WO2006035702A1 - C-peptide specific binding molecule and use thereof - Google Patents

C-peptide specific binding molecule and use thereof Download PDF

Info

Publication number
WO2006035702A1
WO2006035702A1 PCT/JP2005/017615 JP2005017615W WO2006035702A1 WO 2006035702 A1 WO2006035702 A1 WO 2006035702A1 JP 2005017615 W JP2005017615 W JP 2005017615W WO 2006035702 A1 WO2006035702 A1 WO 2006035702A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
peptide
seq
amino acid
acid sequence
Prior art date
Application number
PCT/JP2005/017615
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Naruse
Jiro Nakamura
Keiko Naruse
Original Assignee
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University filed Critical National University Corporation Nagoya University
Priority to JP2006537712A priority Critical patent/JPWO2006035702A1/en
Publication of WO2006035702A1 publication Critical patent/WO2006035702A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/26Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors

Definitions

  • the present invention relates to a C peptide-specific binding molecule and use thereof. Specifically, it relates to a C peptide binding agent using a C peptide-specific binding molecule, a method for evaluating the action state of C peptide, a method for screening a compound that regulates the action state of C peptide, and the like.
  • Insulin preparations are indispensable for the treatment of diabetic patients.
  • insulin drugs with various action times such as ultra-fast, fast-acting, intermediate, and ultra-long-acting types have been developed. It contributes to the treatment.
  • type 1 diabetes where insulin is depleted, the onset and progress of diabetic complications has a major impact on the quality of life and prognosis of patients.
  • C-peptide resistance may exist in type 2 diabetes as well as insulin resistance.
  • the C peptide is a 31-amino acid peptide that is produced when proinsulin is broken down into insulin in the splenic Langenorehans island, and has long been thought to have no physiological activity. In recent years, it has been proved that C-peptide has physiological activities such as vasodilatory action and neuroprotective action, and its action attracts attention. However, the mechanism of action of the C-peptide was unclear.
  • Non-Patent Document 1 Biochem Cell Biol. 1990 Dec; 68 (12): 1428- 32.
  • Non-Patent Document 2 Acta Physiol Hung. 1995; 83 (4): 333-42.
  • Non-Patent Document 3 Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 375-85.
  • Non-Patent Document 4 Comment in: Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 345- 7.
  • Non-Patent Document 5 Int J Exp Diabetes Res. 2002 Oct- Dec; 3 (4): 241- Five.
  • Non-Patent Document 6 Nitric Oxide. 2003 Sep; 9 (2): 95-102.
  • Non-Patent Document 7 J. Biol. Chem. 2003, 278 (23) 20915-24
  • C-peptide receptor molecule that is, the molecule that specifically binds to C-peptide (C-peptide specific binding molecule). Most important.
  • C peptide-specific binding molecules are indispensable for C peptides to exert their actions, so the expression state (expression level, localization, etc.) of C peptide-specific molecules is the action of C peptides. It directly affects the state (action amount, etc.). Therefore, the action state of the c peptide can be regulated by controlling the expression state of the c peptide specific binding molecule. This means that C peptide-specific binding molecules are targets for developing drugs for diseases involving C peptides.
  • C-peptide-specific binding molecules are themselves target molecules in drug discovery and diagnostic fields.
  • the first object of the present invention is to provide a c-peptide-specific binding molecule having such a high utility value. It is also intended to provide medical use or diagnostic use of C peptide specific molecules.
  • the first aspect of the present invention is the above-described protein (C peptide-specific binding tag) that has been successfully identified.
  • C peptide-binding agent using a protein comprises a first protein having the amino acid sequence of SEQ ID NO: 1, a second protein having the amino acid sequence of SEQ ID NO: 3, and a protein substantially homologous to the first protein or the second protein. Contains one or more proteins selected from the group of power and strength.
  • the C peptide binding agent can be used to regulate the action state of the C peptide. It can also be used for C peptide detection, measurement or quantification, C peptide separation and purification.
  • Another aspect of the present invention relates to a method for evaluating the action state of a C peptide by detecting the protein (C peptide-specific binding protein or a protein substantially homologous thereto).
  • the first protein having the amino acid sequence of SEQ ID NO: 1
  • the second protein having the amino acid sequence of SEQ ID NO: 3
  • the first protein or the second protein substantially.
  • a step of detecting in the sample one or more proteins selected from the group consisting of homologous proteins. Detection (measurement) Use the results to evaluate the action state of C-peptide. Based on the action state of the C peptide, it is possible to diagnose a disease involving the C peptide.
  • the nucleic acid in the sample is the detection target. That is, a nucleic acid encoding the first protein having the amino acid sequence of SEQ ID NO: 1, a nucleic acid encoding the second protein having the amino acid sequence of SEQ ID NO: 3, and the first protein or the second protein.
  • a step of detecting in a sample a nucleic acid that encodes a homologous protein and one or more nucleic acids selected from a powerful group, based on the detection results! Evaluate the action state of the C peptide in the sample.
  • a polymorphism of the gene encoding the first protein having the amino acid sequence of SEQ ID NO: 1 a polymorphism of the gene encoding the second protein having the amino acid sequence of SEQ ID NO: 3, and the first protein or
  • a step of analyzing in a sample one or more polymorphisms selected from the group consisting of a polymorphism of a gene encoding a protein substantially homologous to the second protein, and based on the analysis results Evaluate the C peptide activity in the sample.
  • Still another aspect of the present invention relates to a screening method using the above protein (C peptide-specific binding protein or a protein substantially homologous thereto). That is, in this aspect, a means for finding a compound capable of regulating the action state of C peptide is proposed. Provided.
  • the screening method of the present invention the step of bringing the C peptide into contact with the protein is carried out in the presence (test group) and absence (control group) of the test compound. Then, the change in the binding state (binding amount, binding force, etc.) between the C peptide and the above protein due to the presence of the test compound is examined.
  • a compound that changes the binding state between the C peptide and its specific binding molecule that is, a compound that can regulate the action state of the c peptide can be selected.
  • Selected compounds will be potential candidates for drugs for diseases involving C-peptides, or useful materials in developing such drugs.
  • a cell-based screening method is provided. In this embodiment, after the step of culturing cells for a predetermined time in the presence (test group) and absence (control group) of the test compound, the expression level of the protein in the cells after culturing is determined. taking measurement. Then, by comparing the expression level of the test group with the expression level of the control group, it is evaluated whether or not the test compound has the ability to regulate the action state of the C peptide (and if so) .
  • Yet another aspect of the present invention relates to a compound capable of regulating the action state of a C peptide.
  • an antibody that has a specific binding property to the C peptide or the protein and inhibits the binding between the C peptide and the protein.
  • the antibody can be used, for example, for the binding assay between the C peptide and the protein by utilizing its specific binding property. Further, since the antibody has an activity of suppressing or inhibiting the action of the C peptide, it can be used as a drug for diseases caused by high expression of the C peptide.
  • the present invention further provides a method for regulating the action state of a C peptide in a target cell.
  • the step of artificially introducing the protein (C peptide-specific binding protein or a protein substantially homologous thereto) into the target cell is performed, thereby increasing the amount of action of the C peptide. Is prompted.
  • a step of introducing into the target cell a compound that inhibits the binding of the C peptide to the protein is carried out, thereby promoting a reduction in the amount of action of the C peptide.
  • the expression of the protein in the target cell is inhibited by using an antisense method, RNA interference, ribozyme, etc., and the amount of action of the C peptide is reduced.
  • an antisense method RNA interference, ribozyme, etc.
  • the amount of action of the C peptide is reduced.
  • the method of this aspect it is possible to examine the effect of an increase or decrease in the action amount of c-peptide on target cells.
  • the method of the present invention can be used to treat a subject suffering from a disease caused by high or low expression of C peptide.
  • the present invention further provides a kit for simply carrying out the method of the present invention.
  • FIG. 1 shows the results of electrophoresis (cell staining) of a cell extract prepared from human aortic smooth muscle cells.
  • Left lane migration result of sample solution prepared in the above procedure (C peptide (+))
  • right lane NHS-activated Sepharose 4 Fast Flow without C peptide binding is used instead of C peptide binding column
  • the rest are migration results (C peptide (-)) of a control sample prepared in the same procedure.
  • the band positions are indicated by lines (1, 2).
  • FIG. 2 shows the results of a competition experiment with C peptide (gel after staining).
  • FIG. 3 shows the results of PCR using HSPA5 or HSPA9B-specific primers using cDNA prepared from human vascular endothelial cells (HUVEC), human fetal kidney cells (HEK), and HeLa cells as a cage.
  • HSPA5 or HSPA9B-specific primers using cDNA prepared from human vascular endothelial cells (HUVEC), human fetal kidney cells (HEK), and HeLa cells as a cage.
  • FIG. 4 is a result of analyzing a sample prepared by E. coli transformed with HSPA5 expression vector or HSPA9B expression vector by Western plot.
  • (1) is the lane to which the precipitate fraction obtained by centrifugation after E. coli solubilization was applied
  • (2) is the lane to which the supernatant fraction obtained by centrifugation after E. coli solubilization was applied
  • (3) Is the lane where the supernatant obtained by centrifugation after E. coli solubilization was purified with Glutachione-Sepharose 4B.
  • FIG. 5 shows the results of analysis of a sample prepared by HEK cell power transformation with an HSPA5 expression vector or HSPA9B expression vector, by Western plotting.
  • the left column (1) is the lane to which the cell disruption solution was applied, and (2) is the lane to which the Co-beads extract was applied.
  • (1) in the right column is the lane to which the cell lysate was applied, and (2) is the supernatant after centrifuging the cell lysate.
  • (3) is the lane to which the Co-beads extract was applied.
  • FIG. 6 is a fluorescent immunostaining image of HEK cells transformed with an HSPA5 expression vector or HSPA9B expression vector. Upper row is control, middle row is HEK cell transformed with HSPA5 expression vector, and lower row is HEK cell transformed with HSPA9B expression vector.
  • FIG. 8 shows the result of binding experiment (Western blot) between HSPA5 and C peptide.
  • (1) is a cell lysate prepared from cells transformed with the HSPA 5 expression vector
  • (2) is a cell lysate prepared by transformation with an empty vector
  • (3) is transformed with an HSPA5 expression vector.
  • Cell force The component bound to the C peptide beads in the supernatant fraction of the prepared cell lysate, (4) was obtained by reacting non-peptide-bound beads (No peptide beads) instead of C peptide beads
  • Sample (5) is the component bound to the C peptide beads in the supernatant fraction of the cell disruption solution prepared from cells transformed with the empty vector
  • (6) is the cell force transformed with the empty vector.
  • FIG. 9 is an immunostained image of HUVEC cells stimulated with C peptide.
  • the right column is a stained image obtained by reacting anti-HSPA5 antibody and FITC anti-goat antibody.
  • the left column is the control.
  • FIG. 11 Results of HSP knockdown experiment. No.1 (sense strand introduction, without C peptide stimulation), No.2 (sense strand introduction, with C peptide stimulation), No.3 (antisense strand introduction, without C peptide stimulation), No.4 (antisense strand) Introduction, C peptide stimulation).
  • the first aspect of the present invention relates to a C peptide binder.
  • the “C peptide” is produced when proinsulin is broken down into insulin in the splenic islets of Langeron. It is a peptide consisting of mino acid (SEQ ID NO: 5). C-peptide has been used as a diagnostic marker for diabetes. Recently, it has been reported that the C peptide itself has a specific physiological activity.
  • the C peptide binding agent of the present invention includes a protein identified as a C peptide specific binding molecule, or a protein substantially homologous thereto (hereinafter collectively referred to as “the present protein”). As shown in Examples described later, the present inventors succeeded in obtaining two types of proteins as C peptide-specific binding molecules. As a result of amino acid sequence analysis, each of these proteins is also referred to as a 70 kDa protein 9B precursor (hereinafter also referred to as “HSPA9B”. The amino acid sequence of the protein is represented by SEQ ID NO: 1, and the base sequence encoding the protein is represented by SEQ ID NO: 2, respectively. And heat shock 70 kDa protein 5 (hereinafter also referred to as “HSPA5”!
  • the term “substantially homologous” used in the present specification for the two types of proteins to be compared is used in the application utilizing the binding property to the C peptide! It means a state in which the two types of proteins possess the binding ability to the C peptide to the extent possible.
  • “substantial homology” here the region not involved in binding to the C peptide is less important. Therefore, substantial homology can be recognized even if the region not involved in binding to the C peptide is altered (deletion or substitution of some or all amino acids, addition of other amino acids, etc.). Even when other molecules or substances are added, substantial homology may be maintained before and after the addition.
  • the two types of proteins to be compared differ in terms of their constituent amino acids and molecular weight, there may be cases where substantial homology can be recognized between them. However, in general, if amino acid sequences have high homology, they are often homologous in function. When the binding to one C-peptide is 100%, the other is at least 50% or more, preferably 70% or more, more preferably 80% or more, more preferably 90% or more, and most preferably about 100%. %, Substantial homology can be observed between the two proteins.
  • a protein substantially homologous to HSPA9B a protein having a sequence obtained by modifying a part of the amino acid sequence of SEQ ID NO: 1 and having a specific binding property to a C peptide can be mentioned.
  • a protein substantially homologous to HSPA5 a protein having a sequence obtained by modifying a part of the amino acid sequence of SEQ ID NO: 3 and having a specific binding property to a C peptide can be exemplified.
  • the modification of the amino acid sequence herein means that the amino acid sequence is changed by deletion or substitution of one to several amino acids constituting the amino acid sequence, or addition or insertion of one to several amino acids, or a combination thereof.
  • This modification can be performed as long as the property of specific binding to C peptide is highly maintained. “Highly retained” as used herein means 50% or more after modification, preferably 70% or more, and more preferably, when the specific binding to C peptide before modification is defined as 100%. Is 80% or more, more preferably 90% or more, and most preferably about 100%.
  • the position of the amino acid sequence change is not particularly limited. Further, a change may occur at a plurality of positions (may be consecutive positions).
  • the number of amino acids required for modification is, for example, a number corresponding to within 10% of all amino acids constituting the amino acid sequence before modification, preferably a number corresponding to within 5% of all amino acids, more preferably within 1% of all amino acids. It is a number corresponding to. However, in some cases, significant modifications beyond this range, such as addition of amino acids to the 5 'end or 3' end, may be permitted.
  • HSPA9B proteins substantially homologous to HSPA9B (or HSPA5) include naturally occurring mutant HSPA9B (or HSPA5).
  • HSPA9B (or HSPA5) of a species other than human examples include non-human primates (monkeys, chimpanzees, etc.), mice, rats, usagis, horses, horses, hidges, nu, cats, and the like.
  • Such a C peptide binding agent containing HSPA9B (or HSPA5) derived from a non-human species can be suitably applied (in vivo or ex vivo) to a species other than human. Alternatively, it can be suitably used for in vitro experiments.
  • the C peptide binding agent of the present invention comprises at least one of the present proteins.
  • the C peptide binding agent of the present invention contains two or more of the present proteins.
  • the C peptide binding agent of the present invention comprises HSPA9B or HSPA5 alone or both.
  • the protein constituting the C-peptide binding agent of the present invention is modified such as methylation or daricosylation! /, Or even! /.
  • the C peptide-binding agent of the present invention can be used to control the action state of a C peptide.
  • the C peptide binding agent of the present invention is administered to a living body, it can be expected that the C peptide binds to it and that the action of the C peptide is exerted via the C peptide binding agent. Therefore, if applied to an individual exhibiting a pathological condition as a result of the reduced action of the C peptide, the pathological condition can be improved.
  • the peptide binding agent of the present invention can also be used for detection, measurement or quantification of C peptide.
  • the peptide binding agent of the present invention is used for such detection of C peptide, it is preferable to label the peptide binding agent of the present invention with a detectable labeling substance.
  • a detectable labeling substance it is preferable to label the peptide binding agent of the present invention with a detectable labeling substance.
  • another substance capable of detecting the peptide binding agent of the present invention is used in combination, such a labeling agent becomes unnecessary.
  • the detection or the like here may be performed in a living body or in a cell or tissue separated from a living body! / ⁇ ⁇ .
  • the C peptide binding agent of the present invention may be used for separation and purification of C peptides.
  • a C peptide affinity column can be constructed by binding the C peptide binding agent of the present invention to a support and filling it in a suitable container. Such a column can be used to detect and sort powerful C-peptides such as biological samples.
  • the present protein constituting the C peptide binding agent of the present invention is, for example, an animal (eg, human, monkey, It can be obtained from cells or tissues of chimpanzees, etc.) by using means such as extraction and purification (for details of the extraction method, see the examples below).
  • the protein can also be prepared using genetic engineering techniques. That is, it can be prepared by introducing a DNA encoding the target protein into an appropriate host cell and recovering the protein expressed in the transformant. The collected protein is appropriately purified according to the purpose. When prepared as a recombinant protein, various modifications are possible.
  • DNA encoding the protein of interest and other suitable By carrying out transformation using a vector retaining a suitable DNA, it is possible to obtain a recombinant protein in which the target protein is not a peptide encoded by the other DNA, and the protein is linked. Other DNA can be incorporated in advance in the vector. By such modification, it is possible to extract the recombinant protein, simplify the purification, or add a biological function.
  • Another aspect of the present invention relates to a method for evaluating the working state of a C peptide by detecting the above-mentioned protein.
  • action state of C peptide refers to the amount of action of C peptide exerted through the protein, and depends on the amount of the protein present.
  • evaluation is used interchangeably with determination and discrimination.
  • a step of detecting the amount of the present protein (preferably HSPA9B or HSPA5) present in a sample is performed.
  • the detection results are used to evaluate the action state of the C peptide in the sample.
  • cells, tissues, blood, etc. collected from the living body of the subject (subject), cultured cells, established cells, etc. can be used.
  • the amount of the protein can be detected (measured) using, for example, a compound that specifically binds to the protein.
  • the detection method is not limited to this, but is preferably an immunological method.
  • an antibody specifically, an anti-HSPA9B antibody or an anti-HSPA5 antibody
  • the present protein is detected using the binding property (binding amount) of the antibody as an index.
  • the term “antibody” used herein is a polyclonal antibody, monoclonal antibody, chimeric antibody, single chain antibody, CDR grafted antibody, humanized antibody, or a fragment thereof (however, it has a specific binding ability to HSPA9B etc. Etc.).
  • the antibody in the present invention can be prepared by using an immunological technique, a phage display method, a ribosome display method, and the like.
  • the immunological staining method enables rapid and sensitive detection. Therefore, the burden on the subject (patient) is reduced when a small amount of sample is used. Also, the operation is simple. Examples of detection methods include ELISA, radioimmunoassay. And qualitative or quantitative methods such as FACS, immunoprecipitation, and immunoblotting.
  • the polyclonal antibody can be prepared by the following procedure. Prepare an antigen (HSPA9B, etc.) and use it to immunize animals such as mice, rats, rabbits, goats, etc. As an antigen, HSPA9B or a homologous protein thereof, HSPA5 or a homologous protein thereof, or any one of them can be used. When an effective immune-inducing action cannot be expected due to the low molecular weight, it is preferable to use an antigen bound with a carrier protein. As the carrier protein, KLM (Keyhole Light Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin), etc. are used. In addition, for the binding of carrier protein, the calpositimide method, dartalaldehyde method, diazo condensation method, MBS (maleimido benzoyl succinimide) method and the like can be used.
  • monoclonal antibodies can be prepared by the following procedure. First, immunization is performed in the same procedure as above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hyperidoma. Subsequently, after this hybridoma is monoclonalized, a clone producing an antibody having high specificity for the target protein is selected.
  • the target antibody can be obtained by purifying the culture medium of the selected clone.
  • the desired antibody can be obtained by growing hyperpridoma to a desired number or more and then transplanting it into the abdominal cavity of an animal (for example, a mouse) and growing it in ascites to purify the ascites.
  • affinity chromatography using protein G, protein A or the like is preferably used.
  • affinity chromatography with an antigen immobilized thereon can also be used.
  • methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.
  • kits for preparing and screening phage display libraries are commercially available, and can be suitably used.
  • antibody labeling include fluorescent dyes such as fluorescein, rhodamine, Texas red, and Oregon green, horseradish peroxidase, microperoxidase, alkaline phosphatase, 13 D-galactosidase, and other enzymes, luminol, and acrylidine.
  • fluorescent dyes such as fluorescein, rhodamine, Texas red, and Oregon green
  • horseradish peroxidase such as fluorescein, rhodamine, Texas red, and Oregon green
  • horseradish peroxidase such as fluorescein, rhodamine, Texas red, and Oregon green
  • horseradish peroxidase such as fluorescein, rhodamine, Texas red, and Oregon green
  • microperoxidase such as microperoxidase
  • the amount of the protein can also be determined using a nucleic acid encoding the present protein (preferably a nucleic acid encoding HSPA9B or HSPA5) as opposed to detecting the protein itself. Specifically, for example, the amount of mRNA encoding this protein is detected.
  • genomic DNA can be targeted for detection when the number of copies of the gene encoding the protein varies with the amount of the protein. For example, if an increase in the gene copy number of this protein is found as a result of detection, It can be predicted that the expression level of the quality increases.
  • Methods for measuring the amount of a specific nucleic acid are known in the art.
  • the Southern hybridization method, the Northern hybridization method, the in situ hybridization method, RT-PCT The law etc. can be used.
  • Another embodiment of the present invention relates to a method for evaluating the action state of a C peptide in a subject using a polymorphism of a gene encoding the protein, and preferably a polymorphism of a gene encoding the protein in the subject (preferably Includes a step of analyzing a polymorphism of a gene encoding HSPA9B or HSPA5.
  • Genetic polymorphisms are those in which one base is replaced by another base (SNP (single nucleotide polymorphism)), and usually one to several tens of bases are deleted or inserted (inserted Z deletion type polymorphism). Type), those having a different number of repeats in a repetitive sequence of 2 to several basic forces (VNTR (variable number of tandem repeat) and microsatellite polymorphism), and the like are known. These gene polymorphisms may regulate the expression state of the gene, or change the amino acid in the protein encoded by the gene and affect its function.
  • the potential function of the protein encoded by the gene can be evaluated.
  • the expression state and Z or action state of this protein can be predicted.
  • the prediction results obtained in this way can be used to understand and evaluate the action state of C-peptide.
  • the protein is expressed when it is considered that the protein is highly expressed or when the interaction with the C peptide is performed well.
  • it is considered that the C peptide is likely to exert its action it can be determined that the subject is at high risk of suffering from a disease caused by an increase in the action of the C peptide.
  • the information obtained in this way is used when making a treatment plan for medical treatment (treatment or prevention) using C peptide (including the case of stopping the administration of C peptide and changing to other treatment means). Useful.
  • the evaluation results regarding the action state of the C peptide obtained by the above methods are used to diagnose a disease characterized by an abnormality in the action amount of the C peptide (hereinafter also referred to as "target disease of the present invention"). Available to: Accordingly, the present invention also provides the following diagnostic method.
  • One aspect of the diagnostic method of the present invention is a method for diagnosing a disease characterized by an abnormal amount of action of a C peptide, wherein the first protein having the amino acid sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 3 are used.
  • Another aspect of the present invention is a method for diagnosing a disease characterized by an abnormal amount of action of C peptide, comprising a nucleic acid encoding a first protein having the amino acid sequence of SEQ ID NO: 1, and SEQ ID NO:
  • One or more nucleic acids selected from the group consisting of a nucleic acid encoding a second protein having an amino acid sequence of 3 and a nucleic acid encoding a protein substantially homologous to the first protein or the second protein A step of detecting in a sample collected from a subject (subject), and a step of using the detection result to evaluate the working state of the C peptide in the sample.
  • Still another embodiment of the present invention is a method for diagnosing a disease characterized by an abnormal amount of action of a C peptide, comprising a polymorphism of a gene encoding the first protein having the amino acid sequence of SEQ ID NO: 1, A polymorphism of a gene encoding a second protein having the amino acid sequence of SEQ ID NO: 3, and a polymorphism of a gene encoding a protein substantially homologous to the first protein or the second protein; Analyzing one or more polymorphisms selected from the group consisting of: a sample collected from the sample; and a step of evaluating the action state of the C peptide in the sample using the analysis result; including.
  • a disease characterized by an abnormal amount of action of C peptide refers to a disease accompanied by high or low expression of C peptide as at least one characteristic. Therefore, not only diseases directly caused by high or low expression of C-peptide, but also diseases caused by other causes result in high or low expression of C-peptide. If included, it is included in the disease.
  • HSPA5 also known as glucose regulated protein 78kDa (G RP78)
  • G RP78 glucose regulated protein 78kDa
  • HSPA5 has also been confirmed to inhibit apoptosis (J. Biol. Chem. 2003, 278 (23) 20915-24).
  • C peptide also has an inhibitory effect on apoptosis (Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 375- 85.; Comment in: Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 345— 7.; Int J Exp Diabetes Res. 2002 Oct— Dec; 3 (4): 241— 5.)
  • C peptide it further increased intracellular calcium and activated eNOS. It has been reported that there is a vasodilatory effect by wandering (Nitric Oxide.
  • the amount of action of C-peptide is effective in diseases caused by apoptosis and vasodilatory effects, such as diabetic complications (macrovascular and microvascular disorders) and metabolic syndrome (Metabolic syndrome). It is considered relevant. Therefore, the method of the present invention is expected to be an effective means for diagnosing these diseases. In addition, it is possible to treat these diseases (improving symptoms) by suppressing this especially when the action of C-peptide is abnormally high, or by increasing it when the action of C-peptide is abnormally low! Or it is expected that it can be prevented.
  • the action amount of the C peptide depends primarily on the expression amount of the C peptide. That is, if the expression level of C peptide is abnormal, the action amount of C peptide is usually abnormal.
  • the term “disease characterized by an abnormal amount of C peptide action” is used interchangeably with the term “disease characterized by an abnormal expression level of C peptide”. Shall be. Accordingly, diseases characterized by abnormal expression levels of C peptide also fall under the disease targeted by the present invention.
  • disease means an abnormal condition such as a disease, illness, or disease state. Used interchangeably with terminology.
  • the action amount of the C peptide provides useful information regarding the target disease of the present invention. That is, since there is a relationship between the amount of action of C peptide and the target disease of the present invention, by examining the amount of action of C peptide in the target (human etc.), It is possible to grasp or evaluate the presence or absence of disease, the degree of risk of being affected, and Z or disease state. It is also possible to monitor changes (improvement or deterioration) of the disease state by measuring changes in the action amount of C peptide over time.
  • the C peptide has been shown to have an anti-apoptotic action, a vasodilatory action, a neuroprotective action, and the like. Therefore, the expression state of this protein can also be used for evaluating or evaluating the degree of these actions of the C peptide. That is, the present protein is effective not only as a determination index for diseases caused as a result of these actions, but also as a means for directly grasping these actions.
  • Yet another aspect of the present invention relates to a screening method using the present protein.
  • the protein is brought into contact with the C peptide immobilized on an insoluble support such as a plate, a membrane, or a bead in the reaction solution.
  • the test group such contact is performed with the test compound present in the reaction solution (ie, with the test compound added), while in the control group, the test compound is not present in the reaction solution. Similar contact is performed.
  • the nonspecific binding component is removed by washing with an appropriate solution. Subsequently, a complex of the C peptide and the present protein is detected, and the detection amount is compared between the test group and the control group (detection amount comparison step).
  • the detection of the complex can be performed by, for example, an immunological technique using an antibody having a specific binding property to the present protein.
  • the reaction solution used for contacting the present protein with the C peptide is not particularly limited, and a known or commercially available buffer solution, physiological saline, or the like can be used.
  • the reaction conditions are as follows. It can be easily set based on experiments using quality as an index.
  • phosphate buffer, citrate buffer, Tris-HCl buffer, Tris-acetate buffer, etc. can be used as the anti-application solution, and the pH thereof is, for example, pH 6.0 to pH 8.0, preferably pH 6.5. Set to ⁇ pH 7.5.
  • the reaction temperature can be, for example, 4 ° C to 45 ° C, preferably 4 ° C to 40 ° C.
  • the reaction time can be set, for example, in the range of 1 minute to 24 hours (specifically, for example, the reaction is performed overnight).
  • the present protein may be immobilized on the insoluble support and then contacted with the C peptide.
  • the amount of the complex can be determined by detecting the C peptide bound to the present protein on the solid phase.
  • the change in the binding mode (binding amount, binding force, etc.) between the C peptide and the present protein due to the presence of the test compound is examined. Specifically, for example, if the amount of binding between the C peptide and this protein decreases due to the presence of the test compound, it is determined that the test compound has an action to inhibit or suppress the binding between these two molecules. Can do. On the other hand, if the amount of binding between the C peptide and this protein increases due to the presence of the test compound, it is judged that the test compound has the effect of promoting or enhancing the binding between these two molecules. be able to.
  • a compound that changes the binding property between the C peptide and the present protein that is, a compound that can regulate the action state of the C peptide can be selected.
  • the selected compounds are effective for medical treatment of diseases involving C peptide (ie, diseases characterized by abnormal action of C peptide).
  • diseases involving C peptide ie, diseases characterized by abnormal action of C peptide.
  • a compound that has been shown to inhibit or inhibit the binding of the C peptide and the protein is expected to be used to suppress the action of the C peptide. Therefore, the compound is expected to be applied for the treatment and prevention of diseases caused by high expression of C peptide.
  • compounds that have been shown to promote or enhance the binding of C peptide and the present protein can be used to enhance the action of C peptide. Therefore, the compound is expected to be used for the treatment and prevention of diseases caused by low expression of c-peptide.
  • the compound selected by the screening method of the present invention is C peptide. It is a promising candidate for drugs for diseases in which it is involved, or a useful material in developing such drugs.
  • a cell-based screening method is provided.
  • it is examined whether the intracellular expression level of the present protein (preferably HSPA9B or HSPA5) changes due to the presence of the test compound.
  • the test compound may be evaluated using this as the intracellular expression level of the protein in the control group. In this case, culturing in the absence of the test compound can be omitted.
  • the intracellular expression level can be measured, for example, by directly detecting the protein using an immunological technique using an antibody having a specific binding property to the protein.
  • mRNA encoding the present protein may be detected.
  • the expression level of the protein can be ascertained using the amount of mRNA encoding the protein as an index.
  • conventional methods such as various hybridization methods using a specific probe (eg, Southern blotting) can be employed.
  • this protein is a C peptide in the living body. It was found that it is a binding substance for tide and a key molecule that exerts the action of c-peptide.
  • the action state (action amount) of c-peptide in the living body depends on the expression level (and utility) of this protein. From this, it can be said that a test compound having an action of regulating the expression level of this protein can regulate the action state of the C peptide in the living body. As described above, compounds capable of regulating the action state of C peptide can also be selected by a cell-based screening method.
  • the test group and the control group may be composed of the same cells (cell group).
  • the test compound is added to the culture medium, and further cultured for a predetermined time. After completion of the culture, measure the intracellular expression level of this protein (measurement of the test group).
  • the type of cell used is not limited.
  • established cells such as HeLa cells, COS cells, and CHO cells can be used. These cells are also readily available for cell banking, such as ATCC.
  • cells separated from a living body can be used directly. For example, cells collected from humans, monkeys, horses, horses, mice, rats, rabbits, chickens and the like can be used in the screening method of the present invention.
  • test compound is orally or parenterally administered to an individual, and after a predetermined time has elapsed, the amount of the protein in a specific cell (for example, vascular smooth muscle cell, nervous system cell, etc.) is measured. . Then, compare the measured amount with the amount of the protein in the case where the protein is not administered!
  • a specific cell for example, vascular smooth muscle cell, nervous system cell, etc.
  • a cell group in which a network is formed between cells other than dispersed cells can be used for screening. Further, the screening method of the present invention may be performed using two or more different types of cells in combination.
  • the number of cells to be used is not particularly limited, and can be determined in consideration of the detected amount of the present protein, experimental equipment, and the like. For example, 1 to 10 5, preferably 10 to 10 4, more preferably 10 2 ⁇ 10 3 cells can be used.
  • Yet another aspect of the present invention relates to a compound capable of modulating the action state of a C peptide.
  • an antibody that specifically binds to a C peptide or a protein having the amino acid sequence of SEQ ID NO: 1 and inhibits the binding between the C peptide and the protein.
  • These antibodies can be used, for example, for the binding assay between the C peptide and the present protein by utilizing its specific binding property.
  • the antibody since the antibody has an activity of inhibiting the action of C peptide, it can be used as a drug for diseases caused by high expression of C peptide.
  • the method described in the detection method column of the present invention can be employed.
  • Yet another aspect of the present invention relates to a method for regulating the action state of a C peptide in a target cell.
  • the step of artificially introducing the protein (preferably HSPA 9B or HSPA5) into the target cell is performed.
  • the abundance of the protein, which is a specific binding molecule of C peptide, in the target cell increases, and the action amount of C peptide is enhanced accordingly. Therefore, it is possible to examine the influence of an increase in the action amount of C peptide on target cells. In other words, a suitable experimental system is provided for investigating the physiological effects of C-peptide.
  • the target cell is a cell constituting a living body (including a cell to be transplanted into the living body later)
  • the amount of action of the C peptide in the living body can be increased. Therefore, the method of the present invention can be used to treat a subject suffering from a disease caused by low expression of C peptide.
  • the step of administering to the target cell a compound that inhibits the binding between the C peptide and the protein is performed.
  • the action amount of the C peptide in the target cell can be reduced. Therefore, it is possible to examine the influence of a decrease in the action amount of C peptide on the target cells.
  • a suitable experimental system is provided for examining the physiological action of C peptide.
  • a method for regulating the action state of a C peptide by inhibiting or suppressing the expression of the protein preferably HSPA9B or HSPA5 in a target cell. Inhibition or suppression of the expression of this protein can be achieved by antisense methods, RNA interference, or by using ribozymes.
  • an antisense construct that generates RNA complementary to a unique part of mRNA encoding this protein when transcribed in a target cell is used. Is done. Such an antisense 'construct is introduced into a target cell, for example, in the form of an expression plasmid.
  • an oligonucleotide 'probe that hybridizes with the mRNAZ or genomic DNA sequence encoding this protein and inhibits its expression when introduced into the target cell as an antisense' construct can also be employed. .
  • Such oligonucleotide probes are preferably those that are resistant to exonucleases and endogenous nucleases such as Z or endonucleases.
  • an oligodeoxyribonucleotide derived from a region containing a translation initiation site (for example, a region of ⁇ 10 to +10) of mRNA encoding the present protein is preferable.
  • the complementarity between the antisense nucleic acid and the target nucleic acid is preferably strict, but there may be a few mismatches.
  • the ability of an antisense nucleic acid to hybridize to a target nucleic acid generally depends on both the degree of complementarity and the length of both nucleic acids. In general, the longer the antisense nucleic acid used, the more stable duplexes (or triplexes) can be formed with the target nucleic acid, even if the number of mismatches is large.
  • One skilled in the art can ascertain the degree of acceptable mismatch using standard techniques.
  • the antisense nucleic acid may be DNA, RNA, or a chimeric mixture thereof, or a derivative or modified form thereof. Moreover, it may be single-stranded or double-stranded. Base part, sugar part, Alternatively, the stability of the antisense nucleic acid, the hybridization ability, etc. can be improved by modifying the phosphate skeleton. In addition, antisense nucleic acids can promote cell membrane transport (eg, Letsinger et al., 1989, Proc. Natl. Acad. Sci. USA 86: 6553-6 556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84: 648-652; see PCT Publication No. W088 / 09810, published December 15, 1988) or substances that increase affinity for specific cells.
  • the antisense nucleic acid can be synthesized by a conventional method, for example, using a commercially available automatic DNA synthesizer (for example, Applied Biosystems). For example, Stein et al. (1988), Nucl. Acids Res. 16: 3209 and Sarin et al., (198 8), Proc. Natl. Acad. Sci. USA 85: 7448 -You can refer to 7451 etc.
  • a strong promoter such as pol II or pol III can be used. That is, if a construct containing an antisense nucleic acid arranged under the control of such a promoter is introduced into a target cell, a sufficient amount of the antisense nucleic acid can be transcribed by the action of the promoter.
  • Expression of the antisense nucleic acid can be performed by any promoter (inducible promoter or constitutive promoter) known to function in mammalian cells (preferably human cells).
  • SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290: 304-310), rous sarcoma virus 3 ′ end region promoter (Yamamoto et al., 1980, Cell 22: 787-797), herpes zoster thymidine Promoters such as 'kinase' promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. USA 78: 1441-1445) can be used.
  • RNA interference is a sequence-specific post-transcriptional gene repression process that can occur in eukaryotic cells.
  • dsRNA double-stranded RNA
  • Mammalian cells are known to have two pathways affected by dsRNA (sequence-specific pathways and sequence non-specific pathways)! In sequence-specific pathways, relatively long dsRNAs are split into short interfering RNAs (siRNAs). This siRNA is about 2 which forms about 19 nucleotide siRNA each with an overhang at the 3 'end.
  • a sequence non-specific pathway is thought to be triggered by any dsRNA related to the sequence if it is longer than a predetermined length.
  • dsRNA is involved in the synthesis of two enzymes: PKR, which becomes active and phosphorylates the translation initiation factor el F2 to stop all protein synthesis, and RNAase L activation molecule 2 ', 5 'Oligoadenylate synthase is activated.
  • PKR which becomes active and phosphorylates the translation initiation factor el F2 to stop all protein synthesis
  • RNAase L activation molecule 2 ', 5 'Oligoadenylate synthase is activated.
  • it is preferable to use dsRNA shorter than about 30 base pairs in order to minimize the progression of this non-specific pathway Hunter et al.
  • RNAi has been confirmed to be an effective means for reducing gene expression in various cell types (eg, HeLa cells, NIH / 3T3 cells, COS cells, 293 cells, etc.). In general, the expression can be inhibited more effectively than the antisense method.
  • the dsRNA used for RNAi can be prepared in vitro or in vivo by chemical synthesis or using an appropriate expression vector. The latter method is particularly effective for preparing relatively long dsRNA.
  • a sequence unique to the target nucleic acid continuous sequence
  • a program and algorithm for selecting an appropriate target sequence have been developed.
  • the expression of the protein is inhibited by a ribozyme.
  • a ribozyme A force capable of destroying mRNA encoding the protein using a ribozyme that cleaves mRNA with a site-specific recognition sequence.
  • a hammerhead ribozyme is used.
  • the non-header ribozyme for example, Haseloff and Gerlach, 1988, Nature, 334: 585-591 can be referred to.
  • ribozymes may be constructed using modified oligonucleotides, for example, for the purpose of improving stability and targeting ability.
  • a nucleic acid construct in which DNA encoding the ribozyme is placed under the control of a strong promoter eg, pol II or pol III
  • a strong promoter eg, pol II or pol III
  • kits used for such purposes For example, in the case of a kit used for a detection method using the present protein as a detection target, a reagent (first reagent) having specific binding property to the present protein is included as a component (component) thereof.
  • the first reagent is preferably an antibody or antibody fragment.
  • the kit of the present invention can contain a diluent, a reaction solution, a reaction vessel, and the like necessary for the reaction using the first reagent and the like.
  • a first reagent containing C peptide and a second reagent containing the present protein for example, HSPA9B or HSPA5 are used. 2 reagents.
  • the C peptide or the protein may be bound to an insoluble support. If the first reagent or the second reagent is labeled in advance, the kit can directly detect the binding amount between the C peptide and this protein.
  • a labeled compound for example, an antibody
  • the amount of binding between the C peptide and the protein is indirectly detected using the amount of the labeled compound (label amount) as an index.
  • the kit of the present invention usually includes instructions for use.
  • the binding component was also eluted with 1 ml of 0.1 M glycine (pH 3.0) in the C peptide binding column force after the washing treatment (once). The eluate was immediately neutralized with glycine (pH 3.0).
  • the protein observed as an approximately 70 kDa band by SDS-PAGE is the heat shock 70 kDa protein 9B precursor (ACCESSION: NP—004125, DEFINITION: heat shock 70 kDa protein 9B precursor; heat shock 70kD protein 9; stress—70 protein, mitochondrial; 75 kDa glucose regu lated protein; peptide— binding protein 74; mortalin, perinuclear; p66— mortalin; heat shock 70kD protein 9B (mortalin— 2) [Homo sapiens], Entrez Protein, NCBI, http: // www .ncbi.nlm.nih.gov /).
  • the protein observed as an approximately 68kDa band on SDS-PAGE is heat shock 70kDa protein 5 (ACCESSION: NP.005338, DEFINITION: heat shock 70kDa protein 5 (glucose- regulated protein, 78kDa); He at-shock 70kD protein. -5 (glucose-regulated protein, 78kD); heat shock 70kD prote in 5 (glucose-regulated protein, 78kD) [Homo sapiens], Entrez Protein, NCBI, http: //www.ncbi.nlm.nih.gov/) It was half IJ to be.
  • Fig. 2 shows the gel after staining.
  • C Sample lane (C peptide (+) column, competitive inhibition).
  • two types of bands about 70 kDa and about 68 kDa observed around 70 kDa disappeared by competitive inhibition of C peptide. This indicates that an excess of free C-peptide competitively inhibited the binding of the two proteins to the column.
  • the two types of proteins that have been purified by the C peptide binding column have specific binding properties to the C peptide.
  • RNA Human vascular endothelial cells (HUVEC), human fetal kidney cells (HEK), and HeLa cell force were extracted from total RNA, converted to cDNA, and PCR was performed using HSPA5 or HSPA9B specific primers. The reaction solution after PCR was subjected to electrophoresis.
  • Fig. 3 shows the results of electrophoresis. The upper part of Fig. 3 shows the amplification product with the HSPA5-specific primer, and the lower part shows the amplification product with the HSP A9B-specific primer.
  • the molds used for PCR are as follows. (L) HUVEC cDNA, (2) HUVEC Total RNA, (3) HEK cDNA, (4) HEK Total RNA, (5) HeLa cDNA, (6) HeLa Total RNA, (7) None .
  • HSPA5 and HSPA9B were expressed in HUVEC cells, HEK cells, and HeLa cells!
  • HSPA5 and HSPA9B were cloned from HEK cells by PCR.
  • a y System Invitrogen
  • an entry clone incorporating Kuroyungu the cDNA Using the resulting entry clone, vectors for E. coli expression and mammalian expression were prepared. Make sure that the GST-tag is added to the C-terminal side of the cDNA clone for E. coli expression, and the His-tag and GFP-tag are attached to the C-terminal side of the cDNA clone for mammalian expression. did.
  • Escherichia coli was transformed with the E. coli expression vector obtained in 2. (HSPA5 expression vector, HSPA9B expression vector). After inducing expression with IPTG, the GST fusion protein was purified from the cell disruption solution and subjected to Western plotting. The results of the Western plot are shown in Fig. 4. The left lanes ((1) to (3)) are obtained for the samples that also obtained E. coli power transformed with the HSPA5 expression vector, and the right lanes ((1) to (3)) are transformed with the HSPA9B expression vector. The results are for samples that also have converted E. coli potency.
  • (1) is a lane to which a precipitate fraction obtained by centrifugation after E.
  • (2) is a lane to which a supernatant fraction obtained by centrifugation after E. coli solubilization was applied
  • ( 3) is the lane where the supernatant obtained by centrifugation after E. coli solubilization was purified with Glutachione-Sepharose 4B.
  • HEK cells were transformed with the mammalian expression vector obtained in 2. (HSPA5 expression vector, HSPA9B expression vector). Effectene was used for transformation. His-tag fusion protein was extracted from the cell lysate using Cobeads and subjected to Western blotting.
  • Figure 5 shows the results of the Western plot. In both left and right columns, sample lanes (control) obtained from HEK cells transformed with empty vectors in order from the left, formed with HSPA5 expression vector Sample lane (HSPA5) obtained from transformed HEK cells, and sample lane (HSPA9B) from which HEK cells transformed with the HSPA9B expression vector were also obtained.
  • (1) is the lane to which the cell lysate was applied, and (2) is the lane to which the Co-beads extract was applied.
  • (2) is the lane to which the supernatant after centrifuging the cell lysate was applied, and (3) was applied to the Co-beads extract.
  • HEK cells were seeded in a 35 mm dish. Subsequently, HEK cells were transformed with the mammalian expression vector (HSPA5 expression vector, HSPA9B expression vector) obtained in 2. (HSPA5-His (0.4ug), HSPA9B-His (0.4ug)). Effectene was used for transformation. The transformed cells were collected and seeded in a 1 ⁇ 1 glass chamber. Fluorescent immunostaining was performed using Anti-V5 (Alexa 488 mouse) and Hoechst. The staining results are shown in FIG. The upper part of Fig. 6 shows the control panel (the result of staining HEK cells transformed with the empty vector).
  • the middle row shows the results of staining of HEK cells transformed with the HSPA5 expression vector, and fluorescence is observed.
  • the lower panel shows the result of staining of HEK cells transformed with the HSPA9B expression vector, and fluorescence is observed.
  • HSPA5-His and HS PA9B-His were successfully expressed in mammalian cells.
  • HUVEC cells are seeded in a 1 x 1 glass chamber, stimulated with C peptide (0.3nM, lOmin) and TG (triglyceride luM, 5hr), then anti-HSPA5 antibody (using FITC anti-goat antibody as secondary antibody) was used for immunostaining and fluorescence was observed.
  • the results of immunostaining are shown in FIG.
  • the right column in Fig. 9 is a stained image obtained by reacting anti-HSPA5 antibody and FITC anti-goat antibody.
  • the left column shows the staining results when only the FITC anti-goat antibody is reacted (control). As is clear from FIG. 9, it was suggested that HSPA5 was present on the membrane surface.
  • ERK activity was analyzed as an index of cellular response to C peptide stimulation. If HSP is involved in this reaction, HSP knockdown will suppress ERK activity.
  • a sense strand and an antisense strand composed of a morpholino oligo for HSPA5 were introduced into HUVEC cells by Endo-Porter.
  • C peptide stimulation was performed after a predetermined time, and ERK activity was evaluated by Western blotting using anti-phosphorylated ERK antibody.
  • a C peptide-specific binding molecule is clarified, and its application in the field of medical diagnosis is achieved. It also provides a useful tool for elucidating the mechanism of action of C-peptide.
  • the C peptide-specific binding molecule in the present invention is expected to be a particularly effective therapeutic target when it has not only insulin resistance but also C peptide resistance.
  • agents that control the activation of the molecule such as the antigen of the molecule, exert an anti-apoptotic action or a vasodilatory action. It may be possible to suppress the development of diabetic complications (macrovascular and microangiopathy).
  • the therapeutic effect of neuropathy by vasodilatory action and neuroprotective action is attracting special attention.
  • the C peptide-specific binding molecule in the present invention is involved. Therefore, it is indispensable not only for elucidating the mechanism of action of C-peptide, but also for the molecule itself to become a future drug discovery target.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A molecule capable of specific binding to C-peptide, and a method of using the same. There is provided a C-peptide binding agent comprising newly identified two types of C-peptide specific binding molecules (SEQ ID NO: 1 and SEQ ID NO: 3). Further, there is provided a method of estimating the action and state of C-peptide with the use of the amount of relevant proteins as an indicator. Still further, there is provided a method of screening a compound capable of regulating the action and state of C-peptide with the use of these proteins.

Description

明 細 書  Specification
Cペプチド特異的結合分子及びその用途  C-peptide specific binding molecules and uses thereof
技術分野  Technical field
[0001] 本発明は、 Cペプチド特異的結合分子及びその用途に関する。詳しくは、 Cぺプチ ド特異的結合分子を用いた Cペプチド結合剤、 Cペプチドの作用状態の評価方法、 Cペプチドの作用状態を調節する化合物のスクリーニング方法などに関する。  [0001] The present invention relates to a C peptide-specific binding molecule and use thereof. Specifically, it relates to a C peptide binding agent using a C peptide-specific binding molecule, a method for evaluating the action state of C peptide, a method for screening a compound that regulates the action state of C peptide, and the like.
背景技術  Background art
[0002] インスリン製剤は、糖尿病患者の治療において無くてはならないものであり、現在、 超速効型、速効型、中間型、超長時間型など、様々な作用時間のものが開発され、 糖尿病患者の治療に寄与している。し力しながら、特にインスリンの枯渴する 1型糖 尿病においては、糖尿病合併症の発症'進展が早ぐ患者の生活の質、及び予後に 大きな影響を及ぼしている。また、 2型糖尿病においても、インスリン抵抗性と同様に Cペプチド抵抗性が存在する可能性が指摘されている。  [0002] Insulin preparations are indispensable for the treatment of diabetic patients. Currently, insulin drugs with various action times such as ultra-fast, fast-acting, intermediate, and ultra-long-acting types have been developed. It contributes to the treatment. However, especially in type 1 diabetes, where insulin is depleted, the onset and progress of diabetic complications has a major impact on the quality of life and prognosis of patients. It has also been pointed out that C-peptide resistance may exist in type 2 diabetes as well as insulin resistance.
Cペプチドは、脾ランゲノレハンス島においてプロインスリンがインスリンに分解される 際に生成される 31アミノ酸よりなるペプチドである力 長い間、生理学的活性はない と考えられてきた。近年になって Cペプチドが血管拡張作用、神経保護作用などの生 理学的活性をもつことが証明され、その作用が注目されている。し力しながら、 Cぺプ チドの作用機構は明らかではな力つた。  The C peptide is a 31-amino acid peptide that is produced when proinsulin is broken down into insulin in the splenic Langenorehans island, and has long been thought to have no physiological activity. In recent years, it has been proved that C-peptide has physiological activities such as vasodilatory action and neuroprotective action, and its action attracts attention. However, the mechanism of action of the C-peptide was unclear.
[0003] 非特許文献 1 : Biochem Cell Biol. 1990 Dec; 68(12): 1428- 32. [0003] Non-Patent Document 1: Biochem Cell Biol. 1990 Dec; 68 (12): 1428- 32.
非特許文献 2 : Acta Physiol Hung. 1995; 83(4):333- 42.  Non-Patent Document 2: Acta Physiol Hung. 1995; 83 (4): 333-42.
非特許文献 3 : Diabetes Metab Res Rev. 2003 Sep- Oct; 19(5):375- 85.  Non-Patent Document 3: Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 375-85.
非特許文献 4 : Comment in: Diabetes Metab Res Rev. 2003 Sep- Oct; 19(5):345- 7. 非特許文献 5 : Int J Exp Diabetes Res. 2002 Oct- Dec; 3(4):241- 5.  Non-Patent Document 4: Comment in: Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 345- 7. Non-Patent Document 5: Int J Exp Diabetes Res. 2002 Oct- Dec; 3 (4): 241- Five.
非特許文献 6 : Nitric Oxide. 2003 Sep; 9(2):95- 102.  Non-Patent Document 6: Nitric Oxide. 2003 Sep; 9 (2): 95-102.
非特許文献 7 : J. Biol. Chem. 2003, 278(23) 20915-24  Non-Patent Document 7: J. Biol. Chem. 2003, 278 (23) 20915-24
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] Cペプチドの作用機構が明らかとなれば、 Cペプチドを薬剤として使用する場合の 実験的ェビデンスが得られるとともに Cペプチド又はその結合分子を標的とした具体 的な創薬が可能となることから、 Cペプチドを臨床応用する途が拓かれる。 Problems to be solved by the invention [0004] If the mechanism of action of C peptide is clarified, experimental evidence will be obtained when C peptide is used as a drug, and specific drug discovery targeting C peptide or its binding molecule will be possible. Will open up the way to clinical application of C-peptide.
Cペプチドの作用機序を明らかにするためには第一に Cペプチドのレセプター分子 、即ち Cペプチドに対して特異的に結合する分子 (Cペプチド特異的結合分子)を同 定することが必須且つ最重要となる。  In order to elucidate the mechanism of action of C-peptide, it is essential to first identify the C-peptide receptor molecule, that is, the molecule that specifically binds to C-peptide (C-peptide specific binding molecule). Most important.
一方、 Cペプチド特異的結合分子は、 Cペプチドがその作用を発揮する上で必須 の要素となることから、 Cペプチド特異的分子の発現状態 (発現量、局在など)は Cぺ プチドの作用状態 (作用量など)に直接影響する。従って、 cペプチド特異的結合分 子の発現状態を制御することによって cペプチドの作用状態を調節することができる 。このことは、 Cペプチド特異的結合分子が、 Cペプチドが関与する疾患に対する薬 剤を開発する上での標的になることを意味する。一方、 cペプチド特異的結合分子の 発現状態力 cペプチドの作用状態を間接的に評価することが可能であることから、 Cペプチド特異的結合分子を利用して、 Cペプチドが関与する疾患の病態の把握や 罹患リスクの評価などを行うこともできると考えられる。即ち、 Cペプチド特異的結合分 子の診断分野への応用も期待される。  On the other hand, C peptide-specific binding molecules are indispensable for C peptides to exert their actions, so the expression state (expression level, localization, etc.) of C peptide-specific molecules is the action of C peptides. It directly affects the state (action amount, etc.). Therefore, the action state of the c peptide can be regulated by controlling the expression state of the c peptide specific binding molecule. This means that C peptide-specific binding molecules are targets for developing drugs for diseases involving C peptides. On the other hand, the state of expression of c-peptide-specific binding molecules Since it is possible to indirectly evaluate the action state of c-peptides, the pathology of diseases involving C-peptides using C-peptide-specific binding molecules It is also possible to grasp the risk and evaluate the risk of morbidity. That is, application of the C peptide-specific binding molecule to the diagnostic field is also expected.
以上のように、 Cペプチド特異的結合分子は、 Cペプチドの作用機序を解明するた めのキー分子であることに加え、それ自体が創薬及び診断分野での標的分子となる As described above, in addition to being a key molecule for elucidating the mechanism of action of C-peptide, C-peptide-specific binding molecules are themselves target molecules in drug discovery and diagnostic fields.
。本発明は、このように利用価値の高い cペプチド特異的結合分子を提供することを 第一の目的とする。また、 Cペプチド特異的分子の医療用途ないし診断用途などを 提供することも目的とする。 . The first object of the present invention is to provide a c-peptide-specific binding molecule having such a high utility value. It is also intended to provide medical use or diagnostic use of C peptide specific molecules.
課題を解決するための手段  Means for solving the problem
[0005] 以上の目的を達成するために、本発明者らは Cペプチド特異的結合分子を同定す ることを試みた。その結果、細胞からの抽出条件の設定に主眼をおいて種々の検討 を行うことで、 Cペプチドに特異的結合性を有する二種類のタンパク質を同定すること に成功した。本発明は以上の知見に基づき完成されたものであり、以下の構成を提 供する。  [0005] In order to achieve the above object, the present inventors tried to identify a C peptide-specific binding molecule. As a result, we have succeeded in identifying two types of proteins that have specific binding properties to C-peptide by conducting various studies with a focus on setting extraction conditions from cells. The present invention has been completed based on the above findings and provides the following configuration.
本発明の第一の局面は、同定に成功した上記タンパク質 (Cペプチド特異的結合タ ンパク質)を用いた cペプチド結合剤に関する。本発明の Cペプチド結合剤は、配列 番号 1のアミノ酸配列を有する第 1タンパク質と、配列番号 3のアミノ酸配列を有する 第 2タンパク質と、及び第 1タンパク質又は第 2タンパク質と実質的に相同なタンパク 質と、力 なる群より選択される 1以上のタンパク質を含む。当該 Cペプチド結合剤は 、 Cペプチドの作用状態を調節することに用いることができる。また、 Cペプチドの検 出、測定又は定量、 Cペプチドの分離'精製などにも利用できる。 The first aspect of the present invention is the above-described protein (C peptide-specific binding tag) that has been successfully identified. C peptide-binding agent using a protein. The C peptide binding agent of the present invention comprises a first protein having the amino acid sequence of SEQ ID NO: 1, a second protein having the amino acid sequence of SEQ ID NO: 3, and a protein substantially homologous to the first protein or the second protein. Contains one or more proteins selected from the group of power and strength. The C peptide binding agent can be used to regulate the action state of the C peptide. It can also be used for C peptide detection, measurement or quantification, C peptide separation and purification.
[0006] 本発明の他の局面は、上記タンパク質 (Cペプチド特異的結合タンパク質又はそれ と実質的に相同なタンパク質)を検出することによって Cペプチドの作用状態を評価 する方法に関する。本発明の評価方法では、配列番号 1のアミノ酸配列を有する第 1 タンパク質と、配列番号 3のアミノ酸配列を有する第 2タンパク質と、及び前記第 1タン ノ^質又は前記第 2タンパク質と実質的に相同なタンパク質と、からなる群より選択さ れる 1以上のタンパク質をサンプル中で検出するステップが実施される。検出(測定) 結果を用いて Cペプチドの作用状態を評価する。 Cペプチドの作用状態を基に Cぺ プチドが関与する疾患の診断を行うことができる。当該局面の他の態様では、サンプ ル中の核酸が検出対象となる。即ち、配列番号 1のアミノ酸配列を有する第 1タンパク 質をコードする核酸と、配列番号 3のアミノ酸配列を有する第 2タンパク質をコードす る核酸と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に相同なタンパ ク質をコードする核酸と、力 なる群より選択される 1以上の核酸をサンプル中で検出 するステップを実施し、検出結果に基づ!ヽてサンプル中の Cペプチドの作用状態を 評価する。或いは、配列番号 1のアミノ酸配列を有する第 1タンパク質をコードする遺 伝子の多型と、配列番号 3のアミノ酸配列を有する第 2タンパク質をコードする遺伝子 の多型と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に相同なタンパ ク質をコードする遺伝子の多型と、からなる群より選択される 1以上の多型をサンプル 中で解析するステップを実施し、解析結果に基づ 、てサンプル中の Cペプチドの作 用状態を評価する。 [0006] Another aspect of the present invention relates to a method for evaluating the action state of a C peptide by detecting the protein (C peptide-specific binding protein or a protein substantially homologous thereto). In the evaluation method of the present invention, the first protein having the amino acid sequence of SEQ ID NO: 1, the second protein having the amino acid sequence of SEQ ID NO: 3, and the first protein or the second protein substantially. A step of detecting in the sample one or more proteins selected from the group consisting of homologous proteins. Detection (measurement) Use the results to evaluate the action state of C-peptide. Based on the action state of the C peptide, it is possible to diagnose a disease involving the C peptide. In another embodiment of this aspect, the nucleic acid in the sample is the detection target. That is, a nucleic acid encoding the first protein having the amino acid sequence of SEQ ID NO: 1, a nucleic acid encoding the second protein having the amino acid sequence of SEQ ID NO: 3, and the first protein or the second protein. A step of detecting in a sample a nucleic acid that encodes a homologous protein and one or more nucleic acids selected from a powerful group, based on the detection results! Evaluate the action state of the C peptide in the sample. Alternatively, a polymorphism of the gene encoding the first protein having the amino acid sequence of SEQ ID NO: 1, a polymorphism of the gene encoding the second protein having the amino acid sequence of SEQ ID NO: 3, and the first protein or A step of analyzing in a sample one or more polymorphisms selected from the group consisting of a polymorphism of a gene encoding a protein substantially homologous to the second protein, and based on the analysis results Evaluate the C peptide activity in the sample.
[0007] 本発明のさらに他の局面は、上記タンパク質 (Cペプチド特異的結合タンパク質又 はそれと実質的に相同なタンパク質)を利用したスクリーニング方法に関する。即ち、 当該局面では Cペプチドの作用状態を調節できる化合物を見出すための手段が提 供される。本発明のスクリーニング方法では、試験化合物の存在下 (試験群)及び非 存在下 (対照群)において、 Cペプチドと上記タンパク質とを接触させるステップが実 施される。そして、試験化合物の存在による、 Cペプチドと上記タンパク質との結合態 様 (結合量、結合力など)の変化を調べる。このような手順に従って、 Cペプチドとそ の特異的結合分子との結合状態を変化させる化合物、即ち cペプチドの作用状態を 調節することができる化合物を選抜することができる。選抜された化合物は、 Cぺプチ ドが関与する疾患に対する薬剤の有力な候補、又はそのような薬剤を開発する際の 有益な材料となる。当該局面の他の態様では、細胞ベースのスクリーニング方法が 提供される。この態様では、試験化合物の存在下 (試験群)及び非存在下 (対照群) において、細胞を所定時間培養するステップを実施した後、培養後の前記細胞内に おける、上記タンパク質の発現量を測定する。そして、試験群の発現量と、対照群の 発現量と比較することで、 Cペプチドの作用状態を調節する能力を試験化合物が有 するか否か (有する場合にはその程度も)を評価する。 [0007] Still another aspect of the present invention relates to a screening method using the above protein (C peptide-specific binding protein or a protein substantially homologous thereto). That is, in this aspect, a means for finding a compound capable of regulating the action state of C peptide is proposed. Provided. In the screening method of the present invention, the step of bringing the C peptide into contact with the protein is carried out in the presence (test group) and absence (control group) of the test compound. Then, the change in the binding state (binding amount, binding force, etc.) between the C peptide and the above protein due to the presence of the test compound is examined. According to such a procedure, a compound that changes the binding state between the C peptide and its specific binding molecule, that is, a compound that can regulate the action state of the c peptide can be selected. Selected compounds will be potential candidates for drugs for diseases involving C-peptides, or useful materials in developing such drugs. In another embodiment of this aspect, a cell-based screening method is provided. In this embodiment, after the step of culturing cells for a predetermined time in the presence (test group) and absence (control group) of the test compound, the expression level of the protein in the cells after culturing is determined. taking measurement. Then, by comparing the expression level of the test group with the expression level of the control group, it is evaluated whether or not the test compound has the ability to regulate the action state of the C peptide (and if so) .
[0008] 本発明のさらに他の局面は、 Cペプチドの作用状態を調節することができる化合物 に関する。具体的には一態様として、 Cペプチド又は上記タンパク質に対して特異的 結合性を有し、且つ Cペプチドと上記タンパク質との結合を阻害する抗体が提供され る。当該抗体は例えば、その特異的結合性を利用して、 Cペプチドと上記タンパク質 との結合アツセィに用いることができる。また、当該抗体は、 Cペプチドの作用を抑制 ないし阻害する活性を有することから、 Cペプチドの高発現が原因となる疾患に対す る薬剤として利用され得る。  [0008] Yet another aspect of the present invention relates to a compound capable of regulating the action state of a C peptide. Specifically, as one aspect, there is provided an antibody that has a specific binding property to the C peptide or the protein and inhibits the binding between the C peptide and the protein. The antibody can be used, for example, for the binding assay between the C peptide and the protein by utilizing its specific binding property. Further, since the antibody has an activity of suppressing or inhibiting the action of the C peptide, it can be used as a drug for diseases caused by high expression of the C peptide.
[0009] 本発明はさらに、標的細胞内において Cペプチドの作用状態を調節する方法を提 供する。この局面の一態様では、上記タンパク質 (Cペプチド特異的結合タンパク質 又はそれと実質的に相同なタンパク質)を人為的に標的細胞に導入するステップが 実施され、これによつて Cペプチドの作用量の増加が促される。他の態様では、 Cぺ プチドと上記タンパク質との結合を阻害する化合物を標的細胞に導入するステップが 実施され、これによつて Cペプチドの作用量の低下が促される。さらに他の態様では 、アンチセンス法、 RNA干渉、リボザィムの使用などによって標的細胞内の上記タン パク質の発現を阻害し、 Cペプチドの作用量を低下させる。この局面の方法によれば 、cペプチドの作用量の増加又は低下が標的細胞に及ぼす影響を調べることができ る。また、生体を構成する細胞を標的細胞とすれば、 Cペプチドの高発現又は低発 現が原因となる疾患に罹患した対象を治療するために本発明の方法を利用すること ができる。 [0009] The present invention further provides a method for regulating the action state of a C peptide in a target cell. In one embodiment of this aspect, the step of artificially introducing the protein (C peptide-specific binding protein or a protein substantially homologous thereto) into the target cell is performed, thereby increasing the amount of action of the C peptide. Is prompted. In another embodiment, a step of introducing into the target cell a compound that inhibits the binding of the C peptide to the protein is carried out, thereby promoting a reduction in the amount of action of the C peptide. In yet another embodiment, the expression of the protein in the target cell is inhibited by using an antisense method, RNA interference, ribozyme, etc., and the amount of action of the C peptide is reduced. According to the method of this aspect Thus, it is possible to examine the effect of an increase or decrease in the action amount of c-peptide on target cells. In addition, if the cells constituting the living body are targeted cells, the method of the present invention can be used to treat a subject suffering from a disease caused by high or low expression of C peptide.
[0010] 本発明はさらに、上記本発明の方法を簡便に実施するためのキットを提供する。  [0010] The present invention further provides a kit for simply carrying out the method of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、ヒト大動脈平滑筋細胞から調製した細胞抽出液を電気泳動で分離した 結果 (染色後のゲル)を示す。左レーン:上記手順で調製したサンプル溶液の泳動結 果 (Cペプチド (+))、右レーン: Cペプチド結合カラムの代わりに、 Cペプチドを結合さ せていない NHS-activated Sepharose 4 Fast Flowを用い、それ以外は同様の手順で 調製した対照サンプルの泳動結果 (Cペプチド (-))である。尚、下段では、バンド位置 を線(1、 2)で示している。  [0011] FIG. 1 shows the results of electrophoresis (cell staining) of a cell extract prepared from human aortic smooth muscle cells. Left lane: migration result of sample solution prepared in the above procedure (C peptide (+)), right lane: NHS-activated Sepharose 4 Fast Flow without C peptide binding is used instead of C peptide binding column The rest are migration results (C peptide (-)) of a control sample prepared in the same procedure. In the lower row, the band positions are indicated by lines (1, 2).
[図 2]図 2は、 Cペプチドによる競合実験の結果 (染色後のゲル)を示す。 A:対照 1 (C ペプチド (-)カラム)、 B:対照 2 (Cペプチド (+)カラム、競合阻害なし)、 C:サンプルレ ーン (Cペプチド (+)カラム、競合阻害)である。  [FIG. 2] FIG. 2 shows the results of a competition experiment with C peptide (gel after staining). A: Control 1 (C peptide (-) column), B: Control 2 (C peptide (+) column, no competitive inhibition), C: Sample lane (C peptide (+) column, competitive inhibition).
[図 3]ヒト血管内皮細胞 (HUVEC)、ヒト胎児腎臓細胞 (HEK)、及び HeLa細胞から調 製した cDNAを铸型とし、 HSPA5又は HSPA9B特異的プライマーで PCRを実施した結 果である。  FIG. 3 shows the results of PCR using HSPA5 or HSPA9B-specific primers using cDNA prepared from human vascular endothelial cells (HUVEC), human fetal kidney cells (HEK), and HeLa cells as a cage.
[図 4]HSPA5発現ベクター又は HSPA9B発現ベクターで形質転換した大腸菌力も調 製したサンプルをウェスタンプロットで分析した結果である。(1)は大腸菌可溶化後の 遠心処理によって得られた沈殿画分をアプライしたレーン、(2)は大腸菌可溶化後の 遠心処理によって得られた上清画分をアプライしたレーン、(3)は大腸菌可溶化後の 遠心処理によって得られた上清を Glutachione- Sepharose 4Bで精製したものをァプラ ィしたレーン。  FIG. 4 is a result of analyzing a sample prepared by E. coli transformed with HSPA5 expression vector or HSPA9B expression vector by Western plot. (1) is the lane to which the precipitate fraction obtained by centrifugation after E. coli solubilization was applied, (2) is the lane to which the supernatant fraction obtained by centrifugation after E. coli solubilization was applied, (3) Is the lane where the supernatant obtained by centrifugation after E. coli solubilization was purified with Glutachione-Sepharose 4B.
[図 5]HSPA5発現ベクター又は HSPA9B発現ベクター形質転換した HEK細胞力 調 製したサンプルをウェスタンプロットで分析した結果である。左欄の (1)は細胞破砕液 をアプライしたレーン、(2)は Co- beads抽出液をアプライしたレーン。右欄の (1)は細胞 破砕液をアプライしたレーン、(2)は細胞破砕液を遠心処理した後の上清をアプライし たレーン、(3)は Co-beads抽出液をアプライしたレーン。 FIG. 5 shows the results of analysis of a sample prepared by HEK cell power transformation with an HSPA5 expression vector or HSPA9B expression vector, by Western plotting. The left column (1) is the lane to which the cell disruption solution was applied, and (2) is the lane to which the Co-beads extract was applied. (1) in the right column is the lane to which the cell lysate was applied, and (2) is the supernatant after centrifuging the cell lysate. (3) is the lane to which the Co-beads extract was applied.
[図 6]HSPA5発現ベクター又は HSPA9B発現ベクターで形質転換した HEK細胞の蛍 光免疫染色像である。上段はコントロール、中段は HSPA5発現ベクターで形質転換 した HEK細胞、下段は HSPA9B発現ベクターで形質転換した HEK細胞。  FIG. 6 is a fluorescent immunostaining image of HEK cells transformed with an HSPA5 expression vector or HSPA9B expression vector. Upper row is control, middle row is HEK cell transformed with HSPA5 expression vector, and lower row is HEK cell transformed with HSPA9B expression vector.
[図 7]HSPA5と Cペプチドとの結合実験の実験プロトコールである。 [Fig. 7] Experimental protocol for binding experiment of HSPA5 and C peptide.
[図 8]HSPA5と Cペプチドとの結合実験(ウェスタンブロット)の結果である。(1)は HSPA 5発現ベクターで形質転換した細胞から調製した細胞破砕液、(2)は空ベクターで形 質転換した細胞力 調製した細胞破砕液、(3)は HSPA5発現ベクターで形質転換した 細胞力 調製した細胞破砕液の上清画分の中で Cペプチドビーズに結合した成分、( 4)は Cペプチドビーズの代わりにペプチド未結合ビーズ (Noペプチド beads)を反応さ せて得られたサンプル、(5)は空ベクターで形質転換した細胞カゝら調製した細胞破砕 液の上清画分の中で Cペプチドビーズに結合した成分、(6)は空ベクターで形質転換 した細胞力 調製した細胞破砕液の上清画分の中でペプチド未結合ビーズに結合 した成分、(7)は HSPA5発現ベクターで形質転換した細胞力 調製した細胞破砕液の 上清画分をまず Cペプチドと反応させた後、 Cペプチドビーズと反応させた場合に C ペプチドに結合した成分、(8)は空ベクターで形質転換した細胞力 調製した細胞破 砕液の上清画分をまず Cペプチドと反応させた後、 Cペプチドビーズと反応させた場 合に Cペプチドに結合した成分。 FIG. 8 shows the result of binding experiment (Western blot) between HSPA5 and C peptide. (1) is a cell lysate prepared from cells transformed with the HSPA 5 expression vector, (2) is a cell lysate prepared by transformation with an empty vector, and (3) is transformed with an HSPA5 expression vector. Cell force The component bound to the C peptide beads in the supernatant fraction of the prepared cell lysate, (4) was obtained by reacting non-peptide-bound beads (No peptide beads) instead of C peptide beads Sample, (5) is the component bound to the C peptide beads in the supernatant fraction of the cell disruption solution prepared from cells transformed with the empty vector, and (6) is the cell force transformed with the empty vector. The components bound to the peptide-unbound beads in the supernatant fraction of the cell lysate prepared. (7) is the cell force transformed with the HSPA5 expression vector. The supernatant fraction of the prepared cell lysate is first reacted with the C peptide. Reaction with C peptide beads In some cases, the component bound to the C peptide, (8) is the cell force transformed with the empty vector. The supernatant fraction of the prepared cell lysate is first reacted with the C peptide and then with the C peptide beads. Ingredients bound to C peptide.
[図 9]Cペプチドで刺激した HUVEC細胞の免疫染色像である。右欄は抗 HSPA5抗体 及び FITC抗ャギ抗体を反応させて得た染色像。左欄はコントロール。  FIG. 9 is an immunostained image of HUVEC cells stimulated with C peptide. The right column is a stained image obtained by reacting anti-HSPA5 antibody and FITC anti-goat antibody. The left column is the control.
[図 10]HSPノックダウン実験のプロトコールである。 [Fig. 10] Protocol of HSP knockdown experiment.
[図 11]HSPノックダウン実験の結果である。 No.1 (センス鎖導入、 Cペプチド刺激なし) 、 No.2 (センス鎖導入、 Cペプチド刺激あり)、 No.3 (アンチセンス鎖導入、 Cペプチド 刺激なし)、 No.4 (アンチセンス鎖導入、 Cペプチド刺激あり)。  [Fig. 11] Results of HSP knockdown experiment. No.1 (sense strand introduction, without C peptide stimulation), No.2 (sense strand introduction, with C peptide stimulation), No.3 (antisense strand introduction, without C peptide stimulation), No.4 (antisense strand) Introduction, C peptide stimulation).
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(Cペプチド結合剤) (C peptide binding agent)
本発明の第 1の局面は Cペプチド結合剤に関する。ここで「Cペプチド」とは、脾ラン ゲルノヽンス島においてプロインスリンがインスリンに分解される際に生成される、 31ァ ミノ酸 (配列番号 5)からなるペプチドである。 Cペプチドは糖尿病に関する診断マー カーとして利用されてきた。最近になって、 Cペプチド自体に特有の生理学的活性が あることが報告されている。 The first aspect of the present invention relates to a C peptide binder. Here, the “C peptide” is produced when proinsulin is broken down into insulin in the splenic islets of Langeron. It is a peptide consisting of mino acid (SEQ ID NO: 5). C-peptide has been used as a diagnostic marker for diabetes. Recently, it has been reported that the C peptide itself has a specific physiological activity.
本発明の Cペプチド結合剤は、 Cペプチド特異的結合分子であると同定されたタン パク質、又はそれと実質的に相同なタンパク質 (以下、これらをまとめて「本タンパク質 」ともいう)を含む。後述の実施例に示すように本発明者らは、 Cペプチド特異的結合 分子として二種類のタンパク質の取得に成功した。アミノ酸配列解析の結果、これら のタンパク質はそれぞれ 70kDaタンパク質 9B前駆体(以下、「HSPA9B」ともいう。また 、当該タンパク質のアミノ酸配列を配列番号 1に、それをコードする塩基配列を配列 番号 2にそれぞれ示す)及び熱ショック 70kDaタンパク質 5 (以下、「HSPA5」とも!/、う。 また、当該タンパク質のアミノ酸配列を配列番号 3に、それをコードする塩基配列を配 列番号 4にそれぞれ示す)であると同定された。尚、本明細書では前者を第 1タンパ ク質、後者を第 2タンパク質と呼称することがある。  The C peptide binding agent of the present invention includes a protein identified as a C peptide specific binding molecule, or a protein substantially homologous thereto (hereinafter collectively referred to as “the present protein”). As shown in Examples described later, the present inventors succeeded in obtaining two types of proteins as C peptide-specific binding molecules. As a result of amino acid sequence analysis, each of these proteins is also referred to as a 70 kDa protein 9B precursor (hereinafter also referred to as “HSPA9B”. The amino acid sequence of the protein is represented by SEQ ID NO: 1, and the base sequence encoding the protein is represented by SEQ ID NO: 2, respectively. And heat shock 70 kDa protein 5 (hereinafter also referred to as “HSPA5”! /, And the amino acid sequence of the protein is shown in SEQ ID NO: 3 and the base sequence encoding it is shown in SEQ ID NO: 4). Was identified. In the present specification, the former is sometimes referred to as a first protein and the latter as a second protein.
ここで、比較される二種類のタンパク質に対して本明細書で使用される用語「実質 的に相同な」とは、 Cペプチドに対する結合性を利用した用途にお!/、て同等に使用さ れ得る程度に Cペプチドに対する結合性を当該二種類のタンパク質がともに保有し ている状態をいう。ここでの「実質的な相同性」に関しては、 Cペプチドとの結合に関 与しない領域は重要度が低い。従って、 Cペプチドとの結合に関与しない領域が改 変(一部又は全部のアミノ酸の欠失や置換、或いは他のアミノ酸の付加など)されて いても実質的な相同性を認めることができる。また、他の分子ないし物質が付加され た場合においても、付加前後において実質的な相同性が保持される場合がある。一 方、比較される二種類のタンパク質が構成アミノ酸や分子量の点で相違して 、たとし ても、両者の間に実質的な相同性を認めることができる場合がある。但し、一般に、ァ ミノ酸配列に高 、相同性が認められれば、機能面にお 、ても相同である場合が多 ヽ 。尚、片方の Cペプチドに対する結合性を 100%としたときに他方のそれが少なくとも 50%以上、好ましくは 70%以上、さらに好ましくは 80%以上、一層好ましくは 90% 以上、最も好ましくは約 100%である場合に、二種類のタンパク質間に実質的な相同 性を認めることができる。 例えば、 HSPA9Bに実質的に相同なタンパク質として、配列番号 1のアミノ酸配列の 一部を改変した配列を有し Cペプチドに対して特異的結合性を有するタンパク質を 挙げることができる。同様に、 HSPA5に実質的に相同なタンパク質として、配列番号 3 のアミノ酸配列の一部を改変した配列を有し Cペプチドに対して特異的結合性を有 するタンパク質を挙げることができる。ここでのアミノ酸配列の改変とは、アミノ酸配列 を構成する 1〜数個のアミノ酸の欠失、置換、若しくは 1〜数個のアミノ酸の付加、挿 入、又はこれらの組合せによりアミノ酸配列に変化を生じさせることをいうが、このよう な改変は、 Cペプチドに対する特異的結合性という性質が高度に保持される限りにお いて行うことができる。ここでの「高度に保持される」とは、改変前の Cペプチドに対す る特異的結合性を 100%としたときに改変後のそれが 50%以上、好ましくは 70%以 上、さらに好ましくは 80%以上、一層好ましくは 90%以上、最も好ましくは約 100% である場合をいう。 Here, the term “substantially homologous” used in the present specification for the two types of proteins to be compared is used in the application utilizing the binding property to the C peptide! It means a state in which the two types of proteins possess the binding ability to the C peptide to the extent possible. Regarding “substantial homology” here, the region not involved in binding to the C peptide is less important. Therefore, substantial homology can be recognized even if the region not involved in binding to the C peptide is altered (deletion or substitution of some or all amino acids, addition of other amino acids, etc.). Even when other molecules or substances are added, substantial homology may be maintained before and after the addition. On the other hand, if the two types of proteins to be compared differ in terms of their constituent amino acids and molecular weight, there may be cases where substantial homology can be recognized between them. However, in general, if amino acid sequences have high homology, they are often homologous in function. When the binding to one C-peptide is 100%, the other is at least 50% or more, preferably 70% or more, more preferably 80% or more, more preferably 90% or more, and most preferably about 100%. %, Substantial homology can be observed between the two proteins. For example, as a protein substantially homologous to HSPA9B, a protein having a sequence obtained by modifying a part of the amino acid sequence of SEQ ID NO: 1 and having a specific binding property to a C peptide can be mentioned. Similarly, as a protein substantially homologous to HSPA5, a protein having a sequence obtained by modifying a part of the amino acid sequence of SEQ ID NO: 3 and having a specific binding property to a C peptide can be exemplified. The modification of the amino acid sequence herein means that the amino acid sequence is changed by deletion or substitution of one to several amino acids constituting the amino acid sequence, or addition or insertion of one to several amino acids, or a combination thereof. This modification can be performed as long as the property of specific binding to C peptide is highly maintained. “Highly retained” as used herein means 50% or more after modification, preferably 70% or more, and more preferably, when the specific binding to C peptide before modification is defined as 100%. Is 80% or more, more preferably 90% or more, and most preferably about 100%.
このような高度の保持が認められる限り、アミノ酸配列の変化の位置は特に限定さ れない。また、複数の位置 (連続した位置でもよい)で変化を生じていてもよい。改変 にかかるアミノ酸の数は、例えば改変前のアミノ酸配列を構成する全アミノ酸の 10% 以内に相当する数、好ましくは全アミノ酸の 5%以内に相当する数、さらに好ましくは 全アミノ酸の 1%以内に相当する数である。但し、 5'末端又は 3'末端へのアミノ酸の付 加など、場合によってはこの範囲を超える大幅な改変が許容されることもある。  As long as such a high degree of retention is recognized, the position of the amino acid sequence change is not particularly limited. Further, a change may occur at a plurality of positions (may be consecutive positions). The number of amino acids required for modification is, for example, a number corresponding to within 10% of all amino acids constituting the amino acid sequence before modification, preferably a number corresponding to within 5% of all amino acids, more preferably within 1% of all amino acids. It is a number corresponding to. However, in some cases, significant modifications beyond this range, such as addition of amino acids to the 5 'end or 3' end, may be permitted.
[0013] HSPA9B (又は HSPA5)に実質的に相同なタンパク質の他の例として、天然に存在 する変異型の HSPA9B (又は HSPA5)を挙げることができる。さらに他の例として、ヒト 以外の種の HSPA9B (又は HSPA5)を挙げることができる。ここでの「ヒト以外の種」とは 、例えばヒト以外の霊長類 (サル、チンパンジーなど)、マウス、ラット、ゥサギ、ゥシ、ゥ マ、ヒッジ、ィヌ、ネコ等である。このようなヒト以外の種由来の HSPA9B (又は HSPA5) を含む Cペプチド結合剤は、ヒト以外の種に対して好適に適用(in vivo又は ex vivo) することができる。或いは、 in vitroでの実験用として好適に利用することができる。  [0013] Other examples of proteins substantially homologous to HSPA9B (or HSPA5) include naturally occurring mutant HSPA9B (or HSPA5). Yet another example is HSPA9B (or HSPA5) of a species other than human. Examples of the “non-human species” here include non-human primates (monkeys, chimpanzees, etc.), mice, rats, usagis, horses, horses, hidges, nu, cats, and the like. Such a C peptide binding agent containing HSPA9B (or HSPA5) derived from a non-human species can be suitably applied (in vivo or ex vivo) to a species other than human. Alternatively, it can be suitably used for in vitro experiments.
[0014] 本発明の Cペプチド結合剤は、本タンパク質の少なくとも一種を含んで構成される。  [0014] The C peptide binding agent of the present invention comprises at least one of the present proteins.
換言すれば、本発明の Cペプチド結合剤は、本タンパク質の二種以上を含んでいて ちょい。 典型的には、本発明の Cペプチド結合剤は、 HSPA9B又は HSPA5を単独で、又はこ れら両者を含む。本発明の Cペプチド結合剤を構成するタンパク質にメチル化、ダリ コシル化などの修飾が施されて!/、てもよ!/、。 In other words, the C peptide binding agent of the present invention contains two or more of the present proteins. Typically, the C peptide binding agent of the present invention comprises HSPA9B or HSPA5 alone or both. The protein constituting the C-peptide binding agent of the present invention is modified such as methylation or daricosylation! /, Or even! /.
[0015] 本発明の Cペプチド結合剤は、 Cペプチドの作用状態の調節に用いることができる 。例えば、本発明の Cペプチド結合剤を生体に投与すればこれに Cペプチドが結合 し、それによつて Cペプチド結合剤を介して Cペプチドの作用が発揮されることを期待 できる。従って、 Cペプチドの作用が低減した結果ある病態を呈している個体に適用 すれば病態の改善を図ることができる。  [0015] The C peptide-binding agent of the present invention can be used to control the action state of a C peptide. For example, if the C peptide binding agent of the present invention is administered to a living body, it can be expected that the C peptide binds to it and that the action of the C peptide is exerted via the C peptide binding agent. Therefore, if applied to an individual exhibiting a pathological condition as a result of the reduced action of the C peptide, the pathological condition can be improved.
一方、本発明のペプチド結合剤を Cペプチドの検出、測定又は定量に用いることも できる。このような Cペプチドの検出等に本発明のペプチド結合剤を利用する場合に は、本発明のペプチド結合剤を検出可能な標識物質で標識ィ匕しておくことが好まし い。但し、本発明のペプチド結合剤を検出可能な他の物質を併用することにすれば 、このような標識ィ匕は不要となる。  On the other hand, the peptide binding agent of the present invention can also be used for detection, measurement or quantification of C peptide. When the peptide binding agent of the present invention is used for such detection of C peptide, it is preferable to label the peptide binding agent of the present invention with a detectable labeling substance. However, if another substance capable of detecting the peptide binding agent of the present invention is used in combination, such a labeling agent becomes unnecessary.
尚、ここでの検出等は、生体内において実施しても、又は生体から分離された細胞 又は組織内にお!、て実施してもよ!/ヽ。  The detection or the like here may be performed in a living body or in a cell or tissue separated from a living body! / 生 体.
[0016] 本発明の Cペプチド結合剤を Cペプチドの分離'精製などに利用してもよい。例え ば、本発明の Cペプチド結合剤を支持体に結合して適当な容器に充填することによ つて、 Cペプチド親和性カラムを構築することができる。このようなカラムは、生体試料 など力もの Cペプチドの検出や分取に利用することができる。  [0016] The C peptide binding agent of the present invention may be used for separation and purification of C peptides. For example, a C peptide affinity column can be constructed by binding the C peptide binding agent of the present invention to a support and filling it in a suitable container. Such a column can be used to detect and sort powerful C-peptides such as biological samples.
[0017] 本発明の Cペプチド結合剤を構成する本タンパク質 (HSPA9B、 HSPA5、又はこれら の中のいずれかに相同なタンパク質)は例えば、それが存在すると予想される動物( 例えば、ヒト、サル、チンパンジーなど)の細胞ないし組織等から、抽出、精製等の手 段を利用して得ることができる(抽出方法の詳細については後述の実施例を参照さ れたい)。また、本タンパク質を、遺伝子工学的手法を用いて調製することもできる。 即ち、 目的のタンパク質をコードする DNAを適当な宿主細胞に導入し、形質転換体 内で発現されたタンパク質を回収することにより調製することができる。回収されたタ ンパク質は、 目的に応じて適宜精製される。組換えタンパク質として調製する場合は 、種々の修飾が可能である。例えば、 目的のタンパク質をコードする DNAと他の適当 な DNAとを保持させたベクターを用いて形質転換を行うことにより、 目的のタンパク質 に、当該他の DNAがコードするペプチドな 、しタンパクが連結した組換えタンパク質 を得ることができる。他の DNAを予めベクター内に組込んでおくこともできる。このよう な修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付カロ が可能である。 [0017] The present protein constituting the C peptide binding agent of the present invention (HSPA9B, HSPA5, or a protein homologous to any of them) is, for example, an animal (eg, human, monkey, It can be obtained from cells or tissues of chimpanzees, etc.) by using means such as extraction and purification (for details of the extraction method, see the examples below). The protein can also be prepared using genetic engineering techniques. That is, it can be prepared by introducing a DNA encoding the target protein into an appropriate host cell and recovering the protein expressed in the transformant. The collected protein is appropriately purified according to the purpose. When prepared as a recombinant protein, various modifications are possible. For example, DNA encoding the protein of interest and other suitable By carrying out transformation using a vector retaining a suitable DNA, it is possible to obtain a recombinant protein in which the target protein is not a peptide encoded by the other DNA, and the protein is linked. Other DNA can be incorporated in advance in the vector. By such modification, it is possible to extract the recombinant protein, simplify the purification, or add a biological function.
[0018] (Cペプチド特異的結合分子を利用した検出 ·評価 ·診断方法)  [0018] (Detection / evaluation / diagnosis method using C peptide-specific binding molecule)
本発明の他の局面は、上記の本タンパク質を検出することによって Cペプチドの作 用状態を評価する方法に関する。本明細書において用語「Cペプチドの作用状態」と は、本タンパク質を介して発揮される Cペプチドの作用量をいい、本タンパク質の存 在量に依存する。また、本明細書において用語「評価」は、判定及び判別と交換可能 に用いられる。  Another aspect of the present invention relates to a method for evaluating the working state of a C peptide by detecting the above-mentioned protein. As used herein, the term “action state of C peptide” refers to the amount of action of C peptide exerted through the protein, and depends on the amount of the protein present. In this specification, the term “evaluation” is used interchangeably with determination and discrimination.
[0019] 本発明の方法では、サンプル中に存在する本タンパク質 (好ましくは HSPA9B又は HSPA5)の量を検出するステップが実施される。そして検出結果を用いてサンプル中 の Cペプチドの作用状態が評価される。本発明においてサンプルとしては例えば、対 象 (被験者)の生体より採取した細胞、組織、又は血液などや、或いは培養細胞、株 化細胞などを用いることができる。  [0019] In the method of the present invention, a step of detecting the amount of the present protein (preferably HSPA9B or HSPA5) present in a sample is performed. The detection results are used to evaluate the action state of the C peptide in the sample. In the present invention, for example, cells, tissues, blood, etc. collected from the living body of the subject (subject), cultured cells, established cells, etc. can be used.
[0020] 本タンパク質の量は例えば、本タンパク質に対して特異的に結合する化合物を用 いて検出(測定)することができる。検出方法 (又は測定方法)は、これに限定されるも のではないが、免疫学的手法によることが好ましい。免疫学的手法では上記本タン パク質に対する抗体 (具体的には抗 HSPA9B抗体又は抗 HSPA5抗体など)が使用さ れ、当該抗体の結合性 (結合量)を指標として本タンパク質が検出される。ここでの用 語「抗体」は、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体、 C DRグラフト抗体、ヒト化抗体、又はこれらの断片(但し、 HSPA9B等に対する特異的結 合能を有するもの)等を含む。本発明における抗体は、免疫学的手法、ファージディ スプレイ法、リボソームディスプレイ法などを利用して調製することができる。  [0020] The amount of the protein can be detected (measured) using, for example, a compound that specifically binds to the protein. The detection method (or measurement method) is not limited to this, but is preferably an immunological method. In an immunological technique, an antibody (specifically, an anti-HSPA9B antibody or an anti-HSPA5 antibody) against the above-described protein is used, and the present protein is detected using the binding property (binding amount) of the antibody as an index. The term “antibody” used herein is a polyclonal antibody, monoclonal antibody, chimeric antibody, single chain antibody, CDR grafted antibody, humanized antibody, or a fragment thereof (however, it has a specific binding ability to HSPA9B etc. Etc.). The antibody in the present invention can be prepared by using an immunological technique, a phage display method, a ribosome display method, and the like.
免疫学的染色法によれば、迅速で感度のよい検出が可能となる。従ってサンプル 量が少なくてよぐ生体試料を用いる場合には被験者 (患者)への負担も小さくなる。 また、操作も簡便である。尚、検出方法としては例えば、 ELISA法、ラジオィムノアッセ ィ、 FACS、免疫沈降法、ィムノブロッテイング等の定性的又は定量的な方法が挙げら れる。 The immunological staining method enables rapid and sensitive detection. Therefore, the burden on the subject (patient) is reduced when a small amount of sample is used. Also, the operation is simple. Examples of detection methods include ELISA, radioimmunoassay. And qualitative or quantitative methods such as FACS, immunoprecipitation, and immunoblotting.
ポリクローナル抗体の調製は次の手順で行うことができる。抗原 (HSPA9B等)を調 製し、これを用いてマウス、ラット、ゥサギ、ャギ等の動物に免疫を施す。抗原としては HSPA9B若しくはその相同タンパク質、 HSPA5若しくはその相同タンパク質、又はこれ らの中のいずれかの一部を使用することができる。低分子量のために有効な免疫惹 起作用を期待できない場合には、キャリアタンパク質を結合させた抗原を用いること が好ましい。キャリアタンパク質としては KLM (Keyhole Light Hemocyanin)、 BSA (Bov ine Serum Albumin)、 OVA (Ovalbumin)などが使用される。また、キャリアタンパク質 の結合にはカルポジイミド法、ダルタルアルデヒド法、ジァゾ縮合法、 MBS (マレイミド ベンゾィルォキシコハク酸イミド)法などを使用できる。  The polyclonal antibody can be prepared by the following procedure. Prepare an antigen (HSPA9B, etc.) and use it to immunize animals such as mice, rats, rabbits, goats, etc. As an antigen, HSPA9B or a homologous protein thereof, HSPA5 or a homologous protein thereof, or any one of them can be used. When an effective immune-inducing action cannot be expected due to the low molecular weight, it is preferable to use an antigen bound with a carrier protein. As the carrier protein, KLM (Keyhole Light Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin), etc. are used. In addition, for the binding of carrier protein, the calpositimide method, dartalaldehyde method, diazo condensation method, MBS (maleimido benzoyl succinimide) method and the like can be used.
必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で採血し、遠心処理 などによって血清を得る。得られた抗血清をァフィユティー精製する。このようにして ポリクローナル抗体を得ることができる。一方、モノクローナル抗体については次の手 順で調製することができる。まず上記と同様の手順で免疫操作を実施する。必要に 応じて免疫を繰り返し、十分に抗体価が上昇した時点で免疫動物から抗体産生細胞 を摘出する。次に、得られた抗体産生細胞と骨髄腫細胞とを融合してハイプリドーマ を得る。続いて、このハイプリドーマをモノクローナルィ匕した後、 目的タンパク質に対し て高 ヽ特異性を有する抗体を産生するクローンを選択する。選択されたクローンの培 養液を精製することによって目的の抗体が得られる。一方、ハイプリドーマを所望数 以上に増殖させた後、これを動物 (例えばマウス)の腹腔内に移植し、腹水内で増殖 させて腹水を精製することにより目的の抗体を取得することもできる。上記培養液の 精製又は腹水の精製には、プロテイン G、プロテイン A等を用いたァフィユティークロ マトグラフィ一が好適に用いられる。また、抗原を固相化したァフィユティークロマトグ ラフィーを用いることもできる。更には、イオン交換クロマトグラフィー、ゲルろ過クロマ トグラフィー、硫安分画、及び遠心分離等の方法を用いることもできる。これらの方法 は単独ないし任意に組み合わされて用いられる。尚、抗体の作製方法に関して Kohle r and Milstein (1975) Nature 256:495- 497;Brown et al. (1981) J. Immunol. 127:539— 46; Brown et al. (1980) J. Biol. Chem. 255:4980-83; Yeh et al. (1976) Proc. Natl. A cad. Sci. USA 76:2927—31; Yeh et al. (1982) Int. J. Cancer 29:269—75; Kozbor et al . (1983) Immunol. Today 4:72; Kenneth, R.H. in Monoclonal Antibodies: A New Dim ension In Biological Analyses, Plenum Publishing Corp., New York, New York (1980) ; Lerner, E.A. (1981) Yale J. Biol. Med. 54:387-402; Gefter, M.L. et al. (1977) Som atic Cell Genet. 3:231- 36等を参照することができる。 Repeat immunization as necessary, and collect blood when the antibody titer rises sufficiently, and obtain serum by centrifugation. The antiserum obtained is purified by the utility. In this way, a polyclonal antibody can be obtained. On the other hand, monoclonal antibodies can be prepared by the following procedure. First, immunization is performed in the same procedure as above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hyperidoma. Subsequently, after this hybridoma is monoclonalized, a clone producing an antibody having high specificity for the target protein is selected. The target antibody can be obtained by purifying the culture medium of the selected clone. On the other hand, the desired antibody can be obtained by growing hyperpridoma to a desired number or more and then transplanting it into the abdominal cavity of an animal (for example, a mouse) and growing it in ascites to purify the ascites. For the purification of the culture medium or the ascites, affinity chromatography using protein G, protein A or the like is preferably used. In addition, affinity chromatography with an antigen immobilized thereon can also be used. Furthermore, methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination. Regarding the antibody production method, Kohler and Milstein (1975) Nature 256: 495-497; Brown et al. (1981) J. Immunol. 127: 539— 46; Brown et al. (1980) J. Biol. Chem. 255: 4980-83; Yeh et al. (1976) Proc. Natl. A cad. Sci. USA 76: 2927-31; Yeh et al. (1982 ) Int. J. Cancer 29: 269-75; Kozbor et al. (1983) Immunol. Today 4:72; Kenneth, RH in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, New York (1980); Lerner, EA (1981) Yale J. Biol. Med. 54: 387-402; Gefter, ML et al. (1977) Somatic Cell Genet. 3: 231-36, etc. .
[0022] ファージディスプレイ法に関しては種々の文献、例えば Huse et al. (1989) Science 246: 1275-1281; McCafferty et al. (1990) Nature 348:552-554; Fuchs et al. (1991) B io/Technology 9: 1370—1372; Barbas et al. (1991) Proc. Natl. Acad. Sci. USA 88:797 8-7982; Hoogenboom et al. (1991) Nucleic Acids Res. 19:4133—4137; Gram et al. (1 992) Proc. Natl. Acad. Sci. USA 89:3576-3580; Hay et al. (1992) Hum. Antibod. Hy bridomas 3:81-85; Griffiths et al. (1993) EMBO J 12:725-734; PCT国際公開第 WO 90/02809号; PCT国際公開第 WO 92/20791号; PCT国際公開第 WO 92/15679号 ; PCT国際公開第 WO 92/09690号等を参照することができる。また、ファージデイス プレイライブラリの作製及びスクリーニング用のキットが市販されており、それらを好適 に利用することができる。  [0022] Various documents regarding phage display methods, such as Huse et al. (1989) Science 246: 1275-1281; McCafferty et al. (1990) Nature 348: 552-554; Fuchs et al. (1991) B io / Technology 9: 1370—1372; Barbas et al. (1991) Proc. Natl. Acad. Sci. USA 88: 797 8-7982; Hoogenboom et al. (1991) Nucleic Acids Res. 19: 4133—4137; Gram et al. (1 992) Proc. Natl. Acad. Sci. USA 89: 3576-3580; Hay et al. (1992) Hum. Antibod. Hy bridomas 3: 81-85; Griffiths et al. (1993) EMBO J 12 PCT International Publication No. WO 90/02809; PCT International Publication No. WO 92/20791; PCT International Publication No. WO 92/15679; PCT International Publication No. WO 92/09690, etc. it can. Moreover, kits for preparing and screening phage display libraries are commercially available, and can be suitably used.
[0023] 標識ィ匕した抗体を用いることにより、上記の検出等を容易に実施することが可能で ある。抗体の標識ィ匕には例えばフルォレセイン、ローダミン、テキサスレッド、オレゴン グリーン等の蛍光色素、ホースラディッシュペルォキシダーゼ、マイクロペルォキシダ ーゼ、アルカリ性ホスファターゼ、 13 D—ガラクトシダーゼ等の酵素、ルミノール、ァ クリジン色素等の化学又は生物発光化合物、 32P、 131ι、 125ι等の放射性同位体、及び ピオチン等を用いることができる。 [0023] By using a labeled antibody, the above detection or the like can be easily performed. Examples of antibody labeling include fluorescent dyes such as fluorescein, rhodamine, Texas red, and Oregon green, horseradish peroxidase, microperoxidase, alkaline phosphatase, 13 D-galactosidase, and other enzymes, luminol, and acrylidine. Chemical or bioluminescent compounds such as dyes, radioactive isotopes such as 32 P, 131 ι, and 125 ι, and piotin can be used.
[0024] 本タンパク質自体を検出対象とするのではなぐ本タンパク質をコードする核酸 (好 ましくは HSPA9B又は HSPA5をコードする核酸)を検出対象として本タンパク質の量を 求めることもできる。具体的には例えば、本タンパク質をコードする mRNAの量を検出 する。また、本タンパク質の量の変化に伴って、本タンパク質をコードする遺伝子のコ ピー数に変動が認められる場合にはゲノム DNAを検出対象とすることもできる。例え ば、検出の結果、本タンパク質の遺伝子のコピー数の増加が認められれば本タンパ ク質の発現量が増大して 、ると予測できる。 [0024] The amount of the protein can also be determined using a nucleic acid encoding the present protein (preferably a nucleic acid encoding HSPA9B or HSPA5) as opposed to detecting the protein itself. Specifically, for example, the amount of mRNA encoding this protein is detected. In addition, genomic DNA can be targeted for detection when the number of copies of the gene encoding the protein varies with the amount of the protein. For example, if an increase in the gene copy number of this protein is found as a result of detection, It can be predicted that the expression level of the quality increases.
尚、特定の核酸の量を測定する方法は当該分野で公知であって、例えばサザンハ イブリダィゼーシヨン法、ノーザンハイブリダィゼーシヨン法、 in situハイブリダィゼーシ ヨン法、 RT-PCT法等を用いることができる。  Methods for measuring the amount of a specific nucleic acid are known in the art. For example, the Southern hybridization method, the Northern hybridization method, the in situ hybridization method, RT-PCT The law etc. can be used.
本発明の他の態様は、本タンパク質をコードする遺伝子の多型を利用して対象に おける Cペプチドの作用状態を評価する方法に関し、対象において本タンパク質をコ ードする遺伝子の多型 (好ましくは HSPA9B又は HSPA5をコードする遺伝子の多型) を解析するステップを含む。  Another embodiment of the present invention relates to a method for evaluating the action state of a C peptide in a subject using a polymorphism of a gene encoding the protein, and preferably a polymorphism of a gene encoding the protein in the subject (preferably Includes a step of analyzing a polymorphism of a gene encoding HSPA9B or HSPA5.
一般に、遺伝子はそれを構成している DNA配列に個体差が存在する。この個体差 は遺伝子多型と呼ばれる。遺伝子多型には、 1個の塩基が他の塩基に置き換わって いるもの(SNP (single nucleotide polymorphism) )、通常 1〜数十塩基が欠失や挿入 されているもの (挿入 Z欠失型多型)、 2〜数個の塩基力 なる繰り返し配列における 繰り返し数が異なるもの(VNTR (variable number of tandem repeat)及びマイクロサ テライト多型)等が知られている。これらの遺伝子多型は、当該遺伝子の発現状態を 規定したり、当該遺伝子がコードするタンパク質中のアミノ酸を変化させてその機能 に影響を及ぼしたりする場合がある。従って、ある遺伝子の多型を解析することによつ て、当該遺伝子がコードするタンパク質の潜在的機能を評価することができる。そこ で、本タンパク質をコードする遺伝子の多型を調べることによって、本タンパク質の発 現状態及び Z又は作用状態の予測が行える。このようにして得られる予測結果は C ペプチドの作用状態を把握 ·評価することに利用できる。具体的には例えば、ある対 象における本タンパク質の遺伝子多型を解析した結果、本タンパク質が高発現する と考えられたとき又は Cペプチドとの相互作用が良好に行われる状態で本タンパク質 が発現すると考えられたときには、 Cペプチドがその作用を発揮しやすいと予測され ることから、当該対象は Cペプチドの作用が高まることによって引き起こされる疾患に 罹患するリスクが高いと判定することができる。また、当該対象に Cペプチドを投与し た場合に高い作用が得られると判定することができる。このようにして得られた情報は 、 Cペプチドを用いた医療的処置 (治療又は予防)における投与計画 (Cペプチドの 投与を中止し、他の治療手段に変更する場合も含む)を立てる際に有用である。 [0026] 上記各方法によって得られた、 Cペプチドの作用状態に関する評価結果は、 Cぺプ チドの作用量の異常によって特徴づけられる疾患 (以下、「本発明の対象疾患」とも いう)の診断に利用できる。従って、本発明は以下の診断方法も提供する。 In general, there are individual differences in the DNA sequence that constitutes a gene. This individual difference is called genetic polymorphism. Genetic polymorphisms are those in which one base is replaced by another base (SNP (single nucleotide polymorphism)), and usually one to several tens of bases are deleted or inserted (inserted Z deletion type polymorphism). Type), those having a different number of repeats in a repetitive sequence of 2 to several basic forces (VNTR (variable number of tandem repeat) and microsatellite polymorphism), and the like are known. These gene polymorphisms may regulate the expression state of the gene, or change the amino acid in the protein encoded by the gene and affect its function. Therefore, by analyzing the polymorphism of a certain gene, the potential function of the protein encoded by the gene can be evaluated. Thus, by examining the polymorphism of the gene encoding this protein, the expression state and Z or action state of this protein can be predicted. The prediction results obtained in this way can be used to understand and evaluate the action state of C-peptide. Specifically, for example, as a result of analyzing the gene polymorphism of the protein in a certain target, the protein is expressed when it is considered that the protein is highly expressed or when the interaction with the C peptide is performed well. When it is considered that the C peptide is likely to exert its action, it can be determined that the subject is at high risk of suffering from a disease caused by an increase in the action of the C peptide. It can also be determined that high effects can be obtained when C peptide is administered to the subject. The information obtained in this way is used when making a treatment plan for medical treatment (treatment or prevention) using C peptide (including the case of stopping the administration of C peptide and changing to other treatment means). Useful. [0026] The evaluation results regarding the action state of the C peptide obtained by the above methods are used to diagnose a disease characterized by an abnormality in the action amount of the C peptide (hereinafter also referred to as "target disease of the present invention"). Available to: Accordingly, the present invention also provides the following diagnostic method.
本発明の診断方法の一態様は、 Cペプチドの作用量の異常によって特徴づけられ る疾患の診断方法であって、配列番号 1のアミノ酸配列を有する第 1タンパク質と、配 列番号 3のアミノ酸配列を有する第 2タンパク質と、及び前記第 1タンパク質又は前記 第 2タンパク質と実質的に相同なタンパク質と、力もなる群より選択される 1以上のタン パク質を、対象 (被験者)から採取されたサンプル中で検出するステップと、及び検出 結果を用 、てサンプル中の Cペプチドの作用状態を評価するステップとを含む。 また、本発明の他の態様は、 Cペプチドの作用量の異常によって特徴づけられる疾 患の診断方法であって、配列番号 1のアミノ酸配列を有する第 1タンパク質をコードす る核酸と、配列番号 3のアミノ酸配列を有する第 2タンパク質をコードする核酸と、前 記第 1タンパク質又は前記第 2タンパク質と実質的に相同なタンパク質をコードする 核酸とからなる群より選択される 1以上の核酸を、対象 (被験者)から採取されたサン プル中で検出するステップと、及び検出結果を用 、てサンプル中の Cペプチドの作 用状態を評価するステップとを含む。  One aspect of the diagnostic method of the present invention is a method for diagnosing a disease characterized by an abnormal amount of action of a C peptide, wherein the first protein having the amino acid sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 3 are used. A sample collected from a subject (subject) of at least one protein selected from the group consisting of a second protein having a protein, a protein substantially homologous to the first protein or the second protein, and a force And detecting the C peptide in the sample using the detection result. Another aspect of the present invention is a method for diagnosing a disease characterized by an abnormal amount of action of C peptide, comprising a nucleic acid encoding a first protein having the amino acid sequence of SEQ ID NO: 1, and SEQ ID NO: One or more nucleic acids selected from the group consisting of a nucleic acid encoding a second protein having an amino acid sequence of 3 and a nucleic acid encoding a protein substantially homologous to the first protein or the second protein, A step of detecting in a sample collected from a subject (subject), and a step of using the detection result to evaluate the working state of the C peptide in the sample.
本発明の更に他の態様は、 Cペプチドの作用量の異常によって特徴づけられる疾 患の診断方法であって、配列番号 1のアミノ酸配列を有する第 1タンパク質をコードす る遺伝子の多型と、配列番号 3のアミノ酸配列を有する第 2タンパク質をコードする遺 伝子の多型と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に相同なタ ンパク質をコードする遺伝子の多型と、からなる群より選択される 1以上の多型を、対 象カゝら採取されたサンプル中で解析するステップと、及び解析結果を用いてサンプ ル中の Cペプチドの作用状態を評価するステップとを含む。  Still another embodiment of the present invention is a method for diagnosing a disease characterized by an abnormal amount of action of a C peptide, comprising a polymorphism of a gene encoding the first protein having the amino acid sequence of SEQ ID NO: 1, A polymorphism of a gene encoding a second protein having the amino acid sequence of SEQ ID NO: 3, and a polymorphism of a gene encoding a protein substantially homologous to the first protein or the second protein; Analyzing one or more polymorphisms selected from the group consisting of: a sample collected from the sample; and a step of evaluating the action state of the C peptide in the sample using the analysis result; including.
[0027] 本明細書において「Cペプチドの作用量の異常によって特徴づけられる疾患」とは 、少なくとも一つの特徴として Cペプチドの高発現又は低発現を伴う疾患をいう。従つ て、 Cペプチドの高発現又は低発現が直接的原因となる疾患は勿論のこと、他の原 因によって引き起こされる疾患であっても結果として Cペプチドの高発現状態又は低 発現状態が認められるのであれば当該疾患に含まれる。 ここで、本タンパク質の一つである HSPA5 (別名 glucose regulated protein 78kDa (G RP78))と、糖尿病との間に関連性のあることが報告されている(Biochem Cell Biol. 19 90 Dec;68(12):1428-32. ; Acta Physiol Hung. 1995;83(4):333— 42.)。また、 HSPA5に はアポトーシス抑制作用も確認されている(J. Biol. Chem. 2003, 278(23) 20915-24) 。一方、 Cペプチドにもアポトーシス抑制作用があることが報告されている(Diabetes Metab Res Rev. 2003 Sep— Oct;19(5):375— 85. ; Comment in: Diabetes Metab Res Re v. 2003 Sep— Oct;19(5):345— 7. ; Int J Exp Diabetes Res. 2002 Oct— Dec;3(4):241— 5. ) o Cペプチドに関しては更に、細胞内カルシウムを増加させ eNOSを活性ィ匕すること による血管拡張作用があることが報告されている(Nitric Oxide. 2003 Sep;9(2):95- 10 2.)また、本発明者らの研究の成果として、(1)インスリンと同様に p42/p44 MAPキナ ーゼによるリン酸化を促進すること、(2)インスリンと異なり Aktによるリン酸ィ匕を抑制す ること、(3)Rhoの膜へのトランスロケーションを促進して Rhoキナーゼを活性ィ匕すること が判明し、これらの作用を通じて (4)血管平滑筋細胞の機能に Cペプチドが関与する ことが明ら力となった。 [0027] As used herein, "a disease characterized by an abnormal amount of action of C peptide" refers to a disease accompanied by high or low expression of C peptide as at least one characteristic. Therefore, not only diseases directly caused by high or low expression of C-peptide, but also diseases caused by other causes result in high or low expression of C-peptide. If included, it is included in the disease. Here, HSPA5 (also known as glucose regulated protein 78kDa (G RP78)), one of the proteins, has been reported to be associated with diabetes (Biochem Cell Biol. 19 90 Dec; 68 ( 12): 1428-32 .; Acta Physiol Hung. 1995; 83 (4): 333-42.). HSPA5 has also been confirmed to inhibit apoptosis (J. Biol. Chem. 2003, 278 (23) 20915-24). On the other hand, it has been reported that C peptide also has an inhibitory effect on apoptosis (Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 375- 85.; Comment in: Diabetes Metab Res Rev. 2003 Sep- Oct; 19 (5): 345— 7.; Int J Exp Diabetes Res. 2002 Oct— Dec; 3 (4): 241— 5.) o Regarding the C peptide, it further increased intracellular calcium and activated eNOS. It has been reported that there is a vasodilatory effect by wandering (Nitric Oxide. 2003 Sep; 9 (2): 95-10 2.) In addition, as a result of our research, (1) insulin and Similarly, it promotes phosphorylation by p42 / p44 MAP kinase, (2) inhibits phosphorylation by Akt, unlike insulin, and (3) promotes Rho translocation to Rho Through these actions, it became clear that the C peptide was involved in the function of vascular smooth muscle cells.
以上の事実を考慮すれば、 Cペプチドの作用量は、アポトーシスや血管拡張作用 が原因となる疾患、例えば糖尿病性合併症 (大血管障害、細小血管障害)及び代謝 異常症候群 (Metabolic syndrome)等に関連性を有すると考えられる。従って、本発 明の方法はこれらの疾患の診断に有効な手段であると期待される。また、特に Cぺプ チドの作用が異常に高い場合にこれを抑えること、又は Cペプチドの作用が異常に 低!、場合にこれを増加させることで、これらの疾患の治療 (症状の改善)又は予防す ることができると期待される。  Considering the above facts, the amount of action of C-peptide is effective in diseases caused by apoptosis and vasodilatory effects, such as diabetic complications (macrovascular and microvascular disorders) and metabolic syndrome (Metabolic syndrome). It is considered relevant. Therefore, the method of the present invention is expected to be an effective means for diagnosing these diseases. In addition, it is possible to treat these diseases (improving symptoms) by suppressing this especially when the action of C-peptide is abnormally high, or by increasing it when the action of C-peptide is abnormally low! Or it is expected that it can be prevented.
ここで、 Cペプチドの作用量は第一に Cペプチドの発現量に依存する。即ち、 Cぺ プチドの発現量が異常であれば通常 Cペプチドの作用量も異常となる。このことを考 慮して、本明細書における用語「Cペプチドの作用量の異常によって特徴づけられる 疾患」は、用語「Cペプチドの発現量の異常によって特徴づけられる疾患」と交換可 能に用いられるものとする。従って、 Cペプチドの発現量の異常によって特徴づけら れる疾患も、本発明がその対象とする疾患に該当する。  Here, the action amount of the C peptide depends primarily on the expression amount of the C peptide. That is, if the expression level of C peptide is abnormal, the action amount of C peptide is usually abnormal. In view of this, the term “disease characterized by an abnormal amount of C peptide action” is used interchangeably with the term “disease characterized by an abnormal expression level of C peptide”. Shall be. Accordingly, diseases characterized by abnormal expression levels of C peptide also fall under the disease targeted by the present invention.
尚、本明細書において用語「疾患」は、疾病、病気、又は病態など、正常でない状 態を表す用語と交換可能に用いられる。 In this specification, the term “disease” means an abnormal condition such as a disease, illness, or disease state. Used interchangeably with terminology.
[0029] Cペプチドの作用量は、本発明の対象疾患に関する有益な情報を与える。即ち、 C ペプチドの作用量と本発明の対象疾患との間には関連性が認められることから、対 象 (ヒトなど)における Cペプチドの作用量を調べることによって、本発明の対象疾患 への罹患の有無、罹患するおそれの程度、及び Z又は病態等を把握ないし評価で きる。また、 Cペプチドの作用量の変化を経時的に測定することによって病態の変動( 改善或いは悪化)をモニターすることもできる。  [0029] The action amount of the C peptide provides useful information regarding the target disease of the present invention. That is, since there is a relationship between the amount of action of C peptide and the target disease of the present invention, by examining the amount of action of C peptide in the target (human etc.), It is possible to grasp or evaluate the presence or absence of disease, the degree of risk of being affected, and Z or disease state. It is also possible to monitor changes (improvement or deterioration) of the disease state by measuring changes in the action amount of C peptide over time.
尚、上述のように、 Cペプチドには抗アポトーシス作用、血管拡張作用、神経保護 作用等が認められている。従って、 Cペプチドの有するこれらの作用の程度を把握な いし評価することに本タンパク質の発現状態等を利用することもできる。即ち、これら の作用の結果として生ずる疾患の判定指標としてのみならず、これらの作用を直接 把握する手段としても本タンパク質は有効である。  As described above, the C peptide has been shown to have an anti-apoptotic action, a vasodilatory action, a neuroprotective action, and the like. Therefore, the expression state of this protein can also be used for evaluating or evaluating the degree of these actions of the C peptide. That is, the present protein is effective not only as a determination index for diseases caused as a result of these actions, but also as a means for directly grasping these actions.
[0030] (Cペプチドの作用状態を調節する化合物のスクリーニング方法)  [0030] (Method for screening compound that modulates action state of C peptide)
本発明のさらに他の局面は、本タンパク質を利用したスクリーニング方法に関する。 本発明のスクリーニング方法では、本タンパク質 (好ましくは HSPA9B又は HSPA5)とじ ペプチドとを、試験化合物の存在下 (試験群)及び非存在下 (対照群)においてそれ ぞれ接触させるステップ (接触ステップ)が実施される。具体的には例えば、プレート や膜、或 、はビーズ等の不溶性支持体に固定した Cペプチドに反応用溶液内で本 タンパク質を接触させる。試験群では、試験化合物が反応溶液内に存在した状態( 即ち、試験化合物を添加した状態)でこのような接触を実施し、一方の対照群では試 験化合物が反応溶液内に存在しない状態で同様の接触を実施する。次に、所定時 間経過した後、適当な溶液で洗浄することで非特異的結合成分を除去する。続いて 、 Cペプチドと本タンパク質との複合体を検出し、試験群と対照群との間で検出量を 比較する (検出量比較ステップ)。複合体の検出は例えば、本タンパク質に特異的結 合性を有する抗体を用いた免疫学的手法等で実施することができる。  Yet another aspect of the present invention relates to a screening method using the present protein. In the screening method of the present invention, the step (contact step) of contacting the present protein (preferably HSPA9B or HSPA5) and the peptide in the presence (test group) and absence (control group) of the test compound, respectively. To be implemented. Specifically, for example, the protein is brought into contact with the C peptide immobilized on an insoluble support such as a plate, a membrane, or a bead in the reaction solution. In the test group, such contact is performed with the test compound present in the reaction solution (ie, with the test compound added), while in the control group, the test compound is not present in the reaction solution. Similar contact is performed. Next, after a predetermined time has elapsed, the nonspecific binding component is removed by washing with an appropriate solution. Subsequently, a complex of the C peptide and the present protein is detected, and the detection amount is compared between the test group and the control group (detection amount comparison step). The detection of the complex can be performed by, for example, an immunological technique using an antibody having a specific binding property to the present protein.
[0031] 本タンパク質と Cペプチドとを接触させる際に用 、る反応用溶液は特に限定されず 、公知又は市販の緩衝液、生理食塩水などを用いることができる。反応条件 (反応用 溶液の組成及び pH等、並びに反応温度、反応時間等)は、 Cペプチドと本タンパク 質との結合性を指標とした実験を基に容易に設定することが可能である。例えば、反 応用溶液としてはリン酸緩衝液、クェン酸緩衝液、トリス塩酸緩衝液、トリス酢酸緩衝 液などを用いることができ、その pHは例えば pH6.0〜pH8.0、好ましくは pH6.5〜pH7. 5とする。また、反応温度は例えば 4°C〜45°C、好ましくは 4°C〜40°Cとすることができ る。反応時間については例えば 1分〜 24時間の範囲で設定できる(具体的には例え ばオーバーナイトで反応させる)。 [0031] The reaction solution used for contacting the present protein with the C peptide is not particularly limited, and a known or commercially available buffer solution, physiological saline, or the like can be used. The reaction conditions (composition and pH of the reaction solution, reaction temperature, reaction time, etc.) are as follows. It can be easily set based on experiments using quality as an index. For example, phosphate buffer, citrate buffer, Tris-HCl buffer, Tris-acetate buffer, etc. can be used as the anti-application solution, and the pH thereof is, for example, pH 6.0 to pH 8.0, preferably pH 6.5. Set to ~ pH 7.5. The reaction temperature can be, for example, 4 ° C to 45 ° C, preferably 4 ° C to 40 ° C. The reaction time can be set, for example, in the range of 1 minute to 24 hours (specifically, for example, the reaction is performed overnight).
[0032] 不溶性支持体に固定した Cペプチドに対して本タンパク質を接触させるのではなく 、本タンパク質を不溶性支持体に固定し、これに Cペプチドを接触させることにしても よい。この場合には、固相の本タンパク質に結合した Cペプチドを検出することで複 合体の量を求めることができる。 [0032] Instead of contacting the present protein with the C peptide immobilized on the insoluble support, the present protein may be immobilized on the insoluble support and then contacted with the C peptide. In this case, the amount of the complex can be determined by detecting the C peptide bound to the present protein on the solid phase.
[0033] 検出量比較ステップの結果を用いて、試験化合物の存在による、 Cペプチドと本タ ンパク質との結合態様 (結合量、結合力など)の変化を調べる。具体的には例えば、 試験化合物が存在することによって Cペプチドと本タンパク質との結合量が減少すれ ば、当該試験化合物にはこれら両分子間の結合を阻害ないし抑制する作用があると 判断することができる。これとは逆に、試験化合物が存在することによって Cペプチド と本タンパク質との結合量が増加すれば、当該試験化合物にはこれら両分子間の結 合を促進ないし増強する作用があると判断することができる。このようにして、 Cぺプ チドと本タンパク質との結合性を変化させる化合物、即ち Cペプチドの作用状態を調 節することができる化合物を選抜することができる。選抜された化合物は、 Cペプチド が関与する疾患 (即ち、 Cペプチドの作用量の異常によって特徴づけられる疾患)の 医療措置に対して有効である。例えば、 Cペプチドと本タンパク質の結合を阻害ない し抑制する作用が認められたィ匕合物は、 Cペプチドの作用を抑えることに用いられる ことが期待される。従って、当該化合物は、 Cペプチドの高発現が原因となる疾患の 治療 '予防への応用が期待される。一方、 Cペプチドと本タンパク質の結合を促進な いし増強する作用が認められた化合物は、 Cペプチドの作用を高めることに用いられ 得る。従って、当該化合物は、 cペプチドの低発現が原因となる疾患の治療 '予防へ の応用が期待される。  [0033] Using the result of the detection amount comparison step, the change in the binding mode (binding amount, binding force, etc.) between the C peptide and the present protein due to the presence of the test compound is examined. Specifically, for example, if the amount of binding between the C peptide and this protein decreases due to the presence of the test compound, it is determined that the test compound has an action to inhibit or suppress the binding between these two molecules. Can do. On the other hand, if the amount of binding between the C peptide and this protein increases due to the presence of the test compound, it is judged that the test compound has the effect of promoting or enhancing the binding between these two molecules. be able to. In this manner, a compound that changes the binding property between the C peptide and the present protein, that is, a compound that can regulate the action state of the C peptide can be selected. The selected compounds are effective for medical treatment of diseases involving C peptide (ie, diseases characterized by abnormal action of C peptide). For example, a compound that has been shown to inhibit or inhibit the binding of the C peptide and the protein is expected to be used to suppress the action of the C peptide. Therefore, the compound is expected to be applied for the treatment and prevention of diseases caused by high expression of C peptide. On the other hand, compounds that have been shown to promote or enhance the binding of C peptide and the present protein can be used to enhance the action of C peptide. Therefore, the compound is expected to be used for the treatment and prevention of diseases caused by low expression of c-peptide.
以上のように、本発明のスクリーニング方法によって選抜された化合物は、 Cぺプチ ドが関与する疾患に対する薬剤の有力な候補、又はそのような薬剤を開発する際の 有益な材料となる。 As described above, the compound selected by the screening method of the present invention is C peptide. It is a promising candidate for drugs for diseases in which it is involved, or a useful material in developing such drugs.
[0034] 本発明の他の態様では、細胞ベースのスクリーニング方法が提供される。この態様 では、試験化合物の存在によって、本タンパク質 (好ましくは HSPA9B又は HSPA5)の 細胞内発現量が変化するか否かが調べられる。例えば、試験化合物の存在下で細 胞を所定時間培養するステップ (培養ステップ)と、培養後の細胞内の本タンパク質 の発現量を測定するステップ (発現量測定ステップ)と、前記ステップで得られた本タ ンパク質の発現量を、試験化合物の非存在下で同様に細胞を培養した後の細胞内 の本タンパク質の発現量と比較するステップ (発現量比較ステップ)とを順に実施する 具体的には例えば、まず試験化合物の存在下で培養する細胞群 (試験群)と、同 種の細胞からなり試験化合物の非存在下で培養する細胞群 (対照群)とを用意し、試 験化合物の有無以外は同条件でそれぞれ培養する。培養後、各群について本タン パク質の細胞内発現量を測定する。最後に測定結果を比較する。尚、試験化合物の 非存在下での本タンパク質の細胞内発現量が予め判明している場合には、これを対 照群における本タンパク質の細胞内発現量として試験化合物を評価してもよい。この 場合には、試験化合物の非存在下での培養を省略することができることになる。  [0034] In another aspect of the invention, a cell-based screening method is provided. In this embodiment, it is examined whether the intracellular expression level of the present protein (preferably HSPA9B or HSPA5) changes due to the presence of the test compound. For example, a step of culturing a cell for a predetermined time in the presence of a test compound (cultivation step), a step of measuring the expression level of the protein in the cultured cell (expression level measurement step), The step of comparing the expression level of this protein with the expression level of the protein in the cell after similarly culturing the cells in the absence of the test compound (expression level comparison step) For example, first prepare a cell group (test group) cultured in the presence of the test compound and a cell group (control group) consisting of the same type of cells and cultured in the absence of the test compound. Incubate under the same conditions except for the presence or absence. After incubation, the intracellular expression level of this protein is measured for each group. Finally, the measurement results are compared. When the intracellular expression level of the protein in the absence of the test compound is known in advance, the test compound may be evaluated using this as the intracellular expression level of the protein in the control group. In this case, culturing in the absence of the test compound can be omitted.
[0035] 細胞内発現量は例えば、本タンパク質に特異的結合性を有する抗体を使用する免 疫学的手法を用いて本タンパク質を直接検出することによって測定できる。或いは、 本タンパク質をコードする mRNAを検出することにしてもよい。この場合には、本タンパ ク質をコードする mRNAの量を指標として本タンパク質の発現量が把握される。 mRNA の検出には、特異的なプローブを用いた各種ハイブリダィゼーシヨン法 (例えばサザ ンブロット法)など、常法を採用できる。  [0035] The intracellular expression level can be measured, for example, by directly detecting the protein using an immunological technique using an antibody having a specific binding property to the protein. Alternatively, mRNA encoding the present protein may be detected. In this case, the expression level of the protein can be ascertained using the amount of mRNA encoding the protein as an index. For detection of mRNA, conventional methods such as various hybridization methods using a specific probe (eg, Southern blotting) can be employed.
[0036] 試験群と対照群との比較結果に基づいて、試験化合物の存在が本タンパク質の細 胞内発現量に影響するか否か、及び影響する場合にはその程度を求める。その結 果、試験化合物が存在することによって、本タンパク質の細胞内発現量に変化がみ られれば、本タンパク質の発現量を調節する作用を試験化合物が有すると判断する ことができる。ここで、本発明者らの検討の結果、本タンパク質は生体における Cぺプ チドの結合物質であり、 cペプチドの作用が発揮されるキー分子であることが判明し た。即ち、生体における cペプチドの作用状態 (作用量)は本タンパク質の発現量 (及 びァフィユティー)に依存する。このことから、本タンパク質の発現量を調節する作用 を有する試験化合物は、生体において Cペプチドの作用状態を調節することができ るといえる。以上のように、細胞ベースのスクリーニング方法によっても Cペプチドの作 用状態を調節し得る化合物を選抜することができる。 [0036] Based on the comparison results between the test group and the control group, whether or not the presence of the test compound affects the expression level of the protein in the cell is determined, and if so, the degree thereof. As a result, if there is a change in the intracellular expression level of the protein due to the presence of the test compound, it can be determined that the test compound has an effect of regulating the expression level of the protein. Here, as a result of the study by the present inventors, this protein is a C peptide in the living body. It was found that it is a binding substance for tide and a key molecule that exerts the action of c-peptide. In other words, the action state (action amount) of c-peptide in the living body depends on the expression level (and utility) of this protein. From this, it can be said that a test compound having an action of regulating the expression level of this protein can regulate the action state of the C peptide in the living body. As described above, compounds capable of regulating the action state of C peptide can also be selected by a cell-based screening method.
[0037] 本発明のスクリーニング方法にぉ 、て試験群と対照群を同一の細胞 (細胞群)で構 成してもよい。例えば、まず試験化合物の非存在下で細胞を培養して本タンパク質 の発現量を測定した後 (対照群の測定)、培養液に試験化合物を添加し、更に所定 時間培養をする。培養終了後、本タンパク質の細胞内発現量を測定する (試験群の 測定)。  [0037] In the screening method of the present invention, the test group and the control group may be composed of the same cells (cell group). For example, after culturing cells in the absence of the test compound and measuring the expression level of this protein (measurement in the control group), the test compound is added to the culture medium, and further cultured for a predetermined time. After completion of the culture, measure the intracellular expression level of this protein (measurement of the test group).
[0038] 本タンパク質を発現可能であるという条件を満たす限り、使用する細胞の種類は問 わない。例えば、 HeLa細胞、 COS細胞、 CHO細胞等、株化された細胞を使用するこ とができる。これらの細胞は ATCCなどの細胞バンク力も容易に入手可能である。ま た、生体より分離された細胞を直接用いることもできる。例えば、ヒト、サル、ゥシ、ゥマ 、マウス、ラット、ゥサギ、 -ヮトリ等力も採取した細胞を本発明のスクリーニング方法に 供することができる。  [0038] As long as the condition that the protein can be expressed is satisfied, the type of cell used is not limited. For example, established cells such as HeLa cells, COS cells, and CHO cells can be used. These cells are also readily available for cell banking, such as ATCC. In addition, cells separated from a living body can be used directly. For example, cells collected from humans, monkeys, horses, horses, mice, rats, rabbits, chickens and the like can be used in the screening method of the present invention.
さらには、ヒト以外の動物細胞 (例えばマウス、ラット、ゥサギ、 -ヮトリなど)であること を条件として、生体から分離されて!、な 、状態 (即ち生体を構成して 、る状態)の細 胞を使用してもよい。この場合には例えば、個体に対して試験化合物を経口又は非 経口投与し、所定時間経過した後に、特定の細胞内(例えば血管平滑筋細胞、神経 系細胞など)における本タンパク質の量を測定する。そして測定量を、本タンパク質を 投与しな!、場合の本タンパク質の量と比較する。  Furthermore, it must be separated from the living body on the condition that it is a non-human animal cell (for example, mouse, rat, rabbit, chicken, etc.), and the state (that is, the state that constitutes the living body) is detailed. Blasts may be used. In this case, for example, the test compound is orally or parenterally administered to an individual, and after a predetermined time has elapsed, the amount of the protein in a specific cell (for example, vascular smooth muscle cell, nervous system cell, etc.) is measured. . Then, compare the measured amount with the amount of the protein in the case where the protein is not administered!
[0039] 分散した状態の細胞ではなぐ細胞間にネットワークの形成が認められる細胞群( 例えば特定の組織を形成した細胞)をスクリーニングに使用することもできる。また、 異なる二種類以上の細胞を併用して本発明のスクリーニング方法を実施してもよい。  [0039] A cell group in which a network is formed between cells other than dispersed cells (for example, cells forming a specific tissue) can be used for screening. Further, the screening method of the present invention may be performed using two or more different types of cells in combination.
[0040] 使用する細胞の数は特に限定されず、本タンパク質の検出量、実験設備等を考慮 して定めることができる。例えば、 1〜105個、好ましくは 10〜104個、更に好ましくは 102 〜103個の細胞を用いることができる。 [0040] The number of cells to be used is not particularly limited, and can be determined in consideration of the detected amount of the present protein, experimental equipment, and the like. For example, 1 to 10 5, preferably 10 to 10 4, more preferably 10 2 ~ 10 3 cells can be used.
[0041] (Cペプチドの作用状態を調節する化合物) [0041] (Compound that modulates the action state of C-peptide)
本発明のさらに他の局面は、 Cペプチドの作用状態を調節することができる化合物 に関する。具体的には一態様として、 Cペプチド又は配列番号 1のアミノ酸配列を有 するタンパク質に対して特異的結合性を有し、且つ Cペプチドと前記タンパク質との 結合を阻害する抗体が提供される。他の態様として、 Cペプチド又は配列番号 3のァ ミノ酸配列を有するタンパク質に対して特異的結合性を有し、且つ Cペプチドと前記 タンパク質との結合を阻害する抗体が提供される。これらの抗体は例えば、その特異 的結合性を利用して、 Cペプチドと本タンパク質との結合アツセィに用いることができ る。また、当該抗体は、 Cペプチドの作用を阻害する活性を有することから、 Cぺプチ ドの高発現が原因となる疾患に対する薬剤として利用され得る。尚、抗体の作製方法 については、上記本発明の検出方法の欄に記載した方法を採用できる。  Yet another aspect of the present invention relates to a compound capable of modulating the action state of a C peptide. Specifically, as one aspect, there is provided an antibody that specifically binds to a C peptide or a protein having the amino acid sequence of SEQ ID NO: 1 and inhibits the binding between the C peptide and the protein. In another embodiment, there is provided an antibody having a specific binding property to a C peptide or a protein having the amino acid sequence of SEQ ID NO: 3 and inhibiting the binding between the C peptide and the protein. These antibodies can be used, for example, for the binding assay between the C peptide and the present protein by utilizing its specific binding property. In addition, since the antibody has an activity of inhibiting the action of C peptide, it can be used as a drug for diseases caused by high expression of C peptide. As the antibody production method, the method described in the detection method column of the present invention can be employed.
[0042] (Cペプチドの作用状態を調節する方法) [0042] (Method of adjusting action state of C peptide)
本発明のさらに他の局面は、標的細胞内において Cペプチドの作用状態を調節す る方法に関する。この局面の一態様では、標的細胞に本タンパク質 (好ましくは HSPA 9B又は HSPA5)を人為的に導入するステップが実施される。これによつて、 Cペプチド の特異的結合分子である本タンパク質の標的細胞内存在量が増加し、それに伴い C ペプチドの作用量が増強される。従って、 Cペプチドの作用量の増加が標的細胞に 及ぼす影響を調べることができる。換言すれば、 Cペプチドの生理学的作用を調べる ために好適な実験系が提供される。ここで、標的細胞が生体を構成する細胞 (後に 生体に移植される細胞を含む)であれば、生体における Cペプチドの作用量を増大さ せることができる。従って、 Cペプチドの低発現が原因となる疾患に罹患した対象を 治療するために本発明の方法を利用することができる。  Yet another aspect of the present invention relates to a method for regulating the action state of a C peptide in a target cell. In one embodiment of this aspect, the step of artificially introducing the protein (preferably HSPA 9B or HSPA5) into the target cell is performed. As a result, the abundance of the protein, which is a specific binding molecule of C peptide, in the target cell increases, and the action amount of C peptide is enhanced accordingly. Therefore, it is possible to examine the influence of an increase in the action amount of C peptide on target cells. In other words, a suitable experimental system is provided for investigating the physiological effects of C-peptide. Here, if the target cell is a cell constituting a living body (including a cell to be transplanted into the living body later), the amount of action of the C peptide in the living body can be increased. Therefore, the method of the present invention can be used to treat a subject suffering from a disease caused by low expression of C peptide.
本発明の他の態様では、標的細胞に対して、 Cペプチドと本タンパク質との結合を 阻害する化合物を投与するステップが実施される。これによつて、標的細胞内におけ る、 Cペプチドの作用量を低下させることができる。従って、 Cペプチドの作用量の低 下が標的細胞に及ぼす影響を調べることができる。換言すれば、この態様において も Cペプチドの生理学的作用を調べるために好適な実験系が提供される。ここで、標 的細胞が生体を構成する細胞 (後に生体に移植される細胞を含む)であれば、生体 における Cペプチドの作用量を低下させることができる。従って、 Cペプチドの高発現 が原因となる疾患に罹患した対象を治療するために本発明の方法を利用することが できる。 In another embodiment of the present invention, the step of administering to the target cell a compound that inhibits the binding between the C peptide and the protein is performed. As a result, the action amount of the C peptide in the target cell can be reduced. Therefore, it is possible to examine the influence of a decrease in the action amount of C peptide on the target cells. In other words, also in this embodiment, a suitable experimental system is provided for examining the physiological action of C peptide. Where If the target cell is a cell constituting a living body (including cells that are transplanted into the living body later), the amount of action of the C peptide in the living body can be reduced. Therefore, the method of the present invention can be used to treat a subject suffering from a disease caused by high expression of C peptide.
[0043] 本発明の更に他の態様では、標的細胞において本タンパク質 (好ましくは HSPA9B 又は HSPA5)の発現を阻害ないし抑制することによって、 Cペプチドの作用状態を調 節する方法が提供される。本タンパク質の発現の阻害ないし抑制は、アンチセンス法 や RNA干渉によって、或!、はリボザィムの使用によって行うことができる。  [0043] In still another embodiment of the present invention, there is provided a method for regulating the action state of a C peptide by inhibiting or suppressing the expression of the protein (preferably HSPA9B or HSPA5) in a target cell. Inhibition or suppression of the expression of this protein can be achieved by antisense methods, RNA interference, or by using ribozymes.
[0044] アンチセンス法による発現阻害を行う場合には例えば、標的細胞内で転写されたと きに、本タンパク質をコードする mRNAの固有の部分に相補的な RNAを生成するアン チセンス 'コンストラクトが使用される。このようなアンチセンス 'コンストラクトは例えば、 発現プラスミドの形態で標的細胞に導入される。一方、アンチセンス'コンストラクトと して、標的細胞内に導入されたときに、本タンパク質をコードする mRNAZ又はゲノム DNA配列とハイブリダィズしてその発現を阻害するオリゴヌクレオチド 'プローブを採 用することもできる。このようなオリゴヌクレオチド 'プローブとしては、好ましくは、ェキ ソヌクレアーゼ及び Z又はエンドヌクレアーゼなどの内因性ヌクレアーゼに対して抵 抗性であるものが用いられる。  [0044] In the case of performing expression inhibition by an antisense method, for example, an antisense construct that generates RNA complementary to a unique part of mRNA encoding this protein when transcribed in a target cell is used. Is done. Such an antisense 'construct is introduced into a target cell, for example, in the form of an expression plasmid. On the other hand, an oligonucleotide 'probe that hybridizes with the mRNAZ or genomic DNA sequence encoding this protein and inhibits its expression when introduced into the target cell as an antisense' construct can also be employed. . Such oligonucleotide probes are preferably those that are resistant to exonucleases and endogenous nucleases such as Z or endonucleases.
アンチセンス核酸として DNA分子を使用する場合、本タンパク質をコードする mRNA の翻訳開始部位 (例えば- 10〜+10の領域)を含む領域に由来するオリゴデォキシリ ボヌクレオチドが好ましい。  When a DNA molecule is used as an antisense nucleic acid, an oligodeoxyribonucleotide derived from a region containing a translation initiation site (for example, a region of −10 to +10) of mRNA encoding the present protein is preferable.
[0045] アンチセンス核酸と、標的核酸との間の相補性は厳密であることが好ましいが、多 少のミスマッチが存在して 、てもよ 、。標的核酸に対するアンチセンス核酸のハイブ リダィズ能は一般に、両核酸の相補性の程度及び長さの両方に依存する。通常、使 用するアンチセンス核酸が長いほど、ミスマッチの数が多くても、標的核酸との間に 安定な二重鎖 (又は三重鎖)を形成することができる。当業者であれば、標準的な手 法を用いて、許容可能なミスマッチの程度を確認することができる。  [0045] The complementarity between the antisense nucleic acid and the target nucleic acid is preferably strict, but there may be a few mismatches. The ability of an antisense nucleic acid to hybridize to a target nucleic acid generally depends on both the degree of complementarity and the length of both nucleic acids. In general, the longer the antisense nucleic acid used, the more stable duplexes (or triplexes) can be formed with the target nucleic acid, even if the number of mismatches is large. One skilled in the art can ascertain the degree of acceptable mismatch using standard techniques.
[0046] アンチセンス核酸は DNA、 RNA、若しくはこれらのキメラ混合物、又はこれらの誘導 体や改変型であってもよい。また、一本鎖でも二本鎖でもよい。塩基部分、糖部分、 又はリン酸骨格部分を修飾することで、アンチセンス核酸の安定性、ハイブリダィゼ ーシヨン能等を向上させることなどができる。また、アンチセンス核酸に、細胞膜輸送 を促す物質(例えば Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6 556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810, published December 15, 1988を参照されたい)や、特定の細胞に対す る親和性を高める物質などを付加してもよ 、。 [0046] The antisense nucleic acid may be DNA, RNA, or a chimeric mixture thereof, or a derivative or modified form thereof. Moreover, it may be single-stranded or double-stranded. Base part, sugar part, Alternatively, the stability of the antisense nucleic acid, the hybridization ability, etc. can be improved by modifying the phosphate skeleton. In addition, antisense nucleic acids can promote cell membrane transport (eg, Letsinger et al., 1989, Proc. Natl. Acad. Sci. USA 86: 6553-6 556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84: 648-652; see PCT Publication No. W088 / 09810, published December 15, 1988) or substances that increase affinity for specific cells.
アンチセンス核酸は例えば市販の自動 DNA合成装置 (例えばアプライド 'バイオシ ステムズ社等)を使用するなど、常法で合成することができる。核酸修飾体や誘導体 の作製には例えば、 Stein et al.(1988), Nucl. Acids Res. 16:3209や Sarin et al., (198 8), Proc. Natl. Acad. Sci. U.S.A. 85:7448- 7451等を参照することができる。  The antisense nucleic acid can be synthesized by a conventional method, for example, using a commercially available automatic DNA synthesizer (for example, Applied Biosystems). For example, Stein et al. (1988), Nucl. Acids Res. 16: 3209 and Sarin et al., (198 8), Proc. Natl. Acad. Sci. USA 85: 7448 -You can refer to 7451 etc.
[0047] 標的細胞内におけるアンチセンス核酸の作用を高めるために、 pol IIや pol IIIといつ た強力なプロモーターを利用することができる。即ち、このようなプロモーターの制御 下に配置されたアンチセンス核酸を含むコンストラクトを標的細胞に導入すれば、当 該プロモーターの作用によって十分な量のアンチセンス核酸の転写を確保できる。 アンチセンス核酸の発現は、哺乳動物細胞 (好ましくはヒト細胞)で機能することが 知られている任意のプロモーター(誘導性プロモーター又は構成的プロモーター)に よって行うことができる。例えば、 SV40初期プロモーター領域(Bernoist and Chambon , 1981, Nature 290:304-310)、ラウス肉腫ウィルスの 3'末端領域由来のプロモーター( Yamamoto et al., 1980, Cell 22:787-797)、疱疹チミジン'キナーゼ 'プロモーター (Wa gner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441- 1445)等のプロモーターを 使用することができる。 [0047] In order to enhance the action of the antisense nucleic acid in the target cell, a strong promoter such as pol II or pol III can be used. That is, if a construct containing an antisense nucleic acid arranged under the control of such a promoter is introduced into a target cell, a sufficient amount of the antisense nucleic acid can be transcribed by the action of the promoter. Expression of the antisense nucleic acid can be performed by any promoter (inducible promoter or constitutive promoter) known to function in mammalian cells (preferably human cells). For example, SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290: 304-310), rous sarcoma virus 3 ′ end region promoter (Yamamoto et al., 1980, Cell 22: 787-797), herpes zoster thymidine Promoters such as 'kinase' promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. USA 78: 1441-1445) can be used.
[0048] 本発明の一態様では、 RNA干渉(RNAi)により本タンパク質の発現阻害を行う。 RN Aiは、真核細胞内で引き起こすことが可能な、配列特異的な転写後遺伝子抑制のプ ロセスである。 RNA干渉では、標的 mRNAの配列に対応する配列を有する二本鎖 RN A (dsRNA)が使用される。哺乳動物細胞は、 dsRNAの影響を受ける 2つの経路 (配列 特異的経路及び配列非特異的経路)を有することが知られて!/、る。配列特異的経路 においては、比較的長い dsRNAが短い干渉性の RNA (siRNA)に分割される。この siR NAは、それぞれが 3'末端に突出部を有する約 19ヌクレオチドの siRNAを形成する約 2 1ヌクレオチドのセンス及びアンチセンス鎖を有する。他方、配列非特異的経路は、 所定の長さ以上であれば配列に関係なぐ任意の dsRNAによって惹起されると考えら れている。この経路では、 dsRNAが二つの酵素、即ち、活性型となり翻訳開始因子 el F2をリン酸化することでタンパク質合成のすべてを停止させる PKRと、 RNAase L活性 化分子の合成に関与する 2',5'オリゴアデニル酸シンターゼが活性化される。本発明 の方法では、この非特異的経路の進行を最小限に留めるために、約 30塩基対より短 い dsRNAを使用することが好ましい (Hunter et al. (1975) J Biol Chem 250: 409-17; Manche et al. (1992) Mol Cell Biol 12: 5239—48; Minks et al. (1979) J Biol Chem 25 4: 10180-3;及び Elbashir et al. (2001) Nature 411: 494- 8を参照されたい)。 [0048] In one embodiment of the present invention, the expression of the protein is inhibited by RNA interference (RNAi). RN Ai is a sequence-specific post-transcriptional gene repression process that can occur in eukaryotic cells. In RNA interference, a double-stranded RNA (dsRNA) having a sequence corresponding to the sequence of the target mRNA is used. Mammalian cells are known to have two pathways affected by dsRNA (sequence-specific pathways and sequence non-specific pathways)! In sequence-specific pathways, relatively long dsRNAs are split into short interfering RNAs (siRNAs). This siRNA is about 2 which forms about 19 nucleotide siRNA each with an overhang at the 3 'end. Has a 1 nucleotide sense and antisense strand. On the other hand, a sequence non-specific pathway is thought to be triggered by any dsRNA related to the sequence if it is longer than a predetermined length. In this pathway, dsRNA is involved in the synthesis of two enzymes: PKR, which becomes active and phosphorylates the translation initiation factor el F2 to stop all protein synthesis, and RNAase L activation molecule 2 ', 5 'Oligoadenylate synthase is activated. In the method of the present invention, it is preferable to use dsRNA shorter than about 30 base pairs in order to minimize the progression of this non-specific pathway (Hunter et al. (1975) J Biol Chem 250: 409- 17; Manche et al. (1992) Mol Cell Biol 12: 5239-48; Minks et al. (1979) J Biol Chem 25 4: 10180-3; and Elbashir et al. (2001) Nature 411: 494-8. See).
尚、 RNAiは様々な細胞種(例えば、 HeLa細胞、 NIH/3T3細胞、 COS細胞、 293細 胞等)にお 、て遺伝子発現を減少させる効果的な手段であることが確認されて 、る。 また、通常は、アンチセンス法よりも効果的に発現阻害を行える。  RNAi has been confirmed to be an effective means for reducing gene expression in various cell types (eg, HeLa cells, NIH / 3T3 cells, COS cells, 293 cells, etc.). In general, the expression can be inhibited more effectively than the antisense method.
[0049] RNAiに使用する dsRNAは、化学合成によって、又は適当な発現ベクターを用いて i n vitro又は in vivoで調製することができる。後者の方法は、比較的長い dsRNAの調 製を行うことに特に有効である。 dsRNAの設計には通常、標的核酸に固有の配列 (連 続配列)が利用される。尚、適当な標的配列を選択するためのプログラム及びアルゴ リズムが開発されている。  [0049] The dsRNA used for RNAi can be prepared in vitro or in vivo by chemical synthesis or using an appropriate expression vector. The latter method is particularly effective for preparing relatively long dsRNA. In designing dsRNA, a sequence unique to the target nucleic acid (continuous sequence) is usually used. A program and algorithm for selecting an appropriate target sequence have been developed.
[0050] 本発明の他の一態様ではリボザィムにより本タンパク質の発現阻害を行う。部位特 異的認識配列で mRNAを開裂させるリボザィムを用いて、本タンパク質をコードする m RNAを破壊することもできる力 好ましくはハンマーヘッド'リボザィムを使用する。ノヽ ンマーヘッド'リボザィムの構築方法については例えば Haseloff and Gerlach, 1988, N ature, 334:585-591を参考にすることができる。  [0050] In another embodiment of the present invention, the expression of the protein is inhibited by a ribozyme. A force capable of destroying mRNA encoding the protein using a ribozyme that cleaves mRNA with a site-specific recognition sequence. Preferably, a hammerhead ribozyme is used. For the construction method of the non-header ribozyme, for example, Haseloff and Gerlach, 1988, Nature, 334: 585-591 can be referred to.
アンチセンス法の場合と同様に、例えば安定性やターゲット能を向上させることを目 的として、修飾されたオリゴヌクレオチドを用いてリボザィムを構築してもよい。効果的 な量のリボザィムを標的細胞内で生成させるために、例えば、強力なプロモーター( 例えば pol IIや pol III)の制御下に、当該リボザィムをコードする DNAを配置した核酸 コンストラクトを使用することが好ましい。  As in the antisense method, ribozymes may be constructed using modified oligonucleotides, for example, for the purpose of improving stability and targeting ability. To generate an effective amount of a ribozyme in a target cell, for example, a nucleic acid construct in which DNA encoding the ribozyme is placed under the control of a strong promoter (eg, pol II or pol III) can be used. preferable.
[0051] (本発明の方法に使用されるキット) 上記本発明の各方法 (本タンパク質を検出対象とした検出方法、本タンパク質を利 用したスクリーニング方法など)を、キットィ匕した試薬等を用いて実施してもよい。本発 明の他の局面はこのような目的に使用されるキットを提供する。例えば、本タンパク質 を検出対象とした検出方法に使用されるキットの場合、その構成要素 (成分)として、 本タンパク質に特異的結合性を有する試薬 (第 1試薬)を含む。第 1試薬は好ましくは 抗体又は抗体断片である。また、第 1試薬として、検出可能な標識物質が結合したも のを用いれば、当該標識物質の量を指標として直接的な検出 (測定)が可能となる。 他方、当該試薬に対して特異的に結合する試薬 (第 2試薬)であって、標識物質が結 合したもの (例えば標識ィ匕二次抗体)を用いれば、第 1試薬を介して結合した第 2試 薬力 得られる標識量を指標として、第 1試薬の結合量を間接的に検出することが可 能である。以上の試薬に加えて本発明のキットには、第 1試薬等を使用する反応に必 要な希釈液、反応液、反応容器等を含めることができる。 [0051] (Kit used in the method of the present invention) Each of the above-described methods of the present invention (a detection method using the present protein as a detection target, a screening method using the present protein, etc.) may be carried out using a kited reagent or the like. Another aspect of the present invention provides kits used for such purposes. For example, in the case of a kit used for a detection method using the present protein as a detection target, a reagent (first reagent) having specific binding property to the present protein is included as a component (component) thereof. The first reagent is preferably an antibody or antibody fragment. Further, if a detectable substance labeled with a label is used as the first reagent, direct detection (measurement) is possible using the amount of the labeling substance as an index. On the other hand, if a reagent that specifically binds to the reagent (second reagent) with a labeling substance (for example, a labeled antibody secondary antibody) is used, the reagent is bound via the first reagent. Second Reagent Power Using the amount of label obtained as an index, it is possible to indirectly detect the binding amount of the first reagent. In addition to the reagents described above, the kit of the present invention can contain a diluent, a reaction solution, a reaction vessel, and the like necessary for the reaction using the first reagent and the like.
一方、本発明のスクリーニング方法に使用されるキットの場合、典型的には、その構 成要素 (成分)として、 Cペプチドを含む第 1試薬と、本タンパク質 (例えば、 HSPA9B 又は HSPA5)を含む第 2試薬とを含む。 Cペプチド又は本タンパク質が不溶性支持体 に結合した状態であってもよい。第 1試薬又は第 2試薬を予め標識ィ匕しておけば、 C ペプチドと本タンパク質との結合量を直接検出可能なキットとなる。一方、 Cペプチド 又は本タンパク質に対して特異的結合性を有し、標識化された化合物 (例えば抗体) をキットに同梱することにしてもよい。力かるキットを使用した場合には、標識化化合 物の量 (標識量)を指標にして Cペプチドと本タンパク質の結合量が間接的に検出さ れる。  On the other hand, in the case of a kit used in the screening method of the present invention, typically, as a component (component) thereof, a first reagent containing C peptide and a second reagent containing the present protein (for example, HSPA9B or HSPA5) are used. 2 reagents. The C peptide or the protein may be bound to an insoluble support. If the first reagent or the second reagent is labeled in advance, the kit can directly detect the binding amount between the C peptide and this protein. On the other hand, a labeled compound (for example, an antibody) having a specific binding property to C peptide or the present protein may be included in the kit. When a powerful kit is used, the amount of binding between the C peptide and the protein is indirectly detected using the amount of the labeled compound (label amount) as an index.
尚、本発明のキットには通常、使用説明書が添付される。  The kit of the present invention usually includes instructions for use.
実施例 1  Example 1
[0052] < Cペプチドに特異的結合性を有するタンパク質の分離'精製、及び同定 >  [0052] <Separation of protein having specific binding property to C-peptide> Purification and identification>
1. Cペプチド結合カラムの作製  1. Preparation of C peptide bond column
約 lmlの NHS- activated Sepharose 4 Fast Flow (アマシャムバイオサイエンス、 71-50 About lml NHS-activated Sepharose 4 Fast Flow (Amersham Bioscience, 71-50
00-14)に Cペプチド 2mgを製造元より供与された所定の方法に従 、結合させた。 00-14) was bound with 2 mg of C peptide according to a predetermined method provided by the manufacturer.
[0053] 2. Cペプチド特異的結合タンパク質の分離 ·精製 以下の手順で、 cペプチドに特異的結合性を有するタンパク質の分離'精製を試み た。 [0053] 2. Separation and purification of C peptide-specific binding protein In the following procedure, separation and purification of a protein having specific binding property to c-peptide was attempted.
(1) 10%FCS添加 DMEM、 5%CO、 37°Cの条件で培養したヒト大動脈平滑筋細胞を 15c  (1) Human aortic smooth muscle cells cultured in DMEM, 5% CO, 37 ° C with 10% FCS
2  2
mシャーレ 10枚より回収した (細胞数約 1 X 108個)。 m Collected from 10 dishes (number of cells: about 1 X 10 8 ).
(2)回収した細胞を、 Lysis buffer 1.5ml : 25mM Tris- HCl(pH7.5)、 1% NP40、インヒビタ 一(Complete Mini,ロッシュ、 1 836 153)に懸濁し、 4°Cで 30min放置した。この処理に よって細胞を可溶ィ匕した。  (2) The recovered cells were suspended in Lysis buffer 1.5 ml: 25 mM Tris-HCl (pH 7.5), 1% NP40, inhibitor (Complete Mini, Roche, 1 836 153) and left at 4 ° C for 30 min. . This treatment solubilized the cells.
(3)上記処理後、 15,000 X g、 lOminの条件で遠心処理し、上清を回収した (細胞抽出 液、約 lml)。  (3) After the above treatment, the mixture was centrifuged at 15,000 X g and lOmin, and the supernatant was collected (cell extract, approximately 1 ml).
(4)細胞抽出液と、 1.で作製した Cペプチド結合カラム(lml)とを室温で反応させた。 (4) The cell extract was reacted with the C peptide binding column (lml) prepared in 1. at room temperature.
(5)反応終了後、 Lysis buffer (lml)で洗浄し (3回)、 Cペプチド結合カラムに非特異的 に結合した成分を除去した。 (5) After completion of the reaction, washing was performed with Lysis buffer (lml) (3 times) to remove components that non-specifically bound to the C peptide binding column.
(6) 0.1Mグリシン (pH3.0) lmlによって、洗浄処理後の Cペプチド結合カラム力も結合 成分を溶出させた(1回)。尚、溶出液は直ちにグリシン (pH 3.0)で中和させた。  (6) The binding component was also eluted with 1 ml of 0.1 M glycine (pH 3.0) in the C peptide binding column force after the washing treatment (once). The eluate was immediately neutralized with glycine (pH 3.0).
(7)中和後の溶出液を、ポリエチレングリコールを用いて約 100 1 (約 10倍濃縮)にな るまで濃縮した (サンプル溶液)。  (7) The eluate after neutralization was concentrated to about 100 1 (about 10-fold concentration) using polyethylene glycol (sample solution).
(8)以上の手順で得られたサンプル溶液を SDS-PAGEにて分離した後、銀染色に供し た。  (8) The sample solution obtained by the above procedure was separated by SDS-PAGE and then subjected to silver staining.
[0054] 染色後のゲルを図 1上段に示す。左レーン:上記手順で調製したサンプル溶液の 泳動結果 (Cペプチド (+))、右レーン: Cペプチド結合カラムの代わりに、 Cペプチドを 結合させていない NHS- activated Sepharose 4 Fast Flowを用い、それ以外は同様の 手順で調製した対照サンプルの泳動結果 (Cペプチド (-))である。尚、図 1下段では、 バンド位置を線(1、 2)で示している。図 1から明らかなように、左レーン (Cペプチド (+ ))では二つのバンドが認められる。即ち、 Cペプチド結合カラムに特異的に結合する 二種類のタンパク質が得られた。泳動度より、これらのタンパク質の分子量はそれぞ れ約 70kDa及び約 68kDaと推定された。  [0054] The stained gel is shown in the upper part of FIG. Left lane: electrophoresis result of sample solution prepared in the above procedure (C peptide (+)), right lane: NHS-activated Sepharose 4 Fast Flow without C peptide binding is used instead of C peptide binding column. Except for is the migration result (C peptide (-)) of the control sample prepared by the same procedure. In the lower part of Fig. 1, the band positions are indicated by lines (1, 2). As is clear from FIG. 1, two bands are observed in the left lane (C peptide (+)). That is, two types of proteins that specifically bind to the C peptide binding column were obtained. From the mobility, the molecular weights of these proteins were estimated to be about 70 kDa and about 68 kDa, respectively.
[0055] 3. Cペプチド特異的結合タンパク質の同定  [0055] 3. Identification of C peptide-specific binding proteins
次に、分離に成功した二種類のタンパク質の同定を試みた。まず、上記と同様の手 順 ((1)〜 ))でサンプル溶液を調製した後、 SDS-PAGEによる分離及び PVDF膜への 転写を行い、 MALDI- TOF/MS解析(PMF解析)を実施した。その結果、 SDS- PAGE で約 70kDaのバンドとして観察されたタンパク質は熱ショック 70kDaタンパク質 9B前駆 体(ACCESSION: NP— 004125, DEFINITION: heat shock 70kDa protein 9B precurso r; heat shock 70kD protein 9; stress— 70 protein, mitochondrial; 75 kDa glucose regu lated protein; peptide— binding protein 74; mortalin, perinuclear; p66— mortalin; heat shock 70kD protein 9B (mortalin— 2) [Homo sapiens], Entrez Protein, NCBI, http:// www.ncbi.nlm.nih.gov/)であることが判明した。他方、 SDS- PAGEで約 68kDaのバンド として観察されたタンパク質は熱ショック 70kDaタンパク質 5 (ACCESSION: NP.005338 , DEFINITION: heat shock 70kDa protein 5 (glucose- regulated protein, 78kDa); He at- shock 70kD protein- 5 (glucose-regulated protein, 78kD); heat shock 70kD prote in 5 (glucose-regulated protein, 78kD) [Homo sapiens], Entrez Protein, NCBI, http: //www.ncbi.nlm.nih.gov/)であることが半 IJ明した。 Next, we attempted to identify two proteins that were successfully separated. First, the same hand as above After preparing the sample solution in order ((1) to)), separation by SDS-PAGE and transfer to PVDF membrane were performed, and MALDI-TOF / MS analysis (PMF analysis) was performed. As a result, the protein observed as an approximately 70 kDa band by SDS-PAGE is the heat shock 70 kDa protein 9B precursor (ACCESSION: NP—004125, DEFINITION: heat shock 70 kDa protein 9B precursor; heat shock 70kD protein 9; stress—70 protein, mitochondrial; 75 kDa glucose regu lated protein; peptide— binding protein 74; mortalin, perinuclear; p66— mortalin; heat shock 70kD protein 9B (mortalin— 2) [Homo sapiens], Entrez Protein, NCBI, http: // www .ncbi.nlm.nih.gov /). On the other hand, the protein observed as an approximately 68kDa band on SDS-PAGE is heat shock 70kDa protein 5 (ACCESSION: NP.005338, DEFINITION: heat shock 70kDa protein 5 (glucose- regulated protein, 78kDa); He at-shock 70kD protein. -5 (glucose-regulated protein, 78kD); heat shock 70kD prote in 5 (glucose-regulated protein, 78kD) [Homo sapiens], Entrez Protein, NCBI, http: //www.ncbi.nlm.nih.gov/) It was half IJ to be.
実施例 2 Example 2
<同定された二種類のタンパク質の機能確認 > <Functional confirmation of two identified proteins>
同定された二種類のタンパク質の Cペプチドに対する結合能を確認するために、以 下の手順で競合実験を実施した。  In order to confirm the binding ability of the two identified proteins to the C-peptide, a competition experiment was performed according to the following procedure.
(1) 10%FCS添加 DMEM、 5%CO、 37°Cの条件で培養したヒト大動脈平滑筋細胞を 15c  (1) Human aortic smooth muscle cells cultured in DMEM, 5% CO, 37 ° C with 10% FCS
2  2
mシャーレ 10枚より回収した (細胞数約 1 X 108個)。 m Collected from 10 dishes (number of cells: about 1 X 10 8 ).
(2)回収した細胞を、 Lysis buffer 1.5ml : 25mM Tris- HCl(pH7.5)、 1% NP40、インヒビタ 一(Complete Mini,ロッシュ、 1 836 153)に懸濁し、 4°Cで 30min放置した。この処理に よって細胞を可溶ィ匕した。  (2) The recovered cells were suspended in Lysis buffer 1.5 ml: 25 mM Tris-HCl (pH 7.5), 1% NP40, inhibitor (Complete Mini, Roche, 1 836 153) and left at 4 ° C for 30 min. . This treatment solubilized the cells.
(3)上記処理後、 15,000 X g、 lOminの条件で遠心処理し、上清を回収した (細胞抽出 液、約 lml)。  (3) After the above treatment, the mixture was centrifuged at 15,000 X g and lOmin, and the supernatant was collected (cell extract, approximately 1 ml).
(4)細胞抽出液と Cペプチド結合カラム(実施例 1の 1.を参照、 1ml)とを、 Cペプチド の存在下、室温で反応させた。対照 1 (Cペプチド (-)カラム)として、細胞抽出液を、 C ペプチドを結合させていない NHS- activated Sepharose 4 Fast Flowと同様の条件で 反応させた。また、対照 2 (競合阻害なし)として、細胞抽出液と Cペプチド結合カラム とを cペプチドの非存在下で同様に反応させた。 (4) The cell extract and C peptide binding column (see 1. in Example 1, 1 ml) were reacted at room temperature in the presence of C peptide. As a control 1 (C peptide (-) column), the cell extract was reacted under the same conditions as NHS-activated Sepharose 4 Fast Flow to which C peptide was not bound. As control 2 (no competitive inhibition), cell extract and C peptide binding column Were reacted in the same manner in the absence of c-peptide.
(5)反応終了後、 Lysis buffer (lml)で洗浄した (3回)。  (5) After the reaction was completed, the cells were washed with Lysis buffer (lml) (3 times).
(6) 0.1Mグリシン (pH3.0) lmlによって溶出させた(1回)。尚、溶出液は直ちにグリシ ン (pH 3.0)で中和させた。  (6) Elution with 1 ml of 0.1 M glycine (pH 3.0) (once). The eluate was immediately neutralized with glycine (pH 3.0).
(7)中和後の溶出液を、ポリエチレングリコールを用いて約 100 1 (約 10倍濃縮)にな るまで濃縮した (サンプル溶液)。  (7) The eluate after neutralization was concentrated to about 100 1 (about 10-fold concentration) using polyethylene glycol (sample solution).
(8)以上の手順で得られたサンプル溶液を SDS-PAGEにて分離した後、銀染色に供し た。  (8) The sample solution obtained by the above procedure was separated by SDS-PAGE and then subjected to silver staining.
[0057] 染色後のゲルを図 2に示す。 A:対照 1 (Cペプチド (-)カラム)、 B:対照 2 (Cペプチド (+)カラム、競合阻害なし)、 C :サンプルレーン (Cペプチド (+)カラム、競合阻害)であ る。図 2から明らかなように、 Cペプチドの競合阻害によって、 70kDa付近に認められ た 2種類のバンド(約 70kDa、約 68kDa)が消失した。このことから、過剰のフリーの Cぺ プチドが、カラムとこれら 2種類のタンパク質の結合を競合的に阻害したことが分かる 。すなわち、 Cペプチド結合カラムで精製されてきた 2種類のタンパク質は Cペプチド に対して特異的結合性を有すると言える。  [0057] Fig. 2 shows the gel after staining. A: Control 1 (C peptide (-) column), B: Control 2 (C peptide (+) column, no competitive inhibition), C: Sample lane (C peptide (+) column, competitive inhibition). As is clear from FIG. 2, two types of bands (about 70 kDa and about 68 kDa) observed around 70 kDa disappeared by competitive inhibition of C peptide. This indicates that an excess of free C-peptide competitively inhibited the binding of the two proteins to the column. In other words, it can be said that the two types of proteins that have been purified by the C peptide binding column have specific binding properties to the C peptide.
実施例 3  Example 3
[0058] <同定されたタンパク質の発現実験及び機能の検証 >  [0058] <Expression experiment of identified protein and verification of function>
1.ヒト由来細胞における HSPA5及び HSPA9Bの存在確認  1. Confirmation of HSPA5 and HSPA9B in human-derived cells
ヒト血管内皮細胞(HUVEC)、ヒト胎児腎臓細胞(HEK)、 HeLa細胞力も Total RNA を抽出した後、 cDNAに変換し、 HSPA5又は HSPA9B特異的プライマーを用いて PCR を実施した。 PCR後の反応液を電気泳動に供した。電気泳動の結果を図 3に示す。 図 3の上段には HSPA5特異的プライマーによる増幅産物が示され、同下段には HSP A9B特異的プライマーによる増幅産物が示される。 PCRに使用した铸型は次の通りで ある。左のレーンから順に (l)HUVEC cDNA、 (2)HUVEC Total RNA、 (3)HEK cDNA 、 (4)HEK Total RNA、(5)HeLa cDNA、 (6)HeLa Total RNA、(7)铸型なし。  Human vascular endothelial cells (HUVEC), human fetal kidney cells (HEK), and HeLa cell force were extracted from total RNA, converted to cDNA, and PCR was performed using HSPA5 or HSPA9B specific primers. The reaction solution after PCR was subjected to electrophoresis. Fig. 3 shows the results of electrophoresis. The upper part of Fig. 3 shows the amplification product with the HSPA5-specific primer, and the lower part shows the amplification product with the HSP A9B-specific primer. The molds used for PCR are as follows. (L) HUVEC cDNA, (2) HUVEC Total RNA, (3) HEK cDNA, (4) HEK Total RNA, (5) HeLa cDNA, (6) HeLa Total RNA, (7) None .
図 3から明らかなように、 HUVEC細胞、 HEK細胞及び HeLa細胞において HSPA5及 び HSPA9Bが発現して!/、ることが確認された。  As is clear from FIG. 3, it was confirmed that HSPA5 and HSPA9B were expressed in HUVEC cells, HEK cells, and HeLa cells!
[0059] 2. HSPA5及び HSPA9Bのクロー-ング まず、 HEK細胞から PCRにて HSPA5及び HSPA9Bをクローユングした。次に、 Gatew ayシステム (インビトロジェン)を利用するため、クローユングした cDNAを組み込んだ エントリークローンを作製した。得られたエントリークローンを用いて大腸菌発現用及 び哺乳類発現用ベクターをそれぞれ作製した。尚、大腸菌発現用として cDNAクロー ンの C末端側に GST-tagが付加されるようにし、哺乳類発現用として cDNAクローンの C末端側に His- tag、 GFP- tagが付カ卩されるようにした。 [0059] 2. Closing HSPA5 and HSPA9B First, HSPA5 and HSPA9B were cloned from HEK cells by PCR. Next, in order to utilize the Gatew a y System (Invitrogen) to prepare an entry clone incorporating Kuroyungu the cDNA. Using the resulting entry clone, vectors for E. coli expression and mammalian expression were prepared. Make sure that the GST-tag is added to the C-terminal side of the cDNA clone for E. coli expression, and the His-tag and GFP-tag are attached to the C-terminal side of the cDNA clone for mammalian expression. did.
[0060] 3.大腸菌での発現 [0060] 3. Expression in E. coli
2.で得た大腸菌発現用ベクター(HSPA5発現ベクター、 HSPA9B発現ベクター)で 大腸菌を形質転換した。 IPTGで発現誘導させた後、菌体破砕液より GST融合タンパ ク質を精製し、ウェスタンプロットに供した。ウェスタンプロットの結果を図 4に示す。左 側のレーン ((1)〜(3))は、 HSPA5発現ベクターで形質転換した大腸菌力も得たサン プルについての結果、右側のレーン ((1)〜(3))は HSPA9B発現ベクターで形質転換 した大腸菌力も得たサンプルについての結果である。また、(1)は大腸菌可溶化後の 遠心処理によって得られた沈殿画分をアプライしたレーン、(2)は大腸菌可溶化後の 遠心処理によって得られた上清画分をアプライしたレーン、(3)は大腸菌可溶化後の 遠心処理によって得られた上清を Glutachione- Sepharose 4Bで精製したものをァプラ ィしたレーンである。  Escherichia coli was transformed with the E. coli expression vector obtained in 2. (HSPA5 expression vector, HSPA9B expression vector). After inducing expression with IPTG, the GST fusion protein was purified from the cell disruption solution and subjected to Western plotting. The results of the Western plot are shown in Fig. 4. The left lanes ((1) to (3)) are obtained for the samples that also obtained E. coli power transformed with the HSPA5 expression vector, and the right lanes ((1) to (3)) are transformed with the HSPA9B expression vector. The results are for samples that also have converted E. coli potency. In addition, (1) is a lane to which a precipitate fraction obtained by centrifugation after E. coli solubilization was applied, (2) is a lane to which a supernatant fraction obtained by centrifugation after E. coli solubilization was applied, ( 3) is the lane where the supernatant obtained by centrifugation after E. coli solubilization was purified with Glutachione-Sepharose 4B.
図 4からわかるように、予想される位置 (矢印)より低 、位置にバンドが観察される。 また、 HSPA9Bについては、 GSPビーズで抽出される量の減少が認められる。これらの 結果より、 目的のタンパク質 (HSPA5及び HSPA9B)が完全長の状態で発現されて!ヽ ないと推測された。  As can be seen from Fig. 4, a band is observed at a position below the expected position (arrow). For HSPA9B, a decrease in the amount extracted with GSP beads is observed. From these results, it was speculated that the target proteins (HSPA5 and HSPA9B) were expressed in the full length state!
[0061] 4.哺乳類細胞での発現 [0061] 4. Expression in mammalian cells
(1)ウェスタンプロットによる発現確認  (1) Confirmation of expression by Western plot
2.で得た哺乳類発現用ベクター(HSPA5発現ベクター、 HSPA9B発現ベクター)で HEK細胞を形質転換した。形質転換には Effecteneを利用した。細胞破砕液より Co b eadsを利用して His-tag融合タンパク質を抽出し、ウェスタンブロットに供した。ウェス タンプロットの結果を図 5に示す。左欄及び右欄ともに、左から順に空ベクターで形質 転換した HEK細胞から得たサンプルレーン(コントロール)、 HSPA5発現ベクターで形 質転換した HEK細胞から得たサンプルレーン(HSPA5)、 HSPA9B発現ベクターで形 質転換した HEK細胞力も得たサンプルレーン(HSPA9B)である。左欄において、(1) は細胞破砕液をアプライしたレーン、(2)は Co-beads抽出液をアプライしたレーンであ る。同様に右欄において、(1)は細胞破砕液をアプライしたレーン、(2)は細胞破砕液 を遠心処理した後の上清をアプライしたレーン、(3)は Co-beads抽出液をアプライした レーンである。 HEK cells were transformed with the mammalian expression vector obtained in 2. (HSPA5 expression vector, HSPA9B expression vector). Effectene was used for transformation. His-tag fusion protein was extracted from the cell lysate using Cobeads and subjected to Western blotting. Figure 5 shows the results of the Western plot. In both left and right columns, sample lanes (control) obtained from HEK cells transformed with empty vectors in order from the left, formed with HSPA5 expression vector Sample lane (HSPA5) obtained from transformed HEK cells, and sample lane (HSPA9B) from which HEK cells transformed with the HSPA9B expression vector were also obtained. In the left column, (1) is the lane to which the cell lysate was applied, and (2) is the lane to which the Co-beads extract was applied. Similarly, in the right column, (1) is the lane to which the cell lysate was applied, (2) was the lane to which the supernatant after centrifuging the cell lysate was applied, and (3) was applied to the Co-beads extract. Lane.
図 5に示すように、 Co beadsで抽出されたサンプルをアプライしたレーンにおいて、 予想される位置にバンドが観察され、 HSPA5、 HSPA9Bともに完全長の状態で発現さ れていることがわ力る。  As shown in Fig. 5, in the lane where the sample extracted with Co beads was applied, a band was observed at the expected position, indicating that both HSPA5 and HSPA9B were expressed in full length.
[0062] (2)蛍光免疫染色による発現確認 [0062] (2) Confirmation of expression by fluorescent immunostaining
まず、 35mm dishに HEK細胞を播いた。続いて、 2.で得た哺乳類発現用ベクター( HSPA5発現ベクター、 HSPA9B発現ベクター)で HEK細胞を形質転換した(HSPA5- H is (0.4ug)、 HSPA9B- His (0.4ug) )。形質転換には Effecteneを利用した。形質転換後 の細胞を回収し、 1 X 1ガラスチャンバ一に播種した。 Anti-V5 (Alexa 488 mouse)、へ キストを用いた蛍光免疫染色を行った。染色結果を図 6に示す。図 6の上段はコント口 ール (空ベクターで形質転換した HEK細胞の染色結果)である。中段は HSPA5発現 ベクターで形質転換した HEK細胞の染色結果であり、蛍光が観察される。同様に、 下段は HSPA9B発現ベクターで形質転換した HEK細胞の染色結果であり、蛍光が観 察される。これらの結果から明らかなように、哺乳類細胞において HSPA5-His及び HS PA9B-Hisを強制発現させることに成功した。  First, HEK cells were seeded in a 35 mm dish. Subsequently, HEK cells were transformed with the mammalian expression vector (HSPA5 expression vector, HSPA9B expression vector) obtained in 2. (HSPA5-His (0.4ug), HSPA9B-His (0.4ug)). Effectene was used for transformation. The transformed cells were collected and seeded in a 1 × 1 glass chamber. Fluorescent immunostaining was performed using Anti-V5 (Alexa 488 mouse) and Hoechst. The staining results are shown in FIG. The upper part of Fig. 6 shows the control panel (the result of staining HEK cells transformed with the empty vector). The middle row shows the results of staining of HEK cells transformed with the HSPA5 expression vector, and fluorescence is observed. Similarly, the lower panel shows the result of staining of HEK cells transformed with the HSPA9B expression vector, and fluorescence is observed. As is clear from these results, HSPA5-His and HS PA9B-His were successfully expressed in mammalian cells.
[0063] 5. Cペプチドとの結合実験 [0063] 5. Binding experiment with C peptide
ウェスタンブロットで HSPA5の Cペプチド結合性を検証した。図 7に示すプロトコール に従ってサンプルを調製し、ウェスタンブロットに供した。ウェスタンブロットの結果を 図 8に示す。各レーンにアプライしたサンプルは次の通りである。即ち、(3)は HSPA5 発現ベクターで形質転換した細胞力 調製した細胞破砕液の上清画分の中で Cぺ プチドビーズに結合した成分、(4)は Cペプチドビーズの代わりにペプチド未結合ビー ズを反応させて得られたサンプルである。また、(1)は HSPA5発現ベクターで形質転 換した細胞力 調製した細胞破砕液、(2)は空ベクターで形質転換した細胞力 調製 した細胞破砕液、(5)は空ベクターで形質転換した細胞力 調製した細胞破砕液の上 清画分の中で Cペプチドビーズに結合した成分、(6)は空ベクターで形質転換した細 胞力 調製した細胞破砕液の上清画分の中でペプチド未結合ビーズに結合した成 分、(7)は HSPA5発現ベクターで形質転換した細胞力 調製した細胞破砕液の上清 画分をまず Cペプチドと反応させた後、 Cペプチドビーズと反応させた場合に Cぺプ チドに結合した成分、(8)は空ベクターで形質転換した細胞力 調製した細胞破砕液 の上清画分をまず Cペプチドと反応させた後、 Cペプチドビーズと反応させた場合に Cペプチドに結合した成分である。 The C-peptide binding property of HSPA5 was verified by Western blot. Samples were prepared according to the protocol shown in Fig. 7 and subjected to Western blotting. The results of Western blot are shown in Fig. 8. Samples applied to each lane are as follows. That is, (3) is the cell force transformed with the HSPA5 expression vector, the component bound to the C peptide beads in the supernatant fraction of the prepared cell lysate, and (4) is the peptide unbound bead instead of the C peptide beads. It is a sample obtained by reacting Also, (1) is a cell lysate prepared with cell force transformed with HSPA5 expression vector, and (2) is a cell force prepared with empty vector. (5) Cell force transformed with the empty vector. (5) Components bound to the C peptide beads in the supernatant of the prepared cell lysate. (6) Cells transformed with the empty vector. The component bound to the peptide-unbound beads in the supernatant fraction of the prepared cell lysate, (7) is the cell force transformed with the HSPA5 expression vector The supernatant fraction of the prepared cell lysate is first C After reacting with the peptide, the component bound to the C peptide when reacted with the C peptide beads, (8) is the cell force transformed with the empty vector. This component is bound to C peptide when reacted with C peptide beads after reacting with peptide.
図 8から明らかなように、(3)のレーンに明確なバンドが認められる。また、(4)のレー ンにもかすかにバンドが観察される。また、その他のレーンではバンドが認められな い。これらの結果より、非特異的な結合が僅かに認められものの、強制発現させた HS PA5が Cペプチドに結合することが確認された。  As is clear from FIG. 8, a clear band is observed in the lane (3). A faint band is also observed in the lane (4). Bands are not recognized in other lanes. From these results, it was confirmed that HS PA5 that was forcibly expressed bound to the C peptide, although non-specific binding was slightly observed.
[0064] 6.細胞膜表面での発現確認 [0064] 6. Confirmation of expression on cell membrane surface
HUVEC細胞を 1 X 1ガラスチャンバ一に播き、 Cペプチド(0.3nM、 lOmin)及び TG (ト リグリセリド luM、 5hr)で刺激した後、抗 HSPA5抗体(2次抗体として FITC抗ャギ抗体 を使用)を用いて免疫染色し、蛍光を観察した。免疫染色の結果を図 9に示す。図 9 の右欄は抗 HSPA5抗体及び FITC抗ャギ抗体を反応させて得た染色像である。一方 、左欄は FITC抗ャギ抗体のみを反応させた場合 (コントロール)の染色結果である。 図 9から明らかなように、 HSPA5が膜表面に存在していることが示唆された。  HUVEC cells are seeded in a 1 x 1 glass chamber, stimulated with C peptide (0.3nM, lOmin) and TG (triglyceride luM, 5hr), then anti-HSPA5 antibody (using FITC anti-goat antibody as secondary antibody) Was used for immunostaining and fluorescence was observed. The results of immunostaining are shown in FIG. The right column in Fig. 9 is a stained image obtained by reacting anti-HSPA5 antibody and FITC anti-goat antibody. On the other hand, the left column shows the staining results when only the FITC anti-goat antibody is reacted (control). As is clear from FIG. 9, it was suggested that HSPA5 was present on the membrane surface.
[0065] 7. HSPノックダウン時の Cペプチドに対する反応 [0065] 7. Response to C-peptide during HSP knockdown
Cペプチド刺激による細胞応答の指標として ERK活性ィ匕を解析した。もし、 HSPがこ の反応に関与しているのであれば、 HSPノックダウンにより ERK活性ィ匕が抑制されるこ とになる。  ERK activity was analyzed as an index of cellular response to C peptide stimulation. If HSP is involved in this reaction, HSP knockdown will suppress ERK activity.
実験手順の概要は次の通りである(詳細を図 10に示す)。まず、 HSPA5に対するモ ルフォリノオリゴで構成されるセンス鎖、アンチセンス鎖を Endo-Porterにより HUVEC 細胞に導入した。所定の時間後 Cペプチド刺激を行い、 ERK活性ィ匕を抗リン酸化 ER K抗体によるウェスタンブロッテイングにて評価した。  The outline of the experimental procedure is as follows (details are shown in Fig. 10). First, a sense strand and an antisense strand composed of a morpholino oligo for HSPA5 were introduced into HUVEC cells by Endo-Porter. C peptide stimulation was performed after a predetermined time, and ERK activity was evaluated by Western blotting using anti-phosphorylated ERK antibody.
結果を図 11に示す。センス鎖を導入した HUVEC細胞では Cペプチド刺激により ER Kの活性化が認められたが(図 11の Νο.2)、アンチセンス鎖を導入した HUVEC細胞 では ERK活性ィ匕が有意に抑制された(図 11の Νο.4)。この結果より、 Cペプチド刺激 による ERK活性ィ匕の機序の一つとして HSPを介した経路の存在が示唆された。 The results are shown in FIG. In HUVEC cells into which sense strand has been introduced, ER is induced by C peptide stimulation. Although activation of K was observed (Νο.2 in Fig. 11), ERK activity was significantly suppressed in HUVEC cells into which the antisense strand had been introduced (Νο.4 in Fig. 11). This result suggests the existence of HSP-mediated pathway as one of the mechanisms of ERK activity induced by C peptide stimulation.
産業上の利用可能性  Industrial applicability
[0066] 本発明によって、 Cペプチド特異的結合分子が明らかとなり、その医療'診断分野 への応用が図られる。また、 Cペプチドの作用機序の解明などにとっても有益な手段 が提供される。 [0066] According to the present invention, a C peptide-specific binding molecule is clarified, and its application in the field of medical diagnosis is achieved. It also provides a useful tool for elucidating the mechanism of action of C-peptide.
本発明における Cペプチド特異的結合分子は、インスリン抵抗性のみならず Cぺプ チド抵抗性がある場合に特に有効な治療ターゲットになると予想される。また、 Cぺプ チドの枯渴する 1型糖尿病については、当該分子のァゴ-ストなど、当該分子の活性 化を制御する薬剤によって抗アポトーシス作用や血管拡張作用を発揮させることによ つて、糖尿病性合併症の発症 (大血管障害、及び細小血管障害)を抑制できる可能 '性がある。  The C peptide-specific binding molecule in the present invention is expected to be a particularly effective therapeutic target when it has not only insulin resistance but also C peptide resistance. In addition, for type 1 diabetes with which the C-peptide dies out, agents that control the activation of the molecule, such as the antigen of the molecule, exert an anti-apoptotic action or a vasodilatory action. It may be possible to suppress the development of diabetic complications (macrovascular and microangiopathy).
現在、ペプチドに関連して糖尿病の範疇で特に注目されているのは血管拡張作用 と神経保護作用による神経障害の治療効果である。これらについて、本発明におけ る Cペプチド特異的結合分子が関与している可能性は高い。従って、 Cペプチドの作 用機構の解明に必須であるのみならず、この分子そのものが今後の創薬ターゲットに なると考免られる。  At present, in the category of diabetes related to peptides, the therapeutic effect of neuropathy by vasodilatory action and neuroprotective action is attracting special attention. For these, it is highly possible that the C peptide-specific binding molecule in the present invention is involved. Therefore, it is indispensable not only for elucidating the mechanism of action of C-peptide, but also for the molecule itself to become a future drug discovery target.
[0067] この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものでは ない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々 の変形態様もこの発明に含まれる。  The present invention is not limited to the description of the embodiment and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その 全ての内容を援用によって引用することとする。  The contents of papers, published patent gazettes, patent gazettes, etc. specified in this specification are incorporated by reference in their entirety.

Claims

請求の範囲 The scope of the claims
[1] 配列番号 1のアミノ酸配列を有する第 1タンパク質と、配列番号 3のアミノ酸配列を 有する第 2タンパク質と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に 相同なタンパク質と、力もなる群より選択される 1以上のタンパク質を含む Cペプチド 結合剤。  [1] The first protein having the amino acid sequence of SEQ ID NO: 1, the second protein having the amino acid sequence of SEQ ID NO: 3, and the protein substantially homologous to the first protein or the second protein are also powerful. A C-peptide binding agent comprising one or more proteins selected from the group.
[2] 以下のステップを含む、サンプル中の Cペプチドの作用状態を評価する方法: 配列番号 1のアミノ酸配列を有する第 1タンパク質と、配列番号 3のアミノ酸配列を 有する第 2タンパク質と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に 相同なタンパク質と、力もなる群より選択される 1以上のタンパク質をサンプル中で検 出するステップ。  [2] A method for evaluating the action state of a C peptide in a sample, comprising the following steps: a first protein having the amino acid sequence of SEQ ID NO: 1, a second protein having the amino acid sequence of SEQ ID NO: 3, and the above Detecting in a sample one or more proteins selected from the group consisting of the first protein or a protein substantially homologous to the second protein and also having a force.
[3] 以下のステップを含む、サンプル中の Cペプチドの作用状態を評価する方法: 配列番号 1のアミノ酸配列を有する第 1タンパク質をコードする核酸と、配列番号 3 のアミノ酸配列を有する第 2タンパク質をコードする核酸と、及び前記第 1タンパク質 又は前記第 2タンパク質と実質的に相同なタンパク質をコードする核酸と、力もなる群 より選択される 1以上の核酸をサンプル中で検出するステップ。  [3] A method for evaluating the action state of a C peptide in a sample, comprising the following steps: a nucleic acid encoding a first protein having the amino acid sequence of SEQ ID NO: 1 and a second protein having the amino acid sequence of SEQ ID NO: 3 Detecting in a sample one or more nucleic acids selected from the group consisting of a nucleic acid encoding a protein, a nucleic acid encoding a protein substantially homologous to the first protein or the second protein, and a force group.
[4] 以下のステップを含む、サンプル中の Cペプチドの作用状態を評価する方法: 配列番号 1のアミノ酸配列を有する第 1タンパク質をコードする遺伝子の多型と、配 列番号 3のアミノ酸配列を有する第 2タンパク質をコードする遺伝子の多型と、及び前 記第 1タンパク質又は前記第 2タンパク質と実質的に相同なタンパク質をコードする 遺伝子の多型と、力 なる群より選択される 1以上の多型をサンプル中で解析するス テツプ。  [4] A method for evaluating the action state of a C peptide in a sample comprising the following steps: a polymorphism of a gene encoding the first protein having the amino acid sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 3 A polymorphism of a gene that encodes the second protein, and a polymorphism of a gene that encodes the first protein or a protein substantially homologous to the second protein, and one or more selected from the group The step of analyzing polymorphisms in a sample.
[5] 以下のステップを含む、 Cペプチドの作用状態を調節する化合物をスクリーニング する方法:  [5] A method for screening for a compound that modulates the action state of C-peptide, comprising the following steps:
配列番号 1のアミノ酸配列を有する第 1タンパク質と、配列番号 3のアミノ酸配列を 有する第 2タンパク質と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に 相同なタンパク質と、力もなる群より選択される 1以上のタンパク質と、 Cペプチドとを、 試験化合物の存在下 (試験群)及び非存在下 (対照群)にお!ヽてそれぞれ接触させ るステップ; cペプチドに非特異的に結合している成分を除去するステップ; A first protein having the amino acid sequence of SEQ ID NO: 1, a second protein having the amino acid sequence of SEQ ID NO: 3, and the first protein or a protein substantially homologous to the second protein, selected from the group that has power Contacting one or more of the proteins and C peptide in the presence (test group) and absence (control group) of the test compound, respectively; c removing components that are non-specifically bound to the peptide;
Cペプチドと前記タンパク質との複合体を検出するステップ;及び  Detecting a complex of a C peptide and said protein; and
試験群の検出結果と、対照群の検出結果とを比較するステップ。  Comparing the detection result of the test group with the detection result of the control group.
[6] 以下のステップを含む、 Cペプチドの作用状態を調節する化合物をスクリーニング する方法:  [6] A method for screening for a compound that modulates the action state of C-peptide, comprising the following steps:
試験化合物の存在下 (試験群)及び非存在下 (対照群)において、細胞を所定時間 培養するステップ;  Culturing the cells for a predetermined time in the presence (test group) and absence (control group) of the test compound;
配列番号 1のアミノ酸配列を有する第 1タンパク質と、配列番号 3のアミノ酸配列を 有する第 2タンパク質と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に 相同なタンパク質と、力もなる群より選択される 1以上のタンパク質の、培養後の前記 細胞内おける発現量を測定するステップ;  A first protein having the amino acid sequence of SEQ ID NO: 1, a second protein having the amino acid sequence of SEQ ID NO: 3, and the first protein or a protein substantially homologous to the second protein, selected from the group that has power Measuring the expression level of the one or more proteins in the cells after culturing;
試験群の発現量と、対照群の発現量とを比較するステップ。  Comparing the expression level of the test group with the expression level of the control group.
[7] Cペプチド又は配列番号 1のアミノ酸配列を有するタンパク質に対して特異的結合 性を有し、且つ Cペプチドと前記タンパク質との結合を阻害する抗体。  [7] An antibody having a specific binding property to a C peptide or a protein having the amino acid sequence of SEQ ID NO: 1 and inhibiting binding between the C peptide and the protein.
[8] Cペプチド又は配列番号 3のアミノ酸配列を有するタンパク質に対して特異的結合 性を有し、且つ Cペプチドと前記タンパク質との結合を阻害する抗体。  [8] An antibody having a specific binding property to a C peptide or a protein having the amino acid sequence of SEQ ID NO: 3 and inhibiting the binding between the C peptide and the protein.
[9] 配列番号 1のアミノ酸配列を有する第 1タンパク質と、配列番号 3のアミノ酸配列を 有する第 2タンパク質と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に 相同なタンパク質と、からなる群より選択される 1以上のタンパク質を標的細胞に導入 するステップを含む、標的細胞内の Cペプチドの作用状態を調節する方法。  [9] A first protein having the amino acid sequence of SEQ ID NO: 1, a second protein having the amino acid sequence of SEQ ID NO: 3, and a protein substantially homologous to the first protein or the second protein. A method for modulating the action state of a C peptide in a target cell, comprising introducing one or more proteins selected from the group into the target cell.
[10] Cペプチドと、配列番号 1のアミノ酸配列を有する第 1タンパク質又は配列番号 3の アミノ酸配列を有する第 2タンパク質との結合を阻害する化合物とを標的細胞に導入 するステップを含む、標的細胞内の Cペプチドの作用状態を調節する方法。  [10] A target cell comprising the step of introducing into the target cell a C peptide and a compound that inhibits the binding of the first protein having the amino acid sequence of SEQ ID NO: 1 or the second protein having the amino acid sequence of SEQ ID NO: 3 A method for regulating the action state of C peptide in the protein.
[11] 配列番号 1のアミノ酸配列を有する第 1タンパク質と、配列番号 3のアミノ酸配列を 有する第 2タンパク質と、及び前記第 1タンパク質又は前記第 2タンパク質と実質的に 相同なタンパク質と、力もなる群より選択される 1以上のタンパク質の発現を、標的細 胞内において阻害するステップを含む、標的細胞内の Cペプチドの作用状態を調節 する方法。 [11] The first protein having the amino acid sequence of SEQ ID NO: 1, the second protein having the amino acid sequence of SEQ ID NO: 3, and the protein substantially homologous to the first protein or the second protein are also powerful. A method of modulating the action state of a C peptide in a target cell, comprising inhibiting the expression of one or more proteins selected from the group in the target cell.
[12] 前記ステップ力 アンチセンス法、 RNA干渉、又はリボザィムの使用によって実施さ れる、請求項 11に記載の方法。 [12] The method according to claim 11, wherein the step force is performed by using an antisense method, RNA interference, or a ribozyme.
[13] 配列番号 1のアミノ酸配列を有する第 1タンパク質又は配列番号 3のアミノ酸配列を 有する第 2タンパク質に特異的結合性を有する試薬を含む、 Cペプチドの作用状態 評価用又は Cペプチドの作用量の異常によって特徴づけられる疾患診断用のキット  [13] For evaluating the action state of C peptide or acting amount of C peptide, which contains a reagent having specific binding property to the first protein having the amino acid sequence of SEQ ID NO: 1 or the second protein having the amino acid sequence of SEQ ID NO: 3. For diagnosing diseases characterized by abnormalities
[14] 前記疾患が、糖尿病又は代謝異常症候群 (Metabolic syndrome)である、請求項 1 3に記載のキット。 14. The kit according to claim 13, wherein the disease is diabetes or metabolic syndrome.
[15] 前記試薬が、前記第 1タンパク質又は前記第 2タンパク質に特異的結合性を有する 抗体を含む、請求項 13又は 14に記載のキット。  [15] The kit according to claim 13 or 14, wherein the reagent comprises an antibody having a specific binding property to the first protein or the second protein.
PCT/JP2005/017615 2004-09-28 2005-09-26 C-peptide specific binding molecule and use thereof WO2006035702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537712A JPWO2006035702A1 (en) 2004-09-28 2005-09-26 C-peptide specific binding molecule and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004281852 2004-09-28
JP2004-281852 2004-09-28

Publications (1)

Publication Number Publication Date
WO2006035702A1 true WO2006035702A1 (en) 2006-04-06

Family

ID=36118848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017615 WO2006035702A1 (en) 2004-09-28 2005-09-26 C-peptide specific binding molecule and use thereof

Country Status (2)

Country Link
JP (1) JPWO2006035702A1 (en)
WO (1) WO2006035702A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147664A (en) * 1997-02-27 2004-05-27 Japan Tobacco Inc Cell surface molecule mediating intercellular adhesion and signaling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE873523L (en) * 1986-12-30 1988-06-30 Memorex Corp Glycosylated glycopeptides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147664A (en) * 1997-02-27 2004-05-27 Japan Tobacco Inc Cell surface molecule mediating intercellular adhesion and signaling

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AL-RASHEED NM ET AL: "Potent activation of multiple signalling pathways by C-peptide in opossum kidney proximal tubular cells.", DIABETOLOGIA., vol. 47, no. 6, June 2004 (2004-06-01), pages 987 - 997, XP002994359 *
JOHANSSON J ET AL: "Molecular effects of proinsulin C-peptide.", BIOCHEM BIOPHYS RES COMMUN., vol. 295, no. 5, 2 August 2002 (2002-08-02), pages 1035 - 1040, XP002994361 *
KITAMURA T ET AL: "Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats.", DIABETOLOGIA., vol. 46, no. 12, December 2003 (2003-12-01), pages 1698 - 1705, XP002994360 *

Also Published As

Publication number Publication date
JPWO2006035702A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US20050003390A1 (en) Targets for controlling cellular growth and for diagnostic methods
US20100138941A1 (en) Method for screening immune modulator
KR20100075857A (en) Ebi3, dlx5, nptx1 and cdkn3 for target genes of lung cancer therapy and diagnosis
US10215764B2 (en) Assay reagents for a neurogranin diagnostic kit
JP2011217749A (en) Phage microarray profiling of humoral response to disease
US20200232925A1 (en) Immunoassays for detection of ran proteins
JP2011501741A (en) TAZ / WWTR1 for cancer diagnosis and treatment
WO2004076682A2 (en) Targets for controlling cellular growth and for diagnostic methods
US20180334726A1 (en) Somatic mutations in atrx in brain cancer
WO2016152352A1 (en) Melanoma-specific biomarker and use thereof
Geiger et al. Incomplete nonsense-mediated decay of mutant lamin A/C mRNA provokes dilated cardiomyopathy and ventricular tachycardia
JP2004500807A (en) Screening method for candidate drugs
AU778727B2 (en) Leptin assay
JP2012517822A (en) Identification method and compound useful for diagnosis and treatment of diseases including inflammation
EP3431992A1 (en) Pd marker of hepatocyte growth factor (hgf)
Cheval et al. Plasticity of mouse renal collecting duct in response to potassium depletion
US20090053723A1 (en) Peripherin and Neurofilament Light Protein Splice Variants in Amyotrophic Lateral Sclerosis (ALS)
US20120177660A1 (en) Biomarkers and therapeutic targets for type 1 diabetes
AU2014353169A1 (en) Compositions and methods for prophylaxis and/or therapy of disorders that correlate with DENND1A variant 2
KR20190083110A (en) Bio-marker for drug addiction diagnosis and kit for drug addiction diagnosis
US20140357517A1 (en) Radiation exposure diagnostic marker igfbp-5, composition for radiation exposure diagnosis by measuring the expression level of the marker, radiation exposure diagnostic kit comprising the composition, and method for diagnosing radiation exposure using the marker
WO2006035702A1 (en) C-peptide specific binding molecule and use thereof
KR102202120B1 (en) Use of Ube2h for Diagnosis or Treatment of Alzheimer&#39;s Disease
CA2479721A1 (en) Novel compositions and methods in cancer associated with altered expression of prlr
KR102256859B1 (en) Composition for diagnosing Alzheimer&#39;s disease

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase