WO2006030746A1 - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element Download PDF

Info

Publication number
WO2006030746A1
WO2006030746A1 PCT/JP2005/016774 JP2005016774W WO2006030746A1 WO 2006030746 A1 WO2006030746 A1 WO 2006030746A1 JP 2005016774 W JP2005016774 W JP 2005016774W WO 2006030746 A1 WO2006030746 A1 WO 2006030746A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor light
layer
electrode
cladding layer
Prior art date
Application number
PCT/JP2005/016774
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Ikeda
Yoshiaki Nakano
Nong Chen
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2006030746A1 publication Critical patent/WO2006030746A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/0624Controlling other output parameters than intensity or frequency controlling the near- or far field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18325Between active layer and substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Definitions

  • the present invention relates to a semiconductor light emitting device.
  • FIGS. 1A to 1E are diagrams showing a cross-sectional structure of main parts of a conventional semiconductor laser.
  • these lasers basically the same reference numerals are assigned to the common elements to simplify the description.
  • Figure 1 (a) shows the structure of a semiconductor laser, generally called the buried stripe type, used in the 1.3 m wavelength band.
  • This semiconductor laser includes a substrate crystal 1, a lower cladding layer 2, an active layer 3, and an upper cladding layer 4 as main components.
  • a lower electrode 6 is attached to the lower surface of the substrate crystal 1.
  • An upper electrode 7 is attached to the upper surface of the upper cladding layer 4 via a low resistance layer 5! /.
  • the active layer 3 is sandwiched between the upper cladding layer 4 and the lower cladding layer 2, it is etched narrowly to a width of 1.8 m or less and about 1.6 m. Thereafter, a current blocking layer 8 is grown on the side surface to concentrate the current in this region and prevent the side surface from being exposed to air.
  • the current blocking layer 8 has a high resistance, or has a pn junction inside, and is devised so that current does not flow inside it!
  • the oscillation transverse mode is determined by a waveguide mechanism, and there are a refractive index waveguide and a gain waveguide.
  • This buried stripe type laser is a typical type called a refractive index guided type, and the stripe width must be narrowed to about 1.6 m as described above in order to block higher-order transverse modes.
  • the allowable value of the stripe width is narrow, for example, about ⁇ 0.2 m. For this reason, careful attention and management are required for etching.
  • the refractive index changes discontinuously at the interface between the stripe portion and the current blocking layer, the unevenness on the etched side surface greatly affects the light scattering loss, and characteristics such as laser threshold, efficiency, and far-field image.
  • the threshold of this type of semiconductor laser is a force that can be sufficiently reduced to about 2mA at room temperature.
  • the operating current is usually about 15 to 25mA, and it is not possible to modulate the semiconductor laser by directly connecting the output of a general digital circuit. I can't.
  • the etched crystal cannot be restored naturally, and the width cannot be adjusted after the device is manufactured. Even if this stripe region, that is, a laser waveguide is branched into a Y-shape to try to give another function, it must first be etched into a ridge before embedding. Etching grooves are difficult to enter on the inside. Even if the part should be two waveguides, a single wide waveguide continues for a while and the space between the two waveguides reaches a certain width. It is normal that etching progresses suddenly and becomes two.
  • Figure 1 (b) shows the structure of a laser generally used as the SBA type used in the 0.78 m wavelength band.
  • a p-GaAs layer having a carrier density of 1 to 4xl0 18 cm- 3 is grown on the substrate crystal 1 having n-GaAs force by about 1 ⁇ m.
  • the p-GaAs layer is masked and etched into a groove shape having a width of about 2.5 m, whereby the current blocking layer 8 can be obtained.
  • the top surface of the substrate crystal 1 is exposed at the bottom of the groove as shown in FIG.
  • nA aAs layer (lower cladding layer 2) with a carrier density of 2 to 4xl0 17 cm- 3 is formed on the upper surface.
  • Layer 3 upper cladding layer 4 made of p-AlGaAs, and low resistance layer 5 made of p + -GaAs are formed in this order.
  • the substrate crystal 1 is polished to an appropriate thickness to form the lower electrode 6. This wafer After cleaving to form resonant end faces, appropriate dielectric films are deposited on both end faces, and then separated into individual chips and assembled on a suitable header or submount.
  • This type of laser can obtain characteristics with an oscillation threshold of about 20 mA in a relatively simple process, and it seems that the threshold can be further lowered by optimizing the end face reflectivity and the resonator length.
  • the electrical resistance of the lower cladding layer 2 is relatively low, the leakage current that flows through the lower cladding layer 2 cannot be ignored, the current blocking layer 8 is floating and the groove where laser oscillation occurs Since the current blocking layer 8 absorbs the oscillation light, it is considered that the electrons generated by the absorption reduce the barrier effect of the current blocking layer 8, and that there is a limit to the iso-low threshold value. There was no improvement.
  • Figure 1 (c) shows the structure of a semiconductor laser generally used in the 1.3 m wavelength band, commonly called the ridge stripe type.
  • the active layer 3 is sandwiched between the upper cladding layer 4 and the lower cladding layer 2, and the upper cladding layer 4 is etched to a width of 1.8 ⁇ m or less and about 1.6 m at a position immediately above the active layer 3.
  • a resonator end face is formed by cleaving, and the end face is appropriate
  • a dielectric protective film and a dielectric film for reflectance control are formed into a laser chip.
  • the waveguide mechanism includes a refractive index waveguide and a gain waveguide, but this wedge-type laser is another example of a type called a refractive index guided type.
  • the ridge width In order to block the transverse mode, the ridge width must be narrowed to about 1.6 m as described above. In general, the allowable width of this ridge is also narrow, for example, about ⁇ 0.2 m. For this reason, careful attention and management are required for etching.
  • the embedded stripe type described above Since the refractive index changes discontinuously at the interface between the wedge and other parts, that is, the air interface, the unevenness on the etched side surface greatly affects the light scattering loss, and the laser threshold, efficiency, far-field image, etc. Affects the characteristics of
  • the injection current is diffused and dissipated in the upper cladding layer 4 and the active layer 3 while reaching the active layer 3 from the ridge portion.
  • the threshold value is inferior to that of the buried stripe type, but it can still be relatively low at around 6 mA at room temperature.
  • the operating current is normally about 25 to 35 mA, and the need for a separate drive circuit is basically the same as the embedded stripe type.
  • the driving transistor must be able to withstand the higher driving current required! /.
  • Figure 1 (d) shows the cross-sectional structure of an 850-band laser called a surface-emitting type (VCSEL).
  • VCSEL surface-emitting type
  • the active layer 3 and the AlAs layer 9 are sandwiched between the upper cladding layer 4 and the lower cladding layer 2, and further sandwiched between the lower DBR (distributed Bragg reflector) 10 and the upper DBR 11.
  • etching is performed around the window 7a, leaving a circular mesa region having a diameter of about, and the lower electrode 6 is formed.
  • the peripheral part of the AlAs layer 9 is made insulating and acts as a current restrictor, and the current path has a diameter of 5-10 / ⁇ ⁇ .
  • the laser is configured by limiting the range.
  • the larger the diameter of the circular mesa region the easier the force and the higher the yield.
  • the diameter of the central part that is finally left is about 5 m.
  • the diameter of the circular mesa region is large, the region to be oxidized becomes wide and control becomes difficult.
  • the diameter of the circular mesa region is larger than 10 / zm, it is difficult to emit light uniformly in the circular part, and the light emission state becomes a crown shape with strong light emission in the peripheral part.
  • the surface emitting laser (VCSEL) thus produced has an oscillation threshold of about 1.5 mA and an operating current of 5 to 10 mA.
  • the oscillation transverse mode is determined by the shape and size of the light emitting portion.
  • the optical fiber to be used is a multimode fiber with a large core diameter, and coupled with the small output, the transmission distance of the output light is limited to a maximum of about 500 m.
  • FIG. 1 (e) shows a structure in which the current aperture of the surface emitting laser described in FIG. 1 (d) is diverted to the ridge stripe laser described in FIG. 1 (c).
  • the AlAs layer 9 is disposed on the active layer 3 and the ridge formation etching described in the explanation of Fig. (C) is performed, the AlAs layer 9 is placed on the left and right sides of the ridge as described in Fig.
  • the structure is narrower than the ridge width by using a strong acid to narrow the current to the region.
  • the ridge width is set to, and the gap or current path of the oxide current restrictor is set to 1.5 m.
  • the refractive index waveguide width determined by the ridge is 4 m, and the primary and secondary modes are allowed.
  • both ends of the AlAs layer 9 are oxidized so that the effective refractive index distribution perceived by the light in the active layer 3 is slightly lower in the refractive index in the peripheral part where the diaphragm is located than in the central part. . That is, it has a function of refractive index guiding. Furthermore, since the current density at a part of the current inlet is high, the carrier density is correspondingly high, and the gain is high accordingly. In other words, it also has a function of gain guiding. Due to these effects, this type of laser can maintain the fundamental mode oscillation even at tens of mW or more.
  • the crystal once etched cannot be restored naturally, and there is no room for adjusting the width after the device is manufactured. Even if this stripe region, that is, the laser waveguide is branched to give another function, processing inside the crotch of the branch portion during patterning and etching is performed as in the above-described embedded stripe type and ridge stripe type. However, it was difficult to form a branch with a small loss, which was difficult, so it was not possible to form a Y branch.
  • the oscillation transverse mode is determined by the wave guide mechanism.
  • the waveguide mechanism includes a refractive index waveguide and a gain waveguide. Refractive index guided type Then, when fabricating a semiconductor laser, a waveguide is fabricated by finely processing materials with different refractive indexes so as to block higher-order modes. On the other hand, gain waveguiding realizes single-mode oscillation by adding spatial shading to injected current and the loss of light.
  • the width of the active region in the active layer is set to 1.8 m or less even when the oscillation wavelength is in the 1.3 ⁇ m band.
  • the means for controlling the external mode of this transverse oscillation mode has heretofore been ineffective.
  • FIG. 2 is a schematic diagram of the structure of a semiconductor laser considering this point.
  • the laser stripe structure is a buried stripe type, and the upper electrode 7 is divided into two parts, a main electrode 7b and a sub-electrode 7c, so that current can flow individually.
  • a current is supplied only to the main electrode 7b to bring it into a state near the laser oscillation threshold.
  • a current is passed through the sub-electrode 7c, it will oscillate and the light output will have an appropriate value. Oscillation stops when the current of sub-electrode 7c is turned off. It can be easily estimated that a very small amount of current flows through the sub-electrode 7c, and control at 1 mA or less is considered possible. This value can be driven by CMOS.
  • the so-called pattern effect that the initial light intensity has an influence on the subsequent signal is extremely large.
  • the optimum condition is limited to a very narrow range, so it seems that it is not practical.
  • the current must be increased in order to increase the oscillation light intensity.
  • the current in order to reduce the oscillation light intensity, the current must be reduced.
  • modulation of the drive current was indispensable for modulation including ON / OFF of the semiconductor laser.
  • a drive circuit for a semiconductor laser is formed by a circuit such as a power mirror using a bipolar transistor or a special CMOS circuit that allows current to flow. It must be configured and converted to a current change of several to several tens of mA necessary for the operation of the semiconductor laser, and the semiconductor laser must be modulated or turned on and off through this.
  • the conventional semiconductor laser requires a drive circuit in addition to the signal line, and these circuits and the individually packaged semiconductor laser are connected by wiring to operate. Then, stray capacitance and stray inductance increase, and the signal waveform becomes dull and deformed, and high-speed components are cut off.
  • the conventional refractive index waveguide type semiconductor laser at the time of fabrication, materials having different refractive indexes are combined so as to block higher-order modes, and further fine processing is performed.
  • gain waveguiding realizes single-mode oscillation by adding spatial shading to the loss experienced by injected current and light! If the fundamental transverse mode oscillation is obtained by completely blocking the higher-order transverse mode using only the refractive index waveguide, the width of the active region must be 1.8 m or less even when the oscillation wavelength is 1.3 m. Therefore, processing becomes difficult. Also, since there was no means to dynamically control the transverse oscillation mode, the laser function was limited. Furthermore, when branching or merging a waveguide including an active region, in general, a resist pattern is formed and the semiconductor is etched, so a fine resist pattern is formed and etched. To do is an extremely difficult caro work.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a semiconductor light emitting device capable of solving the above-described problems in principle.
  • the semiconductor light emitting element of item 1 includes a substrate crystal, an active layer, and a junction.
  • the joint portion is disposed in the vicinity of the active layer. Further, the joint portion includes the active layer. In this configuration, a depletion region that restricts the flow of carriers to the substrate is generated.
  • the semiconductor light-emitting element of item 2 is the same as that of item 1, further comprising an upper cladding layer, a lower cladding layer, a first electrode, and a second electrode.
  • the upper cladding layer is disposed adjacent to the upper part of the active layer.
  • the lower cladding layer is disposed adjacent to the lower part of the active layer.
  • the first electrode is electrically connected to the upper cladding layer.
  • the second electrode is electrically connected to the lower cladding layer.
  • This semiconductor light emitting device is configured to send carriers into the active layer by passing a current between the first electrode and the second electrode.
  • Item 3 is a semiconductor light-emitting device according to item 1 or 2, wherein the junction is constituted by a pn junction.
  • Item 4 is a semiconductor light-emitting device according to item 1 or 2, wherein the junction is formed by a metal-semiconductor junction.
  • the semiconductor light-emitting element of item 5 is the semiconductor light-emitting device according to item 1 or 2, wherein the junction is configured by a metal-insulator-semiconductor junction.
  • the semiconductor light-emitting element of item 6 is the semiconductor light-emitting device according to any one of items 1 to 5, wherein the junction is disposed at a distance within 3 ⁇ m from the active region in the active layer. It has become.
  • the semiconductor light emitting device of item 7 is the device of item 1, further comprising a control region made of a first conductivity type semiconductor and a gate region made of a second conductivity type semiconductor. Yes.
  • the junction is formed by joining the control region and the gate region.
  • the control region is disposed on a flow path of a current flowing into the active layer.
  • the semiconductor light-emitting device of item 8 is the semiconductor light-emitting device of item 7, wherein the control region is a part of the substrate crystal.
  • the semiconductor light-emitting element of item 9 is the same as that of item 7, further comprising a lower cladding layer.
  • the lower cladding layer is disposed between the substrate crystal and the active layer.
  • the control region is formed between the lower cladding layer and the substrate crystal.
  • the semiconductor light emitting element of item 10 is the same as that of item 7, further comprising a lower cladding layer.
  • the lower cladding layer is disposed between the substrate crystal and the active layer.
  • the The control region is formed inside the lower cladding layer.
  • the semiconductor light emitting device of item 11 is the same as that of item 7, further comprising an upper cladding layer.
  • the upper cladding layer is disposed above the active layer.
  • the control region is disposed above the upper cladding layer.
  • the semiconductor light emitting device of item 12 is the device of item 7, further comprising an upper cladding layer.
  • the control region is formed inside the upper cladding layer.
  • the semiconductor light-emitting element of item 13 is the device according to any one of items 7 to: L1, wherein a third electrode for applying a voltage to the gate region is electrically connected to the gate region. Is connected to.
  • Item 14 is a semiconductor light emitting device according to any one of Items 7 to 13, wherein a depletion layer limiting region is disposed between the control region and the gate region and the active layer. Is.
  • the semiconductor light emitting device of item 15 is the semiconductor light emitting device of item 14, wherein the carrier concentration in the depletion layer limiting region is higher than that in the control region.
  • the semiconductor light emitting element of item 16 is the one described in any one of the forces 1 to 15 of item 7, wherein the control region and the gate region are different in material or composition.
  • Item 17 is the semiconductor light-emitting device according to any one of items 7 to 16, wherein the gate region is formed with a slit extending substantially along one direction. A part or all of the control area is disposed inside the slit.
  • the semiconductor light-emitting element of item 18 is the semiconductor light-emitting device of item 17, in which irregularities are formed on the side surface of the gate region facing the slit.
  • Item 19 is a semiconductor light-emitting device according to any one of items 7 to 16, wherein the gate region is formed with a hole continuously arranged substantially along one direction, and the hole A part or all of the control area is arranged inside the.
  • the semiconductor light emitting element of item 20 is the one described in items 7 to 19, wherein the refractive index of the gate region is lower than the refractive index of the control region.
  • Item 21 is a semiconductor light-emitting device according to item 7 to 20, wherein the gate region Is made to be absorptive with respect to the wavelength of the generated light.
  • the semiconductor light-emitting element of item 22 is the device according to item 21, wherein the absorptive gate region is formed by adding iron or chromium as an impurity to the semiconductor. It becomes.
  • Item 23 is a semiconductor light emitting device according to any one of items 17 to 19
  • the extension direction of the slit or the hole is branched into two or more.
  • the semiconductor light-emitting element of item 24 is for controlling the phase of light traveling along the slit in the gate region along the deviation of the branched slit in the semiconductor light-emitting device of item 23.
  • the fourth electrode is electrically connected.
  • the flow path of the drive current can be regulated by the depletion region generated by the junction.
  • the width of the waveguide as the gain waveguide can be narrowed.
  • the width of the waveguide can be dynamically controlled by applying a voltage to the gate region constituting the junction. In other words, laser oscillation can be controlled by voltage.
  • the amount of light emission can be controlled by directly connecting the semiconductor light emitting device according to the present invention to a standard interface whose output is defined by voltage.
  • the configuration of the laser driving device can be simplified.
  • FIG. 3 shows a first embodiment of the present invention.
  • FIG. 4A is a cross-sectional view taken along a plane that includes an oscillation region and that is perpendicular to the traveling direction of light that is guided therethrough.
  • members having the same functions as those of the conventional semiconductor laser already described are denoted by the same reference numerals and description thereof is simplified.
  • the semiconductor light emitting device of this embodiment includes a substrate crystal 1, a lower cladding layer 2, an active layer 3, an upper cladding layer 4, a low resistance layer 5, a lower electrode (first electrode) 6 And the upper electrode (second electrode) 7.
  • a control region 14 and a gate region 16 are provided.
  • both the substrate crystal 1 and the lower cladding layer 2 are made of a first conductivity type (n-type or P-type) semiconductor.
  • the upper clad layer 24 is made of a second conductivity type (p-type or n-type) semiconductor and has a length of one.
  • the gate region 16 is formed on the upper surface of the substrate crystal 1 (the formation method will be described later).
  • the gate region 16 is of the second conductivity type.
  • the control region 14 is constituted by a part of the substrate crystal 1 in this embodiment. In other words, in this embodiment, a region of the substrate crystal 1 adjacent to the gate region 16 and sandwiched between the left and right gate regions 16 is the control region 14. Like the substrate crystal 1, the control region 14 is of the first conductivity type.
  • the control region 14 is arranged on the movement path of carriers that flow into the active layer 3.
  • a depletion region is generated near the interface, and this region is referred to as a junction region.
  • a depletion region is generated across both regions.
  • a region in the vicinity of the junction interface between the control region 14 and the gate region 16 including both the depletion regions is referred to as a junction A.
  • a depletion region included in the control region 14 is referred to as a depletion region B.
  • the depletion region B has a function of restricting the flow of carriers to the active layer 4 and is arranged in the vicinity of the active layer 3 (specifically, for example, within 3 m from the active layer 3).
  • the width of the depletion region depends on the carrier density of each region.
  • the junction A in the present embodiment is configured by a pn junction, and the depletion region B is generated based on the pn junction.
  • the upper electrode (first electrode) 7 is electrically connected to the upper cladding layer 4 through the low resistance layer 5.
  • the lower electrode (second electrode) 6 is electrically connected to the lower cladding layer 2 via the substrate crystal 1 and the control region 14.
  • carriers are injected into the active layer 3 by passing a current between the upper electrode 7 and the lower electrode 6.
  • the active layer 3 a region where carriers actually generate injected light is referred to as an active region.
  • a gate region 16 of a high concentration second conductivity type is selectively formed by a diffusion method or an ion implantation method.
  • the substrate crystal 1 an n-type GaAs substrate having a carrier density of lxl0 16 cm- 3 is used.
  • the substrate crystal 1 is masked with a width of 2.0 m, and Be is ion-implanted to form a p region (this region becomes the gate region 16).
  • the carrier density of the p-type gate region 16 is, for example, 2xl0 18 cm ⁇ 3 .
  • an n-AlGaAs layer with a carrier density of 5xl0 16 cm- 3 is grown as a lower cladding layer 1 m by MOCVD using S as an impurity.
  • a GaAs layer not doped with impurities is grown as an active layer 3 to a thickness of 0.05 m.
  • a p-Al Ga As layer with Zn as an impurity and a carrier density of 2xl0 17 cm- 3 was formed on the upper cladding layer.
  • a p-GaAs layer with Zn as an impurity and a carrier density of lxl0 19 cm- 3 is grown as a low resistance layer 5 by 0.5 m. After that, vacuum deposition is performed in the order of Ti, Pt, and Au, and the upper electrode 7 is applied.
  • a striped mask having a width of 10 ⁇ m was applied, and the upper electrode 7 to the lower cladding layer 2 were selectively removed using a selective etching solution. As a result of this etching, the width of the ridge was reduced to approximately.
  • the substrate crystal 1 is polished and thinned to 100 / zm, and then the lower electrode 6 is formed by vacuum deposition in the order of Au—Ge, Ni, and Au.
  • the entire wafer thus obtained is annealed at about 400 ° C., then cleaved, coated with an end face, and separated into individual chips for assembly as a semiconductor laser.
  • the semiconductor laser fabricated in this way has a threshold value of approximately 10 mA, and even if the current is increased to 40 mA or more, it is considered that the optical output vs. current characteristic continues to be a simple increase curve without so-called “kinks”.
  • the control region 14 is depleted as a barrier against the flow of carriers (currents) inside the substrate crystal 1 and the lower cladding layer 2. Region B is formed. As a result, the current flow path becomes narrow accordingly. Then, the gain concentrates at the center of the ridge width. Then, among the fundamental mode and the primary mode allowed as refractive index guiding, the fundamental mode can obtain a large amount of gain, and oscillation in the fundamental mode is performed. If the width of the control region 14 is 2.0 ⁇ m and the width of the depletion region B is about 0.25 ⁇ m, the current is 1.5 ⁇ m. You will be focused on m. In FIG.
  • the second conductivity type gate region 16 is left on the upper surface of the substrate crystal 1, but this is not essential, and when performing a ridge etching using a mask, The gate region 16 together with the lower cladding layer 2 may be etched to reduce the width.
  • the current flow path can be regulated by the depletion region B, so that the process of observing the laser becomes easy. Is
  • FIG. 4 is a diagram showing the basic concept of the operation of the present embodiment in more detail.
  • the direction of current in Fig. 4 (a) is opposite to that in Fig. 3.
  • the control region 14 of the second conductivity type In the vicinity of the active layer 3 region, there is a control region 14 of the second conductivity type, and adjacent to it is a gate region 16 of the first conductivity type. If the carrier density of the first conductivity type gate region 16 is sufficiently larger than the carrier density of the second conductivity type control region 14, the first conductivity type gate region 16 is added to the second conductivity type control region 14.
  • a much larger depletion region B is formed. However, such carrier density is not essential.
  • the thickness of the depletion region B is approximately proportional to the reciprocal of the square root of the carrier density (that is, impurity concentration or space charge density). Depletion region B limits the width of the current path (see Fig. 4 (b) and (c)). Therefore, it is possible to regulate the light emission amount and the transverse mode of the laser by
  • FIG. 5 shows a second embodiment of the present invention.
  • FIG. 2A is a sectional view of the element.
  • the substrate crystal 1 of a first conductivity type composition: n-GaAs, carrier density: 5xl0 17 cm- 3
  • MOCVD carrier density: 5xl0 15 cm- 3
  • a first conductivity type layer thickness of 0.2 ⁇ m is formed, a mask with a width of 2 ⁇ m is applied, and Be is implanted by ion implantation to selectively form a ⁇ region.
  • the region that has been ion-implanted and becomes p-type becomes the second conductivity type gate region 16, and the region that remains protected by the mask and remains n-type (first conductivity type) becomes the control region 14. Since the structure and the manufacturing procedure other than those described above in the present embodiment are the same as those in the first embodiment, description thereof will be omitted.
  • the carrier density of the substrate crystal 1 is more general than that of the first embodiment, it is easy to obtain and the carrier density of the control region 14 is electrically Resistance There is an advantage that it can be formed low without worrying about resistance. If the carrier density in the control region 14 is low, the depletion region B will inevitably increase.
  • the threshold value of the semiconductor laser according to the second embodiment is approximately 9 mA, and even if the current is increased to 40 mA or more, the optical output vs. current characteristic continues to be a simple increase curve without a so-called “kink”. it is conceivable that. If such a reduction in threshold value can be achieved, compared to the first embodiment, the carrier density of the substrate crystal 1 can be increased, and the effective current path width becomes narrower by reducing the carrier density of the control region 14. (For example, 1 ⁇ m or less).
  • FIG. 5 (b) is a schematic diagram showing the operation of the second embodiment described above, and the operating principle is basically the same as that of the first embodiment.
  • the thickness of the depletion region B is increased by the lower carrier density of the control region 14 of the first conductivity type. For this reason, it becomes possible to narrow the effective current flow path width.
  • the carrier density of the substrate crystal 1 can be increased, there is an advantage in that the electrical resistance is reduced as well as the degree of freedom of selection of the substrate crystal is expanded.
  • FIG. 6 shows a third embodiment of the present invention.
  • FIG. 4A is a cross-sectional view of the main part of the third embodiment.
  • a substrate crystal 1 of the first conductivity type composition: n-GaAs, carrier density: 5xl0 17 cm- 3
  • a high concentration (2xl0 17 ) is formed thereon by MOCVD.
  • a second conductivity type (p-type) P-GaAs layer (thickness 0.2 m) of 18 cm-3) is formed. This region of the p-GaAs layer becomes the gate region 16.
  • Mg which is difficult to diffuse, was used as the p-type impurity.
  • the p-GaAs layer was formed while supplying CP2Mg (bis-cyclopentadienyl Mg).
  • CP2Mg bis-cyclopentadienyl Mg
  • the lower cladding layer 2 of the first conductivity type 2 and above is again formed thereon by MOCVD.
  • Each layer is formed.
  • the carrier density of the lower cladding layer 2 was lowered to about lxl0 16 cnf 3 .
  • the subsequent layer manufacturing method is the same as in the first embodiment. As shown in Figure (a), the cross-sectional structure of the resulting crystal layer has a slight step reflecting the approximately 0.2 ⁇ m deep groove formed by the above etching.
  • a portion of the lower cladding layer 2 adjacent to the gate region 16 is a control region 14.
  • the threshold of the semiconductor laser fabricated in this way is approximately 8.5 mA, and the current is increased to 40 mA or more. However, it is considered that there is no “kink” in the optical output vs. current characteristics. Furthermore, the half-value width of the far-field image is considered to be constant without current dependency.
  • FIG. 6 (b) is a schematic diagram showing the operation of the third exemplary embodiment of the present invention.
  • the operating principle of this embodiment is basically the same as the previous example.
  • this step substantially gives the waveguide width in the refractive index waveguide. Since this waveguide width is a width in which higher-order modes are prohibited, the semiconductor laser of this embodiment is considered to greatly improve the far-field image that is affected by the optical-current characteristics and to improve the threshold value. It is done.
  • the thickness of the depletion region B is increased by the lower carrier density of the control region 14 of the first conductivity type, and the effective current path width is reduced (for example, 1 ⁇ m or less). Then, even if the width of the control region 14 is widened, the current flow path can be narrowed, so that oscillation other than in the basic mode can be prevented, and the device can be easily processed. Furthermore, since the carrier density of the substrate crystal 1 can be increased, not only is the degree of freedom of selection of the substrate crystal 1 widened, but there is also an advantage in that the electrical resistance is reduced.
  • FIG. 7 shows a fourth embodiment of the present invention.
  • FIG. 4A is a cross-sectional view of the main part of the fourth embodiment.
  • n-GaAs having a carrier density of 3xl0 18 cm _ 3 is used as the substrate crystal 1 of the first conductivity type, and a carrier density of 2xl0 17 cm is formed on the first conductivity type (n-type) by MOCVD.
  • the lower cladding layer 2 is formed together with the AlGaAs layer of the first conductivity type formed earlier. Subsequent manufacturing method
  • the second conductivity type layer formed inside the lower cladding layer 2 corresponds to the gate region 16, and the region adjacent to the gate region 16 corresponds to the control region 14.
  • the threshold of the semiconductor laser fabricated in this way is approximately 8.0 mA, and it is considered that there is no “kink” in the optical output versus current characteristics even when the current is increased to 40 mA or more. Furthermore, the half-value width of the far-field image is considered to be constant with no current dependency.
  • FIG. 7B is a schematic diagram showing the operation of the fourth embodiment.
  • the operation principle of this embodiment is basically the same as the previous embodiments.
  • carriers can be injected intensively into a narrow region of the active layer 3 where the current spread to the active layer 3 is small, so that the threshold value is further increased. Lower.
  • FIG. 8 is a cross-sectional view of the main part of the fifth embodiment of the present invention.
  • n-GaAs having a carrier density of 3xl0 18 cm— 3 is used as the substrate crystal 1 of the first conductivity type, and a carrier density of 2xl0 17 cm—of the first conductivity type (n-type) is formed thereon by MOCVD.
  • 3 Al Ga As layer is formed to a thickness of 1.0 m.
  • the lower cladding layer 2 is formed, and then the active layer 3 is formed, and an AlGaAs layer having a second conductivity type (p-type) and a carrier density of 2xl0 16 cm- 3 is formed to a thickness of 0.5 m.
  • p-type impurities p-type impurities
  • n-GaAs layer (thickness: 0.1 m) having a carrier density force of 3 ⁇ 4 X 10 18 cm ⁇ 3 is formed in the first conductivity type (n-type).
  • Common S is used as an additive impurity.
  • the current flow path was formed! /,
  • the first conductivity type layer having a width of 2 ⁇ m was removed by etching, and then the second conductivity type was again formed thereon by MOCVD.
  • an Al Ga As layer with a carrier density of 2xl0 16 cm- 3 was formed to a thickness of 0.5 / zm, and this was combined with the AlGa As layer of the second conductivity type formed earlier.
  • the n-GaAs layer (thickness 0.1 ⁇ m) with the first conductivity type (n-type) and carrier density 2xl0 18 cm- 3 becomes the gate region 16, and the carrier density 2xl0 17 cm- 3 with the second conductivity type.
  • a portion of the Al Ga As layer adjacent to the gate region 16 becomes the control region 14.
  • a low resistance layer 5 of GaAs Subsequent electrode formation, cleavage, assembly, and other manufacturing methods are the same as in the previous embodiments. It should be noted that when MOCVD growth is performed again, light etching is performed by flowing a gas mainly composed of HC 1 in the growth apparatus, similar to the above-described fourth embodiment.
  • the threshold of the semiconductor laser fabricated in this way is approximately 8.0 mA, and it is considered that there is no “kink” in the optical output versus current characteristics even when the current is increased to 40 mA or more. Furthermore, the half-value width of the far-field image is considered to be constant with no current dependency.
  • the operation principle of the fifth embodiment is basically the same as that of the fourth embodiment except that the control region 14 for constricting the current path is on the active layer 3.
  • the current path is narrowed at a position close to the active layer 3, so that the current spreading to the active layer 3 is less and the active layer 3 is narrow and concentrated in the region. Since the carrier can be injected, the threshold value is lowered.
  • FIG. 9 is an explanatory diagram of the sixth embodiment of the present invention.
  • a third electrode 18 for applying a voltage to the gate region 16 is attached to the gate region 16.
  • a mode in which the third electrode 18 is attached will be described for each specific example.
  • the third electrode 18 is formed in the second conductivity type gate region 16 shown in the first embodiment.
  • Ti, Pt, and Au are sequentially deposited, and the force Au-Zn can easily obtain an ohmic electrode, so either of them can be used. If the third electrode 18 is biased more negatively than the lower electrode 6, the oscillation threshold can be slightly lowered. On the contrary, if the voltage between the lower electrode 6 and the upper electrode 7 is kept constant, the light output can be controlled within a certain range by the voltage stored in the third electrode 18.
  • FIG. 9B shows a configuration in which a third electrode 18 is provided in the gate region 16 in the second embodiment of the present invention.
  • a threshold value or less for example, ⁇ 2.8 V
  • the current between the lower electrode 6 and the upper electrode 7 can be cut off, and the light It is thought that the output can be made zero.
  • the bias voltage applied to the third electrode 18 is gradually increased, the threshold is exceeded at -2.7V, and the light output increases rapidly.
  • This increase in light output is also affected by the voltage applied to the lower electrode 6 and the upper electrode 7. For example, if a voltage of 2.5 V is applied between the lower electrode 6 and the upper electrode 7, the light output becomes about 10 mW when the applied voltage to the third electrode 18 is 2.0 V.
  • the applied voltage is -1.0V
  • the current flows about 3mA
  • the oscillation threshold is reached when the applied voltage is -0.91V
  • the optical output is about 5mW when the applied voltage is -0.5V.
  • the optical output can be modulated at high speed with a voltage change of about 400 mV. Since the voltage applied to the third electrode 18 is in the reverse bias direction in the pn junction that forms the junction, almost no current flows, and the capacitance in the depletion region of this pn junction is charged or discharged. Only a small current flows. This capacitance is about p F and does not hinder the operation. Of course, if the extra depletion region is reduced, it will be possible to cope with digital signals in units of Gbps as well as it is difficult to reduce this capacitance below lpF.
  • Example 2 the force that can provide the third electrode 18 in the gate region of the laser structure shown in the above-described third embodiment is almost the same as in Example 2, so here Avoid details.
  • FIG. 9 (c) shows the fourth embodiment
  • FIG. 9 (d) shows the third electrode 18 provided in the gate region 16 of the fifth embodiment.
  • the advantages are the same as described above.
  • Figure 10 shows a specific modulation characteristic example of Example 4 shown in Fig. 9 (d).
  • the horizontal axis in FIG. 10 indicates the potential of the third electrode 18 with respect to the upper electrode 7 in V units, and the vertical axis indicates the optical output P in mW units.
  • V is -1.3V
  • a voltage signal is applied to the third electrode 18 such that the voltage in the “0” state is ⁇ 1.3V and the “1” state force) .8V as shown in FIG.
  • the corresponding light output can be obtained. Since the optical output of ordinary information equipment is almost this large, the required optical output can be obtained by connecting this semiconductor laser directly to these signal terminals.
  • both electrodes only serve to supply power, and the force is expected to be a "constant voltage source”. Therefore, the voltage between the upper and lower electrodes is For example, the lower the power supply impedance, the better the decoupling by the capacitor placed closer, so that crosstalk can be avoided.
  • FIG. 11 is a schematic cross-sectional view of an element according to the seventh embodiment of the present invention.
  • a third layer 20 having a higher carrier density than the control region 14 in the lower cladding layer 2 is added between the lower cladding layer 2 and the active layer 3 in the fourth embodiment described above.
  • the depletion region B becomes too thick to reach the active layer 3 and an electric field may be applied to the active layer 3. In this case, electrons and holes in the active layer are separated by this electric field, which causes a problem that the light generation efficiency decreases.
  • the addition of the third layer 20 can limit the expansion of the depletion region B in the third layer 20, thereby reducing the possibility that the depletion region B reaches the active layer 3. I'll do it.
  • the carrier density in the third layer 20 does not need to be as strictly controlled as the carrier density in the control region 14, and may be, for example, lxl0 17 cm ⁇ 3 to lxl0 18 cm ⁇ 3 .
  • the reverse bias voltage to the third electrode 18 can be increased (for example, 5 V or more).
  • FIG. 12 is a schematic cross-sectional view of an element according to the eighth embodiment of the present invention.
  • a third layer 20 having a carrier density higher than that of the control region 14 of the upper cladding layer 4 is added between the upper cladding layer 4 and the active layer 3 in the fifth embodiment.
  • the third electrode 18 can be deeply reverse-noised as in the seventh embodiment.
  • both the gate region 16 and the control region 14 have the same composition of GaAs.
  • the gate region 16 is GaAs
  • the control region 14 is Al Ga As
  • FIG. 13 is a schematic diagram showing a ninth embodiment of the present invention.
  • the gate region 16 and the control region 14 are formed in the upper cladding layer 4 in the same manner as the fourth embodiment (FIG. 9 (d)) of the fifth embodiment and the sixth embodiment described above. Is provided.
  • the gate region 16 is divided into two parts having a width of 1.5 ⁇ m or 2.0 ⁇ m, and a slit 22 (see FIG. 13A) is formed between them.
  • FIG. 13A is a plan view showing the shape of the gate region 16. That is, in the present embodiment, the gate region 16 is composed of the two gate regions 16a and 16b sandwiching the slit 22. As shown in FIG. 12 (a), the two gate regions 16a and 16b are connected by a left and right connection portion 16c provided at an appropriate location.
  • the third electrode 18 is connected to one of the two gate regions 16a and 16b, and the same voltage can be applied to these gate regions.
  • a control region 14 is disposed between the slit 22, that is, between the two gate regions 16 a and 16 b.
  • FIG. 14 shows a tenth embodiment of the present invention.
  • irregularities having a height of about 0.2 m are formed on the opposing portions of the two gate regions 16a and 16b in the ninth embodiment.
  • the current path linearly becomes a pinch-oil state with the extension of the depletion region B only by slightly lowering the bias voltage applied to the third electrode 18.
  • FIG. 15 (a) shows an eleventh embodiment of the present invention.
  • the height (depth) of the unevenness in the tenth embodiment described above is enlarged to have a substantially comb-like shape in plan view.
  • the “gain waveguide” mechanism may be too strong, resulting in a characteristic that the wavefront is divided into left and right.
  • the peripheral portion although the current distribution in the central portion of the slit 22 is large, the peripheral portion also has a gain and does not rapidly become zero. For this reason, it is possible to reduce or eliminate the characteristic that the wavefront is divided into left and right.
  • the uneven shape may be as shown in FIG. 15 (b).
  • FIG. 16 shows a twelfth embodiment of the present invention.
  • a plurality of holes 24 are formed at a predetermined pitch along one direction of the gate region 16 where the slits 22 are not formed as in the ninth and tenth embodiments.
  • Examples of the shape of the hole include a circle, an oval, a rectangle, and a polygon, but are not particularly limited.
  • an oval (oval) window (hole) having a major axis of 3.5 ⁇ m and a minor axis of 1.5 ⁇ m is provided at the center in the width direction.
  • 24 is formed with a 2.5 ⁇ m pitch. In this embodiment, current will pass through the hole 24.
  • FIG. 17 shows a thirteenth embodiment of the present invention.
  • FIGS. 17B and 17C show an outline of the refractive index distribution.
  • the refractive index distribution of the aa 'part in (a) is shown, and the refractive index distribution of the bb' part is shown on the right side.
  • the effective refractive index (equivalent refractive index) felt by the fundamental mode propagating through the active layer 3 is Na and Nb, respectively.
  • Na in the gate region 16 is smaller than Nb in the upper cladding layer 4 (and the control region 14). For this reason, when the effective refractive index distribution in the transverse direction is drawn across the slit 22 formed in the center of the gate region 16, it is represented as a graph in FIG.
  • a rigid refractive index guiding mechanism is formed in the lateral direction.
  • oscillation in the basic mode is maintained even if the drive current is increased in this waveguide mechanism.
  • the real part of the refractive index distribution is such that the refractive index of GaAs is larger than the refractive index of AlGa As. It can be seen whether there is a relationship.
  • the oscillation wavelength is 0.81 nm, and this light is strongly absorbed by GaAs. Therefore, even if the first-order transverse mode occurs, the first-order mode that has an intensity peak in the left and right spread areas is strongly absorbed in the gate region 16 and cannot continue to oscillate. Considering another interpretation, light of this wavelength is generally strongly absorbed by the gate region 16, that is, the imaginary part of the complex refractive index is large.
  • the gate region 16 absorbs light and generates an electron'hole pair. . Since junction A is a pn junction, the hole force in the p region increases in the n region. If the gate region 16 is left unconnected anywhere, these carriers accumulate and become forward biased. That is, absorption is reduced and the above effect is reduced. In order to avoid such instability, the potential must be 0 (ground) or an appropriate reverse bias potential via the third electrode 18. On the other hand, if impurities such as Fe, Ni, Cr, etc.
  • FIG. 18 is a diagram showing a fourteenth embodiment of the present invention.
  • the slit 22 is bifurcated.
  • the control region 14 is disposed inside the slit 22.
  • the propagation constant changes abruptly at the branching portion, so that it is difficult to obtain the expected result of strong reflection.
  • the depletion region is formed on the side surface of the waveguide as in this embodiment, the current that is not expected is spread in the lateral direction. Even if the convexity is about the wavelength of the light, it will be leveled out, causing little reflection or scattering.
  • the wave front is divided into left and right with respect to the gain peak.
  • the present embodiment in which the gain waveguide mechanism is the main waveguide mechanism is excellent as a laser with branching. If the potential of the gate region 16 in the vicinity of the branch portion can be controlled separately from the other, it is more preferable because a gain waveguide structure suitable for branching can be obtained.
  • FIG. 19 shows the fifteenth embodiment.
  • a fourth electrode 26, which is a control electrode different from the third electrode, is added to one branch in addition to the configuration of the fourteenth embodiment.
  • the amplitude and phase of light can be adjusted, so that the oscillation wavelength can be finely adjusted.
  • light of the same wavelength is output from the two left and right output ends and interferes with each other. Become. In this case, if there is no phase difference in the light at both end faces, the far-field image where the light intensity is maximized in the direction perpendicular to the end face is obtained, but if there is a phase difference, this is reflected from the perpendicular direction.
  • the light intensity peak shifts to the left or right.
  • the potential of the fourth electrode 26 the peak of the light intensity can be shifted left and right, and a beam scanner can be obtained.
  • FIG. 20 is a diagram showing a sixteenth embodiment of the present invention.
  • FIG. 2A is an external view of the element. This type of laser is generally called a surface emitting laser (VCSEL).
  • VCSEL surface emitting laser
  • B is a plan view
  • c is a conceptual drawing of a cross-sectional view.
  • the configuration of this embodiment is basically the same as that of the sixth embodiment shown in Fig. 9 (d). However, in the sixteenth embodiment, since it is a surface emitting type, it is necessary to provide optical resonators at the top and bottom, and therefore, the lower DBR 10 and the upper DBR 11 are formed (FIG. 20 (c )reference). In addition, a circular window 7a is formed in the upper electrode 7 in order to extract light perpendicular to the wafer surface.
  • a gate region 16 is formed inside the upper cladding layer 4, and a window 16d is formed in the gate region 16 at a position corresponding to the window 7a.
  • a third electrode 18 is electrically connected to the gate region 16.
  • the current restricting region is AlAs, and after the wafer process is completed, it is treated in high-temperature steam to oxidize A1 from the outer periphery. It is going to be an insulator and the current is concentrated in the center. In this case, since oxidation proceeds from the outer peripheral portion, the shape and diameter of the ridge must be accurately formed in processing the outer peripheral portion. Moreover, unless the acid temperature and time are accurately and strictly controlled, the window diameter cannot be controlled with good yield. To control the transverse oscillation mode to the basic mode, the window must have a diameter of about 5 m! /, But it is easy to start oxidation from 30 ⁇ m and proceed to 5 ⁇ m. is not. Therefore, the transverse mode is usually multimode, with many windows having a diameter of about 10 m.
  • controllability is excellent like etching using a mask. It is possible to pay by using the proposed method. Furthermore, in the completed device, the transverse mode can be controlled by an external voltage. Therefore, in the present embodiment, the lateral mode control and the oscillation opening / closing can be performed with the external force voltage.
  • the semiconductor laser has been described as an example.
  • the semiconductor light emitting element may be a light emitting diode (LED) or a super luminescent diode (SLD or SLED). Even in this case, light emission can be controlled by the depletion region generated by the junction A. Furthermore, the depletion region can be controlled by voltage. Therefore, the semiconductor light emitting element to which the present invention is applied can be used not only in communication but also in the interface of digital information equipment of various electronic equipment.
  • semiconductor light emitting device of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the junction A is configured by a pn junction.
  • an MS junction metal-semiconductor junction
  • MIS junction metal insulating material semiconductor junction
  • the joint A may be configured.
  • the gate region 16 may be made of metal.
  • the junction A may be a junction that generates a depletion region that is not simply a resistive connection, and a material having a carrier concentration and work function necessary for the junction can be selected.
  • FIG. 1 (a) to (e) are cross-sectional views for explaining a conventional semiconductor laser.
  • FIG. 2 is an explanatory diagram for explaining an example of a laser that can be driven by CMOS.
  • FIG. 3 (a) is a cross-sectional view of the semiconductor laser according to the first embodiment of the present invention
  • FIG. (B) is an explanatory diagram for explaining the operation of this laser.
  • FIG. (A) is an explanatory diagram for explaining the control operation of the current path by the depletion region
  • FIG. (B) is a graph showing the relationship between the position in the horizontal direction of the waveguide and the current density.
  • FIG. 5C is a graph showing the relationship between the position in the horizontal direction of the waveguide and the gain.
  • FIG. 5 (a) is a cross-sectional view of a semiconductor laser according to a second embodiment of the present invention
  • FIG. 5 (b) is an explanatory diagram for explaining the operation of this laser
  • FIG. 6 (a) is a sectional view of a semiconductor laser according to a third embodiment of the present invention
  • FIG. (B) is an explanatory diagram for explaining the operation of this laser.
  • FIG. 7 (a) is a sectional view of a semiconductor laser according to the fourth embodiment of the present invention.
  • FIG. 9A to FIG. 9D are cross-sectional views for explaining semiconductor lasers in Examples 1 to 4 in the sixth embodiment.
  • FIG. 11 A sectional view of a semiconductor laser according to a seventh embodiment of the invention.
  • FIG. 13 (a) is a plan view of a gate region portion of a semiconductor laser according to a ninth embodiment of the present invention
  • FIG. 13 (b) is a sectional view of this laser.
  • FIG. 14 A plan view of a gate region portion of a semiconductor laser according to a tenth embodiment of the present invention.
  • FIG. 15 (a) is an explanatory view showing an example of a planar shape of a gate region used in the eleventh embodiment of the present invention
  • FIG. 15 (b) is an explanatory view showing another example.
  • FIG. 16 (a) is a plan view of a gate region portion of a semiconductor laser according to a twelfth embodiment of the present invention
  • FIG. 16 (b) is a sectional view of this laser.
  • FIG. 17 (a) is a sectional view of a semiconductor laser according to a thirteenth embodiment of the present invention.
  • FIG. 1 is an explanatory view showing the refractive index distribution in the a-section of this laser.
  • FIG. 8 is an explanatory diagram showing a refractive index distribution in a b-! / Cross section of this laser
  • FIG. (D) is an explanatory diagram showing an effective refractive index distribution in a transverse cross section of the waveguide.
  • FIG. 18 is a plan view of a gate region portion of a semiconductor laser according to a fourteenth embodiment of the present invention.
  • FIG. 19 is a plan view of a gate region portion of a semiconductor laser according to a fifteenth embodiment of the present invention.
  • FIG. 20 (a) is a perspective view of a semiconductor laser according to a sixteenth embodiment of the present invention.
  • (b) is a plan view of the laser, and
  • FIG. (C) is a sectional view of the laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The drive current of a semiconductor light-emitting element is controlled by the depletion region produced in the semiconductor light-emitting element. [MEANS FOR SOLVING PROBLEMS] A semiconductor light-emitting element has at least a substrate crystal (1), an active layer (3), and a junction part (A). The junction part (A) is disposed near the active layer (3) at a distance within, e.g., 3μm. In the junction part (A), a depletion region (B) for limiting the flow of the carriers to the active layer (3) is produced. The junction part (A) is composed of the junction between a gate region (16) of a second conductivity type and a control region (14) of a first conductivity type. When a third electrode (18) is connected to the gate region (16), the magnitude of the drive current can be controlled by the voltage applied to the third electrode.

Description

半導体発光素子  Semiconductor light emitting device
技術分野  Technical field
[0001] 本発明は半導体発光素子に関するものである。  [0001] The present invention relates to a semiconductor light emitting device.
背景技術  Background art
[0002] 図 1 (a)〜(e)は、従来の半導体レーザの主要部における断面構造を示す図である 。これらのレーザの説明においては、基本的に共通する要素には同じ符号を付して 説明を簡略化する。  [0002] FIGS. 1A to 1E are diagrams showing a cross-sectional structure of main parts of a conventional semiconductor laser. In the description of these lasers, basically the same reference numerals are assigned to the common elements to simplify the description.
[0003] (従来例 1)  [0003] (Conventional example 1)
図 1(a)は、波長 1.3 m帯で使用される、一般に埋め込みストライプ型と呼ばれる半 導体レーザの構造を示している。この半導体レーザは、基板結晶 1と、下クラッド層 2 と、活性層 3と、上クラッド層 4とを主要な構成として備えている。基板結晶 1の下面に は下電極 6が取り付けられている。上クラッド層 4の上面には、低抵抗層 5を介して、 上電極 7が取り付けられて!/、る。  Figure 1 (a) shows the structure of a semiconductor laser, generally called the buried stripe type, used in the 1.3 m wavelength band. This semiconductor laser includes a substrate crystal 1, a lower cladding layer 2, an active layer 3, and an upper cladding layer 4 as main components. A lower electrode 6 is attached to the lower surface of the substrate crystal 1. An upper electrode 7 is attached to the upper surface of the upper cladding layer 4 via a low resistance layer 5! /.
[0004] この半導体レーザでは、活性層 3を上クラッド層 4と下クラッド層 2とでサンドイッチし た後、それを、幅 1.8 m以下 1.6 m程度に狭くエッチングする。その後、電流をこの 領域に集中させかつ側面が空気に曝されないようにするため、電流ブロック層 8を側 面に成長させている。電流ブロック層 8は、高抵抗とされ、あるいは内部に pn接合を 有しており、その内部に電流が流れな!/、ように工夫されて!、る。  In this semiconductor laser, after the active layer 3 is sandwiched between the upper cladding layer 4 and the lower cladding layer 2, it is etched narrowly to a width of 1.8 m or less and about 1.6 m. Thereafter, a current blocking layer 8 is grown on the side surface to concentrate the current in this region and prevent the side surface from being exposed to air. The current blocking layer 8 has a high resistance, or has a pn junction inside, and is devised so that current does not flow inside it!
[0005] 一般に、発振横モードは、導波機構で決まり、導波機構には、屈折率導波と、利得 導波とがある。この埋め込みストライプ型レーザは、屈折率導波型と呼ばれるタイプの 典型で、高次の横モードを遮断するため、ストライプ幅を上述の通り 1.6 m程度に狭 く形成しなければならない。このストライプ幅の許容値は狭いのが一般的で、例えば ±0.2 m程度である。このため、エッチングには細心の注意と管理が要求される。ま た、ストライプ部分と電流ブロック層との界面で屈折率が非連続的に変化する事から 、エッチング側面の凹凸は光の散乱損失に大きく効き、レーザの閾値、効率及び遠 視野像などの特性に影響する。 [0006] この種の半導体レーザの閾値は、室温で 2mA程度と十分低く出来る力 動作電流 は通常 15〜25mA程度となり、一般的ディジタル回路の出力を直接繋いで半導体レ 一ザを変調する事は出来ない。通常は Sト Bipトランジスタや HBT或は GaAs-FET、又 はこれらを組み合わせた駆動回路を別途構成して、これを介して駆動しなければなら ない。 [0005] In general, the oscillation transverse mode is determined by a waveguide mechanism, and there are a refractive index waveguide and a gain waveguide. This buried stripe type laser is a typical type called a refractive index guided type, and the stripe width must be narrowed to about 1.6 m as described above in order to block higher-order transverse modes. In general, the allowable value of the stripe width is narrow, for example, about ± 0.2 m. For this reason, careful attention and management are required for etching. In addition, since the refractive index changes discontinuously at the interface between the stripe portion and the current blocking layer, the unevenness on the etched side surface greatly affects the light scattering loss, and characteristics such as laser threshold, efficiency, and far-field image. Affects. [0006] The threshold of this type of semiconductor laser is a force that can be sufficiently reduced to about 2mA at room temperature. The operating current is usually about 15 to 25mA, and it is not possible to modulate the semiconductor laser by directly connecting the output of a general digital circuit. I can't. In general, it is necessary to separately drive a drive circuit that combines a S-to-Bip transistor, HBT or GaAs-FET, or a combination of these, and drive it through this.
[0007] さらに、ー且エッチングした結晶は当然元に戻せず、デバイスを作製後は、幅を調 整することはできない。また、このストライプ領域、即ちレーザ導波路を Y字型に分岐 させて別の機能を付与しようと試みても、埋め込む前に先ずリッジ状にエッチングしな ければならないが、 Y字型の股の内側にエッチングの溝は入り難ぐ本来なら既に二 本の導波路になるべき部位でも幅の広い 1本の導波路が暫く続き、二本の導波路間 の間隔がある広さに達した所で急にエッチングが進んで 2本になるのが普通である。 これは、レジストのパターン形成時にもエッチング時にも、狭いところでは反応性の材 料の新旧交代が難しく反応が進まない事と、多くのエッチングでは結晶を構成する元 素によって反応速度が違い、多くの化合物半導体材料では、結晶面指数で表現する と(1,1,1,)面が現われ易ぐこの面が (1,0,0,)主面に対して 54.5度傾いているためであ る。更に、埋め込み成長する段階では、この股の部分の成長が、上記エッチングする 場合と同様、ガスゃ融液の入れ替わりが難しい事から困難である。エッチング時に結 晶による異方性と電流ブロック層成長時の成長機構の関係特に、損失を最小に抑え るため、股の角度を非常に狭くすればするほど、 Y分岐を形成する事は難しかった。  [0007] Furthermore, the etched crystal cannot be restored naturally, and the width cannot be adjusted after the device is manufactured. Even if this stripe region, that is, a laser waveguide is branched into a Y-shape to try to give another function, it must first be etched into a ridge before embedding. Etching grooves are difficult to enter on the inside. Even if the part should be two waveguides, a single wide waveguide continues for a while and the space between the two waveguides reaches a certain width. It is normal that etching progresses suddenly and becomes two. This is because, in both resist pattern formation and etching, it is difficult to change the reactive material in a narrow area and the reaction does not proceed, and in many etchings, the reaction rate differs depending on the elements constituting the crystal. This is because the (1,1,1,) plane is easy to appear in terms of the crystal plane index, and this plane is inclined 54.5 degrees with respect to the (1,0,0,) principal plane. The Further, at the stage of the burying growth, the growth of the crotch portion is difficult because the replacement of the gas melt is difficult as in the case of the etching. Relationship between crystal anisotropy during etching and growth mechanism during current block layer growth Especially, to minimize loss, the narrower the crotch angle, the more difficult it was to form a Y branch. .
[0008] (従来例 2)  [0008] (Conventional example 2)
図 1(b)は、波長 0.78 m帯で用いられる、一般に SBA型と呼ばれるレーザの構造を 示している。この構造を得るには、まず、 n-GaAs力もなる基板結晶 1の上に、キャリア 密度 l〜4xl018cm— 3の p- GaAs層を約 1 μ m成長させる。ついで、その p- GaAs層をマス クして幅約 2.5 mの溝状にエッチングして電流ブロック層 8を得ることができる。これ により、図(b)のように、溝の底に、基板結晶 1の上面を露出させ、その上に、キャリア 密度 2〜4xl017cm— 3の n-A aAs層(下クラッド層 2)、活性層 3、 p-AlGaAsからなる上ク ラッド層 4、そして p+-GaAsカゝらなる低抵抗層 5を順次形成する。この後、上電極 7を形 成した後、基板結晶 1を然るべき厚さに研磨して、下電極 6を形成する。このウェハを 劈開して共振端面を形成し、両端面に然るべき誘電体膜を蒸着して後、個々のチッ プに分離して、適当なヘッダー或はサブマウント上に組み立てる。 Figure 1 (b) shows the structure of a laser generally used as the SBA type used in the 0.78 m wavelength band. To obtain this structure, first, a p-GaAs layer having a carrier density of 1 to 4xl0 18 cm- 3 is grown on the substrate crystal 1 having n-GaAs force by about 1 μm. Then, the p-GaAs layer is masked and etched into a groove shape having a width of about 2.5 m, whereby the current blocking layer 8 can be obtained. As a result, the top surface of the substrate crystal 1 is exposed at the bottom of the groove as shown in FIG. (B), and an nA aAs layer (lower cladding layer 2) with a carrier density of 2 to 4xl0 17 cm- 3 is formed on the upper surface. Layer 3, upper cladding layer 4 made of p-AlGaAs, and low resistance layer 5 made of p + -GaAs are formed in this order. Thereafter, after forming the upper electrode 7, the substrate crystal 1 is polished to an appropriate thickness to form the lower electrode 6. This wafer After cleaving to form resonant end faces, appropriate dielectric films are deposited on both end faces, and then separated into individual chips and assembled on a suitable header or submount.
[0009] この種のレーザでは、上電極を正に下電極を負にして電流を流せば、閾値以上の 電流において、電流ブロック層 8に設けた溝状の部分にある活性層 3でレーザ発振が 起こる。これは、電流ブロック層 8の上下が n型層で、縦に見た場合 n-p-nとなってい て、下クラッド層 2と電流ブロック層 8は逆ノ ィァス状態となるため電流が流れ難い事 から、電流が電流ブロック層 8のない溝部に集中し、幅の狭い溝底の活性層 3で基本 横モード発振を呈するのである。  [0009] In this type of laser, if a current is passed with the upper electrode being positive and the lower electrode being negative, a laser oscillation occurs in the active layer 3 in the groove-shaped portion provided in the current blocking layer 8 at a current exceeding the threshold value. Happens. This is because the upper and lower sides of the current blocking layer 8 are n-type layers and are npn when viewed vertically, and the current does not flow because the lower cladding layer 2 and the current blocking layer 8 are in a reverse nose state. The current concentrates in the groove portion without the current blocking layer 8, and the fundamental transverse mode oscillation is exhibited in the active layer 3 at the bottom of the narrow groove.
[0010] この型のレーザは、比較的簡単な工程で、発振閾値 20mA程度の特性を得られ、端 面反射率や共振器長を最適化すれば更に低閾値化が可能にも思える。しかし、下ク ラッド層 2の電気抵抗が比較的低ぐこの下クラッド層 2を流路にした漏洩電流が無視 できないこと、電流ブロック層 8が周囲力 浮いている上、レーザ発振の起こる溝部で は発振光を電流ブロック層 8が吸収するので、吸収により発生する電子がこの電流ブ ロック層 8の障壁効果を減じること、等力 低閾値ィ匕に限界があると考えられて、それ 以上の改良はされな力つた。  [0010] This type of laser can obtain characteristics with an oscillation threshold of about 20 mA in a relatively simple process, and it seems that the threshold can be further lowered by optimizing the end face reflectivity and the resonator length. However, the electrical resistance of the lower cladding layer 2 is relatively low, the leakage current that flows through the lower cladding layer 2 cannot be ignored, the current blocking layer 8 is floating and the groove where laser oscillation occurs Since the current blocking layer 8 absorbs the oscillation light, it is considered that the electrons generated by the absorption reduce the barrier effect of the current blocking layer 8, and that there is a limit to the iso-low threshold value. There was no improvement.
[0011] (従来例 3)  [0011] (Conventional example 3)
図 1(c)は、波長 1.3 m帯で主に用いられている、一般にリッジストライプ型と呼ばれ る半導体レーザの構造を示している。このレーザは、活性層 3を上クラッド層 4と下クラ ッド層 2とでサンドイッチし、上クラッド層 4における、活性層 3の直上の位置で、幅 1.8 μ m以下 1.6 m程度にエッチングした後、上電極 7を形成し、然るべき厚さまで基板 結晶 1を研磨した後、下電極 6を形成して、ウェハの熱処理を施した後、劈開により共 振器端面を形成し、その端面に然るべき誘電体保護膜や反射率制御のための誘電 体膜を製膜してレーザチップとして 、る。  Figure 1 (c) shows the structure of a semiconductor laser generally used in the 1.3 m wavelength band, commonly called the ridge stripe type. In this laser, the active layer 3 is sandwiched between the upper cladding layer 4 and the lower cladding layer 2, and the upper cladding layer 4 is etched to a width of 1.8 μm or less and about 1.6 m at a position immediately above the active layer 3. After that, after forming the upper electrode 7 and polishing the substrate crystal 1 to an appropriate thickness, after forming the lower electrode 6 and heat-treating the wafer, a resonator end face is formed by cleaving, and the end face is appropriate A dielectric protective film and a dielectric film for reflectance control are formed into a laser chip.
[0012] 上述の通りに、導波機構には屈折率導波と、利得導波とがあるが、このリツジストラ イブ型レーザは、屈折率導波型と呼ばれるタイプの別の例で、高次の横モードを遮 断するため、リッジ幅を上述の通り 1.6 m程度に狭く形成しなければならない。このリ ッジ幅の許容値も狭いのが一般的で、例えば ±0.2 m程度である。このため、エッチ ングには細心の注意と管理が要求される。また、上述の埋め込みストライプ型同様、リ ッジ部分とそれ以外の部分、即ち空気との界面で屈折率が非連続的に変化する事 から、エッチング側面の凹凸は光の散乱損失に大きく効き、レーザの閾値、効率及び 遠視野像などの特性に影響する。 [0012] As described above, the waveguide mechanism includes a refractive index waveguide and a gain waveguide, but this wedge-type laser is another example of a type called a refractive index guided type. In order to block the transverse mode, the ridge width must be narrowed to about 1.6 m as described above. In general, the allowable width of this ridge is also narrow, for example, about ± 0.2 m. For this reason, careful attention and management are required for etching. In addition, as with the embedded stripe type described above, Since the refractive index changes discontinuously at the interface between the wedge and other parts, that is, the air interface, the unevenness on the etched side surface greatly affects the light scattering loss, and the laser threshold, efficiency, far-field image, etc. Affects the characteristics of
[0013] この種の半導体レーザでは、注入電流がリッジ部から活性層 3に至る間に、上クラッ ド層 4及び活性層 3において拡散して散逸する。このため、その閾値は、埋め込みス トライプ型に比べて劣るが、それでも、室温で 6mA程度と比較的低く出来る。動作電 流は通常 25〜35mA程度となり、駆動回路が別途必要な事は埋め込みストライプ型と 基本的に同じである。必要な駆動電流が高い分だけ、駆動用トランジスタもそれに耐 える物でなければならな!/、。  In this type of semiconductor laser, the injection current is diffused and dissipated in the upper cladding layer 4 and the active layer 3 while reaching the active layer 3 from the ridge portion. For this reason, the threshold value is inferior to that of the buried stripe type, but it can still be relatively low at around 6 mA at room temperature. The operating current is normally about 25 to 35 mA, and the need for a separate drive circuit is basically the same as the embedded stripe type. The driving transistor must be able to withstand the higher driving current required! /.
[0014] さらに、 Y分岐を形成する事が困難な点も上述の埋め込みストライプ型と同様である  [0014] Furthermore, the point that it is difficult to form a Y-branch is the same as the above-mentioned embedded stripe type.
[0015] (従来例 4) [0015] (Conventional example 4)
図 1(d)は、一般に、面発光型 (VCSEL)と呼ばれる 850應帯レーザの断面構造であ る。このレーザは、活性層 3と AlAs層 9とを上クラッド層 4と下クラッド層 2とでサンドイツ チし、更に下 DBR (分布ブラッグ反射器) 10と上 DBR11でサンドイッチする。さらに、 光を取り出す窓 7aを開けた上電極 7を形成した後、この窓 7aを中心に、直径 程度の円形メサ状領域を残してエッチングし、更に下電極 6を形成して、先のエッチ ングで露出した AlAs層 9を高温水蒸気中で処理して酸ィ匕する事によって上記 AlAs層 9の周辺部を絶縁物化し、電流絞りとして作用せしめ、電流路を直径 5〜10 /ζ πιの範 囲に制限することで、レーザを構成している。  Figure 1 (d) shows the cross-sectional structure of an 850-band laser called a surface-emitting type (VCSEL). In this laser, the active layer 3 and the AlAs layer 9 are sandwiched between the upper cladding layer 4 and the lower cladding layer 2, and further sandwiched between the lower DBR (distributed Bragg reflector) 10 and the upper DBR 11. Further, after forming the upper electrode 7 having a window 7a for extracting light, etching is performed around the window 7a, leaving a circular mesa region having a diameter of about, and the lower electrode 6 is formed. By treating the exposed AlAs layer 9 in high-temperature steam and oxidizing it, the peripheral part of the AlAs layer 9 is made insulating and acts as a current restrictor, and the current path has a diameter of 5-10 / ζ πι. The laser is configured by limiting the range.
[0016] 上電極 7の電気抵抗や窓明け加工を考慮すると、円形メサ状領域の直径は大きい ほど力卩ェは行い易く歩留も上がる。しかし、 AlAs層 9を周辺力も酸ィ匕させたときに、最 終的に残す中心部の直径は 5 m程度にしたい。その為には、円形メサ状領域の直 径が大きいと、酸化させる領域が広くなり、制御が難しくなる。円形メサ状領域の直径 が 10 /z mより大きいと、円形部を均一に発光させるのが困難であり、発光状態は、周 辺部が強く発光して王冠状となる。また、加工プロセスにおいても、 AlAs層 9を酸ィ匕さ せ過ぎると、一且酸ィ匕した層は元へ戻せないため、不良品となってしまう。つまり、こ の種のレーザにおける加工プロセスは、制御性が悪いものとなっている。 [0017] こうして出来た面発光レーザ (VCSEL)の発振閾値は 1.5mA程度で、動作電流は 5〜 10mAである。発振横モードは発光部の形状と寸法で決まるが、上述のように、発光 部の寸法と形状を歩留良く制御する事は困難で、一般に多モードとなってしまう。従 つて、使用する光ファイバ一はコア一径の太い多モードファイバーとなり、出力の小さ い事と相俟って、出力光の伝送距離としては、最大 500m程度に制限されてしまう。 [0016] In consideration of the electrical resistance of the upper electrode 7 and the window opening process, the larger the diameter of the circular mesa region, the easier the force and the higher the yield. However, when the AlAs layer 9 is also oxidized by the peripheral force, the diameter of the central part that is finally left is about 5 m. For this purpose, if the diameter of the circular mesa region is large, the region to be oxidized becomes wide and control becomes difficult. If the diameter of the circular mesa region is larger than 10 / zm, it is difficult to emit light uniformly in the circular part, and the light emission state becomes a crown shape with strong light emission in the peripheral part. Also, in the processing process, if the AlAs layer 9 is excessively oxidized, the oxidized layer cannot be returned to its original state, resulting in a defective product. In other words, the processing process for this type of laser is poorly controlled. The surface emitting laser (VCSEL) thus produced has an oscillation threshold of about 1.5 mA and an operating current of 5 to 10 mA. The oscillation transverse mode is determined by the shape and size of the light emitting portion. However, as described above, it is difficult to control the size and shape of the light emitting portion with a high yield, and the mode is generally multimode. Therefore, the optical fiber to be used is a multimode fiber with a large core diameter, and coupled with the small output, the transmission distance of the output light is limited to a maximum of about 500 m.
[0018] 図 1(e)は、同図 (c)に記載したリッジストライプ型レーザに、同図 (d)で述べた面発光 型レーザの電流絞りを転用した構造である。活性層 3の上に AlAs層 9を配し、同図 (c) の説明で述べたリッジ形成のエッチングを施した後、同図 (d)で述べた様に、 AlAs層 9 をリッジの左右力 酸ィ匕してリッジ幅よりも狭 、領域へ電流を絞る構造としてある。例 えば、リッジ幅を にし、酸ィ匕物電流絞りの間隙即ち電流路を 1.5 mにする。リツ ジで決まる屈折率導波路幅は 4 mで、一次モードと二次モードも許容される寸法で ある。しかし、薄いとはいえ AlAs層 9の両端部が酸ィ匕しているので、活性層 3の光が 感じる実効屈折率分布は、絞りのある周辺部の屈折率が中心部のそれより若干低い 。つまり、屈折率導波の機能を有する。さらに、電流の流入口の一部における電流密 度が高いので、これに対応してキャリア密度も高ぐその分利得が高い。つまり、利得 導波の機能も有する。これらの効果により、この種のレーザは、数十 mW以上であって も、基本モード発振を維持できる。  FIG. 1 (e) shows a structure in which the current aperture of the surface emitting laser described in FIG. 1 (d) is diverted to the ridge stripe laser described in FIG. 1 (c). After the AlAs layer 9 is disposed on the active layer 3 and the ridge formation etching described in the explanation of Fig. (C) is performed, the AlAs layer 9 is placed on the left and right sides of the ridge as described in Fig. The structure is narrower than the ridge width by using a strong acid to narrow the current to the region. For example, the ridge width is set to, and the gap or current path of the oxide current restrictor is set to 1.5 m. The refractive index waveguide width determined by the ridge is 4 m, and the primary and secondary modes are allowed. However, although it is thin, both ends of the AlAs layer 9 are oxidized so that the effective refractive index distribution perceived by the light in the active layer 3 is slightly lower in the refractive index in the peripheral part where the diaphragm is located than in the central part. . That is, it has a function of refractive index guiding. Furthermore, since the current density at a part of the current inlet is high, the carrier density is correspondingly high, and the gain is high accordingly. In other words, it also has a function of gain guiding. Due to these effects, this type of laser can maintain the fundamental mode oscillation even at tens of mW or more.
[0019] この構造を製造する際の歩留を考えると、リッジエッチングの歩留と、 AlAs層 9を周 辺から酸ィ匕させて最終的に 1.5 ±0.2 mを残す歩留とを考慮する必要があり、加工プ 口セスの制御が難しい。  [0019] Considering the yield when manufacturing this structure, the yield of ridge etching and the yield of leaving the AlAs layer 9 from the periphery to leave 1.5 ± 0.2 m finally are considered. It is necessary to control the machining process.
[0020] さらに、一旦エッチングした結晶は当然元に戻せず、デバイスを作製後は幅を調整 する余地が無い。また、このストライプ領域、即ちレーザ導波路を分岐させて別の機 能を付与しようと試みても、上述の埋め込みストライプ型やリッジストライプ型同様、パ ターニング、エッチング時に分岐部の股の内側の加工が難しぐ損失の小さい分岐の 形成が困難を伴うので、 Y分岐を形成する事も出来なかった。  [0020] Furthermore, the crystal once etched cannot be restored naturally, and there is no room for adjusting the width after the device is manufactured. Even if this stripe region, that is, the laser waveguide is branched to give another function, processing inside the crotch of the branch portion during patterning and etching is performed as in the above-described embedded stripe type and ridge stripe type. However, it was difficult to form a branch with a small loss, which was difficult, so it was not possible to form a Y branch.
[0021] 従来の半導体レーザは、端面発光型、面発光型を問わず、活性層へ注入するキヤ リアの量を電流値において制御して出力を制御している。また、発振横モードは、導 波機構で決まる。導波機構には、屈折率導波と、利得導波とがある。屈折率導波型 では、半導体レーザ作製時に、高次モードを遮断する様に、屈折率の異なる材料を 微細加工して導波路を作製する。一方、利得導波では、注入電流や光が受ける損失 に空間的濃淡を付ける事で単一モード発振を実現する。特に、屈折率導波だけで高 次横モードを完全に遮断し基本横モード発振を得ようとすると、発振波長が 1.3 μ m帯 の場合でも、活性層における活性領域の幅を 1.8 m以下にしなければならず、加工 が難しくなるという問題がある。また、この発振横モードを外部力も制御する手段は従 来は無力つた。 [0021] Conventional semiconductor lasers, regardless of whether they are edge-emitting or surface-emitting, control the output by controlling the amount of carriers injected into the active layer based on the current value. The oscillation transverse mode is determined by the wave guide mechanism. The waveguide mechanism includes a refractive index waveguide and a gain waveguide. Refractive index guided type Then, when fabricating a semiconductor laser, a waveguide is fabricated by finely processing materials with different refractive indexes so as to block higher-order modes. On the other hand, gain waveguiding realizes single-mode oscillation by adding spatial shading to injected current and the loss of light. In particular, when the fundamental transverse mode oscillation is obtained by completely blocking the higher-order transverse mode using only refractive index guiding, the width of the active region in the active layer is set to 1.8 m or less even when the oscillation wavelength is in the 1.3 μm band. There is a problem that processing becomes difficult. In addition, the means for controlling the external mode of this transverse oscillation mode has heretofore been ineffective.
[0022] 上述のように、どのレーザ構造でも、動作は全て電流で規定されており、一般的な C MOSの出力で動作させる事は出来な力つた。従来型レーザでも、電極を分割して一 部だけに制御電流を流し、残りには定電流を流せば、制御電流がある値以上のとき 強く発振し、それ以下では閾値以下或は極低出力の状態を実現できる答である。図 2は、この点を考慮した半導体レーザの構造の模式図である。図示の例では、レーザ のストライプ構造を埋め込みストライプ型とし、上電極 7を主電極 7bと副電極 7cとの 2 つに分け、それぞれ個別に電流を流せるようにしている。使用時には、主電極 7bだ けに電流を流してレーザ発振の閾値付近の状態とする。ここで副電極 7cに電流を流 すと、発振して光出力は然るべき値になる。副電極 7cの電流を切れば、発振は停止 する。この副電極 7cに流す電流は極僅かで済むことは容易に推測され、 1mA以下で の制御も可能と考えられる。この値は CMOSで駆動できる値である。し力し、副電極に 加える信号のパターンによっては、最初の光強度が極端に大きぐ続く信号にも影響 するという所謂パターン効果が大きいと推察される。更に、温度が変われば閾値も変 わる半導体レーザにあっては、最適条件が非常に狭い範囲に限られるので、現実に は実用にならな 、と思われる。  [0022] As described above, in any laser structure, all operations are regulated by current, and it was impossible to operate with a general CMOS output. Even in conventional lasers, if the control current is supplied to only a part of the electrode and a constant current is supplied to the rest of the laser, strong oscillation occurs when the control current exceeds a certain value. Below that, the output is below the threshold or extremely low. It is an answer that can realize the state. FIG. 2 is a schematic diagram of the structure of a semiconductor laser considering this point. In the illustrated example, the laser stripe structure is a buried stripe type, and the upper electrode 7 is divided into two parts, a main electrode 7b and a sub-electrode 7c, so that current can flow individually. In use, a current is supplied only to the main electrode 7b to bring it into a state near the laser oscillation threshold. Here, if a current is passed through the sub-electrode 7c, it will oscillate and the light output will have an appropriate value. Oscillation stops when the current of sub-electrode 7c is turned off. It can be easily estimated that a very small amount of current flows through the sub-electrode 7c, and control at 1 mA or less is considered possible. This value can be driven by CMOS. However, depending on the pattern of the signal applied to the sub-electrode, it is presumed that the so-called pattern effect that the initial light intensity has an influence on the subsequent signal is extremely large. Furthermore, in the case of a semiconductor laser in which the threshold value changes with temperature, the optimum condition is limited to a very narrow range, so it seems that it is not practical.
[0023] 従来の半導体レーザでは、発振光強度を増そうとする場合には電流を増やさねば ならない。逆に、発振光強度を減らそうとする場合には電流を減らさねばならない。即 ち、半導体レーザの ON-OFFを含め変調には駆動電流の変調が不可欠であった。  [0023] In the conventional semiconductor laser, the current must be increased in order to increase the oscillation light intensity. On the other hand, in order to reduce the oscillation light intensity, the current must be reduced. In other words, modulation of the drive current was indispensable for modulation including ON / OFF of the semiconductor laser.
[0024] 一方、多くの信号はディジタルィ匕されて、 ON-OFF信号にニ値ィ匕されている。また、 ディジタル論理回路では、通常、 Si-CMOS回路でデータが処理され、出力される。こ の Si-CMOS回路では、一般に電流が殆ど取れず、この回路の出力で半導体レーザ を変調又は ON-OFFする事は出来ない。 [0024] On the other hand, many signals are digitalized and are double-valued as ON-OFF signals. In digital logic circuits, data is usually processed and output by Si-CMOS circuits. In this Si-CMOS circuit, generally no current can be taken, and the output of this circuit is a semiconductor laser. Cannot be modulated or ON-OFF.
[0025] 従って、多くの場合、 Sト CMOSからの信号を、バイポーラトランジスターを使った力 レントミラーなどの回路や、電流を流す事を考慮した特別な CMOS回路で半導体レー ザ用の駆動回路を構成して、半導体レーザの動作に必要な数〜数十 mAの電流変 化に変換して、これを介して半導体レーザを変調又は ON-OFF動作させねばならな い。 Therefore, in many cases, a drive circuit for a semiconductor laser is formed by a circuit such as a power mirror using a bipolar transistor or a special CMOS circuit that allows current to flow. It must be configured and converted to a current change of several to several tens of mA necessary for the operation of the semiconductor laser, and the semiconductor laser must be modulated or turned on and off through this.
[0026] また、従来の半導体レーザでは、信号線の他に駆動回路が必要となり、これらの回 路と、個別に外装された半導体レーザとを配線で繋いで動作させることになる。すると 、浮遊容量や浮遊インダクタンスが増え、信号波形の鈍化や変形、高速成分の遮断 などが発生してしまう。  [0026] In addition, the conventional semiconductor laser requires a drive circuit in addition to the signal line, and these circuits and the individually packaged semiconductor laser are connected by wiring to operate. Then, stray capacitance and stray inductance increase, and the signal waveform becomes dull and deformed, and high-speed components are cut off.
[0027] さらに、従来の屈折率導波型の半導体レーザでは、その作製時に、高次モードを 遮断する様に屈折率の異なる材料を組合せ、さらに微細加工を行っている。一方、 利得導波では、注入電流や光が受ける損失に空間的濃淡を付ける事で単一モード 発振を実現して!/、る。仮に屈折率導波だけで高次横モードを完全に遮断し基本横モ ード発振を得ようとすると、発振波長が 1.3 m帯の場合でも、活性領域の幅を 1.8 m 以下にしなければならず、加工が難しくなる。また、発振横モードを動的に制御する 手段が無かったので、レーザの機能にも限界があった。さらに、活性領域を含む導波 路を分岐したり合流させたりする場合には、一般に、レジストパターンを形成して半導 体をエッチングして作製するため、細か ヽレジストパターンを形成してエッチングを行 うことは、極めて難しいカロ工となってしまう。  Furthermore, in the conventional refractive index waveguide type semiconductor laser, at the time of fabrication, materials having different refractive indexes are combined so as to block higher-order modes, and further fine processing is performed. On the other hand, gain waveguiding realizes single-mode oscillation by adding spatial shading to the loss experienced by injected current and light! If the fundamental transverse mode oscillation is obtained by completely blocking the higher-order transverse mode using only the refractive index waveguide, the width of the active region must be 1.8 m or less even when the oscillation wavelength is 1.3 m. Therefore, processing becomes difficult. Also, since there was no means to dynamically control the transverse oscillation mode, the laser function was limited. Furthermore, when branching or merging a waveguide including an active region, in general, a resist pattern is formed and the semiconductor is etched, so a fine resist pattern is formed and etched. To do is an extremely difficult caro work.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0028] 本発明は、このような事情に鑑みてなされたもので、前記のような問題を原理的に 解消しうる半導体発光素子を提供しょうとするものである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a semiconductor light emitting device capable of solving the above-described problems in principle.
課題を解決するための手段  Means for solving the problem
[0029] 本発明は、以下の項目のように表現することができる。 [0029] The present invention can be expressed as the following items.
項目 1の半導体発光素子は、基板結晶と活性層と接合部とを備えている。前記接 合部は、前記活性層の近傍に配置されている。さらに、前記接合部は、前記活性層 へのキャリアの流れを制限する空乏領域を生成する構成となっている。 The semiconductor light emitting element of item 1 includes a substrate crystal, an active layer, and a junction. The joint portion is disposed in the vicinity of the active layer. Further, the joint portion includes the active layer. In this configuration, a depletion region that restricts the flow of carriers to the substrate is generated.
[0030] 項目 2の半導体発光素子は、項目 1に記載のものにおいて、さらに、上クラッド層と 、下クラッド層と、第一の電極と、第二の電極とを備えている。前記上クラッド層は、前 記活性層の上部に隣接して配置されている。前記下クラッド層は、前記活性層の下 部に隣接して配置されている。前記第一の電極は、前記上クラッド層に電気的に接 続されている。前記第二の電極は、前記下クラッド層に電気的に接続されている。こ の半導体発光素子は、前記第一の電極と前記第二の電極の間に電流を流すことに よって、前記活性層にキャリアを送り込む構成となって 、る。  [0030] The semiconductor light-emitting element of item 2 is the same as that of item 1, further comprising an upper cladding layer, a lower cladding layer, a first electrode, and a second electrode. The upper cladding layer is disposed adjacent to the upper part of the active layer. The lower cladding layer is disposed adjacent to the lower part of the active layer. The first electrode is electrically connected to the upper cladding layer. The second electrode is electrically connected to the lower cladding layer. This semiconductor light emitting device is configured to send carriers into the active layer by passing a current between the first electrode and the second electrode.
[0031] 項目 3の半導体発光素子は、項目 1又は 2に記載のものにおいて、前記接合部が p n接合により構成されたものとなって 、る。  [0031] Item 3 is a semiconductor light-emitting device according to item 1 or 2, wherein the junction is constituted by a pn junction.
[0032] 項目 4の半導体発光素子は、項目 1又は 2に記載のものにおいて、前記接合部が 金属—半導体接合により構成されたものとなっている。  [0032] Item 4 is a semiconductor light-emitting device according to item 1 or 2, wherein the junction is formed by a metal-semiconductor junction.
[0033] 項目 5の半導体発光素子は、項目 1又は 2に記載のものにおいて、前記接合部が 金属—絶縁体—半導体接合により構成されたものとなっている。  [0033] The semiconductor light-emitting element of item 5 is the semiconductor light-emitting device according to item 1 or 2, wherein the junction is configured by a metal-insulator-semiconductor junction.
[0034] 項目 6の半導体発光素子は、項目 1〜5のいずれか 1項に記載のものにおいて、前 記接合部が、前記活性層における活性領域から 3 μ m以内の距離に配置されたもの となっている。  [0034] The semiconductor light-emitting element of item 6 is the semiconductor light-emitting device according to any one of items 1 to 5, wherein the junction is disposed at a distance within 3 μm from the active region in the active layer. It has become.
[0035] 項目 7の半導体発光素子は、項目 1に記載のものにおいて、さらに、第一導電型半 導体で構成された制御領域と、第二導電型半導体で構成されたゲート領域とを備え ている。前記接合部は、前記制御領域と前記ゲート領域との接合により構成されてい る。前記制御領域は、前記活性層へ流れ込む電流の流路上に配置されている。  [0035] The semiconductor light emitting device of item 7 is the device of item 1, further comprising a control region made of a first conductivity type semiconductor and a gate region made of a second conductivity type semiconductor. Yes. The junction is formed by joining the control region and the gate region. The control region is disposed on a flow path of a current flowing into the active layer.
[0036] 項目 8の半導体発光素子は、項目 7に記載のものにおいて、前記制御領域が前記 基板結晶の一部であるものとなって 、る。  [0036] The semiconductor light-emitting device of item 8 is the semiconductor light-emitting device of item 7, wherein the control region is a part of the substrate crystal.
[0037] 項目 9の半導体発光素子は、項目 7に記載のものにおいて、さらに下クラッド層を備 えている。前記下クラッド層は、前記基板結晶と前記活性層との間に配置されている 。前記制御領域は、前記下クラッド層と前記基板結晶の間に形成されている。  [0037] The semiconductor light-emitting element of item 9 is the same as that of item 7, further comprising a lower cladding layer. The lower cladding layer is disposed between the substrate crystal and the active layer. The control region is formed between the lower cladding layer and the substrate crystal.
[0038] 項目 10の半導体発光素子は、項目 7に記載のものにおいて、さらに下クラッド層を 備えている。前記下クラッド層は、前記基板結晶と前記活性層との間に配置されてい る。前記制御領域は、前記下クラッド層の内部に形成されている。 [0038] The semiconductor light emitting element of item 10 is the same as that of item 7, further comprising a lower cladding layer. The lower cladding layer is disposed between the substrate crystal and the active layer. The The control region is formed inside the lower cladding layer.
[0039] 項目 11の半導体発光素子は、項目 7に記載のものにおいて、さらに上クラッド層を 備えている。前記上クラッド層は、前記活性層の上方に配置されている。前記制御領 域は、前記上クラッド層の上方に配置されている。  [0039] The semiconductor light emitting device of item 11 is the same as that of item 7, further comprising an upper cladding layer. The upper cladding layer is disposed above the active layer. The control region is disposed above the upper cladding layer.
[0040] 項目 12の半導体発光素子は、項目 7に記載のものにおいて、さらに上クラッド層を 備えている。前記制御領域は、前記上クラッド層の内部に形成されている。 [0040] The semiconductor light emitting device of item 12 is the device of item 7, further comprising an upper cladding layer. The control region is formed inside the upper cladding layer.
[0041] 項目 13の半導体発光素子は、項目 7〜: L 1のいずれか 1項に記載のものにおいて、 前記ゲート領域に、このゲート領域に電圧を印加するための第三の電極を電気的に 接続しているものである。 [0041] The semiconductor light-emitting element of item 13 is the device according to any one of items 7 to: L1, wherein a third electrode for applying a voltage to the gate region is electrically connected to the gate region. Is connected to.
[0042] 項目 14の半導体発光素子は、項目 7〜13のいずれか 1項に記載のものにおいて、 前記制御領域および前記ゲート領域と前記活性層との間に、空乏層制限領域を配 置したものである。 [0042] Item 14 is a semiconductor light emitting device according to any one of Items 7 to 13, wherein a depletion layer limiting region is disposed between the control region and the gate region and the active layer. Is.
[0043] 項目 15の半導体発光素子は、項目 14に記載のものにおいて、前記空乏層制限領 域におけるキャリア濃度が前記制御領域よりも高いものである。  [0043] The semiconductor light emitting device of item 15 is the semiconductor light emitting device of item 14, wherein the carrier concentration in the depletion layer limiting region is higher than that in the control region.
[0044] 項目 16の半導体発光素子は、項目 7〜15のいずれ力 1項に記載のものにおいて、 前記制御領域と前記ゲート領域とは、材料または組成が互いに異なって 、るもので ある。  [0044] The semiconductor light emitting element of item 16 is the one described in any one of the forces 1 to 15 of item 7, wherein the control region and the gate region are different in material or composition.
[0045] 項目 17の半導体発光素子は、項目 7〜16のいずれか 1項に記載のものにおいて、 前記ゲート領域には、ほぼ一方向に沿って延長されたスリットが形成されており、前 記スリットの内部には、前記制御領域の一部又は全部が配置されているものである。  [0045] Item 17 is the semiconductor light-emitting device according to any one of items 7 to 16, wherein the gate region is formed with a slit extending substantially along one direction. A part or all of the control area is disposed inside the slit.
[0046] 項目 18の半導体発光素子は、項目 17に記載のものにおいて、前記スリットに面す る、前記ゲート領域の側面に、凹凸を形成したものとなっている。  [0046] The semiconductor light-emitting element of item 18 is the semiconductor light-emitting device of item 17, in which irregularities are formed on the side surface of the gate region facing the slit.
[0047] 項目 19の半導体発光素子は、項目 7〜16のいずれ力 1項に記載のものにおいて、 前記ゲート領域に、ほぼ一方向に沿って連続して配置された穴を形成し、前記穴の 内部に、前記制御領域の一部又は全部を配置したものとなっている。  [0047] Item 19 is a semiconductor light-emitting device according to any one of items 7 to 16, wherein the gate region is formed with a hole continuously arranged substantially along one direction, and the hole A part or all of the control area is arranged inside the.
[0048] 項目 20の半導体発光素子は、項目 7〜 19に記載のものにおいて、前記ゲート領域 の屈折率を、前記制御領域の屈折率よりも低くしたものとなっている。  [0048] The semiconductor light emitting element of item 20 is the one described in items 7 to 19, wherein the refractive index of the gate region is lower than the refractive index of the control region.
[0049] 項目 21の半導体発光素子は、項目 7〜20に記載のものにおいて、前記ゲート領域 を構成する材料を、発生する光の波長に対して吸収性としたものとなっている。 [0049] Item 21 is a semiconductor light-emitting device according to item 7 to 20, wherein the gate region Is made to be absorptive with respect to the wavelength of the generated light.
[0050] 項目 22の半導体発光素子は、項目 21に記載のものにおいて、前記吸収性とされ た前記ゲート領域を、半導体に対して、不純物として鉄又はクロムを添加することによ り構成したものとなって 、る。  [0050] The semiconductor light-emitting element of item 22 is the device according to item 21, wherein the absorptive gate region is formed by adding iron or chromium as an impurity to the semiconductor. It becomes.
[0051] 項目 23の半導体発光素子は、項目 17〜19のいずれか 1項に記載のものにおいて[0051] Item 23 is a semiconductor light emitting device according to any one of items 17 to 19
、前記スリット又は前記穴の延長方向を、 2以上に分岐したものとなっている。 The extension direction of the slit or the hole is branched into two or more.
[0052] 項目 24の半導体発光素子は、項目 23に記載のものにおいて、前記分岐されたスリ ットの 、ずれかに沿う前記ゲート領域に、前記スリットに沿って進む光の位相を制御 するための第四の電極を電気的に接続したものとなっている。 [0052] The semiconductor light-emitting element of item 24 is for controlling the phase of light traveling along the slit in the gate region along the deviation of the branched slit in the semiconductor light-emitting device of item 23. The fourth electrode is electrically connected.
発明の効果  The invention's effect
[0053] 本発明の半導体発光素子によれば、接合部により発生した空乏領域により、駆動 電流の流路を規制することができる。これにより、利得導波としての導波路の幅を狭 めることができる。さらに、接合部を構成するゲート領域に電圧を印加することにより、 導波路の幅を動的に制御することも可能となる。つまり、電圧によるレーザ発振の制 御が可能となる。  [0053] According to the semiconductor light emitting device of the present invention, the flow path of the drive current can be regulated by the depletion region generated by the junction. Thereby, the width of the waveguide as the gain waveguide can be narrowed. Furthermore, the width of the waveguide can be dynamically controlled by applying a voltage to the gate region constituting the junction. In other words, laser oscillation can be controlled by voltage.
[0054] 言い換えれば、本発明による半導体発光素子を、電圧で出力が規定された標準ィ ンターフェースに直結して発光量を制御する事も可能になる。その結果、レーザ駆動 機器の構成を簡単ィ匕することも可能となる。  In other words, the amount of light emission can be controlled by directly connecting the semiconductor light emitting device according to the present invention to a standard interface whose output is defined by voltage. As a result, the configuration of the laser driving device can be simplified.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0055] 以下、本発明に係る半導体発光素子をレーザに適用した場合の実施形態を、添付 図面を参照して説明する。 Hereinafter, an embodiment in which the semiconductor light emitting device according to the present invention is applied to a laser will be described with reference to the accompanying drawings.
[0056] (第 1実施形態) [0056] (First embodiment)
図 3は、本発明の第 1実施形態を示す。同図 (a)は、発振領域を含み、かつ、そこ〖こ 導波される光の進行方向に垂直な面で切断した断面図である。なお、本実施形態の 説明においては、既に説明した従来の半導体レーザと同様の機能を有する部材に ついては、同一符号を付して説明を簡略化する。  FIG. 3 shows a first embodiment of the present invention. FIG. 4A is a cross-sectional view taken along a plane that includes an oscillation region and that is perpendicular to the traveling direction of light that is guided therethrough. In the description of the present embodiment, members having the same functions as those of the conventional semiconductor laser already described are denoted by the same reference numerals and description thereof is simplified.
[0057] 本実施形態の半導体発光素子は、基板結晶 1と、下クラッド層 2と、活性層 3と、上ク ラッド層 4と、低抵抗層 5と、下電極 (第一の電極) 6と、上電極 (第二の電極) 7と、制 御領域 14と、ゲート領域 16とを備えている。 The semiconductor light emitting device of this embodiment includes a substrate crystal 1, a lower cladding layer 2, an active layer 3, an upper cladding layer 4, a low resistance layer 5, a lower electrode (first electrode) 6 And the upper electrode (second electrode) 7. A control region 14 and a gate region 16 are provided.
[0058] この実施形態では、基板結晶 1及び下クラッド層 2はいずれも第一導電型 (n型又は P型)半導体により構成されている。また、上クラッド層 24は、第二導電型 (p型又は n 型)半導体により構成されて 1ヽる。  In this embodiment, both the substrate crystal 1 and the lower cladding layer 2 are made of a first conductivity type (n-type or P-type) semiconductor. The upper clad layer 24 is made of a second conductivity type (p-type or n-type) semiconductor and has a length of one.
[0059] ゲート領域 16は、この実施形態では、基板結晶 1の上面に形成されている(形成方 法は後述)。ゲート領域 16は、第二導電型とされている。制御領域 14は、この実施形 態では、基板結晶 1の一部により構成されている。つまり、この実施形態では、基板 結晶 1のうち、ゲート領域 16に隣接し、かつ、左右のゲート領域 16に挟まれた領域が 制御領域 14となっている。制御領域 14は、基板結晶 1と同様に、第一導電型となつ ている。制御領域 14は、活性層 3へ流れ込むキャリアの移動経路上に配置されてい る。  In this embodiment, the gate region 16 is formed on the upper surface of the substrate crystal 1 (the formation method will be described later). The gate region 16 is of the second conductivity type. The control region 14 is constituted by a part of the substrate crystal 1 in this embodiment. In other words, in this embodiment, a region of the substrate crystal 1 adjacent to the gate region 16 and sandwiched between the left and right gate regions 16 is the control region 14. Like the substrate crystal 1, the control region 14 is of the first conductivity type. The control region 14 is arranged on the movement path of carriers that flow into the active layer 3.
[0060] 一般に、 p型と n型の半導体を接触させるとその界面付近に空乏領域を生じ、この領 域を接合領域と称する。本発明の場合、制御領域 14とゲート領域 16との界面付近に は、両領域に跨って空乏領域を生じる。この両空乏領域を含めた、制御領域 14とゲ ート領域 16との接合界面近傍の領域を接合部 Aと称する。制御領域 14に含まれる空 乏領域を空乏領域 Bと称する。この空乏領域 Bは、活性層 4へのキャリアの流れを制 限する働きを持ち、活性層 3の近傍 (具体的には例えば活性層 3から 3 m以内)に 配置されている。空乏領域の幅は、それぞれの領域のキャリア密度に依存し、ここで はゲート領域のキャリア密度が制御領域より大きいので、大きな空乏領域 Bを生じる 事になる。つまり、本実施形態の接合部 Aは、 pn接合により構成されており、空乏領 域 Bは、 pn接合に基づいて生成されている。  [0060] Generally, when a p-type semiconductor and an n-type semiconductor are brought into contact with each other, a depletion region is generated near the interface, and this region is referred to as a junction region. In the case of the present invention, near the interface between the control region 14 and the gate region 16, a depletion region is generated across both regions. A region in the vicinity of the junction interface between the control region 14 and the gate region 16 including both the depletion regions is referred to as a junction A. A depletion region included in the control region 14 is referred to as a depletion region B. The depletion region B has a function of restricting the flow of carriers to the active layer 4 and is arranged in the vicinity of the active layer 3 (specifically, for example, within 3 m from the active layer 3). The width of the depletion region depends on the carrier density of each region. Here, since the carrier density of the gate region is larger than the control region, a large depletion region B is generated. That is, the junction A in the present embodiment is configured by a pn junction, and the depletion region B is generated based on the pn junction.
[0061] また、上電極 (第一の電極) 7は、低抵抗層 5を介して、上クラッド層 4に電気的に接 続されている。下電極 (第二の電極) 6は、基板結晶 1及び制御領域 14を介して、下 クラッド層 2に電気的に接続されている。本実施形態では、上電極 7と下電極 6との間 に電流を流すことによって、活性層 3にキャリアを注入する構成となっている。活性層 3のうち、実際にキャリアが注入発光を生じる領域を活性領域と称する。  Further, the upper electrode (first electrode) 7 is electrically connected to the upper cladding layer 4 through the low resistance layer 5. The lower electrode (second electrode) 6 is electrically connected to the lower cladding layer 2 via the substrate crystal 1 and the control region 14. In the present embodiment, carriers are injected into the active layer 3 by passing a current between the upper electrode 7 and the lower electrode 6. In the active layer 3, a region where carriers actually generate injected light is referred to as an active region.
[0062] (第 1実施形態の素子の作製方法)  [0062] (Method for Fabricating Element of First Embodiment)
次に、第 1実施形態の素子を作製方法の具体例を説明する。まず、第一導電型の 基板結晶 1の上面に、拡散法あるいはイオン注入法により、高濃度の第二導電型か らなるゲート領域 16を選択的に形成する。 Next, a specific example of a method for manufacturing the element of the first embodiment will be described. First, the first conductivity type On the upper surface of the substrate crystal 1, a gate region 16 of a high concentration second conductivity type is selectively formed by a diffusion method or an ion implantation method.
[0063] 例えば、基板結晶 1としては、キャリア密度が lxl016cm— 3の n型 GaAs基板を用いる。 [0063] For example, as the substrate crystal 1, an n-type GaAs substrate having a carrier density of lxl0 16 cm- 3 is used.
この基板結晶 1に、幅 2.0 mのマスクを施した後、 Beをイオン注入して p領域 (この領 域がゲート領域 16となる)を形成する。この p型のゲート領域 16のキャリア密度は、例 えば 2xl018cm— 3である。マスクを除去後、 MOCVD法により、 Sを不純物にして、キヤリ ァ密度 5xl016cm— 3の n-Al Ga As層を下クラッド層 2として 1 m成長する。引き続い The substrate crystal 1 is masked with a width of 2.0 m, and Be is ion-implanted to form a p region (this region becomes the gate region 16). The carrier density of the p-type gate region 16 is, for example, 2xl0 18 cm− 3 . After removing the mask, an n-AlGaAs layer with a carrier density of 5xl0 16 cm- 3 is grown as a lower cladding layer 1 m by MOCVD using S as an impurity. Continue
0.4 0.6  0.4 0.6
て、不純物を添カ卩しない GaAs層を活性層 3として厚さ 0.05 m成長させる。引き続い て、 Znを不純物として、キャリア密度 2xl017cm— 3とした p-Al Ga As層を上クラッド層 4 Then, a GaAs layer not doped with impurities is grown as an active layer 3 to a thickness of 0.05 m. Subsequently, a p-Al Ga As layer with Zn as an impurity and a carrier density of 2xl0 17 cm- 3 was formed on the upper cladding layer.
0.4 0.6  0.4 0.6
として 1 μ m成長する。更に、 Znを不純物として、キャリア密度 lxl019cm— 3とした p- GaAs 層を低抵抗層 5として 0.5 m成長する。その後、 Ti,Pt,Auの順に真空蒸着して上電 極 7を施す。 Grows as 1 μm. Further, a p-GaAs layer with Zn as an impurity and a carrier density of lxl0 19 cm- 3 is grown as a low resistance layer 5 by 0.5 m. After that, vacuum deposition is performed in the order of Ti, Pt, and Au, and the upper electrode 7 is applied.
[0064] その後、幅 10 μ mのストライプ状マスクを施し、選択エッチング液を使用して、上電 極 7から下クラッド層 2までを選択的に除去した。このエッチングによって、リッジ部の 幅はほぼ となった。ついで、基板結晶 1を研磨して、 100 /z m迄薄くした後、 Au- Ge,Ni,Auの順に真空蒸着して下電極 6を形成する。このようにして得たウェハ全体を 約 400°Cで焼鈍した後、劈開し端面コートを施し、個々のチップに分離して半導体レ 一ザとして組み立てることができる。  [0064] Thereafter, a striped mask having a width of 10 µm was applied, and the upper electrode 7 to the lower cladding layer 2 were selectively removed using a selective etching solution. As a result of this etching, the width of the ridge was reduced to approximately. Next, the substrate crystal 1 is polished and thinned to 100 / zm, and then the lower electrode 6 is formed by vacuum deposition in the order of Au—Ge, Ni, and Au. The entire wafer thus obtained is annealed at about 400 ° C., then cleaved, coated with an end face, and separated into individual chips for assembly as a semiconductor laser.
[0065] こうして作製した半導体レーザにおいては、閾値が大略 10mAであり、電流を 40mA 以上に上げても光出力対電流特性は所謂「キンク」を伴う事の無い単純増加曲線に 終始すると考えられる。  The semiconductor laser fabricated in this way has a threshold value of approximately 10 mA, and even if the current is increased to 40 mA or more, it is considered that the optical output vs. current characteristic continues to be a simple increase curve without so-called “kinks”.
[0066] (第 1実施形態の素子の動作)  [0066] (Operation of Element of First Embodiment)
図 3(b)に示す様に、本発明の第 1実施形態では、制御領域 14中に、基板結晶 1及 び下クラッド層 2の内部におけるキャリア (電流)の流れに対して障壁となる空乏領域 Bが形成される。この結果、電流の流路がその分狭くなる。すると、リッジ幅の中央部 に利得が集中する。すると、屈折率導波として許容される基本モード、一次モードの 内、基本モードが多く利得を得られることとなり、基本モードでの発振が行われる。制 御領域 14の幅を 2.0 μ mとし、空乏領域 Bの幅を約 0.25 μ mとすれば、電流は、 1.5 μ mに集中している事になる。なお、本実施形態の図 3(a)では、第二導電型のゲート領 域 16を、基板結晶 1の上面に残しているが、これは本質的ではなくマスクを用いてリ ッジエッチングする際、下クラッド層 2と共に、ゲート領域 16をエッチングして幅を狭く しても良い。 As shown in FIG. 3 (b), in the first embodiment of the present invention, the control region 14 is depleted as a barrier against the flow of carriers (currents) inside the substrate crystal 1 and the lower cladding layer 2. Region B is formed. As a result, the current flow path becomes narrow accordingly. Then, the gain concentrates at the center of the ridge width. Then, among the fundamental mode and the primary mode allowed as refractive index guiding, the fundamental mode can obtain a large amount of gain, and oscillation in the fundamental mode is performed. If the width of the control region 14 is 2.0 μm and the width of the depletion region B is about 0.25 μm, the current is 1.5 μm. You will be focused on m. In FIG. 3 (a) of the present embodiment, the second conductivity type gate region 16 is left on the upper surface of the substrate crystal 1, but this is not essential, and when performing a ridge etching using a mask, The gate region 16 together with the lower cladding layer 2 may be etched to reduce the width.
[0067] 本実施形態によれば、制御領域 14の幅を広く形成しておいても、空乏領域 Bにより 電流の流路を規制できるので、レーザをカ卩ェする工程が容易となるという利点がある  [0067] According to the present embodiment, even if the width of the control region 14 is wide, the current flow path can be regulated by the depletion region B, so that the process of observing the laser becomes easy. Is
[0068] 図 4は、本実施形態の動作の基本概念をさらに詳しく示す図である。ただし、図 4 (a )は、第 3図とは、電流の向きが逆になつている。活性層 3領域の近傍には、第二導電 型の制御領域 14があり、それに隣接して、第一導電型のゲート領域 16がある。そし て、第一導電型のゲート領域 16のキャリア密度が第二導電型の制御領域 14のキヤリ ァ密度より十分大きければ、第二導電型の制御領域 14に、第一導電型のゲート領域 16より格段に大きな空乏領域 Bができる。ただし、このようなキャリア密度にすることは 必須ではない。この空乏領域 Bの厚さは、キャリア密度 (即ち、不純物濃度、或は空 間電荷密度)の平方根の逆数にほぼ比例している。空乏領域 Bによって、電流の流 路ゃ利得の幅は制限される(図 4 (b)および (c)参照)。したがって、キャリア密度の調 整により、レーザの発光量や横モードを規定することが可能となる。 FIG. 4 is a diagram showing the basic concept of the operation of the present embodiment in more detail. However, the direction of current in Fig. 4 (a) is opposite to that in Fig. 3. In the vicinity of the active layer 3 region, there is a control region 14 of the second conductivity type, and adjacent to it is a gate region 16 of the first conductivity type. If the carrier density of the first conductivity type gate region 16 is sufficiently larger than the carrier density of the second conductivity type control region 14, the first conductivity type gate region 16 is added to the second conductivity type control region 14. A much larger depletion region B is formed. However, such carrier density is not essential. The thickness of the depletion region B is approximately proportional to the reciprocal of the square root of the carrier density (that is, impurity concentration or space charge density). Depletion region B limits the width of the current path (see Fig. 4 (b) and (c)). Therefore, it is possible to regulate the light emission amount and the transverse mode of the laser by adjusting the carrier density.
[0069] (第 2実施形態)  [0069] (Second Embodiment)
図 5は、本発明の第 2実施形態を示している。同図 (a)は素子断面図である。この第 2 実施形態では、第一導電型の基板結晶 1(組成: n-GaAs、キャリア密度: 5xl017cm— 3) の上に、 MOCVD法により低濃度 (キャリア密度: 5xl015cm— 3)の第一導電型の層 (厚さ 0 .2 μ m)を形成し、幅 2 μ mのマスクを施して Beをイオン注入法で注入し選択的に ρ領 域を形成する。このイオン注入されて p型になった領域が第二導電型のゲート領域 1 6となり、マスクで保護され n型 (第一導電型)のまま残った領域が制御領域 14となる。 本実施形態における前記以外の構造および作製手順は、前記第 1実施形態と同様 なので説明を省略する。 FIG. 5 shows a second embodiment of the present invention. FIG. 2A is a sectional view of the element. In the second embodiment, the substrate crystal 1 of a first conductivity type (composition: n-GaAs, carrier density: 5xl0 17 cm- 3) on top of the low concentration by MOCVD (carrier density: 5xl0 15 cm- 3) A first conductivity type layer (thickness of 0.2 μm) is formed, a mask with a width of 2 μm is applied, and Be is implanted by ion implantation to selectively form a ρ region. The region that has been ion-implanted and becomes p-type becomes the second conductivity type gate region 16, and the region that remains protected by the mask and remains n-type (first conductivity type) becomes the control region 14. Since the structure and the manufacturing procedure other than those described above in the present embodiment are the same as those in the first embodiment, description thereof will be omitted.
[0070] 第 2実施形態の素子によれば、基板結晶 1のキャリア密度が、第 1実施形態に比べ て一般的であるため、入手が容易であり、また、制御領域 14のキャリア密度を電気抵 抗を気にせず低く形成する事が出来るという利点がある。制御領域 14のキャリア密度 が低ければ、空乏領域 Bは必然的に大きくなる。 [0070] According to the element of the second embodiment, since the carrier density of the substrate crystal 1 is more general than that of the first embodiment, it is easy to obtain and the carrier density of the control region 14 is electrically Resistance There is an advantage that it can be formed low without worrying about resistance. If the carrier density in the control region 14 is low, the depletion region B will inevitably increase.
[0071] 第 2実施形態に係る半導体レーザの閾値は、大略 9mAで、電流を 40mA以上に上 げても光出力対電流特性は、所謂「キンク」を伴う事の無い単純増加曲線に終始する と考えられる。このような閾値の低減が達成できるのでは、第 1実施形態に比べて、基 板結晶 1のキャリア密度を上げられる点と、制御領域 14のキャリア密度を下げられて 実効電流路幅が狭くなる(例えば 1 μ m以下)点とによる。  [0071] The threshold value of the semiconductor laser according to the second embodiment is approximately 9 mA, and even if the current is increased to 40 mA or more, the optical output vs. current characteristic continues to be a simple increase curve without a so-called “kink”. it is conceivable that. If such a reduction in threshold value can be achieved, compared to the first embodiment, the carrier density of the substrate crystal 1 can be increased, and the effective current path width becomes narrower by reducing the carrier density of the control region 14. (For example, 1 μm or less).
[0072] 図 5(b)は、上記した第 2実施形態の動作を示す模式図で、動作原理は基本的に先 の第 1実施形態と同じである。ただし、第 1実施形態に比べて、第一導電型の制御領 域 14のキャリア密度が低い分だけ、空乏領域 Bの厚さが厚くなる。このため、電流の 実効流路幅を狭くすることが可能となる。更に、第 2実施形態では、基板結晶 1のキヤ リア密度を上げられるので、基板結晶の選択の自由度が広がるだけでなぐ電気抵 抗が減少すると ヽぅ利点もある。  FIG. 5 (b) is a schematic diagram showing the operation of the second embodiment described above, and the operating principle is basically the same as that of the first embodiment. However, as compared with the first embodiment, the thickness of the depletion region B is increased by the lower carrier density of the control region 14 of the first conductivity type. For this reason, it becomes possible to narrow the effective current flow path width. Furthermore, in the second embodiment, since the carrier density of the substrate crystal 1 can be increased, there is an advantage in that the electrical resistance is reduced as well as the degree of freedom of selection of the substrate crystal is expanded.
[0073] (第 3実施形態)  [0073] (Third embodiment)
図 6は、本発明の第 3実施形態を示す。同図 (a)は、第 3実施形態の主要部断面図 である。この実施形態では、第 1実施形態と同様に、第一導電型の基板結晶 1(組成: n-GaAs、キャリア密度: 5xl017cm— 3)を用い、この上に MOCVD法で高濃度(2xl018cm— 3)の第二導電型 (p型)の P- GaAs層 (厚さ 0.2 m)を形成する。この p- GaAs層の領域が ゲート領域 16となる。この際、 p型不純物としては、拡散し難い Mgを採用した。このた め、 p- GaAs層の形成は、 CP2Mg(bis- cyclopentadienyl Mg)を供給しながら行った。電 流の流路としたい部分の幅 0.2 μ mに亘つて第二導電型のゲート領域 16をエッチング で除去した後、この上に再度 MOCVD法で第一導電型の下クラッド層 2及びそれ以上 の各層を形成する。ここで、下クラッド層 2のキャリア密度を下げ、 lxl016cnf 3程度にし た。以後の層の製法は第 1実施形態と同様である。できた結晶層の断面構造は、同 図(a)に示すように、上記エッチングで出来た深さ約 0.2 μ mの溝を反映して、僅かな 段差ができている。下クラッド層 2における、ゲート領域 16に隣接している部分が制 御領域 14となっている。 FIG. 6 shows a third embodiment of the present invention. FIG. 4A is a cross-sectional view of the main part of the third embodiment. In this embodiment, as in the first embodiment, a substrate crystal 1 of the first conductivity type (composition: n-GaAs, carrier density: 5xl0 17 cm- 3 ) is used, and a high concentration (2xl0 17 ) is formed thereon by MOCVD. A second conductivity type (p-type) P-GaAs layer (thickness 0.2 m) of 18 cm-3) is formed. This region of the p-GaAs layer becomes the gate region 16. At this time, Mg, which is difficult to diffuse, was used as the p-type impurity. Therefore, the p-GaAs layer was formed while supplying CP2Mg (bis-cyclopentadienyl Mg). After removing the gate region 16 of the second conductivity type over the width of 0.2 μm where the current flow path is desired by etching, the lower cladding layer 2 of the first conductivity type 2 and above is again formed thereon by MOCVD. Each layer is formed. Here, the carrier density of the lower cladding layer 2 was lowered to about lxl0 16 cnf 3 . The subsequent layer manufacturing method is the same as in the first embodiment. As shown in Figure (a), the cross-sectional structure of the resulting crystal layer has a slight step reflecting the approximately 0.2 μm deep groove formed by the above etching. A portion of the lower cladding layer 2 adjacent to the gate region 16 is a control region 14.
[0074] こうして作製した半導体レーザの閾値は大略 8.5mAで、電流を 40mA以上に上げて も光出力対電流特性に「キンク」は無いと考えられる。更に、遠視野像の半値幅にも 電流依存性が無く一定とすることができると考えられる。 [0074] The threshold of the semiconductor laser fabricated in this way is approximately 8.5 mA, and the current is increased to 40 mA or more. However, it is considered that there is no “kink” in the optical output vs. current characteristics. Furthermore, the half-value width of the far-field image is considered to be constant without current dependency.
[0075] 図 6(b)は、本発明の第 3実施形態の動作を示す模式図である。この実施形態の動 作原理は、基本的に先の例と同じである。第 3実施形態では、活性層 3に段差が形 成される(図 6 (a)参照)ため、この段差が、実質的に屈折率導波における導波路幅 を与える。この導波路幅は、高次モードが禁止される幅であるために、本実施形態の 半導体レーザでは、光一電流特性ば力りでなぐ遠視野像も大きく改善され、閾値も 改善されると考えられる。  FIG. 6 (b) is a schematic diagram showing the operation of the third exemplary embodiment of the present invention. The operating principle of this embodiment is basically the same as the previous example. In the third embodiment, since a step is formed in the active layer 3 (see FIG. 6A), this step substantially gives the waveguide width in the refractive index waveguide. Since this waveguide width is a width in which higher-order modes are prohibited, the semiconductor laser of this embodiment is considered to greatly improve the far-field image that is affected by the optical-current characteristics and to improve the threshold value. It is done.
[0076] これらに加えて、第 3実施形態では、第一導電型である制御領域 14のキャリア密度 が低い分だけ、空乏領域 Bの厚さが厚くなり、実効的電流路幅を狭く(例えば 1 μ m以 下に)できる。すると、制御領域 14の幅を広くしておいても、電流の流路を狭くできる ので、基本モード以外での発振を防止することができ、素子の加工が容易となる。更 に、基板結晶 1のキャリア密度を上げられるので、基板結晶 1の選択の自由度が広が るだけでなく、電気抵抗が減少すると ヽぅ利点もある。  In addition to these, in the third embodiment, the thickness of the depletion region B is increased by the lower carrier density of the control region 14 of the first conductivity type, and the effective current path width is reduced (for example, 1 μm or less). Then, even if the width of the control region 14 is widened, the current flow path can be narrowed, so that oscillation other than in the basic mode can be prevented, and the device can be easily processed. Furthermore, since the carrier density of the substrate crystal 1 can be increased, not only is the degree of freedom of selection of the substrate crystal 1 widened, but there is also an advantage in that the electrical resistance is reduced.
[0077] (第 4実施形態)  [0077] (Fourth embodiment)
図 7は、本発明の第 4実施形態を示す。同図 (a)は、第 4実施形態の主要部断面図 である。この実施形態では、第一導電型の基板結晶 1として、キャリア密度: 3xl018cm_ 3の n-GaAsを用い、この上に MOCVD法で第一導電型 (n型)でキャリア密度 2xl017cm— 3 の Al Ga As層を厚さ 0.5 /z m形成し、引き続いて第二導電型 (p型)でキャリア密度 3xFIG. 7 shows a fourth embodiment of the present invention. FIG. 4A is a cross-sectional view of the main part of the fourth embodiment. In this embodiment, n-GaAs having a carrier density of 3xl0 18 cm _ 3 is used as the substrate crystal 1 of the first conductivity type, and a carrier density of 2xl0 17 cm is formed on the first conductivity type (n-type) by MOCVD. — 3 Al Ga As layer with a thickness of 0.5 / zm, followed by second conductivity type (p-type) carrier density 3x
0.4 0.6 0.4 0.6
1018cm— 3の p-GaAs層 (厚さ 0.1 m)を形成する。この際、 p型不純物として Mgを用いる 点は先の第 3実施形態と同様である。ついで、電流の流路としたい部分の幅 2 mに 亘つて上記第二導電型の層をエッチングで除去した後、この上に、再度 MOCVD法 により、第一導電型でキャリア密度 2xl017cm— 3の Al Ga As層を厚さ 0.5 m形成し、 10 18 cm— 3 p-GaAs layer (thickness 0.1 m) is formed. At this time, Mg is used as the p-type impurity in the same manner as in the third embodiment. Next, after removing the second conductivity type layer by etching over a width of 2 m where the current flow path is desired, a carrier density of 2xl0 17 cm—with the first conductivity type is again formed thereon by MOCVD. 3 Al Ga As layer is formed to a thickness of 0.5 m,
0.4 0.6  0.4 0.6
先に形成した第一導電型の Al Ga As層と合せて下クラッド層 2とする。以後の製法  The lower cladding layer 2 is formed together with the AlGaAs layer of the first conductivity type formed earlier. Subsequent manufacturing method
0.4 0.6  0.4 0.6
は第 1実施形態と同様である。尚、再度 MOCVD成長する際には、成長装置の中で H C1を主成分とするガスを流して軽くエッチングする事により、層の表面に出来た薄い 酸ィ匕物膜を除去するなどの技法を施す必要がある。できた結晶層の断面構造は、正 確には図 6(a)の様な段差を描くべきであるが、段差が小さい事力 省略して平坦に描 いた。 Is the same as in the first embodiment. When performing MOCVD growth again, a technique such as removing a thin oxide film formed on the surface of the layer by flowing a gas mainly composed of HC1 in the growth apparatus and performing light etching. It is necessary to apply. The cross-sectional structure of the resulting crystal layer should accurately draw the step as shown in Fig. 6 (a), but omit the small step and draw it flat. It was.
[0078] 本実施形態では、下クラッド層 2の内部に形成された第二導電型の層がゲート領域 16に相当し、ゲート領域 16に隣接した領域が制御領域 14に相当して 、る。  In the present embodiment, the second conductivity type layer formed inside the lower cladding layer 2 corresponds to the gate region 16, and the region adjacent to the gate region 16 corresponds to the control region 14.
[0079] こうして作製した半導体レーザの閾値は大略 8.0mAで、電流を 40mA以上に上げて も光出力対電流特性に「キンク」は無いと考えられる。更に、遠視野像の半値幅にも 電流依存性が無く一定になると考えられる。  [0079] The threshold of the semiconductor laser fabricated in this way is approximately 8.0 mA, and it is considered that there is no “kink” in the optical output versus current characteristics even when the current is increased to 40 mA or more. Furthermore, the half-value width of the far-field image is considered to be constant with no current dependency.
[0080] 図 7(b)は、第 4実施形態の動作を示す模式図である。この実施形態の動作原理は 、基本的に、先の各実施形態と同じである。第 4実施形態では、電流路狭窄を活性 層 3に近い位置で行っているので、活性層 3までの電流拡がりが少なぐ活性層 3の 狭い領域へ集中的にキャリアを注入できるため閾値が一段と低くなる。  FIG. 7B is a schematic diagram showing the operation of the fourth embodiment. The operation principle of this embodiment is basically the same as the previous embodiments. In the fourth embodiment, since the current path constriction is performed at a position close to the active layer 3, carriers can be injected intensively into a narrow region of the active layer 3 where the current spread to the active layer 3 is small, so that the threshold value is further increased. Lower.
[0081] (第 5実施形態)  [0081] (Fifth Embodiment)
図 8は、本発明の第 5実施形態の主要部断面図である。この実施例では、第一導電 型の基板結晶 1としてキャリア密度: 3xl018cm— 3の n-GaAsを用い、この上に MOCVD 法で第一導電型 (n型)でキャリア密度 2xl017cm— 3の Al Ga As層を厚さ 1.0 m形成し FIG. 8 is a cross-sectional view of the main part of the fifth embodiment of the present invention. In this embodiment, n-GaAs having a carrier density of 3xl0 18 cm— 3 is used as the substrate crystal 1 of the first conductivity type, and a carrier density of 2xl0 17 cm—of the first conductivity type (n-type) is formed thereon by MOCVD. 3 Al Ga As layer is formed to a thickness of 1.0 m.
0.4 0.6  0.4 0.6
て下クラッド層 2とし、引き続いて活性層 3を形成し、その上に第二導電型 (p型)でキ ャリア密度 2xl016cm— 3の Al Ga As層を厚さ 0.5 m形成する。この際、 p型不純物とし Then, the lower cladding layer 2 is formed, and then the active layer 3 is formed, and an AlGaAs layer having a second conductivity type (p-type) and a carrier density of 2xl0 16 cm- 3 is formed to a thickness of 0.5 m. At this time, p-type impurities
0.4 0.6  0.4 0.6
ては、一般的な Znを用いる。引き続いて第一導電型 (n型)でキャリア密度力 ¾X1018cm — 3の n-GaAs層 (厚さ 0.1 m)を形成する。添加不純物としては一般的な Sを用いる。 In this case, general Zn is used. Subsequently, an n-GaAs layer (thickness: 0.1 m) having a carrier density force of ¾ X 10 18 cm −3 is formed in the first conductivity type (n-type). Common S is used as an additive impurity.
[0082] っ 、で、電流の流路とした!/、幅 2 μ mの部分の上記第一導電型の層をエッチングで 除去した後、この上に、再度 MOCVD法により、第二導電型でキャリア密度 2xl016cm— 3 の Al Ga As層を厚さ 0.5 /z m形成し、先に形成した第二導電型の Al Ga As層と合[0082] Thus, the current flow path was formed! /, The first conductivity type layer having a width of 2 μm was removed by etching, and then the second conductivity type was again formed thereon by MOCVD. Then, an Al Ga As layer with a carrier density of 2xl0 16 cm- 3 was formed to a thickness of 0.5 / zm, and this was combined with the AlGa As layer of the second conductivity type formed earlier.
0.4 0.6 0.4 0.6 せて上クラッド層 4とする。ここで、第一導電型 (n型)でキャリア密度が 2xl018cm— 3の n- GaAs層 (厚さ 0.1 μ m)がゲート領域 16となり、第二導電型でキャリア密度 2xl017cm— 3の Al Ga As層のうち、ゲート領域 16に隣接する部分が制御領域 14となる。この後、 P+0.4 0.6 0.4 0.6 Upper cladding layer 4 Here, the n-GaAs layer (thickness 0.1 μm) with the first conductivity type (n-type) and carrier density 2xl0 18 cm- 3 becomes the gate region 16, and the carrier density 2xl0 17 cm- 3 with the second conductivity type. A portion of the Al Ga As layer adjacent to the gate region 16 becomes the control region 14. After this, P +
0.4 0.6 0.4 0.6
- GaAsの低抵抗層 5を形成する。その後の電極形成、劈開及び組立等の製法は、先 の各実施形態と同様である。なお、再度 MOCVD成長する際に、成長装置の中で HC 1を主成分とするガスを流して軽くエッチングする点は上述の第 4実施形態と同様であ る。 [0083] こうして作製した半導体レーザの閾値は大略 8.0mAで、電流を 40mA以上に上げて も光出力対電流特性に「キンク」は無いと考えられる。更に、遠視野像の半値幅にも 電流依存性が無く一定になると考えられる。 -Form a low resistance layer 5 of GaAs. Subsequent electrode formation, cleavage, assembly, and other manufacturing methods are the same as in the previous embodiments. It should be noted that when MOCVD growth is performed again, light etching is performed by flowing a gas mainly composed of HC 1 in the growth apparatus, similar to the above-described fourth embodiment. The threshold of the semiconductor laser fabricated in this way is approximately 8.0 mA, and it is considered that there is no “kink” in the optical output versus current characteristics even when the current is increased to 40 mA or more. Furthermore, the half-value width of the far-field image is considered to be constant with no current dependency.
[0084] この第 5実施形態の動作原理は、電流路を狭窄する制御領域 14が活性層 3の上に ある以外は、基本的に先の第 4実施形態と同じである。第 1、第 2及び第 3の実施形 態に比べて、電流路狭窄を活性層 3に近い位置で行っているので、活性層 3までの 電流拡がりが少なく活性層 3の狭 、領域へ集中的にキャリアを注入できるため閾値を 低くでさる。  The operation principle of the fifth embodiment is basically the same as that of the fourth embodiment except that the control region 14 for constricting the current path is on the active layer 3. Compared to the first, second, and third embodiments, the current path is narrowed at a position close to the active layer 3, so that the current spreading to the active layer 3 is less and the active layer 3 is narrow and concentrated in the region. Since the carrier can be injected, the threshold value is lowered.
[0085] (第 6実施形態)  [0085] (Sixth embodiment)
図 9は、本発明の第 6実施形態の説明図である。この実施形態では、ゲート領域 16 に、これに対して電圧を印加する第三の電極 18が取り付けられている。以下、第三 の電極 18を取り付ける態様について、具体的な実施例毎に説明する。  FIG. 9 is an explanatory diagram of the sixth embodiment of the present invention. In this embodiment, a third electrode 18 for applying a voltage to the gate region 16 is attached to the gate region 16. Hereinafter, a mode in which the third electrode 18 is attached will be described for each specific example.
[0086] (実施例 1)  [0086] (Example 1)
図 9(a)の例では、先の第 1実施形態で示した第二導電型のゲート領域 16に第三の 電極 18が形成されている。この例では、 Ti,Pt,Auを順次蒸着して電極とした力 Au-Z nの方が簡単にオーム性電極を得ることが出来るのでどちらを用いても良い。この第 三の電極 18を、下電極 6よりもマイナスにバイアスすると、僅かながら発振閾値を下 げる事が出来る。逆に、下電極 6と上電極 7の間の電圧を一定に保っておけば、第三 の電極 18にカ卩える電圧によって、光出力をある範囲で制御できる。  In the example of FIG. 9 (a), the third electrode 18 is formed in the second conductivity type gate region 16 shown in the first embodiment. In this example, Ti, Pt, and Au are sequentially deposited, and the force Au-Zn can easily obtain an ohmic electrode, so either of them can be used. If the third electrode 18 is biased more negatively than the lower electrode 6, the oscillation threshold can be slightly lowered. On the contrary, if the voltage between the lower electrode 6 and the upper electrode 7 is kept constant, the light output can be controlled within a certain range by the voltage stored in the third electrode 18.
[0087] (実施例 2)  [0087] (Example 2)
図 9(b)は、本発明の第 2実施形態におけるゲート領域 16に第三の電極 18を設けた 構成となっている。この実施例では、第三の電極 18にカ卩える電圧を閾値以下 (たとえ ば- 2.8V)にした場合、下電極 6と上電極 7との間の電流を遮断することが可能となり、 光出力も零にできると考えられる。第三の電極 18に加えるバイアス電圧を徐々に増 やせば、 - 2.7Vで閾値を超え、光出力を急激に増す。この光出力の増し方は、下電 極 6と上電極 7にカ卩える電圧にも影響される。例えば、下電極 6と上電極 7の間に 2.5V の電圧を印加しておけば、第三の電極 18への印加電圧カ 2.0Vの時、光出力が 10m W程度になる。もし、ゲート領域 16を形成する時のマスク幅を 1.5 mにすれば、第三 の電極 18に- 1. IVを印加した時、空乏層は左右に繋がって pinch-oil状態となり、電 流が下電極 6と上電極 7の間電圧に殆ど依らない小さな一定値になる。印加電圧を- 1.0Vにすると、電流が約 3mA流れ、印加電圧- 0.91V程度で発振閾値に達し、印加電 圧- 0.5Vの時、光出力は 5mW程度になる。 FIG. 9B shows a configuration in which a third electrode 18 is provided in the gate region 16 in the second embodiment of the present invention. In this embodiment, when the voltage applied to the third electrode 18 is set to a threshold value or less (for example, −2.8 V), the current between the lower electrode 6 and the upper electrode 7 can be cut off, and the light It is thought that the output can be made zero. If the bias voltage applied to the third electrode 18 is gradually increased, the threshold is exceeded at -2.7V, and the light output increases rapidly. This increase in light output is also affected by the voltage applied to the lower electrode 6 and the upper electrode 7. For example, if a voltage of 2.5 V is applied between the lower electrode 6 and the upper electrode 7, the light output becomes about 10 mW when the applied voltage to the third electrode 18 is 2.0 V. If the mask width when forming the gate region 16 is 1.5 m, the third When -1. IV is applied to the electrode 18, the depletion layer is connected to the left and right to become a pinch-oil state, and the current becomes a small constant value that hardly depends on the voltage between the lower electrode 6 and the upper electrode 7. When the applied voltage is -1.0V, the current flows about 3mA, the oscillation threshold is reached when the applied voltage is -0.91V, and the optical output is about 5mW when the applied voltage is -0.5V.
[0088] 即ち、本実施例によれば、約 400mVの電圧変化で、光出力を高速に変調できること になる。この第三の電極 18に加えている電圧は、接合部を構成する pn接合における 逆バイアスの方向なので、電流は殆ど流れず、この pn接合の空乏領域の静電容量を 充電あるいは放電するに伴う僅かな電流が流れるだけである。この静電容量もほぼ p Fの程度で、動作の妨げとはならない。勿論、余分な空乏領域を減らせば、この静電 容量を lpF以下に低減する事も困難ではなぐ Gbps単位のディジタル信号にも対処 できると考えられる。 That is, according to this embodiment, the optical output can be modulated at high speed with a voltage change of about 400 mV. Since the voltage applied to the third electrode 18 is in the reverse bias direction in the pn junction that forms the junction, almost no current flows, and the capacitance in the depletion region of this pn junction is charged or discharged. Only a small current flows. This capacitance is about p F and does not hinder the operation. Of course, if the extra depletion region is reduced, it will be possible to cope with digital signals in units of Gbps as well as it is difficult to reduce this capacitance below lpF.
[0089] 実施例 2と同様に、上述の第 3実施形態で示したレーザ構造のゲート領域に第三の 電極 18を設けることも可能である力 実施例 2の場合とほぼ同様なので、ここでは詳 述を避ける。  Similarly to Example 2, the force that can provide the third electrode 18 in the gate region of the laser structure shown in the above-described third embodiment is almost the same as in Example 2, so here Avoid details.
[0090] (実施例 3及び 4)  [0090] (Examples 3 and 4)
図 9(c)は第 4実施形態の、図 9(d)は第 5実施形態のゲート領域 16に第三の電極 18 を設けたものである。その利点は、上述と同様である。図 9 (d)に示す実施例 4の具体 的変調特性例を図 10に示す。図 10の横軸は、上電極 7に対する第三の電極 18の電 位を V として V単位で示し、縦軸は、光出力 Pを mW単位で示している。 V が- 1.3V FIG. 9 (c) shows the fourth embodiment, and FIG. 9 (d) shows the third electrode 18 provided in the gate region 16 of the fifth embodiment. The advantages are the same as described above. Figure 10 shows a specific modulation characteristic example of Example 4 shown in Fig. 9 (d). The horizontal axis in FIG. 10 indicates the potential of the third electrode 18 with respect to the upper electrode 7 in V units, and the vertical axis indicates the optical output P in mW units. V is -1.3V
GS GS GS GS
以下では発振は起こらず、自然発光光だけが見られる。 - 1.3Vを超えると、光出力 P は急に増加し、 -0.8Vでほぼ 8mWの出力となる。  In the following, no oscillation occurs and only spontaneous emission light is seen. -If it exceeds 1.3V, the optical output P will increase suddenly, and the output will be about 8mW at -0.8V.
[0091] そこで、第三の電極 18に対して、図 10に示すように "0 "の状態の電圧が- 1.3Vで、 " 1"の状態力 ).8Vであるような電圧信号をカ卩えると、それに対応した光出力が得られ る。通常の情報機器の光出力はほぼこの程度の大きさなので、この半導体レーザを 直接これらの信号端子に繋いで、必要な光出力を得ることができる。  Therefore, a voltage signal is applied to the third electrode 18 such that the voltage in the “0” state is −1.3V and the “1” state force) .8V as shown in FIG. When it is received, the corresponding light output can be obtained. Since the optical output of ordinary information equipment is almost this large, the required optical output can be obtained by connecting this semiconductor laser directly to these signal terminals.
[0092] もちろん、下電極 6と上電極 7には一定の電圧、ここでは 2.7Vを印加している。両電 極間に流れる電流は、 V の電圧変化によって変化する。現在の半導体レーザでァ  Of course, a constant voltage, here 2.7 V, is applied to the lower electrode 6 and the upper electrode 7. The current flowing between the two electrodes changes with the voltage change of V. With current semiconductor lasers
GS  GS
レイを構成して複数チャンネルの信号を送ろうとした場合、アレイの各上下の電極間 にカレントミラー回路などの"定電流源"の信号源を繋ぐことになる力 この各チャンネ ルの信号源と各上電極との間の導線から隣接する他のチャンネルの導線に電磁的、 静電的相互誘導で信号が漏話すると!/ヽつた問題があった。本実施例の場合には両 電極は電源を供給する役目だけで、し力も"定電圧源"を期待しているので、この上 の電極と下の電極との間の電圧は、信号に対しては電源インピーダンスが低い程良 ぐコンデンサーによるデカップリングを近くに置くことで漏話を避けることが出来る。 If you are going to send a signal of multiple channels by configuring a ray, between the upper and lower electrodes of the array The force that will connect the signal source of the “constant current source” such as a current mirror circuit to the conductor of the other channel from the conductor between the signal source of each channel and each upper electrode. When the signal crosstalks with dynamic mutual induction! There was a problem. In this embodiment, both electrodes only serve to supply power, and the force is expected to be a "constant voltage source". Therefore, the voltage between the upper and lower electrodes is For example, the lower the power supply impedance, the better the decoupling by the capacitor placed closer, so that crosstalk can be avoided.
[0093] (第 7実施形態)  [0093] (Seventh embodiment)
図 11は、本発明の第 7実施形態の素子断面模式図である。本実施形態では、前記 した第 4実施形態の下クラッド層 2と活性層 3との間に、下クラッド層 2における制御領 域 14よりもキャリア密度の高 、第三の層 20が付加されて 、る。  FIG. 11 is a schematic cross-sectional view of an element according to the seventh embodiment of the present invention. In the present embodiment, a third layer 20 having a higher carrier density than the control region 14 in the lower cladding layer 2 is added between the lower cladding layer 2 and the active layer 3 in the fourth embodiment described above. RU
[0094] 第 6実施形態において、第三の電極 18を深く逆バイアスすると、空乏領域 Bが厚く なりすぎて活性層 3に達し、活性層 3に電界が加わる事がある。このようになると、活 性層中の電子と正孔がこの電界によって引き離され、光の発生効率が低下するという 問題が生じる。第 7実施形態では、第三の層 20を付加したことにより、第三の層 20に おいて空乏領域 Bの拡大を制限でき、空乏領域 Bが活性層 3に達する可能性を低下 させることがでさる。  In the sixth embodiment, when the third electrode 18 is deeply reverse-biased, the depletion region B becomes too thick to reach the active layer 3 and an electric field may be applied to the active layer 3. In this case, electrons and holes in the active layer are separated by this electric field, which causes a problem that the light generation efficiency decreases. In the seventh embodiment, the addition of the third layer 20 can limit the expansion of the depletion region B in the third layer 20, thereby reducing the possibility that the depletion region B reaches the active layer 3. I'll do it.
[0095] 第三の層 20におけるキャリア密度は、制御領域 14のキャリア密度ほどの厳密な制 御は必要でなぐ例えば、 lxl017cm— 3〜lxl018cm— 3であれば良い。この第三の層 20を 付加する事によって、第三の電極 18への逆バイアス電圧を高くする(例えば 5V以上 とする)事が可能になる。 The carrier density in the third layer 20 does not need to be as strictly controlled as the carrier density in the control region 14, and may be, for example, lxl0 17 cm− 3 to lxl0 18 cm− 3 . By adding this third layer 20, the reverse bias voltage to the third electrode 18 can be increased (for example, 5 V or more).
[0096] (第 8実施形態)  [0096] (Eighth embodiment)
図 12は、本発明の第 8実施形態の素子断面模式図である。本実施形態では、前記 した第 5実施形態における上クラッド層 4と活性層 3の間に、上クラッド層 4の制御領域 14よりもキャリア密度の高い第三の層 20が付加されている。この第三の層 20を付カロ することにより、前記した第 7実施形態と同様に、第三の電極 18を深く逆ノィァスする ことが可能となる。  FIG. 12 is a schematic cross-sectional view of an element according to the eighth embodiment of the present invention. In the present embodiment, a third layer 20 having a carrier density higher than that of the control region 14 of the upper cladding layer 4 is added between the upper cladding layer 4 and the active layer 3 in the fifth embodiment. By applying the third layer 20 to the surface, the third electrode 18 can be deeply reverse-noised as in the seventh embodiment.
[0097] なお、各実施形態において説明したように、第 1及び第 2実施形態では、ゲート領 域 16も制御領域 14も共に GaAsという同じ組成とした。これに対して、第 3、第 4及び 第 5実施形態例では、ゲート領域 16を GaAsとし、制御領域 14を Al Ga Asとして、 As described in each embodiment, in the first and second embodiments, both the gate region 16 and the control region 14 have the same composition of GaAs. In contrast, the third, fourth and In the fifth embodiment, the gate region 16 is GaAs, the control region 14 is Al Ga As,
0.4 0.6 互いに異なる組成とした。ゲート領域 16と制御領域 14とを互いに異なる組成又は材 料とすることにより、エッチング液による層の選択エッチングの採用を可能にしたり、 後述の横モード制御を可能にしたりする。もちろん、組成の組み合わせとしては、こ れらに限らず、例えば、即ちゲート領域 16に InPを、制御領域 14に InGaAsPを用いる t 、う組み合わせも考えられる。  0.4 0.6 Different compositions were used. By making the gate region 16 and the control region 14 have different compositions or materials, it becomes possible to employ selective etching of a layer with an etching solution, or to enable lateral mode control described later. Of course, the combination of the compositions is not limited to these. For example, a combination using InP for the gate region 16 and InGaAsP for the control region 14 is also conceivable.
[0098] (第 9実施形態)  [0098] (Ninth embodiment)
図 13は、本発明の第 9実施形態を示す模式図である。この第 9実施形態は、先に述 ベた第 5実施形態や第 6実施形態の実施例 4 (図 9(d))と同じぐ上クラッド層 4中にゲ ート領域 16、制御領域 14を設けたものである。第 9実施形態では、それらのゲート領 域 16を幅 1.5 μ m或は 2.0 μ mで 2つに分け、その間にスリット 22 (図 13 (a)参照)が形 成されている。なお、図 13 (a)は、ゲート領域 16の形状を示す平面図である。つまり 、本実施形態では、スリット 22を挟む二つのゲート領域 16aおよび 16bからゲート領 域 16が構成されている。二つのゲート領域 16aと 16bとは、図 12(a)に示すように、適 当な箇所に設けた左右接続部 16cで接続されている。  FIG. 13 is a schematic diagram showing a ninth embodiment of the present invention. In the ninth embodiment, the gate region 16 and the control region 14 are formed in the upper cladding layer 4 in the same manner as the fourth embodiment (FIG. 9 (d)) of the fifth embodiment and the sixth embodiment described above. Is provided. In the ninth embodiment, the gate region 16 is divided into two parts having a width of 1.5 μm or 2.0 μm, and a slit 22 (see FIG. 13A) is formed between them. FIG. 13A is a plan view showing the shape of the gate region 16. That is, in the present embodiment, the gate region 16 is composed of the two gate regions 16a and 16b sandwiching the slit 22. As shown in FIG. 12 (a), the two gate regions 16a and 16b are connected by a left and right connection portion 16c provided at an appropriate location.
[0099] 本実施形態では、第三の電極 18が、二つのゲート領域 16aと 16bのいずれかに接 続されており、これらのゲート領域に同じ電圧を印加できるようになつている。スリット 2 2の部分、すなわち、二つのゲート領域 16aと 16bの間には、制御領域 14が配置され ている。  In the present embodiment, the third electrode 18 is connected to one of the two gate regions 16a and 16b, and the same voltage can be applied to these gate regions. A control region 14 is disposed between the slit 22, that is, between the two gate regions 16 a and 16 b.
[0100] (第 10実施形態)  [0100] (Tenth embodiment)
図 14は、本発明の第 10実施形態を示す。この例は、上述の第 9実施形態における 二つのゲート領域 16a及び 16bの対向する部分に、高さ 0.2 m程度の凹凸を形成し たものである。  FIG. 14 shows a tenth embodiment of the present invention. In this example, irregularities having a height of about 0.2 m are formed on the opposing portions of the two gate regions 16a and 16b in the ninth embodiment.
[0101] 上記した第 9実施形態では、第三の電極 18に加えるバイアス電圧を僅か下げただ けで、空乏領域 Bの伸張に伴い電流路が直線的に pinch-oil状態になる。その後、そ の pinch-oil状態から、光出力のある状態に切り替えた時、電圧が上昇して電流は流 れても、活性層 3の活性領域に、閾値付近の密度までキャリアを溜めるのに時間がか 力つてしまう。この場合、例えば、光パルスの立ち上がりに Ins程度の遅延が生ずる場 合がある。この遅延は、高速ディジタル信号の伝送においては重大な問題となる。こ れを避けようと、 pinch-off状態よりも僅かに高い電圧を" 0〃状態にしょうとすると、 "0"と 'Tに相当する光出力の比(消光比)を規定値にするのが困難になる可能性がある。 In the ninth embodiment described above, the current path linearly becomes a pinch-oil state with the extension of the depletion region B only by slightly lowering the bias voltage applied to the third electrode 18. After that, when switching from the pinch-oil state to a state with light output, even if the voltage rises and current flows, carriers are accumulated in the active region of the active layer 3 to a density near the threshold. It takes time. In this case, for example, a delay of about Ins occurs at the rising edge of the optical pulse. There is a match. This delay becomes a serious problem in the transmission of high-speed digital signals. To avoid this, if a voltage slightly higher than the pinch-off state is set to "0〃 state", the ratio of the light output corresponding to "0" and 'T (extinction ratio) is set to the specified value. Can be difficult.
[0102] この欠点を除去するために、この第 10実施形態では、バイアス電圧を若干下げて 空乏領域が伸張しても、どこかが空いているため急激に pinch-off状態にならず、常に ある程度の電流が流れるため、光パルスの立ち上がりに遅延が生ずるのを低減ある いは回避できる。即ち、第 10実施形態では、 pinch-off状態近傍に於ける P-V 特性 [0102] In order to eliminate this drawback, in this tenth embodiment, even if the bias voltage is slightly lowered and the depletion region expands, the pinch-off state does not suddenly occur because there is some space. Since a certain amount of current flows, it is possible to reduce or avoid a delay in the rise of the optical pulse. That is, in the tenth embodiment, the P-V characteristics near the pinch-off state
GS  GS
が滑らかな 、し緩やかになると 、う「Remote Cut- Off特性」を実現することができる。  When the smoothness and smoothness are achieved, the “Remote Cut-Off characteristics” can be realized.
[0103] (第 11実施形態)  [0103] (Eleventh Embodiment)
図 15 (a)は、本発明の第 11実施形態を示している。この例は、上述の第 10実施形 態における凹凸の高さ (深さ)を拡大し、平面視してほぼ櫛型状の形状としたものであ る。スリット 22とゲート領域 16a又は 16bとの接続部分において利得が急峻に切り替 わると、「利得導波」機構が強過ぎて、波面が左右に分かれる特性を生じることがある 。本実施形態によれば、スリット 22の中央部における電流分布は大きいものの、その 周辺部にも利得があって、急激にゼロにならない。このため、波面が左右に分かれる という特性を軽減或は消滅させることが可能となる。なお、凹凸形状は、図 15 (b)に 示されるようなものであっても良い。  FIG. 15 (a) shows an eleventh embodiment of the present invention. In this example, the height (depth) of the unevenness in the tenth embodiment described above is enlarged to have a substantially comb-like shape in plan view. If the gain is switched sharply at the connection portion between the slit 22 and the gate region 16a or 16b, the “gain waveguide” mechanism may be too strong, resulting in a characteristic that the wavefront is divided into left and right. According to the present embodiment, although the current distribution in the central portion of the slit 22 is large, the peripheral portion also has a gain and does not rapidly become zero. For this reason, it is possible to reduce or eliminate the characteristic that the wavefront is divided into left and right. The uneven shape may be as shown in FIG. 15 (b).
[0104] (第 12実施形態)  [0104] (Twelfth embodiment)
図 16は、本発明の第 12実施形態を示している。この実施形態では、上記した第 9 や第 10実施形態のようにスリット 22を形成するのではなぐゲート領域 16の一方向に 沿って、複数の穴 24を所定のピッチで形成している。穴の形状としては、例えば、円 形、長円形、矩形、多角形などであるが、特に限定されない。  FIG. 16 shows a twelfth embodiment of the present invention. In this embodiment, a plurality of holes 24 are formed at a predetermined pitch along one direction of the gate region 16 where the slits 22 are not formed as in the ninth and tenth embodiments. Examples of the shape of the hole include a circle, an oval, a rectangle, and a polygon, but are not particularly limited.
[0105] 本実施形態の具体例としては、リッジ幅 5.0 μ mとしたとき、その幅方向中央部に、長 径 3.5 μ m、短径 1.5 μ mの小判型 (長円形)の窓(穴) 24を、 2.5 μ mピッチで形成する。 本実施形態では、電流は、穴 24の中を通過することになる。  As a specific example of this embodiment, when the ridge width is 5.0 μm, an oval (oval) window (hole) having a major axis of 3.5 μm and a minor axis of 1.5 μm is provided at the center in the width direction. ) 24 is formed with a 2.5 μm pitch. In this embodiment, current will pass through the hole 24.
[0106] 第 12実施形態の動作の一例は以下の通りである。第三の電極 18の電圧 (V )が 0  An example of the operation of the twelfth embodiment is as follows. The voltage (V) of the third electrode 18 is 0
GS  GS
Vの時、 pn接合によって、各穴 24の中央部における、長径 2.8 m短径 1.0 mの領 域を除いて残りが空乏領域となる。 V =- 1.0Vにバイアスすると電流が流れる領域は 急激に狭まり、ほぼ長径 2.0 m短径 0.5 mの領域にしか電流が流れず、 V =-1.7 When V, the rest of the hole 24 becomes a depletion region except for the region with a major axis of 2.8 m and a minor axis of 1.0 m due to the pn junction. The region where current flows when biased to V = -1.0V is It suddenly narrows, and current flows only in the area of major axis 2.0 m and minor axis 0.5 m, V = -1.7
GS  GS
Vでは pinch-off状態になる。各穴 24から活性層 3へ向力う過程で、上クラッド層 4にお ける活性層 3の近傍で電流の幅が拡がり、活性層 3内でも、拡散によって若干拡がる 。この拡がりは拡散長で決まり、 1から 2 m程度と考えられるので、穴 24の間をある程 度狭くすることにより、活性層 3をほぼ均一に励起できる。第 12実施形態は、上述の 第 10実施形態とは逆に、穴 24の周囲から空乏領域を伸長させることによって、電流 を急激に pinch-off状態に持ち込むことが可能となる。  In V, it becomes pinch-off state. In the process of moving from each hole 24 toward the active layer 3, the current width increases in the vicinity of the active layer 3 in the upper cladding layer 4, and also slightly expands in the active layer 3 due to diffusion. Since this spread is determined by the diffusion length and is considered to be about 1 to 2 m, the active layer 3 can be excited almost uniformly by narrowing the space between the holes 24 to some extent. In the twelfth embodiment, contrary to the tenth embodiment described above, by extending the depletion region from the periphery of the hole 24, it is possible to bring current into the pinch-off state rapidly.
[0107] (第 13実施形態)  [Thirteenth Embodiment]
図 17は、本発明の第 13実施形態を示している。基板結晶 l (n- InP)の上に MOCVD 法で下クラッド層 2 (n-InP)、活性層 3、第三の層 20 (p-InP, p=3xl017cm-3,厚さ 0.1 μ m)、上クラッド層 4の一部 4a(p- InGaAsP, p=lxl016cm— 3,発光ピーク波長 =1.1 m、厚 さ 0.3 μ m)、 n- InP層 (n=lxl018cm— 3,厚さ 0.2 μ m)を成長させる。ここでー且取り出し、 然るべきマスクを施し、活性層 3における活性領域に対応する部分において、上記 n- InP層 (n=lxl018cm— 3, 0.2 m)を幅 1.5 mの帯状にエッチングして除去する。このエツ チングで残存した領域が、ゲート領域 16となる。 FIG. 17 shows a thirteenth embodiment of the present invention. Lower clad layer 2 (n-InP), active layer 3, third layer 20 (p-InP, p = 3xl0 17 cm-3, thickness 0.1 μm on substrate crystal l (n-InP) by MOCVD m), part of upper cladding layer 4 4a (p-InGaAsP, p = lxl0 16 cm— 3 , emission peak wavelength = 1.1 m, thickness 0.3 μm), n-InP layer (n = lxl0 18 cm— 3) , Grow thickness 0.2 μm). Here, take out, apply an appropriate mask, and etch the n-InP layer (n = lxl0 18 cm— 3 , 0.2 m) into a 1.5 m wide strip in the portion corresponding to the active region in the active layer 3. Remove. The region remaining after this etching is the gate region 16.
[0108] その後、再度、 MOCVD法により、制御領域 14となる位置において、 p-InGaAsP(p= 7xl015cm"3,厚さ 0.2 /z m,発光ピーク波長 =1.1 m)を成長させた後、上クラッド層の残 部 4b(p- InP, p=5xl016cm"3,厚さ 0.5 m)及び低抵抗層 5としての p+- InGaAs(p=lxl019 cm"3,厚さ 0.5 m)を成長させる。この後、幅 7 mのストライプ状マスクを施し、選択ェ ツチング法でリッジ部を形成し、上電極 7及び第三の電極 18を形成した後、裏面研磨 して下電極 6を形成して、全体を焼鈍する。ついで、既に述べた各実施形態と同様に 、ウェハを然るべき共振器長 (250 m)に劈開した後、端面に保護膜を形成して個別 のチップに分離し組み立てる。 [0108] Then, after again growing p-InGaAsP (p = 7xl0 15 cm " 3 , thickness 0.2 / zm, emission peak wavelength = 1.1 m) at the position to be the control region 14 by MOCVD, The remaining 4b (p-InP, p = 5xl0 16 cm " 3 , thickness 0.5 m) of the upper cladding layer and p + -InGaAs (p = lxl0 19 cm" 3 , thickness 0.5 m) as the low resistance layer 5 After that, a striped mask having a width of 7 m is applied, a ridge portion is formed by a selective etching method, an upper electrode 7 and a third electrode 18 are formed, and then the lower electrode 6 is formed by polishing the back surface. Then, after the wafer is cleaved to an appropriate resonator length (250 m), a protective film is formed on the end face and separated into individual chips and assembled in the same manner as in the previous embodiments. .
[0109] 第 13実施形態において得られる特性の多くは、上述の各実施形態と変わらないが 、この実施形態では、 50mA以上でも依然基本単一横モード発振を示す単峰性の遠 視野像を示すと考えられる。これは屈折率導波型レーザでは、普通に見られる特性 である。  Many of the characteristics obtained in the thirteenth embodiment are not different from those of the above-described embodiments. However, in this embodiment, a unimodal far-field image that still exhibits basic single transverse mode oscillation even at 50 mA or more is obtained. It is thought to show. This is a characteristic commonly seen in a refractive index guided laser.
[0110] 図 17 (b)および (c)は、屈折率分布の概要を示している。図 17 (b)の左側に、図 17 (a)における aa'部の屈折率分布を、右側に bb'部の屈折率分布を示した。活性層 3を 伝播する基本モードの感じる実効的屈折率 (等価屈折率)はそれぞれ Na及び Nbとな る。ここでゲート領域 16における Naは、上クラッド層 4 (および制御領域 14)の Nbより 小さくなる。このため、ゲート領域 16の中央に形成されたスリット 22を横断して横方向 の実効屈折率分布を描くと、図 17 (d)のグラフのように表される。同図を見れば明ら かなように、横方向には硬い屈折率導波機構ができている。また、導波路の寸法上、 高次モードは遮断されているので、この導波機構において駆動電流を増しても、基 本モードでの発振が維持される。 [0110] FIGS. 17B and 17C show an outline of the refractive index distribution. On the left side of Fig. 17 (b), The refractive index distribution of the aa 'part in (a) is shown, and the refractive index distribution of the bb' part is shown on the right side. The effective refractive index (equivalent refractive index) felt by the fundamental mode propagating through the active layer 3 is Na and Nb, respectively. Here, Na in the gate region 16 is smaller than Nb in the upper cladding layer 4 (and the control region 14). For this reason, when the effective refractive index distribution in the transverse direction is drawn across the slit 22 formed in the center of the gate region 16, it is represented as a graph in FIG. As can be seen from the figure, a rigid refractive index guiding mechanism is formed in the lateral direction. In addition, since the higher-order mode is blocked due to the dimensions of the waveguide, oscillation in the basic mode is maintained even if the drive current is increased in this waveguide mechanism.
[0111] 先に述べた第 5実施形態に於いて、屈折率分布の実部は、 GaAsの屈折率が AlGa Asの屈折率に比べて大きいので、上記説明とは逆に、 Na>Nbの関係にあるかに見 える。し力し、発振波長は 0.81nmであり、この光は GaAsに強く吸収される。そのため、 もし 1次の横モードが発生しても、左右に広がった部分に強度のピークを持つ 1次モ ードは、ゲート領域 16で強い吸収を受け、発振を持続できない。また、別の解釈を考 えれば、一般にこの波長の光は、ゲート領域 16で強く吸収される、即ち複素屈折率 の虚数部が大きい事になる。一方、複素屈折率の実部と虚部はクラーマース =クロ 一-ッヒの因果律で結びついていて、等価的に実部が小さい事になる。その結果実 効的には図 17 (d)と同様な形を実現でき、単一の基本モードを安定して発振できるの である。 [0111] In the fifth embodiment described above, the real part of the refractive index distribution is such that the refractive index of GaAs is larger than the refractive index of AlGa As. It can be seen whether there is a relationship. However, the oscillation wavelength is 0.81 nm, and this light is strongly absorbed by GaAs. Therefore, even if the first-order transverse mode occurs, the first-order mode that has an intensity peak in the left and right spread areas is strongly absorbed in the gate region 16 and cannot continue to oscillate. Considering another interpretation, light of this wavelength is generally strongly absorbed by the gate region 16, that is, the imaginary part of the complex refractive index is large. On the other hand, the real part and the imaginary part of the complex refractive index are connected by the Kalmers-Kroi-Chi causality, and the real part is equivalently small. As a result, a shape similar to that in Fig. 17 (d) can be realized effectively, and a single fundamental mode can be oscillated stably.
[0112] ただし、第 5実施形態(図 8)あるいは第 6実施形態(図 9(d))で述べた構造の場合、 ゲート領域 16は、光を吸収して電子'正孔の対を生じる。接合部 Aでは pn接合になつ ているため、 p領域では正孔力 n領域では電子が多くなる。ゲート領域 16をどこへも 繋がず放置すると、これらのキャリアが溜まって、順方向にバイアスした状態になる。 即ち、吸収が減じ上記効果が小さくなる。この様な不安定を回避するためには、第三 の電極 18を介して 0電位 (グラウンド)または然るべき逆バイアス電位にしなければな らない。一方、このゲート領域 16に、 Fe,Ni,Crなどの、キャリアの寿命を短くするような 不純物を添加しておけば、発振光を吸収して電子や正孔を発生させても、これらの 不純物で再結合してしまうので、ゲート領域 16におけるキャリアの蓄積は抑えられる [0113] (第 14実施形態) [0112] However, in the case of the structure described in the fifth embodiment (Fig. 8) or the sixth embodiment (Fig. 9 (d)), the gate region 16 absorbs light and generates an electron'hole pair. . Since junction A is a pn junction, the hole force in the p region increases in the n region. If the gate region 16 is left unconnected anywhere, these carriers accumulate and become forward biased. That is, absorption is reduced and the above effect is reduced. In order to avoid such instability, the potential must be 0 (ground) or an appropriate reverse bias potential via the third electrode 18. On the other hand, if impurities such as Fe, Ni, Cr, etc. that shorten the life of carriers are added to the gate region 16, even if the oscillation light is absorbed and electrons and holes are generated, these impurities are generated. Since recombination occurs due to impurities, accumulation of carriers in the gate region 16 can be suppressed. [0113] (Fourteenth embodiment)
図 18は、本発明の第 14実施形態を示す図である。この実施形態では、スリット 22が 二股に分岐されている。本実施形態においても、スリット 22の内部には制御領域 14 が配置されている。これにより、光の流路即ち電流の流路が二股に分けられ、複合共 振器として、縦モード単一であるレーザが得られる。以下、詳しく説明する。  FIG. 18 is a diagram showing a fourteenth embodiment of the present invention. In this embodiment, the slit 22 is bifurcated. Also in the present embodiment, the control region 14 is disposed inside the slit 22. As a result, the light flow path, that is, the current flow path is divided into two branches, and a laser having a single longitudinal mode is obtained as a composite resonator. This will be described in detail below.
[0114] まず、図 18の下方の面で反射して上方へ進む光を考える。この光は、増幅されな がら進み、分岐で分かれる。例えば左側の分岐へ進んだ光は、左側の最上部の端 面で反射し、再度下方へ進む。同様に、右側の分岐を進んだ光も反射して戻る。こ れらの光は、分岐点で合流する。このとき、同じ位相の光は強め合い、逆位相の光は 弱め合う。したがって、発振する波長はこの位相条件を充たすものだけとなる。このよ うにして、縦モードが単一モードとなる。  First, consider the light that travels upward after being reflected by the lower surface of FIG. This light travels while being amplified and splits into branches. For example, light that has traveled to the left branch reflects off the uppermost end surface on the left and travels downward again. Similarly, light that has traveled on the right branch also reflects back. These lights merge at the branch point. At this time, the light with the same phase intensifies and the light with the opposite phase weakens. Therefore, only the wavelength that oscillates satisfies this phase condition. In this way, the vertical mode becomes the single mode.
[0115] 既存の屈折率導波型レーザでは、導波路に分岐部を設けたとしても、分岐部にお いて急激に伝播定数が変わるため、反射が強ぐ期待した成果を得にくい。しかし、 本実施形態のように、空乏領域が導波路の側面に形成されている場合には、本来期 待しない電流の横方向への広がりが幸いして、たとえ加工による不本意な段差や凹 凸が光の波長程度のものであっても均されてしま 、、反射や散乱を殆ど起こさな 、。 さらに、利得導波の特性として、利得の峰に対して波面が左右に分かれて行く性質を 持つ。したがって、屈折率導波機構を抑えた状態 (例えば第 1あるいは第 2実施形態 のように材料に差が無い場合)は、利得導波が主となるために、光を分岐させ易くな る。このように、利得導波機構を主な導波機構とする本実施形態は、分岐を伴うレー ザとして優れて 、る。この分岐部近傍のゲート領域 16の電位を他と分離して制御で きれば、分岐に適した利得導波構造が得られるために、更に好ましい。  [0115] In the existing refractive index guided laser, even if a branching portion is provided in the waveguide, the propagation constant changes abruptly at the branching portion, so that it is difficult to obtain the expected result of strong reflection. However, when the depletion region is formed on the side surface of the waveguide as in this embodiment, the current that is not expected is spread in the lateral direction. Even if the convexity is about the wavelength of the light, it will be leveled out, causing little reflection or scattering. Furthermore, as a characteristic of the gain waveguide, the wave front is divided into left and right with respect to the gain peak. Therefore, in a state where the refractive index waveguide mechanism is suppressed (for example, when there is no difference in material as in the first or second embodiment), gain guiding is mainly performed, and thus light can be easily branched. Thus, the present embodiment in which the gain waveguide mechanism is the main waveguide mechanism is excellent as a laser with branching. If the potential of the gate region 16 in the vicinity of the branch portion can be controlled separately from the other, it is more preferable because a gain waveguide structure suitable for branching can be obtained.
[0116] (第 15実施形態)  [0116] (Fifteenth embodiment)
図 19は、第 15実施形態を示す図である。この実施形態では、上記第 14実施形態 の構成にカ卩えて、一方の分岐に、第三の電極とは別の制御用電極である第四の電 極 26を付加している。第四の電極 26に加える電圧を制御する事で、光の振幅と位相 を調整できるので、発振波長を微調整可能となる。また、図 19の上方への出力に注 目すると、左右二つの出力端から同じ波長の光が出力され、互いに干渉し合う事に なる。この場合、両端面力 の光に位相差が無ければ、端面に垂直な方向に光の強 度が最大になる遠視野像となるが、位相差があるとこれを反映して垂直な方向から左 右どちらかへ光強度のピークがずれる。第四の電極 26の電位を制御する事で、この 光強度のピークを左右に振る事が可能になり、ビームスキャナーとすることができる。 FIG. 19 shows the fifteenth embodiment. In this embodiment, a fourth electrode 26, which is a control electrode different from the third electrode, is added to one branch in addition to the configuration of the fourteenth embodiment. By controlling the voltage applied to the fourth electrode 26, the amplitude and phase of light can be adjusted, so that the oscillation wavelength can be finely adjusted. Also, when focusing attention on the output in the upper part of Fig. 19, light of the same wavelength is output from the two left and right output ends and interferes with each other. Become. In this case, if there is no phase difference in the light at both end faces, the far-field image where the light intensity is maximized in the direction perpendicular to the end face is obtained, but if there is a phase difference, this is reflected from the perpendicular direction. The light intensity peak shifts to the left or right. By controlling the potential of the fourth electrode 26, the peak of the light intensity can be shifted left and right, and a beam scanner can be obtained.
[0117] (第 16実施形態)  [0117] (Sixteenth embodiment)
図 20は、本発明の第 16実施形態を示す図である。同図 (a)は、素子の外観図である 。この種のレーザは、一般に面発光レーザ (VCSEL)と呼ばれている。同図 (b)は平面 図、同図 (c)は断面図を概念的に描いたものである。  FIG. 20 is a diagram showing a sixteenth embodiment of the present invention. FIG. 2A is an external view of the element. This type of laser is generally called a surface emitting laser (VCSEL). (B) is a plan view, and (c) is a conceptual drawing of a cross-sectional view.
[0118] 本実施形態の構成は、図 9(d)に示される第 6実施形態と基本的に同じである。ただ し、この第 16実施形態では、面発光型であるが故に、光の共振器を上下に設ける必 要があり、そのために、下 DBR10と上 DBR11とが作られている(図 20 (c)参照)。また 、光をウェハ面に垂直に取り出すため、上電極 7には円形の窓 7aを形成している。  [0118] The configuration of this embodiment is basically the same as that of the sixth embodiment shown in Fig. 9 (d). However, in the sixteenth embodiment, since it is a surface emitting type, it is necessary to provide optical resonators at the top and bottom, and therefore, the lower DBR 10 and the upper DBR 11 are formed (FIG. 20 (c )reference). In addition, a circular window 7a is formed in the upper electrode 7 in order to extract light perpendicular to the wafer surface.
[0119] さらに、上クラッド層 4の内部には、ゲート領域 16が形成されており、ゲート領域 16 には、窓 7aに対応する位置に、窓 16dが形成されている。また、ゲート領域 16には、 第三の電極 18が電気的に接続されている。  Furthermore, a gate region 16 is formed inside the upper cladding layer 4, and a window 16d is formed in the gate region 16 at a position corresponding to the window 7a. A third electrode 18 is electrically connected to the gate region 16.
[0120] 第三の電極 18に逆ノ ィァスを加えてゆくと、空乏領域が比較的急激に内側に拡大 し、ゲート領域 16の窓 16dの中央付近に電流が集中する。さらに逆バイアスを大きく すると、完全に pinch-off状態にする事も可能である。  [0120] When a reverse noise is applied to the third electrode 18, the depletion region expands inward relatively rapidly, and the current concentrates near the center of the window 16d in the gate region 16. If the reverse bias is further increased, the pinch-off state can be completely achieved.
[0121] 従来の面発光レーザでは、図 1 (d)に示されるように、電流絞り領域を AlAsとし、ゥ ェハ工程終了後、高温水蒸気中で処理して外周部より A1を酸化して絶縁物化し、電 流を中央部に集中させようとしている。この場合、外周部から酸化が進むので、外周 部の加工においては、リッジの形状と直径を正確に形成しなければならない。また、 酸ィ匕温度と時間を正確且つ厳密に管理しなければ、窓部の直径を歩留良く制御でき ない事になる。発振横モードを基本モードに制御するには、窓部の直径を 5 m程度 にしなければならな!/、が、外形 30 μ mからスタートして 5 μ mに迄酸化を進める事は容 易ではない。従って、通常は窓部の直径は 10 m程度のものが多ぐ横モードも多モ ードになっている。  [0121] In the conventional surface emitting laser, as shown in Fig. 1 (d), the current restricting region is AlAs, and after the wafer process is completed, it is treated in high-temperature steam to oxidize A1 from the outer periphery. It is going to be an insulator and the current is concentrated in the center. In this case, since oxidation proceeds from the outer peripheral portion, the shape and diameter of the ridge must be accurately formed in processing the outer peripheral portion. Moreover, unless the acid temperature and time are accurately and strictly controlled, the window diameter cannot be controlled with good yield. To control the transverse oscillation mode to the basic mode, the window must have a diameter of about 5 m! /, But it is easy to start oxidation from 30 μm and proceed to 5 μm. is not. Therefore, the transverse mode is usually multimode, with many windows having a diameter of about 10 m.
[0122] これに対し、第 16実施形態では、マスクを使ったエッチングのように、制御性に優 れた手法でカ卩ェすることができる。さらに、できあがったデバイスにおいて、外部から の電圧で横モードを制御できる。したがって、本実施形態では、横モードの制御と発 振の開閉を外部力 電圧で行うことができる。 On the other hand, in the sixteenth embodiment, controllability is excellent like etching using a mask. It is possible to pay by using the proposed method. Furthermore, in the completed device, the transverse mode can be controlled by an external voltage. Therefore, in the present embodiment, the lateral mode control and the oscillation opening / closing can be performed with the external force voltage.
[0123] 以上の各実施形態では、全て、半導体レーザを例として説明したが、半導体発光 素子としては、発光ダイオード (LED)やスーパールミネッセントダイオード(SLDまたは SLED)でもよい。この場合でも、接合部 Aにより生じる空乏領域により発光を制御でき る。さらには、空乏領域を電圧で制御することもできる。したがって、本発明を適用し た半導体発光素子は、通信ばカゝりでなく各種電子機器のディジタル情報機器のイン ターフェースにおいて利用できる。  In each of the above embodiments, the semiconductor laser has been described as an example. However, the semiconductor light emitting element may be a light emitting diode (LED) or a super luminescent diode (SLD or SLED). Even in this case, light emission can be controlled by the depletion region generated by the junction A. Furthermore, the depletion region can be controlled by voltage. Therefore, the semiconductor light emitting element to which the present invention is applied can be used not only in communication but also in the interface of digital information equipment of various electronic equipment.
[0124] なお、本発明の半導体発光素子は、上記した各実施形態に限定されるものではな ぐ本発明の要旨を逸脱しない範囲内において種々変更をカ卩ぇ得る。  Note that the semiconductor light emitting device of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0125] 例えば、前記各実施形態においては、接合部 Aを pn接合により構成したが、これに 限らず、例えば、 MS接合 (金属一半導体接合)や MIS接合 (金属 絶縁性材料 半導体接合)により接合部 Aを構成しても良い。例えば、ゲート領域 16を金属により 構成しても良い。要するに、接合部 Aとしては、単なる抵抗性接続ではなぐ空乏領 域を生じる接合であればよく、それに必要なキャリア濃度や仕事関数を持つ材料を 選択することができる。  For example, in each of the embodiments described above, the junction A is configured by a pn junction. However, the present invention is not limited to this. For example, an MS junction (metal-semiconductor junction) or MIS junction (metal insulating material semiconductor junction) is used. The joint A may be configured. For example, the gate region 16 may be made of metal. In short, the junction A may be a junction that generates a depletion region that is not simply a resistive connection, and a material having a carrier concentration and work function necessary for the junction can be selected.
図面の簡単な説明  Brief Description of Drawings
[0126] [図 1]図(a)〜図(e)は、従来の半導体レーザを説明するための断面図である。 FIG. 1 (a) to (e) are cross-sectional views for explaining a conventional semiconductor laser.
[図 2]CMOSで駆動可能と考えられるレーザの一例を説明するための説明図である  FIG. 2 is an explanatory diagram for explaining an example of a laser that can be driven by CMOS.
[図 3]図(a)は、本発明の第 1実施形態における半導体レーザの断面図であり、図 (b )は、このレーザの動作を説明するための説明図である。 FIG. 3 (a) is a cross-sectional view of the semiconductor laser according to the first embodiment of the present invention, and FIG. (B) is an explanatory diagram for explaining the operation of this laser.
[図 4]図(a)は、空乏領域による電流路の制御動作を説明するための説明図であり、 図 (b)は、導波路の横方向の位置と電流密度との関係を示すグラフであり、図(c)は 、導波路の横方向の位置と利得との関係を示すグラフである。  [FIG. 4] FIG. (A) is an explanatory diagram for explaining the control operation of the current path by the depletion region, and FIG. (B) is a graph showing the relationship between the position in the horizontal direction of the waveguide and the current density. FIG. 5C is a graph showing the relationship between the position in the horizontal direction of the waveguide and the gain.
[図 5]図(a)は、本発明の第 2実施形態における半導体レーザの断面図であり、図 (b )は、このレーザの動作を説明するための説明図である。 [図 6]図(a)は、本発明の第 3実施形態における半導体レーザの断面図であり、図 (b )は、このレーザの動作を説明するための説明図である。 FIG. 5 (a) is a cross-sectional view of a semiconductor laser according to a second embodiment of the present invention, and FIG. 5 (b) is an explanatory diagram for explaining the operation of this laser. FIG. 6 (a) is a sectional view of a semiconductor laser according to a third embodiment of the present invention, and FIG. (B) is an explanatory diagram for explaining the operation of this laser.
[図 7]図(a)は、本発明の第 4実施形態における半導体レーザの断面図であり、図 (b FIG. 7 (a) is a sectional view of a semiconductor laser according to the fourth embodiment of the present invention.
)は、このレーザの動作を説明するための説明図である。 ) Is an explanatory diagram for explaining the operation of the laser.
圆 8]本発明の第 5実施形態における半導体レーザの断面図である。 8] A sectional view of a semiconductor laser according to a fifth embodiment of the present invention.
[図 9]図(a)〜図(d)は、第 6実施形態における実施例 1〜4における半導体レーザを 説明するための断面図である。  FIG. 9A to FIG. 9D are cross-sectional views for explaining semiconductor lasers in Examples 1 to 4 in the sixth embodiment.
圆 10]第 6実施形態の実施例 4における半導体レーザの変調特性を示すグラフであ る。 [10] This is a graph showing the modulation characteristics of the semiconductor laser in Example 4 of the sixth embodiment.
圆 11]本発明の第 7実施形態における半導体レーザの断面図である。 11] A sectional view of a semiconductor laser according to a seventh embodiment of the invention.
圆 12]本発明の第 8実施形態における半導体レーザの断面図である。 12] A sectional view of a semiconductor laser according to an eighth embodiment of the invention.
[図 13]図(a)は、本発明の第 9実施形態における半導体レーザのゲート領域部分の 平面図であり、図(b)は、このレーザの断面図である。  FIG. 13 (a) is a plan view of a gate region portion of a semiconductor laser according to a ninth embodiment of the present invention, and FIG. 13 (b) is a sectional view of this laser.
圆 14]本発明の第 10実施形態における半導体レーザのゲート領域部分の平面図で ある。 FIG. 14] A plan view of a gate region portion of a semiconductor laser according to a tenth embodiment of the present invention.
[図 15]図(a)は、本発明の第 11実施形態において用いられるゲート領域の平面形状 の一例を示す説明図であり、 (b)は、他の一例を示す説明図である。  FIG. 15 (a) is an explanatory view showing an example of a planar shape of a gate region used in the eleventh embodiment of the present invention, and FIG. 15 (b) is an explanatory view showing another example.
[図 16]図(a)は、本発明の第 12実施形態における半導体レーザのゲート領域部分の 平面図であり、図(b)は、このレーザの断面図である。 FIG. 16 (a) is a plan view of a gate region portion of a semiconductor laser according to a twelfth embodiment of the present invention, and FIG. 16 (b) is a sectional view of this laser.
圆 17]図(a)は、本発明の第 13実施形態における半導体レーザの断面図であり、図FIG. 17 (a) is a sectional view of a semiconductor laser according to a thirteenth embodiment of the present invention.
(b)は、このレーザの a— 断面における屈折率分布を示す説明図であり、図(c)は(b) is an explanatory view showing the refractive index distribution in the a-section of this laser, and FIG.
、このレーザの b—!/ 断面における屈折率分布を示す説明図であり、図(d)は、導 波路の横断面における実効屈折率の分布を示す説明図である。 FIG. 8 is an explanatory diagram showing a refractive index distribution in a b-! / Cross section of this laser, and FIG. (D) is an explanatory diagram showing an effective refractive index distribution in a transverse cross section of the waveguide.
圆 18]本発明の第 14実施形態における半導体レーザのゲート領域部分の平面図で ある。 FIG. 18 is a plan view of a gate region portion of a semiconductor laser according to a fourteenth embodiment of the present invention.
圆 19]本発明の第 15実施形態における半導体レーザのゲート領域部分の平面図で ある。 FIG. 19 is a plan view of a gate region portion of a semiconductor laser according to a fifteenth embodiment of the present invention.
圆 20]図(a)は、本発明の第 16実施形態における半導体レーザの斜視図であり、図 (b)は、このレーザの平面図であり、図(C)は、このレーザの断面図図である 符号の説明 FIG. 20 (a) is a perspective view of a semiconductor laser according to a sixteenth embodiment of the present invention. (b) is a plan view of the laser, and FIG. (C) is a sectional view of the laser.
A 接合部  A joint
B 空乏領域  B depletion region
1 基板結晶  1 Substrate crystal
2 下クラッド、層  2 Lower cladding, layer
3 活性層  3 Active layer
4 上クラッド、層  4 Upper cladding, layer
4a 上クラッド層の一部  4a Part of upper cladding layer
4b 上クラッド層の残部  4b The remainder of the upper cladding layer
5 低抵抗層  5 Low resistance layer
6 下電極(第一の電極)  6 Lower electrode (first electrode)
7 上電極 (第二の電極)  7 Upper electrode (second electrode)
7a 窓  7a window
7b 主電極  7b Main electrode
7c 副電極  7c Sub electrode
8 電流ブロック層  8 Current blocking layer
9 AlAs層  9 AlAs layer
10 下 DBR  10 Lower DBR
11 上 DBR  11 Top DBR
14 制御領域  14 Control area
16 · 16a' 16b ゲート領域  16 · 16a '16b Gate area
16c 左右接続部  16c left and right connection
16d ゲート領域に形成された窓  Windows formed in 16d gate region
18 第三の電極  18 Third electrode
20 第三の層  20 Third layer
22 スジッ卜  22 Stripes
24 穴 第四の電極 24 holes 4th electrode

Claims

請求の範囲 The scope of the claims
[1] 基板結晶と活性層と接合部とを備えており、  [1] It includes a substrate crystal, an active layer, and a joint,
前記接合部は、前記活性層の近傍に配置されており、  The junction is disposed in the vicinity of the active layer,
かつ、前記接合部は、前記活性層へのキャリアの流れを制限する空乏領域を生成す る構成となっている  In addition, the junction is configured to generate a depletion region that restricts the flow of carriers to the active layer.
ことを特徴とする半導体発光素子。  A semiconductor light emitting element characterized by the above.
[2] さらに、上クラッド層と、下クラッド層と、第一の電極と、第二の電極とを備えており、 前記上クラッド層は、前記活性層の上部に隣接して配置されており、  [2] Furthermore, an upper cladding layer, a lower cladding layer, a first electrode, and a second electrode are provided, and the upper cladding layer is disposed adjacent to an upper portion of the active layer. ,
前記下クラッド層は、前記活性層の下部に隣接して配置されており、  The lower cladding layer is disposed adjacent to a lower portion of the active layer;
前記第一の電極は、前記上クラッド層に電気的に接続されており、  The first electrode is electrically connected to the upper cladding layer;
前記第二の電極は、前記下クラッド層に電気的に接続されており、  The second electrode is electrically connected to the lower cladding layer;
前記第一の電極と前記第二の電極の間に電流を流すことによって、前記活性層にキ ャリアを送り込む構成となって 、る  The carrier is sent to the active layer by passing a current between the first electrode and the second electrode.
ことを特徴とする請求項 1に記載の半導体発光素子。  The semiconductor light emitting device according to claim 1, wherein:
[3] 前記接合部は、 pn接合により構成されていることを特徴とする請求項 1又は 2に記 載の半導体発光素子。  [3] The semiconductor light-emitting element according to claim 1 or 2, wherein the junction is configured by a pn junction.
[4] 前記接合部は、金属一半導体接合により構成されていることを特徴とする請求項 1 又は 2に記載の半導体発光素子。  [4] The semiconductor light-emitting element according to claim 1 or 2, wherein the joining portion is formed of a metal-semiconductor junction.
[5] 前記接合部は、金属一絶縁体一半導体接合により構成されていることを特徴とする 請求項 1又は 2に記載の半導体発光素子。 [5] The semiconductor light-emitting element according to [1] or [2], wherein the junction is configured by a metal-insulator-semiconductor junction.
[6] 前記接合部は、前記活性層における活性領域から 3 μ m以内の距離に配置されて いることを特徴とする請求項 1〜5のいずれ力 1項に記載の半導体発光素子。 6. The semiconductor light emitting element according to any one of claims 1 to 5, wherein the junction is disposed at a distance within 3 μm from the active region in the active layer.
[7] さらに、第一導電型半導体で構成された制御領域と、第二導電型半導体で構成さ れたゲート領域とを備えており、 [7] Furthermore, a control region composed of a first conductivity type semiconductor and a gate region composed of a second conductivity type semiconductor are provided,
前記接合部は、前記制御領域と前記ゲート領域との接合により構成されており、 前記制御領域は、前記活性層へ流れ込む電流の流路上に配置されて ヽる ことを特徴とする請求項 1に記載の半導体発光素子。  The said junction part is comprised by junction of the said control area | region and the said gate area | region, The said control area | region is arrange | positioned on the flow path of the electric current which flows in into the said active layer, It is characterized by the above-mentioned. The semiconductor light emitting element as described.
[8] 前記制御領域は、前記基板結晶の一部であることを特徴とする請求項 7に記載の 半導体発光素子。 8. The control region according to claim 7, wherein the control region is a part of the substrate crystal. Semiconductor light emitting device.
[9] さらに下クラッド層を備えており、  [9] It further comprises a lower cladding layer,
前記下クラッド層は、前記基板結晶と前記活性層との間に配置されており、 前記制御領域は、前記下クラッド層と前記基板結晶の間に形成されている ことを特徴とする請求項 7に記載の半導体発光素子。  8. The lower clad layer is disposed between the substrate crystal and the active layer, and the control region is formed between the lower clad layer and the substrate crystal. The semiconductor light-emitting device described in 1.
[10] さらに下クラッド層を備えており、 [10] It further comprises a lower cladding layer,
前記下クラッド層は、前記基板結晶と前記活性層との間に配置されており、 前記制御領域は、前記下クラッド層の内部に形成されて 、る  The lower cladding layer is disposed between the substrate crystal and the active layer, and the control region is formed inside the lower cladding layer.
ことを特徴とする請求項 7に記載の半導体発光素子。  The semiconductor light-emitting device according to claim 7.
[11] さらに上クラッド層を備えており、 [11] It further comprises an upper cladding layer,
前記上クラッド層は、前記活性層の上方に配置されており、  The upper cladding layer is disposed above the active layer;
前記制御領域は、前記上クラッド層の上方に配置されて 、る  The control region is disposed above the upper cladding layer.
ことを特徴とする請求項 7に記載の半導体発光素子。  The semiconductor light-emitting device according to claim 7.
[12] さらに上クラッド層を備えており、 [12] further comprises an upper cladding layer,
前記制御領域は、前記上クラッド層の内部に形成されて 、る  The control region is formed inside the upper cladding layer.
ことを特徴とする請求項 7に記載の半導体発光素子。  The semiconductor light-emitting device according to claim 7.
[13] 前記ゲート領域には、このゲート領域に電圧を印加するための第三の電極が電気 的に接続されて 、ることを特徴とする請求項 7〜11の 、ずれか 1項に記載の半導体 発光素子。 [13] The deviation according to any one of claims 7 to 11, wherein a third electrode for applying a voltage to the gate region is electrically connected to the gate region. Semiconductor light emitting device.
[14] 前記制御領域および前記ゲート領域と前記活性層との間には、空乏層制限領域が 配置されていることを特徴とする請求項 7〜13のいずれ力 1項に記載の半導体発光 素子。  14. The semiconductor light emitting device according to claim 7, wherein a depletion layer limiting region is disposed between the control region, the gate region, and the active layer. .
[15] 前記空乏層制限領域におけるキャリア濃度は、前記制御領域よりも高いことを特徴 とする請求項 14に記載の半導体発光素子。  15. The semiconductor light emitting element according to claim 14, wherein a carrier concentration in the depletion layer limiting region is higher than that in the control region.
[16] 前記制御領域と前記ゲート領域とは、材料または組成が互いに異なって 、ることを 特徴とする請求項 7〜 15のいずれか 1項に記載の半導体発光素子。 16. The semiconductor light emitting element according to any one of claims 7 to 15, wherein the control region and the gate region are different from each other in material or composition.
[17] 前記ゲート領域には、ほぼ一方向に沿って延長されたスリットが形成されており、前 記スリットの内部には、前記制御領域の一部又は全部が配置されていることを特徴と する請求項 7〜16のいずれか 1項に記載の半導体発光素子。 [17] The gate region is formed with a slit extending substantially along one direction, and a part or all of the control region is disposed inside the slit. The semiconductor light-emitting device according to claim 7.
[18] 前記スリットに面する、前記ゲート領域の側面には、凹凸が形成されていることを特 徴とする請求項 17に記載の半導体発光素子。 18. The semiconductor light emitting element according to claim 17, wherein unevenness is formed on a side surface of the gate region facing the slit.
[19] 前記ゲート領域には、ほぼ一方向に沿って連続して配置された穴が形成されており[19] The gate region is formed with a hole that is continuously arranged along substantially one direction.
、前記穴の内部には、前記制御領域の一部又は全部が配置されていることを特徴と する請求項 7〜16のいずれか 1項に記載の半導体発光素子。 The semiconductor light emitting element according to claim 7, wherein a part or all of the control region is disposed inside the hole.
[20] 前記ゲート領域の屈折率は、前記制御領域の屈折率よりも低くされていることを特 徴とする請求項 7〜 19に記載の半導体発光素子。 20. The semiconductor light emitting device according to claim 7, wherein a refractive index of the gate region is lower than a refractive index of the control region.
[21] 前記ゲート領域を構成する材料は、発生する光の波長に対して吸収性となっている ことを特徴とする請求項 7〜20に記載の半導体発光素子。 21. The semiconductor light emitting element according to claim 7, wherein the material constituting the gate region is absorptive with respect to a wavelength of light generated.
[22] 前記吸収性とされた前記ゲート領域は、半導体に対して、不純物として鉄又はクロ ムを添加することにより構成されていることを特徴とする請求項 21に記載の半導体発 光素子。 22. The semiconductor light emitting element according to claim 21, wherein the absorptive gate region is configured by adding iron or chromium as an impurity to the semiconductor.
[23] 前記スリット又は前記穴の延長方向は、 2以上に分岐されていることを特徴とする請 求項 17〜 19のいずれか 1項に記載の半導体発光素子。  [23] The semiconductor light emitting element according to any one of claims 17 to 19, wherein an extension direction of the slit or the hole is branched into two or more.
[24] 前記分岐されたスリットの 、ずれかに沿う前記ゲート領域には、前記スリットに沿つ て進む光の位相を制御するための第四の電極が電気的に接続されていることを特徴 とする請求項 23に記載の半導体発光素子。 [24] The fourth electrode for controlling the phase of light traveling along the slit is electrically connected to the gate region along the gap of the branched slit. The semiconductor light emitting device according to claim 23.
PCT/JP2005/016774 2004-09-13 2005-09-12 Semiconductor light-emitting element WO2006030746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-265235 2004-09-13
JP2004265235A JP2006080427A (en) 2004-09-13 2004-09-13 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
WO2006030746A1 true WO2006030746A1 (en) 2006-03-23

Family

ID=36059999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016774 WO2006030746A1 (en) 2004-09-13 2005-09-12 Semiconductor light-emitting element

Country Status (2)

Country Link
JP (1) JP2006080427A (en)
WO (1) WO2006030746A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049793B3 (en) 2009-10-16 2011-04-07 Silicon Sensor International Ag Semiconductor photodetector and radiation detector system
US11979001B2 (en) * 2018-07-31 2024-05-07 Sony Corporation Surface-emitting semiconductor laser

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152289A (en) * 1980-04-25 1981-11-25 Univ Osaka Stripe type semiconductor laser with gate electrode
JPS5723291A (en) * 1980-07-16 1982-02-06 Sony Corp Semiconductor laser device
JPS5736882A (en) * 1980-08-15 1982-02-27 Nec Corp Stripe type double hetero junction laser element
JPS5737892A (en) * 1980-08-18 1982-03-02 Mitsubishi Electric Corp Injection type laser
JPS57128989A (en) * 1981-02-02 1982-08-10 Nec Corp Manufacture of semiconductor light emitting element
JPS57162483A (en) * 1981-03-31 1982-10-06 Fujitsu Ltd Semiconductor luminous device
JPS5833887A (en) * 1981-08-25 1983-02-28 Semiconductor Res Found Semiconductor laser
JPS58114479A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Semiconductor light emitting device
JPS60234391A (en) * 1984-05-07 1985-11-21 Fujitsu Ltd Semiconductor light emitting device
JPS61272990A (en) * 1985-05-28 1986-12-03 Fujitsu Ltd Semiconductor laser
JPS62179191A (en) * 1986-01-31 1987-08-06 Nec Corp Semiconductor laser
JPS6344789A (en) * 1986-08-12 1988-02-25 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS63111688A (en) * 1986-10-29 1988-05-16 Mitsubishi Electric Corp Multiple light emission type laser diode array
JPH01209780A (en) * 1988-02-18 1989-08-23 Mitsubishi Electric Corp Semiconductor laser
JPH01246887A (en) * 1988-03-29 1989-10-02 Canon Inc Semiconductor laser device
JPH0281494A (en) * 1988-08-05 1990-03-22 Eastman Kodak Co Diode laser equipped with improved means which electrically modulates emission beam intensity inclusive of turn-on and turn-off and electrically controls the position of emitted laser beam spot
JPH047887A (en) * 1990-04-25 1992-01-13 Nec Corp Semiconductor laser device
JP2002280664A (en) * 2001-02-16 2002-09-27 Samsung Electro Mech Co Ltd Semiconductor laser diode

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152289A (en) * 1980-04-25 1981-11-25 Univ Osaka Stripe type semiconductor laser with gate electrode
JPS5723291A (en) * 1980-07-16 1982-02-06 Sony Corp Semiconductor laser device
JPS5736882A (en) * 1980-08-15 1982-02-27 Nec Corp Stripe type double hetero junction laser element
JPS5737892A (en) * 1980-08-18 1982-03-02 Mitsubishi Electric Corp Injection type laser
JPS57128989A (en) * 1981-02-02 1982-08-10 Nec Corp Manufacture of semiconductor light emitting element
JPS57162483A (en) * 1981-03-31 1982-10-06 Fujitsu Ltd Semiconductor luminous device
JPS5833887A (en) * 1981-08-25 1983-02-28 Semiconductor Res Found Semiconductor laser
JPS58114479A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Semiconductor light emitting device
JPS60234391A (en) * 1984-05-07 1985-11-21 Fujitsu Ltd Semiconductor light emitting device
JPS61272990A (en) * 1985-05-28 1986-12-03 Fujitsu Ltd Semiconductor laser
JPS62179191A (en) * 1986-01-31 1987-08-06 Nec Corp Semiconductor laser
JPS6344789A (en) * 1986-08-12 1988-02-25 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS63111688A (en) * 1986-10-29 1988-05-16 Mitsubishi Electric Corp Multiple light emission type laser diode array
JPH01209780A (en) * 1988-02-18 1989-08-23 Mitsubishi Electric Corp Semiconductor laser
JPH01246887A (en) * 1988-03-29 1989-10-02 Canon Inc Semiconductor laser device
JPH0281494A (en) * 1988-08-05 1990-03-22 Eastman Kodak Co Diode laser equipped with improved means which electrically modulates emission beam intensity inclusive of turn-on and turn-off and electrically controls the position of emitted laser beam spot
JPH047887A (en) * 1990-04-25 1992-01-13 Nec Corp Semiconductor laser device
JP2002280664A (en) * 2001-02-16 2002-09-27 Samsung Electro Mech Co Ltd Semiconductor laser diode

Also Published As

Publication number Publication date
JP2006080427A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US8319229B2 (en) Optical semiconductor device and method for manufacturing the same
US6916672B2 (en) Method of self-aligning an oxide aperture with an annular intra-cavity contact in a long wavelength VCSEL
US6455338B1 (en) Method of manufacturing an integrated semiconductor laser-modulator device
US8306087B2 (en) Multi-level integrated photonic devices
CN111711070A (en) Edge-emitting single-mode laser and manufacturing method
US4809288A (en) Hybrid Y-junction laser array
WO2006030746A1 (en) Semiconductor light-emitting element
US7095769B2 (en) Semiconductor laser diode with higher-order mode absorption layers
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
US6560266B2 (en) Distributed feedback semiconductor laser
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
US20220173573A1 (en) Semiconductor optical element
US6845116B2 (en) Narrow lateral waveguide laser
US6980577B1 (en) Vertical laser cavity with a non-planar top mirror
JP2001274511A (en) Waveguide type optical element
US20220239066A1 (en) Method For Manufacturing Optical Semiconductor Waveguide Window Structure
JPH07283490A (en) Optical semiconductor device
US20030235225A1 (en) Guided self-aligned laser structure with integral current blocking layer
US7023892B2 (en) Semiconductor laser based on matrix, array or single triangle optical cavity with spatially distributed current injection
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
JP3255111B2 (en) Semiconductor laser and manufacturing method thereof
US20230035055A1 (en) Electroabsorption Modulated Laser
US20050141578A1 (en) Laser diode structure with blocking layer
TW202220315A (en) Optoelectronic devices with tunable optical mode and carrier distribution in the waveguides
KR101005812B1 (en) Vertical-cavity surface-emitting laser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase