WO2006035756A1 - Near-infrared absorbing material and laminate - Google Patents

Near-infrared absorbing material and laminate Download PDF

Info

Publication number
WO2006035756A1
WO2006035756A1 PCT/JP2005/017716 JP2005017716W WO2006035756A1 WO 2006035756 A1 WO2006035756 A1 WO 2006035756A1 JP 2005017716 W JP2005017716 W JP 2005017716W WO 2006035756 A1 WO2006035756 A1 WO 2006035756A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
laminated glass
copper
absorbing material
light absorbing
Prior art date
Application number
PCT/JP2005/017716
Other languages
French (fr)
Japanese (ja)
Inventor
Rumi Ueda
Naoki Hayashi
Yutaka Kobayashi
Tomomi Ujiie
Hiroki Katono
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to JP2006537745A priority Critical patent/JP4926712B2/en
Publication of WO2006035756A1 publication Critical patent/WO2006035756A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives

Definitions

  • the present invention relates to a near-infrared light absorbing material and a laminate, and particularly to a near-infrared light absorbing material and a laminate that can be applied to a laminated glass having near-infrared light absorption characteristics.
  • an optical member for use in a window material or the like a structure having a structure in which an intermediate film having a polyvuracetal resin or an acrylic resin is sandwiched between a pair of translucent substrates having glass or the like is used.
  • Laminated glass is known. Such a laminated glass is frequently used because it has excellent properties such as high strength and high durability.
  • these laminated glasses have been required to have characteristics capable of blocking infrared rays or light rays having wavelengths in the vicinity thereof (hereinafter referred to as “near infrared light”). If laminated glass having such characteristics is applied to window materials, wall materials, etc., it is possible to suppress, for example, the penetration of light rays having the wavelength in the above-described region in sunlight, that is, heat rays into the room. As a result, it becomes possible to keep the indoor environment comfortable by suppressing the indoor temperature from becoming excessively high, and it is also possible to reduce the cost of power and cooling.
  • a glass having a property of absorbing near-infrared light as an intermediate film.
  • Such an intermediate film can be formed by a composition in which a material having a property of absorbing near infrared light (near infrared light absorbing material) is dispersed in a resin material.
  • a laminated glass including an interlayer film containing a divalent copper ion and at least one infrared light absorbing component selected from indium oxide and Z or tin oxide, and a rosin component. It is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-211220
  • the above-described near-infrared light absorption characteristics have been considered and excellent.
  • it is required to have a high light resistance, i.e., a t-characteristic that has little change in translucency even when irradiated with light.
  • a laminated glass having such properties can maintain a high translucency even when used for a long period of time, and thus has extremely high practicality.
  • the conventional laminated glass has excellent near-infrared light absorption characteristics, but when it is irradiated with light, particularly ultraviolet light for a long time, a black precipitate may be formed in the intermediate film. There was still room for improvement in terms of light resistance.
  • the present invention has been made in view of such circumstances, and has a near-infrared light absorption characteristic in which precipitates and the like are less likely to occur even when irradiated with light for a long time.
  • An object of the present invention is to provide a near-infrared light-absorbing material applicable to an intermediate film or the like that has both excellent light resistance.
  • Another object of the present invention is to provide a film-like molded article using a powerful near-infrared light absorbing material, and a laminate applicable to laminated glass.
  • the near-infrared light absorbing material of the present invention is characterized by containing polybutyral resin having a polymerization degree of 800 to 2300 and copper ions.
  • the “degree of polymerization” means the average degree of polymerization of the polyvinyl propylal resin (the same applies hereinafter).
  • the black precipitate generated in the conventional laminated glass is caused by products such as copper and copper oxide generated by oxidation or reduction of copper ions contained in the interlayer film.
  • products such as copper and copper oxide generated by oxidation or reduction of copper ions contained in the interlayer film.
  • copper and cuprates are presumed to have been generated by acidification or reduction of copper ions by active species derived from the resin components produced in the interlayer film by irradiation with ultraviolet light.
  • the near-infrared light absorbing material of the present invention has a degree of polymerization of 800-2300 as polybulputilal resin (hereinafter abbreviated as "PVB") which is a resin component. Contains. In such a near-infrared light absorbing material, although not necessarily clear, it is considered that each component in the material is extremely stabilized.
  • PVB polybulputilal resin
  • the near-infrared light absorbing material of the present invention includes a phosphinic acid compound, a phosphonic acid compound, a phosphonic acid monoester compound, a phosphoric acid monoester compound, and a phosphoric acid diester compound. It is preferable to further contain at least one selected phosphorus compound. By containing such a phosphorus compound, it is possible to obtain a more excellent near-infrared light absorption characteristic, and to further improve the stability of a layer made of such a material (for example, an intermediate film). Become.
  • the near-infrared light absorbing material of the present invention preferably further contains a plasticizer.
  • a plasticizer By containing a plasticizer, the glass transition temperature (Tg) of PVB decreases and becomes softer, making it easier to mix with copper ions, etc., and further improving the solubility of copper ions in PVB.
  • the translucency of the layer containing a strong near-infrared light absorbing material is improved.
  • the present invention also provides a sheet-like molded article having the near-infrared light absorbing material power of the present invention.
  • a sheet-like molded article has excellent near-infrared light absorption characteristics, and even when it is irradiated with light for a long time, precipitates and the like are rarely generated. Therefore, it can be suitably used as an intermediate film in laminated glass.
  • the present invention is a laminate comprising a translucent substrate and a near-infrared light absorbing layer that is provided on the translucent substrate and is a near-infrared light-absorbing material of the present invention.
  • a laminate includes a near-infrared light absorbing layer composed of the near-infrared light-absorbing composition of the present invention, and therefore has excellent near-infrared light absorption characteristics, and also by light irradiation. It also has excellent light resistance with very few precipitates.
  • the laminate is configured such that the near-infrared light absorbing layer is sandwiched between a pair of translucent substrates, a laminated glass excellent in both near-infrared light absorption characteristics and light resistance is provided. be able to.
  • An applicable near-infrared light absorbing material can be provided.
  • FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass of an embodiment.
  • FIG. 2 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer.
  • FIG. 3 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer between a plurality of layers provided between translucent substrates.
  • FIG. 4 is a view showing a micrograph of the laminated glass of Example 2.
  • FIG. 5 is a view showing a micrograph of a laminated glass of Comparative Example 4.
  • the near-infrared light absorbing material according to the embodiment contains at least polyvinyl butyral resin (PVB) having a polymerization degree of 800 to 2300 and copper ions.
  • PVB polyvinyl butyral resin
  • PVB contained in the near infrared light absorbing material will be described.
  • PVB has a degree of polymerization of 800-2300.
  • the degree of polymerization means the number of basic units constituting one molecule of PVB, and a value measured based on the method defined in JISK 6728 (2001 edition) can be adopted.
  • PVB having such a degree of polymerization is, for example, a polybulal alcohol (PVA) having a degree of polymerization (or molecular weight) sufficient to satisfy the degree of polymerization of PVB as described above as a precursor of PVB.
  • PVA polybulal alcohol
  • the PVB having a degree of polymerization of 800 to 2300 for example, the following are commercially available. That is, for example, ESREC BM-5 (degree of polymerization 850), BH-3 (degree of polymerization 1700, manufactured by Sekisui Chemical Co., Ltd.) and the like.
  • Copper ions are divalent copper ions.
  • This copper ion can be supplied into the near-infrared light absorbing material in the form of a copper salt.
  • the copper salt include copper acetate anhydrides of organic acids such as copper acetate, copper formate, copper stearate, copper benzoate, copper ethylacetoacetate, copper pyrophosphate, copper naphthenate, copper citrate, Hydrates or hydrates, or anhydrides, hydrates or hydrates of copper salts of inorganic acids such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, or copper hydroxide Can be mentioned.
  • copper acetate, copper acetate monohydrate, copper benzoate, copper hydroxide, and basic copper carbonate are preferably used.
  • These copper salts as the copper ion source may be used alone or in combination.
  • the near-infrared light absorbing material of the embodiment preferably contains a predetermined phosphorus compound in addition to the PVB and copper ions described above.
  • phosphones represented by the following general formula (1C) examples thereof include acid compounds and at least one phosphorus compound selected from the group consisting of phosphonic acid monoester compounds represented by the following general formula (1D).
  • R 1 , R 21 , R 22 , R 41 and R 42 each independently represents an alkyl group, a cycloalkyl group, an alkyl group, an alkyl group, an aryl group, or an aryl group.
  • At least one hydrogen atom in the group is a halogen atom, an oxyalkyl group, a polyoxyalkyl group, an oxyaryl group, a polyoxyaryl group, an acyl group, an aldehyde group, a carboxyl group, a hydroxyl group, ( It may be substituted with a (meth) attaroyl group, a (meth) attaroyloxyalkyl group, a (meth) attaloyl polyoxyalkyl group or an ester group.
  • a phosphorus compound you may use in combination of multiple types which may use only 1 type among the compounds represented by said formula (1A)-(: LD).
  • those having the above various functional groups may be used alone V, or two or more kinds may be used in combination! ,.
  • the phosphoric acid compound is preferably a phosphoric acid ester compound (monoester and Z or diester) represented by the above general formula (1A)!
  • examples of the group represented by R 1 include an alkyl group, an alkenyl group, and a polymerizable functional group represented by the following general formula (2). It is done.
  • X represents a hydrogen atom or a methyl group
  • p is an integer of 2 to 6
  • m is an integer of 0 to 5.
  • H 2 C C -C "(0C p H 2p ) ⁇ ...
  • the alkyl group is more preferably an alkyl group having 1 to 18 carbon atoms, which is preferably an alkyl group having 1 to 30 carbon atoms.
  • Examples of such an alkyl group include n-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, n-decyl group, n-dodecyl group and the like. Ethylhexyl group is preferred.
  • the alkenyl group is preferably an oleyl group.
  • the near-infrared light absorbing material of the embodiment contains a phosphorus compound as described above
  • the copper ion and the phosphorus compound may be present merely as a mixture.
  • copper ions react with phosphorus compounds to form phosphorus-containing copper compounds. May be present.
  • the phosphorus-containing copper compound is formed by an ionic bond and a Z or coordinate bond between a phosphorus-containing group in a phosphorus compound (for example, a phosphate group in a phosphate ester) and a copper ion.
  • a phosphorus-containing copper complex is preferable.
  • Such a phosphorus-containing copper compound can be prepared, for example, by mixing a raw material of copper ions and a phosphorus compound and reacting them.
  • the near-infrared light-absorbing material containing PVB, copper ions and phosphorus compounds can be prepared, for example, by adding and mixing copper ion raw materials and phosphorus compounds in PVB. it can. More specifically, PVB, a copper ion raw material and a phosphorus compound are heated and melted and kneaded, or PVB is dissolved and Z or dispersed in a solvent to form a solution, and the copper ion raw material and phosphorus are added to this solution. The method of removing a solvent after adding and mixing a compound etc. can be illustrated.
  • the near-infrared light-absorbing material contains the PVB, copper ion, and phosphorus compound described above, and the phosphorus-containing copper compound is formed by the copper ion and the phosphorus-containing compound, these components are It is preferable that they are blended at the composition ratio shown below. That is, the content of the phosphorus-containing copper compound with respect to 100 parts by mass of PVB is 0.1 to: LOOO parts by mass, preferably 1 to 500 parts by mass, and 2 to 300 parts by mass. And more preferred. When the content of the phosphorus-containing copper compound relative to PVB is less than 0.1 parts by mass, the near-infrared light absorption characteristics tend to be remarkably lowered. On the other hand, when it exceeds 1000 parts by mass, the compatibility of the copper ion and the phosphorus compound is lowered, and the translucency tends to be deteriorated.
  • the near-infrared light absorbing material is a sheet-like molded product used for an interlayer film of laminated glass applied to a window material or the like
  • the phosphorus-containing copper compound content is 100 parts by mass of PVB.
  • it is preferably 0.5 to 45% by weight, more preferably 1 to 40% by weight, and even more preferably 1 to 35% by weight.
  • the content of copper ions and the content of phosphorus compounds are such that these phosphorus compounds have hydroxyl groups or oxygen atoms derived from hydroxyl groups.
  • Z total amount of hydroxyl groups or oxygen atoms
  • Z copper ion content
  • this ratio is less than 1, the near-infrared light absorbability and visible light transmittance tend to decrease.
  • the amount of hydroxyl groups that do not participate in coordination bonds or ionic bonds with copper ions becomes excessive, and the hygroscopicity tends to be excessive.
  • the near-infrared light absorbing material of the embodiment may further include other components for adjusting various characteristics in addition to the above-described components.
  • other components include a plasticizer.
  • the solubility and Z or dispersibility of copper ions in PVB tend to be further improved, and the near-infrared light absorbability and visible light transmittance are further improved. be able to.
  • plasticizer examples include phosphate ester plasticizers, phthalic acid plasticizers, fatty acid plasticizers, glycol plasticizers, and the like. More specifically, triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH), dihexyl adipate (DHA), tetraethylene glycol diheptanoate (4G7), tetraethylene Examples include glycol diethyl hexanoate (4GO) and triethylene glycol diheptanoate (3G7).
  • the content of the plasticizer is preferably 1 to 120 parts by mass with respect to 100 parts by mass of PVB. More preferably, it is 2-80 parts by mass. If the content of the plasticizer is less than 1 part by mass with respect to 100 parts by mass of PV B, the solubility of the copper ion-phosphorus compound may be reduced and the translucency may be insufficient. On the other hand, when it exceeds 100 parts by mass, PVB becomes too flexible, and for example, it tends to be difficult to use as an interlayer film in laminated glass.
  • an ultraviolet light absorber can be contained.
  • the ultraviolet light absorber include benzoate compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, oxalate-amide compounds, and triazine compounds.
  • salicylate-based compounds include phenyl salicylate and p-t-butylphenol salicylate.
  • benzophenone compounds examples include 2, 4 dihydroxybenzophenone, 2 hydroxy 4 methoxybenzophenone, 2-hydroxy-4 methoxybenzophenone 5 sulphonoic acid, 2 hydroxy 1 4-n-o. Ctyloxybenzophenone, 2-hydroxy-1,4-n-dodecyloxybenzophenone, 2, 2 ', 4, 4, monotetrahydrobenzophenone, bis (5-benzoyl-4-hydroxy-1,2-methoxyphenol) methane 2,2,1-dihydroxy-1,4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone 1,5,5, sodium monodisulfonate, 2,2'-dihydroxy 1-Methoxybenzophenone, 2-hydroxy-4-methacryloyloxychetylbenzophenone, 4-benzoyloxy-2-hydroxybenzophenone, 2, 2 ', 4 , 4'-tetrahydroxybenzophenone and
  • benzotriazole compounds include 2- (2,1hydroxy-1,5, methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'methylphenol) 5 Oral benzotriazole, 2— (2,1hydroxy-1,3,5,1 tert-butylphenol) 5 Chronobenzozoazole, 2— (2,1 hydroxy1,3,5,1 Butylphenol) -benzotriazole, 2- (2,1-hydroxyl 5-tert-octylphenol) benzotriazole, 2- (2, -hydroxy-5 t-butylphenol) benzotriazole, 2- [2,1- Hydroxy-1,3,1 (3,4,5 ", 6, monotetrahydrophthalimidomethyl) 5, monomethyl] benzotriazole, 2- (2, monohydroxy-1,3,5, Tert-amyl benzyl) benzotriazole, 2- (2, 1-hydroxy-1-5-octylphenol) benzotriazole, 2- [2,1-hydroxy-1,3,5,
  • Examples of the cyanoacrylate compound include ethyl 2 cyano 3, 3 diphenyl acrylate, octal 2 cyano 3, 3 diphenyl acrylate, and oxalate-lide compound includes 2-ethoxy. 2'-Ethyloxalic acid bis-arylide 2-ethoxy 5-tert-butyl- 2'-Ethyloxalic acid bis-aryl.
  • Examples of triazine compounds include 2- (4,6 diphenyl-1,3,5 triazine-2-yl) 5-[(hexyl) oxy] phenol.
  • the near-infrared light absorbing material can also contain a light stabilizer for further improving the stability to light.
  • a light stabilizer for further improving the stability to light.
  • the ultraviolet light absorber described above and this light stabilizer are used in combination, the stability to light tends to be very good.
  • the light stabilizer a hindered amine light stabilizer (HALS) or a Ni compound can be used.
  • HALS bis (2, 2, 6, 6-tetramethyl-4-piperidyl) sebacate, bis (1, 2, 6, 6 pentamethyl-4-piperidyl) sebacade, 1 [ 2
  • Ni-based light stabilizers include [2, 2, 1-thiobis (4-t-otatino refenolate)] 1-2-ethylhexylamine-nickel (II), nickel dibutyldi And thiocarbonate, [2,2, -thiobis (4-tert-octylphenolate)]-butylamine mononickel ( ⁇ ) and the like.
  • an antioxidant In addition to the components for stabilizing the near-infrared light absorbing material, an antioxidant, a heat stabilizer and the like can be contained. Moreover, you may add dye, a pigment, a metal compound, etc. as a component for adjusting a color tone. Furthermore, when applied to laminated glass, Silane compounds, alkali metal salts, alkaline earth metal salts, and the like can be added as components for adjusting the adhesion to a light-transmitting substrate such as glass. . Furthermore, as a resin component, in addition to the above PVB, do not deteriorate the properties of the near-infrared light absorbing material! / In combination with ethylene acetate butyl copolymer or acrylic resin in the range of ⁇ . Well, okay.
  • optical member By using the above-described near-infrared light-absorbing material, it has excellent properties for blocking near-infrared light.
  • Various optical members can be obtained. Examples of such an optical member include the following first and second forms.
  • Second embodiment A laminate having a light-transmitting substrate and a near-infrared light absorbing layer provided adjacent to the light-transmitting substrate.
  • the optical member of the first form is a sheet-like molded product made of the above-described near-infrared light absorbing material, and specifically includes a sheet and a film.
  • the sheet is a thin plate having a thickness exceeding 250 / zm.
  • the film is a thin film having a thickness of 5 to 250 / ⁇ ⁇ .
  • the optical member of the second form is a laminate having a light-transmitting substrate and a near-infrared light absorbing layer made of a near-infrared light-absorbing material provided adjacent to the light-transmitting substrate. .
  • the material constituting the translucent substrate is not particularly limited as long as it is a translucent material having visible light transmissivity, and can be appropriately selected according to the use of the optical member. From the viewpoint of obtaining good hardness, heat resistance, chemical resistance, durability, etc., glass and plastic are preferably used.
  • the glass include inorganic glass and organic glass. Depending on the purpose, specific glass such as colored glass, UV-cut glass having a wavelength dependency on transmittance, or glass having a heat shielding function such as green glass is specified. It is also possible to use glass having the following functions.
  • plastic examples include polycarbonate, acrylonitrile-styrene copolymer, polymethyl methacrylate, vinyl chloride resin, polystyrene, polyester, polyolefin, norbornene resin, and these are also specific to glass. Those having functions may be appropriately selected and used. When there are a plurality of translucent substrates, each substrate may be composed of the same material or different materials. Yes.
  • Such a laminated body is manufactured, for example, by forming a sheet or film similar to the optical member of the first embodiment described above, and then bonding the sheet or the like to the light-transmitting substrate.
  • a method for bonding them together include means for bonding by pressurization or pressure reduction, such as a press method, a multi-roll method, and a pressure reduction method, a means for bonding by heating with an autoclave, or a combination of these. .
  • a near-infrared light absorbing layer is directly formed on a light-transmitting substrate without using the above-mentioned sheet-like molded product.
  • This method can also be applied.
  • a near-infrared light absorbing material is dissolved and Z or dispersed in an appropriate solvent to form a coating agent, and this solution is applied to a light-transmitting substrate, and then the solvent is evaporated.
  • Examples thereof include a method of forming a thin film, a covering, or a thin layer having a near infrared light absorbing material force on a translucent substrate.
  • the thin film formed in this way is called coating.
  • solubilizing agents such as various surfactants such as a leveling agent and an antifoaming agent are added for the purpose of improving the flatness of the layer. It can be added to the coating agent mentioned above.
  • the optical member of the second form that is, the laminate is not limited to one having the above-described light-transmitting substrate and the near-infrared light absorbing layer, but may have a plurality of these layers.
  • a substrate including a pair of light-transmitting substrates and an intermediate film (near-infrared light absorbing layer) made of the near-infrared light-absorbing material disposed between the light-transmitting substrates can be given.
  • Such a laminate is called a so-called laminated glass and can be suitably used as a window material or the like.
  • FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of the laminated glass of the embodiment.
  • a laminated glass 10 shown in FIG. 1 includes a pair of translucent substrates 1 and an intermediate film 2 (near infrared light absorption layer) sandwiched between the pair of translucent substrates 1.
  • the intermediate film 2 also has the near-infrared light absorbing material force of the above-described embodiment, and the light-transmitting substrate 1 can be the same as the above-described laminate.
  • the laminated glass 10 having a powerful structure is obtained by, for example, sandwiching a sheet-like molded product made of the above-described near-infrared light absorbing composition between a pair of light-transmitting substrates 1, and preliminarily using this. It can be manufactured by a method in which air remaining between the respective layers is removed by pressure bonding, and then these are pressure bonded to bring them into close contact.
  • the sheet-like molded product to be the intermediate film 2 is formed into a lump when the sheets are bonded together during storage. It is important that the blocking phenomenon does not occur and that the degassing property in the pre-bonding is good. When these requirements are satisfied, the workability when superimposing the translucent substrate 1 and the sheet is improved, and the translucency due to bubbles generated due to insufficient deaeration, for example. Decline can be prevented.
  • the laminated glass 10 is also required to have not only the property of blocking near infrared light but also the property of transmitting visible light, that is, the property of transmitting light in the visible light region. It is done. In order to obtain excellent visible light transmittance, it is preferable that bubbles remain between the translucent substrate 1 and the intermediate film 2 as much as possible.
  • emboss As one means for reducing the bubbles, a method using an intermediate film 2 having a large number of minute concaves and convexes called emboss on the surface is known. According to the embossed intermediate film 2, the degassing property in the above-described pre-compression bonding process and the like becomes good, and the remaining bubbles become extremely small and are easily taken into the intermediate film 2. As a result, the laminated glass 10 is less deteriorated in translucency due to bubbles.
  • embossing for example, various concave and convex patterns composed of a large number of convex portions and a large number of concave portions corresponding to these convex portions, and various types of embossed strips composed of a large number of convex strips and a large number of concave grooves corresponding to these convex strips
  • embossed shapes with various values for various shape factors such as uneven patterns, roughness, arrangement, size, etc.
  • embosses examples include those described in JP-A-6-198809, in which the size of the protrusions is changed and the size and arrangement thereof are defined, and in JP-A-9-40444.
  • the surface roughness is 20-50 / ⁇ ⁇ , the one described in Japanese Patent Application Laid-Open No. 9-295839, the ridges arranged so as to intersect, or the Japanese Patent Application Laid-Open No. 2003-48762. No. 1, and a smaller convex part formed on the main convex part.
  • sound insulation is cited as another characteristic recently required for the laminated glass 10.
  • the laminated glass having excellent sound insulation for example, when used for a window material, it is possible to reduce the influence of ambient noise and the like, and further improve the indoor environment.
  • sound insulation performance is shown as transmission loss amount according to frequency change, and the transmission loss amount is specified by JISA 4 708 at a constant value depending on the sound insulation grade, over 500Hz! ⁇ .
  • the sound insulation performance of a glass plate generally used as a light-transmitting substrate in laminated glass tends to be significantly reduced due to the coincidence effect in a frequency region centered on 2000 Hz.
  • the coincidence effect means that when a sound wave is incident on the glass plate, the transverse wave propagates through the glass plate due to the rigidity and inertia of the glass plate, and the transverse wave and the incident sound resonate. This is a phenomenon that occurs. Therefore, in general laminated glass, it is difficult to avoid a decrease in sound insulation performance in a frequency region centered on 2000 Hz, and improvement of this point is demanded.
  • the sound insulation performance depends on the dynamic viscoelasticity of the interlayer film 2, and is particularly affected by the loss tangent, which is the ratio between the storage elastic modulus and the loss elastic modulus. Therefore, the sound insulation performance of the laminated glass 10 can be improved.
  • a means for controlling the value of the loss tangent of the interlayer film 2 for example, a method using a resin film having a specific degree of polymerization, a resin as described in JP-A-4-2317443 A method for defining the structure of the resin, and a plasticizer in the resin as described in JP-A-2001-220183 Examples include a method for defining the amount. It is also known that the sound insulation performance of the laminated glass 10 can be enhanced over a wide temperature range by forming an intermediate film by combining two or more different types of resin.
  • a method of blending a plurality of types of resin described in JP-A-2001-206742 and a method of blending a plurality of types of resin described in JP-A-2001-206741 and JP-A-2001-226152.
  • Examples thereof include a method of laminating, a method described in Japanese Patent Application Laid-Open No. 2001-192243, and a method of imparting a deflection to the amount of plasticizer in the intermediate film.
  • the laminated glass 10 can further exhibit heat shielding properties other than blocking near infrared light.
  • a method for improving the heat shielding property of the laminated glass 10 there can be mentioned a method in which the intermediate film 2 further contains oxide fine particles having a heat shielding function.
  • a method for example, methods described in JP-A-2001-206743, JP-A-2001-261383, JP-A-2001-302289, etc. can be applied.
  • oxide fine particles examples include tin-doped indium oxide (ITO), antimony monophosphate-tin (ATO), aluminum-doped oxide-zinc (AZO), and the like.
  • ITO indium oxide
  • ATO antimony monophosphate-tin
  • AZO aluminum-doped oxide-zinc
  • a method of improving dispersibility and maintaining good translucency may be applied.
  • a known fine particle dispersion technique such as mechanically dispersing the fine particles or using a dispersant can be applied.
  • a method of improving the heat shielding property of the laminated glass in addition to the method of containing the oxide fine particles described above, for example, a method of containing an organic dye having a heat shielding function, or a light transmitting property having a heat shielding property A method using a conductive substrate is also included. Examples of the former method of incorporating a dye having an organic heat shielding function include the methods described in JP-A-7-157344 and JP-A-319271.
  • an Fe-containing substrate described in JP-A-2001-151539 examples thereof include glass (for example, green glass), a glass plate in which a metal and a metal oxide described in JP-A-2001-261384 and JP-A-2001-226148 are laminated.
  • the laminated glass 10 has the near-infrared light that is a heat ray when the near-infrared light absorbing material included in the intermediate film 2 absorbs light in the near-infrared light region.
  • the laminated glass 10 has a near-infrared absorption intermediate film 2 (near-infrared light absorbing layer) for the purpose of further improving the near-infrared light blocking characteristics. ) And a layer having a property of reflecting near infrared light (near infrared light reflecting layer)!
  • FIG. 2 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer.
  • the laminated glass 20 has a structure including a translucent substrate 21, a near infrared light absorbing layer 22, a near infrared light reflecting layer 23, and a translucent substrate 21 in this order.
  • the light-transmitting substrate 21 and the near-infrared light absorbing layer 22 the same materials as the light-transmitting substrate 1 and the intermediate film 2 in the laminated glass 10 described above can be applied.
  • Examples of the near-infrared light reflection layer 23 include layers composed of metals and metal oxides. Specifically, for example, gold, silver, copper, tin, aluminum, nickel, noradium, keys, and the like. Examples include simple metals such as elemental, chromium, titanium, indium, and antimony, alloys, mixtures, and oxides.
  • the laminated glass 20 having such a near-infrared light reflection layer 23 can be manufactured, for example, as follows. That is, first, the near-infrared light reflection layer 23 is formed on one surface of the translucent substrate 21 by, for example, depositing a metal or a metal oxide. Next, a sheet-like molded product to be the near-infrared light absorbing layer 22 is prepared, and the translucent substrate 21 having the near-infrared light reflecting layer 23 formed on one surface thereof is attached to the reflecting layer 23. Arrange them so that they touch each other. Further, the translucent substrate 21 is overlaid on the other surface of the sheet-like molded product. The laminated glass 20 is obtained by, for example, pressing the laminate thus obtained.
  • the near-infrared light reflecting layer 23 is formed between the translucent substrate 21 and the near-infrared light absorbing layer 22 like the laminated glass 20, the reflecting layer 23 and the near-infrared Adhesiveness with the light absorption layer 22 may be reduced.
  • the translucent substrate 21 is easily peeled and scattered, which causes a problem in terms of safety. Therefore, in order to avoid such a decrease in adhesion, the near-infrared light absorbing layer 22 and the near-infrared light reflecting layer 23 It is preferable to further provide a layer capable of improving the adhesive strength between the two.
  • a higher acetal degree than the near infrared light absorbing layer 22 is provided between the near infrared light absorbing layer 22 and the near infrared light reflecting layer 23.
  • a method of providing a layer having a polyvinylacetal force Japanese Patent Laid-Open No. 7-187726, Japanese Patent Laid-Open No. 8-337446
  • a layer made of PVB having a predetermined ratio of acetoxy groups Japanese Patent Laid-Open No. 8-33 7445
  • a method of providing a layer having a predetermined silicone oil force Japanese Laid-Open Patent Publication No. 7-314609.
  • the near-infrared light reflecting layer is not necessarily provided between the translucent substrate and the near-infrared light absorbing layer as described above. In the case where a plurality of layers of resin are formed between them, a form provided between these layers may be used.
  • FIG. 3 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer between a plurality of layers provided between translucent substrates.
  • Laminated glass 30 includes a light-transmitting substrate 31, a near-infrared light absorbing layer 32, a near-infrared light reflecting layer 33, a resin layer 34, a near-infrared light absorbing layer 32, and a light-transmitting substrate 31 in this order. It has a structure.
  • the translucent substrate 31, the near-infrared light absorbing layer 32, and the near-infrared light reflecting layer 33 are the same as described above.
  • the resin layer 34 As a constituent material of the resin layer 34, a known resin material having excellent translucency can be applied, and examples thereof include polyethylene terephthalate and polycarbonate. In the laminated glass 30, if at least one near infrared light absorption layer 32 is provided, sufficient near infrared light absorption characteristics can be obtained.
  • One of the layers 32 may be a layer made of a resin material that does not have near infrared light absorption characteristics.
  • the near-infrared light blocking characteristics of laminated glass can be further improved due to the effects of both layers. It can be granted.
  • the method for improving the adhesion between the near-infrared light reflecting layer and the near-infrared light absorbing layer as described above is adopted, in addition to the near-infrared light blocking property, a higher strength can be obtained. It is also possible to obtain existing laminated glass.
  • the laminate (laminated glass) of the present invention has excellent reliability as a window material or the like in which the decrease in translucency due to long-term use is extremely small.
  • the laminate (laminated glass) of the present invention has excellent near-infrared light blocking performance, it is a building material for incorporating natural light such as sunlight and other external light (architecture).
  • material parts for example, car, ship, aircraft or train (railway) vehicle window materials, canopy materials for passages such as arcades, curtains, carport and garage canopies, solarium windows or wall materials Window materials for show windows and showcases, tents or window materials, blinds, roofing materials for fixed and temporary housing, skylights, other window materials, covering materials for painted surfaces such as road signs, sunshades such as parasols, etc. It can be suitably used for various materials that need to be shielded from materials and other heat rays.
  • 2-ethylhexyl phosphate an equimolar mixture of monoester and diester, manufactured by Tokyo Chemical Industry Co., Ltd.
  • 5 g thereof was dissolved in 15 g of toluene.
  • 2.37 g of copper acetate monohydrate was added, and acetic acid was removed while refluxing this solution.
  • toluene was distilled off from the reaction solution to obtain 6.04 g of 2-ethylhexyl phosphate copper complex (hereinafter referred to as “2EHPC”! /).
  • 2EHPC 2-ethylhexyl phosphate copper complex
  • oleyl phosphate an equimolar mixture of monoester and diester, manufactured by Tokyo Chemical Industry Co., Ltd.
  • 63.lg thereof was dissolved in 180 g of toluene.
  • Copper acetate monohydrate (20 Og) was added to the resulting solution, and acetic acid was removed while the solution was refluxed. Thereafter, toluene was distilled off from the reaction solution to obtain 80.4 g of a copper oleyl phosphate complex (hereinafter referred to as “OLPC”).
  • OLPC copper oleyl phosphate complex
  • Og is dissolved in the plasticizer triethylene glycol-2-hexanate 2.
  • Og, and this is PVB7 having various degrees of polymerization.
  • After mixing with Og press several times at 85 ° C with a press machine (WF-50, manufactured by Shindo Metal Industry Co., Ltd.), press several times at 120 ° C and knead to form a sheet of lmm thickness A molded product was produced.
  • Table 1 shows the types of phosphate ester copper complexes and the degree of polymerization of PVB used in the preparation of each sheet-like molded product.
  • the obtained sheet-like molded product was sandwiched between two slide glasses having a length of 26 mm, a width of 76 mm, and a thickness of 1 mm, and a temperature of 130 ° was applied to the laminate by autoclave.
  • C pressure bonding of 1.2 Mpa was performed for 30 minutes, and laminated glasses of Examples 1 to 4 and Comparative Examples 1 to 3 were obtained.
  • UV weathering 100 hours of ultraviolet light (UV) irradiation using 1 ter (Atlas C135, manufactured by Toyo Seiki Seisakusho; light source: xenon lamp, automatic irradiation intensity: 0.87 W / m 2 , black panel temperature: 63 ° C) went.
  • each laminated glass after UV irradiation was observed with a microscope, and the degree of occurrence of black precipitates was evaluated.
  • the results obtained are shown in Table 1.
  • A indicates that almost no black precipitates are observed, and B indicates that a large amount of black precipitates are generated.
  • micrographs obtained by observing the laminated glass of Example 2 and the laminated glass of Comparative Example 4 are shown in FIGS. 4 and 5, respectively.
  • Example 1 2EHPC 850 A 83.95 82.85 -1.1
  • Example 2 2EHPC 1700 A 83.94 83.52 -0.42
  • Example 3 OLPC 1700 A 85.84 81.95 -3.89
  • Example 4 2EHPC + 0LPC 1700 A 85.19 83.06 -2.13 Comparative Example 1 2EHPC 300 B 77.27 49.16 -28.11 Comparative Example 2 2EHPC 650 B 84.72 76.08 -7.24 Comparative Example 3 OLPC 650 B 86.56 81.64 -4.92 Comparative Example 4 2EHPC 2400 B 82.9 51.56 -31.34
  • the combined glass of Examples 1 to 4 using PVB having a polymerization degree within the range of the present invention is the same as that of Comparative Examples 1 to 4 in which the polymerization degree of PVB is outside the range of the present invention. It was found that the generation of black precipitates was very small compared to the laminated glass. This is because, in FIG. 4 (laminated glass of Example 2), black precipitates are hardly seen, whereas in FIG. 5 (combined glass of Comparative Example 4), a large amount of black and precipitates are generated. It can also be confirmed from what is seen in Furthermore, from Table 1, it was found that the laminated glasses of Examples 1 to 4 had a smaller change in visible light transmittance than the laminated glasses of Comparative Examples 1 to 4.
  • the laminated glass obtained using the near-infrared light-absorbing material of the present invention has little deterioration in translucency even when used for a long time, and has excellent characteristics as a window material or the like. It was confirmed that he would speak.
  • Ethylphosphonic acid was used as the phosphorus compound, and 0.55 g (5.OOmmol) thereof was dissolved in 10 mL of THF. To the resulting solution was added copper acetate monohydrate 1.OOg (5. Olmmol), and the mixture was heated to reflux with heating. The solid formed in the solution after the reaction was separated by filtration, A copper fonate complex was obtained.
  • Laminated glasses were produced in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 4 except that 0.14 g of an ethyl phosphonate complex was used instead of Og.
  • PVB those having a polymerization degree of 1700 and 650 were used, respectively.
  • the case of using PVB with a polymerization degree of 1700 corresponds to Example 5, and the case of using PVB with a polymerization degree of 650 corresponds to Comparative Example 5.
  • Example 5 For the laminated glass of Example 5 and Comparative Example 5, except that the UV irradiation intensity was set to 0.75 WZm 2 and the UV irradiation time was set to 50 hours, the above-mentioned Examples 1 to 4 and Comparative Examples 1 to 4 were combined. Black candy was evaluated in the same manner as glass. As a result, it was confirmed that the laminated glass of Example 5 was less likely to generate black spots with much less black precipitates than the laminated glass of Comparative Example 5.
  • Example 5 and Comparative Example 5 was subjected to spectroscopic measurement in the same manner as the laminated glass of Examples 1 to 4 and Comparative Examples 1 to 4, and the visible light transmittance (Tvis ( 0 h)), and the visible light transmittance (Tvis (50h)) after UV irradiation similar to the above-mentioned “evaluation of black candy” was calculated. Also, the value of Tvis (50h) was calculated by subtracting the value of Tvis (Oh) from the change in visible light transmittance ( ⁇ Tvis). Table 2 shows the results obtained.
  • Example 5 Ethylphosphonic acid copper complex 1 700 62.8 5 56. 6 5-6.2 Comparative Example 5 Ethylphosphonic acid copper complex 650 67.44 5 7.6 3-9.8 1 [0094] From Table 2, it was confirmed that the laminated glass of Example 5 had a smaller change in visible light transmittance than that of Comparative Example 5, and it was difficult to cause a decrease in translucency.
  • Dimethylphosphinic acid was used as a phosphorus compound, and 0.47 g (5. Ommol) thereof was dissolved in 10 mL of toluene. To the resulting solution, 0.50 g (2.5 mmol) of copper acetate monohydrate was added and heated to reflux. The solid produced in the solution after the reaction was separated by filtration to obtain a copper dimethylphosphinate complex.
  • Laminated glasses were prepared in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 4 except that 0.14 g of a dimethylphosphinic acid copper complex was used instead of Og.
  • PVB those having a polymerization degree of 1700 and 650 were used, respectively.
  • the case where PVB having a polymerization degree of 1700 is used corresponds to Example 6, and the case where PVB having a polymerization degree of 650 is used corresponds to Comparative Example 6.
  • Example 6 For the laminated glass of Example 6 and Comparative Example 6, the UV irradiation intensity was set to 0.75 WZm 2 and the UV irradiation time was set to 50 hours, and the above-mentioned Examples 1 to 4 and Comparative Examples 1 to 4 were combined. Black candy was evaluated in the same manner as glass. As a result, in the laminated glass of Example 6, the generation of black precipitates was strong, whereas in the laminated glass of Comparative Example 6, a small amount of black and precipitates were observed.
  • Example 6 and Comparative Example 6 was subjected to spectroscopic measurement in the same manner as the laminated glass of Examples 1 to 4 and Comparative Examples 1 to 4, and the visible light transmittance (Tvis ( 0 h)), and the visible light transmittance (Tvis (50h)) after UV irradiation similar to the above-mentioned “evaluation of black candy” was calculated. Also, the value of Tvis (50h) was calculated by subtracting the value of Tvis (Oh) from the change in visible light transmittance ( ⁇ Tvis). The results obtained are shown in Table 3. [Table 3]

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Disclosed is a near-infrared absorbing material which hardly produces deposits even when irradiated with light for a long time, while having excellent near-infrared absorbing characteristics and light resistance. The near-infrared absorbing material can be applied to interlayers or the like. Also disclosed are a sheet-like molded article and a laminate. A laminate (laminated glass) according to a preferred embodiment of the present invention comprises a pair of light-transmitting substrates (1) and an interlayer (near-infrared absorbing layer) (2) sandwiched between the light-transmitting substrates (1). The interlayer (2) is composed of a near-infrared absorbing material which contains a polyvinyl butyral resin having a polymerization degree of 800-2,300 and copper ions.

Description

明 細 書  Specification
近赤外光吸収材料及び積層体  Near infrared light absorbing material and laminate
技術分野  Technical field
[0001] 本発明は、近赤外光吸収材料及び積層体、特に、近赤外光吸収特性を有する合 わせガラスに適用可能な近赤外光吸収材料及び積層体に関する。  The present invention relates to a near-infrared light absorbing material and a laminate, and particularly to a near-infrared light absorbing material and a laminate that can be applied to a laminated glass having near-infrared light absorption characteristics.
背景技術  Background art
[0002] 窓材等に用いるための光学部材としては、ガラス等力 なる一対の透光性基板の 間に、ポリビュルァセタール榭脂ゃアクリル榭脂等力もなる中間膜を挟んだ構造の合 わせガラスが知られている。このような合わせガラスは、高強度、高耐久性等の優れ た特性を有して 、ることから頻繁に用いられて 、る。  [0002] As an optical member for use in a window material or the like, a structure having a structure in which an intermediate film having a polyvuracetal resin or an acrylic resin is sandwiched between a pair of translucent substrates having glass or the like is used. Laminated glass is known. Such a laminated glass is frequently used because it has excellent properties such as high strength and high durability.
[0003] 近年、これらの合わせガラスには、赤外線又はその近傍領域の波長の光線 (以下、 「近赤外光」 ヽぅ)を遮断し得る特性が求められて ヽる。かかる特性を有する合わせ ガラスを窓材ゃ壁材等に適用すれば、例えば太陽光における上記領域の波長を有 する光線、すなわち熱線の室内への侵入を抑制することができる。これにより、室内 が過度に高温となることを抑制して室内環境を快適に保つことができるようになり、し 力も冷房等に力かるコストを低減することも可能となる。  [0003] In recent years, these laminated glasses have been required to have characteristics capable of blocking infrared rays or light rays having wavelengths in the vicinity thereof (hereinafter referred to as “near infrared light”). If laminated glass having such characteristics is applied to window materials, wall materials, etc., it is possible to suppress, for example, the penetration of light rays having the wavelength in the above-described region in sunlight, that is, heat rays into the room. As a result, it becomes possible to keep the indoor environment comfortable by suppressing the indoor temperature from becoming excessively high, and it is also possible to reduce the cost of power and cooling.
[0004] 近赤外光を遮断できる合わせガラスとしては、中間膜として近赤外光を吸収する特 性を有する層(近赤外光吸収層)を有しているものが知られている。このような中間膜 は、榭脂材料に近赤外光を吸収する特性を有する材料 (近赤外光吸収材料)を分散 させた組成物によって形成することができる。例えば、下記特許文献 1には、 2価の銅 イオン、並びに、酸化インジウム及び Z又は酸化スズから選ばれる少なくとも一種の 赤外光吸収成分と、榭脂成分とを含む中間膜を備える合わせガラスが開示されてい る。  [0004] As a laminated glass capable of blocking near-infrared light, a glass having a property of absorbing near-infrared light (near-infrared light-absorbing layer) as an intermediate film is known. Such an intermediate film can be formed by a composition in which a material having a property of absorbing near infrared light (near infrared light absorbing material) is dispersed in a resin material. For example, in Patent Document 1 below, there is a laminated glass including an interlayer film containing a divalent copper ion and at least one infrared light absorbing component selected from indium oxide and Z or tin oxide, and a rosin component. It is disclosed.
特許文献 1:特開平 9— 211220号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-211220
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、近年、合わせガラスに対しては、上述した近赤外光吸収特性にカ卩え、優 れた耐光性を有していること、すなわち、光を照射されても透光性等の変化が少ない t ヽぅ特性を有して ヽることが要求されて ヽる。このような特性を有する合わせガラス は、長期間使用したとしても高い透光性を維持できるため、極めて実用性の高いもの となる。そして、上記従来の合わせガラスは、優れた近赤外光吸収特性を有してはい たものの、光、特に紫外光を長時間照射されると、中間膜に黒い析出物が生じる場 合があるなど、耐光性の点で未だ改良の余地があった。 [0005] By the way, in recent years, for laminated glass, the above-described near-infrared light absorption characteristics have been considered and excellent. In other words, it is required to have a high light resistance, i.e., a t-characteristic that has little change in translucency even when irradiated with light. A laminated glass having such properties can maintain a high translucency even when used for a long period of time, and thus has extremely high practicality. The conventional laminated glass has excellent near-infrared light absorption characteristics, but when it is irradiated with light, particularly ultraviolet light for a long time, a black precipitate may be formed in the intermediate film. There was still room for improvement in terms of light resistance.
[0006] そこで、本発明はこのような事情に鑑みてなされたものであり、長時間にわたって光 を照射された場合であっても析出物等を生じることが少なぐ近赤外光吸収特性及び 耐光性の両方に優れる中間膜等に適用可能な近赤外光吸収材料を提供することを 目的とする。本発明はまた、力かる近赤外光吸収材料を用いたフィルム状成形物、及 び、合わせガラスに適用可能な積層体を提供することを目的とする。  [0006] Therefore, the present invention has been made in view of such circumstances, and has a near-infrared light absorption characteristic in which precipitates and the like are less likely to occur even when irradiated with light for a long time. An object of the present invention is to provide a near-infrared light-absorbing material applicable to an intermediate film or the like that has both excellent light resistance. Another object of the present invention is to provide a film-like molded article using a powerful near-infrared light absorbing material, and a laminate applicable to laminated glass.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するため、本発明の近赤外光吸収材料は、重合度が 800〜2300 であるポリビュルプチラール榭脂と、銅イオンとを含有することを特徴とする。ここで、 「 重合度」とは、ポリビニルプチラール樹脂の平均重合度をいうものとする(以下同様) [0007] In order to achieve the above object, the near-infrared light absorbing material of the present invention is characterized by containing polybutyral resin having a polymerization degree of 800 to 2300 and copper ions. Here, the “degree of polymerization” means the average degree of polymerization of the polyvinyl propylal resin (the same applies hereinafter).
[0008] 本発明者らの検討によると、上記従来の合わせガラスにおいて生じる黒い析出物 は、中間膜に含まれる銅イオンが酸化又は還元されて生じる銅や銅酸化物等の生成 物に起因するものであることが判明した。このような銅や銅酸ィ匕物は、紫外光の照射 によって中間膜に生じた榭脂成分等に由来する活性種が、銅イオンを酸ィ匕又は還元 することにより発生したものと推測される。 According to the study by the present inventors, the black precipitate generated in the conventional laminated glass is caused by products such as copper and copper oxide generated by oxidation or reduction of copper ions contained in the interlayer film. Turned out to be. Such copper and cuprates are presumed to have been generated by acidification or reduction of copper ions by active species derived from the resin components produced in the interlayer film by irradiation with ultraviolet light. The
[0009] これに対し、本発明の近赤外光吸収材料は、榭脂成分であるポリビュルプチラール 榭脂(以下、「PVB」と略す)として、重合度が 800〜2300であるものを含有して 、る 。そして、このような近赤外光吸収材料においては、必ずしも明らかではないが、当 該材料中の各成分が極めて安定化されると考えられる。  [0009] On the other hand, the near-infrared light absorbing material of the present invention has a degree of polymerization of 800-2300 as polybulputilal resin (hereinafter abbreviated as "PVB") which is a resin component. Contains. In such a near-infrared light absorbing material, although not necessarily clear, it is considered that each component in the material is extremely stabilized.
[0010] したがって、このような近赤外光吸収材料を含む中間膜を備える合わせガラスに対 して、長時間の光 (特に紫外光)の照射を行ったとしても、中間膜中で銅イオンが安 定化されて ヽるため酸化又は還元され難 ヽことなどの要因によって、銅や銅酸化物 の発生が抑制され得る。その結果、光照射による黒い析出物の発生が大幅に少なく なるものと考えられる。なお、作用は必ずしもこれらに限定されない。 [0010] Therefore, even if a long period of light (especially ultraviolet light) is irradiated to a laminated glass including an intermediate film containing such a near-infrared light absorbing material, copper ions are present in the intermediate film. Depending on factors such as difficulty in being oxidized or reduced due to stabilization The generation of can be suppressed. As a result, the generation of black precipitates due to light irradiation is considered to be significantly reduced. In addition, an effect | action is not necessarily limited to these.
[0011] 上記本発明の近赤外光吸収材料は、ホスフィン酸ィ匕合物、ホスホン酸ィ匕合物、ホス ホン酸モノエステル化合物、リン酸モノエステル化合物及びリン酸ジエステル化合物 力もなる群より選ばれる少なくとも一種のリンィ匕合物を更に含有していると好ましい。こ のようなリンィ匕合物を含有することにより、一層優れた近赤外光吸収特性が得られる ようになるほか、かかる材料からなる層(例えば中間膜)の安定性が更に向上するよう になる。  [0011] The near-infrared light absorbing material of the present invention includes a phosphinic acid compound, a phosphonic acid compound, a phosphonic acid monoester compound, a phosphoric acid monoester compound, and a phosphoric acid diester compound. It is preferable to further contain at least one selected phosphorus compound. By containing such a phosphorus compound, it is possible to obtain a more excellent near-infrared light absorption characteristic, and to further improve the stability of a layer made of such a material (for example, an intermediate film). Become.
[0012] また、本発明の近赤外光吸収材料は、可塑剤を更に含有していると好ましい。可塑 剤を含有することにより、 PVBのガラス転移温度 (Tg)が低下して柔らかくなり、銅ィォ ン等との混合が更に容易となるほか、銅イオンの PVBに対する溶解性が更に高めら れ、力かる近赤外光吸収材料を含む層の透光性が向上する。  [0012] The near-infrared light absorbing material of the present invention preferably further contains a plasticizer. By containing a plasticizer, the glass transition temperature (Tg) of PVB decreases and becomes softer, making it easier to mix with copper ions, etc., and further improving the solubility of copper ions in PVB. The translucency of the layer containing a strong near-infrared light absorbing material is improved.
[0013] 本発明はまた、上記本発明の近赤外光吸収材料力もなるシート状成形物を提供す る。このようなシート状成形物は、優れた近赤外光吸収特性を有しており、また、長時 間光を照射された場合であっても析出物等を生じることが少ない。よって、合わせガ ラスにおける中間膜として好適に用いることができる。  [0013] The present invention also provides a sheet-like molded article having the near-infrared light absorbing material power of the present invention. Such a sheet-like molded article has excellent near-infrared light absorption characteristics, and even when it is irradiated with light for a long time, precipitates and the like are rarely generated. Therefore, it can be suitably used as an intermediate film in laminated glass.
[0014] さらに、本発明は透光性基材と、この透光性基材上に設けられた上記本発明の近 赤外光吸収材料カゝらなる近赤外光吸収層とを備える積層体を提供する。かかる積層 体は、上記本発明の近赤外光吸収性組成物からなる近赤外光吸収層を備えて 、る ことから、近赤外光吸収特性に極めて優れているほか、光の照射による析出物が極 めて少なぐ優れた耐光性をも有している。また、積層体を、一対の透光性基材間に 近赤外光吸収層が挟まれた構成とすれば、近赤外光吸収特性及び耐光性の双方の 特性に優れる合わせガラスを提供することができる。  Furthermore, the present invention is a laminate comprising a translucent substrate and a near-infrared light absorbing layer that is provided on the translucent substrate and is a near-infrared light-absorbing material of the present invention. Provide the body. Such a laminate includes a near-infrared light absorbing layer composed of the near-infrared light-absorbing composition of the present invention, and therefore has excellent near-infrared light absorption characteristics, and also by light irradiation. It also has excellent light resistance with very few precipitates. Further, when the laminate is configured such that the near-infrared light absorbing layer is sandwiched between a pair of translucent substrates, a laminated glass excellent in both near-infrared light absorption characteristics and light resistance is provided. be able to.
発明の効果  The invention's effect
[0015] 本発明によれば、長時間にわたって光を照射された場合であっても析出物等を生 じることが少なぐ近赤外光吸収特性及び耐光性の両方に優れる中間膜等に適用可 能な近赤外光吸収材料を提供することが可能となる。また、力かる近赤外光吸収材 料を用いたフィルム状成形物、及び、合わせガラスに適用可能な積層体を提供する ことが可能となる。 [0015] According to the present invention, an intermediate film or the like excellent in both near-infrared light absorption characteristics and light resistance, which generates little precipitates even when irradiated with light for a long time. An applicable near-infrared light absorbing material can be provided. Also provided are a film-like molded article using a powerful near-infrared light absorbing material and a laminate applicable to laminated glass. It becomes possible.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]実施形態の合わせガラスの断面構造の一例を模式的に示す図である。  FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass of an embodiment.
[図 2]反射層を有する合わせガラスの断面構造の一例を模式的に示す図である。  FIG. 2 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer.
[図 3]透光性基板間に設けられた複数の層間に反射層を有する合わせガラスの断面 構造の一例を模式的に示す図である。  FIG. 3 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer between a plurality of layers provided between translucent substrates.
[図 4]実施例 2の合わせガラスの顕微鏡写真を示す図である。  FIG. 4 is a view showing a micrograph of the laminated glass of Example 2.
[図 5]比較例 4の合わせガラスの顕微鏡写真を示す図である。  FIG. 5 is a view showing a micrograph of a laminated glass of Comparative Example 4.
符号の説明  Explanation of symbols
[0017] 1…透光性基板、 2…中間膜、 10…合わせガラス、 20…合わせガラス、 21…透光 性基板、 22· ··近赤外光吸収層、 23· ··反射層、 30· ··合わせガラス、 31· ··透光性基 板、 32· ··近赤外光吸収層、 33· ··反射層、 34…榭脂層。  [0017] 1 ... translucent substrate, 2 ... intermediate film, 10 ... laminated glass, 20 ... laminated glass, 21 ... translucent substrate, 22 ... near infrared light absorbing layer, 23 ... reflective layer, 30 ··· Laminated glass, 31 ··· Translucent substrate, 32 ··· Near-infrared light absorbing layer, 33 ··· Reflecting layer, 34 ··· Grease layer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の好適な実施形態について、必要に応じて図面を参照しつつ詳細に 説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary.
[近赤外光吸収材料]  [Near-infrared absorbing material]
[0019] 実施形態に係る近赤外光吸収材料は、重合度が 800〜2300のポリビニルブチラ 一ル榭脂 (PVB)及び銅イオンを少なくとも含有するものである。  [0019] The near-infrared light absorbing material according to the embodiment contains at least polyvinyl butyral resin (PVB) having a polymerization degree of 800 to 2300 and copper ions.
[0020] (PVB) [0020] (PVB)
まず、近赤外光吸収材料に含まれる PVBについて説明する。 PVBは、 800-230 0の重合度を有している。ここで、重合度とは、 PVBの 1分子を構成している基本単 位の数をいい、 JISK 6728 (2001年度版)に規定された方法に基づいて測定された 値を採用可能である。  First, PVB contained in the near infrared light absorbing material will be described. PVB has a degree of polymerization of 800-2300. Here, the degree of polymerization means the number of basic units constituting one molecule of PVB, and a value measured based on the method defined in JISK 6728 (2001 edition) can be adopted.
[0021] このような重合度を有する PVBは、例えば、 PVBの前駆体として、上述したような P VBの重合度を満たし得る程度の重合度 (又は分子量)を有するポリビュルアルコー ル (PVA)を調製し、これにブチルアルデヒドを反応させる方法により得られたものが 挙げられる。具体的には、重合度が 800〜2300の PVBとしては、例えば、以下に示 すものが商業的に入手可能である。すなわち、例えば、エスレック BM— 5、(重合度 850)、 BH— 3 (重合度 1700、以上積水化学社製)等が挙げられる。 [0021] PVB having such a degree of polymerization is, for example, a polybulal alcohol (PVA) having a degree of polymerization (or molecular weight) sufficient to satisfy the degree of polymerization of PVB as described above as a precursor of PVB. Prepared by reacting butyraldehyde with it. Specifically, as the PVB having a degree of polymerization of 800 to 2300, for example, the following are commercially available. That is, for example, ESREC BM-5 (degree of polymerization 850), BH-3 (degree of polymerization 1700, manufactured by Sekisui Chemical Co., Ltd.) and the like.
[0022] (銅イオン) [0022] (Copper ion)
次に、銅イオンについて説明する。銅イオンは、 2価の銅イオンである。この銅ィォ ンは、銅塩の形態で近赤外光吸収材料中に供給することができる。銅塩の具体例と しては、酢酸銅、蟻酸銅、ステアリン酸銅、安息香酸銅、ェチルァセト酢酸銅、ピロリ ン酸銅、ナフテン酸銅、クェン酸銅等の有機酸の銅塩無水物、水和物若しくは水化 物、或いは、酸化銅、塩化銅、硫酸銅、硝酸銅、塩基性炭酸銅等の無機酸の銅塩の 無水物、水和物若しくは水化物、又は、水酸化銅が挙げられる。これらのなかでは、 酢酸銅、酢酸銅一水和物、安息香酸銅、水酸化銅、塩基性炭酸銅が好ましく用いら れる。なお、銅イオン源であるこれらの銅塩は、単独で用いてもよぐ複数組み合わせ て用いてもよい。  Next, copper ions will be described. Copper ions are divalent copper ions. This copper ion can be supplied into the near-infrared light absorbing material in the form of a copper salt. Specific examples of the copper salt include copper acetate anhydrides of organic acids such as copper acetate, copper formate, copper stearate, copper benzoate, copper ethylacetoacetate, copper pyrophosphate, copper naphthenate, copper citrate, Hydrates or hydrates, or anhydrides, hydrates or hydrates of copper salts of inorganic acids such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, or copper hydroxide Can be mentioned. Of these, copper acetate, copper acetate monohydrate, copper benzoate, copper hydroxide, and basic copper carbonate are preferably used. These copper salts as the copper ion source may be used alone or in combination.
[0023] (リン化合物) [0023] (phosphorus compound)
実施形態の近赤外光吸収材料は、上述した PVB及び銅イオンに加えて、所定のリ ン化合物を含んでいると好ましい。リンィ匕合物としては、下記一般式(1A)で表される リン酸エステル化合物、下記一般式(1B)で表されるホスフィン酸ィヒ合物、下記一般 式(1C)で表されるホスホン酸ィ匕合物、並びに、下記一般式(1D)で表されるホスホン 酸モノエステルイ匕合物力 なる群より選ばれる少なくとも一種のリン化合物が挙げら れる。  The near-infrared light absorbing material of the embodiment preferably contains a predetermined phosphorus compound in addition to the PVB and copper ions described above. Phosphorus compounds represented by the following general formula (1A), phosphinic acid compounds represented by the following general formula (1B), phosphones represented by the following general formula (1C) Examples thereof include acid compounds and at least one phosphorus compound selected from the group consisting of phosphonic acid monoester compounds represented by the following general formula (1D).
[化 1]  [Chemical 1]
Figure imgf000007_0001
Figure imgf000007_0001
0 0 0 0
R3— P— OH 〜(1C) R P— OH (1 D) R 3 — P— OH to (1C) RP— OH (1 D)
I I
OH OR42 OH OR 42
[0024] 上記式中、 nは 1又は 2であり、 R1, R21、 R22
Figure imgf000007_0002
R41及び R42は、それぞれ独立に 、アルキル基、シクロアルキル基、ァルケ-ル基、アルキ-ル基、ァリール基、ァリル 基、ォキシアルキル基、ポリオキシアルキル基、ォキシァリール基、ポリオキシァリー ル基、(メタ)アタリロイルォキシアルキル基又は (メタ)アタリロイルポリオキシアルキル 基を示し、これらの基の炭素数は、それぞれ 1〜30である。なお、これらの基は、当 該基における少なくとも一つの水素原子が、ハロゲン原子、ォキシアルキル基、ポリ ォキシアルキル基、ォキシァリール基、ポリオキシァリール基、ァシル基、アルデヒド 基、カルボキシル基、ヒドロキシル基、(メタ)アタリロイル基、(メタ)アタリロイルォキシ アルキル基、(メタ)アタリロイルポリオキシアルキル基又はエステル基で置換されて ヽ てもよい。なお、リン化合物としては、上記式(1A)〜(: LD)で表される化合物のうちの 一種のみを用いてもよぐ複数種を組み合わせて用いてもよい。また、上記(1A)〜( ID)のリンィ匕合物それぞれについても、上記各種の官能基を有するものを単独で用 V、てもよく、 2種以上のものを組み合わせて用いてもよ!、。
In the above formula, n is 1 or 2, R 1 , R 21 , R 22 ,
Figure imgf000007_0002
R 41 and R 42 each independently represents an alkyl group, a cycloalkyl group, an alkyl group, an alkyl group, an aryl group, or an aryl group. A group, an oxyalkyl group, a polyoxyalkyl group, an oxyaryl group, a polyoxyaryl group, a (meth) atallyloyloxyalkyl group or a (meth) atallyloylpolyoxyalkyl group, each of which has a carbon number of 1 to 30. In these groups, at least one hydrogen atom in the group is a halogen atom, an oxyalkyl group, a polyoxyalkyl group, an oxyaryl group, a polyoxyaryl group, an acyl group, an aldehyde group, a carboxyl group, a hydroxyl group, ( It may be substituted with a (meth) attaroyl group, a (meth) attaroyloxyalkyl group, a (meth) attaloyl polyoxyalkyl group or an ester group. In addition, as a phosphorus compound, you may use in combination of multiple types which may use only 1 type among the compounds represented by said formula (1A)-(: LD). In addition, for each of the above (1A) to (ID) phosphorus compounds, those having the above various functional groups may be used alone V, or two or more kinds may be used in combination! ,.
[0025] なかでも、リンィ匕合物としては、上記一般式(1A)で表されるリン酸エステルイ匕合物 ( モノエステル及び Z又はジエステル)が好まし!/ヽ。上記一般式(1A)で表されるリン酸 エステル化合物において、 R1で表される基としては、アルキル基、ァルケ-ル基又は 下記一般式 (2)で表される重合性官能基が挙げられる。なお、下記一般式 (2)中、 X は、水素原子又はメチル基を示し、 pは 2〜6の整数であり、 mは 0〜5の整数である。 In particular, the phosphoric acid compound is preferably a phosphoric acid ester compound (monoester and Z or diester) represented by the above general formula (1A)! In the phosphoric acid ester compound represented by the general formula (1A), examples of the group represented by R 1 include an alkyl group, an alkenyl group, and a polymerizable functional group represented by the following general formula (2). It is done. In the following general formula (2), X represents a hydrogen atom or a methyl group, p is an integer of 2 to 6, and m is an integer of 0 to 5.
[化 2]  [Chemical 2]
X 0  X 0
I II  I II
H2C=C-C "(0CpH2p)^ …( H 2 C = C -C "(0C p H 2p ) ^… (
[0026] 上述した R1で表される官能基のうち、アルキル基としては、炭素数 1〜30のアルキ ル基が好ましぐ炭素数 1〜18のアルキル基がより好ましい。このようなアルキル基と しては、 n ブチル基、 n—へキシル基、 n—ォクチル基、 2—ェチルへキシル基、 n デシル基、 n—ドデシル基等が挙げられ、なかでも、 2—ェチルへキシル基が好ま しい。また、アルケニル基としては、ォレイル基が好ましい。 Among the functional groups represented by R 1 described above, the alkyl group is more preferably an alkyl group having 1 to 18 carbon atoms, which is preferably an alkyl group having 1 to 30 carbon atoms. Examples of such an alkyl group include n-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, n-decyl group, n-dodecyl group and the like. Ethylhexyl group is preferred. The alkenyl group is preferably an oleyl group.
[0027] 実施形態の近赤外光吸収材料が、このようにリンィ匕合物を含有する場合、近赤外 光吸収材料において、銅イオン及びリン化合物は、単に混合物として存在していても よぐまた、銅イオンがリン化合物と反応して、リン含有銅化合物を形成した状態で存 在していてもよい。 [0027] When the near-infrared light absorbing material of the embodiment contains a phosphorus compound as described above, in the near-infrared light absorbing material, the copper ion and the phosphorus compound may be present merely as a mixture. In addition, copper ions react with phosphorus compounds to form phosphorus-containing copper compounds. May be present.
[0028] 後者の場合、リン含有銅化合物は、リンィ匕合物におけるリン含有基 (例えば、リン酸 エステルにおけるリン酸基)と銅イオンとが、イオン結合及び Z又は配位結合すること によって生じたリン含有銅錯体であると好ましい。このようなリン含有銅化合物は、例 えば、銅イオンの原料とリンィ匕合物とを混合し、これらを反応させることによって調製 することができる。  [0028] In the latter case, the phosphorus-containing copper compound is formed by an ionic bond and a Z or coordinate bond between a phosphorus-containing group in a phosphorus compound (for example, a phosphate group in a phosphate ester) and a copper ion. A phosphorus-containing copper complex is preferable. Such a phosphorus-containing copper compound can be prepared, for example, by mixing a raw material of copper ions and a phosphorus compound and reacting them.
[0029] PVB、銅イオン及びリンィ匕合物を含む形態の近赤外光吸収材料は、例えば、 PVB 中に銅イオンの原料及びリンィ匕合物を添加して混合することにより調製することがで きる。より具体的には、 PVB、銅イオンの原料及びリン化合物を加熱溶融して混練す る方法や、 PVBを溶媒に溶解及び Z又は分散して溶液とし、この溶液中に銅イオン の原料やリン化合物等を添加'混合した後、溶媒を除去する方法が例示できる。  [0029] The near-infrared light-absorbing material containing PVB, copper ions and phosphorus compounds can be prepared, for example, by adding and mixing copper ion raw materials and phosphorus compounds in PVB. it can. More specifically, PVB, a copper ion raw material and a phosphorus compound are heated and melted and kneaded, or PVB is dissolved and Z or dispersed in a solvent to form a solution, and the copper ion raw material and phosphorus are added to this solution. The method of removing a solvent after adding and mixing a compound etc. can be illustrated.
[0030] (各成分の配合量)  [0030] (Amount of each component)
近赤外光吸収材料が上述した PVB、銅イオン及びリン化合物を含有しており、しか も、銅イオンとリン含有ィ匕合物によりリン含有銅化合物が形成されている場合、これら の成分は、以下に示す組成比で配合されていることが好ましい。すなわち、 PVB100 質量部に対する、リン含有銅化合物の含有量が、 0. 1〜: LOOO質量部であると好まし く、 1〜500質量部であるとより好ましぐ 2〜300質量部であると更に好ましい。 PVB に対するリン含有銅化合物の含有量が、 0. 1質量部未満であると、近赤外光吸収特 性が顕著に低下する傾向にある。一方、 1000質量部を超えると、銅イオン及びリン 化合物の相溶性が低下して、透光性が悪くなる傾向にある。  When the near-infrared light-absorbing material contains the PVB, copper ion, and phosphorus compound described above, and the phosphorus-containing copper compound is formed by the copper ion and the phosphorus-containing compound, these components are It is preferable that they are blended at the composition ratio shown below. That is, the content of the phosphorus-containing copper compound with respect to 100 parts by mass of PVB is 0.1 to: LOOO parts by mass, preferably 1 to 500 parts by mass, and 2 to 300 parts by mass. And more preferred. When the content of the phosphorus-containing copper compound relative to PVB is less than 0.1 parts by mass, the near-infrared light absorption characteristics tend to be remarkably lowered. On the other hand, when it exceeds 1000 parts by mass, the compatibility of the copper ion and the phosphorus compound is lowered, and the translucency tends to be deteriorated.
[0031] 特に、近赤外光吸収材料を、窓材等に適用する合わせガラスの中間膜に用いるシ ート状成形物とする場合には、リン含有銅化合物の含有量は、 PVB100質量部に対 して、 0. 5〜45質量%であると好ましぐ 1〜40質量%であるとより好ましぐ 1〜35 質量%であると更に好ま 、。  [0031] In particular, when the near-infrared light absorbing material is a sheet-like molded product used for an interlayer film of laminated glass applied to a window material or the like, the phosphorus-containing copper compound content is 100 parts by mass of PVB. On the other hand, it is preferably 0.5 to 45% by weight, more preferably 1 to 40% by weight, and even more preferably 1 to 35% by weight.
[0032] また、このような近赤外光吸収材料にぉ 、て、銅イオンの含有量及びリン化合物の 含有量は、これらのリンィ匕合物が水酸基又は水酸基由来の酸素原子を有している場 合に、(水酸基又は酸素原子の合計量) Z (銅イオンの含有量)が、モル比で、好まし くは 1〜6、より好ましくは 1〜4、更に好ましくは 1. 5〜2. 5である関係を満たしている と好ましい。この比率が 1未満であると、近赤外光吸収性や可視光透過性が低下する 傾向にある。一方、 6を超えると、銅イオンとの配位結合又はイオン結合に関与しない 水酸基の量が過大となり、吸湿性が大きくなり過ぎる傾向にある。 [0032] Further, in such a near-infrared light absorbing material, the content of copper ions and the content of phosphorus compounds are such that these phosphorus compounds have hydroxyl groups or oxygen atoms derived from hydroxyl groups. (Total amount of hydroxyl groups or oxygen atoms) Z (copper ion content) is preferably 1 to 6, more preferably 1 to 4, more preferably 1.5 to 5 in terms of molar ratio. 2. Satisfies relationship 5 And preferred. When this ratio is less than 1, the near-infrared light absorbability and visible light transmittance tend to decrease. On the other hand, if it exceeds 6, the amount of hydroxyl groups that do not participate in coordination bonds or ionic bonds with copper ions becomes excessive, and the hygroscopicity tends to be excessive.
[0033] (可塑剤) [0033] (Plasticizer)
なお、実施形態の近赤外光吸収材料は、上述した各成分の他に、種々の特性を調 整するための他の成分を更に含んでいてもよい。他の成分としては、まず、可塑剤が 挙げられる。近赤外光吸収材料が可塑剤を含有していると、 PVBに対する銅イオン の溶解及び Z又は分散性が更に高められる傾向にあり、近赤外光吸収性や可視光 透過性を一層向上させることができる。  In addition, the near-infrared light absorbing material of the embodiment may further include other components for adjusting various characteristics in addition to the above-described components. Examples of other components include a plasticizer. When the near-infrared light absorbing material contains a plasticizer, the solubility and Z or dispersibility of copper ions in PVB tend to be further improved, and the near-infrared light absorbability and visible light transmittance are further improved. be able to.
[0034] 可塑剤としては、リン酸エステル系可塑剤、フタル酸系可塑剤、脂肪酸系可塑剤、 グリコール系可塑剤等が挙げられる。より具体的には、トリエチレングリコールジー 2 ェチルへキサノエート(3GO)、トリエチレングリコールジー 2ェチルブチレート(3G H)、ジへキシルアジペート(DHA)、テトラエチレングリコールジヘプタノエート(4G7 )、テトラエチレングリコールジー 2 ェチルへキサノエート(4GO)、トリエチレングリコ ールジヘプタノエート (3G7)等が例示できる。  [0034] Examples of the plasticizer include phosphate ester plasticizers, phthalic acid plasticizers, fatty acid plasticizers, glycol plasticizers, and the like. More specifically, triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH), dihexyl adipate (DHA), tetraethylene glycol diheptanoate (4G7), tetraethylene Examples include glycol diethyl hexanoate (4GO) and triethylene glycol diheptanoate (3G7).
[0035] 近赤外光吸収材料中に上述した可塑剤を含有させる場合、可塑剤の含有量は、 P VB100質量部に対して、 1〜120質量部とすることが好ましぐ 1〜: LOO質量部とする ことがより好ましぐ 2〜80質量部とすることが更に好ましい。可塑剤の含有量が、 PV B 100質量部に対して 1質量部未満であると、銅イオンゃリン化合物の溶解性が低下 して透光性が不十分となる場合がある。一方、 100質量部を超えると PVBが柔軟に なり過ぎ、例えば合わせガラスにおける中間膜としての使用が困難となる傾向にある  [0035] When the plasticizer described above is contained in the near-infrared light absorbing material, the content of the plasticizer is preferably 1 to 120 parts by mass with respect to 100 parts by mass of PVB. More preferably, it is 2-80 parts by mass. If the content of the plasticizer is less than 1 part by mass with respect to 100 parts by mass of PV B, the solubility of the copper ion-phosphorus compound may be reduced and the translucency may be insufficient. On the other hand, when it exceeds 100 parts by mass, PVB becomes too flexible, and for example, it tends to be difficult to use as an interlayer film in laminated glass.
[0036] (紫外光吸収剤) [0036] (Ultraviolet light absorber)
また、紫外光に対する安定性を更に向上させるために、紫外光吸収剤を含有させ ることもできる。紫外光吸収剤としては、ベンゾエート系化合物、サリシレート系化合 物、ベンゾフエノン系化合物、ベンゾトリアゾール系化合物、シァノアクリレート系化合 物、シユウ酸ァ-リド系化合物、トリアジン系化合物等が挙げられる。  Further, in order to further improve the stability against ultraviolet light, an ultraviolet light absorber can be contained. Examples of the ultraviolet light absorber include benzoate compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, oxalate-amide compounds, and triazine compounds.
[0037] より具体的には、ベンゾエート系化合物としては、 2, 4 ジー t—ブチルフエ二ルー 3 ' , 5,ージ tーブチルー 4,ーヒドロキシベンゾエートが挙げられ、サリシレート系化 合物としては、フエ-ルサリシレートや p— t ブチルフエ-ルサリシレートが挙げられ る。 [0037] More specifically, as the benzoate-based compound, 2,4-di-tert-butylphenol 3 ', 5, -di-tert-butyl-4, -hydroxybenzoate is exemplified, and salicylate-based compounds include phenyl salicylate and p-t-butylphenol salicylate.
[0038] ベンゾフエノン系化合物としては、 2, 4 ジ一ヒドロキシベンゾフエノン、 2 ヒドロキ シ 4 メトキシベンゾフエノン、 2 -ヒドロキシ - 4 メトキシベンゾフエノン 5 スノレ ホン酸、 2 ヒドロキシ一 4— n—ォクチルォキシベンゾフエノン、 2 ヒドロキシ一 4— n —ドデシルォキシベンゾフエノン、 2, 2' , 4, 4,一テトラヒドロべンゾフエノン、ビス(5 —ベンゾィル 4 ヒドロキシ一 2—メトキシフエ-ル)メタン、 2, 2,一ジヒドロキシ一 4 , 4'ージメトキシベンゾフエノン、 2, 2 '—ジヒドロキシー 4, 4'ージメトキシベンゾフエ ノン一 5, 5,一ジスルホン酸ナトリウム、 2, 2'—ジヒドロキシ一 5—メトキシベンゾフエノ ン、 2 ヒドロキシー4ーメタクリロイルォキシェチルベンゾフエノン、 4一べンゾィルォ キシ 2 ヒドロキシベンゾフエノン、 2, 2' , 4, 4'ーテトラヒドロキシベンゾフエノン等 が挙げられる。  [0038] Examples of the benzophenone compounds include 2, 4 dihydroxybenzophenone, 2 hydroxy 4 methoxybenzophenone, 2-hydroxy-4 methoxybenzophenone 5 sulphonoic acid, 2 hydroxy 1 4-n-o. Ctyloxybenzophenone, 2-hydroxy-1,4-n-dodecyloxybenzophenone, 2, 2 ', 4, 4, monotetrahydrobenzophenone, bis (5-benzoyl-4-hydroxy-1,2-methoxyphenol) methane 2,2,1-dihydroxy-1,4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone 1,5,5, sodium monodisulfonate, 2,2'-dihydroxy 1-Methoxybenzophenone, 2-hydroxy-4-methacryloyloxychetylbenzophenone, 4-benzoyloxy-2-hydroxybenzophenone, 2, 2 ', 4 , 4'-tetrahydroxybenzophenone and the like.
[0039] ベンゾトリアゾール系化合物としては、 2— (2,一ヒドロキシ一 5,一メチルフエ-ル) ベンゾトリァゾール、 2— (2'ーヒドロキシ—3 '—t—ブチルー 5 ' メチルフエ-ル) 5 クロ口べンゾトリァゾール、 2— (2,一ヒドロキシ一 3,, 5,一ジ一 t—ブチルフエ- ル) 5 クロ口べンゾトリァゾール、 2— (2,一ヒドロキシ一 3,, 5,一ジ一 t—ブチルフ 工 -ル)ベンゾトリァゾール、 2— (2,一ヒドロキシ一 5— t—ォクチルフエ-ル)ベンゾト リアゾール、 2—(2,ーヒドロキシ 5 t ブチルフエ-ル)ベンゾトリァゾール、 2— [ 2,一ヒドロキシ一 3,一(3,,, 4" , 5 " , 6,,一テトラヒドロフタリミドメチル) 5,一メ チルフエ-ル]ベンゾトリァゾール、 2— (2,一ヒドロキシ一 3,, 5,一ジ一 t—ァミルフエ -ル)ベンゾトリァゾール、 2— (2,一ヒドロキシ一 5— t—ォクチルフエ-ル)ベンゾトリ ァゾール、 2— [2,一ヒドロキシ一 3,, 5,一ビス( α , a—ジメトキシベンゾィル)フエ- ル]ベンゾトリァゾール、 2, 2,一メチレンビス [4— (1, 1, 3, 3—テトラメチルブチル) —6— (2N—ベンゾトリアゾール 2—ィル)フエノール]、 2- (2,一ヒドロキシ一 5, - メタクリロイルォキシェチルフエニル) 2H—ベンゾトリァゾール、 2- (2'ーヒドロキ シー3,ードデシルー 5,一メチルフエ-ル)ベンゾトリァゾール、メチルー 3— [3— t— ブチル 5— (2H ベンゾトリアゾール 2—ィル) 4 ヒドロキシフエ-ル]プロピ ォネートとポリエチレングリコールとの縮合物等が挙げられる。 [0039] Examples of the benzotriazole compounds include 2- (2,1hydroxy-1,5, methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'methylphenol) 5 Oral benzotriazole, 2— (2,1hydroxy-1,3,5,1 tert-butylphenol) 5 Chronobenzozoazole, 2— (2,1 hydroxy1,3,5,1 Butylphenol) -benzotriazole, 2- (2,1-hydroxyl 5-tert-octylphenol) benzotriazole, 2- (2, -hydroxy-5 t-butylphenol) benzotriazole, 2- [2,1- Hydroxy-1,3,1 (3,4,5 ", 6, monotetrahydrophthalimidomethyl) 5, monomethyl] benzotriazole, 2- (2, monohydroxy-1,3,5, Tert-amyl benzyl) benzotriazole, 2- (2, 1-hydroxy-1-5-octylphenol) benzotriazole, 2- [2,1-hydroxy-1,3,5,1-bis (α, a-dimethoxybenzoyl) phenol] benzotriazole, 2, 2 , Monomethylenebis [4- (1, 1, 3, 3-tetramethylbutyl) —6— (2N-benzotriazole 2-yl) phenol], 2- (2, monohydroxy-1,5-methacryloyloxyche (Tilphenyl) 2H-benzotriazole, 2- (2'-hydroxy-3, dodecyl-5, monomethylphenol) benzotriazole, methyl-3- [3-t-butyl 5- (2H benzotriazole 2-yl ) 4 Hydroxyphenol] propi Examples include condensates of ionate and polyethylene glycol.
[0040] シァノアクリレート系化合物としては、ェチル 2 シァノ 3, 3 ジフエ-ルアタリ レートゃォクチルー 2 シァノー 3, 3 ジフエ-ルアタリレートが挙げられ、シユウ酸ァ -リド系化合物としては、 2—エトキシ 2'—ェチルォキサリック酸ビスァ-リドゃ 2— エトキシ 5—t—ブチルー 2' ェチルォキサリック酸ビスァ-リドが挙げられる。また 、トリアジン系化合物としては、 2— (4, 6 ジフエ-ル一 1, 3, 5 トリアジン一 2—ィ ル) 5— [ (へキシル)ォキシ] フエノールが挙げられる。  [0040] Examples of the cyanoacrylate compound include ethyl 2 cyano 3, 3 diphenyl acrylate, octal 2 cyano 3, 3 diphenyl acrylate, and oxalate-lide compound includes 2-ethoxy. 2'-Ethyloxalic acid bis-arylide 2-ethoxy 5-tert-butyl- 2'-Ethyloxalic acid bis-aryl. Examples of triazine compounds include 2- (4,6 diphenyl-1,3,5 triazine-2-yl) 5-[(hexyl) oxy] phenol.
[0041] (光安定剤)  [0041] (Light stabilizer)
さらに、近赤外光吸収材料は、光に対する安定性を更に向上させるための光安定 剤を含有することもできる。特に、上述した紫外光吸収剤とこの光安定剤を併用する と、光に対する安定性が極めて良好となる傾向にある。光安定剤としては、ヒンダード アミン系光安定剤 (HALS)や、 Ni系化合物を適用可能である。  Further, the near-infrared light absorbing material can also contain a light stabilizer for further improving the stability to light. In particular, when the ultraviolet light absorber described above and this light stabilizer are used in combination, the stability to light tends to be very good. As the light stabilizer, a hindered amine light stabilizer (HALS) or a Ni compound can be used.
[0042] より具体的には、 HALSとしては、ビス(2, 2, 6, 6—テトラメチル一 4 ピペリジル) セバケート、ビス(1, 2, 2, 6, 6 ペンタメチルー 4ーピペリジル)セバケード、 1 [2 More specifically, as HALS, bis (2, 2, 6, 6-tetramethyl-4-piperidyl) sebacate, bis (1, 2, 2, 6, 6 pentamethyl-4-piperidyl) sebacade, 1 [ 2
[3— (3, 5—t—ブチルー 4ーヒドロキシフエ-ル)プロピオ-ルォキシ]ェチル] 4 [3— (3, 5—ジ tーブチルー 4ーヒドロキシフエ-ル)プロピオ-ルォキシ ]—2, [3— (3,5-tert-butyl-4-hydroxyphenyl) propio-loxy] ethyl] 4 [3 -— (3,5-di-tert-butyl-4-hydroxyphenyl) propio-loxy] —2,
2, 6, 6—テトラメチルピペリジン、 4 ベンゾィルォキシ—2, 2, 6, 6—テトラメチル ピぺリジン、 8 ァセチルー 3 ドデシルー 7, 7, 9, 9—テトラメチル一 1, 3, 8 トリ ァザスピロ [4, 5]デカン一 2, 4 ジオン、ビス一(1, 2, 2, 6, 6 ペンタメチル一 4 —ピペリジル) - 2- (3, 5—ジ— t—ブチル—4—ヒドロキシベンジル)— 2— n—ブ チルマロネート、テトラキス(1, 2, 2, 6, 6 ペンタメチル— 4 ピペリジル)—1, 2,2, 6, 6-tetramethylpiperidine, 4 benzoyloxy-2, 2, 6, 6-tetramethylpiperidine, 8 acetyl 3 dodecyl 7, 7, 9, 9—tetramethyl 1, 3, 8 triazaspiro [ 4, 5] decane 1,4 dione, bis (1, 2, 2, 6, 6 pentamethyl 1 4-piperidyl)-2- (3,5-di-t-butyl-4-hydroxybenzyl) -2 — N-Butyl malonate, tetrakis (1, 2, 2, 6, 6 pentamethyl—4 piperidyl) —1, 2,
3, 4 ブタンテトラカルボキシレート、テトラキス(2, 2, 6, 6—テトラメチルー 4ーピぺ リジル)— 1, 2, 3, 4 ブタンテトラカルボキシレート、(Mixed 1, 2, 2, 6, 6 ペン タメチル一 4 ピペリジル/トリデシル)一 1, 2, 3, 4 ブタンテトラカルボキシレート、 Mixed { 1, 2, 2, 6, 6 ペンタメチノレー 4 ピベリジノレ Z j8 , β , β ' , j8 ,一テトラ メチル 3, 9— [2, 4, 8, 10—テトラオキサスピロ(5, 5)ゥンデカン]ジェチル} 13, 4 Butanetetracarboxylate, Tetrakis (2, 2, 6, 6-tetramethyl-4-piperidyl) — 1, 2, 3, 4 Butanetetracarboxylate, (Mixed 1, 2, 2, 6, 6 Pen Tamethyl 1 4 Piperidyl / Tridecyl) 1 1, 2, 3, 4 Butanetetracarboxylate, Mixed {1, 2, 2, 6, 6 Pentamethinole 4 Piberidinore Z j8, β, β ', j8, 1 Tetramethyl 3, 9 — [2, 4, 8, 10-Tetraoxaspiro (5, 5) undecane] jetyl} 1
, 2, 3, 4 ブタンテトラカルボキシレート、(Mixed 2, 2, 6, 6—テトラメチル— 4— ピペリジル Zトリデシル)一 1, 2, 3, 4 ブタンテトラカルボキシレート、 Mixed {2, 2 , 6, 6—テトラメチノレー 4 ピベリジノレ Z j8 , β , β ' , j8 , 一テトラメチノレー 3, 9- [2, 4, 8, 10—テトラオキサスピロ(5, 5)ゥンデカン]ジェチル} 1, 2, 3, 4 ブタンテト ラカルボキシレー卜、 2, 2, 6, 6—テ卜ラメチル— 4 ピペリジルメタクリレー卜、 1, 2, 2 , 6, 6 ペンタメチル一 4 ピペリジルメタタリレート、ポリ [ (6— (1, 1, 3, 3—テトラメ チルブチル)イミノー 1, 3, 5 トリアジン 2, 4 ジィル)] [ (2, 2, 6, 6—テトラメチ ルー 4 ピペリジル)ィミノ]へキサメチレン [ (2, 2, 6, 6—テトラメチル一 4 ピベリジ ル)イミノール]、ジメチルサシネートポリマー with— 4 ヒドロキシ 2, 2, 6, 6—テト ラメチノレー 1—ピぺリジンエタノーノレ、 N, Ν' , Ν" , Ν' "—テトラキス一 (4, 6 ビス (ブチルー(Ν—メチルー 2, 2, 6, 6—テトラメチルピペリジンー4 ィル)ァミノ) トリアジン— 2—ィル)—4, 7 ジァザデカン— 1, 10 ジァミン、ジブチルァミン— 1 , 3, 5 トリァジン一 Ν, Ν,一ビス(2, 2, 6, 6—テトラメチル一 4 ピペリジル一 1, 6 一へキサメチレンジァミンと Ν— (2, 2, 6, 6—テトラメチルピペリジル)ブチルァミンの 重縮合物、デカン二酸ビス(2, 2, 6, 6—テトラメチル— 1— (ォクチルォキシ)— 4— ピベリジ-ル)エステル等が挙げられる。 , 2, 3, 4 Butanetetracarboxylate, (Mixed 2, 2, 6, 6-tetramethyl— 4-piperidyl Z-tridecyl) 1, 2, 3, 4 Butanetetracarboxylate, Mixed {2, 2 , 6, 6-Tetramethinole 4 Piberidinore Z j8, β, β ', j8, One tetramethinole 3, 9- [2, 4, 8, 10-Tetraoxaspiro (5,5) undecane] jetyl} 1, 2, 3 , 4 Butantetolacarboxylate, 2, 2, 6, 6—Teramethyl— 4 Piperidyl methacrylate, 1, 2, 2, 6, 6 Pentamethyl mono-4-piperidyl methacrylate, Poly [(6— (1 , 1, 3, 3—tetramethylbutyl) imino 1, 3, 5 triazine 2, 4 diyl)]] [(2, 2, 6, 6-tetramethyl 4 piperidyl) imino] hexamethylene [(2, 2, 6, 6-tetramethyl-1-4-piberyl) iminol], dimethyl succinate polymer with— 4 hydroxy 2, 2, 6, 6-tetramethinole 1-piperidine ethanol, N, Ν ', Ν ", Ν'" — Tetrakis (4, 6 bis (butyl- (ー -methyl-2,2,6,6-tetramethylpiperidine-4-yl) amino) Riadin—2-yl) —4,7 diazadecane— 1,10 diamine, dibutylamine— 1, 3, 5 triazine 1 Ν, Ν, 1 bis (2, 2, 6, 6-tetramethyl 1 4 piperidyl 1 1, 6 Polycondensate of monohexamethylenediamine and Ν— (2, 2, 6, 6-tetramethylpiperidyl) butyramine, bis (2, 2, 6, 6-tetramethyl-1)-(octyloxy) ) — 4—Piberidyl) ester and the like.
[0043] また、 Ni系の光安定剤としては、 [2, 2,一チォ一ビス(4— t—オタチノレフエノレート ) ]一 2—ェチルへキシルァミン—ニッケル(II)、ニッケルジブチルジチォカーボネート 、 [2, 2,ーチオービス(4— tーォクチルフエノレート)]ーブチルァミン一ニッケル(Π) 等が挙げられる。  [0043] Ni-based light stabilizers include [2, 2, 1-thiobis (4-t-otatino refenolate)] 1-2-ethylhexylamine-nickel (II), nickel dibutyldi And thiocarbonate, [2,2, -thiobis (4-tert-octylphenolate)]-butylamine mononickel (Π) and the like.
[0044] (その他の成分)  [0044] (Other ingredients)
近赤外光吸収材料を安定化するための成分としては、他に、抗酸化剤、熱安定剤 等を含有させることができる。また、色調を調整するための成分として、染料、顔料、 金属化合物等を添加してもよい。さらに、合わせガラスに適用する際に、ガラス等の 透光性基板に対する密着性を調整するための成分として、シランィ匕合物、アルカリ金 属塩、アルカリ土類金属塩等を添加することもできる。さらにまた、榭脂成分として、 上記 PVBにカ卩えて、近赤外光吸収材料の特性を低下させな!/ヽ範囲でエチレン 酢 酸ビュル系共重合体やアクリル系榭脂を組み合わせて含有して 、てもよ 、。  In addition to the components for stabilizing the near-infrared light absorbing material, an antioxidant, a heat stabilizer and the like can be contained. Moreover, you may add dye, a pigment, a metal compound, etc. as a component for adjusting a color tone. Furthermore, when applied to laminated glass, Silane compounds, alkali metal salts, alkaline earth metal salts, and the like can be added as components for adjusting the adhesion to a light-transmitting substrate such as glass. . Furthermore, as a resin component, in addition to the above PVB, do not deteriorate the properties of the near-infrared light absorbing material! / In combination with ethylene acetate butyl copolymer or acrylic resin in the range of ヽ. Well, okay.
[光学部材]  [Optical member]
[0045] 上述した近赤外光吸収材料を用いることにより、近赤外光を遮断する特性に優れる 種々の光学部材を得ることができる。このような光学部材としては、以下に示す第 1及 び第 2の形態が挙げられる。 [0045] By using the above-described near-infrared light-absorbing material, it has excellent properties for blocking near-infrared light. Various optical members can be obtained. Examples of such an optical member include the following first and second forms.
第 1の形態:近赤外光吸収性組成物を加工して得られるシート状成形物。  1st form: The sheet-like molding obtained by processing a near-infrared light absorptive composition.
第 2の形態:透光性基板と、この透光性基板に隣接して設けられた近赤外光吸収材 料力 なる近赤外光吸収層とを有する積層体。  Second embodiment: A laminate having a light-transmitting substrate and a near-infrared light absorbing layer provided adjacent to the light-transmitting substrate.
[0046] (第 1の形態)  [0046] (First form)
まず、第 1の形態について説明する。第 1の形態の光学部材は、上述した近赤外光 吸収材料からなるシート状の成形物であり、具体的には、シートやフィルムが挙げら れる。ここで、シートとは、 250 /z mを超える厚さを有する薄板状のものである。また、 フィルムとは、厚さ 5〜250 /ζ πιの薄い膜状のものである。これらのシート又はフィルム は、公知のシート又はフィルム形成方法を用いて作製可能である。具体的には、溶 融押出成形法、延伸成形法、カレンダー成形法、プレス成形法、溶液キャスト法等が 挙げられる。  First, the first embodiment will be described. The optical member of the first form is a sheet-like molded product made of the above-described near-infrared light absorbing material, and specifically includes a sheet and a film. Here, the sheet is a thin plate having a thickness exceeding 250 / zm. The film is a thin film having a thickness of 5 to 250 / ζ πι. These sheets or films can be produced using a known sheet or film forming method. Specific examples include a melt extrusion molding method, a stretch molding method, a calendar molding method, a press molding method, and a solution casting method.
[0047] (第 2の形態)  [0047] (Second form)
次に、第 2の形態について説明する。第 2の形態の光学部材は、透光性基板と、こ の透光性基板に隣接して設けられた、近赤外光吸収材料からなる近赤外光吸収層と を有する積層体である。  Next, the second embodiment will be described. The optical member of the second form is a laminate having a light-transmitting substrate and a near-infrared light absorbing layer made of a near-infrared light-absorbing material provided adjacent to the light-transmitting substrate. .
[0048] 透光性基板を構成する材料は、可視光透過性を有する透光性材料であれば特に 限定されず、光学部材の用途に応じて適宜選択可能である。良好な硬度、耐熱性、 耐薬品性、耐久性等を得る観点力もは、ガラスやプラスチックが好適に使用される。 ガラスとしては、無機ガラス、有機ガラス等が挙げられ、目的に応じて、色ガラス、透 過率に波長依存性のある UVカットガラス、又はグリーンガラス等の遮熱機能を有す るガラスといった特定の機能を有するガラスを用いることもできる。また、プラスチックと しては、例えば、ポリカーボネート、アクリロニトリル—スチレン共重合体、ポリメチルメ タクリレート、塩化ビニル榭脂、ポリスチレン、ポリエステル、ポリオレフイン、ノルボル ネン榭脂等が例示でき、これらもガラスと同様、特定の機能を有するものを適宜選択 して用いてもよい。なお、透光性基板が複数存在する場合には、各基板は、同じ種 類の材料で構成されたものであってもよぐ異なる材料で構成されたものであってもよ い。 [0048] The material constituting the translucent substrate is not particularly limited as long as it is a translucent material having visible light transmissivity, and can be appropriately selected according to the use of the optical member. From the viewpoint of obtaining good hardness, heat resistance, chemical resistance, durability, etc., glass and plastic are preferably used. Examples of the glass include inorganic glass and organic glass. Depending on the purpose, specific glass such as colored glass, UV-cut glass having a wavelength dependency on transmittance, or glass having a heat shielding function such as green glass is specified. It is also possible to use glass having the following functions. Examples of the plastic include polycarbonate, acrylonitrile-styrene copolymer, polymethyl methacrylate, vinyl chloride resin, polystyrene, polyester, polyolefin, norbornene resin, and these are also specific to glass. Those having functions may be appropriately selected and used. When there are a plurality of translucent substrates, each substrate may be composed of the same material or different materials. Yes.
[0049] このような積層体は、例えば、上述した第 1の形態の光学部材と同様のシートゃフィ ルムを形成した後、このシート等と透光性基板とを貼り合わせることによって製造する ことができる。これらを貼り合わせる方法としては、プレス法、マルチロール法、減圧法 等の加圧又は減圧により接着する手段、オートクレープ等により加熱して接着する手 段、又は、これらを組み合わせた手段が例示できる。  [0049] Such a laminated body is manufactured, for example, by forming a sheet or film similar to the optical member of the first embodiment described above, and then bonding the sheet or the like to the light-transmitting substrate. Can do. Examples of a method for bonding them together include means for bonding by pressurization or pressure reduction, such as a press method, a multi-roll method, and a pressure reduction method, a means for bonding by heating with an autoclave, or a combination of these. .
[0050] また、積層体の製造方法としては、予め形成したシートを張り合わせる方法以外に 、透光性基材上に、上記シート状成形物を用いずに近赤外光吸収層を直接形成す る方法も適用できる。このような方法としては、例えば、近赤外光吸収材料を適宜の 溶媒に溶解及び Z又は分散させてコーティング剤とし、この溶液を透光性基板に塗 布した後、溶媒を蒸発させて、透光性基材上に近赤外光吸収材料力 なる薄膜、被 覆物又は薄層を形成する方法が挙げられる。こうして形成された薄膜等は、コーティ ングと呼ばれる。このような方法を用いて近赤外光吸収層を形成する場合には、当該 層の平坦性を高める目的で、レべリング剤、消泡剤といった各種の界面活性剤等の 溶解補助剤を、上述したコーティング剤中に添加してもよ 、。  [0050] Further, as a method for producing a laminate, in addition to a method of pasting sheets formed in advance, a near-infrared light absorbing layer is directly formed on a light-transmitting substrate without using the above-mentioned sheet-like molded product. This method can also be applied. As such a method, for example, a near-infrared light absorbing material is dissolved and Z or dispersed in an appropriate solvent to form a coating agent, and this solution is applied to a light-transmitting substrate, and then the solvent is evaporated, Examples thereof include a method of forming a thin film, a covering, or a thin layer having a near infrared light absorbing material force on a translucent substrate. The thin film formed in this way is called coating. When a near-infrared light absorbing layer is formed using such a method, solubilizing agents such as various surfactants such as a leveling agent and an antifoaming agent are added for the purpose of improving the flatness of the layer. It can be added to the coating agent mentioned above.
[0051] (合わせガラス)  [0051] (Laminated glass)
第 2の形態の光学部材、すなわち積層体は、上述したような透光性基板と近赤外光 吸収層とを一層ずつ備えるものに限定されず、これらの層を複数備えるものであって もよい。具体的には、一対の透光性基板と、この透光性基板間に配置された上記近 赤外光吸収材料からなる中間膜 (近赤外光吸収層)とを備えるものが挙げられる。こ のような積層体は、いわゆる合わせガラスと呼ばれ、窓材等として好適に用いることが できる。  The optical member of the second form, that is, the laminate is not limited to one having the above-described light-transmitting substrate and the near-infrared light absorbing layer, but may have a plurality of these layers. Good. Specifically, a substrate including a pair of light-transmitting substrates and an intermediate film (near-infrared light absorbing layer) made of the near-infrared light-absorbing material disposed between the light-transmitting substrates can be given. Such a laminate is called a so-called laminated glass and can be suitably used as a window material or the like.
[0052] ここで、図 1を参照して、好適な実施形態の合わせガラスについて説明する。  [0052] Here, a laminated glass of a preferred embodiment will be described with reference to FIG.
[0053] 図 1は、実施形態の合わせガラスの断面構造の一例を模式的に示す図である。図 1 に示される合わせガラス 10は、一対の透光性基板 1と、この一対の透光性基板 1に 挟持された中間膜 2 (近赤外光吸収層)とを備えるものである。中間膜 2は、上述した 実施形態の近赤外光吸収材料力もなるものであり、透光性基板 1としては、上述した 積層体と同様のものが適用できる。 [0054] 力かる構造の合わせガラス 10は、例えば、一組の透光性基板 1の間に、上述した 近赤外光吸収性組成物カゝらなるシート状成形物を挟み、これを予備圧着して各層間 に残存した空気を除去した後、本圧着してこれらを密着させる方法によって製造する ことができる。 FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of the laminated glass of the embodiment. A laminated glass 10 shown in FIG. 1 includes a pair of translucent substrates 1 and an intermediate film 2 (near infrared light absorption layer) sandwiched between the pair of translucent substrates 1. The intermediate film 2 also has the near-infrared light absorbing material force of the above-described embodiment, and the light-transmitting substrate 1 can be the same as the above-described laminate. [0054] The laminated glass 10 having a powerful structure is obtained by, for example, sandwiching a sheet-like molded product made of the above-described near-infrared light absorbing composition between a pair of light-transmitting substrates 1, and preliminarily using this. It can be manufactured by a method in which air remaining between the respective layers is removed by pressure bonding, and then these are pressure bonded to bring them into close contact.
[0055] なお、このような製造方法により合わせガラス 10を製造する場合、中間膜 2となるベ きシート状成形物が、その保管時において、当該シート同士が合着して塊状となる、 いわゆるブロッキング現象が生じていないことや、予備圧着における脱気性が良好で あること等が重要となる。これらの要求を満たしている場合、透光性基材 1とシートとを 重ね合わせる際の作業性が良好となるほか、例えば脱気が不十分であるために生じ た気泡等による透光性の低下を防ぐことができる。  [0055] Note that, when the laminated glass 10 is manufactured by such a manufacturing method, the sheet-like molded product to be the intermediate film 2 is formed into a lump when the sheets are bonded together during storage. It is important that the blocking phenomenon does not occur and that the degassing property in the pre-bonding is good. When these requirements are satisfied, the workability when superimposing the translucent substrate 1 and the sheet is improved, and the translucency due to bubbles generated due to insufficient deaeration, for example. Decline can be prevented.
[0056] 窓材等に適用する観点からは、合わせガラス 10には、近赤外光を遮断する特性の ほか、可視光透過性、すなわち可視光領域の光を透過する特性に優れることも求め られる。そして、優れた可視光透過性を得るためには、透光性基板 1と中間膜 2との 間に極力気泡が残存して 、な 、ことが好ま 、。  [0056] From the viewpoint of application to window materials and the like, the laminated glass 10 is also required to have not only the property of blocking near infrared light but also the property of transmitting visible light, that is, the property of transmitting light in the visible light region. It is done. In order to obtain excellent visible light transmittance, it is preferable that bubbles remain between the translucent substrate 1 and the intermediate film 2 as much as possible.
[0057] この気泡を低減する手段の一つとして、表面にエンボスと呼ばれる多数の微小な凹 凸を有して 、る中間膜 2を用いる方法が知られて 、る。エンボスが施された中間膜 2 によれば、上述した予備圧着工程等における脱気性が良好となるほか、残存する気 泡が極めて微小となり、中間膜 2中に取り込まれ易くなる。その結果、合わせガラス 1 0は、気泡による透光性の低下が少ないものとなる。  As one means for reducing the bubbles, a method using an intermediate film 2 having a large number of minute concaves and convexes called emboss on the surface is known. According to the embossed intermediate film 2, the degassing property in the above-described pre-compression bonding process and the like becomes good, and the remaining bubbles become extremely small and are easily taken into the intermediate film 2. As a result, the laminated glass 10 is less deteriorated in translucency due to bubbles.
[0058] エンボスの形態としては、例えば、多数の凸部とこれらの凸部に対する多数の凹部 とからなる各種凸凹模様、多数の凸条とこれらの凸条に対する多数の凹溝とからなる 各種の凸凹模様、粗さ、配置、大きさ等の種々の形状因子に関し多様な値を有する エンボス形状がある。  [0058] As the form of embossing, for example, various concave and convex patterns composed of a large number of convex portions and a large number of concave portions corresponding to these convex portions, and various types of embossed strips composed of a large number of convex strips and a large number of concave grooves corresponding to these convex strips There are embossed shapes with various values for various shape factors such as uneven patterns, roughness, arrangement, size, etc.
[0059] これらのエンボスとしては、例えば、特開平 6— 198809号公報に記載された、凸部 の大きさを変え、その大きさ、配置を規定したもの、特開平 9— 40444号公報に記載 された、表面の粗さを 20〜50 /ζ πιとしたもの、特開平 9— 295839号公報に記載さ れた、凸条が交差するように配置されたもの、或いは、特開 2003— 48762号公報に 記載された、主凸部の上に更に小さな凸部を形成されたものが挙げられる。 [0060] また、近年、合わせガラス 10に求められている他の特性として、遮音性が挙げられ る。遮音性が優れる合わせガラスによれば、例えば、窓材に用いた場合に、周囲の騒 音等の影響を低減できるようになり、更に室内環境を向上させ得る。一般に、遮音性 能は、周波数の変化に応じた透過損失量として示され、その透過損失量は、 JISA 4 708では、 500Hz以上にぉ 、て遮音等級に応じてそれぞれ一定値で規定されて!ヽ る。 [0059] Examples of these embosses include those described in JP-A-6-198809, in which the size of the protrusions is changed and the size and arrangement thereof are defined, and in JP-A-9-40444. The surface roughness is 20-50 / ζ πι, the one described in Japanese Patent Application Laid-Open No. 9-295839, the ridges arranged so as to intersect, or the Japanese Patent Application Laid-Open No. 2003-48762. No. 1, and a smaller convex part formed on the main convex part. [0060] In addition, as another characteristic recently required for the laminated glass 10, sound insulation is cited. According to the laminated glass having excellent sound insulation, for example, when used for a window material, it is possible to reduce the influence of ambient noise and the like, and further improve the indoor environment. In general, sound insulation performance is shown as transmission loss amount according to frequency change, and the transmission loss amount is specified by JISA 4 708 at a constant value depending on the sound insulation grade, over 500Hz!ヽ.
[0061] ところが、合わせガラスにおける透光性基板として一般的に用いられるガラス板の 遮音性能は、 2000Hzを中心とする周波数領域では、コインシデンス効果により著し く低下する傾向にある。ここで、コインシデンス効果とは、ガラス板に音波が入射した 時、ガラス板の剛性と慣性によって、ガラス板状を横波が伝播してこの横波と入射音 とが共鳴し、その結果、音の透過が起こる現象をいう。したがって、一般的な合わせ ガラスでは、 2000Hzを中心とする周波数領域において遮音性能の低下を避け難く 、この点の改善が求められている。  However, the sound insulation performance of a glass plate generally used as a light-transmitting substrate in laminated glass tends to be significantly reduced due to the coincidence effect in a frequency region centered on 2000 Hz. Here, the coincidence effect means that when a sound wave is incident on the glass plate, the transverse wave propagates through the glass plate due to the rigidity and inertia of the glass plate, and the transverse wave and the incident sound resonate. This is a phenomenon that occurs. Therefore, in general laminated glass, it is difficult to avoid a decrease in sound insulation performance in a frequency region centered on 2000 Hz, and improvement of this point is demanded.
[0062] これに関し、人間の聴覚は、等ラウドネス曲線から、 1000〜6000Hzの範囲では他 の周波数領域に比べ非常に良い感度を示すことが知られている。従って、上述した コインシデンス効果による遮音性能の落ち込みを解消することは、防音性能を高める 上で重要となる。このような観点から、合わせガラス 10の遮音性能を高めるには、コィ ンシデンス効果による遮音性能の低下を緩和し、このコインシデンス効果に起因する 透過損失の極小部の低下を防ぐ必要がある。  [0062] In this regard, it is known from the equal loudness curve that human auditory sensation exhibits a very good sensitivity in the range of 1000 to 6000 Hz compared to other frequency regions. Therefore, it is important to improve the soundproofing performance to eliminate the drop in the soundproofing performance due to the coincidence effect described above. From this point of view, in order to improve the sound insulation performance of the laminated glass 10, it is necessary to alleviate the decrease in the sound insulation performance due to the coincidence effect, and to prevent the minimum portion of the transmission loss due to the coincidence effect from being lowered.
[0063] ここで、合わせガラス 10に遮音性を付与する方法としては、合わせガラス 10の質量 を増大させる方法、透光性基板 1となるべきガラスを複合ィ匕する方法、このガラス面積 を細分化する方法、ガラス板支持手段を改善する方法などがある。このほか、遮音性 能は、中間膜 2の動的粘弾性により左右され、特に貯蔵弾性率と損失弾性率との比 である損失正接に影響されることがあることから、この値を制御することによつても合 わせガラス 10の遮音性能を高めることができる。  [0063] Here, as a method of imparting sound insulation to the laminated glass 10, there are a method of increasing the mass of the laminated glass 10, a method of compounding the glass to be the translucent substrate 1, and subdividing this glass area. And a method for improving the glass plate supporting means. In addition, the sound insulation performance depends on the dynamic viscoelasticity of the interlayer film 2, and is particularly affected by the loss tangent, which is the ratio between the storage elastic modulus and the loss elastic modulus. Therefore, the sound insulation performance of the laminated glass 10 can be improved.
[0064] 中間膜 2の損失正接の値を制御する手段としては、例えば、特定の重合度を有す る榭脂膜を用いる方法、特開平 4— 2317443号公報に記載されるような榭脂の構造 を規定する方法、特開 2001— 220183号公報に記載されるような榭脂中の可塑剤 量を規定する方法等が挙げられる。また、異なる 2種以上の榭脂を組み合わせて中 間膜を形成することによつても、広い温度範囲にわたって合わせガラス 10の遮音性 能を高め得ることが知られている。例えば、特開 2001— 206742号公報に記載され た、複数種の榭脂をブレンドする方法、特開 2001— 206741号公報、特開 2001— 226152号公報に記載された、複数種の榭脂を積層する方法、特開 2001 - 19224 3号公報に記載された、中間膜中の可塑剤量に偏向を持たせる方法等が挙げられる 。これらの技術を採用し、榭脂構造の改質、可塑剤の添加、 2種以上の榭脂の組み 合わせ等といった手段を適宜組み合わせて実施することで、中間膜 2を形成すべき 榭脂材料の損失正接の値を制御することが可能となり、所望の遮音性を得ることがで さるようになる。 [0064] As a means for controlling the value of the loss tangent of the interlayer film 2, for example, a method using a resin film having a specific degree of polymerization, a resin as described in JP-A-4-2317443 A method for defining the structure of the resin, and a plasticizer in the resin as described in JP-A-2001-220183 Examples include a method for defining the amount. It is also known that the sound insulation performance of the laminated glass 10 can be enhanced over a wide temperature range by forming an intermediate film by combining two or more different types of resin. For example, a method of blending a plurality of types of resin described in JP-A-2001-206742, and a method of blending a plurality of types of resin described in JP-A-2001-206741 and JP-A-2001-226152. Examples thereof include a method of laminating, a method described in Japanese Patent Application Laid-Open No. 2001-192243, and a method of imparting a deflection to the amount of plasticizer in the intermediate film. A resin material that should form the intermediate film 2 by adopting these technologies and implementing appropriate combinations of means such as modification of the resin structure, addition of a plasticizer, and a combination of two or more kinds of resin. It is possible to control the value of the loss tangent of and to obtain the desired sound insulation.
[0065] さらに、合わせガラス 10は、近赤外光を遮断すること以外による遮熱性を更に発現 し得るものであると好ましい。合わせガラス 10の遮熱性を高める方法としては、中間 膜 2中に、遮熱機能を有する酸化物微粒子を更に含有させる方法が挙げられる。こ のような方法としては、例えば、特開 2001— 206743号公報、特開 2001— 261383 号公報、特開 2001— 302289号公報等に記載された方法を適用できる。  [0065] Further, it is preferable that the laminated glass 10 can further exhibit heat shielding properties other than blocking near infrared light. As a method for improving the heat shielding property of the laminated glass 10, there can be mentioned a method in which the intermediate film 2 further contains oxide fine particles having a heat shielding function. As such a method, for example, methods described in JP-A-2001-206743, JP-A-2001-261383, JP-A-2001-302289, etc. can be applied.
[0066] 遮熱性を高め得る酸ィ匕物微粒子としては、錫ドープ酸化インジウム (ITO)、アンチ モンド一プ酸ィ匕錫 (ATO)、アルミニウムドープ酸ィ匕亜鉛 (AZO)等が挙げられる。な お、酸化物微粒子が含有された中間膜 2は、透光性が低下しやすい傾向にあること から、酸ィ匕物微粒子の粒径を小さくしたり(特開 2002— 293583号公報)、分散性を 高めたりして、透光性を良好に維持する方法を適用してもよい。後者のように酸ィ匕物 微粒子の分散性を高めるための方法としては、当該微粒子を機械的に分散させるこ とや、分散剤を用いること等の公知の微粒子分散技術が適用できる。  [0066] Examples of the oxide fine particles that can improve the heat-shielding property include tin-doped indium oxide (ITO), antimony monophosphate-tin (ATO), aluminum-doped oxide-zinc (AZO), and the like. In addition, since the intermediate film 2 containing oxide fine particles tends to have low translucency, the particle size of the oxide fine particles can be reduced (Japanese Patent Laid-Open No. 2002-293583), A method of improving dispersibility and maintaining good translucency may be applied. As a method for enhancing the dispersibility of the oxide fine particles as in the latter case, a known fine particle dispersion technique such as mechanically dispersing the fine particles or using a dispersant can be applied.
[0067] 合わせガラスの遮熱性を高める方法としては、上述した酸化物微粒子を含有させる 方法以外に、例えば、有機系の遮熱機能を有する染料を含有させる方法や、遮熱性 能を有する透光性基板を用いる方法も挙げられる。前者の有機系の遮熱機能を有す る染料を含有させる方法としては、特開平 7— 157344号公報、特許第 319271号公 報に記載された方法が挙げられる。また、後者の方法に適用可能な遮熱性能を有す る透光性基板としては、例えば、特開 2001— 151539号公報に記載された Fe含有 ガラス (例えば、グリーンガラス等)、特開 2001— 261384号公報、特開 2001— 226 148号公報に記載された金属、金属酸ィ匕物を積層したガラス板が挙げられる。 [0067] As a method of improving the heat shielding property of the laminated glass, in addition to the method of containing the oxide fine particles described above, for example, a method of containing an organic dye having a heat shielding function, or a light transmitting property having a heat shielding property A method using a conductive substrate is also included. Examples of the former method of incorporating a dye having an organic heat shielding function include the methods described in JP-A-7-157344 and JP-A-319271. In addition, as a translucent substrate having a heat-shielding performance applicable to the latter method, for example, an Fe-containing substrate described in JP-A-2001-151539 Examples thereof include glass (for example, green glass), a glass plate in which a metal and a metal oxide described in JP-A-2001-261384 and JP-A-2001-226148 are laminated.
[0068] このように、上述した実施形態の合わせガラス 10は、中間膜 2に含まれる近赤外光 吸収材料が近赤外光領域の光線を吸収することによって、熱線である近赤外光を遮 断する特性を発揮するものであるが、合わせガラス 10は、更なる近赤外光遮断特性 の向上を目的として、近赤外光吸収性を有する中間膜 2 (近赤外光吸収層)に加えて 、近赤外光を反射する特性を有する層(近赤外光反射層)を更に備えて!/ヽてもよ ヽ。  As described above, the laminated glass 10 according to the above-described embodiment has the near-infrared light that is a heat ray when the near-infrared light absorbing material included in the intermediate film 2 absorbs light in the near-infrared light region. However, the laminated glass 10 has a near-infrared absorption intermediate film 2 (near-infrared light absorbing layer) for the purpose of further improving the near-infrared light blocking characteristics. ) And a layer having a property of reflecting near infrared light (near infrared light reflecting layer)!
[0069] 図 2は、反射層を有する合わせガラスの断面構造の一例を模式的に示す図である 。合わせガラス 20は、透光性基板 21、近赤外光吸収層 22、近赤外光反射層 23及 び透光性基板 21をこの順に備える構造を有している。透光性基板 21及び近赤外光 吸収層 22は、上述した合わせガラス 10における透光性基板 1及び中間膜 2と同様の ものが適用できる。  FIG. 2 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer. The laminated glass 20 has a structure including a translucent substrate 21, a near infrared light absorbing layer 22, a near infrared light reflecting layer 23, and a translucent substrate 21 in this order. As the light-transmitting substrate 21 and the near-infrared light absorbing layer 22, the same materials as the light-transmitting substrate 1 and the intermediate film 2 in the laminated glass 10 described above can be applied.
[0070] 近赤外光反射層 23としては、金属や金属酸化物から構成される層が挙げられ、具 体的には、例えば、金、銀、銅、錫、アルミニウム、ニッケル、ノラジウム、ケィ素、クロ ム、チタン、インジウム、アンチモン等の金属単体、合金、混合物又は酸化物が例示 できる。  [0070] Examples of the near-infrared light reflection layer 23 include layers composed of metals and metal oxides. Specifically, for example, gold, silver, copper, tin, aluminum, nickel, noradium, keys, and the like. Examples include simple metals such as elemental, chromium, titanium, indium, and antimony, alloys, mixtures, and oxides.
[0071] このような近赤外光反射層 23を有する合わせガラス 20は、例えば、以下のようにし て製造することができる。すなわち、まず、透光性基板 21の一面に、例えば、金属や 金属酸化物を蒸着することにより近赤外光反射層 23を形成する。次に、近赤外光吸 収層 22となるべきシート状成形物を準備し、その一方の面に、近赤外光反射層 23が 形成された透光性基板 21を、当該反射層 23が接するように配置する。さらに、このシ ート状成形物の他方の面に、透光性基板 21を重ねる。こうして得られた積層体を圧 着すること等により、合わせガラス 20を得る。  [0071] The laminated glass 20 having such a near-infrared light reflection layer 23 can be manufactured, for example, as follows. That is, first, the near-infrared light reflection layer 23 is formed on one surface of the translucent substrate 21 by, for example, depositing a metal or a metal oxide. Next, a sheet-like molded product to be the near-infrared light absorbing layer 22 is prepared, and the translucent substrate 21 having the near-infrared light reflecting layer 23 formed on one surface thereof is attached to the reflecting layer 23. Arrange them so that they touch each other. Further, the translucent substrate 21 is overlaid on the other surface of the sheet-like molded product. The laminated glass 20 is obtained by, for example, pressing the laminate thus obtained.
[0072] ここで、この合わせガラス 20のように、透光性基板 21と近赤外光吸収層 22との間に 近赤外光反射層 23を形成すると、この反射層 23と近赤外光吸収層 22との接着性が 低下してしまう可能性がある。こうなると、例えば合わせガラス 20が破損した場合に、 透光性基板 21が剥離'飛散し易くなり、安全性の点で問題が生じることとなる。そこで 、このような接着性の低下を避けるために、近赤外光吸収層 22と近赤外光反射層 23 との間には、両者の接着力を向上させ得る層を更に設けることが好ましい。 Here, when the near-infrared light reflecting layer 23 is formed between the translucent substrate 21 and the near-infrared light absorbing layer 22 like the laminated glass 20, the reflecting layer 23 and the near-infrared Adhesiveness with the light absorption layer 22 may be reduced. In this case, for example, when the laminated glass 20 is broken, the translucent substrate 21 is easily peeled and scattered, which causes a problem in terms of safety. Therefore, in order to avoid such a decrease in adhesion, the near-infrared light absorbing layer 22 and the near-infrared light reflecting layer 23 It is preferable to further provide a layer capable of improving the adhesive strength between the two.
[0073] このように接着力を向上させる手段としては、例えば、近赤外光吸収層 22及び近赤 外光反射層 23との間に、近赤外光吸収層 22よりも高いァセタール度を有するポリビ 二ルァセタール力もなる層(特開平 7— 187726号公報、特開平 8— 337446号公報 )を設ける方法、所定の割合のァセトキシ基を有する PVBからなる層(特開平 8— 33 7445号公報)を設ける方法、又は、所定のシリコンオイル力もなる層(特開平 7— 31 4609号広報)を設ける方法等が採用できる。  [0073] As a means for improving the adhesive strength in this way, for example, a higher acetal degree than the near infrared light absorbing layer 22 is provided between the near infrared light absorbing layer 22 and the near infrared light reflecting layer 23. A method of providing a layer having a polyvinylacetal force (Japanese Patent Laid-Open No. 7-187726, Japanese Patent Laid-Open No. 8-337446), a layer made of PVB having a predetermined ratio of acetoxy groups (Japanese Patent Laid-Open No. 8-33 7445) Or a method of providing a layer having a predetermined silicone oil force (Japanese Laid-Open Patent Publication No. 7-314609).
[0074] なお、合わせガラスにおいて、近赤外光反射層は、必ずしも上述したように透光性 基板と近赤外光吸収層との間に設けられて 、る必要はなぐ透光性基板の間に複数 の榭脂からなる層が形成されている場合は、これらの層の間に設けられた形態であつ てもよい。  [0074] In the laminated glass, the near-infrared light reflecting layer is not necessarily provided between the translucent substrate and the near-infrared light absorbing layer as described above. In the case where a plurality of layers of resin are formed between them, a form provided between these layers may be used.
[0075] 図 3は、透光性基板間に設けられた複数の層間に反射層を有する合わせガラスの 断面構造の一例を模式的に示す図である。合わせガラス 30は、透光性基板 31、近 赤外光吸収層 32、近赤外光反射層 33、榭脂層 34、近赤外光吸収層 32、透光性基 板 31をこの順に備える構造を有している。力かる合わせガラス 30において、透光性 基板 31、近赤外光吸収層 32及び近赤外光反射層 33は、上述したのと同様である。 榭脂層 34の構成材料としては、透光性に優れる公知の榭脂材料が適用でき、例え ば、ポリエチレンテレフタレートやポリカーボネート等が挙げられる。なお、合わせガラ ス 30において、近赤外光吸収層 32は少なくとも一層設けられていれば、十分な近赤 外光吸収特性が得られることから、例えば、上述した 2層の近赤外光吸収層 32のうち の一層は、近赤外光吸収特性を有しな 、榭脂材料カゝらなる層であってもよ ヽ。  FIG. 3 is a diagram schematically showing an example of a cross-sectional structure of a laminated glass having a reflective layer between a plurality of layers provided between translucent substrates. Laminated glass 30 includes a light-transmitting substrate 31, a near-infrared light absorbing layer 32, a near-infrared light reflecting layer 33, a resin layer 34, a near-infrared light absorbing layer 32, and a light-transmitting substrate 31 in this order. It has a structure. In the strong laminated glass 30, the translucent substrate 31, the near-infrared light absorbing layer 32, and the near-infrared light reflecting layer 33 are the same as described above. As a constituent material of the resin layer 34, a known resin material having excellent translucency can be applied, and examples thereof include polyethylene terephthalate and polycarbonate. In the laminated glass 30, if at least one near infrared light absorption layer 32 is provided, sufficient near infrared light absorption characteristics can be obtained. One of the layers 32 may be a layer made of a resin material that does not have near infrared light absorption characteristics.
[0076] このように、近赤外光吸収層(中間膜)〖こ加えて更に反射層を設けることで、両層の 効果により、合わせガラスに対して更に優れた近赤外光遮断特性を付与することが できる。また、上述したような、近赤外光反射層と近赤外光吸収層との接着性を改善 する方法を採用すれば、このような近赤外光遮断特性に加え、より優れた強度を有 する合わせガラスを得ることも可能となる。  [0076] In this manner, by adding a near-infrared light absorbing layer (intermediate film) and further providing a reflective layer, the near-infrared light blocking characteristics of laminated glass can be further improved due to the effects of both layers. It can be granted. Moreover, if the method for improving the adhesion between the near-infrared light reflecting layer and the near-infrared light absorbing layer as described above is adopted, in addition to the near-infrared light blocking property, a higher strength can be obtained. It is also possible to obtain existing laminated glass.
[0077] 上述した構成を有する合わせガラス等の積層体にぉ 、ては、太陽光等の熱線成分 を含む光が入射すると、中間膜である近赤外光吸収層が発現する近赤外光吸収特 性によって、近赤外光領域 (波長 700〜1200nm程度)の熱線が遮断される。一般 に、この波長領域の光線は、肌が焼きつくようなジリジリとした刺激的な暑さを感じさ せる傾向にあるが、上述した積層体を透過する光線は、このような近赤外光が遮断さ れているため主として可視光線となる。よって、かかる積層体を窓材等に用いれば、 可視光を効率良く取り込みつつ、室内や屋内の温度上昇を抑えることができる。 [0077] When a light containing a heat ray component such as sunlight is incident on a laminated body such as laminated glass having the above-described configuration, the near-infrared light that the near-infrared light absorbing layer that is an intermediate film appears. Absorption characteristics Depending on the nature, heat rays in the near-infrared light region (wavelength 700 to 1200 nm) are blocked. In general, the light in this wavelength range tends to feel the irritating and exciting heat that burns the skin, but the light transmitted through the above-mentioned laminate is such near infrared light. Since it is blocked, it is mainly visible light. Therefore, if such a laminated body is used for a window material or the like, it is possible to suppress an increase in indoor or indoor temperature while efficiently capturing visible light.
[0078] また、上記積層体における近赤外光吸収層は、長時間の光 (特に紫外光)を照射さ れた場合であっても、銅イオンの酸ィ匕等が生じ難いことから、銅や銅酸化物等の黒い 析出物の発生が極めて少ない。このため、力かる析出物の生成に起因する透光性の 低下等が起こり難い。したがって、本発明の積層体 (合わせガラス)は、長期使用にと もなう透光性の低下が極めて小さぐ窓材等として優れた信頼性を有するものとなる。  [0078] Further, since the near-infrared light absorbing layer in the laminate is not easily oxidized or oxidized by copper ions even when irradiated with long-time light (particularly ultraviolet light), Generation of black precipitates such as copper and copper oxide is extremely small. For this reason, a decrease in translucency due to the formation of strong precipitates hardly occurs. Therefore, the laminate (laminated glass) of the present invention has excellent reliability as a window material or the like in which the decrease in translucency due to long-term use is extremely small.
[0079] このように、本発明の積層体 (合わせガラス)は、優れた近赤外光遮断性能を有して いることから、太陽光等の自然光その他の外光を取り入れるための建材 (建築物の部 材に限定されない)、例えば、自動車、船舶、航空機又は電車 (鉄道)車両の窓材、 アーケード等の通路の天蓋材、カーテン、カーポートやガレージの天蓋、サンルーム の窓又は壁材、ショーウィンドウやショーケースの窓材、テント又はその窓材、ブライン ド、定置住宅や仮設住宅等の屋根材ゃ天窓その他窓材、道路標識等の塗装面の被 覆材、パラソル等の日除け具材、その他熱線の遮断が必要とされる種々の部材に好 適に用いることができる。  [0079] Thus, since the laminate (laminated glass) of the present invention has excellent near-infrared light blocking performance, it is a building material for incorporating natural light such as sunlight and other external light (architecture). Not limited to material parts), for example, car, ship, aircraft or train (railway) vehicle window materials, canopy materials for passages such as arcades, curtains, carport and garage canopies, solarium windows or wall materials Window materials for show windows and showcases, tents or window materials, blinds, roofing materials for fixed and temporary housing, skylights, other window materials, covering materials for painted surfaces such as road signs, sunshades such as parasols, etc. It can be suitably used for various materials that need to be shielded from materials and other heat rays.
実施例  Example
[0080] 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限 定されるものではない。  [0080] Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
[リン酸エステル銅錯体の調製]  [Preparation of Copper Phosphate Ester Complex]
[0081] (2—ェチルへキシルリン酸銅錯体の調製)  [0081] (Preparation of 2-ethylhexyl copper phosphate complex)
リン化合物として、 2—ェチルへキシルホスフェート(モノエステル体及びジエステル 体の等モル混合物、東京化成社製)を用い、その 5gをトルエン 15gに溶解した。得ら れた溶液に酢酸銅一水和物 2. 37gをカ卩え、この溶液を還流しながら酢酸を除去した 。その後、反応溶液からトルエンを留去して、 2—ェチルへキシルリン酸銅錯体 (以下 、「2EHPC」と! /、う) 6. 04gを得た。 [0082] (ォレイルリン酸銅錯体の調製) As the phosphorus compound, 2-ethylhexyl phosphate (an equimolar mixture of monoester and diester, manufactured by Tokyo Chemical Industry Co., Ltd.) was used, and 5 g thereof was dissolved in 15 g of toluene. To the obtained solution, 2.37 g of copper acetate monohydrate was added, and acetic acid was removed while refluxing this solution. Then, toluene was distilled off from the reaction solution to obtain 6.04 g of 2-ethylhexyl phosphate copper complex (hereinafter referred to as “2EHPC”! /). [0082] (Preparation of oleyl phosphate complex)
リン化合物として、ォレイルホスフェート(モノエステル体及びジエステル体の等モル 混合物、東京化成社製)を用い、その 63. lgをトルエン 180gに溶解した。得られた 溶液に酢酸銅一水和物 20. Ogをカ卩え、この溶液を還流しながら酢酸を除去した。そ の後、反応溶液からトルエンを留去して、ォレイルリン酸銅錯体 (以下、「OLPC」とい う) 80. 4gを得た。  As a phosphorus compound, oleyl phosphate (an equimolar mixture of monoester and diester, manufactured by Tokyo Chemical Industry Co., Ltd.) was used, and 63.lg thereof was dissolved in 180 g of toluene. Copper acetate monohydrate (20 Og) was added to the resulting solution, and acetic acid was removed while the solution was refluxed. Thereafter, toluene was distilled off from the reaction solution to obtain 80.4 g of a copper oleyl phosphate complex (hereinafter referred to as “OLPC”).
[0083] (2-ェチルへキシルリン酸エステル ·ォレイルリン酸エステル混合銅錯体の調製) リン化合物として、 2—ェチルへキシルホスフェート(モノエステル体及びジエステル 体の等モル混合物、東京化成社製) 15. 8gと、ォレイルホスフェート (モノエステル体 及びジエステル体の等モル混合物、東京化成社製) 8. 89gとを、トルエン 80gに溶 解した。得られた溶液に酢酸銅一水和物 10. Ogをカ卩え、この溶液を還流しながら酢 酸を除去した。その後、反応溶液からトルエンを留去して、 2—ェチルへキシルリン酸 エステル'ォレイルリン酸エステル混合銅錯体(2EHPC + OLPC) 28. 8gを得た。  [0083] (Preparation of 2-ethylhexyl phosphate ester / oleyl phosphate ester mixed copper complex) As a phosphorus compound, 2-ethyl hexyl phosphate (an equimolar mixture of monoester and diester, manufactured by Tokyo Chemical Industry Co., Ltd.) 15. 8 g and oleyl phosphate (equal molar mixture of monoester and diester, manufactured by Tokyo Chemical Industry Co., Ltd.) 8. 89 g were dissolved in 80 g of toluene. Copper acetate monohydrate (10 Og) was added to the resulting solution, and acetic acid was removed while the solution was refluxed. Thereafter, toluene was distilled off from the reaction solution to obtain 28.8 g of 2-ethylhexylphosphate ester / oleylphosphate mixed copper complex (2EHPC + OLPC).
[合わせガラスの作製]  [Production of laminated glass]
[0084] (実施例 1〜4、比較例 1〜4)  (Examples 1 to 4, Comparative Examples 1 to 4)
上述した調製例において得られた各リン酸エステル銅錯体 1. Ogを、可塑剤である トリエチレングリコール— 2—へキサネート 2. Ogに溶解し、これを、各種の重合度を有 する PVB7. Ogと混合した後、プレス機 (WF— 50、神藤金属工業社製)により 85°C で数回プレスし、更に 120°Cで数回プレスを行って混鍊成形し、厚さ lmmのシート状 成形物を作製した。なお、各シート状成形物の作製において用いたリン酸エステル 銅錯体の種類及び PVBの重合度は、表 1に示す通りとした。  Each phosphate ester copper complex obtained in the above-mentioned preparation examples 1. Og is dissolved in the plasticizer triethylene glycol-2-hexanate 2. Og, and this is PVB7 having various degrees of polymerization. After mixing with Og, press several times at 85 ° C with a press machine (WF-50, manufactured by Shindo Metal Industry Co., Ltd.), press several times at 120 ° C and knead to form a sheet of lmm thickness A molded product was produced. Table 1 shows the types of phosphate ester copper complexes and the degree of polymerization of PVB used in the preparation of each sheet-like molded product.
[0085] 次に、得られたシート状成形物を、縦 26mm、横 76mm、厚さ lmmのスライドガラス 2枚の間に挟んで積層体とし、この積層体に対し、オートクレープにより温度 130°C、 圧力 1. 2Mpaの条件で 30分の圧着を行い、実施例 1〜4及び比較例 1〜3の合わせ ガラスを得た。  [0085] Next, the obtained sheet-like molded product was sandwiched between two slide glasses having a length of 26 mm, a width of 76 mm, and a thickness of 1 mm, and a temperature of 130 ° was applied to the laminate by autoclave. C, pressure bonding of 1.2 Mpa was performed for 30 minutes, and laminated glasses of Examples 1 to 4 and Comparative Examples 1 to 3 were obtained.
[特性評価]  [Characteristic evaluation]
[0086] (黒化の評価)  [0086] (Evaluation of blackening)
まず、実施例 1〜4及び比較例 1〜4の各合わせガラスに対し、キセノンウエザーメ 一ター (アトラス C135、東洋精機製作所社製;光源:キセノンランプ、自動照射強度: 0. 87W/m2,ブラックパネル温度: 63°C)を用いて、 100時間の紫外光 (UV)照射 を行った。 First, for each laminated glass of Examples 1-4 and Comparative Examples 1-4, xenon weathering 100 hours of ultraviolet light (UV) irradiation using 1 ter (Atlas C135, manufactured by Toyo Seiki Seisakusho; light source: xenon lamp, automatic irradiation intensity: 0.87 W / m 2 , black panel temperature: 63 ° C) went.
[0087] 次に、 UV照射後の各合わせガラスを顕微鏡により観察し、黒い析出物の発生の程 度を評価した。得られた結果を表 1に示す。表 1中、黒い析出物が殆ど見られなかつ たものを A、大量の黒い析出物が発生したものを Bで表してある。また、一例として、 実施例 2の合わせガラス及び比較例 4の合わせガラスを観察して得られた顕微鏡写 真を、それぞれ図 4及び図 5に示す。  [0087] Next, each laminated glass after UV irradiation was observed with a microscope, and the degree of occurrence of black precipitates was evaluated. The results obtained are shown in Table 1. In Table 1, A indicates that almost no black precipitates are observed, and B indicates that a large amount of black precipitates are generated. As an example, micrographs obtained by observing the laminated glass of Example 2 and the laminated glass of Comparative Example 4 are shown in FIGS. 4 and 5, respectively.
[0088] (可視光透過率の測定)  [0088] (Measurement of visible light transmittance)
実施例 1〜4及び比較例 1〜4の各合わせガラスに対し、作製直後、及び、上記「黒 化の評価」と同様の UV照射を行った後のそれぞれの状態において、分光光度計 (U —4000、(株)日立製作所製)を用いて分光測定を行った。これらの結果に基づき、 J ISR 3106に準拠する方法に従って、作製直後の合わせガラスにおける可視光透過 率 (Tvis (Oh) )及び UV照射後の合わせガラスにおける可視光透過率 (Tvis (100h) )を算出した。また、 Tvis (100h)の値から Tvis (Oh)の値を減じることにより、可視光 透過率の変化(ATvis)の値を算出した。得られた結果を表 1に示す。  For each laminated glass of Examples 1 to 4 and Comparative Examples 1 to 4, a spectrophotometer (U) immediately after production and in each state after UV irradiation similar to the above “evaluation of blackening” was performed. -4000, manufactured by Hitachi, Ltd.). Based on these results, the visible light transmittance (Tvis (Oh)) in the laminated glass immediately after fabrication and the visible light transmittance (Tvis (100h)) in the laminated glass after UV irradiation are determined according to the method according to J ISR 3106. Calculated. The change in visible light transmittance (ATvis) was calculated by subtracting the value of Tvis (Oh) from the value of Tvis (100h). The results obtained are shown in Table 1.
[表 1] [table 1]
リン酸エステル PVBの重合 黒化 Tvis(Oh) Tvis(IOOh) ATvis 銅錯体 度 Phosphoric ester PVB polymerization Blackening Tvis (Oh) Tvis (IOOh) ATvis Copper complex Degree
実施例 1 2EHPC 850 A 83.95 82.85 -1.1 実施例 2 2EHPC 1700 A 83.94 83.52 -0.42 実施例 3 OLPC 1700 A 85.84 81.95 -3.89 実施例 4 2EHPC+0LPC 1700 A 85.19 83.06 -2.13 比較例 1 2EHPC 300 B 77.27 49.16 -28.11 比較例 2 2EHPC 650 B 84.72 76.08 -7.24 比較例 3 OLPC 650 B 86.56 81.64 -4.92 比較例 4 2EHPC 2400 B 82.9 51.56 -31.34  Example 1 2EHPC 850 A 83.95 82.85 -1.1 Example 2 2EHPC 1700 A 83.94 83.52 -0.42 Example 3 OLPC 1700 A 85.84 81.95 -3.89 Example 4 2EHPC + 0LPC 1700 A 85.19 83.06 -2.13 Comparative Example 1 2EHPC 300 B 77.27 49.16 -28.11 Comparative Example 2 2EHPC 650 B 84.72 76.08 -7.24 Comparative Example 3 OLPC 650 B 86.56 81.64 -4.92 Comparative Example 4 2EHPC 2400 B 82.9 51.56 -31.34
[0089] 表 1より、重合度が本発明の範囲内である PVBを用いた実施例 1〜4の合わせガラ スは、 PVBの重合度が本発明の範囲外である比較例 1〜4の合わせガラスと比較し て、黒い析出物の発生が極めて少ないことが判明した。このことは、図 4 (実施例 2の 合わせガラス)では、黒い析出物が殆ど見られないのに比べて、図 5 (比較例 4の合 わせガラス)では、黒 、析出物の発生が大量に見られることからも確認することができ る。さらに、表 1より、実施例 1〜4の合わせガラスは、比較例 1〜4の合わせガラスに 比して、可視光透過率の変化が小さいことが判明した。以上のことから、本発明の近 赤外光吸収材料を用いて得られた合わせガラスは、長時間使用した場合であっても 透光性の低下が少なく、窓材等として優れた特性を有して ヽることが確認された。 [0089] From Table 1, the combined glass of Examples 1 to 4 using PVB having a polymerization degree within the range of the present invention is the same as that of Comparative Examples 1 to 4 in which the polymerization degree of PVB is outside the range of the present invention. It was found that the generation of black precipitates was very small compared to the laminated glass. This is because, in FIG. 4 (laminated glass of Example 2), black precipitates are hardly seen, whereas in FIG. 5 (combined glass of Comparative Example 4), a large amount of black and precipitates are generated. It can also be confirmed from what is seen in Furthermore, from Table 1, it was found that the laminated glasses of Examples 1 to 4 had a smaller change in visible light transmittance than the laminated glasses of Comparative Examples 1 to 4. From the above, the laminated glass obtained using the near-infrared light-absorbing material of the present invention has little deterioration in translucency even when used for a long time, and has excellent characteristics as a window material or the like. It was confirmed that he would speak.
[ホスホン酸銅錯体の調整]  [Preparation of copper phosphonate complex]
[0090] (ェチルホスホン酸銅錯体の調整)  [0090] (Preparation of ethylphosphonic acid copper complex)
リン化合物として、ェチルホスホン酸を用い、その 0.55g(5. OOmmol)を THF10 mLに溶解した。得られた溶液に酢酸銅一水和物 1. OOg(5. Olmmol)を加え、カロ 熱して還流させた。反応後の溶液中に生じた固体をろ過により分離して、ェチルホス ホン酸銅錯体を得た。 Ethylphosphonic acid was used as the phosphorus compound, and 0.55 g (5.OOmmol) thereof was dissolved in 10 mL of THF. To the resulting solution was added copper acetate monohydrate 1.OOg (5. Olmmol), and the mixture was heated to reflux with heating. The solid formed in the solution after the reaction was separated by filtration, A copper fonate complex was obtained.
[合わせガラスの作製]  [Production of laminated glass]
[0091] (実施例 5及び比較例 5)  (Example 5 and Comparative Example 5)
各種リン酸エステル銅錯体 1. Ogに代えて、ェチルホスホン酸銅錯体 0. 14gを用い たこと以外は、実施例 1〜4及び比較例 1〜4と同様にして合わせガラスを作製した。 なお、 PVBとしては、重合度 1700及び 650のものをそれぞれ用いた。重合度 1700 の PVBを用いた場合が実施例 5に、重合度 650のものを用いた場合が比較例 5にそ れぞれ該当する。  Various phosphoric acid ester copper complexes 1. Laminated glasses were produced in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 4 except that 0.14 g of an ethyl phosphonate complex was used instead of Og. As PVB, those having a polymerization degree of 1700 and 650 were used, respectively. The case of using PVB with a polymerization degree of 1700 corresponds to Example 5, and the case of using PVB with a polymerization degree of 650 corresponds to Comparative Example 5.
[特性評価]  [Characteristic evaluation]
[0092] (黒化の評価)  [0092] (Evaluation of blackening)
実施例 5及び比較例 5の合わせガラスについて、 UV照射強度を 0. 75WZm2とす るとともに UV照射時間を 50時間としたこと以外は、上記実施例 1〜4及び比較例 1 〜4の合わせガラスと同様にして黒ィ匕の評価を行った。その結果、実施例 5の合わせ ガラスは、比較例 5の合わせガラスに比して黒い析出物の発生が大幅に少なぐ黒ィ匕 が生じ難 、ことが確認された。 For the laminated glass of Example 5 and Comparative Example 5, except that the UV irradiation intensity was set to 0.75 WZm 2 and the UV irradiation time was set to 50 hours, the above-mentioned Examples 1 to 4 and Comparative Examples 1 to 4 were combined. Black candy was evaluated in the same manner as glass. As a result, it was confirmed that the laminated glass of Example 5 was less likely to generate black spots with much less black precipitates than the laminated glass of Comparative Example 5.
[0093] (可視光透過率の測定)  [0093] (Measurement of visible light transmittance)
実施例 5及び比較例 5の合わせガラスにっ 、て、上記実施例 1〜4及び比較例 1〜 4の合わせガラスと同様にして分光測定を行 ヽ、作製直後の可視光透過率 (Tvis (0 h) )、及び、上記「黒ィ匕の評価」と同様の UV照射を行った後の可視光透過率 (Tvis ( 50h) )をそれぞれ算出した。また、 Tvis (50h)の値力も Tvis (Oh)の値を減じることに より、可視光透過率の変化(Δ Tvis)の値を算出した。得られた結果を表 2に示す。  The laminated glass of Example 5 and Comparative Example 5 was subjected to spectroscopic measurement in the same manner as the laminated glass of Examples 1 to 4 and Comparative Examples 1 to 4, and the visible light transmittance (Tvis ( 0 h)), and the visible light transmittance (Tvis (50h)) after UV irradiation similar to the above-mentioned “evaluation of black candy” was calculated. Also, the value of Tvis (50h) was calculated by subtracting the value of Tvis (Oh) from the change in visible light transmittance (ΔTvis). Table 2 shows the results obtained.
[表 2] ホスホン酸銅錯体 PVBの重合 Tvis (Oh) Tvis ( 50h) △ Tvis  [Table 2] Polymerization of copper phosphonate complex PVB Tvis (Oh) Tvis (50h) △ Tvis
J 実施例 5 ェチルホスホン酸銅錯体 1 700 62.8 5 56. 6 5 - 6 .2 比較例 5 ェチルホスホン酸銅錯体 650 67 .44 5 7.6 3 - 9 .8 1 [0094] 表 2より、実施例 5の合わせガラスは、比較例 5に比して、可視光透過率の変化が小 さいことが確認され、透光性の低下が生じ難いことが判明した。 J Example 5 Ethylphosphonic acid copper complex 1 700 62.8 5 56. 6 5-6.2 Comparative Example 5 Ethylphosphonic acid copper complex 650 67.44 5 7.6 3-9.8 1 [0094] From Table 2, it was confirmed that the laminated glass of Example 5 had a smaller change in visible light transmittance than that of Comparative Example 5, and it was difficult to cause a decrease in translucency.
[ホスフィン酸銅錯体の調整]  [Preparation of copper phosphinate complex]
[0095] (ジメチルホスフィン酸銅錯体の調整)  [0095] (Preparation of copper dimethylphosphinate complex)
リン化合物として、ジメチルホスフィン酸を用い、その 0. 47g (5. Ommol)をトルエン 10mLに溶解した。得られた溶液に酢酸銅一水和物 0. 50g (2. 5mmol)を加え、加 熱して還流させた。反応後の溶液中に生じた固体をろ過により分離して、ジメチルホ スフイン酸銅錯体を得た。  Dimethylphosphinic acid was used as a phosphorus compound, and 0.47 g (5. Ommol) thereof was dissolved in 10 mL of toluene. To the resulting solution, 0.50 g (2.5 mmol) of copper acetate monohydrate was added and heated to reflux. The solid produced in the solution after the reaction was separated by filtration to obtain a copper dimethylphosphinate complex.
[合わせガラスの作製]  [Production of laminated glass]
[0096] (実施例 6及び比較例 6)  [0096] (Example 6 and Comparative Example 6)
各種リン酸エステル銅錯体 1. Ogに代えて、ジメチルホスフィン酸銅錯体 0. 14gを 用いたこと以外は、実施例 1〜4及び比較例 1〜4と同様にして合わせガラスを作製し た。なお、 PVBとしては、重合度 1700及び 650のものをそれぞれ用いた。重合度 17 00の PVBを用いた場合が実施例 6に、重合度 650のものを用いた場合が比較例 6 にそれぞれ該当する。  Various phosphate ester copper complexes 1. Laminated glasses were prepared in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 4 except that 0.14 g of a dimethylphosphinic acid copper complex was used instead of Og. As PVB, those having a polymerization degree of 1700 and 650 were used, respectively. The case where PVB having a polymerization degree of 1700 is used corresponds to Example 6, and the case where PVB having a polymerization degree of 650 is used corresponds to Comparative Example 6.
[特性評価]  [Characteristic evaluation]
[0097] (黒化の評価)  [0097] (Evaluation of blackening)
実施例 6及び比較例 6の合わせガラスについて、 UV照射強度を 0. 75WZm2とす るとともに UV照射時間を 50時間としたこと以外は、上記実施例 1〜4及び比較例 1 〜4の合わせガラスと同様にして黒ィ匕の評価を行った。その結果、実施例 6の合わせ ガラスでは黒い析出物の発生が見られな力つたのに対し、比較例 6の合わせガラスで は少量の黒 、析出物の発生が見られた。 For the laminated glass of Example 6 and Comparative Example 6, the UV irradiation intensity was set to 0.75 WZm 2 and the UV irradiation time was set to 50 hours, and the above-mentioned Examples 1 to 4 and Comparative Examples 1 to 4 were combined. Black candy was evaluated in the same manner as glass. As a result, in the laminated glass of Example 6, the generation of black precipitates was strong, whereas in the laminated glass of Comparative Example 6, a small amount of black and precipitates were observed.
[0098] (可視光透過率の測定)  [0098] (Measurement of visible light transmittance)
実施例 6及び比較例 6の合わせガラスにっ 、て、上記実施例 1〜4及び比較例 1〜 4の合わせガラスと同様にして分光測定を行 ヽ、作製直後の可視光透過率 (Tvis (0 h) )、及び、上記「黒ィ匕の評価」と同様の UV照射を行った後の可視光透過率 (Tvis ( 50h) )をそれぞれ算出した。また、 Tvis (50h)の値力も Tvis (Oh)の値を減じることに より、可視光透過率の変化(Δ Tvis)の値を算出した。得られた結果を表 3に示す。 [表 3] The laminated glass of Example 6 and Comparative Example 6 was subjected to spectroscopic measurement in the same manner as the laminated glass of Examples 1 to 4 and Comparative Examples 1 to 4, and the visible light transmittance (Tvis ( 0 h)), and the visible light transmittance (Tvis (50h)) after UV irradiation similar to the above-mentioned “evaluation of black candy” was calculated. Also, the value of Tvis (50h) was calculated by subtracting the value of Tvis (Oh) from the change in visible light transmittance (ΔTvis). The results obtained are shown in Table 3. [Table 3]
Figure imgf000027_0001
Figure imgf000027_0001
表 3より、実施例 6の合わせガラスは、比較例 6に比して、可視光透過率の変化が小 さいことが確認され、透光性の低下が生じ難いことが判明した。  From Table 3, it was confirmed that the laminated glass of Example 6 had a smaller change in visible light transmittance than that of Comparative Example 6, and it was found that the translucency was hardly lowered.

Claims

請求の範囲 The scope of the claims
[1] 重合度が 800〜2300であるポリビュルプチラール榭脂と、銅イオンと、を含有する ことを特徴とする近赤外光吸収材料。  [1] A near-infrared light-absorbing material characterized by containing polybutyral resin having a degree of polymerization of 800 to 2300 and copper ions.
[2] ホスフィン酸化合物、ホスホン酸化合物、ホスホン酸モノエステル化合物、リン酸モ ノエステルイ匕合物及びリン酸ジエステルイ匕合物力 なる群より選ばれる少なくとも一 種のリン化合物を更に含有することを特徴とする請求項 1記載の近赤外光吸収材料 [2] A phosphinic acid compound, a phosphonic acid compound, a phosphonic acid monoester compound, a phosphoric acid monoester compound, and a phosphoric acid diester compound, further comprising at least one phosphorous compound selected from the group consisting of: The near infrared light absorbing material according to claim 1
[3] 可塑剤を更に含有することを特徴とする請求項 1又は 2記載の近赤外光吸収材料。 [3] The near-infrared light absorbing material according to [1] or [2], further comprising a plasticizer.
[4] 請求項 1〜3の 、ずれか一項に記載の近赤外光吸収材料力 なるシート状成形物 [4] A sheet-like molded article having the near-infrared light absorbing material force according to any one of claims 1 to 3.
[5] 透光性基材と、 [5] a translucent substrate;
前記透光性基材上に設けられた、請求項 1〜3のいずれか一項に記載の近赤外光 吸収材料からなる近赤外光吸収層と、  A near-infrared light absorbing layer made of the near-infrared light absorbing material according to any one of claims 1 to 3, provided on the translucent substrate,
を備えることを特徴とする積層体。  The laminated body characterized by including.
PCT/JP2005/017716 2004-09-29 2005-09-27 Near-infrared absorbing material and laminate WO2006035756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537745A JP4926712B2 (en) 2004-09-29 2005-09-27 Near infrared light absorbing material and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004285118 2004-09-29
JP2004-285118 2004-09-29

Publications (1)

Publication Number Publication Date
WO2006035756A1 true WO2006035756A1 (en) 2006-04-06

Family

ID=36118901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017716 WO2006035756A1 (en) 2004-09-29 2005-09-27 Near-infrared absorbing material and laminate

Country Status (2)

Country Link
JP (1) JP4926712B2 (en)
WO (1) WO2006035756A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220872A (en) * 2005-02-09 2006-08-24 Olympus Corp Optical filter, manufacturing method of optical filter, and imaging device
WO2010098287A1 (en) * 2009-02-27 2010-09-02 セントラル硝子株式会社 Heat insulating laminated glass
CN103415792A (en) * 2011-03-09 2013-11-27 日东电工株式会社 Infrared reflective film
WO2014010425A1 (en) * 2012-07-09 2014-01-16 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut-off filter using same, method for manufacturing near-infrared cut-off filter, camera module, and method for manufacturing camera module
WO2014027639A1 (en) * 2012-08-16 2014-02-20 株式会社クレハ Resin composition and application therefor
WO2014129366A1 (en) * 2013-02-19 2014-08-28 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module
WO2015005447A1 (en) * 2013-07-12 2015-01-15 富士フイルム株式会社 Near infrared absorption composition, near infrared-cut filter and manufacturing method therefor, and solid state image pickup element
JP2017071771A (en) * 2015-10-07 2017-04-13 積水化学工業株式会社 Polyvinyl acetal resin composition
CN107615115A (en) * 2015-06-29 2018-01-19 京瓷株式会社 Near infrared ray cut-off filter and optical semiconductor device
CN108027465A (en) * 2015-09-24 2018-05-11 日本板硝子株式会社 Infrared ray-absorbing layer composition, infrared intercepting filter and camera device
EP4043206A1 (en) * 2021-02-15 2022-08-17 Kuraray Europe GmbH Drying processes for composite films comprising polyvinyl acetal and polyvinyl ethylene acetal resins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211220A (en) * 1996-01-30 1997-08-15 Kureha Chem Ind Co Ltd Heat ray absorbing composite body
JPH11171604A (en) * 1997-12-10 1999-06-29 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429441A1 (en) * 1984-08-10 1986-02-20 Hoechst Ag, 6230 Frankfurt THERMOPLASTIC, SOFTENER-CONTAINING POLYVINYLBUTYRAL MOLDINGS
JPH0292845A (en) * 1988-09-28 1990-04-03 Mitsubishi Monsanto Chem Co Interlayer for dimming laminated glass
JP3001453B2 (en) * 1997-04-15 2000-01-24 新潟日本電気株式会社 Electrophotographic photoreceptor
JP4110630B2 (en) * 1998-09-24 2008-07-02 松下電工株式会社 Near infrared absorption filter
JP3993980B2 (en) * 1999-12-22 2007-10-17 株式会社きもと Transparent transmission screen
JP4951816B2 (en) * 2001-03-30 2012-06-13 日立化成工業株式会社 Insulating resin composition for printed wiring board and use thereof
WO2005012424A1 (en) * 2003-07-31 2005-02-10 Kureha Chemical Industry Company, Limited Resin composition, sheet-form resin composition, and layered product
AU2004276119A1 (en) * 2003-09-26 2005-04-07 Kureha Corporation Absorptive composition for infrared ray and absorptive resin composition for infrared ray
JP2005126650A (en) * 2003-10-27 2005-05-19 E Ultimate Investments Ltd Transparent composition for cutting transparent ultraviolet rays and infrared rays
JPWO2005111170A1 (en) * 2004-05-17 2008-03-27 株式会社クレハ Near infrared light absorbing material, near infrared light absorbing composition and laminate
JP3992698B2 (en) * 2004-07-20 2007-10-17 電気化学工業株式会社 Polyvinyl acetal resin composition, sheet and laminated glass
JPWO2006009211A1 (en) * 2004-07-21 2008-07-31 株式会社クレハ Near infrared light absorbing material and laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211220A (en) * 1996-01-30 1997-08-15 Kureha Chem Ind Co Ltd Heat ray absorbing composite body
JPH11171604A (en) * 1997-12-10 1999-06-29 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220872A (en) * 2005-02-09 2006-08-24 Olympus Corp Optical filter, manufacturing method of optical filter, and imaging device
WO2010098287A1 (en) * 2009-02-27 2010-09-02 セントラル硝子株式会社 Heat insulating laminated glass
JP2010222233A (en) * 2009-02-27 2010-10-07 Central Glass Co Ltd Heat insulating laminated glass
EP2685294A4 (en) * 2011-03-09 2014-09-10 Nitto Denko Corp Infrared reflective film
EP2685294A1 (en) * 2011-03-09 2014-01-15 Nitto Denko Corporation Infrared reflective film
CN103415792A (en) * 2011-03-09 2013-11-27 日东电工株式会社 Infrared reflective film
WO2014010425A1 (en) * 2012-07-09 2014-01-16 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut-off filter using same, method for manufacturing near-infrared cut-off filter, camera module, and method for manufacturing camera module
WO2014027639A1 (en) * 2012-08-16 2014-02-20 株式会社クレハ Resin composition and application therefor
WO2014129366A1 (en) * 2013-02-19 2014-08-28 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module
JP2016014845A (en) * 2013-07-12 2016-01-28 富士フイルム株式会社 Near infrared absorbing composition, near infrared cut filter, method for manufacturing the same, and solid-state image sensing device
WO2015005447A1 (en) * 2013-07-12 2015-01-15 富士フイルム株式会社 Near infrared absorption composition, near infrared-cut filter and manufacturing method therefor, and solid state image pickup element
CN107615115A (en) * 2015-06-29 2018-01-19 京瓷株式会社 Near infrared ray cut-off filter and optical semiconductor device
CN107615115B (en) * 2015-06-29 2020-05-15 京瓷株式会社 Near-infrared cut filter and optical semiconductor device
CN108027465A (en) * 2015-09-24 2018-05-11 日本板硝子株式会社 Infrared ray-absorbing layer composition, infrared intercepting filter and camera device
CN108027465B (en) * 2015-09-24 2020-09-22 日本板硝子株式会社 Composition for infrared absorbing layer, infrared cut filter, and imaging device
JP2017071771A (en) * 2015-10-07 2017-04-13 積水化学工業株式会社 Polyvinyl acetal resin composition
EP4043206A1 (en) * 2021-02-15 2022-08-17 Kuraray Europe GmbH Drying processes for composite films comprising polyvinyl acetal and polyvinyl ethylene acetal resins
WO2022171317A1 (en) * 2021-02-15 2022-08-18 Kuraray Europe Gmbh Drying processes for composite films comprising polyvinyl acetal and polyvinyl ethylene acetal resins

Also Published As

Publication number Publication date
JP4926712B2 (en) 2012-05-09
JPWO2006035756A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP5400033B2 (en) Copper phosphonate compound, and infrared absorbing material and laminate containing the same
JP5554048B2 (en) Near-infrared absorber, method for producing the same, and optical material
WO2006035756A1 (en) Near-infrared absorbing material and laminate
JP5331361B2 (en) Copper salt composition, and resin composition, infrared absorption film and optical member using the same
JP4777068B2 (en) Infrared absorbing composition for laminated glass and infrared absorbing resin composition for laminated glass
RU2681156C2 (en) Intermediate film for laminated glass and laminated glass
JP4926699B2 (en) Solubilizer and composition containing the same
JPWO2005012454A1 (en) Infrared absorbing composition, resin composition, interlayer film for laminated glass, laminate, laminated glass and building material
WO2005111170A1 (en) Near-infrared absorbing material, near-infrared absorbing composition and laminate
JP2006103069A (en) Heat barrier multilayer object and laminate
WO2006009211A1 (en) Near-infrared absorbing material and laminated body
JPWO2006080347A1 (en) Polymerizable composition, polymer, sheet-like molded product, laminate and production method thereof
EP4353697A1 (en) Resin film, laminated glass, and screen
JP5087223B2 (en) Resin composition and optical member
TWI797268B (en) Interlayer film for laminated glass, and laminated glass
JP2008031352A (en) Polymerizable composition and method for producing the same and polymer and laminate
EP4349793A1 (en) Resin film, laminated glass, and screen
WO2019065839A1 (en) Laminated glass
CN117396448A (en) Resin film, laminated glass and screen
JP2022184685A (en) Resin film, glass laminate, and screen
WO2019065837A1 (en) Laminated glass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537745

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05788415

Country of ref document: EP

Kind code of ref document: A1