WO2006033407A1 - Wall shape of axial flow machine and gas turbine engine - Google Patents

Wall shape of axial flow machine and gas turbine engine Download PDF

Info

Publication number
WO2006033407A1
WO2006033407A1 PCT/JP2005/017515 JP2005017515W WO2006033407A1 WO 2006033407 A1 WO2006033407 A1 WO 2006033407A1 JP 2005017515 W JP2005017515 W JP 2005017515W WO 2006033407 A1 WO2006033407 A1 WO 2006033407A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
blade
wing
shape
groove
Prior art date
Application number
PCT/JP2005/017515
Other languages
French (fr)
Japanese (ja)
Inventor
Mizuho Aotsuka
Hiroshi Hamazaki
Akira Takahashi
Haruyuki Tanimitsu
Original Assignee
Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima-Harima Heavy Industries Co., Ltd. filed Critical Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority to JP2006536423A priority Critical patent/JP4640339B2/en
Priority to EP05785999A priority patent/EP1760257B1/en
Priority to CA002569026A priority patent/CA2569026C/en
Priority to US11/570,325 priority patent/US7690890B2/en
Publication of WO2006033407A1 publication Critical patent/WO2006033407A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/17Purpose of the control system to control boundary layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a shape of a wall facing a flow path of an axial flow machine.
  • a flow path is sandwiched between radially inner and outer walls, and a boundary layer develops on the wall surface.
  • a boundary layer develops on the wall surface.
  • a secondary flow with a velocity component different from the main flow occurs due to the pressure gradient between the blades. This secondary flow is known to cause pressure loss (energy loss).
  • Patent Document 1 US Pat.
  • An object of the present invention is to provide a wall shape of an axial flow machine capable of reducing a loss due to a secondary flow, and a gas turbine engine.
  • the wall shape of the axial flow machine of the present invention is a shape of a radial wall facing the flow path of the axial flow machine having a blade row, and is a region between the blades in the blade row, A groove extending in the axial direction of the blade row, and the groove formation region has a leading edge and a trailing edge of the blade with respect to the axial direction.
  • the groove center line shape has a warp in the same direction as the wing warp line, and the deepest part of the groove is near the center of the wing or the center of the wing with respect to the axial direction. It is located between the front edge.
  • the deepest portion of the groove may be located 20 to 60% of the distance between the leading edge and the trailing edge of the blade from the leading edge of the blade with respect to the axial direction. preferable.
  • the deepest portion of the groove is located at 30 to 50% of the distance between the front edge and the rear edge of the blade with respect to the axial direction.
  • the center line of the groove is non-parallel to the warp line of the blade.
  • the force near the center of the blade is directed toward the vicinity of the trailing edge so that the groove force approaches the back surface of the blade.
  • the distance between the center line of the groove and the back surface of the blade is the shortest in the vicinity of the trailing edge of the blade.
  • the peripheral shape of the wall at the front edge position and the rear edge position of the blade is an arc.
  • the circumferential contour of the wall in the vicinity of the leading edge of the wing is
  • a convex shape adjacent to the abdominal surface of the wing and a convex shape (positive curvature) adjacent to the back surface of the wing! /.
  • the circumferential contour of the wall in the vicinity of the trailing edge of the wing is
  • it includes a concave shape (negative curvature) adjacent to the back surface of the wing.
  • the circumferential contour of the wall in the vicinity of the trailing edge of the wing further includes a convex shape (positive curvature) adjacent to the abdominal surface of the wing.
  • the contour of the wall along the abdominal surface of the wing includes a convex region in the vicinity of the leading edge of the wing and a convex region in the vicinity of the trailing edge of the wing.
  • the contour of the wall along the rear surface of the wing includes a convex region near the front edge of the wing and a concave region near the rear edge of the wing. Yes.
  • the concave region in the vicinity of the trailing edge of the wing is 50% or less of the chord length of the wing.
  • the gas turbine engine of the present invention is a gas turbine engine having a plurality of stationary blades and a plurality of moving blades, wherein a wall on a root side of the plurality of stationary blades and a tip side of the plurality of stationary blades are provided. At least one of the wall, the wall on the root side of the plurality of moving blades, and the wall on the tip side of the plurality of moving blades has the wall shape of the present invention.
  • Examples of the gas turbine engine include a turbofan engine, a turbojet engine, a turboprop engine, a turboshaft engine, a turbo ramjet engine, a gas turbine for power generation, and a marine gas turbine.
  • the loss due to the secondary flow can be reduced. Further, according to the gas turbine engine of the present invention, the performance is improved by reducing the loss due to the secondary flow. Is planned.
  • FIG. 1 is a schematic cross-sectional view showing a gas turbine engine used in an aircraft or the like as an example of an axial flow machine to which the present invention is applied.
  • FIG. 2 is a view showing an embodiment in which the wall shape of the present invention is applied to the wall on the root side of the rotor, and the surface height of the region between the blades is shown using contour lines.
  • FIG. 3 is a perspective view showing the vicinity of a wall of a blade row.
  • FIG. 4 is a diagram showing the depth shape of the groove.
  • FIG. 5A is an explanatory diagram of the definition of groove depth.
  • FIG. 5B is an explanatory diagram of another definition of groove depth.
  • FIG. 6A is a diagram for explaining the shape of a groove.
  • FIG. 6B is a diagram showing the circumferential shape of the wall in region A in FIG. 6A.
  • FIG. 6C is a diagram showing the circumferential shape of the wall in region C in FIG. 6A.
  • FIG. 7 is an explanatory diagram of the definition of the wing chord length.
  • FIG. 9A is a diagram showing a flow field near the wall (Mach number distribution near the wall surface) when the blade row wall is flat as a comparative example.
  • FIG. 9B is a diagram showing a flow field (wall surface vicinity Mach number distribution) in the vicinity of the wall in the wall-shaped example of the present invention.
  • FIG. 10 is a graph showing a loss due to a secondary flow.
  • FIG. 1 is a schematic cross-sectional view showing a gas turbine engine (turbofan engine) used in an aircraft or the like as an example of an axial flow machine to which the present invention is applied.
  • gas turbine engine turbine engine
  • the gas turbine engine includes an air intake 1, a fan 'low pressure compressor 2, a fan air discharge duct 3, a high pressure compressor 4, a combustion chamber 5, a high pressure turbine 6, a low pressure turbine 7, and an exhaust duct 8.
  • a plurality of fans' low pressure compressor 2, high pressure compressor 4, high pressure turbine 6 and low pressure turbine 7 are arranged on the outer peripheral surface of each of the rotors 10, 11, 12, 13 as a base.
  • Rotor blades 14 are spaced apart from each other in the circumferential direction, and a plurality of blades (stator blades) on the inner peripheral surface of annular casings 15, 16, 17, 18 as the base 19 includes nozzles (nozzles, stators) that are spaced apart from each other in the circumferential direction.
  • a plurality of wings 14 extend outward from each rotor 10, 11, 12, 13 and a plurality of wings 19 ⁇ and each casing 15, 16, 17, 18 force extend inward. /!
  • An annular flow path (axial flow path) is formed between the rotors 10, 11, 12, 13 and the corresponding casings 15, 16, 17, 18, respectively.
  • the peripheral wall on the base (node, hub) side of the rotor blade 14 is a radially inner wall in the axial flow path.
  • the inner wall of the nozzle blade 19 on the base side of the nozzle blade 19 is a radially outer wall in the axial flow path.
  • the tip side wall is an outer end wall in the axial flow path.
  • the tip side wall is an inner end wall in the axial flow path.
  • the wall shape of the present invention may be any one of the wall on the root side of the rotor blade 14, the wall on the tip side of the rotor blade 14, the wall on the root side of the nozzle blade 19, and the wall on the tip side of the nozzle blade 19. It is also applicable to.
  • FIG. 2 is a view showing an embodiment in which the wall shape of the present invention is applied to the wall on the root side of the rotor, and the surface height (radial position, contour) of the region between the blades is shown using contour lines. It shows.
  • FIG. 3 is a perspective view showing the vicinity of the blade row wall.
  • each wing 14 has a leading edge 20, a trailing edge 21, a vent surface (pressure surface (PS)) 23, and a back surface (negative).
  • Suction surface (SS)) 2 4 and blade row 30 has a warp (warp line 22) protruding in the same circumferential direction. Due to the warp line 22 of the wing 14, the axial flow cross section decreases the force near the center of the wing 14 toward the trailing edge 21 of the wing 14.
  • grooves 40 are formed in regions between the blades 14 in the radial wall 31 of the blade row 30.
  • the groove 40 extends at least in the axial direction (X direction) of the cascade 30.
  • the formation region of the groove 40 is between the leading edge 20 and the trailing edge 21 of the blade 14 with respect to the axial direction. That is, the formation region of the groove 40 is within the length of the chord 29 of the wing 14.
  • one end of the groove 40 is located near the leading edge 20 of the wing 14 and the other end is located near the trailing edge 21 of the wing 14.
  • the groove 40 is formed to be curved along the warp line 22 of the blade 14 as a whole. That is, the shape of the center line 41 of the groove 40 is the same direction as the warp line 22 of the wing 14. It has a warp (a warp protruding in the same circumferential direction of the blade row 30). At least a portion of the center line 41 of the groove 40 is non-parallel to the warp line 22 of the wing 14. In other words, the phase force of the shape of the groove 40 changes with respect to the chord direction of the blade 14.
  • the groove 40 has a shape in which the force near the center of the blade 14 gradually approaches the back surface 24 of the blade 14 toward the vicinity of the trailing edge 21.
  • the distance between the center line 41 of the groove 40 and the back surface 24 of the wing 14 is the shortest.
  • the shortest distance between the center line 41 of the groove 40 and the back surface 24 of the blade 14 is preferably 50% or less of the longest distance.
  • 8 (the center line 41 of the groove 40 with respect to the axis of the blade row 30 at the outlet of the flow Is the angle between the warp line 22 of the blade 14 and the axis of the blade row 30 (the outlet angle) of the warp line 22 of the blade 14 relative to the axis of the blade row 30 at the outlet of the flow. Larger than the angle formed by the tangential direction (exit angle).
  • the positional relationship between the warp line 22 of the blade 14 and the center line 41 of the groove 40 varies depending on the airfoil shape and the flow field.
  • the warp line 22 of the wing 14 and the center line 41 of the groove 40 may be formed so as to intersect (ie, have the shortest distance force ⁇ ) in the range of the leading edge 20 and the trailing edge 21! / ,.
  • FIG. 4 is a view showing the depth shape of the groove 40 (cross-sectional shape of the groove projected onto the plane including the X axis) along the axial direction (X direction) of the blade row 30.
  • the depth shape of the groove 40 is the deepest portion 43 (see FIG. 2) and the shallowest portions 44a and 44b (see FIG. 2) along the axial direction (X direction) of the blade row 30.
  • Gradually change between The deepest portion 43 of the groove 40 is located near the center of the blade 14 or between the center of the blade 14 and the leading edge 20 in the axial direction.
  • the shallowest portions 44a and 44b of the groove 40 are located in the vicinity of the leading edge 20 and the trailing edge 21 of the blade 14 in the axial direction.
  • the distance between the leading edge 20 and the trailing edge 21 of the blade 14 is defined as the "axial chord length”.
  • the depth of the groove 40 is defined as the radial distance (TD1) of the axial flow path reference plane (cylinder base (cylindrical or conical)) force, as shown in FIG. 5A.
  • the depth of groove 40 is defined as half 0 f peak to peak (HR1 shown in FIG. 5B) in one section perpendicular to the axis of cascade 30 as shown in FIG. 5B.
  • the deepest part 43 of the groove 40 is TD1 or When HR1 is used, it is located 20 to 60%, preferably 20 to 50%, more preferably 30 to 50% of the axial length in the axial direction.
  • the groove 40 gradually becomes shallower in the extending direction from the deepest portion 43 to the shallowest portions 44a and 44b at both ends. . That is, the groove 40 starts from the shallowest part 44a near the leading edge 20 of the wing 14 and deepens between the leading edge 21 of the wing 14 and near the center while increasing the depth (the deepest part 43). It ends at the shallowest part 44b near the trailing edge 21 of the wing 14 with decreasing height.
  • the contour of the groove 40 from the deepest part 43 to the shallowest parts 44a, 44b is uniformly smooth or non-uniformly smooth.
  • the center depth of the groove 40 is near the center of the wing 14. In the vicinity of the trailing edge, the force is deeper at the part far from the rear face 24 of the wing 14 and shallower at the part near the rear face 24.
  • FIG. 6A is a diagram for explaining the shape of the groove 40.
  • FIGS. 6B and 6C show the circumferential shape of the wall 31 having the groove 40 (circumferential contour, ie, the cross section of the wall (orthogonal to the axis).
  • FIG. 3 is a diagram (concave distribution pattern of wall surfaces) showing a shape of a cross section).
  • the wall 31 has an annular shape, and its circumferential shape (circumferential contour) is an arc. That is, the circumferential shape of the wall 31 at the leading edge position (LE) and the trailing edge position (TE) has no recess due to the groove 40.
  • region A between approximately 30% and 40% of the axial chord length of the wall 31 is referred to as region A, and approximately 60% to 90% of the axial length of the wall 31 is referred to as region C.
  • region B about 40% -60% of the axial length of the wall 31 (ie, between region A and region C) is referred to as region B.
  • the circumferential shape (concave convex) of the wall 31 is defined by region A and region C, and region B is a transition region that varies depending on the airfoil and flow field. Further, the ranges of the region A and the region C are appropriately changed depending on the place where the wall shape of the present invention is installed, the airfoil, and the flow field.
  • the range of Area C (approximately 60% —90%) is 60% —90%, 60% —80%, 70% —90%, 70% —80%, 80% —90%, 70%- It can be set to 85%, 75% —90%, 80% —95%.
  • the circumferential shape (circumferential contour) of the wall 31 is that the convex portion 50 adjacent to the ventral surface 23 (PS) of the wing 14 and the wing 14 Adjacent to rear 24 (SS) Another convex portion 51 and a concave portion formed between the two convex portions.
  • the convex Z-concave Z convex shape in this area A is referred to as the “first shape”.
  • the convex part has a positive curvature, and the concave part has a negative curvature.
  • the circumferential shape of the wall 31 includes a convex portion 54 adjacent to the ventral surface 23 (PS) of the wing 14 and a concave portion 55 adjacent to the rear surface 24 (SS) of the wing 14.
  • the transition from the convex portion 54 to the concave portion 55 is smooth.
  • the abdominal convexity Z back concave shape in this region C is referred to as “second shape”.
  • region L The region between the leading edge position (LE) and region A (ie, about 0% to 30% of the axial length) is a transition region and is referred to as region L.
  • region L the circumferential shape of the wall 31 smoothly changes to the first shape of the region A (convex Z concave Z convex) at the leading edge position (LE).
  • region T The region between region C and the trailing edge position (TE) (ie about 90-100% of the axial length) is also a transition region and is referred to as region T.
  • region T the circumferential shape of the wall 31 smoothly changes from the second shape in region C (abdominal surface convex Z back concave) to the arc at the trailing edge position (TE).
  • the groove 40 has the deepest portion 43 between 20% and 60% of the axial length in any of the region L, the region A, and the region B.
  • the contour of the wall 31 along the ventral surface 23 of the wing 14 is the reference for the axial flow path in all areas except the leading edge position (LE) and trailing edge position (TE). It is higher than the plane (cylinder base (cylindrical surface or conical surface)).
  • the contour on the ventral side is a convex region 60 having a positive curvature in the vicinity of the leading edge 20 of the wing 14 and a convex region having a positive curvature in the vicinity of the trailing edge 21 of the wing 14. 61.
  • a region between the convex region 60 and the convex region 61 is a transition region, and in this transition region, the contour on the ventral surface side smoothly changes from the convex region 60 to the convex region 61.
  • a recess having a negative curvature may be formed.
  • the contour of the wall 31 along the back surface 24 of the wing 14 (the contour on the back side) is in the main region, higher than the cylin der base of the axial flow path, and in the airfoil and flow field. And a partial region where the height of the reference surface force changes accordingly.
  • the partial area is a reference, depending on the airfoil and flow field. It changes to a position higher than the surface, almost the same position, or a lower position.
  • the contour on the back side is a convex region 64 having a positive curvature near the leading edge 20 of the wing 14, a convex region 65 having a positive curvature near the center, and a vicinity of the trailing edge 21.
  • a concave region 66 having a negative curvature is less than 50% of the chord length of the wing 14.
  • the chord length here is the distance (CL2) between the tip of the leading edge of the wing and the tip of the trailing edge (CL2), or a straight line perpendicular to the straight line that touches the leading and trailing edges. Defined as the distance (CL1) between two points touching the edge and the trailing edge.
  • FIG. 8 and FIG. 9A show, as a comparative example, a flow field near the wall when the blade wall is flat.
  • a separation zone 45 occurs partially near the ventral surface (PS) of the wing 14 (near the center in the chord direction), which interferes with the wall boundary layer and Strong vortices 46 with different flow direction axes are generated.
  • the starting edge of the vortex 46 is the interference between the separation zone 45 and the wall boundary layer, relatively close to the wing's ventral surface, and with respect to the axial direction, near the center of wing 14 or between the center and leading edge of the wing Located in.
  • the arrival position of the vortex 46 is on the back of the wing and near the trailing edge.
  • FIG. 9B is a diagram showing a flow field (wall surface vicinity Mach number distribution) in the vicinity of the wall in the wall-shaped embodiment of the present invention shown in FIGS. 2 to 6C.
  • the vortex is weakened and the flow disturbance on the wall surface is less than in the comparative example.
  • the flow loss pressure loss, energy loss
  • FIG. 10 is a graph showing a change in loss due to the secondary flow.
  • the horizontal axis shows the span (the radial height of the blade row), and the vertical axis shows the flow loss (loss factor).
  • the wall-shaped example of the present invention has a smaller flow loss than the comparative example.
  • the loss reduction is remarkable near the wall surface indicated by S in the figure.
  • the wall shape of the present invention is obtained by adding the root-side wall of the blade 14 of the other stage of the rotor, the tip-side wall of the rotor blade 14, the root-side wall of the nozzle blade 19, and the nozzle blade 19
  • the loss reduction similar to the above was confirmed analytically in all cases applied to the wall on the tip side.
  • the groove between the blades weakens the vortex caused by the interference between the separation region on the ventral side of the blade and the wall boundary layer, and reduces the flow loss due to the vortex. can do.
  • the centerline shape of the groove has a warp in the same direction as the wing warp line, thereby avoiding the generation of another loss vortex in the groove.
  • the deepest part of the groove is located near the center of the blade or between the center of the blade and the leading edge with respect to the axial direction of the blade row, the deepest part of the groove is located near the position where the vortex is generated. Therefore, the groove curvature change in the transverse section (cross section perpendicular to the axis) is relatively large near the vortex generation position.
  • the wall profile (circumferential contour and profile along the ventral surface) near the front edge of the wing has a convex shape near the leading edge of the wing.
  • the change in the groove curvature in the cross section perpendicular to the axis is relatively large.
  • the wall contour (circumferential contour and contour along the abdominal surface) near the back of the wing has a concave shape, so the pressure near the vortex arrival point is high. As the pressure near the vortex reaches, the vortex becomes weaker.
  • the position and shape of the groove are optimized and designed according to the generation position of the vortex generated when the wall is flat and the traveling axis thereof. Is preferred.
  • the deepest part of the groove may be in the vicinity of the start end of the vortex.
  • the extending direction of the groove in the vicinity of the trailing edge of the blade should be approximately approximate to the axial direction of the vortex.
  • the wall shape shown in Fig. 2 to Fig. 6C is an example, and the wall shape of the cascade is appropriately optimized according to the airfoil shape and flow field.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A wall shape of an axial flow machine capable of reducing a loss by a secondary flow, wherein a groove (40) extending in the axial direction of a cascade (30) is formed in the areas of a wall (31) between the blades (14) of the cascade (30). The area where the groove (40) is formed is positioned between the leading edges (20) and the trailing edges (21) of the blades (14) in the axial direction, and the centerline shape of the groove (40) comprises warpage in the same direction as that of the camber line (22) of the blades (40). The deepest part of the groove (40) is positioned between the near center parts or the center parts of the blades (14) and the leading edges (21) in the axial direction.

Description

明 細 書  Specification
軸流機械の壁形状及びガスタービンエンジン  Wall shape of axial flow machine and gas turbine engine
技術分野  Technical field
[0001] 本発明は、軸流機械の流路に面した壁の形状に関する。  [0001] The present invention relates to a shape of a wall facing a flow path of an axial flow machine.
本願は、 2004年 9月 24日に出願された特願 2004— 277114号に基づき優先権 を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2004-277114 filed on September 24, 2004, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] ガスタービンエンジンなどの翼列を有する軸流機械では、流路が径方向内外の壁 に挟まれており、その壁面上に境界層が発達する。壁面境界層内では、翼間の圧力 勾配等によって主流とは異なる速度成分を持つ 2次流れが生じる。この 2次流れは圧 力損失 (エネルギー損失)を招くことが知られて 、る。  In an axial flow machine having cascades such as a gas turbine engine, a flow path is sandwiched between radially inner and outer walls, and a boundary layer develops on the wall surface. In the wall boundary layer, a secondary flow with a velocity component different from the main flow occurs due to the pressure gradient between the blades. This secondary flow is known to cause pressure loss (energy loss).
[0003] 2次流れ損失を低減することを目的として、流路に面する径方向の壁に勾配を設け 、翼間の圧力勾配を緩和する技術がある (例えば、特許文献 1参照)。  [0003] For the purpose of reducing secondary flow loss, there is a technique for reducing a pressure gradient between blades by providing a gradient in a radial wall facing a flow path (see, for example, Patent Document 1).
特許文献 1 :米国特許 6283713号明細書  Patent Document 1: US Pat.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 近年、ガスタービンエンジンなどの軸流機械では、軽量化等を目的として、翼の厚 みが薄くなる傾向にある。薄翼を用いた翼列では、翼の腹面 (圧力面; pressure surfa ce)付近に部分的に剥離域が生じやすぐこれが壁面境界層と干渉すると、主流とは 異なる流れ方向の軸をもつ強い渦が生じ、圧力損失 (エネルギー損失)を招く。従来 の技術では、この強 、渦による損失が十分に低減されな 、。  [0004] In recent years, in an axial flow machine such as a gas turbine engine, the thickness of a blade tends to be reduced for the purpose of reducing the weight. In blade cascades using thin blades, if a separation zone is formed in the vicinity of the blade's abdominal surface (pressure surface; pressure surfa ce) immediately and interferes with the wall boundary layer, it has a strong axis with a flow direction axis different from the mainstream. A vortex is generated, causing pressure loss (energy loss). With conventional technology, this strength and loss due to vortices are not sufficiently reduced.
[0005] 本発明は、 2次流れによる損失を低減することが可能な軸流機械の壁形状、及びガ スタービンエンジンを提供することを目的とする。  [0005] An object of the present invention is to provide a wall shape of an axial flow machine capable of reducing a loss due to a secondary flow, and a gas turbine engine.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の軸流機械の壁形状は、翼列を有する軸流機械の流路に面した径方向の 壁の形状であって、前記翼列における翼同士の間の領域で、前記翼列の軸方向に 延在する溝を有し、前記溝の形成領域は、前記軸方向に関し、前記翼の前縁と後縁 の間であり、前記溝の中心線形状は、前記翼の反り線と同方向の反りを有し、前記溝 の最深部は、前記軸方向に関し、前記翼の中央付近または前記翼の中央と前縁との 間に位置することを特徴とする。 [0006] The wall shape of the axial flow machine of the present invention is a shape of a radial wall facing the flow path of the axial flow machine having a blade row, and is a region between the blades in the blade row, A groove extending in the axial direction of the blade row, and the groove formation region has a leading edge and a trailing edge of the blade with respect to the axial direction. The groove center line shape has a warp in the same direction as the wing warp line, and the deepest part of the groove is near the center of the wing or the center of the wing with respect to the axial direction. It is located between the front edge.
[0007] 本発明の壁形状において、前記溝の最深部は、前記軸方向に関し、前記翼の前 縁から、前記翼の前縁と後縁との距離の 20〜60%に位置することが好ましい。  [0007] In the wall shape of the present invention, the deepest portion of the groove may be located 20 to 60% of the distance between the leading edge and the trailing edge of the blade from the leading edge of the blade with respect to the axial direction. preferable.
[0008] また、前記溝の最深部は、前記軸方向に関し、前記翼の前縁から、前記翼の前縁 と後縁との距離の 30〜50%に位置することが好ましい。  [0008] Further, it is preferable that the deepest portion of the groove is located at 30 to 50% of the distance between the front edge and the rear edge of the blade with respect to the axial direction.
[0009] 本発明の壁形状において、前記溝の中心線の少なくとも一部が、前記翼の反り線 に対して非平行であることが好ま 、。  In the wall shape of the present invention, it is preferable that at least a part of the center line of the groove is non-parallel to the warp line of the blade.
[0010] 本発明の壁形状において、前記翼の中央付近力も後縁付近に向力つて、前記溝 力 前記翼の背面に近づくことが好ましい。  [0010] In the wall shape of the present invention, it is preferable that the force near the center of the blade is directed toward the vicinity of the trailing edge so that the groove force approaches the back surface of the blade.
[0011] 本発明の壁形状において、前記翼の後縁付近において、前記溝の中心線と前記 翼の背面との距離が最短であることが好まし 、。  [0011] In the wall shape of the present invention, it is preferable that the distance between the center line of the groove and the back surface of the blade is the shortest in the vicinity of the trailing edge of the blade.
[0012] 本発明の壁形状において、前記翼の前縁位置及び後縁位置における前記壁の周 形状が円弧であることが好ま 、。 In the wall shape of the present invention, it is preferable that the peripheral shape of the wall at the front edge position and the rear edge position of the blade is an arc.
[0013] 本発明の壁形状において、前記翼の前縁付近における前記壁の周方向の輪郭がIn the wall shape of the present invention, the circumferential contour of the wall in the vicinity of the leading edge of the wing is
、前記翼の腹面に隣接する凸形状 (正の曲率)と前記翼の背面に隣接する凸形状( 正の曲率)とを含むことが好まし!/、。 It is preferable to include a convex shape (positive curvature) adjacent to the abdominal surface of the wing and a convex shape (positive curvature) adjacent to the back surface of the wing! /.
[0014] 本発明の壁形状において、前記翼の後縁付近における前記壁の周方向の輪郭が[0014] In the wall shape of the present invention, the circumferential contour of the wall in the vicinity of the trailing edge of the wing is
、前記翼の背面に隣接する凹形状 (負の曲率)を含むことが好ましい。 Preferably, it includes a concave shape (negative curvature) adjacent to the back surface of the wing.
[0015] この場合、前記翼の後縁付近における前記壁の周方向の輪郭が、前記翼の腹面 に隣接する凸形状 (正の曲率)をさらに含むことが好ましい。  [0015] In this case, it is preferable that the circumferential contour of the wall in the vicinity of the trailing edge of the wing further includes a convex shape (positive curvature) adjacent to the abdominal surface of the wing.
[0016] 本発明の壁形状において、前記翼の腹面に沿った前記壁の輪郭が、前記翼の前 縁付近における凸領域と、前記翼の後縁付近における凸領域とを含むことが好まし い。 In the wall shape of the present invention, it is preferable that the contour of the wall along the abdominal surface of the wing includes a convex region in the vicinity of the leading edge of the wing and a convex region in the vicinity of the trailing edge of the wing. Yes.
[0017] 本発明の壁形状において、前記翼の背面に沿った前記壁の輪郭が、前記翼の前 縁付近における凸領域と、前記翼の後縁付近における凹領域とを含むことが好まし い。 [0018] この場合、前記翼の後縁付近における前記凹領域が、前記翼の弦長さの 50%以 下であることが好ましい。 In the wall shape of the present invention, it is preferable that the contour of the wall along the rear surface of the wing includes a convex region near the front edge of the wing and a concave region near the rear edge of the wing. Yes. [0018] In this case, it is preferable that the concave region in the vicinity of the trailing edge of the wing is 50% or less of the chord length of the wing.
[0019] 本発明のガスタービンエンジンは、複数の静翼と複数の動翼とを有するガスタービ ンエンジンであって、前記複数の静翼の根元側の壁、前記複数の静翼の先端側の 壁、前記複数の動翼の根元側の壁、及び前記複数の動翼の先端側の壁、の少なくと も 1つが、本発明の壁形状を有することを特徴とする。 [0019] The gas turbine engine of the present invention is a gas turbine engine having a plurality of stationary blades and a plurality of moving blades, wherein a wall on a root side of the plurality of stationary blades and a tip side of the plurality of stationary blades are provided. At least one of the wall, the wall on the root side of the plurality of moving blades, and the wall on the tip side of the plurality of moving blades has the wall shape of the present invention.
[0020] ガスタービンエンジンとしては、例えば、ターボファンエンジン、ターボジェットェンジ ン、ターボプロップエンジン、ターボシャフトエンジン、ターボラムジェットエンジン、発 電用のガスタービン、舶用ガスタービンなどが挙げられる。 [0020] Examples of the gas turbine engine include a turbofan engine, a turbojet engine, a turboprop engine, a turboshaft engine, a turbo ramjet engine, a gas turbine for power generation, and a marine gas turbine.
発明の効果  The invention's effect
[0021] 本発明の流体機械の壁形状によれば、 2次流れによる損失を低減することができる また、本発明のガスタービンエンジンによれば、 2次流れによる損失の低減により、 性能の向上が図られる。  [0021] According to the wall shape of the fluid machine of the present invention, the loss due to the secondary flow can be reduced. Further, according to the gas turbine engine of the present invention, the performance is improved by reducing the loss due to the secondary flow. Is planned.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明が適用される軸流機械の一例として、航空機等に使用されるガスタービ ンエンジンを示す模式断面図である。  FIG. 1 is a schematic cross-sectional view showing a gas turbine engine used in an aircraft or the like as an example of an axial flow machine to which the present invention is applied.
[図 2]本発明の壁形状を、ロータの根元側の壁に適用した実施例を示す図であり、翼 間の領域の面高さを等高線を用いて示して 、る。  FIG. 2 is a view showing an embodiment in which the wall shape of the present invention is applied to the wall on the root side of the rotor, and the surface height of the region between the blades is shown using contour lines.
[図 3]翼列の壁近傍を示す斜視図である。  FIG. 3 is a perspective view showing the vicinity of a wall of a blade row.
[図 4]溝の深さ形状を示す図である。  FIG. 4 is a diagram showing the depth shape of the groove.
[図 5A]溝の深さの定義の説明図である。  FIG. 5A is an explanatory diagram of the definition of groove depth.
[図 5B]溝の深さの別の定義の説明図である。  FIG. 5B is an explanatory diagram of another definition of groove depth.
[図 6A]溝の形状を説明するための図である。  FIG. 6A is a diagram for explaining the shape of a groove.
[図 6B]図 6Aの領域 Aにおける壁の周形状を示す図である。  FIG. 6B is a diagram showing the circumferential shape of the wall in region A in FIG. 6A.
[図 6C]図 6Aの領域 Cにおける壁の周形状を示す図である。  FIG. 6C is a diagram showing the circumferential shape of the wall in region C in FIG. 6A.
[図 7]翼の弦長さの定義の説明図である。  FIG. 7 is an explanatory diagram of the definition of the wing chord length.
[図 8]比較例として、翼列の壁が平坦な場合における壁近傍の流れ場 (壁面近傍マツ ハ数分布)を示す図である。 [Figure 8] As a comparative example, the flow field near the wall when the blade wall is flat (the pine near the wall) It is a figure which shows (Ha number distribution).
[図 9A]比較例として、翼列の壁が平坦な場合における壁近傍の流れ場 (壁面近傍マ ッハ数分布)を示す図である。  FIG. 9A is a diagram showing a flow field near the wall (Mach number distribution near the wall surface) when the blade row wall is flat as a comparative example.
[図 9B]本発明の壁形状の実施例における壁近傍の流れ場 (壁面近傍マッハ数分布) を示す図である。  FIG. 9B is a diagram showing a flow field (wall surface vicinity Mach number distribution) in the vicinity of the wall in the wall-shaped example of the present invention.
[図 10] 2次流れによる損失を示すグラフ図である。  FIG. 10 is a graph showing a loss due to a secondary flow.
符号の説明  Explanation of symbols
[0023] 10, 11, 12, 13· ··回転子(基部)、 14· ··翼(動翼)、 15, 16, 17, 18· ··ケーシング  [0023] 10, 11, 12, 13 ··· Rotor (base), 14 ··· Wings (moving blades), 15, 16, 17, 18 ··· Casing
(基部)、 19· ··翼 (静翼)、 20· ··前縁、 21…後縁、 22· ··翼の反り線、 23· ··腹面 (P.S.) 、 24· ··背面(S.S.)、 29· ··弦、 30…翼列、 31 · ··壁、 40…溝、 41· ··溝の中心線、 45· ·· 剥離域、 46· ··渦、 50, 51, 54· ··凸形状、 55· ··凹形状、 60, 61, 64, 65· ··凸領域、 66· ··凹領域。  (Base), 19 ··· Wings (static vanes), 20 · · · Leading edge, 21 · · · Rear edge, 22 · · · Wing warp, 23 · · · Abdominal surface (PS), 24 · · · Back ( SS), 29 ... string, 30 ... cascade, 31 ... wall, 40 ... groove, 41 ... groove center line, 45 ... peeling zone, 46 ... vortex, 50, 51, 54 ··· convex shape, 55 ··· concave shape, 60, 61, 64, 65 ··· convex region, 66 ··· concave region.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 図 1は、本発明が適用される軸流機械の一例として、航空機等に使用されるガスタ 一ビンエンジン(ターボファンエンジン)を示す模式断面図である。 FIG. 1 is a schematic cross-sectional view showing a gas turbine engine (turbofan engine) used in an aircraft or the like as an example of an axial flow machine to which the present invention is applied.
ガスタービンエンジンは、空気取入口 1、ファン'低圧圧縮機 2、ファン空気排出ダク ト 3、高圧圧縮機 4、燃焼室 5、高圧タービン 6、低圧タービン 7、及び排気ダクト 8等を 含む。  The gas turbine engine includes an air intake 1, a fan 'low pressure compressor 2, a fan air discharge duct 3, a high pressure compressor 4, a combustion chamber 5, a high pressure turbine 6, a low pressure turbine 7, and an exhaust duct 8.
[0025] ファン'低圧圧縮機 2、高圧圧縮機 4、高圧タービン 6、及び低圧タービン 7はそれぞ れ、基部としての回転子(rotary drum) 10, 11, 12, 13の外周面上に複数の翼(動 翼) 14が周方向に互いに離間して配設されたロータ (rotors)と、基部としての環状の ケーシング 15, 16, 17, 18の内周面上に複数の翼(静翼) 19が周方向に互いに離 間して配設されたノズル(nozzles、 stators)とを含む。  [0025] A plurality of fans' low pressure compressor 2, high pressure compressor 4, high pressure turbine 6 and low pressure turbine 7 are arranged on the outer peripheral surface of each of the rotors 10, 11, 12, 13 as a base. Rotor blades 14 are spaced apart from each other in the circumferential direction, and a plurality of blades (stator blades) on the inner peripheral surface of annular casings 15, 16, 17, 18 as the base 19 includes nozzles (nozzles, stators) that are spaced apart from each other in the circumferential direction.
複数の翼 14は、各回転子 10, 11, 12, 13から外方に延在しており、複数の翼 19 ίま、各ケーシング 15, 16, 17, 18力ら内方に延在して!/、る。回転子 10, 11, 12, 13 とそれに対応するケーシング 15, 16, 17, 18との間には、環状の流路 (軸流経路) が形成されている。  A plurality of wings 14 extend outward from each rotor 10, 11, 12, 13 and a plurality of wings 19 ί and each casing 15, 16, 17, 18 force extend inward. /! An annular flow path (axial flow path) is formed between the rotors 10, 11, 12, 13 and the corresponding casings 15, 16, 17, 18, respectively.
[0026] ファン'低圧圧縮機 2、及び高圧圧縮機 4では、軸流経路における作動流体の流れ に沿って、作動流体の圧力が増大する。高圧タービン 6及び低圧タービン 7では、軸 流経路における作動流体の流れに沿って、作動流体の圧力が低下する。 [0026] In the fan 'low pressure compressor 2 and high pressure compressor 4, the flow of the working fluid in the axial flow path Along the pressure of the working fluid increases. In the high pressure turbine 6 and the low pressure turbine 7, the pressure of the working fluid decreases along the flow of the working fluid in the axial flow path.
[0027] ロータの翼 14の根元 (ノ、ブ、 hub)側の周壁は、軸流経路における径方向内方の壁 [0027] The peripheral wall on the base (node, hub) side of the rotor blade 14 is a radially inner wall in the axial flow path.
(inner end wall)であり、ノズルの翼 19の根元(ノ、ブ、 hub)側の周壁は、軸流経路に おける径方向外方の壁(outer end wall)である。  The inner wall of the nozzle blade 19 on the base side of the nozzle blade 19 is a radially outer wall in the axial flow path.
ロータの翼 14の先端 (チップ、 tip)側に周壁 (シユラウド壁など)が設けられる場合に は、その先端側の壁は、軸流経路における径方向外側の壁(outer end wall)である。 ノズルの翼 19の先端 (チップ、 tip)側に周壁が設けられる場合には、その先端側の壁 は、軸流経路における径方向内側の壁 (inner end wall)である。  When a peripheral wall (such as a shroud wall) is provided on the tip (tip) side of the rotor blade 14, the tip side wall is an outer end wall in the axial flow path. When a peripheral wall is provided on the tip (tip) side of the nozzle blade 19, the tip side wall is an inner end wall in the axial flow path.
本発明の壁形状は、ロータの翼 14の根元側の壁、ロータの翼 14の先端側の壁、ノ ズルの翼 19の根元側の壁、ノズルの翼 19の先端側の壁、のいずれにも適用可能で ある。  The wall shape of the present invention may be any one of the wall on the root side of the rotor blade 14, the wall on the tip side of the rotor blade 14, the wall on the root side of the nozzle blade 19, and the wall on the tip side of the nozzle blade 19. It is also applicable to.
[0028] 図 2は、本発明の壁形状を、ロータの根元側の壁に適用した実施例を示す図であり 、翼間の領域の面高さ (径方向位置、輪郭)を等高線を用いて示している。図 3は、翼 列の壁近傍を示す斜視図である。  FIG. 2 is a view showing an embodiment in which the wall shape of the present invention is applied to the wall on the root side of the rotor, and the surface height (radial position, contour) of the region between the blades is shown using contour lines. It shows. FIG. 3 is a perspective view showing the vicinity of the blade row wall.
[0029] 図 2に示すように、各翼 14は、前縁 (leading edge) 20と、後縁 (trailing edge) 21と、 腹面(圧力面; pressure surface (P.S.) ) 23と、背面(負圧面; suction surface (S.S.) ) 2 4と、翼列 (blade row) 30の同一周方向に突出する反り(反り線 22)とを有する。翼 14 の反り線 22により、軸流経路の断面が、翼 14の中央付近力も翼 14の後縁 21に向か つて減少する。  [0029] As shown in FIG. 2, each wing 14 has a leading edge 20, a trailing edge 21, a vent surface (pressure surface (PS)) 23, and a back surface (negative). Suction surface (SS)) 2 4, and blade row 30 has a warp (warp line 22) protruding in the same circumferential direction. Due to the warp line 22 of the wing 14, the axial flow cross section decreases the force near the center of the wing 14 toward the trailing edge 21 of the wing 14.
[0030] 図 2及び図 3に示すように、翼列 30の径方向の壁 31における、翼 14同士の各間の 領域には、溝 (trough) 40が形成されている。溝 40は、少なくとも翼列 30の軸方向(X 方向)に延在している。溝 40の形成領域は、上記軸方向に関して、翼 14の前縁 20と 後縁 21との間である。すなわち、溝 40の形成領域は、翼 14の弦 (chord) 29の長さの 範囲内である。軸方向に関して、溝 40の一端が、翼 14の前縁 20付近に位置し、他 端が翼 14の後縁 21付近に位置する。  As shown in FIG. 2 and FIG. 3, grooves 40 are formed in regions between the blades 14 in the radial wall 31 of the blade row 30. The groove 40 extends at least in the axial direction (X direction) of the cascade 30. The formation region of the groove 40 is between the leading edge 20 and the trailing edge 21 of the blade 14 with respect to the axial direction. That is, the formation region of the groove 40 is within the length of the chord 29 of the wing 14. With respect to the axial direction, one end of the groove 40 is located near the leading edge 20 of the wing 14 and the other end is located near the trailing edge 21 of the wing 14.
[0031] また、図 2に示すように、溝 40は、全体的に、翼 14の反り線 22に沿って湾曲して形 成されている。すなわち、溝 40の中心線 41の形状は、翼 14の反り線 22と同方向の 反り(翼列 30の同一周方向に突出する反り)を有する。溝 40の中心線 41の少なくとも 一部は、翼 14の反り線 22に対して非平行である。言い換えると、溝 40の形状の位相 力 翼 14の弦方向に関して変化している。 Further, as shown in FIG. 2, the groove 40 is formed to be curved along the warp line 22 of the blade 14 as a whole. That is, the shape of the center line 41 of the groove 40 is the same direction as the warp line 22 of the wing 14. It has a warp (a warp protruding in the same circumferential direction of the blade row 30). At least a portion of the center line 41 of the groove 40 is non-parallel to the warp line 22 of the wing 14. In other words, the phase force of the shape of the groove 40 changes with respect to the chord direction of the blade 14.
[0032] より具体的には、溝 40は、翼 14の中央付近力も後縁 21付近に向かって、翼 14の 背面 24に徐々に近づく形状を有する。翼 14の後縁 21付近 (弦 29の端付近)におい て、溝 40の中心線 41と翼 14の背面 24との距離が最短である。溝 40の中心線 41と 翼 14の背面 24との最短距離は、その最長距離の 50%以下であることが好ましい。ま た、翼 14の後縁 21付近において、溝 40の中心線 41と翼列 30の軸とのなす角度 |8 ( 流れの出口部分で翼列 30の軸に対して溝 40の中心線 41の接線方向がなす角度; 出口角度)が、翼 14の反り線 22と翼列 30の軸とのなす角度 α (流れの出口部分で 翼列 30の軸に対して翼 14の反り線 22の接線方向がなす角度;出口角度)に比べて 大きい。翼 14の前縁 20付近においては、翼 14の反り線 22と溝 40の中心線 41との 位置関係は、翼型及び流れ場に応じて変化する。例えば、翼 14の反り線 22と溝 40 の中心線 41とが、前縁 20と後縁 21の範囲において、交差する(すなわち、最短距離 力 ^となる)ように形成してもよ!/、。  More specifically, the groove 40 has a shape in which the force near the center of the blade 14 gradually approaches the back surface 24 of the blade 14 toward the vicinity of the trailing edge 21. Near the trailing edge 21 of the wing 14 (near the end of the chord 29), the distance between the center line 41 of the groove 40 and the back surface 24 of the wing 14 is the shortest. The shortest distance between the center line 41 of the groove 40 and the back surface 24 of the blade 14 is preferably 50% or less of the longest distance. Also, in the vicinity of the trailing edge 21 of the blade 14, the angle between the center line 41 of the groove 40 and the axis of the blade row 30 | 8 (the center line 41 of the groove 40 with respect to the axis of the blade row 30 at the outlet of the flow Is the angle between the warp line 22 of the blade 14 and the axis of the blade row 30 (the outlet angle) of the warp line 22 of the blade 14 relative to the axis of the blade row 30 at the outlet of the flow. Larger than the angle formed by the tangential direction (exit angle). In the vicinity of the leading edge 20 of the blade 14, the positional relationship between the warp line 22 of the blade 14 and the center line 41 of the groove 40 varies depending on the airfoil shape and the flow field. For example, the warp line 22 of the wing 14 and the center line 41 of the groove 40 may be formed so as to intersect (ie, have the shortest distance force ^) in the range of the leading edge 20 and the trailing edge 21! / ,.
[0033] 図 4は、翼列 30の軸方向(X方向)に沿った、溝 40の深さ形状 (X軸を含む面に投影 した溝の断面形状)を示す図である。  FIG. 4 is a view showing the depth shape of the groove 40 (cross-sectional shape of the groove projected onto the plane including the X axis) along the axial direction (X direction) of the blade row 30.
図 4及び図 2に示すように、溝 40の深さ形状は、翼列 30の軸方向(X方向)に沿って 、最深部 43 (図 2参照)と最浅部 44a, 44b (図 2参照)の間で徐々に変化する。溝 40 の最深部 43は、軸方向に関し、翼 14の中央付近または翼 14の中央と前縁 20との間 に位置する。溝 40の最浅部 44a, 44bは、軸方向に関し、翼 14の前縁 20付近及び 後縁 21付近に位置する。  As shown in FIGS. 4 and 2, the depth shape of the groove 40 is the deepest portion 43 (see FIG. 2) and the shallowest portions 44a and 44b (see FIG. 2) along the axial direction (X direction) of the blade row 30. Gradually change between The deepest portion 43 of the groove 40 is located near the center of the blade 14 or between the center of the blade 14 and the leading edge 20 in the axial direction. The shallowest portions 44a and 44b of the groove 40 are located in the vicinity of the leading edge 20 and the trailing edge 21 of the blade 14 in the axial direction.
[0034] ここで、翼 14の前縁 20と後縁 21との間の距離 (翼列 30の軸に沿って前縁 20から 計測)を、「軸長さ(axial chord length)」と定める。  [0034] Here, the distance between the leading edge 20 and the trailing edge 21 of the blade 14 (measured from the leading edge 20 along the axis of the blade row 30) is defined as the "axial chord length". .
溝 40の深さは、図 5Aに示すように、軸流経路の基準面(cylinder base (円筒面ある いは円錐面))力もの径方向の距離 (TD1)として定義される。あるいは、溝 40の深さ は、図 5Bに示すように、翼列 30の軸に垂直な 1つの断面における振幅の半分 (half 0 f peak to peak) (図 5Bに示す HR1)として定義される。溝 40の最深部 43は、 TD1又 は HR1のいずれを用いた場合にも、軸方向に関し、軸長さの 20〜60%、好ましくは 20〜50%、より好ましくは 30〜50%に位置する。 The depth of the groove 40 is defined as the radial distance (TD1) of the axial flow path reference plane (cylinder base (cylindrical or conical)) force, as shown in FIG. 5A. Alternatively, the depth of groove 40 is defined as half 0 f peak to peak (HR1 shown in FIG. 5B) in one section perpendicular to the axis of cascade 30 as shown in FIG. 5B. . The deepest part 43 of the groove 40 is TD1 or When HR1 is used, it is located 20 to 60%, preferably 20 to 50%, more preferably 30 to 50% of the axial length in the axial direction.
[0035] また、図 4及び図 2に示すように、溝 40は、その延在方向に沿って、最深部 43から 両端の最浅部 44a, 44bのそれぞれに向力つて徐々〖こ浅くなる。すなわち、溝 40は、 翼 14の前縁 20付近の最浅部 44aから始まり、深さを増しながら翼 14の前縁 21と中 央付近との間で最も深くなり(最深部 43)、深さを減らしながら翼 14の後縁 21付近の 最浅部 44bで終わる。最深部 43から最浅部 44a, 44bまでの溝 40の輪郭は、一様に 滑らかである、あるいは非一様に滑らかである。前述したように、溝 40の中心線 41と 翼 14の背面 24との距離は、翼 14の後縁 21付近で比較的短いことから、溝 40の中 心深さは、翼 14の中央付近力も後縁付近において、翼 14の背面 24から遠い部分で 深く、背面 24に近い部分で浅い。  Further, as shown in FIGS. 4 and 2, the groove 40 gradually becomes shallower in the extending direction from the deepest portion 43 to the shallowest portions 44a and 44b at both ends. . That is, the groove 40 starts from the shallowest part 44a near the leading edge 20 of the wing 14 and deepens between the leading edge 21 of the wing 14 and near the center while increasing the depth (the deepest part 43). It ends at the shallowest part 44b near the trailing edge 21 of the wing 14 with decreasing height. The contour of the groove 40 from the deepest part 43 to the shallowest parts 44a, 44b is uniformly smooth or non-uniformly smooth. As described above, since the distance between the center line 41 of the groove 40 and the back surface 24 of the wing 14 is relatively short near the trailing edge 21 of the wing 14, the center depth of the groove 40 is near the center of the wing 14. In the vicinity of the trailing edge, the force is deeper at the part far from the rear face 24 of the wing 14 and shallower at the part near the rear face 24.
[0036] 図 6Aは、溝 40の形状を説明するための図であり、図 6B及び 6Cは、溝 40を有する 壁 31の周形状 (周方向の輪郭、すなわち壁の横断面 (軸に対する直交断面)の形状 )を示す図 (壁面の凹凸分布図)である。  FIG. 6A is a diagram for explaining the shape of the groove 40. FIGS. 6B and 6C show the circumferential shape of the wall 31 having the groove 40 (circumferential contour, ie, the cross section of the wall (orthogonal to the axis). FIG. 3 is a diagram (concave distribution pattern of wall surfaces) showing a shape of a cross section).
図 6Aに示すように、翼 14の前縁位置 (LE)及び後縁位置 (TE)では、壁 31は円環 状であり、その周形状 (周方向の輪郭)は円弧である。すなわち、前縁位置 (LE)及 び後縁位置 (TE)の壁 31の周形状には溝 40による窪みがない。  As shown in FIG. 6A, at the front edge position (LE) and the rear edge position (TE) of the blade 14, the wall 31 has an annular shape, and its circumferential shape (circumferential contour) is an arc. That is, the circumferential shape of the wall 31 at the leading edge position (LE) and the trailing edge position (TE) has no recess due to the groove 40.
[0037] ここで、壁 31における軸長さ(axial chord length)の約 30%—40%の間を領域 Aと 称し、壁 31における軸長さの約 60%— 90%を領域 Cと称し、壁 31における軸長さの 約 40%— 60% (すなわち、領域 Aと領域 Cとの間)を領域 Bと称する。壁 31の周形状 (凹ゃ凸)は、領域 Aと領域 Cとによって定義され、領域 Bは、翼型及び流れ場に応じ て変化する遷移領域である。また、領域 A及び領域 Cの範囲は、本発明の壁形状が 設置される場所、翼型及び流れ場によって、適宜変更されるものである。例えば、領 域 Cの範囲(約 60%— 90%)は、 60%— 90%、 60%— 80%、 70%— 90%、 70% — 80%、 80%— 90%、 70% -85%, 75%— 90%、 80%— 95%のように設定する ことができる。  [0037] Here, between approximately 30% and 40% of the axial chord length of the wall 31 is referred to as region A, and approximately 60% to 90% of the axial length of the wall 31 is referred to as region C. About 40% -60% of the axial length of the wall 31 (ie, between region A and region C) is referred to as region B. The circumferential shape (concave convex) of the wall 31 is defined by region A and region C, and region B is a transition region that varies depending on the airfoil and flow field. Further, the ranges of the region A and the region C are appropriately changed depending on the place where the wall shape of the present invention is installed, the airfoil, and the flow field. For example, the range of Area C (approximately 60% —90%) is 60% —90%, 60% —80%, 70% —90%, 70% —80%, 80% —90%, 70%- It can be set to 85%, 75% —90%, 80% —95%.
[0038] 図 6Bに示すように、領域 Aにおいて、壁 31の周形状 (周方向の輪郭)は、翼 14の 腹面 23 (P.S.)に隣接する凸部(convex portion) 50と、翼 14の背面 24 (S.S.)に隣接 する別の凸部 51と、 2つの凸部の間に形成される凹部(concave portion)とを含む。こ の領域 Aにおける凸 Z凹 Z凸形状を「第 1形状」と称する。凸部は、正の曲率を有し、 凹部は負の曲率を有する。 As shown in FIG. 6B, in region A, the circumferential shape (circumferential contour) of the wall 31 is that the convex portion 50 adjacent to the ventral surface 23 (PS) of the wing 14 and the wing 14 Adjacent to rear 24 (SS) Another convex portion 51 and a concave portion formed between the two convex portions. The convex Z-concave Z convex shape in this area A is referred to as the “first shape”. The convex part has a positive curvature, and the concave part has a negative curvature.
図 6Cに示すように、領域 Cにおいて、壁 31の周形状は、翼 14の腹面 23 (P.S.)に 隣接する凸部 54と、翼 14の背面 24 (S.S.)に隣接する凹部 55とを含み、凸部 54から 凹部 55に滑らかに遷移している。この領域 Cにおける腹面凸 Z背面凹形状を「第 2 形状」と称する。  As shown in FIG.6C, in region C, the circumferential shape of the wall 31 includes a convex portion 54 adjacent to the ventral surface 23 (PS) of the wing 14 and a concave portion 55 adjacent to the rear surface 24 (SS) of the wing 14. The transition from the convex portion 54 to the concave portion 55 is smooth. The abdominal convexity Z back concave shape in this region C is referred to as “second shape”.
[0039] 図 6Aに示すように、領域 Bにおいて、壁 31の周形状は、第 1形状から第 2形状に滑 らかに変化する。  [0039] As shown in FIG. 6A, in region B, the circumferential shape of wall 31 smoothly changes from the first shape to the second shape.
前縁位置 (LE)と領域 Aとの間の領域 (すなわち、軸長さの約 0% - 30%)は遷移 領域であり、領域 Lと称する。領域 Lにおいて、壁 31の周形状は、前縁位置 (LE)に おける円弧力も領域 Aの第 1形状(凸 Z凹 Z凸)に滑らかに変化する。  The region between the leading edge position (LE) and region A (ie, about 0% to 30% of the axial length) is a transition region and is referred to as region L. In the region L, the circumferential shape of the wall 31 smoothly changes to the first shape of the region A (convex Z concave Z convex) at the leading edge position (LE).
領域 Cと後縁位置 (TE)との間の領域 (すなわち、軸長さの約 90— 100%)もまた遷 移領域であり、領域 Tと称する。領域 Tにおいて、壁 31の周形状は、領域 Cにおける 第 2形状 (腹面凸 Z背面凹)から後縁位置 (TE)における円弧に滑らかに変化する。 前述したように、溝 40は、領域 L、領域 A、領域 Bのいずれかにおいて、軸長さの 2 0% 60%の間に最深部 43を有する。  The region between region C and the trailing edge position (TE) (ie about 90-100% of the axial length) is also a transition region and is referred to as region T. In the region T, the circumferential shape of the wall 31 smoothly changes from the second shape in region C (abdominal surface convex Z back concave) to the arc at the trailing edge position (TE). As described above, the groove 40 has the deepest portion 43 between 20% and 60% of the axial length in any of the region L, the region A, and the region B.
[0040] また、翼 14の腹面 23に沿った壁 31の輪郭 (腹面側の輪郭)は、前縁位置 (LE)と 後縁位置 (TE)を除ぐすべての領域で軸流経路の基準面 (cylinder base (円筒面あ るいは円錐面))よりも高い位置である。図 6Aに示すように、腹面側の輪郭は、翼 14 の前縁 20付近における、正の曲率を有する凸領域 60と、翼 14の後縁 21付近にお ける、正の曲率を有する凸領域 61とを有する。凸領域 60と凸領域 61との間の領域 は遷移領域であり、この遷移領域において、腹面側の輪郭は、凸領域 60から凸領域 61に滑らかに変化する。この遷移領域において、曲率が負となる凹部が形成されて いてもよい。 [0040] In addition, the contour of the wall 31 along the ventral surface 23 of the wing 14 (the contour on the ventral side) is the reference for the axial flow path in all areas except the leading edge position (LE) and trailing edge position (TE). It is higher than the plane (cylinder base (cylindrical surface or conical surface)). As shown in FIG.6A, the contour on the ventral side is a convex region 60 having a positive curvature in the vicinity of the leading edge 20 of the wing 14 and a convex region having a positive curvature in the vicinity of the trailing edge 21 of the wing 14. 61. A region between the convex region 60 and the convex region 61 is a transition region, and in this transition region, the contour on the ventral surface side smoothly changes from the convex region 60 to the convex region 61. In this transition region, a recess having a negative curvature may be formed.
[0041] 翼 14の背面 24に沿った壁 31の輪郭 (背面側の輪郭)は、軸流経路の基準面 (cylin der base)よりも高い位置にある主要領域と、翼型及び流れ場に応じて基準面力 の 高さが変化する部分領域とを有する。部分領域は、翼型及び流れ場に応じて、基準 面よりも高い位置、ほぼ同じ位置、低い位置のいずれかに変化する。図 6Aに示すよ うに、背面側の輪郭は、翼 14の前縁 20付近における、正の曲率を有する凸領域 64 と、中央付近における、正の曲率を有する凸領域 65と、後縁 21付近における、負の 曲率を有する凹領域 66とを有する。背面側の輪郭における凹領域 66は、翼 14の弦 長さ(chord length)の 50%以下である。ここでいう弦長さは、図 7に示すように、翼の 前縁の先端と後縁の先端との距離 (CL2)、あるいは前縁及び後縁に接する直線に 直交する直線が翼の前縁及び後縁に接する 2つの点の間の距離 (CL1)として定義 される。 [0041] The contour of the wall 31 along the back surface 24 of the wing 14 (the contour on the back side) is in the main region, higher than the cylin der base of the axial flow path, and in the airfoil and flow field. And a partial region where the height of the reference surface force changes accordingly. The partial area is a reference, depending on the airfoil and flow field. It changes to a position higher than the surface, almost the same position, or a lower position. As shown in FIG.6A, the contour on the back side is a convex region 64 having a positive curvature near the leading edge 20 of the wing 14, a convex region 65 having a positive curvature near the center, and a vicinity of the trailing edge 21. And a concave region 66 having a negative curvature. The recessed area 66 in the rear profile is less than 50% of the chord length of the wing 14. As shown in Fig. 7, the chord length here is the distance (CL2) between the tip of the leading edge of the wing and the tip of the trailing edge (CL2), or a straight line perpendicular to the straight line that touches the leading and trailing edges. Defined as the distance (CL1) between two points touching the edge and the trailing edge.
[0042] 図 8及び図 9Aは、比較例として、翼列の壁が平坦な場合における壁近傍の流れ場  FIG. 8 and FIG. 9A show, as a comparative example, a flow field near the wall when the blade wall is flat.
(壁面近傍マッハ数分布)を示す図である。  It is a figure which shows (wall surface vicinity Mach number distribution).
図 8及び図 9Aにおいて、壁面上では、翼 14の腹面 (P.S.)の付近に部分的(弦方 向の中央部付近)に剥離域 45が生じ、これが壁面境界層と干渉し、主流とは異なる 流れ方向の軸をもつ強い渦 46が発生する。渦 46の開始端は、剥離域 45と壁面境界 層との干渉部分であり、翼の腹面に比較的近ぐさらに、軸方向に関して、翼 14の中 央付近または翼の中央と前縁の間に位置する。渦 46の到達位置は、翼の背面かつ 後縁付近である。  8 and 9A, on the wall surface, a separation zone 45 occurs partially near the ventral surface (PS) of the wing 14 (near the center in the chord direction), which interferes with the wall boundary layer and Strong vortices 46 with different flow direction axes are generated. The starting edge of the vortex 46 is the interference between the separation zone 45 and the wall boundary layer, relatively close to the wing's ventral surface, and with respect to the axial direction, near the center of wing 14 or between the center and leading edge of the wing Located in. The arrival position of the vortex 46 is on the back of the wing and near the trailing edge.
[0043] 図 9Bは、図 2から図 6Cに示した本発明の壁形状の実施例における壁近傍の流れ 場 (壁面近傍マッハ数分布)を示す図である。  FIG. 9B is a diagram showing a flow field (wall surface vicinity Mach number distribution) in the vicinity of the wall in the wall-shaped embodiment of the present invention shown in FIGS. 2 to 6C.
[0044] 図 9Bに明らかなように、本発明の壁形状の実施例では、比較例に比べて、渦が弱 まり、壁面上の流れの乱れが少ない。その結果、実施例では、流れの損失 (圧力損 失、エネルギー損失)の低減が図られる。 As apparent from FIG. 9B, in the wall-shaped example of the present invention, the vortex is weakened and the flow disturbance on the wall surface is less than in the comparative example. As a result, in the embodiment, the flow loss (pressure loss, energy loss) can be reduced.
[0045] 図 10は、 2次流れによる損失の変化を示すグラフ図である。図 10において、横軸は スパン (翼列の径方向高さ)を示し、縦軸は流れの損失 (損失係数)を示す。 FIG. 10 is a graph showing a change in loss due to the secondary flow. In Fig. 10, the horizontal axis shows the span (the radial height of the blade row), and the vertical axis shows the flow loss (loss factor).
[0046] 図 10に明らかなように、本発明の壁形状の実施例では、比較例に比べて、流れの 損失が小さい。特に、図中 Sで示す壁面近傍において損失低減が顕著である。 As is apparent from FIG. 10, the wall-shaped example of the present invention has a smaller flow loss than the comparative example. In particular, the loss reduction is remarkable near the wall surface indicated by S in the figure.
[0047] また、本発明の壁形状を、ロータの他の段の翼 14の根元側の壁、ロータの翼 14の 先端側の壁、ノズルの翼 19の根元側の壁、ノズルの翼 19の先端側の壁、に適用した いずれの場合にも、上記と同様の損失低減が解析的に確認された。 [0048] このように、本発明の壁形状によれば、翼間の溝によって、翼の腹側の剥離域と壁 面境界層との干渉により生じる渦を弱め、渦による流れの損失を低減することができ る。 [0047] Further, the wall shape of the present invention is obtained by adding the root-side wall of the blade 14 of the other stage of the rotor, the tip-side wall of the rotor blade 14, the root-side wall of the nozzle blade 19, and the nozzle blade 19 The loss reduction similar to the above was confirmed analytically in all cases applied to the wall on the tip side. [0048] Thus, according to the wall shape of the present invention, the groove between the blades weakens the vortex caused by the interference between the separation region on the ventral side of the blade and the wall boundary layer, and reduces the flow loss due to the vortex. can do.
溝の中心線形状が翼の反り線と同方向の反りを有することにより、溝での別の損失 渦の発生が回避される。  The centerline shape of the groove has a warp in the same direction as the wing warp line, thereby avoiding the generation of another loss vortex in the groove.
溝の最深部が、翼列の軸方向に関し、翼の中央付近または翼の中央と前縁との間 に位置するから、渦の発生位置の近くに溝の最深部が位置する。そのため、渦の発 生位置付近において、横断面 (軸に対する直交断面)における溝の曲率変化が比較 的大きい。  Since the deepest part of the groove is located near the center of the blade or between the center of the blade and the leading edge with respect to the axial direction of the blade row, the deepest part of the groove is located near the position where the vortex is generated. Therefore, the groove curvature change in the transverse section (cross section perpendicular to the axis) is relatively large near the vortex generation position.
また、翼の前縁付近において、翼の腹面付近での壁の輪郭 (周方向の輪郭、及び 腹面に沿った輪郭)が凸形状を有することからも、渦の発生位置付近において、横断 面 (軸に対する直交断面)における溝の曲率変化が比較的大き 、。  In addition, the wall profile (circumferential contour and profile along the ventral surface) near the front edge of the wing has a convex shape near the leading edge of the wing. The change in the groove curvature in the cross section perpendicular to the axis is relatively large.
横断面における溝の底部の曲率変化が大きいと、翼の腹面側の流れが加速する。 この流れの加速によって、翼の腹面側の境界層の発達が抑制される。また、翼の腹 面側では、流れの加速によって圧力が下がるから、翼の腹面側と翼の後縁付近にお ける背面側との圧力差が低下し、その結果、翼間の横断流れが弱まる。  When the curvature change at the bottom of the groove in the cross section is large, the flow on the ventral side of the wing is accelerated. The acceleration of this flow suppresses the development of the boundary layer on the ventral side of the wing. Also, on the ventral side of the wing, the pressure decreases due to the acceleration of the flow, so the pressure difference between the flank side of the wing and the back side near the trailing edge of the wing decreases, resulting in a cross flow between the wings. Weaken.
翼の後縁付近において、翼の背面付近での壁の輪郭 (周方向の輪郭、及び腹面に 沿った輪郭)が凹形状を有することから、渦の到達位置付近の圧力が高い。渦の到 達位置付近の圧力が高くなると、渦が弱まる。  Near the trailing edge of the wing, the wall contour (circumferential contour and contour along the abdominal surface) near the back of the wing has a concave shape, so the pressure near the vortex arrival point is high. As the pressure near the vortex reaches, the vortex becomes weaker.
[0049] 本発明の壁形状は、壁が平坦な場合に発生する渦の発生位置及びその進行軸に 応じて、溝(図 2に示す溝 40)の位置及び形状が最適化設計されるのが好ましい。こ の場合、例えば、溝の最深部は、渦の開始端の近傍であるとよい。また、翼の後縁付 近における溝の延在方向は、渦の軸方向に概ね近似しているとよい。図 2から図 6C に示した壁形状は一例であって、翼列の壁形状は、翼型及び流れ場に応じて適宜 最適化される。 [0049] In the wall shape of the present invention, the position and shape of the groove (groove 40 shown in Fig. 2) are optimized and designed according to the generation position of the vortex generated when the wall is flat and the traveling axis thereof. Is preferred. In this case, for example, the deepest part of the groove may be in the vicinity of the start end of the vortex. In addition, the extending direction of the groove in the vicinity of the trailing edge of the blade should be approximately approximate to the axial direction of the vortex. The wall shape shown in Fig. 2 to Fig. 6C is an example, and the wall shape of the cascade is appropriately optimized according to the airfoil shape and flow field.
[0050] 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定される ことはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびそ の他の変更が可能である。本発明は前述した説明によって限定されることはなぐ添 付のクレームの範囲によってのみ限定される。 [0050] While the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the above description. Limited only by the scope of the appended claims.

Claims

請求の範囲 The scope of the claims
[1] 翼列を有する軸流機械の流路に面した径方向の壁の形状であって、  [1] The shape of a radial wall facing the flow path of an axial flow machine having cascades,
前記翼列における翼同士の間の領域で、前記翼列の軸方向に延在する溝を有し、 前記溝の形成領域は、前記軸方向に関し、前記翼の前縁と後縁の間であり、 前記溝の中心線形状は、前記翼の反り線と同方向の反りを有し、  A region extending between the blades in the blade row and extending in the axial direction of the blade row, wherein the groove formation region is between the leading edge and the trailing edge of the blade with respect to the axial direction. And the center line shape of the groove has a warp in the same direction as the warp line of the wing,
前記溝の最深部は、前記軸方向に関し、前記翼の中央付近または前記翼の中央と 前縁との間に位置する、ことを特徴とする軸流機械の壁形状。  The deepest part of the groove is located near the center of the blade or between the center and the leading edge of the blade with respect to the axial direction.
[2] 前記溝の最深部は、前記軸方向に関し、前記翼の前縁から、前記翼の前縁と後縁 との距離の 20〜60%に位置する、ことを特徴とする請求項 1に記載の軸流機械の壁 形状。  [2] The deepest portion of the groove is located 20 to 60% of the distance between the leading edge and the trailing edge of the blade from the leading edge of the blade with respect to the axial direction. The wall shape of the axial flow machine described in 1.
[3] 前記溝の最深部は、前記軸方向に関し、前記翼の前縁から、前記翼の前縁と後縁 との距離の 30〜50%に位置する、ことを特徴とする請求項 2に記載の軸流機械の壁 形状。  [3] The deepest portion of the groove is located at 30 to 50% of the distance between the leading edge and the trailing edge of the blade with respect to the axial direction from the leading edge of the blade. The wall shape of the axial flow machine described in 1.
[4] 前記溝の中心線の少なくとも一部が、前記翼の反り線に対して非平行である、こと を特徴とする請求項 1に記載の軸流機械の壁形状。  4. The wall shape of the axial flow machine according to claim 1, wherein at least a part of the center line of the groove is non-parallel to the warp line of the blade.
[5] 前記翼の中央付近力も後縁付近に向力つて、前記溝が、前記翼の背面に近づぐ ことを特徴とする請求項 1に記載の軸流機械の壁形状。 [5] The wall shape of the axial flow machine according to claim 1, wherein the force near the center of the blade is directed toward the vicinity of the trailing edge, and the groove approaches the back surface of the blade.
[6] 前記翼の後縁付近において、前記溝の中心線と前記翼の背面との距離が最短で ある、ことを特徴とする請求項 1に記載の軸流機械の壁形状。 6. The wall shape of the axial flow machine according to claim 1, wherein the distance between the center line of the groove and the back surface of the blade is the shortest in the vicinity of the trailing edge of the blade.
[7] 前記翼の前縁位置及び後縁位置における前記壁の周形状が円弧である、ことを特 徴とする請求項 1に記載の軸流機械の壁形状。 7. The wall shape of the axial flow machine according to claim 1, wherein the circumferential shape of the wall at the front edge position and the rear edge position of the blade is an arc.
[8] 前記翼の前縁付近における前記壁の周方向の輪郭が、前記翼の腹面に隣接する 凸形状と前記翼の背面に隣接する凸形状とを含む、ことを特徴とする請求項 1に記 載の軸流機械の壁形状。 8. The circumferential contour of the wall in the vicinity of the leading edge of the wing includes a convex shape adjacent to the abdominal surface of the wing and a convex shape adjacent to the back surface of the wing. Wall shape of the axial flow machine described in.
[9] 前記翼の後縁付近における前記壁の周方向の輪郭が、前記翼の背面に隣接する 凹形状を含む、ことを特徴とする請求項 1に記載の軸流機械の壁形状。 9. The wall shape of the axial flow machine according to claim 1, wherein a circumferential contour of the wall in the vicinity of a trailing edge of the blade includes a concave shape adjacent to a back surface of the blade.
[10] 前記翼の後縁付近における前記壁の周方向の輪郭が、前記翼の腹面に隣接する 凸形状をさらに含む、ことを特徴とする請求項 9に記載の軸流機械の壁形状。 10. The wall shape of the axial flow machine according to claim 9, wherein the circumferential contour of the wall in the vicinity of the trailing edge of the wing further includes a convex shape adjacent to the abdominal surface of the wing.
[11] 前記翼の腹面に沿った前記壁の輪郭が、前記翼の前縁付近における凸領域と、前 記翼の後縁付近における凸領域とを含む、ことを特徴とする請求項 1に記載の軸流 機械の壁形状。 [11] The contour of the wall along the abdominal surface of the wing includes a convex region near the leading edge of the wing and a convex region near the trailing edge of the wing. Wall shape of the described axial flow machine.
[12] 前記翼の背面に沿った前記壁の輪郭が、前記翼の前縁付近における凸領域と、前 記翼の後縁付近における凹領域とを含む、ことを特徴とする請求項 1に記載の軸流 機械の壁形状。  12. The contour of the wall along the back surface of the wing includes a convex region near the leading edge of the wing and a concave region near the trailing edge of the wing. Wall shape of the described axial flow machine.
[13] 前記翼の後縁付近における前記凹領域は、前記翼の弦長さの 50%以下である、こ とを特徴とする請求項 12に記載の軸流機械の壁形状。  13. The wall shape of the axial flow machine according to claim 12, wherein the concave region in the vicinity of the trailing edge of the wing is 50% or less of a chord length of the wing.
[14] 複数の静翼と複数の動翼とを有するガスタービンエンジンであって、 [14] A gas turbine engine having a plurality of stationary blades and a plurality of moving blades,
前記複数の静翼の根元側の壁、前記複数の静翼の先端側の壁、前記複数の動翼 の根元側の壁、及び前記複数の動翼の先端側の壁、の少なくとも 1つが、請求項 1か ら請求項 13のいずれかに記載の壁形状を有する、ことを特徴とするガスタービンェン ジン。  At least one of a plurality of stationary blades, a plurality of stationary blades, a plurality of stationary blades, a plurality of stationary blades, a plurality of stationary blades, a plurality of stationary blades, a plurality of stationary blades, and A gas turbine engine having the wall shape according to any one of claims 1 to 13.
PCT/JP2005/017515 2004-09-24 2005-09-22 Wall shape of axial flow machine and gas turbine engine WO2006033407A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006536423A JP4640339B2 (en) 2004-09-24 2005-09-22 Wall shape of axial flow machine and gas turbine engine
EP05785999A EP1760257B1 (en) 2004-09-24 2005-09-22 Wall shape of axial flow machine and gas turbine engine
CA002569026A CA2569026C (en) 2004-09-24 2005-09-22 Wall configuration of axial-flow machine, and gas turbine engine
US11/570,325 US7690890B2 (en) 2004-09-24 2005-09-22 Wall configuration of axial-flow machine, and gas turbine engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004277114 2004-09-24
JP2004-277114 2004-09-24

Publications (1)

Publication Number Publication Date
WO2006033407A1 true WO2006033407A1 (en) 2006-03-30

Family

ID=36090161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017515 WO2006033407A1 (en) 2004-09-24 2005-09-22 Wall shape of axial flow machine and gas turbine engine

Country Status (5)

Country Link
US (1) US7690890B2 (en)
EP (1) EP1760257B1 (en)
JP (1) JP4640339B2 (en)
CA (1) CA2569026C (en)
WO (1) WO2006033407A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045554A (en) * 2006-08-16 2008-02-28 United Technol Corp <Utc> Turbine blade system equipped with blade airfoil having airfoil shape, and ring platform for the turbine blade system
WO2008084563A1 (en) * 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Blade structure for gas turbine
WO2008120748A1 (en) * 2007-03-29 2008-10-09 Ihi Corporation Wall of turbo machine and turbo machine
JP2009209745A (en) * 2008-03-03 2009-09-17 Mitsubishi Heavy Ind Ltd Turbine stage of axial flow type turbo machine, and gas turbine
JP2009293411A (en) * 2008-06-03 2009-12-17 Ihi Corp Film cooling structure for turbine flow path surface
JP2010156335A (en) * 2008-12-31 2010-07-15 General Electric Co <Ge> Method and device concerning contour of improved turbine blade platform
JP2011021525A (en) * 2009-07-15 2011-02-03 Toshiba Corp Turbine blade cascade, and turbine stage and axial flow turbine using the same
JP2011513628A (en) * 2008-02-28 2011-04-28 スネクマ Blade with non-axisymmetric platform and depression and protrusion on outer ring
JP2011513627A (en) * 2008-02-28 2011-04-28 スネクマ Blade with non-axisymmetric platform
JP2012052524A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Turbine assembly with end-wall-contoured airfoils and preferential clocking
JP2012052525A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Turbine nozzle with contoured band
JP2012072777A (en) * 2008-12-05 2012-04-12 Siemens Ag Ring diffuser for axial turbomachine, arrangement for axial turbo machine, and axial turbomachine
JP2012514156A (en) * 2008-12-24 2012-06-21 ゼネラル・エレクトリック・カンパニイ Curved platform turbine blade
US8313291B2 (en) * 2007-12-19 2012-11-20 Nuovo Pignone, S.P.A. Turbine inlet guide vane with scalloped platform and related method
WO2012157498A1 (en) * 2011-05-13 2012-11-22 株式会社Ihi Gas turbine engine
JP2013502531A (en) * 2009-08-20 2013-01-24 ゼネラル・エレクトリック・カンパニイ Two-dimensional platform turbine blade
JP2014001729A (en) * 2012-06-15 2014-01-09 General Electric Co <Ge> Rotating airfoil component with platform having recessed surface region therein
WO2014017585A1 (en) * 2012-07-26 2014-01-30 株式会社Ihi Engine duct, and aircraft engine

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020025A1 (en) * 2007-04-27 2008-10-30 Honda Motor Co., Ltd. Shape of a gas channel in an axial flow gas turbine engine
JP5291355B2 (en) * 2008-02-12 2013-09-18 三菱重工業株式会社 Turbine cascade endwall
FR2928173B1 (en) * 2008-02-28 2015-06-26 Snecma DAWN WITH 3D PLATFORM COMPRISING A BULB INTERAUBES.
DE102008031789A1 (en) * 2008-07-04 2010-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for influencing secondary flows in a turbomachine
US8647067B2 (en) * 2008-12-09 2014-02-11 General Electric Company Banked platform turbine blade
FR2950942B1 (en) * 2009-10-02 2013-08-02 Snecma ROTOR OF A TURBOMACHINE COMPRESSOR WITH OPTIMIZED INTERNAL END WALL
US9630277B2 (en) 2010-03-15 2017-04-25 Siemens Energy, Inc. Airfoil having built-up surface with embedded cooling passage
US8585356B2 (en) * 2010-03-23 2013-11-19 Siemens Energy, Inc. Control of blade tip-to-shroud leakage in a turbine engine by directed plasma flow
US8500404B2 (en) 2010-04-30 2013-08-06 Siemens Energy, Inc. Plasma actuator controlled film cooling
DE102011008812A1 (en) * 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh intermediate housing
ES2440563T3 (en) * 2011-02-08 2014-01-29 MTU Aero Engines AG Blade channel with side wall contours and corresponding flow apparatus
DE102011006273A1 (en) * 2011-03-28 2012-10-04 Rolls-Royce Deutschland Ltd & Co Kg Rotor of an axial compressor stage of a turbomachine
DE102011006275A1 (en) 2011-03-28 2012-10-04 Rolls-Royce Deutschland Ltd & Co Kg Stator of an axial compressor stage of a turbomachine
US8926267B2 (en) 2011-04-12 2015-01-06 Siemens Energy, Inc. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling
DE102011007767A1 (en) 2011-04-20 2012-10-25 Rolls-Royce Deutschland Ltd & Co Kg flow machine
JP2012233406A (en) 2011-04-28 2012-11-29 Hitachi Ltd Gas turbine stator vane
US8961135B2 (en) 2011-06-29 2015-02-24 Siemens Energy, Inc. Mateface gap configuration for gas turbine engine
US8961134B2 (en) * 2011-06-29 2015-02-24 Siemens Energy, Inc. Turbine blade or vane with separate endwall
US8939727B2 (en) 2011-09-08 2015-01-27 Siemens Energy, Inc. Turbine blade and non-integral platform with pin attachment
US9017030B2 (en) 2011-10-25 2015-04-28 Siemens Energy, Inc. Turbine component including airfoil with contour
US8992179B2 (en) * 2011-10-28 2015-03-31 General Electric Company Turbine of a turbomachine
US8807930B2 (en) * 2011-11-01 2014-08-19 United Technologies Corporation Non axis-symmetric stator vane endwall contour
US9194235B2 (en) * 2011-11-25 2015-11-24 Mtu Aero Engines Gmbh Blading
EP2597257B1 (en) * 2011-11-25 2016-07-13 MTU Aero Engines GmbH Blades
US9085985B2 (en) * 2012-03-23 2015-07-21 General Electric Company Scalloped surface turbine stage
US9267386B2 (en) 2012-06-29 2016-02-23 United Technologies Corporation Fairing assembly
DE102012106810B4 (en) * 2012-07-26 2020-08-27 Ihi Charging Systems International Gmbh Impeller for a fluid energy machine
EP2787171B1 (en) * 2012-08-02 2016-06-22 MTU Aero Engines GmbH Blade grid with side wall contours and turbomachine
EP2696029B1 (en) * 2012-08-09 2015-10-07 MTU Aero Engines AG Blade row with side wall contours and fluid flow engine
WO2014028056A1 (en) 2012-08-17 2014-02-20 United Technologies Corporation Contoured flowpath surface
US20140154068A1 (en) * 2012-09-28 2014-06-05 United Technologies Corporation Endwall Controuring
US9140128B2 (en) 2012-09-28 2015-09-22 United Technologes Corporation Endwall contouring
US9212558B2 (en) 2012-09-28 2015-12-15 United Technologies Corporation Endwall contouring
ES2535096T3 (en) * 2012-12-19 2015-05-05 MTU Aero Engines AG Blade of blade and turbomachine
US9568009B2 (en) 2013-03-11 2017-02-14 Rolls-Royce Corporation Gas turbine engine flow path geometry
WO2014197062A2 (en) * 2013-03-15 2014-12-11 United Technologies Corporation Fan exit guide vane platform contouring
EP2806103B1 (en) * 2013-05-24 2019-07-17 MTU Aero Engines AG Cascade and turbo-engine
EP2835499B1 (en) * 2013-08-06 2019-10-09 MTU Aero Engines GmbH Blade row and corresponding flow machine
US9797258B2 (en) 2013-10-23 2017-10-24 General Electric Company Turbine bucket including cooling passage with turn
US9638041B2 (en) 2013-10-23 2017-05-02 General Electric Company Turbine bucket having non-axisymmetric base contour
US9528379B2 (en) 2013-10-23 2016-12-27 General Electric Company Turbine bucket having serpentine core
US9551226B2 (en) 2013-10-23 2017-01-24 General Electric Company Turbine bucket with endwall contour and airfoil profile
US9347320B2 (en) 2013-10-23 2016-05-24 General Electric Company Turbine bucket profile yielding improved throat
US9670784B2 (en) 2013-10-23 2017-06-06 General Electric Company Turbine bucket base having serpentine cooling passage with leading edge cooling
US9376927B2 (en) * 2013-10-23 2016-06-28 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC)
US9388704B2 (en) 2013-11-13 2016-07-12 Siemens Energy, Inc. Vane array with one or more non-integral platforms
US9638212B2 (en) 2013-12-19 2017-05-02 Pratt & Whitney Canada Corp. Compressor variable vane assembly
WO2015195112A1 (en) 2014-06-18 2015-12-23 Siemens Energy, Inc. End wall configuration for gas turbine engine
GB201418948D0 (en) * 2014-10-24 2014-12-10 Rolls Royce Plc Row of aerofoil members
US10107108B2 (en) 2015-04-29 2018-10-23 General Electric Company Rotor blade having a flared tip
US20170009589A1 (en) * 2015-07-09 2017-01-12 Siemens Energy, Inc. Gas turbine engine blade with increased wall thickness zone in the trailing edge-hub region
US10125623B2 (en) * 2016-02-09 2018-11-13 General Electric Company Turbine nozzle profile
US10001014B2 (en) 2016-02-09 2018-06-19 General Electric Company Turbine bucket profile
US10156149B2 (en) 2016-02-09 2018-12-18 General Electric Company Turbine nozzle having fillet, pinbank, throat region and profile
US10161255B2 (en) 2016-02-09 2018-12-25 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC)
US10196908B2 (en) 2016-02-09 2019-02-05 General Electric Company Turbine bucket having part-span connector and profile
US10221710B2 (en) 2016-02-09 2019-03-05 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC) and profile
US10190417B2 (en) 2016-02-09 2019-01-29 General Electric Company Turbine bucket having non-axisymmetric endwall contour and profile
US10190421B2 (en) 2016-02-09 2019-01-29 General Electric Company Turbine bucket having tip shroud fillet, tip shroud cross-drilled apertures and profile
DE102016211315A1 (en) * 2016-06-23 2017-12-28 MTU Aero Engines AG Runner or vane with raised areas
US10577955B2 (en) 2017-06-29 2020-03-03 General Electric Company Airfoil assembly with a scalloped flow surface
US10487679B2 (en) * 2017-07-17 2019-11-26 United Technologies Corporation Method and apparatus for sealing components of a gas turbine engine with a dielectric barrier discharge plasma actuator
US10865806B2 (en) 2017-09-15 2020-12-15 Pratt & Whitney Canada Corp. Mistuned rotor for gas turbine engine
US11002293B2 (en) * 2017-09-15 2021-05-11 Pratt & Whitney Canada Corp. Mistuned compressor rotor with hub scoops
US10443411B2 (en) 2017-09-18 2019-10-15 Pratt & Whitney Canada Corp. Compressor rotor with coated blades
US10837459B2 (en) 2017-10-06 2020-11-17 Pratt & Whitney Canada Corp. Mistuned fan for gas turbine engine
BE1025666B1 (en) * 2017-10-26 2019-05-27 Safran Aero Boosters S.A. NON-AXISYMMETRIC CARTER PROFILE FOR TURBOMACHINE COMPRESSOR
CN111936722B (en) * 2018-03-30 2023-04-28 西门子能源全球两合公司 End wall shaping for conical end walls
US11939880B1 (en) 2022-11-03 2024-03-26 General Electric Company Airfoil assembly with flow surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1602965A (en) * 1968-08-16 1971-03-01
US6283713B1 (en) * 1998-10-30 2001-09-04 Rolls-Royce Plc Bladed ducting for turbomachinery
JP2002276301A (en) * 2001-03-07 2002-09-25 General Electric Co <Ge> Brisk with groove and manufacturing method thereof
JP2003269384A (en) * 2002-03-07 2003-09-25 United Technol Corp <Utc> Flow guide assembly

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735612A (en) 1956-02-21 hausmann
CH229266A (en) * 1942-03-26 1943-10-15 Sulzer Ag Turbomachine, the blade surfaces of which merge into the base surface with a rounding at the blade root.
US2918254A (en) 1954-05-10 1959-12-22 Hausammann Werner Turborunner
FR1442526A (en) 1965-05-07 1966-06-17 Rateau Soc Improvements to curved canals traversed by gas or vapor
DE3202855C1 (en) 1982-01-29 1983-03-31 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Device for reducing secondary flow losses in a bladed flow channel
JPH06257597A (en) 1993-03-02 1994-09-13 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk Cascade structure of axial flow compressor
JPH06257596A (en) 1993-03-02 1994-09-13 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk Cascade structure of axial flow compressor
US5397215A (en) 1993-06-14 1995-03-14 United Technologies Corporation Flow directing assembly for the compression section of a rotary machine
GB2281356B (en) 1993-08-20 1997-01-29 Rolls Royce Plc Gas turbine engine turbine
DE19650656C1 (en) 1996-12-06 1998-06-10 Mtu Muenchen Gmbh Turbo machine with transonic compressor stage
US6419446B1 (en) 1999-08-05 2002-07-16 United Technologies Corporation Apparatus and method for inhibiting radial transfer of core gas flow within a core gas flow path of a gas turbine engine
US6511294B1 (en) 1999-09-23 2003-01-28 General Electric Company Reduced-stress compressor blisk flowpath
US6338609B1 (en) 2000-02-18 2002-01-15 General Electric Company Convex compressor casing
US6561761B1 (en) 2000-02-18 2003-05-13 General Electric Company Fluted compressor flowpath
JP2001271602A (en) 2000-03-27 2001-10-05 Honda Motor Co Ltd Gas turbine engine
US6471474B1 (en) * 2000-10-20 2002-10-29 General Electric Company Method and apparatus for reducing rotor assembly circumferential rim stress

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1602965A (en) * 1968-08-16 1971-03-01
US6283713B1 (en) * 1998-10-30 2001-09-04 Rolls-Royce Plc Bladed ducting for turbomachinery
JP2002276301A (en) * 2001-03-07 2002-09-25 General Electric Co <Ge> Brisk with groove and manufacturing method thereof
JP2003269384A (en) * 2002-03-07 2003-09-25 United Technol Corp <Utc> Flow guide assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1760257A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045554A (en) * 2006-08-16 2008-02-28 United Technol Corp <Utc> Turbine blade system equipped with blade airfoil having airfoil shape, and ring platform for the turbine blade system
US20100047065A1 (en) * 2007-01-12 2010-02-25 Mitsubishi Heavy Industries, Ltd. Blade structure of gas turbine
WO2008084563A1 (en) * 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Blade structure for gas turbine
JP2008169783A (en) * 2007-01-12 2008-07-24 Mitsubishi Heavy Ind Ltd Blade structure of gas turbine
CN101578428B (en) * 2007-01-12 2012-06-06 三菱重工业株式会社 Blade structure for gas turbine
KR101173725B1 (en) * 2007-01-12 2012-08-13 미츠비시 쥬고교 가부시키가이샤 Blade structure for gas turbine
US8317466B2 (en) 2007-01-12 2012-11-27 Mitsubishi Heavy Industries, Ltd. Blade structure of gas turbine
WO2008120748A1 (en) * 2007-03-29 2008-10-09 Ihi Corporation Wall of turbo machine and turbo machine
US9051840B2 (en) 2007-03-29 2015-06-09 Ihi Corporation Wall of turbo machine and turbo machine
JP2008248701A (en) * 2007-03-29 2008-10-16 Ihi Corp Wall of turbo machine, and turbo machine
US8313291B2 (en) * 2007-12-19 2012-11-20 Nuovo Pignone, S.P.A. Turbine inlet guide vane with scalloped platform and related method
JP2011513628A (en) * 2008-02-28 2011-04-28 スネクマ Blade with non-axisymmetric platform and depression and protrusion on outer ring
JP2011513627A (en) * 2008-02-28 2011-04-28 スネクマ Blade with non-axisymmetric platform
JP2009209745A (en) * 2008-03-03 2009-09-17 Mitsubishi Heavy Ind Ltd Turbine stage of axial flow type turbo machine, and gas turbine
JP2009293411A (en) * 2008-06-03 2009-12-17 Ihi Corp Film cooling structure for turbine flow path surface
JP2012072777A (en) * 2008-12-05 2012-04-12 Siemens Ag Ring diffuser for axial turbomachine, arrangement for axial turbo machine, and axial turbomachine
JP2012514156A (en) * 2008-12-24 2012-06-21 ゼネラル・エレクトリック・カンパニイ Curved platform turbine blade
JP2010156335A (en) * 2008-12-31 2010-07-15 General Electric Co <Ge> Method and device concerning contour of improved turbine blade platform
JP2011021525A (en) * 2009-07-15 2011-02-03 Toshiba Corp Turbine blade cascade, and turbine stage and axial flow turbine using the same
JP2013502531A (en) * 2009-08-20 2013-01-24 ゼネラル・エレクトリック・カンパニイ Two-dimensional platform turbine blade
JP2012052525A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Turbine nozzle with contoured band
JP2012052524A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Turbine assembly with end-wall-contoured airfoils and preferential clocking
WO2012157498A1 (en) * 2011-05-13 2012-11-22 株式会社Ihi Gas turbine engine
JP2012241520A (en) * 2011-05-13 2012-12-10 Ihi Corp Gas turbine engine
US9657575B2 (en) 2011-05-13 2017-05-23 Ihi Corporation Gas turbine engine
JP2014001729A (en) * 2012-06-15 2014-01-09 General Electric Co <Ge> Rotating airfoil component with platform having recessed surface region therein
WO2014017585A1 (en) * 2012-07-26 2014-01-30 株式会社Ihi Engine duct, and aircraft engine
JP2014025395A (en) * 2012-07-26 2014-02-06 Ihi Corp Engine duct and aircraft engine
US9869276B2 (en) 2012-07-26 2018-01-16 Ihi Corporation Engine duct and aircraft engine

Also Published As

Publication number Publication date
EP1760257A1 (en) 2007-03-07
JPWO2006033407A1 (en) 2008-05-15
EP1760257B1 (en) 2012-12-26
EP1760257A4 (en) 2011-12-28
US20070258810A1 (en) 2007-11-08
CA2569026C (en) 2009-10-20
CA2569026A1 (en) 2006-03-30
JP4640339B2 (en) 2011-03-02
US7690890B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
JP4640339B2 (en) Wall shape of axial flow machine and gas turbine engine
JP5283855B2 (en) Turbomachine wall and turbomachine
EP2820279B1 (en) Turbomachine blade
JP3578769B2 (en) Flow orientation assembly for the compression region of rotating machinery
JP5059991B2 (en) Stator blade with narrow waist
JP6001999B2 (en) Airfoil, compressor, vane, gas turbine engine, and stator row
JP5301148B2 (en) Turbine assembly of gas turbine engine and manufacturing method thereof
US7290986B2 (en) Turbine airfoil with curved squealer tip
US10458427B2 (en) Compressor aerofoil
CA2736838C (en) Turbine blade with pressure side stiffening rib
US11859534B2 (en) Profiled structure and associated turbomachine
EP3179035B1 (en) Turbine blade with airfoil tip vortex control
JP2007077986A (en) Turbine aerofoil curved squealer tip with tip ledge
EP3170974B1 (en) Turbine blade with airfoil tip vortex control
EP3392459A1 (en) Compressor blades
US8167557B2 (en) Gas turbine engine assemblies with vortex suppression and cooling film replenishment
JP5010507B2 (en) Turbine stage of axial flow turbomachine and gas turbine
JP2003227302A (en) Blade for promoting wake mixing
US6986639B2 (en) Stator blade for an axial flow compressor
EP4144959A1 (en) Fluid machine for an aircraft engine and aircraft engine
JP2020159275A (en) Turbine stator blade and turbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006536423

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005785999

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2569026

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11570325

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005785999

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11570325

Country of ref document: US