、運動力学的に慣性力に伴い大きな振動が生じやすぐジヤンピ ング現象及びバウンス現象などの問題となる弁挙動が発生しやすいエンジン高回転 時においても、低振動で安定して弁挙動を行うことができる。  [0220] According to this configuration, even with high engine speed, large vibrations occur due to kinematic inertial force, and valve behaviors such as jumping phenomenon and bounce phenomenon are likely to occur. Valve behavior can be performed stably.
産業上の利用可能性  Industrial applicability
[0221] 本発明に係る可変バルブ駆動装置は、運動力学的に最も慣性力が大きくなるととも に、ジヤンビング現象及びバウンス現象などの問題となる弁挙動が発生しやす 、ェン ジン高回転時において、低振動で安定した弁挙動を行うことができ、エンジン及び自 動二輪車に搭載するものとして有用である。 [0221] The variable valve driving device according to the present invention has the largest inertial force in terms of kinematics, and is likely to cause valve behavior that causes problems such as a jumping phenomenon and a bounce phenomenon. It can perform stable valve behavior with low vibration and is useful as an engine and motorcycle.

Claims

請求の範囲 The scope of the claims
[1] クランク軸から伝達される駆動力により回転するカム駆動部材と、  [1] A cam driving member that rotates by a driving force transmitted from a crankshaft;
前記カム駆動部材の駆動によって、前記カム駆動部材の回転軸と同方向の軸を中 心に回転するとともに、前記軸が前記回転軸の軸心位置から偏心位置に移動可能 に設けられる偏心部材と、  An eccentric member provided by the drive of the cam drive member so as to rotate about an axis in the same direction as the rotation axis of the cam drive member, and to move the shaft from an axial position of the rotation shaft to an eccentric position; ,
前記回転軸と同軸上に配置され、前記偏心部材によって前記回転軸を中心に回 転駆動されるとともに、前記偏心部材が前記偏心位置で回転駆動する際に、前記力 ム駆動部材に対する回転位相差が周期的に変動するカム軸と、  A rotational phase difference with respect to the force driving member when the eccentric member is rotationally driven around the rotational axis by the eccentric member and is rotationally driven around the rotational axis by the eccentric member. A camshaft that periodically fluctuates,
前記カム軸によって前記カム軸と同じ回転位相で回転し、排気弁または吸気弁を 開閉駆動するカム駒とを備える可変バルブ駆動装置であって、  A variable valve driving device comprising: a cam piece that is rotated by the cam shaft at the same rotational phase as the cam shaft and that opens and closes an exhaust valve or an intake valve;
前記クランク軸の回転数を検出する回転数検出部と、  A rotational speed detector for detecting the rotational speed of the crankshaft;
前記回転数検出部により検出される前記クランク軸の回転数に応じて、前記偏心部 材を移動して、前記カム駆動部材の回転軸に対する前記偏心部材の軸の位置を制 御する制御部とを有し、  A controller that controls the position of the shaft of the eccentric member relative to the rotational shaft of the cam drive member by moving the eccentric member according to the rotational speed of the crankshaft detected by the rotational speed detector; Have
前記制御部は、前記クランク軸の最大回転数または、前記最大回転数付近の回転 数にお 1、て前記偏心部材を移動して、前記偏心部材の軸の位置を前記回転軸の軸 心位置に一致させることを特徴とする可変バルブ駆動装置。  The control unit moves the eccentric member at a maximum rotational speed of the crankshaft or a rotational speed in the vicinity of the maximum rotational speed, and sets the position of the shaft of the eccentric member to the axial position of the rotational shaft. A variable valve driving device characterized by matching with the above.
[2] クランク軸から伝達される駆動力により回転するカム駆動部材と、  [2] a cam driving member that rotates by a driving force transmitted from the crankshaft;
前記カム駆動部材の駆動によって、前記カム駆動部材の回転軸と同方向の軸を中 心に回転するとともに、前記軸が前記回転軸の軸心位置から偏心位置に移動可能 に設けられる偏心部材と、  An eccentric member provided by the drive of the cam drive member so as to rotate about an axis in the same direction as the rotation axis of the cam drive member, and to move the shaft from an axial position of the rotation shaft to an eccentric position; ,
前記回転軸と同軸上に配置され、前記偏心部材によって前記回転軸を中心に回 転駆動されるとともに、前記偏心部材が前記偏心位置で回転駆動する際に、前記力 ム駆動部材に対する回転位相差が周期的に変動するカム軸と、  A rotational phase difference with respect to the force driving member when the eccentric member is rotationally driven around the rotational axis by the eccentric member and is rotationally driven around the rotational axis by the eccentric member. A camshaft that periodically fluctuates,
前記カム軸によって前記カム軸と同じ回転位相で回転し、排気弁または吸気弁の 作用角を可変にするカム駒とを備える可変バルブ駆動装置であって、  A variable valve driving device comprising: a cam piece that is rotated by the cam shaft at the same rotational phase as the cam shaft, and that makes an operating angle of an exhaust valve or an intake valve variable;
前記クランク軸の回転数を検出する回転数検出部と、  A rotational speed detector for detecting the rotational speed of the crankshaft;
前記回転数検出部により検出される前記クランク軸の回転数に応じて、前記偏心部 材を移動して、前記カム駆動部材の回転軸に対する前記偏心部材の軸の位置を制 御する制御部とを有し、 According to the rotation speed of the crankshaft detected by the rotation speed detection section, the eccentric portion A control unit that moves the material and controls the position of the shaft of the eccentric member with respect to the rotation shaft of the cam drive member;
前記制御部が、前記偏心部材の軸の位置を前記回転軸の軸心位置と一致させた 際に、前記排気弁または吸気弁の作用角は最大となることを特徴とする可変バルブ 駆動装置。  The variable valve driving device according to claim 1, wherein when the control unit makes the position of the shaft of the eccentric member coincide with the position of the shaft center of the rotating shaft, a working angle of the exhaust valve or the intake valve becomes maximum.
[3] クランク軸から伝達される駆動力により回転するカム駆動部材と、  [3] a cam driving member that rotates by a driving force transmitted from the crankshaft;
前記カム駆動部材の駆動によって、前記カム駆動部材の回転軸と同方向の軸を中 心に回転するとともに、前記軸が前記回転軸の軸心位置から偏心位置に移動可能 に設けられる偏心部材と、  An eccentric member provided by the drive of the cam drive member so as to rotate about an axis in the same direction as the rotation axis of the cam drive member, and to move the shaft from an axial position of the rotation shaft to an eccentric position; ,
前記回転軸と同軸上に配置され、前記偏心部材によって前記回転軸を中心に回 転駆動されるとともに、前記偏心部材が前記偏心位置で回転駆動する際に、前記力 ム駆動部材に対する回転位相差が周期的に変動するカム軸と、  A rotational phase difference with respect to the force driving member when the eccentric member is rotationally driven around the rotational axis by the eccentric member and is rotationally driven around the rotational axis by the eccentric member. A camshaft that periodically fluctuates,
前記カム軸によって前記カム軸と同じ回転位相で回転し、排気弁または吸気弁の 作用角を可変にするカム駒とを備える可変バルブ駆動装置であって、  A variable valve driving device comprising: a cam piece that is rotated by the cam shaft at the same rotational phase as the cam shaft, and that makes an operating angle of an exhaust valve or an intake valve variable;
前記クランク軸の回転数を検出する回転数検出部と、  A rotational speed detector for detecting the rotational speed of the crankshaft;
前記回転数検出部により検出される前記クランク軸の回転数に応じて、前記偏心部 材を移動して、前記カム駆動部材の回転軸に対する前記偏心部材の軸の位置を制 御する制御部とを有し、  A controller that controls the position of the shaft of the eccentric member relative to the rotational shaft of the cam drive member by moving the eccentric member according to the rotational speed of the crankshaft detected by the rotational speed detector; Have
前記制御部が、前記クランク軸の略最大回転数において、前記偏心部材の軸の位 置を前記回転軸の軸心位置と一致させた際に、前記排気弁または吸気弁の作用角 は最大となることを特徴とする可変バルブ駆動装置。  When the control unit makes the position of the shaft of the eccentric member coincide with the position of the shaft center of the rotating shaft at the substantially maximum rotational speed of the crankshaft, the working angle of the exhaust valve or the intake valve is maximum. A variable valve driving device characterized by comprising:
[4] 前記カム駆動部材の回転軸と略平行で、且つ、エンジン側に固定される回転軸を 中心に回転することによって、前記偏心部材の軸を、前記カム駆動部材の回転軸に 対して同軸位置力も偏心位置に移動させる偏心移動部を備え、 [4] The shaft of the eccentric member is rotated with respect to the rotation shaft of the cam drive member by rotating about a rotation shaft that is substantially parallel to the rotation shaft of the cam drive member and fixed to the engine side. Equipped with an eccentric moving part that also moves the coaxial position force to the eccentric position,
前記偏心移動部の回転は、前記制御部により制御されることを特徴とする請求項 1 乃至 3のいずれか 1つに記載の可変バルブ駆動装置。  4. The variable valve driving device according to claim 1, wherein the rotation of the eccentric moving unit is controlled by the control unit.
[5] 前記偏心移動部は、前記カム駆動部材に対し、前記カム駆動部材の回転軸方向 で前記偏心部材を挟んで対向配置され、 前記偏心移動部の回転軸は、前記カム駆動部材において前記偏心移動部に対向 する部位の外周縁より内側に位置することを特徴とする請求項 4記載の可変バルブ 駆動装置。 [5] The eccentric moving portion is disposed to face the cam drive member with the eccentric member interposed therebetween in a rotation axis direction of the cam drive member. 5. The variable valve driving device according to claim 4, wherein a rotation shaft of the eccentric moving part is located inside an outer peripheral edge of a portion of the cam driving member that faces the eccentric moving part.
[6] 前記偏心移動部は、前記カム駆動部材において前記偏心移動部に対向する部位 の外周縁より内側に位置することを特徴とする請求項 4記載の可変バルブ駆動装置  6. The variable valve drive device according to claim 4, wherein the eccentric moving portion is located inside an outer peripheral edge of a portion of the cam drive member that faces the eccentric moving portion.
[7] 請求項 1乃至 3のいずれか 1つに記載の可変バルブ駆動装置を有することを特徴と するエンジン。 [7] An engine comprising the variable valve drive device according to any one of claims 1 to 3.
[8] 請求項 7記載のエンジンが搭載されることを特徴とする自動二輪車。  [8] A motorcycle equipped with the engine according to claim 7.
PCT/JP2005/014089 2004-09-30 2005-08-02 Variable valve drive device, engine, and two-wheeled motor vehicle WO2006038370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-289292 2004-09-30
JP2004289292A JP2008002269A (en) 2004-09-30 2004-09-30 Variable valve driving device, engine and motorcycle

Publications (1)

Publication Number Publication Date
WO2006038370A1 true WO2006038370A1 (en) 2006-04-13

Family

ID=36142455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014089 WO2006038370A1 (en) 2004-09-30 2005-08-02 Variable valve drive device, engine, and two-wheeled motor vehicle

Country Status (2)

Country Link
JP (1) JP2008002269A (en)
WO (1) WO2006038370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063663A1 (en) * 2005-12-02 2007-06-07 Toyota Jidosha Kabushiki Kaisha Variable valve timing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482960B (en) * 2009-08-24 2014-03-12 雅马哈发动机株式会社 Variable valve device, engine with same, and saddled vehicle
JP5630251B2 (en) * 2010-12-10 2014-11-26 トヨタ自動車株式会社 Variable valve operating device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571317A (en) * 1991-09-11 1993-03-23 Honda Motor Co Ltd Variable valve timing for valve system of internal combustion engine
JPH0663804U (en) * 1993-02-19 1994-09-09 株式会社ユニシアジェックス Intake and exhaust valve drive control device for internal combustion engine
JPH09203306A (en) * 1996-01-24 1997-08-05 Mitsubishi Motors Corp Variable valve system
JPH10169420A (en) * 1996-12-13 1998-06-23 Unisia Jecs Corp Suction and exhaust valve driving controller for internal combustion engine
JPH10205310A (en) * 1997-01-22 1998-08-04 Unisia Jecs Corp Intake/exhaust valve during controller of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571317A (en) * 1991-09-11 1993-03-23 Honda Motor Co Ltd Variable valve timing for valve system of internal combustion engine
JPH0663804U (en) * 1993-02-19 1994-09-09 株式会社ユニシアジェックス Intake and exhaust valve drive control device for internal combustion engine
JPH09203306A (en) * 1996-01-24 1997-08-05 Mitsubishi Motors Corp Variable valve system
JPH10169420A (en) * 1996-12-13 1998-06-23 Unisia Jecs Corp Suction and exhaust valve driving controller for internal combustion engine
JPH10205310A (en) * 1997-01-22 1998-08-04 Unisia Jecs Corp Intake/exhaust valve during controller of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063663A1 (en) * 2005-12-02 2007-06-07 Toyota Jidosha Kabushiki Kaisha Variable valve timing apparatus
JP2007154715A (en) * 2005-12-02 2007-06-21 Toyota Motor Corp Variable valve timing device
US7444969B2 (en) 2005-12-02 2008-11-04 Toyota Jidosha Kabushiki Kaisha Variable valve timing apparatus

Also Published As

Publication number Publication date
JP2008002269A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
WO2006025174A1 (en) Variable valve drive device, engine, and motorcycle
JP4229867B2 (en) Power unit including an internal combustion engine including a variable compression ratio mechanism
WO2006030587A1 (en) Variable valve drive device, engine, and motorcycle
TW200538663A (en) Sound-proof structure in power unit
WO2006038370A1 (en) Variable valve drive device, engine, and two-wheeled motor vehicle
US6857408B2 (en) Internal combustion engine provided with decompressing mechanism
JPH0718349B2 (en) Winding transmission device for internal combustion engine
JP4220949B2 (en) Lubricating oil passage for variable valve drive device, variable valve drive device, engine and motorcycle
JP2003301704A (en) Internal combustion engine provided with decompressing means
KR100688221B1 (en) Subsidiary mechanism attachment structure of internal combustion engine
US20240209824A1 (en) Internal combustion engine
JP3618922B2 (en) Cylinder head fastening structure for vehicle engine unit
WO2018180558A1 (en) Internal combustion engine
JP3547861B2 (en) Kick starter for motorcycles
WO2024070373A1 (en) Valve open/close period control device
JP4059697B2 (en) Internal combustion engine having decompression means
JP4379222B2 (en) Valve train and internal combustion engine
TW200538656A (en) Driven pulley device of V-belt type automatic transmission
JP6542828B2 (en) Internal combustion engine
JP2023067648A (en) Valve opening/closing timing control device
JP4059776B2 (en) Internal combustion engine
JP2023067649A (en) Valve opening/closing timing control device
JP2003254030A (en) Breather device of four-stroke cycle internal combustion engine
JP3998483B2 (en) Method for adjusting decompression amount of internal combustion engine having decompression means
JP2004225535A (en) Internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05768350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP