WO2006030866A1 - Method of quantitative determination of uric acid - Google Patents

Method of quantitative determination of uric acid Download PDF

Info

Publication number
WO2006030866A1
WO2006030866A1 PCT/JP2005/017055 JP2005017055W WO2006030866A1 WO 2006030866 A1 WO2006030866 A1 WO 2006030866A1 JP 2005017055 W JP2005017055 W JP 2005017055W WO 2006030866 A1 WO2006030866 A1 WO 2006030866A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
uric acid
peroxidase
uricase
test sample
Prior art date
Application number
PCT/JP2005/017055
Other languages
French (fr)
Japanese (ja)
Inventor
Yuhko Hirao
Hiroshi Matsui
Original Assignee
Denka Seiken Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Seiken Co., Ltd. filed Critical Denka Seiken Co., Ltd.
Priority to JP2006535202A priority Critical patent/JPWO2006030866A1/en
Publication of WO2006030866A1 publication Critical patent/WO2006030866A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/62Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving uric acid

Definitions

  • the present invention relates to a reagent capable of accurately quantifying uric acid and a method for quantifying uric acid using the reagent. More specifically, the present invention relates to a reagent capable of accurately quantifying a low value in the determination of uric acid and an accurate quantification method of a low value of uric acid using the reagent.
  • Uric acid is a final metabolite of purines that are constituents of nucleic acids such as deoxyribonucleic acid and ribonucleic acid, ATP, which is an energy carrier, and other nucleotides.
  • Purines are synthesized mainly from amino acids and related compounds in the human body. Purine metabolism is involved in cell growth and plays a central role in maintaining life.
  • Uric acid is produced at a certain rate in the living body, temporarily stored in the body, and then is mainly excreted into the urine of the kidney, and the other part is excreted into the digestive tract and sweat as an extrarenal treatment. Production and excretion are almost the same, so production, storage and excretion are in equilibrium. In normal individuals, the daily production and excretion amount is approximately 700 mg, of which 500 mg is excreted in the kidney urine and approximately 20 Omg is excreted by extrarenal treatment. Extrarenal treatment increases and decreases in parallel with changes in serum uric acid levels.
  • Hyperuricemia is a state in which blood is saturated and urate is present, and is mainly caused by abnormal uric acid metabolism and decreased excretion of uric acid.
  • Gout is a typical disease that increases serum uric acid levels, but it also increases in cancer, leukemia, and myeloma.
  • causes of hypouricemia include insufficient intake of purines as raw materials for uric acid, decreased production of uric acid due to debilitating diseases throughout the body, decreased production of uric acid due to metabolic diseases, and increased uric acid excretion.
  • Metabolic diseases include xanthine oxidase deficiency, purine nucleoside phosphorylase deficiency, and 5-phosphoribosyl-1-pyrophosphate (PRPP) synthase deficiency.
  • PRPP 5-phosphoribosyl-1-pyrophosphate
  • the uric acid measurement method is roughly classified into a reduction method using the reducing property of uric acid under alkaline conditions and an enzymatic measurement method using uric acid-degrading enzyme uricase.
  • Reduction methods include a phosphotungstic acid deproteinization method and a phosphotungsten direct method.
  • Enzymatic methods using uricase include uricase 'catalase method, uricase' peroxidase method, and uricase UV method.
  • the uric acid content is obtained by colorimetric determination with a chromogenic reaction.
  • This method does not require deproteinization or sample blinding, and is a simple method in which color development is completed in a short time, and can be easily applied to various automatic analyzers.
  • Patent Document 1 Japanese Patent No. 2862817
  • Patent Document 2 Japanese Patent No. 3283348
  • Patent Document 3 Japanese Patent No. 3520874
  • Patent Document 4 Japanese Patent No. 3357667 Disclosure of the invention
  • An object of the present invention is to provide a quantification method and reagent composition excellent in accuracy at a low value over a uric acid quantification method using peroxidase, and in a wide measurement range. It is to provide a method for quantifying uric acid and a reagent composition with excellent accuracy.
  • the inventors of the present invention conducted extensive research on the problem of low accuracy in the uric acid quantification using the uricase 'peroxidase method. As a result, the peroxidase in the reagent reacted with uric acid to react with uric acid. It was found that uric acid in the low concentration range could not be accurately quantified.
  • Peroxidase is a reagent composition involved in the production of a quinone dye, and is usually used after a uricase enzyme reaction. Since the uricase enzyme is usually added to the second reagent, it is often added to the first reagent due to the stability and component balance of the whole reagent. Until the inventors of the present application found the above problems, the problems of the conventional reagent composition were overlooked.
  • the inventors of the present application transferred the first reagent force to the second reagent except for peroxidase so that uric acid and peroxidase do not contact before uric acid and uricase react.
  • the inventors have found that uric acid in a low concentration range can be accurately quantified, and have completed the present invention.
  • the present invention is as follows.
  • a method for quantifying uric acid characterized in that
  • a first reagent containing a hydrogen-donating compound is added to a test sample, then a second reagent containing 4-amaminoantipyrine is added, and then a third reagent containing uricase and peroxidase is added.
  • uric acid quantification method [1]
  • a uric acid determination reagent comprising a first reagent containing a hydrogen donor and a second reagent containing peroxidase and uricase, wherein the first reagent contains peroxidase, and
  • Second reaction 4AA + hydrogen donor + 2H 2 0 2 ⁇ quinone dye + 4H 2 0
  • the method of the present invention has a two-step reaction force.
  • uric acid in serum and urine is broken down into allantoin, carbon dioxide and hydrogen peroxide by uricase.
  • the peroxyhydrogen generated here produces a colored quinone (quinone dye) in the presence of peroxidase, 4-aminoantipyrine (4AA) and phenolic or alpha phosphorus hydrogen donor compounds in a second reaction. To do.
  • the method of the present invention can also be applied to a reaction system in which hydrogen peroxide generated in the first reaction oxidizes a leuco dye in the presence of a peroxidase and a leuco dye to produce a blue dye.
  • an automatic analyzer in a clinical test generally puts a predetermined amount of one or more reagents into a test sample in order, and measures the absorbance, scattered light, etc. at a certain wavelength after a certain amount of time for reagent loading, and within a predetermined time. By determining the amount of change and the rate of change, the amount of the test substance in the test sample can be quantified.
  • the reagent composition necessary for quantitative reaction is arbitrarily allocated to multiple reagents, but each reagent is kept for a long period of several months to several years. Therefore, the chemical reaction proceeds before being used for clinical testing, and the reagent composition necessary for the quantitative reaction is degraded, or a composition that inhibits the quantitative reaction is generated.
  • the reagent composition cannot be made by combining the compositions.
  • the method of the present invention is a method for quantifying uric acid using a reagent in which uric acid and peroxidase do not come into contact before uric acid and uricase react, and the reagent power first added to the test sample also excludes peroxidase. It is.
  • the negative effect of hemoglobin in the test sample is an adverse effect of removing the reagent force peroxidase first added to the test sample.
  • the bad effects of peroxidase can be avoided by first adding sodium azide as the reagent to be added to the test sample. Therefore, in the method of the present invention, sodium azide may be contained in the reagent initially added to the test sample.
  • the reagent composition used in the uric acid quantitative method of the present invention satisfies the following requirements (a) to (d): You may choose.
  • uricase and peroxidase are preferably included in the same reagent.
  • Azidosodium can also be included in the first reagent that is first added to the test sample.
  • the reagents added to the reaction system in which the reaction of the above formula occurs are referred to as the first reagent, the second reagent, and the third reagent in the order of addition.
  • the process of mixing and reacting the first reagent and the test sample is called the first process, and the process of adding the second reagent and reacting is called the second process.
  • the step of adding the third reagent to react is called the third step.
  • uricase and peroxidase are preferably included in the same reagent, but uricase and peroxidase are included in the same reagent. It is also possible to add uricase with the previous reagent and not add peroxidase with the later reagent. Further, any one of the first reagent, the second reagent, and the third reagent, and any two or three of them may contain a surfactant. Further, ascorbate oxidase may be contained in any one of the first reagent, the second reagent, and the third reagent, and any two or three of them.
  • Second reagent uricase, 4-aminoantipyrine, peroxidase (2)
  • Second reagent uricase, TOOS, peroxidase
  • TOOS contained in the first reagent is a hydrogen donor compound.
  • the hydrogen donor compounds N- (2-hydroxy-3-sulfopropyl) -3,5-dimethyoxyline (HDAOS), N-ethyl-N-sulfopropyl- 3-methoxy-line (ADPS), N-ethyl-N-sulfopropyl-line (ALPS), N-ethyl-N-sulfopropyl-3,5-dimethoxy-line (DAPS), N-sulfopropyl- 3,5-dimethoxy-line (HDAPS), N-ethyl-N-sulfopropyl-3,5-dimethyl-line (MAPS), N-ethyl-N-sulfopropyl-3-methyl-line (TOPS) , N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methoxyline (ADOS), N-ethyl-N- (2-
  • Azidosodium that can be contained in the first reagent is added to avoid the influence of hemoglobin in the test sample. In order to avoid the effects of hemoglobin after adding the first reagent to the sample, it is desirable to react for a certain period of time.
  • Test samples used in the measurement method of the present invention are serum, plasma, and urine.
  • Automatic analyzer Hitachi, Model 7150
  • the amount of test sample and reagent used can be changed as appropriate depending on the analyzer used.
  • the concentration of sodium azide in the reaction solution in the first step is preferably 0.1 to 2 g / L (0.01% to 0.2% (w / v)).
  • the first step is preferably carried out in a pH 6.0 to pH 8.0 buffer solution, preferably a phosphate buffer solution or a Good buffer solution.
  • a pH 6.0 to pH 8.0 buffer solution preferably a phosphate buffer solution or a Good buffer solution.
  • 3-morpholinopropanesulfonic acid MOPS
  • 2-hydroxy-3-morpholinopropanesulfonic acid MOPSO
  • the first step preferably contains a surfactant.
  • the surfactant used in the first step include non-ionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene alkyl phenyl ether.
  • the concentration of the surfactant in the reaction solution in the first step is preferably about 0.1 to 10 g / L (0.01 to 1% (w / v)), more preferably 0.5 to 5 ⁇ / y (0.05 to 0.5). % (w / v)).
  • the buffer solution and surfactant used in the first step should be contained in the first reagent! However, after mixing the sample with the above buffer solution and / or surfactant-containing solution The first reagent may be added.
  • the reaction time (the time from the addition of the first reagent to the addition of the second reagent) is preferably about 10 minutes and 5 minutes.
  • the reagent configuration is three reagents
  • the second reagent and the third reagent are added in order, and the reactions in the second and third steps are performed. Just do it.
  • the second reagent and the third reagent may be added simultaneously, or the third reagent may be added 1 to 10 minutes after the addition of the second reagent.
  • uric acid in the test sample is decomposed into allantoin, carbon dioxide and hydrogen peroxide by the action of uricase.
  • the uric acid was quantified by converting the hydrogen peroxide produced in the first reaction into a colored quinone by peroxidase by an acid-acid condensation reaction of 4-aminoantipyrine with an ⁇ -phosphorus hydrogen donor compound. The measurement is performed at a wavelength of 400 to 700 nm.
  • the second step and the third step preferably include a surfactant.
  • the surfactant used in the second step and the third step include nonionic surfactant polyoxyethylene alkyl ether and polyoxyethylene alkyl ether.
  • the concentration of the surfactant in the reaction solution of the second step and the third step is preferably about 0.1 to 10 g / L (0.0 l to l% (w / v)), more preferably 0.5 to 5 8 / (0.05 to 0.5%).
  • the concentration of peroxidase when converting hydrogen peroxide to quinone dye in the reaction solution of the second step or the third step is preferably 0.5-10 IU / mL.
  • the concentration of 4-aminoantipyrine The concentration of hydrogen donating compounds such as aniline-based hydrogen donor compounds is preferably 0.1 to 5 mmol / L.
  • the concentration of uricase is preferably 50 to 500 IU / L.
  • Other preferable reaction conditions in the second step and the third step are the same as the preferable reaction conditions in the first step.
  • the amount of the produced quinone dye is measured by the absorbance at 550 to 650 nm in the sample. Measure by measuring. Absorbance may be measured using an absorptiometer.
  • reagent includes a reagent composition
  • reagent composition refers to an enzyme, a surfactant, or the like constituting the reagent. Say the substance.
  • Reagent compositions used in the first step and the second step (the first reagent composition and the first step, respectively)
  • Nonionic surfactant polyethylene glycol mono-p-isooctylphenyl ester manufactured by Nacalai Testa 0.1% (w / v) ascorbate oxidase 3000 IU / L
  • Nonionic surfactant 3 ⁇ 4 agent Polyethylene glycol mono-p-isococ / Refeninore Itel (Nacalai Tesque) 0. l3 ⁇ 4 (w / v) 4-aminoantipyrine 2.0 mmol / L
  • Nonionic surfactant Polyol mono-p isococtyl fe / Rhe Itel (Nacalai Tesque) 0.1% (w / v) ascorbate oxidase 3000 IU / L
  • Nonionic surfactant Poly-Mono-p-isooctylphenol Itel (manufactured by Nacalai Tesque) 0.1% (w / v) 4-aminoantipyrine 2.0 mmol / L
  • Nonionic surfactant Poly-mono-p-isooctylphenyl ester (Nacalai Testa) 0. l% (w / v) ascorbate oxidase 3000IU / L
  • Non-ionic surfactant Polyol Mono-p-isooctylphenol / Rye Itel (manufactured by Nacalai Tesque) 0. l% (w / v) T00S 4.5 mmol / L
  • the uric acid concentration in the sample was determined by the method using the first reagent containing peroxidase, which was conventionally used as a control.
  • the reagent compositions of the first reagent and the second reagent used were as follows.
  • Nonionic surfactant polyethylene glycol mono-P-isooctylphenyl ester manufactured by Nacalai Tesque 0. (w / v) ascorbate oxidase 3000 IU / L
  • Nonionic Surfactant Polyethylene Daricol Mono-P-Isooctylphenyl

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method of quantitative determination of uric acid that is one using peroxidase and excels in the accuracy at low values; and a relevant reagent composition. There is provided a method of quantitative determination of uric acid in an analyte sample, comprising decomposing uric acid in an analyte sample with the use of uricase (enzyme) into hydrogen peroxide and allantoin and measuring the amount of hydrogen peroxide with the use of peroxidase, characterized in that any contact of uric acid with peroxidase before the decomposition of uric acid by uricase (enzyme) is avoided to thereby attain an accurate quantitative determination of uric acid low values.

Description

明 細 書  Specification
尿酸の定量方法  Method for quantitative determination of uric acid
技術分野  Technical field
[0001] 本発明は、尿酸の定量において正確に定量できる試薬およびその試薬を用いた尿 酸の定量方法に関する。より詳しくは、本発明は尿酸の定量において低値を正確に 定量できる試薬およびその試薬を用いた尿酸の低値の正確な定量方法に関する。 背景技術  [0001] The present invention relates to a reagent capable of accurately quantifying uric acid and a method for quantifying uric acid using the reagent. More specifically, the present invention relates to a reagent capable of accurately quantifying a low value in the determination of uric acid and an accurate quantification method of a low value of uric acid using the reagent. Background art
[0002] 尿酸は、デォキシリボ核酸ゃリボ核酸などの核酸やエネルギーの担体である ATPお よび他のヌクレオチドの構成成分であるプリン体の最終代謝産物である。プリン体は ヒト体内で主にアミノ酸および関連化合物を原料として合成され、プリン代謝は細胞 の増殖にかかわり、また、生命の維持に中心的な役割を果たしている。  [0002] Uric acid is a final metabolite of purines that are constituents of nucleic acids such as deoxyribonucleic acid and ribonucleic acid, ATP, which is an energy carrier, and other nucleotides. Purines are synthesized mainly from amino acids and related compounds in the human body. Purine metabolism is involved in cell growth and plays a central role in maintaining life.
[0003] 尿酸は生体内において一定の割合で生産され、体内に一時貯留した後、主として 腎臓力 尿中へ他の一部は腎外性処理として消化管や汗などに排泄される。生産と 排泄はほぼ同量で、従って産生、貯留および排泄が平衡状態を成している。正常人 では一日の産生.排泄量はほぼ 700mgで、そのうち 500mgが腎カも尿中に、他の約 20 Omgが腎外性処理により排泄される。腎外性処理は血清尿酸値の変動に並行して増 減する。  [0003] Uric acid is produced at a certain rate in the living body, temporarily stored in the body, and then is mainly excreted into the urine of the kidney, and the other part is excreted into the digestive tract and sweat as an extrarenal treatment. Production and excretion are almost the same, so production, storage and excretion are in equilibrium. In normal individuals, the daily production and excretion amount is approximately 700 mg, of which 500 mg is excreted in the kidney urine and approximately 20 Omg is excreted by extrarenal treatment. Extrarenal treatment increases and decreases in parallel with changes in serum uric acid levels.
[0004] 生体内尿酸の代謝異常や排泄異常によって高尿酸血症や低尿酸血症となり、い ずれも疾患の原因となる。  [0004] Abnormal metabolism or excretion of uric acid in the body results in hyperuricemia or hypouricemia, both of which cause disease.
[0005] 高尿酸血症は血液中に飽和になって尿酸塩が存在した状態であり、尿酸代謝異常 や尿酸の排泄の低下が主な原因である。血清尿酸値が増加する代表的疾患として 痛風があるが、癌、白血病、骨髄腫などでも増加する。 [0005] Hyperuricemia is a state in which blood is saturated and urate is present, and is mainly caused by abnormal uric acid metabolism and decreased excretion of uric acid. Gout is a typical disease that increases serum uric acid levels, but it also increases in cancer, leukemia, and myeloma.
[0006] 低尿酸血症の原因としては、尿酸の原料となるプリン体の摂取不足、全身の消耗性 疾患による尿酸の産生低下、代謝疾患による尿酸の産生低下や尿酸排泄増加など があげられる。代謝疾患としてはキサンチンォキシダーゼ欠損症、プリンヌクレオシド ホスホリラーゼ欠損症、 5-ホスホリボシル -1-ピロリン酸 (PRPP)合成酵素欠損症などが ある。 [0007] 血中および尿中の尿酸を正確に定量することは、これら疾患を診断あるいは予防 する目的で重要な意義を持つ。 [0006] Causes of hypouricemia include insufficient intake of purines as raw materials for uric acid, decreased production of uric acid due to debilitating diseases throughout the body, decreased production of uric acid due to metabolic diseases, and increased uric acid excretion. Metabolic diseases include xanthine oxidase deficiency, purine nucleoside phosphorylase deficiency, and 5-phosphoribosyl-1-pyrophosphate (PRPP) synthase deficiency. [0007] Accurate quantification of uric acid in blood and urine is important for the purpose of diagnosing or preventing these diseases.
[0008] 尿酸測定法を原理的に分類すると、アルカリ性下での尿酸の還元性を利用した還 元法と、尿酸分解酵素ゥリカーゼを用いた酵素的測定法に大別される。  [0008] In principle, the uric acid measurement method is roughly classified into a reduction method using the reducing property of uric acid under alkaline conditions and an enzymatic measurement method using uric acid-degrading enzyme uricase.
[0009] 還元法にはリンタングステン酸除蛋白法やリンタングステン直接法がある。ゥリカー ゼを用いた酵素的測定法にはゥリカーゼ'カタラーゼ法、ゥリカーゼ'ペルォキシダー ゼ法およびゥリカーゼ紫外部法がある。  [0009] Reduction methods include a phosphotungstic acid deproteinization method and a phosphotungsten direct method. Enzymatic methods using uricase include uricase 'catalase method, uricase' peroxidase method, and uricase UV method.
[0010] かってはリンタングステン酸除蛋白法が主流であった力 現在はゥリカーゼ*ペルォ キシダーゼ法が主流である。これは、還元法が試料中の非尿酸還元性物質によって 大きな正の誤差を生じたり、除蛋白等の前処理が必要となるため、簡便性、迅速性に 欠けていたことによる。ゥリカーゼ 'ペルォキシダーゼ法が自動分析装置への適用に 優れ、簡便性、迅速性にも優れていることから、現在、普及してきている。  [0010] In the past, phosphotungstic acid deproteinization was the main force. Currently, the uricase * peroxidase method is the mainstream. This is because the reduction method causes a large positive error due to the non-uric acid reducing substance in the sample, and pretreatment such as deproteinization is required, so that it is lacking in convenience and speed. The uricase 'peroxidase method is now widely used because of its excellent application to automated analyzers and its simplicity and speed.
[0011] ゥリカーゼ'ペルォキシダーゼ法の具体的な原理としては、尿酸はゥリカーゼで分 解されると、アラントインになる。このときに生じた過酸ィ匕水素(H 0 )をペルォキシダ  [0011] The specific principle of the uricase 'peroxidase method is that uric acid becomes allantoin when it is decomposed by uricase. The peroxyhydrogen (H 0) produced at this time was converted to peroxida.
2 2  twenty two
ーゼで呈色反応に導き、比色定量して尿酸量を求める。この方法は除蛋白や検体盲 検が不要で、短時間に発色が終わる簡便な方法であり、各種の自動分析装置に適 用が容易である。  The uric acid content is obtained by colorimetric determination with a chromogenic reaction. This method does not require deproteinization or sample blinding, and is a simple method in which color development is completed in a short time, and can be easily applied to various automatic analyzers.
[0012] 前述の血清尿酸値の低下による疾患を診断するために、尿酸低値を正確に定量 することが求められている。  [0012] In order to diagnose a disease caused by the aforementioned decrease in serum uric acid level, it is required to accurately quantify the low uric acid level.
[0013] ゥリカーゼ'ペルォキシダーゼ法により尿酸を測定する試薬として、試薬調製の容 易化の面力 使用直前に希釈するための濃縮試薬が報告されている(特許文献 1参 照)。 [0013] As a reagent for measuring uric acid by the uricase 'peroxidase method, a concentrated reagent for dilution immediately before use has been reported (see Patent Document 1).
[0014] また、低濃度の物質の測定にぉ 、て、ピリルビンの影響を軽減するための測定法が 報告されて ヽる (特許文献 2〜4参照)。  [0014] In addition, a measurement method for reducing the effect of pyrilvin has been reported for the measurement of low-concentration substances (see Patent Documents 2 to 4).
特許文献 1:特許第 2862817号公報  Patent Document 1: Japanese Patent No. 2862817
特許文献 2:特許第 3283348号公報  Patent Document 2: Japanese Patent No. 3283348
特許文献 3:特許第 3520874号公報  Patent Document 3: Japanese Patent No. 3520874
特許文献 4:特許第 3357667号公報 発明の開示 Patent Document 4: Japanese Patent No. 3357667 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 本発明の目的は、ペルォキシダーゼを用いた尿酸の定量方法にぉ 、て、低値での 正確性に優れた定量方法と試薬組成物を提供することであり、また、広い測定域に おいて正確性に優れた尿酸の定量方法と試薬組成物を提供することである。  [0015] An object of the present invention is to provide a quantification method and reagent composition excellent in accuracy at a low value over a uric acid quantification method using peroxidase, and in a wide measurement range. It is to provide a method for quantifying uric acid and a reagent composition with excellent accuracy.
課題を解決するための手段  Means for solving the problem
[0016] 本願発明者らは、ゥリカーゼ'ペルォキシダーゼ法を用いた尿酸の定量において低 値の正確性の問題につ 、て鋭意研究を行った結果、試薬中のペルォキシダーゼが 尿酸と反応することにより尿酸とゥリカーゼとの反応を阻害し、そのため低濃度域での 尿酸が正確に定量できないことを見出した。  [0016] The inventors of the present invention conducted extensive research on the problem of low accuracy in the uric acid quantification using the uricase 'peroxidase method. As a result, the peroxidase in the reagent reacted with uric acid to react with uric acid. It was found that uric acid in the low concentration range could not be accurately quantified.
[0017] ペルォキシダーゼはキノン色素の生成に関わる試薬組成物であり通常ゥリカーゼ 酵素反応後に用いられる。通常ゥリカーゼ酵素が第 2試薬に添加されて 、ることから 、試薬全体の安定性や成分バランスより、第 1試薬に添加されている場合が多い。本 願発明者等が、上記問題点を見出すまでは、従来の試薬組成が有する問題点は見 逃されていた。  [0017] Peroxidase is a reagent composition involved in the production of a quinone dye, and is usually used after a uricase enzyme reaction. Since the uricase enzyme is usually added to the second reagent, it is often added to the first reagent due to the stability and component balance of the whole reagent. Until the inventors of the present application found the above problems, the problems of the conventional reagent composition were overlooked.
[0018] 本願発明者等は、上記問題点に鑑み、尿酸とゥリカーゼが反応する前に尿酸とぺ ルォキシダーゼが接触しな 、ように、第 1試薬力もペルォキシダーゼを除き第 2試薬 へ移すことで、低濃度域での尿酸を正確に定量できることを見出し、本発明を完成し た。  [0018] In view of the above problems, the inventors of the present application transferred the first reagent force to the second reagent except for peroxidase so that uric acid and peroxidase do not contact before uric acid and uricase react. The inventors have found that uric acid in a low concentration range can be accurately quantified, and have completed the present invention.
[0019] すなわち、本発明は以下の通りである。  That is, the present invention is as follows.
[0020] [1] 被検試料中の尿酸をゥリカーゼ酵素によって過酸ィ匕水素とアラントインに分解し [0020] [1] Uric acid in the test sample is decomposed into peroxyhydrogen and allantoin by uricase enzyme.
、その過酸ィ匕水素をペルォキシダーゼを用いて定量することによって被検試料中の 尿酸を定量する方法であって、尿酸のゥリカーゼ酵素による分解前に尿酸をペルォ キシダーゼと接触させないことにより尿酸低値を正確に定量し得ることを特徴とする 尿酸の定量方法、 Is a method for quantifying uric acid in a test sample by quantifying its peroxyhydrogen using peroxidase, and lowering uric acid by not contacting uric acid with peroxidase prior to degradation of uric acid by uricase enzyme. A method for quantifying uric acid, characterized in that
[2] 被検試料に水素供与化合物を含む第 1試薬を添加し、次いでゥリカーゼ、 4 ァミノアンチピリン、およびペルォキシダーゼを含む第 2試薬を添加することを特徴と する [1]の尿酸の定量方法、 [3] 第 1試薬添加後、 1〜10分後に第 2試薬を添加することを特徴とする [1ほたは [2 ]の尿酸の定量方法、 [2] The method for quantifying uric acid according to [1], wherein a first reagent containing a hydrogen donor compound is added to a test sample, and then a second reagent containing uricase, 4-aminoantipyrine, and peroxidase is added. , [3] The method for quantifying uric acid according to [1] or [2], wherein the second reagent is added 1 to 10 minutes after the addition of the first reagent,
[4] 被検試料に 4—ァミノアンチピリンを含む第 1試薬を添加し、次いで水素供与体 、ゥリカーゼ、およびペルォキシダーゼを含む第 2試薬を添加することを特徴とする [1 ]の尿酸の定量方法、  [4] Quantification of uric acid according to [1], characterized in that the first reagent containing 4-aminoantipyrine is added to the test sample, and then the second reagent containing hydrogen donor, uricase, and peroxidase is added. Method,
[5] 被検試料に水素供与化合物を含む第 1試薬を添加し、次いで 4—ァミノアンチピ リンを含む第 2試薬を添加し、次 、でゥリカーゼおよびペルォキシダーゼを含む第 3 試薬を添加することを特徴とする [1]の尿酸の定量方法、  [5] A first reagent containing a hydrogen-donating compound is added to a test sample, then a second reagent containing 4-amaminoantipyrine is added, and then a third reagent containing uricase and peroxidase is added. [1] uric acid quantification method,
[6] 被検試料に 4-ァミノアンチピリンを含む第 1試薬を添加し、次いで水素供与化合 物を含む第 2試薬を添加し、次 、でゥリカーゼおよびペルォキシダーゼを含む第 3試 薬を添加することを特徴とする [1]の尿酸の定量方法、  [6] Add the first reagent containing 4-aminoantipyrine to the test sample, then add the second reagent containing the hydrogen-donating compound, and then add the third reagent containing uricase and peroxidase. [1] The method for quantifying uric acid according to [1],
[7] 第 1試薬にさらにアジィ匕ナトリウムを含む [2]から [6]のいずれかの尿酸の定量方 法、  [7] The method for quantifying uric acid according to any one of [2] to [6], wherein the first reagent further contains sodium azido
[8] 水素供与体を含む第 1試薬と、ペルォキシダーゼおよびゥリカーゼを含む第 2試 薬を組合せてなる尿酸定量試薬であって、第 1試薬にペルォキシダーゼを含まな ヽ 尿酸定量試薬、ならびに  [8] A uric acid determination reagent comprising a first reagent containing a hydrogen donor and a second reagent containing peroxidase and uricase, wherein the first reagent contains peroxidase, and
[9] 第 1試薬にさらにアジィ匕ナトリウムを含む [8]の尿酸定量試薬。  [9] The uric acid assay reagent according to [8], wherein the first reagent further contains sodium azido.
発明の効果  The invention's effect
[0021] 本発明の方法によって、低値での正確性に優れた尿酸の定量が可能となる。また、 広 、測定域にぉ 、て正確に尿酸を定量することができる。  [0021] By the method of the present invention, it is possible to quantify uric acid with excellent accuracy at a low value. In addition, uric acid can be quantified accurately over a wide measurement range.
[0022] 本明細書は本願の優先権の基礎である日本国特許出願 2004-270366号の明細書 に記載される内容を包含する。 [0022] This specification includes the contents described in the specification of Japanese Patent Application No. 2004-270366, which is the basis of the priority of the present application.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の原理は下記式に示される。 [0023] The principle of the present invention is represented by the following formula.
[0024] Λリカーゼ [0024] Λ Licase
第 1反応: 尿酸 + 02 + 2 0 → アラントイン + C02 + H202 First reaction: Uric acid + 0 2 + 2 0 → Allantoin + C0 2 + H 2 0 2
POD  POD
第 2反応: 4AA +水素供与体 + 2H202 → キノン色素 + 4H20 式に示すように本発明の方法は 2段階の反応力 なる。第 1反応においては血清中 および尿中の尿酸がゥリカーゼによってアラントイン、二酸化炭素および過酸化水素 に分解される。ここで生成された過酸ィ匕水素は第 2反応によってペルォキシダーゼ、 4ーァミノアンチピリン (4AA)ならびにフエノール系またはァ-リン系水素供与体化合 物の存在下で有色キノン (キノン色素)を生成する。 Second reaction: 4AA + hydrogen donor + 2H 2 0 2 → quinone dye + 4H 2 0 As shown in the equation, the method of the present invention has a two-step reaction force. In the first reaction, uric acid in serum and urine is broken down into allantoin, carbon dioxide and hydrogen peroxide by uricase. The peroxyhydrogen generated here produces a colored quinone (quinone dye) in the presence of peroxidase, 4-aminoantipyrine (4AA) and phenolic or alpha phosphorus hydrogen donor compounds in a second reaction. To do.
[0025] また、前記第一反応で生成された過酸化水素が、ペルォキシダーゼおよびロイコ 色素の存在下でロイコ色素を酸化し青色色素を生成する反応系においても、本発明 の方法は適用できる。臨床検査における自動分析装置では一般に、 1つまたは複数 の試薬を順に被検試料に所定量投入し、試薬投入一定時間後の一定波長の吸光 度や散乱光等を測定し、所定の時間内の変化量や変化の速度等を求めることで、被 検試料中の検査対象物質の存在量を定量することができる。  [0025] The method of the present invention can also be applied to a reaction system in which hydrogen peroxide generated in the first reaction oxidizes a leuco dye in the presence of a peroxidase and a leuco dye to produce a blue dye. In general, an automatic analyzer in a clinical test generally puts a predetermined amount of one or more reagents into a test sample in order, and measures the absorbance, scattered light, etc. at a certain wavelength after a certain amount of time for reagent loading, and within a predetermined time. By determining the amount of change and the rate of change, the amount of the test substance in the test sample can be quantified.
[0026] 各試薬は反応順序や反応速度の調整が必要な場合、定量反応に必要な試薬組成 物は複数試薬に任意に振り分けて構成されるが、各試薬は数ケ月から数年の長期保 存性を要求されるため、臨床検査に供される前に化学反応が進み、定量反応に必要 な試薬組成物が分解され、あるいは定量反応を阻害するような組成物が生成される ような試薬組成物の組み合わせによる試薬構成とすることはできない。  [0026] When adjustment of reaction sequence and reaction rate is required for each reagent, the reagent composition necessary for quantitative reaction is arbitrarily allocated to multiple reagents, but each reagent is kept for a long period of several months to several years. Therefore, the chemical reaction proceeds before being used for clinical testing, and the reagent composition necessary for the quantitative reaction is degraded, or a composition that inhibits the quantitative reaction is generated. The reagent composition cannot be made by combining the compositions.
[0027] また、被検試料中に定量反応を阻害する物質または定量反応における生成物と同 じ物質が存在する場合は、これらの物質が正の誤差要因となるため、これらの物質の 影響を回避するための仕組みを準備しておかなければならない。  [0027] In addition, if a substance that inhibits the quantitative reaction or the same product as the product in the quantitative reaction exists in the test sample, these substances cause a positive error. A mechanism to avoid it must be prepared.
[0028] 本発明の方法は、尿酸とゥリカーゼが反応する前に尿酸とペルォキシダーゼが接 触しな 、ように最初に被検試料に添加する試薬力もペルォキシダーゼを除 、た試薬 を用いる尿酸の定量方法である。  [0028] The method of the present invention is a method for quantifying uric acid using a reagent in which uric acid and peroxidase do not come into contact before uric acid and uricase react, and the reagent power first added to the test sample also excludes peroxidase. It is.
[0029] 最初に被検試料に添加する試薬力 ペルォキシダーゼを除 、た場合の弊害として 、被検試料中のヘモグロビンによる負の影響がある。鋭意検討の結果、最初に被検 試料に添加する試薬にアジィ匕ナトリウムをカ卩えることで、ペルォキシダーゼの弊害を 回避することができる。従って、本発明の方法において、最初に被検試料に添加する 試薬にアジ化ナトリウムが含まれて 、てもよ 、。  [0029] The negative effect of hemoglobin in the test sample is an adverse effect of removing the reagent force peroxidase first added to the test sample. As a result of intensive studies, the bad effects of peroxidase can be avoided by first adding sodium azide as the reagent to be added to the test sample. Therefore, in the method of the present invention, sodium azide may be contained in the reagent initially added to the test sample.
[0030] 本発明の尿酸の定量法に用いる試薬の組成物は以下の要件 (a)〜(d)を満たすよう に選択すればよい。 [0030] The reagent composition used in the uric acid quantitative method of the present invention satisfies the following requirements (a) to (d): You may choose.
[0031] (a) 尿酸をゥリカーゼによる分解の前にペルォキシダーゼと接触させない。  [0031] (a) Uric acid is not contacted with peroxidase prior to degradation by uricase.
[0032] (b) ゥリカーゼによって尿酸が分解されたときに生成される過酸ィ匕水素は時間の経 過と共に分解されるので、ゥリカーゼとペルォキシダーゼは同一試薬に含めることが 好ましい。 (B) Since peroxyhydrogen generated when uric acid is decomposed by uricase is decomposed over time, uricase and peroxidase are preferably included in the same reagent.
[0033] (c) 水素供与化合物と 4AAは、保存安定性確保のため同一試薬に含めない。  [0033] (c) Hydrogen donor compound and 4AA are not included in the same reagent to ensure storage stability.
[0034] (d) アジィ匕ナトリウムを最初に被検試料に添加する第 1試薬に含むこともできる。 [0034] (d) Azidosodium can also be included in the first reagent that is first added to the test sample.
[0035] 以下、具体的な試薬の構成例を各試薬の試薬組成物により示し、説明する。本発 明において、上記式の反応が起こる反応系に添加する試薬を、添加する順番に第 1 試薬、第 2試薬、第 3試薬という。また、第 1試薬と被検試料を混合し反応させる工程 を第 1工程といい、さらに第 2試薬を添加し反応させる工程を第 2工程という。第 3試 薬を用いる場合、第 3試薬を添加し反応させる工程を第 3工程という。 [0035] Hereinafter, specific reagent configuration examples will be shown and described with the reagent composition of each reagent. In the present invention, the reagents added to the reaction system in which the reaction of the above formula occurs are referred to as the first reagent, the second reagent, and the third reagent in the order of addition. The process of mixing and reacting the first reagent and the test sample is called the first process, and the process of adding the second reagent and reacting is called the second process. When using the third reagent, the step of adding the third reagent to react is called the third step.
[0036] 以下の試薬の構成例において、 TOOSの代わりに他の水素供与化合物を用いるこ とができ、また第一試薬にアジ化ナトリウムが含まれていなくてもよぐ第 2試薬および 第 3試薬の一方または両方にアジィ匕ナトリウムが含まれていても良い。ただし、アジィ匕 ナトリウムはペルォキシダーゼの作用を阻害する作用があり、これらを同一試薬に含 めておくとペルォキシダーゼの安定性が悪くなるので、ペルォキシダーゼを含む試 薬にはアジィ匕ナトリウムを含まないことが好ましい。ゥリカーゼによって尿酸が分解さ れたときに生成される過酸ィ匕水素は時間の経過と共に分解されるので、ゥリカーゼと ペルォキシダーゼは同一試薬に含めることが好ましいが、ゥリカーゼとペルォキシダ ーゼを同一試薬に含めずに先の試薬でゥリカーゼを添加し、後の試薬でペルォキシ ダーゼを添加することもできる。また、第 1試薬、第 2試薬および第 3試薬のいずれか 1つ、いずれ力 2つまたは 3つに界面活性剤が含まれていてもよい。また、第 1試薬、 第 2試薬および第 3試薬のいずれか 1つ、いずれ力 2つまたは 3つにァスコルビン酸 ォキシダーゼが含まれても良 、。 [0036] In the following reagent configuration examples, other hydrogen donor compounds can be used in place of TOOS, and the second reagent and the third reagent which do not need to contain sodium azide in the first reagent. One or both of the reagents may contain sodium azido. However, azido-sodium has the effect of inhibiting peroxidase action, and if these are included in the same reagent, the stability of peroxidase will deteriorate, so reagents containing peroxidase may not contain azido-sodium. preferable. Since peroxyhydrogen generated when uric acid is decomposed by uricase is decomposed over time, uricase and peroxidase are preferably included in the same reagent, but uricase and peroxidase are included in the same reagent. It is also possible to add uricase with the previous reagent and not add peroxidase with the later reagent. Further, any one of the first reagent, the second reagent, and the third reagent, and any two or three of them may contain a surfactant. Further, ascorbate oxidase may be contained in any one of the first reagent, the second reagent, and the third reagent, and any two or three of them.
[0037] (1) [0037] (1)
第 1試薬: TOOS、アジィ匕ナトリウム  First reagent: TOOS, azido sodium
第 2試薬:ゥリカーゼ、 4-ァミノアンチピリン、ペルォキシダーゼ (2) Second reagent: uricase, 4-aminoantipyrine, peroxidase (2)
第 1試薬: 4-ァミノアンチピリン、アジィ匕ナトリウム  First reagent: 4-Aminoantipyrine, azido sodium
第 2試薬:ゥリカーゼ、 TOOS、ペルォキシダーゼ  Second reagent: uricase, TOOS, peroxidase
(3)  (3)
第 1試薬: TOOS、アジィ匕ナトリウム  First reagent: TOOS, azido sodium
第 2試薬: 4-ァミノアンチピリン  Second reagent: 4-Aminoantipyrine
第 3試薬:ゥリカーゼ、ペルォキシダーゼ  Third reagent: uricase, peroxidase
(4)  (Four)
第 1試薬: 4-ァミノアンチピリン、アジィ匕ナトリウム  First reagent: 4-Aminoantipyrine, azido sodium
第 2試薬: TOOS  Second reagent: TOOS
第 3試薬:ゥリカーゼ、ペルォキシダーゼ  Third reagent: uricase, peroxidase
第 1試薬に含まれる TOOSは水素供与化合物である。水素供与体化合物のうちァ 二リン系水素供与体化合物として、 N- (2-ヒドロキシ -3-スルホプロピル) -3, 5-ジメト キシァ-リン(HDAOS)、 N-ェチル - N-スルホプロピル- 3-メトキシァ-リン (ADPS)、 N -ェチル- N-スルホプロピルァ-リン(ALPS)、 N-ェチル -N-スルホプロピル- 3, 5-ジメ トキシァ-リン(DAPS)、 N-スルホプロピル- 3, 5-ジメトキシァ-リン(HDAPS)、 N -ェチ ル- N-スルホプロピル- 3, 5-ジメチルァ-リン(MAPS)、 N-ェチル -N-スルホプロピル -3-メチルァ-リン(TOPS)、 N-ェチル - N- (2-ヒドロキシ -3-スルホプロピル) -3-メトキ シァ-リン (ADOS)、 N-ェチル -N- (2-ヒドロキシ -3-スルホプロピル)ァ-リン (ALOS) 、 N-ェチル - N- (2-ヒドロキシ -3-スルホプロピル)- 3, 5-ジメトキシァ-リン(DAOS)、 N -ェチル- N- (2-ヒドロキシ -3-スルホプロピル)- 3, 5-ジメチルァ-リン(MAOS)、 N -ェ チル -N- (2-ヒドロキシ -3-スルホプロピル) -3-メチルァ-リン(TOOS)および N-スルホ プロピルァ-リン (HALPS)等があり、いずれも本発明の水素供与体として使用可能 である。また、フ ノール系水素供与化合物の使用も可能である。  TOOS contained in the first reagent is a hydrogen donor compound. Among the hydrogen donor compounds, N- (2-hydroxy-3-sulfopropyl) -3,5-dimethyoxyline (HDAOS), N-ethyl-N-sulfopropyl- 3-methoxy-line (ADPS), N-ethyl-N-sulfopropyl-line (ALPS), N-ethyl-N-sulfopropyl-3,5-dimethoxy-line (DAPS), N-sulfopropyl- 3,5-dimethoxy-line (HDAPS), N-ethyl-N-sulfopropyl-3,5-dimethyl-line (MAPS), N-ethyl-N-sulfopropyl-3-methyl-line (TOPS) , N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methoxyline (ADOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -line (ALOS) N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxy-line (DAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5- Dimethylaline ( MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaline (TOOS), N-sulfopropylaline (HALPS), etc., both of which provide the hydrogen donation of the present invention It can be used as a body. A phenolic hydrogen donor compound can also be used.
[0038] 第 1試薬に含めることができるアジィ匕ナトリウムは、被検試料中のヘモグロビンによ る影響を回避するために添加するものである。第 1試薬を検体試料に添加後、へモグ ロビンによる影響を回避するためには、一定時間反応させることが望ましい。  [0038] Azidosodium that can be contained in the first reagent is added to avoid the influence of hemoglobin in the test sample. In order to avoid the effects of hemoglobin after adding the first reagent to the sample, it is desirable to react for a certain period of time.
[0039] 本発明の測定方法で用いられる被検試料は、血清、血漿、尿である。自動分析装 置(日立製作所製、 7150型)の場合、被検試料 3〜20 μ Lに対し第 1試薬を 270 μ L添 加すればょ ヽ。用いる被検試料および試薬の量は用いる分析装置により適宜変更す ることがでさる。 [0039] Test samples used in the measurement method of the present invention are serum, plasma, and urine. Automatic analyzer (Hitachi, Model 7150), add 270 μL of the first reagent to 3 to 20 μL of the test sample. The amount of test sample and reagent used can be changed as appropriate depending on the analyzer used.
[0040] 第 1工程の反応液中のアジィ匕ナトリウムの濃度は、 0.1〜2g/L (0.01%〜0.2%(w/v) )が望ましい。  [0040] The concentration of sodium azide in the reaction solution in the first step is preferably 0.1 to 2 g / L (0.01% to 0.2% (w / v)).
[0041] 第 1工程は、 pH6.0〜pH8.0の緩衝液中で行うことが好ましぐ緩衝液はリン酸緩衝 液やグッド緩衝液が好まし ヽ。特にリン酸緩衝液やグッド緩衝液の N- (2-ァセトアミド ) -2-アミノエタンスルホン酸 (ACES)、 Ν,Ν—ビス(2-ヒドロキシェチル) -2-アミノエタン スルホン酸 (BES)、 2-[4- (2-ヒドロキシェチル) -1-ピぺラジュル]エタンスルホン酸(Η EPES)、 3-モルホリノプロパンスルホン酸(MOPS)、 2-ヒドロキシ- 3-モルホリノプロパ ンスルホン酸(MOPSO)、ピペラジン- 1,4-ビス(2-エタンスルホン酸)(PIPES)、及び N -トリス(ヒドロキシメチル)メチル -2-アミノエタンスルホン酸 (TES)が好ましぐ緩衝液 の濃度は 10〜200mM程度が好ましい。また、第 1工程には界面活性剤が含まれてい ることが好ましい。第 1工程に用いられる界面活性剤は非イオン系界面活性剤のポリ ォキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフエニルエーテルが 挙げられる。第 1工程の反応液中の上記界面活性剤の濃度は、 0.1〜10g/L (0.01〜 1% (w/v) )程度が好ましぐさらに好ましくは0.5〜5§/し(0.05〜0.5% (w/v) )程度で ある。第 1工程に用 、る緩衝液および界面活性剤は第 1試薬に含ませてお!、てもよ Vヽし、被検体を上記緩衝液および/または界面活性剤を含む溶液と混合した後に第 1試薬を添カ卩してもよい。 [0041] The first step is preferably carried out in a pH 6.0 to pH 8.0 buffer solution, preferably a phosphate buffer solution or a Good buffer solution. Especially N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), Ν, Ν-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), phosphate buffer and Good buffer, 2- [4- (2-Hydroxyethyl) -1-piperaduryl] ethanesulfonic acid (ΗEPES), 3-morpholinopropanesulfonic acid (MOPS), 2-hydroxy-3-morpholinopropanesulfonic acid (MOPSO) Buffer concentrations preferred by piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES) and N-tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid (TES) are 10-200 mM. The degree is preferred. Further, the first step preferably contains a surfactant. Examples of the surfactant used in the first step include non-ionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene alkyl phenyl ether. The concentration of the surfactant in the reaction solution in the first step is preferably about 0.1 to 10 g / L (0.01 to 1% (w / v)), more preferably 0.5 to 5 § / y (0.05 to 0.5). % (w / v)). The buffer solution and surfactant used in the first step should be contained in the first reagent! However, after mixing the sample with the above buffer solution and / or surfactant-containing solution The first reagent may be added.
[0042] 試薬構成が 2試薬の場合、第 1試薬を添加後、一定時間反応させた後、第 2試薬を 添加して第 2工程の反応を行う。この際、反応時間(第 1試薬を添加してから、第 2試 薬を添加するまでの時間)は 1分力も 10分間程度でよぐ 5分間が好ましい。  [0042] When the reagent configuration is two reagents, after the first reagent is added, the reaction is performed for a certain period of time, and then the second reagent is added to perform the reaction in the second step. At this time, the reaction time (the time from the addition of the first reagent to the addition of the second reagent) is preferably about 10 minutes and 5 minutes.
[0043] 試薬構成が 3試薬の場合、第 1試薬を添加後、上記時間反応させた後、第 2試薬お よび第 3試薬を順番に添加して、第 2工程および第 3工程の反応を行えばよい。第 2 試薬および第 3試薬は同時に添加してもよいし、第 2試薬添加後 1〜10分後に第 3試 薬を添カ卩してもよい。  [0043] When the reagent configuration is three reagents, after the first reagent is added and reacted for the above time, the second reagent and the third reagent are added in order, and the reactions in the second and third steps are performed. Just do it. The second reagent and the third reagent may be added simultaneously, or the third reagent may be added 1 to 10 minutes after the addition of the second reagent.
[0044] 第 2試薬または第 3試薬に含まれるゥリカーゼによって上記式の第 1反応に示すよう に、被検試料中の尿酸はゥリカーゼの作用で、アラントイン、二酸化炭素および過酸 化水素に分解される。 [0044] As shown in the first reaction of the above formula by the uricase contained in the second reagent or the third reagent. In addition, uric acid in the test sample is decomposed into allantoin, carbon dioxide and hydrogen peroxide by the action of uricase.
[0045] 尿酸の定量は、第 1反応で生成した過酸化水素をペルォキシダーゼによって 4ーァ ミノアンチピリンとァ-リン系水素供与体ィ匕合物との酸ィ匕縮合反応により、有色キノン に転化し、波長 400〜700nmで測定する方法によって行う。  [0045] The uric acid was quantified by converting the hydrogen peroxide produced in the first reaction into a colored quinone by peroxidase by an acid-acid condensation reaction of 4-aminoantipyrine with an α-phosphorus hydrogen donor compound. The measurement is performed at a wavelength of 400 to 700 nm.
[0046] 第 2工程および第 3工程には界面活性剤が含まれていることが好ましい。第 2工程 および第 3工程に用いられる界面活性剤は非イオン系界面活性剤のポリオキシェチ レンアルキルエーテル、ポリオキシエチレンアルキルフエ-ルエーテルが挙げられる 。第 2工程および第 3工程の反応液中の上記界面活性剤の濃度は、 0.1〜10g/L (0.0 l〜l% (w/v) )程度が好ましぐさらに好ましくは0.5〜58/し(0.05〜0.5% ))程度 である。 [0046] The second step and the third step preferably include a surfactant. Examples of the surfactant used in the second step and the third step include nonionic surfactant polyoxyethylene alkyl ether and polyoxyethylene alkyl ether. The concentration of the surfactant in the reaction solution of the second step and the third step is preferably about 0.1 to 10 g / L (0.0 l to l% (w / v)), more preferably 0.5 to 5 8 / (0.05 to 0.5%).
[0047] 第 2工程または第 3工程の反応液中において過酸ィ匕水素をキノン色素に転ィ匕する 場合のペルォキシダーゼの濃度は 0.5〜10IU/mLが好ましぐ 4-ァミノアンチピリンの 濃度は 0.1〜2.5mmol/Lが好ましぐァニリン系水素供与体ィ匕合物等の水素供与化合 物の濃度は 0.1〜5mmol/Lが好ましい。  [0047] The concentration of peroxidase when converting hydrogen peroxide to quinone dye in the reaction solution of the second step or the third step is preferably 0.5-10 IU / mL. The concentration of 4-aminoantipyrine The concentration of hydrogen donating compounds such as aniline-based hydrogen donor compounds is preferably 0.1 to 5 mmol / L.
[0048] また、ゥリカーゼの濃度は 50〜500IU/Lが望ましい。第 2工程および第 3工程のその 他の好ましい反応条件は、第 1工程における好ましい反応条件と同様である。  [0048] The concentration of uricase is preferably 50 to 500 IU / L. Other preferable reaction conditions in the second step and the third step are the same as the preferable reaction conditions in the first step.
[0049] 試薬構成が 2試薬の場合は、第 2工程終了後、試薬構成が 3試薬の場合は、第 3ェ 程終了後、生成したキノン色素の量を試料中の 550〜650nmにおける吸光度を測定 することにより測定する。吸光度の測定は、吸光度計を用いて行えばよい。  [0049] When the reagent configuration is 2 reagents, after the end of the second step, and when the reagent configuration is 3 reagents, after the end of the 3rd step, the amount of the produced quinone dye is measured by the absorbance at 550 to 650 nm in the sample. Measure by measuring. Absorbance may be measured using an absorptiometer.
[0050] 本発明にお 、て、「試薬」とは、試薬組成物が含まれて 、るものを 、 、、「試薬組成 物」とは、試薬を構成している酵素や界面活性剤などの物質を言う。  In the present invention, “reagent” includes a reagent composition, and “reagent composition” refers to an enzyme, a surfactant, or the like constituting the reagent. Say the substance.
[0051] 本発明の説明においては便宜上、「第 1工程」、「第 2工程」、「第 3工程」や「第 1試 薬」、「第 2試薬」、「第 3試薬」等、工程名および試薬名について算用数字 1、 2、 3を 用いて説明するが、これは工程や試薬の順番を示すものであり、工程数および試薬 数を 2または 3に限定するものではなぐ任意に工程数および試薬数を増やすことが できる。  [0051] In the description of the present invention, for convenience, the steps such as "first step", "second step", "third step", "first reagent", "second reagent", "third reagent", etc. Names and reagent names will be explained using arithmetic numbers 1, 2, and 3, which indicate the order of the steps and reagents, and are not limited to the number of steps and the number of reagents limited to 2 or 3. The number of steps and reagents can be increased.
実施例 [0052] 以下、本発明の実施例に基づき具体的に説明する。もっとも本発明は下記実施例 に限定されるものではない。 Example [0052] Hereinafter, specific description will be given based on examples of the present invention. However, the present invention is not limited to the following examples.
[0053] 第 1工程および第 2工程に用いる試薬組成物 (それぞれ、第 1試薬組成物および第[0053] Reagent compositions used in the first step and the second step (the first reagent composition and the first step, respectively)
2試薬組成物)を以下の組成になるように調製し、第 1試薬および第 2試薬とした。 2 reagent composition) was prepared so as to have the following composition, and used as the first reagent and the second reagent.
[0054] 〔実施例 1〕 [Example 1]
第 1試薬  First reagent
リン酸緩衝液 pH7. 0 50 mmol/L  Phosphate buffer solution pH 7.0 0 50 mmol / L
T00S 1. mmol/L  T00S 1. mmol / L
非ィォン系界面活性剤ポリエチレングリコールモノ -p -ィソォクチルフエニルェ 一テル (ナカライテスタ製) 0. 1% (w/v) ァスコルビン酸ォキシダーゼ 3000 IU/L  Nonionic surfactant polyethylene glycol mono-p-isooctylphenyl ester (manufactured by Nacalai Testa) 0.1% (w / v) ascorbate oxidase 3000 IU / L
第 2試薬  Second reagent
リン酸緩衝液 pH7. 0 50 mmol/L  Phosphate buffer solution pH 7.0 0 50 mmol / L
非ィォン系界面活 ¾剤ポリエチレングリコ一ルモノ一 p-ィソォクチ /レフェニノレエ 一テル (ナカライテスク製) 0. l¾ (w/v) 4-アミノアンチピリン 2. 0 mmol/L  Nonionic surfactant ¾ agent Polyethylene glycol mono-p-isococ / Refeninore Itel (Nacalai Tesque) 0. l¾ (w / v) 4-aminoantipyrine 2.0 mmol / L
POD (ペルォキシダーゼ) 9単位/ mL  POD (Peroxidase) 9 units / mL
ゥリカーゼ 700 IU/L  URICASE 700 IU / L
〔実施例 2〕 (Example 2)
第 1試薬 First reagent
リン酸緩衝液 pH7. 0 50 mmol/L  Phosphate buffer solution pH 7.0 0 50 mmol / L
T00S 1. 0 mmol/L T00S 1.0 mmol / L
非ィオン系界面活性剤ポリェ コールモノ- p ィソォクチルフエ二/レエ 一テル (ナカライテスク製) 0. 1% (w/v) ァスコルビン酸ォキシダーゼ 3000 IU/L Nonionic surfactant Polyol mono-p isococtyl fe / Rhe Itel (Nacalai Tesque) 0.1% (w / v) ascorbate oxidase 3000 IU / L
アジ化ナトリウム 0. 05% (w/v)  Sodium azide 0. 05% (w / v)
¾ 2 薬  ¾ 2 drugs
リン酸緩衝液 pH7. 0 50 mmol/L  Phosphate buffer solution pH 7.0 0 50 mmol / L
非ィオン系界面活性剤ポリェ コールモノ- p-ィソォクチルフエ二ルェ 一テル (ナカライテスク製) 0. 1% (w/v) 4-アミノアンチピリン 2. 0 mmol/L Nonionic surfactant Poly-Mono-p-isooctylphenol Itel (manufactured by Nacalai Tesque) 0.1% (w / v) 4-aminoantipyrine 2.0 mmol / L
POD (ペルォキシダーゼ) 9 単位/ mL POD (Peroxidase) 9 units / mL
ゥリカーゼ 700 IU/L  URICASE 700 IU / L
〔実施例 3〕 第 1試薬 [Example 3] First reagent
リン酸緩衝液 PH7. 0 50 mmol/L  Phosphate buffer PH7. 0 50 mmol / L
4 -アミノアンチピリン 0. 67 mmol/L 非イオン系界面活性剤ポリェ コールモノ- p-ィソォクチルフエニルェ 一テル (ナカライテスタ製) 0. l% (w/v) ァスコルビン酸ォキシダーゼ 3000IU/L  4-Aminoantipyrine 0. 67 mmol / L Nonionic surfactant Poly-mono-p-isooctylphenyl ester (Nacalai Testa) 0. l% (w / v) ascorbate oxidase 3000IU / L
アジ化ナトリウム 0. 05% (w/v) 第 2試薬  Sodium azide 0. 05% (w / v) Second reagent
リン酸緩衝液 pH7. 0 50 mmol/L 非イオン系界面活性剤ポリエ コールモノ- p-ィソォクチルフエ二/レエ 一テル (ナカライテスク製) 0. l% (w/v) T00S 4. 5 mmol/L  Phosphate buffer pH 7.0 0 50 mmol / L Non-ionic surfactant Polyol Mono-p-isooctylphenol / Rye Itel (manufactured by Nacalai Tesque) 0. l% (w / v) T00S 4.5 mmol / L
POD (ペルォキシダーゼ) 9 IU/mL  POD (Peroxidase) 9 IU / mL
ゥリカーゼ 700 IU/L 尿酸濃度 16.80mg/dLの管理検体を生理食塩水で希釈し、 0.84、 1.68、 2.52、 3.36、 4.20、 8.40、 12.60、 16.80mg/dLの尿酸濃度の試料を調製した。 URICASE 700 IU / L Samples with uric acid concentrations of 0.84, 1.68, 2.52, 3.36, 4.20, 8.40, 12.60, and 16.80 mg / dL were prepared by diluting a control sample with a uric acid concentration of 16.80 mg / dL in physiological saline.
[0055] 測定には日立製作所製、 7150型自動分析装置を使用した。 [0055] For the measurement, a 7150 type automatic analyzer manufactured by Hitachi, Ltd. was used.
[0056] 試料 6 μ Lに第 1試薬組成物 270 μ Lを加え、 37°C、 5分間加温した後、第 2試薬組成 物 90 Lをカ卩ぇ 37°Cで 5分間反応させ、試薬ブランクを対照に主波長 600應、副波長 700nmで吸光度を測定し、試料由来の吸光度や電源変動に対する吸光度への影響 を補正するために主波長から副波長を差し引いた吸光度を求め、あらかじめ作成し た検量線より、試料中の尿酸濃度を求めた。  [0056] Add 270 μL of the first reagent composition to 6 μL of the sample, heat at 37 ° C for 5 minutes, and then react 90 L of the second reagent composition at 37 ° C for 5 minutes. Measure the absorbance at 600-nm and 700-nm wavelength using the reagent blank as a control, and calculate the absorbance obtained by subtracting the sub-wavelength from the main wavelength in order to correct the effect of absorbance on the sample-derived absorbance and power fluctuation. The uric acid concentration in the sample was determined from the calibration curve.
[0057] この際、対照として従来より用いられていた、ペルォキシダーゼを含む第 1試薬を用 いる方法で試料中の尿酸濃度を求めた。用いた第 1試薬および第 2試薬の試薬組成 物は以下の通りであった。  [0057] At this time, the uric acid concentration in the sample was determined by the method using the first reagent containing peroxidase, which was conventionally used as a control. The reagent compositions of the first reagent and the second reagent used were as follows.
[0058] 第 1試薬  [0058] First reagent
リン酸緩衝液 pH7. 0 50 mmo l/L  Phosphate buffer pH 7.0 0 50 mmo l / L
TOOS 1. 5 匪 o l/L  TOOS 1.5 匪 o l / L
非ィオン系界面活性剤ポリエチレングリコールモノ -P-ィソォクチルフェニルェ 一テル (ナカライテスク製) 0. (w/v) ァスコルビン酸ォキシダ一ゼ 3000 IU/L  Nonionic surfactant polyethylene glycol mono-P-isooctylphenyl ester (manufactured by Nacalai Tesque) 0. (w / v) ascorbate oxidase 3000 IU / L
POD (ペルォキシダ一ゼ) 3 単位/ mL  POD (Peroxidase) 3 units / mL
第 2試薬  Second reagent
リン酸緩衝液 PH7. 0 50 匪 ol/L  Phosphate buffer PH7. 0 50 ol ol / L
非イオン系界面活性剤ポリエチレンダリコールモノ- P-イソォクチルフエニルェ Nonionic Surfactant Polyethylene Daricol Mono-P-Isooctylphenyl
—テル (ナカライテスク製) 0. l w/v)—Tell (Nacalai Tesque) 0. l w / v)
4 ァミノアンチピリン 2. 0 匪 ol/L 4 Aminoantipyrine 2. 0 匪 ol / L
ゥリカーゼ 700 IU/L 結果を表 1に示す。表には、本発明の方法 (実施例 1、実施例 2、実施例 3)および 従来法における管理検体を希釈した試料の測定値を示す。  URICASE 700 IU / L The results are shown in Table 1. The table shows the measured values of the method of the present invention (Example 1, Example 2, Example 3) and the sample diluted with the control sample in the conventional method.
[表 1] 理論値 実施例 1 実施例 2 実施例 3 従 fe法[table 1] Theoretical value Example 1 Example 2 Example 3 Follow fe method
(mg/dL) 測定値 測定値/ 測定値 測定値/ 測定値 測定値/ 測定値 測定値/ (mg / dL) Measured value Measured value / Measured value Measured value / Measured value Measured value / Measured value Measured value /
(rag/dL) 理論値 理論値 (mg/dL) 理論値 (mg/dL) 理論値  (rag / dL) Theoretical value Theoretical value (mg / dL) Theoretical value (mg / dL) Theoretical value
( ¾ ) ( % ) ( % ) ( % ) (¾) (%) (%) (%)
0. OU 0. 00 一 0. 00 —― 0. 00 —― 0. 00 ——0. OU 0. 00 One 0. 00 —― 0. 00 —— 0. 00
0. 84 0. 82 98% 0. 86 102¾ 0. 84 100¾ 0. 72 86¾0. 84 0. 82 98% 0. 86 102¾ 0. 84 100¾ 0. 72 86¾
1. 68 1. 63 97¾ 1. 64 98% 1. 63 97¾ 1. 9 89¾1. 68 1. 63 97¾ 1. 64 98% 1. 63 97¾ 1. 9 89¾
I. 52 2. 45 97¾ 2. 45 97¾ 2. 41 96¾ 2. 25 89¾I. 52 2. 45 97¾ 2. 45 97¾ 2. 41 96¾ 2. 25 89¾
3. 36 3. 29 98¾ 3. 31 99¾ 3. 28 98¾ 3. 09 92%3.36 3.29 98¾ 3.31 99¾ 3.28 98¾ 3.09 92%
4. 20 4. 12 4. 13 98¾ 4. 1 1 98% 3. 91 93¾4. 20 4. 12 4. 13 98¾ 4. 1 1 98% 3. 91 93¾
8. 40 8. 38 画 8. 33 99¾ 8. 26 98¾ S.】0 96¾8. 40 8. 38 Stroke 8. 33 99¾ 8. 26 98¾ S.】 0 96¾
12. 60 12. 51 12. 56 100¾ 12. 41 98¾ 12. 39 98¾12. 60 12. 51 12. 56 100¾ 12.41 98¾ 12.39 98¾
16. 80 17. 05 101¾ 16. 86 100¾ 16. 72 100¾ 16. 75 100¾ 16. 80 17. 05 101¾ 16. 86 100¾ 16. 72 100¾ 16. 75 100¾
[0059] 表 1に示すように、本法は従来法に比べ、低値域での正確性に優れている。 [0059] As shown in Table 1, this method is superior to the conventional method in accuracy in the low value range.
[0060] 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本 明細書にとり入れるものとする。 [0060] All publications, patents, and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲 The scope of the claims
[1] 被検試料中の尿酸をゥリカーゼ酵素によって過酸ィ匕水素とアラントインに分解し、そ の過酸ィ匕水素をペルォキシダーゼを用 、て定量することによって被検試料中の尿酸 を定量する方法であって、尿酸のゥリカーゼ酵素による分解前に尿酸をペルォキシ ダーゼと接触させないことにより尿酸低値を正確に定量し得ることを特徴とする尿酸 の定量方法。  [1] Uric acid in the test sample is decomposed into peroxyhydrogen and allantoin by uricase enzyme, and the peracid hydrogen is quantified using peroxidase to quantify uric acid in the test sample. A method for quantifying uric acid, characterized in that a low uric acid level can be accurately quantified by not contacting uric acid with peroxidase before decomposition of uric acid with a uricase enzyme.
[2] 被検試料に水素供与化合物を含む第 1試薬を添加し、次いでゥリカーゼ、 4—アミ ノアンチピリン、およびペルォキシダーゼを含む第 2試薬を添加することを特徴とする 請求項 1記載の尿酸の定量方法。  [2] The uric acid according to claim 1, wherein a first reagent containing a hydrogen donor compound is added to a test sample, and then a second reagent containing uricase, 4-aminoantipyrine, and peroxidase is added. Quantitation method.
[3] 第 1試薬添加後、 1〜10分後に第 2試薬を添加することを特徴とする請求項 1また は 2に記載の尿酸の定量方法。 [3] The method for quantifying uric acid according to claim 1 or 2, wherein the second reagent is added 1 to 10 minutes after the addition of the first reagent.
[4] 被検試料に 4—ァミノアンチピリンを含む第 1試薬を添加し、次いで水素供与体、ゥ リカーゼ、およびペルォキシダーゼを含む第 2試薬を添加することを特徴とする請求 項 1記載の尿酸の定量方法。 [4] The uric acid according to claim 1, wherein the first reagent containing 4-aminoantipyrine is added to the test sample, and then the second reagent containing hydrogen donor, uricase, and peroxidase is added. Quantification method.
[5] 被検試料に水素供与化合物を含む第 1試薬を添加し、次いで 4—ァミノアンチピリ ンを含む第 2試薬を添加し、次 、でゥリカーゼおよびペルォキシダーゼを含む第 3試 薬を添加することを特徴とする請求項 1記載の尿酸の定量方法。 [5] Add a first reagent containing a hydrogen donor compound to the test sample, then add a second reagent containing 4-amaminoantipyrine, and then add a third reagent containing uricase and peroxidase. The method for quantifying uric acid according to claim 1, characterized in that:
[6] 被検試料に 4-ァミノアンチピリンを含む第 1試薬を添加し、次いで水素供与化合物 を含む第 2試薬を添加し、次 、でゥリカーゼおよびペルォキシダーゼを含む第 3試薬 を添加することを特徴とする請求項 1記載の尿酸の定量方法。 [6] Add the first reagent containing 4-aminoantipyrine to the test sample, then add the second reagent containing the hydrogen donor compound, and then add the third reagent containing uricase and peroxidase. The method for quantifying uric acid according to claim 1, characterized in that:
[7] 第 1試薬にさらにアジィ匕ナトリウムを含む請求項 2から 6のいずれか 1項に記載の尿 酸の定量方法。 [7] The method for quantifying uric acid according to any one of [2] to [6], wherein the first reagent further contains sodium azide.
[8] 水素供与体を含む第 1試薬と、ペルォキシダーゼおよびゥリカーゼを含む第 2試薬 を組合せてなる尿酸定量試薬であって、第 1試薬にペルォキシダーゼを含まな!/、尿 酸定量試薬。  [8] A uric acid determination reagent comprising a first reagent containing a hydrogen donor and a second reagent containing peroxidase and uricase, wherein the first reagent does not contain peroxidase! /, A uric acid determination reagent.
[9] 第 1試薬にさらにアジ化ナトリウムを含む請求項 8記載の尿酸定量試薬。  [9] The uric acid quantitative reagent according to claim 8, wherein the first reagent further contains sodium azide.
PCT/JP2005/017055 2004-09-16 2005-09-15 Method of quantitative determination of uric acid WO2006030866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535202A JPWO2006030866A1 (en) 2004-09-16 2005-09-15 Method for quantitative determination of uric acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-270366 2004-09-16
JP2004270366 2004-09-16

Publications (1)

Publication Number Publication Date
WO2006030866A1 true WO2006030866A1 (en) 2006-03-23

Family

ID=36060116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017055 WO2006030866A1 (en) 2004-09-16 2005-09-15 Method of quantitative determination of uric acid

Country Status (2)

Country Link
JP (1) JPWO2006030866A1 (en)
WO (1) WO2006030866A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082418A (en) * 2019-05-27 2019-08-02 三诺生物传感股份有限公司 A kind of uric acid electrochemical measuring method
CN114441516A (en) * 2021-12-20 2022-05-06 苏州百源基因技术有限公司 Uric acid detection kit and preparation method thereof
WO2022172343A1 (en) 2021-02-10 2022-08-18 オリエンタル酵母工業株式会社 Uricase activator and uric acid measurement reagent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081458A (en) * 2011-09-30 2013-05-09 Shino Test Corp Stabilization method of measuring reagent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028533A (en) * 1998-04-23 2000-01-28 Shino Test:Kk Stable measurement reagent and measurement method therefor
JP2001255323A (en) * 2000-01-05 2001-09-21 Hiromi Nanba Blood separation instrument, blood separation method, method for preparing living body specimen, method for determining living body specimen and living body specimen preserving container
JP2003043035A (en) * 2001-08-01 2003-02-13 Toyobo Co Ltd Method for manufacturing liquid-like reagent raw material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794426B2 (en) * 1988-11-18 1998-09-03 中外製薬株式会社 Peroxidase-containing reagent composition and method for preventing peroxidase enzyme activity inhibition
JP3702476B2 (en) * 1994-08-02 2005-10-05 日立化成工業株式会社 Chemiluminescence measurement method
JP3711544B2 (en) * 1994-08-02 2005-11-02 日立化成工業株式会社 Chemiluminescence measuring reagent
JP2862817B2 (en) * 1995-09-05 1999-03-03 株式会社エイアンドティー Liquid concentrated enzyme reagent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028533A (en) * 1998-04-23 2000-01-28 Shino Test:Kk Stable measurement reagent and measurement method therefor
JP2001255323A (en) * 2000-01-05 2001-09-21 Hiromi Nanba Blood separation instrument, blood separation method, method for preparing living body specimen, method for determining living body specimen and living body specimen preserving container
JP2003043035A (en) * 2001-08-01 2003-02-13 Toyobo Co Ltd Method for manufacturing liquid-like reagent raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082418A (en) * 2019-05-27 2019-08-02 三诺生物传感股份有限公司 A kind of uric acid electrochemical measuring method
CN110082418B (en) * 2019-05-27 2021-10-15 三诺生物传感股份有限公司 Uric acid electrochemical measurement method
WO2022172343A1 (en) 2021-02-10 2022-08-18 オリエンタル酵母工業株式会社 Uricase activator and uric acid measurement reagent
CN114441516A (en) * 2021-12-20 2022-05-06 苏州百源基因技术有限公司 Uric acid detection kit and preparation method thereof

Also Published As

Publication number Publication date
JPWO2006030866A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US5516700A (en) Automated urinalysis method
EP0823943B1 (en) Determination of glycated proteins
EP2319937B1 (en) Blood component measurement method utilizing hemolyzed whole blood, and kit for the method
JPS61146196A (en) Method and reagent for improving photometry of h202
JP5906604B2 (en) Whole blood sample component measurement method
JP2003232789A (en) Stabilized tetrazolium dye reagent composition and method for use thereof
WO2006030866A1 (en) Method of quantitative determination of uric acid
MX2007002224A (en) Method for determining the concentration of analytes in samples by direct mediation of enzymes.
JP2008197077A (en) Method and reagent for measuring object substance to be measured in sample, method for inhibiting nonspecific coloring, and nonspecific coloring inhibitor
US4695539A (en) Process for quantitative determination of substrate treated with oxidase
CN109837270B (en) A method for stabilizing inositol dehydrogenase, ketoamine oxidase and sphingomyelinase in liquid for long time
JP4217815B2 (en) Method for quantifying glucose by glucose dehydrogenase and reagent for quantifying glucose
CN111575339A (en) 1, 5-anhydroglucitol enzymatic quantitative method and reagent therefor
JP3981190B2 (en) Cholesterol determination method and reagent for determination
JP4182859B2 (en) Liquid reagent kit for measuring creatine kinase and stabilization method thereof
JP3522307B2 (en) Liquid reagent composition for measuring inorganic phosphorus
JP3690754B2 (en) Quantitative determination of components in samples
JP2643205B2 (en) Highly sensitive colorimetric method
JP3034984B2 (en) Highly sensitive method and composition for quantification of D-galactose
WO2023190714A1 (en) Method for measuring lysophospholipase d activity, sensitivity enhancement agent for lysophospholipase d activity measurement, composition, and kit
JPH0772157A (en) Method and kit for determination of saccharified protein
US20070154879A1 (en) Method for quantitatively determining a specific component in a biological specimen, and reagent for quantitative determination
JP5808616B2 (en) How to suppress the effects of interfering substances
JP2024017996A (en) Reagent kit and quantification method for quantifying substance to be tested in sample
CN116075594A (en) Method for reducing measurement error

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535202

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase