WO2006030533A1 - 生理的刺激飽和手段を備えた模擬生物装置 - Google Patents

生理的刺激飽和手段を備えた模擬生物装置 Download PDF

Info

Publication number
WO2006030533A1
WO2006030533A1 PCT/JP2004/014051 JP2004014051W WO2006030533A1 WO 2006030533 A1 WO2006030533 A1 WO 2006030533A1 JP 2004014051 W JP2004014051 W JP 2004014051W WO 2006030533 A1 WO2006030533 A1 WO 2006030533A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
reaction
external parameter
stimulus
parameter
Prior art date
Application number
PCT/JP2004/014051
Other languages
English (en)
French (fr)
Inventor
Takanori Shibata
Kotarou Hayashi
Hidekazu Shimada
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Microjenics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Microjenics, Inc. filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to PCT/JP2004/014051 priority Critical patent/WO2006030533A1/ja
Publication of WO2006030533A1 publication Critical patent/WO2006030533A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life

Definitions

  • the present invention relates to a simulated biological apparatus provided with a physiological stimulus saturation means for expressing various operations by computer control, and particularly relates to optimization of sensitivity and response to externally received stimuli.
  • the present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide a simulated biological apparatus having a physiological stimulus saturation property that causes a reaction close to that of a living organism. Disclosure of the invention
  • the present invention is a simulated biological apparatus that generates a plurality of operations by computer control, and a sensory means for detecting a stimulus received from an environment where the simulated biological apparatus is placed as an external parameter and generating a reaction event, Simulated emotion formation means for deriving internal parameters according to the detection status of external parameters included in the reaction event, external parameters and internal parameters included in the reaction event And an action executing means for embodying the reaction action in a predetermined portion of motion, and the perceptual means has an external parameter statistical level stage indicating the detected stimulus amount.
  • the average value and standard deviation value in the effective level range are derived from the number of determinations for each determination, and the one or more external parameters serving as a reference for determining the reaction event using the average value and standard deviation value are determined.
  • Physiological stimulus saturation means for deriving and outputting a threshold value T h V, and an external parameter indicating the detected stimulus amount based on the threshold value T hv of the external parameter output from the physiological stimulus saturation means. It consists of a level judgment unit that distributes each.
  • the physiological stimulus saturation means uses the level statistical unit for deriving the average value A and the standard deviation value ⁇ in the effective level range from the statistics for each statistical level stage, and the average value ⁇ and the standard deviation value ⁇ .
  • a threshold generation unit that derives the threshold T h V of the external parameter from (Equation 1) below may be provided.
  • the threshold increase coefficient is the number of determinations that are less than the threshold value Th V given by (Equation 1) when the distribution of the number of determinations at each statistical level stage is a normal distribution. It is a numerical value set so as to be a desired ratio with respect to the number of determinations.
  • a simulated biological apparatus that causes a plurality of operations to be expressed by control by a computer, each of which receives a stimulus received from the environment where the simulated biological apparatus is placed as an external parameter and generates a reaction event; and the reaction event
  • the simulated emotion forming means for deriving the internal parameters according to the detection status of the external parameters included in ⁇ and the number of continuous detections of the reaction event output from the perception means are measured, and the reaction event including the number of continuous detections is Force output to action execution means
  • a motion execution means for determining a reaction operation for a combination of the number of consecutive detections, an external parameter included in the reaction event, and an internal parameter, and embodying the reaction operation in a motion of a predetermined part. It may be a simulated biological device.
  • the external parameter is a symbol or quantification of a parameter output by the perceptual means (a type or amount of a stimulus detected from the outside via the perceptual means, or information on a detected sensor, etc.). Calculated by using parameters output by the sensory means inside the simulated biological device, such as other simulated emotion forming means, event generating means, and action executing means, or certain rules.
  • the parameters generated based on the above are internal parameters.
  • the effective level range is a numerical range of external parameters scheduled to be used for controlling the simulated biological apparatus.
  • the threshold value T h V of the external parameter serving as a reference for determining the reaction event can be varied based on the determination frequency of the sensor output that is an external parameter and the statistics at each statistical level stage.
  • physiological stimulus saturation can be expressed, such as being insensitive to repeated stimuli, getting used to it, and getting tired.
  • more advanced communication between humans and simulated biological devices can be achieved.
  • FIG. 1 is a functional block diagram showing an example of perception means in a simulated biological apparatus according to the present invention.
  • FIG. 2 is a functional block diagram showing an example of a simulated biological apparatus according to the present invention.
  • FIG. 3 is a diagram relating to the first stimulus saturation means in the simulated biological apparatus according to the present invention
  • FIG. 3 (A) is a graph showing an example of the threshold distribution used for level determination.
  • B) is a graph showing the change in the detection frequency coefficient H over time.
  • FIG. 4 is a functional block diagram showing an example of the functional configuration of the second stimulus saturation means in the simulated biological apparatus according to the present invention, together with the action execution means, the database, and the simulated emotion forming means.
  • FIG. 5 is a functional block diagram showing an example of simulated emotion forming means in the simulated biological apparatus according to the present invention.
  • the example is a so-called robot system that simulates a plurality of operations under the control of a computer system.
  • the simulated biological device includes a plurality of sensors 13 and a plurality of sensors as shown in FIG. It comprises a computer, a computer comprising a switch, a memory and a CPU for controlling the sensor actuator, and is housed in a casing having a predetermined outer shape and movable structure.
  • the perception means 1 for generating an event (reaction event) for detecting a stimulus received by the simulated biological device as an external parameter on the memory and expressing a reaction action, and Even if an external parameter due to a stimulus is not detected, an event (autonomous event) for generating an autonomous operation is generated spontaneously, and an event of the operation expressed from either the reaction event or the autonomous event is selected.
  • an event reaction event
  • autonomous event an event for generating an autonomous operation is generated spontaneously, and an event of the operation expressed from either the reaction event or the autonomous event is selected.
  • Action determining means 4 simulated emotion forming means 2 for deriving internal parameters for expressing simulated emotions according to the detection status of external parameters included in the reaction event, external parameters and internal parameters included in the reaction event (Including those included in autonomous vehicles, the same applies hereinafter)
  • Database 3 in which the number of operation pattern assignments is stored, and external and internal parameters included in the reaction event by referring to the database 3 in response to the reaction event or autonomous event (hereinafter referred to as an event)
  • the action execution means 5 for realizing the reaction action or the autonomous action in the movement of a predetermined part upon receiving the event, and the timer 17 for outputting time information. (See Fig. 2).
  • the sensory means 1 includes a sensor 13 that detects sound, light, infrared, heat, acceleration, or pressure built in the simulated biological device, and performs an arithmetic process on the output of the sensor 13 to perform external processing. And the sensor processing unit 14 that outputs the response event including the above, and the simulated emotion forming unit 2 uses the external parameter obtained from the perceptual unit 1 to derive one emotion parameter of the internal parameter.
  • the emotion parameter is a combination of numerical data composed of a pleasant / unpleasant parameter Kkh and an exciting / sedative parameter Kkt.
  • the simulated emotion forming means 2 detects external parameters of various reaction parameters, and the pleasant / unpleasant parameter is detected.
  • the numerical value of the parameter Kkh and the excitement and calmness parameter Kkt are increased or decreased as appropriate (for example, see Table 1).
  • the emotion of the simulated biological device is expressed in a simulated manner.
  • the simulated emotion changes under certain conditions each time a stimulus is received.
  • motion propagation parameters (repetition number increase / decrease parameter, steady position parameter, motion hold time increase / decrease parameter, speed parameter, (Or amplitude increase / decrease parameters, etc.) are output and given to the following action execution means 5.
  • Table 1
  • the motion determining means 4 generates the autonomous event including internal parameters (autonomous parameters) relating to autonomous motions that appear spontaneously even when no externally detectable stimulus is detected and no external parameters are detected.
  • Autonomous action generating unit 20 to be received and the reaction event and the autonomous event output from the perceptual means 1 are received and the information contained in them is analyzed, and the later-described event event priority information is obtained.
  • the acceptance / rejection decision unit 2 1 outputs either a reaction event or an autonomous event determined according to the priority based on the priority (see Fig. 2).
  • the event includes event segment information for distinguishing the autonomous event from the reaction event, and event priority information indicating the priority order of various events, and, in the case of the reaction event, as the external parameter
  • Event classification information that identifies the sensor or sensors that detected a stimulus from the outside world 1 3 (acceleration sensor, pressure sensor, etc.) and event intensity information that represents the amount of stimulus detected by the sensor or sensors. I have.
  • a stimulus category such as “stroke”, “tap”, “strongly press”, etc., is given depending on the amount of the stimulus. It becomes.
  • the autonomous parameter is included as the event classification information.
  • the operation execution means 5 selects various action patterns according to external parameters and internal parameters included in various events by referring to the database 3 in response to the event and various characters 22 consisting of a motor, a speaker, etc. And a control amount calculation unit for deriving the control parameters of the operation element relating to the operation pattern selected by the operation selection unit 12 based on the operation propagation parameter given from the simulated emotion forming means 2 2 and an actuator controller 24 that receives the control parameters and adjusts control signals such as drive energy to the various actuators 22 (see FIGS. 2 and 4).
  • the sensor processing unit 14 includes a plurality of input interface units 27 that detect the external parameters from outputs of the plurality of sensors 13 that detect various stimuli, and each input interface unit from the sensor 13 2 Event that generates a reaction event assigned to an external parameter or combination obtained through 7
  • a stimulus priority determination unit 26 that determines a reaction event to be adopted by the operation execution unit 5 when determining the reaction operation is provided. I have.
  • an average value A and a standard deviation value ⁇ in the effective level range are derived from the number of determinations for each statistical level step of the external parameter indicating the amount of stimulation detected from the sensor 13 and Physiological stimulus saturation means (hereinafter referred to as the first) that derives and outputs a threshold value Th V of one or more of the external parameters serving as a reference when determining the reaction event using the average value A and the standard deviation value ⁇ .
  • Physiological stimulus saturation means (hereinafter referred to as the first) that derives and outputs a threshold value Th V of one or more of the external parameters serving as a reference when determining the reaction event using the average value A and the standard deviation value ⁇ .
  • Stimulus saturation means 9 Stimulus saturation means 9)
  • the first stimulus saturation means 9 includes a level statistics unit 15 for deriving the average value A and the standard deviation value ⁇ in the effective level range from the statistics for each statistical level stage, and the average value ⁇ and standard There is provided a threshold value generator 8 that uses the deviation value ⁇ to derive the threshold value T h V of the external parameter from the following (Equation 1) (see FIGS. 1 and 2).
  • ⁇ h ⁇ ⁇ + ⁇ ⁇ : Threshold pull-up coefficient (Equation 1)
  • the first stimulus saturation means 9 will be described based on an example of detecting “when stroked” and “when pressed strongly” by the sensory means 1 using the pressure sensor 13.
  • the peak voltage detection unit 16 that extracts the peak voltage V ⁇ that is the output peak value of the sensor 13 is provided in the preceding stage of the first stimulus saturation means 9.
  • the determination (1) processing by the first stimulus saturation means 9 is performed using the peak voltage V ⁇ .
  • the first stimulus saturation means 9 includes a counter 7 for measuring the number of determinations by the level determination unit 6 for each event generation level stage, and an average value ⁇ and a standard deviation value of the peak voltage V p as the external parameter.
  • Level statistics section for deriving ⁇ 1 5 and the above
  • the threshold value V th is added to the value obtained by adding the threshold value increase coefficient calculated by using (Equation 1) from the threshold value increase coefficient based on the detection frequency coefficient H described later and the standard deviation value to the average value A of the external parameter.
  • an analog voltage signal V is output from the sensor 13 and input to the peak voltage detection unit 16, and the peak voltage V of the output for the stimulus at that time is output as the signal of the peak voltage detection unit. It is held at the terminal or as data in the memory of the peak voltage detector 16.
  • the held peak voltage V p is inputted to the level determination unit 6 and is updated at any time by the threshold generation unit 8 (in this example, three thresholds of VL (fixed value), VI, and V 2).
  • the threshold generation unit 8 in this example, three thresholds of VL (fixed value), VI, and V 2.
  • the counter 7 in this example measures the number of determinations of both “when stroked” and “when pressed hard” together, and the level statistics section excludes bands not to be detected below the VL.
  • the band from 0.8 [V] to 2.6 [V] is divided into 9 statistical level steps for each ⁇ 0.2 V as shown in Table 4, and the number of determinations for each band is measured. .
  • the sum of all the bands is obtained by multiplying the intermediate value of each band by the number of times of each determination, and the average value A is derived by dividing the sum by the sum of the number of detections of each band.
  • the standard deviation value ⁇ is derived for the entire band of the level range.
  • the threshold value generator 8 calculates the threshold values V 1 and V 2 from the average value A and the standard deviation value ⁇ as follows (Equation 2) and (Equation 3). )
  • V 1 ⁇ + ⁇ 1 X ⁇ (Equation 2)
  • V 2 ⁇ + ⁇ 2 x ⁇ (Equation 3)
  • the value is set to a value sufficiently smaller than the threshold value V 2, and the relative stimulus amount difference (detection voltage difference) detected when “stroked” and “pressed strongly” And the appropriate setting considering the balance of the occurrence probability of each event.
  • the number of threshold values T h V may be changed as appropriate according to the event to be detected.
  • V 2 1.672814 [V] + 1.65x 0.252685 [V]
  • threshold value raising coefficients for obtaining the respective threshold values T h V are provided.
  • it is calculated from the following (Equation 4) and (Equation 5) in order to include the effects of both judgments.
  • H is a detection frequency coefficient
  • the initial value is 0 as the lower limit
  • the upper limit is 1.
  • the detection frequency coefficient H is updated according to the following (Equation 6) every time a band “when pressed hard” and a band “when stroked” is detected.
  • Hm is a value immediately before H n and is a detection frequency coefficient before the final detection is performed.
  • a is an arbitrary coefficient that determines how the detection frequency coefficient H increases, and is set to 2 in this example.
  • the detection frequency coefficient H is calculated from the final distribution corresponding to these reaction events.
  • the time-dependent reduction function given to the threshold generation unit 8 performs arithmetic processing over time so as to decrease at every constant time t measured based on the timer 17 as shown in FIG. 3 (B).
  • the condition is according to the following (Equation 7).
  • H (0) is the detection frequency coefficient H at the final allocation time
  • H (t) is the detection frequency coefficient H after the elapse of time t.
  • 10 seconds is selected as the predetermined time t.
  • G is an arbitrary factor that determines how much H decreases, and is 0 or more and less than 1. In this example, 0.5 is selected.
  • the threshold value T h V of the level determination unit 6 is adjusted.
  • the band width of “when pressed hard” or the band of “when stroked” is changed according to the frequency with which the stimulus is applied. Therefore, different reaction behaviors can be developed depending on the frequency of the stimulation. If such a technique is used, the sensitivity to the same stimulus will gradually decrease when the same stimulus continues, such as stroking or pressing hard, and conversely, if the stimulus is far away, It is possible to realize a physiological phenomenon that the sensitivity to is gradually restored.
  • the second stimulation saturation means 1 1 detects the reaction event that has passed through the action determination means 4, and the action pattern of the reaction action for the same kind of reaction event according to the number of continuous inputs for the reaction event having the same content. It sends out a new reaction event (hereinafter referred to as “substitute event”) that can change the assembly of the machine, and encourages the action execution means 5 to change the action pattern.
  • substitute event a new reaction event
  • the second stimulus saturation means 1 1 in the example measures the number of consecutive detections of the reaction event having the same content detected from the perception means 1 through the action determination means 4, and the alternative event including the number of continuous detections is measured.
  • the operation execution means 5 for realizing the reaction operation in the motion of a predetermined part is provided.
  • the counter 10 counts the measured value every time a reaction event with a different content is output.
  • the operation selecting unit 12 of the operation executing means 5 has a function of selecting an operation pattern corresponding to various parameters included in the event, but has a configuration as the second stimulus saturation means 11 1.
  • the external parameters included in the alternative event affect the selection process of the operation pattern by the operation selection unit 12 as an assembly change parameter, for example, depending on the number of times of continuous detection.
  • an alternative operation pattern in which any step is skipped from the normal operation pattern registered in the database 3 is sent to the actuator controller 24.
  • the basic operation pattern shown in Table 5 below is given to the actuator controller 24 of the action execution means 5 for the reaction event generated by the stimulus that the front fin is stroked.
  • step 3 of step No. step 3 of step No.
  • step 4 (shake the head up and down) will be sent to the actuator controller 24 of the action execution means, and even though it is a reaction action with the same reaction event, The destination and contents of the control signal sent from the actuator controller 24 will be different.
  • the mouth pot which is a simulated biological device
  • the mouth pot which is a simulated biological device

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

明 細 書 生理的刺激飽和手段を備えた模擬生物装置 技術分野
本発明は、コンピュータ制御により種々の動作を発現させる生理的刺激飽和 手段を備えた模擬生物装置に関するものであり、特に、外部から受ける刺激に 対する感度や反応の適正化に関するものである。 背景技術
今日、コンピュータによる制御によって複数の動作を発現させる模擬生物装 置が種々案出されており、なかには、模擬生物装置自らが動作パターンを新た に生成する手法や、生物の反射運動を模擬した技術も、例えば、特開 2 0 0 2 - 1 6 3 6 3 1号公報又は特開平 1 0— 3 4 5 7 7号公報のなかに開示され ている。
しかしながら、従来の模擬生物装置は、刺激の種類に対応した動作パターン は生成するものの、度重なる刺激に対して鈍感となつたり、慣れてしまつたり、 飽きてしまったりと言った生態(以下、 「生理的刺激飽和性」 と記す。) は考慮 されずにいる。
本発明は上記実情に鑑みて提案されたものであって、生物に近い反応を発現 させる生理的刺激飽和性を持った模擬生物装置を提供することを目的として いる。 発明の開示
本発明は、コンピュータによる制御によって複数の動作を発現させる模擬生 物装置であり、当該模擬生物装置の置かれた環境から受ける刺激をそれぞれ外 部パラメータとして検出し反応ィベントを発生する知覚手段と、前記反応ィべ ン卜に含まれる外部パラメータの検出状況に応じ内部パラメータを導く模擬 感情形成手段と、前記反応ィベン卜に含まれる外部パラメ"タと内部パラメ一 タとの組み合わせに対する反応動作を決定すると共に、当該反応動作を所定部 位の運動に具現化する動作実行手段とを備え、前記知覚手段に、検出した刺激 量を示す外部パラメータの統計用レベル段階毎の判定回数から有効レベル範 囲における平均値及び標準偏差値を導くと共に、前記当該平均値及び標準偏差 値を用いて前記反応ィベントを決定する際の基準となる単数又は複数の前記 外部パラメータの閾値 T h Vを導き出力する生理的刺激飽和手段と、当該生理 的刺激飽和手段から出力された外部パラメータの閾値 T h vに基づいて前記 検出した刺激量を示す外部パラメータをィベン卜発生用レベル段階毎に振り 分けるレベル判定部とを備えたことから成る。
前記生理的刺激飽和手段には、有効レベル範囲における平均値 A及び標準偏 差値 σを前記統計用レベル段階毎の統計から導くレベル統計部と、前記平均値 Α及び標準偏差値 σを用い前記外部パラメータの閾値 T h Vを下記(式 1 )よ リ導く閾値生成部とを備える等すればよい。
τ h V = A + a σ :閾値引上係数 (式 1 )
尚、前記閾値引上係数とは、前記統計用レベル段階毎の判定回数の分布が正 規分布化した場合に前記(式 1 )で与えられる閾値 T h Vの値を下回る判定回 数が全判定回数に対して所望の割合となる様に設定した数値である。
時刻情報を発生するタイマを備えると共に、前記生理的刺激飽和手段に、前 記レベル判定部のィベント発生用レベル段階毎の判定回数を計測するカウン タと、前記ィベン卜発生用レベル段階毎の振り分けを行う度に前記閾値引上係 数 を所定量引き上げる係数引上部と、前記ィベン卜発生用レベル段階への最 終の振り分けから一定時間 t経過毎に前記閾値引上係数 を所定量引き下げ る経時還元部を備えた構成を加えることも出来る。
又、コンピュータによる制御によって複数の動作を発現させる模擬生物装置 であり、当該模擬生物装置の置かれた環境から受ける刺激をそれぞれ外部パラ メータとして検出し反応イベントを発生する知覚手段と、前記反応ィベン卜に 含まれる外部パラメータの検出状況に応じ内部パラメータを導く模擬感情形 成手段と、前記知覚手段から出力された反応ィベン卜の連続検出回数を計測し、 当該連続検出回数を含む反応イベントとして前記動作実行手段へ出力する力 ゥンタと、 前記連続検出回数、 前記反応イベントに含まれる外部パラメータ、 及び内部パラメータの組み合わせに対する反応動作を決定すると共に、当該反 応動作を所定部位の運動に具現化する動作実行手段とを備えた模擬生物装置 としても良い。
尚、ここで、前記外部パラメータは、前記知覚手段が出力するパラメータ(当 該知覚手段を介して外部から検出した刺激の種類、量、或いは検出したセンサ に関する情報等を、記号化或いは数量化したもの)のみを言うものとし、その 他の模擬感情形成手段、イベント発生手段、及び動作実行手段等、模擬生物装 置の内部において、知覚手段が出力したパラメータを用いて算出され、或いは 一定の規則に基づいて生成されたパラメータ等は内部パラメータとする。また、 前記有効レベル範囲とは、模擬生物装置の制御に用いることが予定されている 外部パラメータの数値範囲である。
本発明による模擬生物装置によれば、外部パラメータとなるセンサ出力の判 定頻度や前記統計用レベル段階毎の統計により、反応イベントを決定する際の 基準となる外部パラメータの閾値 T h Vを可変することで、刺激の種類に対応 した動作パターンを発現させることはもとより、度重なる刺激に対して鈍感と なつたり、慣れてしまつたり、飽きてしまったりと言つた生理的刺激飽和性を 発現し、人間と模擬生物装置間のより高度なコミュニケーションが図ることが 出来る。 図面の簡単な説明
第 1図は、本発明による模擬生物装置における知覚手段の一例を示す機能ブ 口ック図である。
第 2図は、 本発明による模擬生物装置の一例を示す機能プロック図で める。
第 3図、本発明による模擬生物装置における第 1刺激飽和手段に関する図で あって、第 3図 (A ) は、 レベル判定に用いられる閾値分布の一例を示すグラ フであり、第 3図 (B ) は、時間の経過による検出頻度係数 Hの変化を示すグ ラフである。 第 4図は、本発明による模擬生物装置における第 2刺激飽和手段の機能構成 例を、動作実行手段、 データベース、及び模擬感情形成手段と共に示した機能 ブロック図である。
第 5図は、本発明による模擬生物装置における模擬感情形成手段の一例を示 す機能ブロック図である。 発明を実施するための最良の形態
本発明による模擬生物装置の実施の形態を図面に基づき説明する。
当該例は、コンピュータシステムによる制御によって複数の動作を発現させ る模擬生物装置、 所謂ロボットシステムであって、 当該模擬生物装置は、第 2 図に示すように、複数のセンサ 1 3、 及び複数のァクチユエータ、 並びに、 前 記センサゃァクチユエータを制御するスィッチ、メモリ、及び C P Uからなる コンピュータ等で構成され、所定の外形と可動構造を有する筐体に収納されて いる。
そして、 これらによって形成される機能モジュールとして、当該模擬生物装 置が受ける刺激をそれぞれ前記メモリ上に外部パラメータとして検出し反応 動作を発現する為のイベント (反応イベント) を発生する知覚手段 1 と、刺激 による外部パラメータが検出されない場合でも自律動作を発現する為のィべ ント (自律ィベン卜) を自発的に発生し前記反応ィベント又は当該自律ィベン 卜のいずれかから発現する動作のイベントを選択する動作決定手段 4と、前記 反応ィベン卜に含まれる外部パラメータの検出状況に応じ模擬感情を表現す る為内部パラメータを導く模擬感情形成手段 2と、前記反応ィベントに含まれ る外部パラメータと内部パラメータ (自律ィベン卜に含まれるものを含む。以 下同じ。) との組み合わせに対応した複数の動作パターンの割り当てが保存さ れたデータベース 3と、前記反応イベント又は自律イベント (以下、 イベント と記す。) を受けて当該データベース 3を参照し前記反応ィベン卜に含まれる 外部パラメータと内部パラメータとの組み合わせに対する反応動作又は自律 動作を決定すると共に、前記ィベントを受けて前記反応動作又は自律動作を所 定部位の運動に具現化する動作実行手段 5と、時刻情報を出力するタイマ 1 7 とを備える模擬生物装置である (第 2図参照)。
前記知覚手段 1は、 当該模擬生物装置に内蔵された音、 光、 赤外線、 熱、 加 速度、或いは圧力を検出するセンサ 1 3と、 当該センサ 1 3の出力に対し演算 処理等を行い外部パラメータを含んだ前記反応イベントとして出力するセン サ処理部 1 4とで構成され、前記模擬感情形成手段 2は、前記知覚手段 1から 得た外部パラメータを用いて前記内部パラメータの一つの感情パラメータを 導く感情演算部 1 8と、算出された前記感情パラメータから動作パターンにか かる動作保持時間、 反復回数、 動作量 (振幅)、 定常位置、 及び動作速度 (以 下、 動作要素と総称する。) を変化させる為の内部パラメータであるところの 動作波及パラメータを導く動作波及量演算部 1 9とで構成される(第 2図及び 第 5図参照)。
前記感情パラメータは、快 不快パラメータ Kkhと、興奮 沈静パラメータ Kktからなる数値データの組み合わせであって、各種反応ィ ン卜の外部パラ メータを模擬感情形成手段 2が検出することで、前記快ノ不快パラメータ Kkh と、 興奮 沈静パラメータ Kktなる数値データの増減が適宜行われ (例えば、 表 1参照)、 それら感情パラメータの増減に基づき表 2の如く "喜"、 "怒"、 "哀"、 "楽"、 及び "ニュートラル" からなる五つの模擬感情帯の何れかとし て認定され、 且つ前記動作実行手段 5によリ反応動作として表現される結果、 当該模擬生物装置の感情が模擬的に表現され、 また、 その模擬感情は、刺激を 受ける毎に一定条件で変化することとなる。
即ち、模擬感情形成手段 2からは、上記感情パラメータに基づいて、例えば 表 2の如く、 Kkh≥70で、 且つ Kkt≥70の場合には "喜"、 Kkh≤-70で、 且つ Kkt≥70の場合には "怒"、 Kkh≤-70で、 且つ Kkt≤- 70の場合には "哀"、 Kkh ≥70で、且つ Kkt≤- 70の場合には "楽"、そして、 - 70<Kkh<70又は- 70<Kkt <70 の場合には "ニュートラル" として模擬感情の位置づけが行われる。 そ して、反応イベントを検出する度に、 それぞれの模擬感情帯に応じて、例えば 表 3の如く動作波及パラメータ (反復回数増減パラメータ、定常位置パラメ一 タ、動作保持時間増減パラメータ、速度パラメータ、 或いは振幅増減パラメ一 タ等) が出力され、 下記動作実行手段 5に与えられることとなる。 表 1
Figure imgf000008_0001
表 2
Figure imgf000008_0002
表 3
動嫌及パラメータ 値
"哀" "楽" "ニュートラル" 反復回数増 ラメータ
【回】 前ひれ (左) (右) +2 +2 +1 + 1 ±0 しつぼ +2 +2 ±0 ±0 + 1 定常位置パラメ一タ
【%】 まぶた (左) (右)…上限位置 100 100 100 100 100 首 (上下) 下限位置 70 70 0 0 0 首 (站) 50 50 50 50 50 前ひれ (左) (右) 0 0 100 75 50 しっぽ 50 50 50 50 50 動 m ^時間増 、°ラメータ
【ms】 まぶた (左)(右) ±0 ±0 + 1500 + 1500 + 750 しっぽ ±0 ±0 +600 +600 +600 増 ラメータ
【速】 まぶた (左) (右) + 1 + 1 -1 -1 ±0 首 (上下) (¾ &) +1 + 1 -1 —1 ±0 前ひれ (お (右) + 1 -1 -1 ±0 ±0 しっぽ + 1 —1 -1 ±0 ±0 振幅増 ラメータ
【%】 首 40 40 100 100 80 前ひれ (左)(右) 40 40 100 100 80 しつぼ 40 40 100 100 80 前記動作決定手段 4は、外部から検出可能な刺激が無く外部パラメータが検 出されない場合であっても自発的に発現させる自律動作に関する内部パラメ ータ (自律パラメータ) を含んだ前記自律イベントを発生させる自律動作発生 部 2 0と、前記知覚手段 1から出力された前記反応ィベン卜及び前記自律ィベ ントを受けてそれらに含まれる情報を解析し、予め定められた後記ィベン卜優 先情報に基づく優先順位に従って決定された反応ィベント又は自律ィベント のいずれかを出力する採否決定部 2 1 とで構成される (第 2図参照)。
前記ィベントは、前記自律イベントと反応イベントとを区別するィベン卜区 分情報、及び種々のィベン卜の優先順位を示すィベント優先情報を備え、更に、 前記反応ィベントである場合には前記外部パラメータとして外界から刺激を 検出した単数又は複数のセンサ 1 3 (加速度センサ、 或いは感圧センサ等) を 特定するィベン卜分類情報、及び前記単数又は複数のセンサが検出した刺激の 量を表すィベント強度情報を備えている。 これらの外部パラメータによって、 例えば、前記ィベント分類情報が感圧センサを示す場合には、その刺激量によ つて "撫でる"、 "叩く"、 "強く押す"などの刺激のカテゴリーが与えられるこ ととなる。尚、前記自律ィベントである場合には、前記ィベン卜区分情報とし て前記自律パラメータ (内部パラメータ) が含まれることとなる。
前記動作実行手段 5は、モータやスピーカ等からなる各種ァクチユエータ 2 2と、前記イベントを受けて前記データベース 3を参照し種々のィベン卜に含 まれる外部パラメータや内部パラメータに応じた動作パターンを選定する動 作選択部 1 2と、前記模擬感情形成手段 2から与えられる動作波及パラメータ に基づいて前記動作選択部 1 2により選定された動作パターンにかかる前記 動作要素の制御パラメータを導く制御量演算部 2 3と、当該制御パラメータを 受けて前記各種ァクチユエータ 2 2への駆動エネルギー等の制御信号を調整 するァクチユエータ制御部 2 4とで構成される (第 2図及び第 4図参照)。 前記センサ処理部 1 4は、種々の刺激を検出する複数のセンサ 1 3の出力か ら前記外部パラメータを検出する複数の入力インタ一フェース部 2 7と、前記 センサ 1 3から各々の入力インターフェース部 2 7を経て得られる外部パラ メータ又はその組み合わせに割り当てられた反応イベントを発生するィベン 卜発生部 2 5と、前記ィベント究生部 2 5から出力された反応ィベン卜の競合 を検知した場合、即ち、一定の時間帯に前記ィベント発生部 2 5から反応ィべ ン卜が複数同時に或いは比較的短い時間差を以て連続して出力された発生し た場合等に、前記反応動作を決定する際に前記動作実行手段 5で採用すべき反 応イベントを決定する刺激優先度判定手段 2 6を備えている。
各入力インタ一フェース部 2 7には、センサ 1 3から検出した刺激量を示す 外部パラメータの統計用レベル段階毎の判定回数から有効レベル範囲におけ る平均値 A及び標準偏差値 σを導くと共に、前記当該平均値 A及び標準偏差値 σを用いて前記反応ィベントを決定する際の基準となる単数又は複数の前記 外部パラメータの閾値 T h Vを導き出力する生理的刺激飽和手段(以下、第 1 刺激飽和手段 9と記す。) と、 当該生理的刺激飽和手段 9から出力された外部 パラメータの閾値 T h Vに基づいて前記検出した刺激量を示す外部パラメ一 タをィベン卜発生用レベル段階毎に振り分けるレベル判定部 6とを備えてい る (第 1図及び第 2図参照)。
前記第 1刺激飽和手段 9には、前記有効レベル範囲における平均値 A及ぴ標 準偏差値 σを前記統計用レベル段階毎の統計から導くレベル統計部 1 5と、前 記平均値 Α及び標準偏差値 σを用い前記外部パラメータの閾値 T h Vを下記 (式 1 )より導く閾値生成部 8とが備えられている(第 1図及び第 2図参照)。 τ h ν = Α + α σ :閾値引上係数 (式 1 )
実施例
以下、上記第 1刺激飽和手段 9を、圧力センサ 1 3を用いた知覚手段 1によ リ、 "撫でられた場合" と "強く押された場合" を検出する例に基づいて説明 する。当該例では前記センサ 1 3の出力がアナログ電圧 Vである故に、当該第 1刺激飽和手段 9の前段に当該センサ 1 3の出力ピーク値であるピーク電圧 V ρを取り出すピーク電圧検出部 1 6が備えられ、当該ピーク電圧 V ρを用い て前記第 1刺激飽和手段 9による判断■処理が行われる。
当該第 1刺激飽和手段 9は、前記ィベント発生用レベル段階毎の前記レベル 判定部 6による判定回数を計測するカウンタ 7と、前記外部パラメータたるピ ーク電圧 V pの平均値 Α及び標準偏差値 σを導くレベル統計部 1 5、及び前記 外部パラメータの平均値 Aへ後記検出頻度係数 Hに基づく前記閾値引上係数 及び前記標準偏差値びから(式 1 )を用いて算出した閾値引上数を加えてな る値に前記閾値 V t hを更新する閾値生成部 8からなる。
当該例においては、センサ 1 3からアナログ電圧信号 Vが出力され、前記ピ ーク電圧検出部 1 6に入力されてその時の刺激に対する出力のピーク電圧 V が、信号として当該ピーク電圧検出部の出力端子に保持されるか、データと して当該ピーク電圧検出部 1 6のメモリに保持される。保持されたピーク電圧 V pは、前記レベル判定部 6に入力され、前記閾値生成部 8によって随時更新 された複数 (この例では V L (固定値), V I , 及び V 2の三つ) の閾値 T h Vをもって、 "強く押された場合" の帯域、 "撫でられた場合" の帯域、 "撫で られた場合"の下限調整に用いる予備帯域、及び検出対象としない帯域 (無効 レベル範囲)からなる複数(この例では四つ) の前記イベント発生用レベル段 階に振り分けられる (第 3図 (A ) 参照)。
当該例におけるカウンタ 7は、前記 "撫でられた場合" と "強く押された場 合"双方の判定回数を合わせて計測し、前記レベル統計部は、前記 V L以下の 検出対象としない帯域を除く 0 . 8 [ V ] から 2 . 6 [ V ] の帯域を表 4の如 < 0 . 2 V毎に 9つの前記統計用レベル段階に分割し、各帯域の判定回数をそ れぞれ計測する。そして、各帯域の中間値に各々の判定回数を乗じた数の全帯 域分の総和を求め、前記各帯域の検出回数の総和で除して平均値 Aを導くと共 に、 これらの有効レベル範囲の全帯域についての標準偏差値 σを導く。
表 4 ピーク電圧 V pの検出頻度
(ランク) 判定回数
2.4 [V] く V p≤ 2.6 [V] 2.5 [V] 1
2.2 [V] <V p≤ 2.4 [V] 2.3 [V] 5
2.0 [V] く V p≤ 2.2 [V] 2.1 [V] 100
1.8 [V] く V p≤ 2.0 [V] 1.9 [V] 200
1.6 [V] く V p≤ 1.8 [V] .1.7 [V] 500
1.4 [V] く V p 1.6 [V] 1.5 CV] 200
1.2 [V] <V p≤ 1.4 [V] 1.3 [V] 80
1.0 [V] く V p≤ 1.2 [V] 1.1 [V] 60
0.8 [V] <V p≤ 1.0 [V] 0.9 [V] 9 前記閾値生成部 8は、上記平均値 A及び標準偏差値 σから閾値 V 1、 V2を 次の (式 2) 及び (式 3) より算出する。
V 1 =Α + α 1 X σ (式 2)
V 2 =Α + θί 2 x σ (式 3)
ここで、 Q , 2は、 "撫でられた場合"の下限閾値 V 1と、 "強く押され た場合"の下限閾値 V 2それぞれの閾値引上係数であって、前記各前記統計用 レベル段階の判定回数の分布状態が正規分布となることを想定し、前記閾値 V 2以下に前記判定回数の約 950/0が含まれることとなる様に、 2 =1.65 と した。 Q にあっては、 前記閾値 V 2よりも充分小さい値に設定すると共に、 前記 "撫でられた場合" と "強く押された場合"に検出される相対的な刺激量 差(検出電圧差) と、各イベントの発生確率のバランスを考慮して適宜設定す る。また、 当該閾値 T h Vの個数も、検出する事象によって適宜変更すればよ い。
ここで、 1 =一 1.65,とし、 実際に表 1の数値を当てはめると、 平均電圧 A[V]=2.5[V] x1+2.3[V] x5+2.1[V] X100十… +0.9[V] x9
= 1.672814[V]
標準偏差値 σ[ν] =0.252685 [V]
であり、
V 1 =1.672814 [V] + (-1.65) x 0.252685 [V] =1.255884 [V]
V 2 = 1.672814 [V]+1.65x 0.252685 [V]
=2.089744 [V]
当該例においては、上記の如く閾値 T h Vが二つ設定され、それぞれの閾値 T h Vを得るための閾値引上係数が設けられ、 それらは、更に前記 "撫でられ た場合" と "強く押された場合" 双方の判定回数からの影響をも含めるべく、 次の (式 4) 及び (式 5) より算出される。
a 1 =-1.65+ 2 H (式 4)
2 =1.65+ 2 H (式 5)
尚、前記 Hは、検出頻度係数であって、初期値は下限値の 0で、上限は 1で
Soる。
当該検出頻度係数 Hは、 "強く押された場合" の帯域、 及び "撫でられた場 合" の帯域が検出される毎に次の (式 6) に則って更新される。
H n =Hm+ ( 1 -Hm) ÷ a (式 6)
ここで、 Hmは、 H nの直前の値であり、最終の検出が行われる前の検出頻 度係数である。また、 aは、検出頻度係数 Hの増加具合を決める任意の係数で あって、 当該例では 2に設定されている。
また、前記 "撫でられた場合" と "強く押された場合"の次なる判定が得ら れない場合には、検出頻度係数 Hは、これらの反応ィベン卜に相当する最終の 振り分けから、 前記閾値生成部 8に与えられた経時還元機能によって第 3図 ( B)の如く、前記タイマ 1 7に基づいて計測された一定時間 t毎に減少する 様に経時的な演算処理がなされ、 その減少具合は、次の (式 7) に則ったもの となる。
H ( t ) = H (0) G (式 7)
ここで、 H (0)は、前記最終の振り分け時点における検出頻度係数 Hであり、 H (t)は、それから時間 t経過後の検出頻度係数 Hである。当該例における前 記一定時間 tには 1 0秒が選択されてる。 Gは Hの減少具合を決める任意の係 数であって 0以上 1未満とする。 当該例では 0. 5が選択されている。
上記構成によれば、前記レベル判定部 6の閾値 T h Vを加減することによつ て、同様の外部パラメータを検出した際にあっても、当該刺激が与えられる頻 度に応じて "強く押された場合"の帯域、 又は "撫でられた場合"の帯域の広 狭が変更されるので、当該刺激が与えられる頻度に応じて異なった反応動作を 発現させることができる。 この様な手法を採れば、撫でられ続けたり、強く押 され続けたりと言うように同じ刺激が継続した場合に、同じ刺激に対する感度 が徐々に鈍化し、逆に、当該刺激が遠のくと当該刺激に対する感度が徐々に復 活すると言う生理現象を実現できることとなる。
更に、 当該模擬生物装置には、同じ刺激が連続して与えられた場合に、 同じ 動作パターンが延々と継続して或いは反復して選択される事態となるのを防 止する別の手段 (以下、 第 2刺激飽和手段 1 1と記す。) が設けられている。 当該第 2刺激飽和手段 1 1は、前記動作決定手段 4を経た反応イベントを検出 し、同じ内容の反応ィベン卜についての連続入力回数に応じて同種の反応ィべ ン卜に対する反応動作の動作パターンの組立を変化させ得る新規な反応ィべ ント (以下、 代替イベントと記す。) を送出し動作実行手段 5に対する動作パ ターン変更の働きかけを行うも である。
当該例における第 2刺激飽和手段 1 1は、前記知覚手段 1から前記動作決定 手段 4を経て検出した同じ内容の反応ィベン卜の連続検出回数を計測し、当該 連続検出回数を含む代替ィベントを前記動作実行手段 5へ出力するカウンタ
1 0と、前記連続検出回数、前記反応ィベン卜に含まれる外部パラメータ、及 び内部パラメータとの組み合わせに対応した複数の動作パターンの割り当て が保存されたデータベース 3と、前記連続検出回数、前記反応ィベン卜に含ま れる外部パラメータ、及び内部パラメータの組み合わせに対する反応動作を決 定すると共に、当該反応動作を所定部位の運動に具現化する動作実行手段 5と を設けることによって構成される。
前記カウンタ 1 0は、異なる内容の反応イベントが出力される度に計測値を
" 0 "にリセッ卜し、同じ内容の反応ィベン卜が続く限りその計測値をインク リメントする。前記動作実行手段 5の動作選択部 1 2は、前記ィベン卜に含ま れる種々のパラメータに応じた動作パターンを選定する機能を持つが、前記第 2刺激飽和手段 1 1としての構成を具備することによって、前記代替イベント に含まれる連続検出回数と当該代替ィベン卜に含まれる外部パラメータとが 組立変更パラメータとして当該動作選択部 1 2による動作パターンの選定処 理に影響を加え、例えば、前記連続検出回数に応じて前記データベース 3に登 録された通常の動作パターンから何れかのステップがスキップされた代替動 作パターンが前記ァクチユエータ制御部 2 4へ送られるという作用が生じる。 上記作用によって、例えば、前ひれが撫でられるという刺激によつて発生す る反応ィベン卜に対し、下記表 5に示す基本的な動作パターンが動作実行手段 5のァクチユエータ制御部 2 4に与えられることとなるが、同じ内容の反応ィ ベン卜が 2回以上入力された場合には、当該動作シーケンスのうちの力ッコ書 きで記されたステップ N o . のステップ 3 (首を左右に振る) と、 ステップ 4 (首を上下に振る)とをスキップした代替パターンが動作実行手段のァクチュ エータ制御部 2 4に送出されることとなり、同じ内容の反応ィベントによる反 応動作でありながらも、ァクチユエータ制御部 2 4から送出される制御信号の 行き先、 及びその内容は異なってくることとなる。
表 5
動 、。ターン 動 ffiS及パラメータ
刺 動作 制御パラメ -ータ 次ステップへの
/動 動作 振幅 反復 定常 動作 激 作 内容 銜条件 Z 鈹 増減 回数 位置 體 節時間 【速】 【%】 増減 【%】 時間 プ 1 【回】 【ms】
° ン
ァク 制御 動作 反復 動作 節
チユエ 目標 回数 储 *ί牛 時間
ータ 位置 【速】 【回】 時間
No. 【%】 【msl
1 鳴き 3
前 ― ― ― ― 時間 800
ひ 声 うれし 後 【ms】
れ 発生 い 銜
2 ァク 6 100 2 00 を ― 一 ァク 一 ±0 100 ― 1
チュ 前 目限 中低 チュェ
撫 湔 (前
I エー ひれ 速 —タ ひれ ひれ ひれ
タ (右) 動作完 速 定常 喜 動作 了後 度) © 位
(3) ァク 4 100 3 一 一 ァク ― +1 80 100 一 チュ 首 右限 中低 チュ工 (首 (首 (首 ェ一 速 —タ
タ 動作 速 定常 動作 完了後 m ΦΙ) 位 銜
(4) ァク 3 ( 定 3 ァク 一 +1 100
チュ 首 常位 中低 チュェ (首 (首 エー 上下 速 —タ 上下 上下 タ 動作 速 定常 動作 完了後 位 衡
5 ァク 共通 1 900 ァク 一 ±0 100 + 500 チュ 動作 1 繊 チュェ ほぶ ほぶ (まぶ エー 剛 ータ た た た全開 タ 動作 速 定常 時間) 動作 7d ί後 度) 位 節
6 ァク 共通 4 1 500 ァクチュ 一 + 1 50 +1 100 +500 チュ 動作 2 咼速 エータ ( 尻 ( 尻 ( 尻 ( 尻 (MM ェ' ~ 観振り) 動作 尾 尾 尾 尾 反 復 タ 完了後 反復 定常 時 動作 新 ΨΙ) 回 位 待ち 時間)
7 動作
終了 産業上の利用可能性
本発明によって、模擬生物装置たる口ポットに、感情を持っているかの様な 行動を起こさせることによって、従来のロボットで得られていた動作の予測性 のみならず、従来のロボッ卜では得られなかった個性までもが、ロボッ卜に与 えられることとなり、 更により複雑な学習能力も与えられることとなる結果、 ロボッ卜と人間との間で、より緻密なコミュニケーションを持つことが可能と なリ、前記個性の個別的確な制御によリ、ユーザーに癒しを与えることも可能 となる。

Claims

請 求 の 範 囲
1.コンピュータによる制御によって複数の動作を発現させる模擬生物装置で あって、当該模擬生物装置が受ける刺激をそれぞれ外部パラメータとして検出 し反応ィベントを発生する知覚手段(1 ) と、前記反応ィベン卜に含まれる外 部パラメータの検出状況に応じ内部パラメータを導く模擬感情形成手段 ( 2 ) と、前記反応ィベン卜に含まれる外部パラメータと内部パラメータとの組み合 わせに対する反応動作を決定すると共に、当該反応動作を所定部位の運動に具 現化する動作実行手段 (5) と、
前記知覚手段(1 ) に、検出した刺激量を示す外部パラメータの統計用レべ ル段階毎の判定回数から有効レベル範囲における平均値(A)及び標準偏差値
(び) を導くと共に、前記当該平均値 (Α) 及び標準偏差値 ( C ) を用いて前 記反応イベントを決定する際の基準となる単数又は複数の前記外部パラメ一 タの閾値 (T h V ) を導き出力する生理的刺激飽和手段 (9) と、 当該生理的 刺激飽和手段(9) から出力された外部パラメータの閾値 (T h v) に基づい て前記検出した刺激量を示す外部パラメータをィベント発生用レベル段階毎 に振り分けるレベル判定部(6)と、を備えたことを特徴とする模擬生物装置。
2.前記生理的刺激飽和手段( 9 )に、前記有効レベル範囲における平均値( A ) 及び標準偏差値(σ)を前記統計用レベル段階毎の統計から導くレベル統計部
(1 5) と、 前記平均値 (Α) 及び標準偏差値 (σ) を用い前記外部パラメ一 タの閾値 (T h V ) を下記 (式 1 ) より導く閾値生成部 (8) とを備えたこと を特徴とする請求の範囲第 1項記載の模擬生物装置。
T h V = Α + α? X σ :閾値引上係数 (式 1 )
3. 時刻情報を発生するタイマ (1 7) を備えると共に、
前記生理的刺激飽和手段 (9) に、前記レベル判定部 (6) のイベント発生 用レベル段階毎の判定回数を計測するカウンタ (7) と、前記イベント発生用 レベル段階毎の振り分けを行う度に前記閾値引上係数(α)を所定量引き上げ る係数引上部と、前記ィベント発生用レベル段階への最終の振り分けから一定 時間 (t )経過毎に前記閾値引上係数 ( ) を所定量引き下げる経時還元部を 備えたことを特徴とする請求の範囲第 2項記載の模擬生物装置。
4 .コンピュータによる制御によって複数の動作を発現させる模擬生物装置で あって、当該模擬生物装置の置かれた環境から受ける刺激をそれぞれ外部パラ メータとして検出し反応イベントを発生する知覚手段 (1 ) と、前記反応ィべ ン卜に含まれる外部パラメータの検出状況に応じ内部パラメータを導く模擬 感情形成手段 (2 ) と、 前記知覚手段 ( 1 ) から出力された反応イベントの連 続検出回数を計測し、当該連続検出回数を含む反応イベントとして前記動作実 行手段 (5 ) へ出力するカウンタ (1 0 ) と、 前記連続検出回数、 前記反応ィ ベン卜に含まれる外部パラメータ、及び内部パラメータの組み合わせに対する 反応動作を決定すると共に、当該反応動作を所定部位の運動に具現化する動作 実行手段 (5 ) とを備えたことを特徴とする模擬生物装置。
PCT/JP2004/014051 2004-09-17 2004-09-17 生理的刺激飽和手段を備えた模擬生物装置 WO2006030533A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014051 WO2006030533A1 (ja) 2004-09-17 2004-09-17 生理的刺激飽和手段を備えた模擬生物装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014051 WO2006030533A1 (ja) 2004-09-17 2004-09-17 生理的刺激飽和手段を備えた模擬生物装置

Publications (1)

Publication Number Publication Date
WO2006030533A1 true WO2006030533A1 (ja) 2006-03-23

Family

ID=36059800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014051 WO2006030533A1 (ja) 2004-09-17 2004-09-17 生理的刺激飽和手段を備えた模擬生物装置

Country Status (1)

Country Link
WO (1) WO2006030533A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104835A (ja) * 1993-10-07 1995-04-21 Hitachi Ltd 移動式点検ロボットシステムの制御,解析,操作装置
JPH07104778A (ja) * 1993-10-07 1995-04-21 Fuji Xerox Co Ltd 感情表出装置
JPH09126715A (ja) * 1995-10-30 1997-05-16 Nippon Telegr & Teleph Corp <Ntt> 端点部位の検出方法
JPH11143849A (ja) * 1997-11-11 1999-05-28 Omron Corp 行動生成装置、行動生成方法及び行動生成プログラム記録媒体
WO2000053281A1 (fr) * 1999-03-05 2000-09-14 Namco, Ltd. Dispositif d'animal virtuel et support d'enregistrement de son programme de commande
JP2003136456A (ja) * 2001-11-06 2003-05-14 Sony Corp ロボット装置、ロボット装置の明るさ検出方法、明るさ検出プログラム及び記録媒体
JP2003233300A (ja) * 2001-10-06 2003-08-22 Samsung Electronics Co Ltd 人体の神経系に基づく情緒合成装置及び方法
JP2003285285A (ja) * 2002-03-27 2003-10-07 Nec Corp ソフトウェアエージェントを有するロボット装置及びその制御方法とプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104835A (ja) * 1993-10-07 1995-04-21 Hitachi Ltd 移動式点検ロボットシステムの制御,解析,操作装置
JPH07104778A (ja) * 1993-10-07 1995-04-21 Fuji Xerox Co Ltd 感情表出装置
JPH09126715A (ja) * 1995-10-30 1997-05-16 Nippon Telegr & Teleph Corp <Ntt> 端点部位の検出方法
JPH11143849A (ja) * 1997-11-11 1999-05-28 Omron Corp 行動生成装置、行動生成方法及び行動生成プログラム記録媒体
WO2000053281A1 (fr) * 1999-03-05 2000-09-14 Namco, Ltd. Dispositif d'animal virtuel et support d'enregistrement de son programme de commande
JP2003233300A (ja) * 2001-10-06 2003-08-22 Samsung Electronics Co Ltd 人体の神経系に基づく情緒合成装置及び方法
JP2003136456A (ja) * 2001-11-06 2003-05-14 Sony Corp ロボット装置、ロボット装置の明るさ検出方法、明るさ検出プログラム及び記録媒体
JP2003285285A (ja) * 2002-03-27 2003-10-07 Nec Corp ソフトウェアエージェントを有するロボット装置及びその制御方法とプログラム

Similar Documents

Publication Publication Date Title
JP2002018146A (ja) 対話型玩具、反応行動パターン生成装置および反応行動パターン生成方法
CN112684881B (zh) 化身面部表情生成系统及化身面部表情生成方法
Gori et al. Motor commands in children interfere with their haptic perception of objects
WO2016166881A1 (ja) 処理システム及びプログラム
CN102202569A (zh) 移动体控制装置和移动体控制方法
US11231772B2 (en) Apparatus control device, method of controlling apparatus, and non-transitory recording medium
CN112568904B (zh) 车辆交互方法、装置、计算机设备及存储介质
CN108115678B (zh) 机器人及其动作控制方法和装置
CN106340221A (zh) 一种纯触觉反馈和连续力控制任务结合的注意力训练系统
EP4343492A1 (en) Sensation control method, sensation control system, conversion model generation method, conversion model generation system, relational expression conversion method, and program
KR100580617B1 (ko) 오브젝트 성장제어 시스템 및 그 방법
KR20180115551A (ko) 감정 표현이 가능한 로봇 및 이의 동작 방법
JPH10143351A (ja) インタフェース装置
US11087520B2 (en) Avatar facial expression generating system and method of avatar facial expression generation for facial model
WO2006030533A1 (ja) 生理的刺激飽和手段を備えた模擬生物装置
CN105931627B (zh) 基于人工智能的动作识别的乐器模拟方法和装置
WO2021049083A1 (ja) 制御装置、制御方法、およびプログラム
JP7540319B2 (ja) 覚醒装置
Wu et al. An eye input device for persons with the motor neuron diseases
JP7414735B2 (ja) 複数のロボットエフェクターを制御するための方法
KR100858079B1 (ko) 에이전트 감정 생성 방법 및 장치
Spyrou et al. Optimal multitrial prediction combination and subject-specific adaptation for minimal training brain switch designs
JP4088398B2 (ja) 時間符号化装置
Craig Adaptive audio engine for EEG-based horror game
WO2006030531A1 (ja) 反応継続手段を備えた模擬生物装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 04773430

Country of ref document: EP

Kind code of ref document: A1