WO2006030513A1 - Unbalance-balance converter - Google Patents

Unbalance-balance converter

Info

Publication number
WO2006030513A1
WO2006030513A1 PCT/JP2004/013560 JP2004013560W WO2006030513A1 WO 2006030513 A1 WO2006030513 A1 WO 2006030513A1 JP 2004013560 W JP2004013560 W JP 2004013560W WO 2006030513 A1 WO2006030513 A1 WO 2006030513A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unbalance
transistor
output terminal
output
Prior art date
Application number
PCT/JP2004/013560
Other languages
French (fr)
Japanese (ja)
Inventor
Masayoshi Suzuki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2004/013560 priority Critical patent/WO2006030513A1/en
Publication of WO2006030513A1 publication Critical patent/WO2006030513A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/32Balance-unbalance networks

Definitions

  • the present invention relates to an unbalance-balance transformer.
  • a frequency mixer or mixer as shown in FIG. 1 is often used when converting the frequency of a signal.
  • This type of mixer receives a signal S to be frequency converted and a signal L having a predetermined frequency, and outputs a signal S ′ having a frequency converted therefrom.
  • the signal L + with a predetermined frequency is a complementary signal having an equal amplitude and a reverse phase, and may be called a complementary signal, a differential signal, or a balanced signal because of its nature!
  • FIG. 2 shows a circuit example for realizing the mixer as shown in FIG. This circuit is also called a Gillbert circuit.
  • the differential amplifiers 22, 24 are alternately activated by the signal S and the reference voltage Vref.
  • the differential amplifiers 22 and 24 operate in response to the differential signal L, respectively.
  • a signal S ′ that changes depending on both the frequency of the signal S itself and the frequency of the differential signal L is output.
  • Such a differential signal L can be created using, for example, a balun circuit or a transformer.
  • a balun circuit or a transformer.
  • the circuit scale becomes large. For this reason, it is conceivable to generate the differential signal L in a semiconductor integrated circuit.
  • FIG. 3 shows a conventional unbalanced-balanced converter.
  • unbalanced to balanced converters are
  • the base of the transistor TR101 is connected to the input terminal T101 via the DC blocking capacitor C101, and is also connected to the high potential source V via the noise resistor R101. Tiger cc
  • the collector of the transistor TR101 is connected to the high potential source VCC through the amplitude adjusting resistor R102, and is also connected to the output terminal T102 through the DC blocking capacitor C102.
  • the emitter of transistor TR101 is connected to the low potential source GND via the amplitude adjustment resistor R103, and also connected to the output terminal T103 via the DC blocking capacitor C103. Is done.
  • a bypass capacitor C104 is also connected between the reference potential sources. The resistance values of the amplitude adjusting resistors R102 and R103 are set equal.
  • FIG. 4 shows a timing diagram of voltage signals at the input terminal T101 and the output terminals T102 and T103 in order of the upward force.
  • One non-complementary signal that is not complementary is input to the input terminal T101.
  • a signal (local oscillation frequency) equal to the carrier frequency is input.
  • This signal is input to the base of the transistor TR101, and a current flows between the collector and the emitter accordingly.
  • the base current increases, the collector current also increases and the voltage drop across resistor R102 increases. Accordingly, the potential at the output terminal T102 decreases.
  • the emitter current also increases, and the voltage drop due to resistor R103 increases. Therefore, the potential at the output terminal T103 increases.
  • the phase of the differential signal is mainly disturbed and the phases are not opposite to each other.
  • the signal at output terminal T102 changes depending on the impedance of the load connected to it and the combined impedance of amplitude adjustment resistor R102, and the signal at output terminal T103 is also the impedance of the load connected to it. This is because it changes depending on the combined impedance with the amplitude adjusting resistor R103. If the relationship between the amplitude and phase of the differential signal is disturbed, the contents of signal processing performed based on the differential signal are adversely affected, and the signal quality is degraded. In general, since the impedance of the element varies depending on the operating frequency ( ⁇ ), the problem regarding the mismatch of the impedance of the load becomes more serious as the signal frequency becomes higher.
  • Patent Documents 1 and 2 are designed to address the mismatch in impedance of the load connected to the output terminal that is trying to improve the non-uniformity of the amplitude adjustment resistor connected to the transistor. Not what you want.
  • the present invention addresses at least one of the above-mentioned problems, and the problem is that an unbalance-balance change in which a pair of loads are connected and a balanced signal is given to them is used. It is to provide an unbalanced balanced converter that reduces the distortion of the balanced signal caused by the mismatch.
  • an unbalanced balanced variable that receives an unbalanced signal and outputs a balanced signal from the first and second output terminals.
  • This unbalance-balance change has a transistor for supplying a signal that changes in accordance with the unbalance signal to the first and second nodes.
  • a collector is provided between the first node and the first output terminal connected to the first load, and between the second node and the second output terminal connected to the second load.
  • a ground transistor is provided.
  • a pair of loads are connected, and an unbalanced and unbalanced balance that gives a balanced signal to them is reduced, thereby reducing the distortion of the balanced signal due to the mismatch of the impedances of the load. be able to.
  • FIG. 1 is a diagram showing a mixer.
  • FIG. 2 is a diagram showing a circuit example for realizing a mixer.
  • FIG. 3 is a diagram showing a conventional unbalanced-equilibrium transformation.
  • FIG. 4 is a timing diagram of signals in the unbalance-balance converter.
  • FIG. 5 is a diagram showing unbalance-equilibrium transformation according to an embodiment of the present invention.
  • FIG. 6 is an explanatory diagram for explaining impedance matching.
  • FIG. 7 is a diagram showing unbalance-equilibrium transformation according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing unbalance-equilibrium transformation according to one embodiment of the present invention.
  • FIG. 9 is a diagram showing a differential input type analog-digital converter.
  • An unbalanced-balanced converter receives an unbalanced signal at an input terminal and outputs a balanced signal from the first and second output terminals.
  • One transistor constituting the unbalanced-balanced converter supplies a signal that changes in accordance with the unbalanced signal to the first and second nodes.
  • a grounded collector transistor is provided between the first node and the first output terminal connected to the first load.
  • a grounded collector transistor is also provided between the second node and the second output terminal connected to the second load.
  • the input / output signals have the same amplitude and the same phase, and the input impedance is extremely large. Therefore, equal amplitude and in-phase signals are generated at the first and second nodes and the first and second output terminals regardless of the connected load. For this reason, it is connected to the first and second output terminals. Even if there is a difference in the impedance of the load, the balanced signal from which the first and second output terminal forces are output is properly maintained at the same amplitude and in reverse phase.
  • the first and second nodes are connected to a collector and an emitter of the transistor.
  • the first and second output terminals are connected to a frequency mixer. In one aspect of the present invention, the first and second output terminals are connected to an analog-digital converter.
  • an impedance matching element is provided between the grounded collector transistor and the first output terminal, and between Z or the grounded collector transistor and the second output terminal.
  • two or more collector-grounded transistors connected in series are provided between the first node and the first output terminal or between the second node and the second output terminal. . This improves the ability to prevent reverse transmission of current from the output terminal side to the signal source side.
  • the circuit scale can be reduced as compared with the case where it is constituted by individual elements.
  • FIG. 5 illustrates an unbalance-equilibrium change according to one embodiment of the present invention.
  • the unbalanced and balanced transformation 500 includes a conversion unit 501, a first output unit 510, and a second output unit 520.
  • the conversion unit 501 includes a transistor TR1 connected between two high and low reference potentials (V, GND).
  • the base of the transistor TR1 is connected to the input terminal T1 through the DC blocking capacitor C1, and is also connected to the high potential source V through the bias resistor R1.
  • the collector of transistor TR1 is connected to high potential source V via amplitude adjustment resistor R2
  • the emitter of the transistor TR1 is connected to the low potential source GND through the amplitude adjusting resistor R3, and is also connected to the second node B through the DC blocking capacitor C3. Between the reference potential sources, A pass capacitor C4 is also connected.
  • the first output unit 510 is a transistor connected between two reference potentials (V, GND).
  • the transistor TR11 is provided so as to function as a common collector transistor (or an emitter-hollow type transistor).
  • the base of the transistor TR11 is connected to the first node A, while the high potential source V is connected via the bias resistor R11.
  • the collector of the transistor TR11 is connected to the high potential source V. Trang
  • the emitter of the register TRl 1 is connected to the low potential source GND through the bias resistor R12, and is also connected to the first output terminal T2 through the DC blocking capacitor C12.
  • a bypass capacitor C11 is also connected between the reference potential sources.
  • the second output unit 520 is provided to have the same configuration as the first output unit 510.
  • the second output section 520 is also connected to the transistor TR21 connected between the high and low reference potentials (V, GND).
  • This transistor TR21 is also provided to function as a common collector transistor.
  • the base of the transistor TR21 is connected to the second node B, and is also connected to the high potential source Vcc via the noise resistor R21.
  • the collector of transistor TR21 is connected to the high potential source Vcc.
  • the emitter of the transistor TR21 is connected to the low potential source GND via the noise resistor R22, and is also connected to the second output terminal T2 via the DC blocking capacitor C22.
  • a bypass capacitor C21 is also connected between the reference potential sources.
  • the noise resistors Rl, Rll, R21 have a relatively large resistance value, for example, several thousand ohms.
  • the amplitude adjusting resistors R2, R3 have a relatively small resistance value, for example several hundred ohms.
  • the resistance values of the noise resistors R2 and R3 are set equal.
  • the resistance values of the amplitude adjusting resistors R12 and R22 are set equal.
  • the DC blocking capacitor and the bypass capacitor have capacitance values such as tens to thousands of picofarads. These numerical values are merely examples, and various resistance values and capacitance values can be selected depending on the application.
  • a single unbalanced signal such as a local oscillation frequency is input to the input terminal T1.
  • This signal is input to the base of the transistor TR1, and a current flows between the collector and the emitter accordingly.
  • the base current increases, the collector The current also increases and the voltage drop due to resistor R2 increases. Therefore, the potential at the first node A drops.
  • the emitter current also increases and the voltage drop due to resistor R3 also increases. Therefore, the potential at the second node B increases.
  • the collector current also decreases and the voltage drop due to resistor R2 decreases. Therefore, the potential at the first node A increases.
  • a first output unit 510 is provided between the first node A and the first output terminal T2.
  • a second output unit 520 is provided between the second node B and the second output terminal T3.
  • the first output unit 510 includes a grounded collector transistor TR11.
  • the signal flowing through the base and the signal flowing through the emitter are of equal amplitude and in phase. Therefore, signals having the same amplitude and the same phase are generated at the first node A and the first output terminal T2.
  • the grounded collector transistor has a very large input impedance to the base. Therefore, the impedance when the first node A force is viewed on the load side is constant regardless of the load connected to the first output terminal T2.
  • the signal generated at the first node A does not depend on the combined impedance of the load and is determined by the amplitude adjustment resistor R2.
  • the grounded collector transistor has a high degree of isolation (isolation) between the emitter and the emitter due to very little reverse transmission of current to the base.
  • the output impedance of the common collector transistor is very small. Therefore, when generating a signal at the first output terminal T2, there is very little power loss due to leakage current and output impedance.
  • the second output unit 520 is also composed of a common collector transistor TR21. Therefore, signals having the same amplitude and the same phase are generated at the second node B and the second output terminal T3. Furthermore, the impedance when the load side is viewed from the second node B is constant regardless of the load connected to the second output terminal T3. Therefore, the signal generated at the second node B (and the second output terminal T3) The signal does not depend on the combined impedance of the load and is determined by the amplitude adjustment resistor R3. In addition, due to the nature of the grounded-collector transistor TR21, when generating a signal at the second output terminal T3, power loss due to leakage current and output impedance is extremely small.
  • Circuits such as the first and second output units 510 and 520 can be easily integrated together with a circuit such as the conversion unit 501, so it is necessary to consider a significant increase in circuit scale. do not do.
  • Example 2
  • FIG. 6 is an explanatory diagram that simplifies the unbalance-equilibrium change as shown in FIG.
  • the left side of the first and second output terminals T2 and T3 shows the unbalance-balance converter side
  • the right side shows the connected loads Z and Z.
  • the source that generates the balanced signal is S
  • Z represents the impedance when the signal source side is viewed from the first output terminal T2.
  • the element Z drawn between the second node B and the second output terminal T3 is connected to the second output terminal T3.
  • 1L 2L IS 2S is a reference symbol and also represents impedance.
  • Z is the nature of a common collector transistor.
  • Example 1 Even with such an element, in Example 1, The described behavior is not harmed. This is because the input impedance when the load side is viewed from the first and second nodes A and B is high impedance, and the element impedance Z,
  • FIG. 7 illustrates an unbalance-equilibrium change according to one embodiment of the present invention.
  • this circuit is similar to that shown in FIG. 5, but impedance matching elements Z and Z are provided at the output ends of the first and second output sections 510 and 520, respectively, in accordance with the above consideration. . Impi
  • a dance matching element generally has a resistance component and a reactance component.
  • lines, elements or circuits with a characteristic impedance of, for example, 50 ohms are often connected to this type of circuit where high frequency differential signals are transmitted.
  • the impedance matching elements are represented as resistors R13 and R23 in the illustrated example in which the resistance values are mainly matched.
  • the impedance (resistance value in the example shown) of the impedance matching element is determined depending on the load value. If the impedance of the pair of loads connected to the first and second output terminals T2 and T3 is equal to each other, the impedance of the impedance matching element is also set equal.
  • a pair of elements having substantially the same impedance are inserted between the pair of output terminals of the unbalanced-balanced variable ⁇ and the load, respectively.
  • a good balanced signal can be output while ensuring consistency. It should be noted that such an advantage cannot be obtained from a conventional circuit as shown in FIG. The reason is as follows. First, it is assumed that a pair of loads having the same impedance are connected to the output terminals T102 and T103 of the circuit shown in FIG. 3 so that a good balanced signal is output. In this circuit, the impedance when the signal source side is viewed from the output terminals T102 and T103 is different.
  • the transistors used are NPN bipolar transistors, but all or part of them may be PNP transistors.
  • Figure 8 shows an unbalance-equilibrium transformation constructed using PNP transistors. In this case, it is necessary to change the relative magnitude of the two reference potentials, and the positive reference potential (+ V) is negative.
  • the input and output signals are in-phase and of equal amplitude with respect to radio frequency signals, have high input impedance and low output impedance, and have sufficient isolation from output side to input side. To be secured.
  • the present invention can be used for any unbalanced-balanced variable that generates equal amplitude and antiphase differential signals, complementary signals, or balanced signals based on the unbalanced signals.
  • Such an unbalanced-balanced converter may be used in a mixer, a quadrature modulator, or the like for performing frequency conversion between low frequency, intermediate frequency, and z or high frequency signals. Also unbalanced
  • Bosset converters may be used to create input signals for differential input analog-to-digital converters, as shown in Figure 9.
  • Analog digital changes ⁇ to which a balanced signal is input unlike those to which an unbalanced signal is input, cancel out common-mode noise components in the input signal and suppress noise from being mixed into the output signal. Can do.

Abstract

An unbalance-balance converter connected with a pair of loads and providing them with a balance signal in which distortion of the balance signal due to mismatch in the impedance of the loads is lessened. The unbalance-balance converter receives an unbalance signal and outputs a balance signal from first and second output terminals. The unbalance-balance converter has a transistor for providing first and second nodes with a signal varying in accordance with the unbalance signal. A collector ground transistor is provided between the first node and the first output terminal being connected with a first load, and between the second node and the second output terminal being connected with a second load.

Description

明 細 書  Specification
不平衡-平衡変換器  Unbalanced to balanced converter
技術分野  Technical field
[0001] 本発明は、不平衡ー平衡変換器(unbalance— balance transformer)に関する。  [0001] The present invention relates to an unbalance-balance transformer.
背景技術  Background art
[0002] 無線通信では、信号の周波数を変換する際に、図 1に示されるような周波数混合器 又はミキサを用いることが多い。この種のミキサには、周波数変換対象の信号 Sと所 定の周波数の信号 L とが入力され、周波数の変換された信号 S 'がそこから出力さ れる。所定の周波数の信号 L+は、等振幅で逆相の相補的な信号であり、これらはそ の性質から相補信号、差動信号又は平衡信号等と呼んでもよ!ヽ。  In wireless communication, a frequency mixer or mixer as shown in FIG. 1 is often used when converting the frequency of a signal. This type of mixer receives a signal S to be frequency converted and a signal L having a predetermined frequency, and outputs a signal S ′ having a frequency converted therefrom. The signal L + with a predetermined frequency is a complementary signal having an equal amplitude and a reverse phase, and may be called a complementary signal, a differential signal, or a balanced signal because of its nature!
[0003] 図 2は、図 1に示されるようなミキサを実現する回路例を示す。この回路は、ギルバ ート(Gillbert)回路とも呼ばれている。信号 S及び基準電圧 Vrefにより、差動増幅器 22, 24が交互に起動される。差動増幅器 22, 24は、差動信号 L に応じてそれぞれ 動作する。その結果、信号 S自体の周波数と、差動信号 L の周波数の両者に依存し て変化する信号 S 'が出力される。  FIG. 2 shows a circuit example for realizing the mixer as shown in FIG. This circuit is also called a Gillbert circuit. The differential amplifiers 22, 24 are alternately activated by the signal S and the reference voltage Vref. The differential amplifiers 22 and 24 operate in response to the differential signal L, respectively. As a result, a signal S ′ that changes depending on both the frequency of the signal S itself and the frequency of the differential signal L is output.
[0004] このような差動信号 L は、例えば、バラン (balan)回路やトランス等を用いて作成 することができる。し力しながら、そのような個別素子を用いると、回路規模が大きくな つてしまう問題が生じる。このため、半導体集積回路で差動信号 L を生成することが 考えられる。  [0004] Such a differential signal L can be created using, for example, a balun circuit or a transformer. However, when such individual elements are used, there is a problem that the circuit scale becomes large. For this reason, it is conceivable to generate the differential signal L in a semiconductor integrated circuit.
[0005] 図 3は、従来の不平衡ー平衡変換器を示す。概して、不平衡ー平衡変換器は、高低 FIG. 3 shows a conventional unbalanced-balanced converter. In general, unbalanced to balanced converters are
2つの基準電位 (V , GND)間に接続されたトランジスタ TR101から構成される。ト cc It consists of transistor TR101 connected between two reference potentials (V, GND). G cc
ランジスタ TR101のベースは、直流阻止コンデンサ C101を介して入力端子 T101 に接続される一方、ノィァス抵抗器 R101を介して高電位源 V にも接続される。トラ cc  The base of the transistor TR101 is connected to the input terminal T101 via the DC blocking capacitor C101, and is also connected to the high potential source V via the noise resistor R101. Tiger cc
ンジスタ TR101のコレクタは、振幅調整抵抗器 R102を介して高電位源 VCCに接続 される一方、直流阻止コンデンサ C102を介して出力端子 T102にも接続される。トラ ンジスタ TR101のェミッタは、ェミッタは振幅調整抵抗器 R103を介して低電位源 G NDに接続される一方、直流阻止コンデンサ C103を介して出力端子 T103にも接続 される。なお、基準電位源の間には、バイパスコンデンサ C104も接続されている。振 幅調整抵抗器 R102及び R103の抵抗値は等しく設定される。 The collector of the transistor TR101 is connected to the high potential source VCC through the amplitude adjusting resistor R102, and is also connected to the output terminal T102 through the DC blocking capacitor C102. The emitter of transistor TR101 is connected to the low potential source GND via the amplitude adjustment resistor R103, and also connected to the output terminal T103 via the DC blocking capacitor C103. Is done. A bypass capacitor C104 is also connected between the reference potential sources. The resistance values of the amplitude adjusting resistors R102 and R103 are set equal.
[0006] 図 4は、上力も順に、入力端子 T101及び出力端子 T102, T103における電圧信 号のタイミング図を示す。入力端子 T101には、相補的でない 1つの不平衡信号が入 力され、例えばキャリア周波数に等しい信号 (局部発振周波数)が入力される。この 信号は、トランジスタ TR101のベースに入力され、それに応じてコレクタ及びェミッタ 間に電流が流れる。ベース電流が増加すると、コレクタ電流も増加し、抵抗器 R102 による電圧降下も大きくなる。従って、出力端子 T102における電位は下がる。一方、 ベース電流が増加すると、ェミッタ電流も増加し、抵抗器 R103による電圧降下も大き くなる。従って、出力端子 T103における電位は上がる。逆に、ベース電流が減少す ると、コレクタ電流も減少し、抵抗器 R102による電圧降下は小さくなる。従って、出力 端子 T102における電位は上がる。一方、ベース電流が減少すると、ェミッタ電流も 減少し、抵抗器 R103による電圧降下も小さくなる。従って、出力端子 T103における 電位は下がる。以上のような動作により、入力端子 T101に入力された信号の変化に 応じて、出力端子 T102, T103から、差動信号 L のような、等振幅且つ逆相の平衡 信号が出力される。このような不平衡ー平衡変換器については、例えば特開平 10— 1 63810号 (特許文献 1)や、特開平 11 298295号 (特許文献 2)等に記載されて 、 る。 FIG. 4 shows a timing diagram of voltage signals at the input terminal T101 and the output terminals T102 and T103 in order of the upward force. One non-complementary signal that is not complementary is input to the input terminal T101. For example, a signal (local oscillation frequency) equal to the carrier frequency is input. This signal is input to the base of the transistor TR101, and a current flows between the collector and the emitter accordingly. As the base current increases, the collector current also increases and the voltage drop across resistor R102 increases. Accordingly, the potential at the output terminal T102 decreases. On the other hand, when the base current increases, the emitter current also increases, and the voltage drop due to resistor R103 increases. Therefore, the potential at the output terminal T103 increases. Conversely, when the base current decreases, the collector current also decreases and the voltage drop due to resistor R102 decreases. Therefore, the potential at the output terminal T102 increases. On the other hand, when the base current decreases, the emitter current also decreases, and the voltage drop due to resistor R103 decreases. Therefore, the potential at the output terminal T103 decreases. By the operation as described above, an equiamplitude and reverse phase balanced signal such as the differential signal L is output from the output terminals T102 and T103 according to the change of the signal input to the input terminal T101. Such an unbalance-balance converter is described in, for example, Japanese Patent Application Laid-Open No. 10-163810 (Patent Document 1) and Japanese Patent Application Laid-Open No. 11 298295 (Patent Document 2).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 振幅調整抵抗器 R102, R103の抵抗値が等しぐ出力端子 T102, T103に接続 される負荷のインピーダンスが等しい条件の下では、図 4の中段及び下段に示される ような等振幅且つ逆相の平衡信号が負荷に供給される。出力端子 T102, T103に は、図 2に示されるような差動信号を処理する回路が接続されるので、そのような条件 は概ね満たされる。し力しながら、出力端子 T102, T103に接続される 1対の負荷の ばらつきに起因して、それらのインピーダンスが厳密には等しくない可能性もある。例 えば、負荷インピーダンスの抵抗成分に不一致があつたとすると、差動信号の振幅を 主に乱し、等振幅でなくなる。負荷インピーダンスのリアクタンス成分に不一致があつ たとすると、差動信号の位相を主に乱し、互いに逆相でなくなる。出力端子 T102に おける信号は、そこに接続される負荷のインピーダンスと、振幅調整抵抗器 R102と の合成インピーダンスに依存して変化し、出力端子 T103における信号も、そこに接 続される負荷のインピーダンスと、振幅調整抵抗器 R103との合成インピーダンスに 依存して変化するからである。差動信号の振幅及び位相の関係が乱されると、その 差動信号に基づいて行なわれる信号処理内容に悪影響が及び、信号品質が劣化し てしまう。一般に、素子のインピーダンスは動作周波数(ω )に依存して変動するので 、負荷のインピーダンスの不一致に関する問題は、信号の周波数が高くなるほど深 刻になる。 [0007] Under the condition that the impedances of the loads connected to the output terminals T102, T103 having the same resistance value of the amplitude adjusting resistors R102, R103 are equal, the same amplitude as shown in the middle and lower stages of FIG. A negative phase balanced signal is supplied to the load. Since a circuit for processing a differential signal as shown in FIG. 2 is connected to the output terminals T102 and T103, such a condition is generally satisfied. However, the impedances may not be exactly equal due to variations in the pair of loads connected to the output terminals T102 and T103. For example, if there is a mismatch in the resistance component of the load impedance, the amplitude of the differential signal is mainly disturbed, and the amplitude is not equal. Mismatch in reactance component of load impedance If this is the case, the phase of the differential signal is mainly disturbed and the phases are not opposite to each other. The signal at output terminal T102 changes depending on the impedance of the load connected to it and the combined impedance of amplitude adjustment resistor R102, and the signal at output terminal T103 is also the impedance of the load connected to it. This is because it changes depending on the combined impedance with the amplitude adjusting resistor R103. If the relationship between the amplitude and phase of the differential signal is disturbed, the contents of signal processing performed based on the differential signal are adversely affected, and the signal quality is degraded. In general, since the impedance of the element varies depending on the operating frequency (ω), the problem regarding the mismatch of the impedance of the load becomes more serious as the signal frequency becomes higher.
[0008] 上記の特許文献 1, 2に記載された発明は、トランジスタに接続される振幅調整抵抗 の不均一性を改善しょうとしている力 出力端子に接続される負荷のインピーダンス の不一致に対処しょうとするものではない。  [0008] The inventions described in the above-mentioned Patent Documents 1 and 2 are designed to address the mismatch in impedance of the load connected to the output terminal that is trying to improve the non-uniformity of the amplitude adjustment resistor connected to the transistor. Not what you want.
[0009] 本発明は、上記の問題点の少なくとも 1つに対処するものであり、その課題は、一対 の負荷が接続され、それらに平衡信号を与える不平衡ー平衡変 において、負荷 のインピーダンスの不一致に起因する平衡信号の歪を軽減する不平衡 平衡変換 器を提供することである。  [0009] The present invention addresses at least one of the above-mentioned problems, and the problem is that an unbalance-balance change in which a pair of loads are connected and a balanced signal is given to them is used. It is to provide an unbalanced balanced converter that reduces the distortion of the balanced signal caused by the mismatch.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の一態様では、不平衡信号を受信し、第 1及び第 2出力端子から平衡信号 を出力する不平衡 平衡変^^が使用される。この不平衡ー平衡変 は、前記不 平衡信号に応じて変化する信号を、第 1及び第 2ノードに与えるトランジスタを有する 。前記第 1ノードと、第 1の負荷に接続される前記第 1出力端子との間、及び前記第 2 ノードと、第 2の負荷に接続される前記第 2出力端子との間には、コレクタ接地トランジ スタが設けられる。 [0010] In one aspect of the present invention, an unbalanced balanced variable that receives an unbalanced signal and outputs a balanced signal from the first and second output terminals is used. This unbalance-balance change has a transistor for supplying a signal that changes in accordance with the unbalance signal to the first and second nodes. A collector is provided between the first node and the first output terminal connected to the first load, and between the second node and the second output terminal connected to the second load. A ground transistor is provided.
発明の効果  The invention's effect
[0011] 本発明によれば、一対の負荷が接続され、それらに平衡信号を与える不平衡一平 衡変^^にぉ 、て、負荷のインピーダンスの不一致に起因する平衡信号の歪を軽 減することができる。  [0011] According to the present invention, a pair of loads are connected, and an unbalanced and unbalanced balance that gives a balanced signal to them is reduced, thereby reducing the distortion of the balanced signal due to the mismatch of the impedances of the load. be able to.
図面の簡単な説明 [0012] [図 1]ミキサを示す図である。 Brief Description of Drawings FIG. 1 is a diagram showing a mixer.
[図 2]ミキサを実現する回路例を示す図である。  FIG. 2 is a diagram showing a circuit example for realizing a mixer.
[図 3]従来の不平衡-平衡変翻を示す図である。  FIG. 3 is a diagram showing a conventional unbalanced-equilibrium transformation.
[図 4]不平衡ー平衡変換器における信号のタイミング図である。  FIG. 4 is a timing diagram of signals in the unbalance-balance converter.
[図 5]本発明の一実施例による不平衡-平衡変翻を示す図である。  FIG. 5 is a diagram showing unbalance-equilibrium transformation according to an embodiment of the present invention.
[図 6]インピーダンスの整合性を説明するための説明図である。  FIG. 6 is an explanatory diagram for explaining impedance matching.
[図 7]本発明の一実施例による不平衡-平衡変翻を示す図である。  FIG. 7 is a diagram showing unbalance-equilibrium transformation according to an embodiment of the present invention.
[図 8]本発明の一実施例による不平衡-平衡変翻を示す図である。  FIG. 8 is a diagram showing unbalance-equilibrium transformation according to one embodiment of the present invention.
[図 9]差動入力型アナログディジタル変換器を示す図である。  FIG. 9 is a diagram showing a differential input type analog-digital converter.
符号の説明  Explanation of symbols
[0013] 22, 24 差動回路; [0013] 22, 24 differential circuit;
T101 入力端子; T102, T103 出力端子; TR101 トランジスタ; R101 バイ ァス抵抗器; R102, R103 振幅調整抵抗器; C101, 102, 103 直流阻止コン デンサ; C104 ノ ィパスコンデンサ;  T101 input terminal; T102, T103 output terminal; TR101 transistor; R101 bias resistor; R102, R103 amplitude adjustment resistor; C101, 102, 103 DC blocking capacitor; C104 nopass capacitor;
T1 入力端子; T2, T3 出力端子; TR1, TR11, TR21 トランジスタ; R1, Rl l, R21, R12, R22 バイアス抵抗器; R2, R3 振幅調整抵抗器; CI, C2, C3, C12, C22 直流阻止コンデンサ; C4, Cl l, C21 ノ ィパスコンデンサ; T1, input terminals; T2, T3 output terminals; TR1, TR11, TR21 transistors; R1, Rl l, R21, R12, R22 bias resistors; R2, R3 amplitude adjustment resistors; CI, C2, C3, C12, C22 DC blocking Capacitors; C4, Cl l, C21 nopass capacitors;
R13, R23 インピーダンス整合素子 R13, R23 Impedance matching element
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明の一態様による不平衡ー平衡変換器は、不平衡信号を入力端子で受信し、 第 1及び第 2出力端子から平衡信号を出力する。不平衡ー平衡変換器を構成する 1 つのトランジスタは、前記不平衡信号に応じて変化する信号を、第 1及び第 2ノードに 与える。前記第 1ノードと、第 1の負荷に接続される前記第 1出力端子との間には、コ レクタ接地トランジスタが設けられる。前記第 2ノードと、第 2の負荷に接続される前記 第 2出力端子との間にも、コレクタ接地トランジスタが設けられる。  [0014] An unbalanced-balanced converter according to an aspect of the present invention receives an unbalanced signal at an input terminal and outputs a balanced signal from the first and second output terminals. One transistor constituting the unbalanced-balanced converter supplies a signal that changes in accordance with the unbalanced signal to the first and second nodes. A grounded collector transistor is provided between the first node and the first output terminal connected to the first load. A grounded collector transistor is also provided between the second node and the second output terminal connected to the second load.
[0015] コレクタ接地トランジスタでは、入出力信号が等振幅且つ同相であり、入力インピー ダンスが極めて大きい。従って、接続される負荷によらず、第 1, 2ノードと第 1, 2出力 端子に、等振幅且つ同相の信号が生じる。このため、第 1, 2出力端子に接続される 負荷のインピーダンスに相違があつたとしても、第 1, 2出力端子力も出力される平衡 信号は、等振幅且つ逆相に適切に維持される。 In the common collector transistor, the input / output signals have the same amplitude and the same phase, and the input impedance is extremely large. Therefore, equal amplitude and in-phase signals are generated at the first and second nodes and the first and second output terminals regardless of the connected load. For this reason, it is connected to the first and second output terminals. Even if there is a difference in the impedance of the load, the balanced signal from which the first and second output terminal forces are output is properly maintained at the same amplitude and in reverse phase.
[0016] 本発明の一態様では、前記第 1及び第 2ノードが、前記トランジスタのコレクタ及び ェミッタに接続される。これにより、高周波特性に優れた不平衡ー平衡変換器を構築 することができる。 In one aspect of the present invention, the first and second nodes are connected to a collector and an emitter of the transistor. As a result, an unbalanced-balanced converter with excellent high-frequency characteristics can be constructed.
[0017] 本発明の一態様では、前記第 1及び第 2出力端子が、周波数混合器に接続される 。本発明の一態様では、前記第 1及び第 2出力端子が、アナログディジタル変換器に 接続される。  In one aspect of the present invention, the first and second output terminals are connected to a frequency mixer. In one aspect of the present invention, the first and second output terminals are connected to an analog-digital converter.
[0018] 本発明の一態様では、前記コレクタ接地トランジスタ及び前記第 1出力端子の間に 、及び Z又は前記コレクタ接地トランジスタ及び前記第 2出力端子の間に、インピー ダンス整合素子が設けられる。これにより、不平衡ー平衡変^^の出力端子における インピーダンスの整合性を確保しつつ、良好な平衡信号を出力することができる。  In one aspect of the present invention, an impedance matching element is provided between the grounded collector transistor and the first output terminal, and between Z or the grounded collector transistor and the second output terminal. As a result, it is possible to output a good balanced signal while ensuring impedance matching at the output terminal of the unbalanced-balanced variable.
[0019] 本発明の一態様では、第 1ノードと第 1出力端子との間又は第 2ノードと第 2出力端 子との間に、直列に接続された 2以上のコレクタ接地トランジスタが設けられる。これ により、出力端子側から信号源側への電流の逆方向伝送を阻止する能力を向上させ ることがでさる。  In one aspect of the present invention, two or more collector-grounded transistors connected in series are provided between the first node and the first output terminal or between the second node and the second output terminal. . This improves the ability to prevent reverse transmission of current from the output terminal side to the signal source side.
[0020] 本発明の一態様では、不平衡ー平衡変 が半導体集積回路で構成されるので、 それを個別素子で構成する場合に比べて、回路規模が少なくて済む。  [0020] In one embodiment of the present invention, since the unbalance-balance change is constituted by a semiconductor integrated circuit, the circuit scale can be reduced as compared with the case where it is constituted by individual elements.
実施例 1  Example 1
[0021] 図 5は、本発明の一実施例による不平衡ー平衡変 を示す。概して、不平衡一平 衡変翻500は、変換部 501と、第 1出力部 510と、第 2出力部 520とを有する。変 換部 501は、高低 2つの基準電位 (V , GND)間に接続されたトランジスタ TR1から  [0021] FIG. 5 illustrates an unbalance-equilibrium change according to one embodiment of the present invention. In general, the unbalanced and balanced transformation 500 includes a conversion unit 501, a first output unit 510, and a second output unit 520. The conversion unit 501 includes a transistor TR1 connected between two high and low reference potentials (V, GND).
CC  CC
構成される。トランジスタ TR1のベースは、直流阻止コンデンサ C1を介して入力端子 T1に接続される一方、バイアス抵抗器 R1を介して高電位源 V にも接続される。トラ  Composed. The base of the transistor TR1 is connected to the input terminal T1 through the DC blocking capacitor C1, and is also connected to the high potential source V through the bias resistor R1. Dora
CC  CC
ンジスタ TR1のコレクタは、振幅調整抵抗器 R2を介して高電位源 V に接続される  The collector of transistor TR1 is connected to high potential source V via amplitude adjustment resistor R2
CC  CC
一方、直流阻止コンデンサ C2を介して第 1ノード Aにも接続される。トランジスタ TR1 のェミッタは、振幅調整抵抗器 R3を介して低電位源 GNDに接続される一方、直流 阻止コンデンサ C3を介して第 2ノード Bにも接続される。基準電位源の間には、バイ パスコンデンサ C4も接続されて 、る。 On the other hand, it is also connected to the first node A via the DC blocking capacitor C2. The emitter of the transistor TR1 is connected to the low potential source GND through the amplitude adjusting resistor R3, and is also connected to the second node B through the DC blocking capacitor C3. Between the reference potential sources, A pass capacitor C4 is also connected.
[0022] 第 1出力部 510は、高低 2つの基準電位 (V , GND)間に接続されたトランジスタ  [0022] The first output unit 510 is a transistor connected between two reference potentials (V, GND).
cc  cc
TR11から構成される。このトランジスタ TR11は、コレクタ接地トランジスタ(又はエミ ッタホロウ型のトランジスタ)として機能するように設けられる。トランジスタ TR11のべ ースは、第 1ノード Aに接続される一方、バイアス抵抗器 R11を介して高電位源 V  Consists of TR11. The transistor TR11 is provided so as to function as a common collector transistor (or an emitter-hollow type transistor). The base of the transistor TR11 is connected to the first node A, while the high potential source V is connected via the bias resistor R11.
CC  CC
にも接続される。トランジスタ TR11のコレクタは、高電位源 V に接続される。トラン  Also connected to. The collector of the transistor TR11 is connected to the high potential source V. Trang
CC  CC
ジスタ TRl 1のェミッタは、バイアス抵抗器 R12を介して低電位源 GNDに接続される 一方、直流阻止コンデンサ C12を介して第 1出力端子 T2にも接続される。基準電位 源の間には、バイパスコンデンサ C11も接続されて 、る。  The emitter of the register TRl 1 is connected to the low potential source GND through the bias resistor R12, and is also connected to the first output terminal T2 through the DC blocking capacitor C12. A bypass capacitor C11 is also connected between the reference potential sources.
[0023] 第 2出力部 520は、第 1出力部 510と同じ構成を有するように設けられる。第 2出力 部 520も、高低 2つの基準電位 (V , GND)間に接続されたトランジスタ TR21から The second output unit 520 is provided to have the same configuration as the first output unit 510. The second output section 520 is also connected to the transistor TR21 connected between the high and low reference potentials (V, GND).
cc  cc
構成される。このトランジスタ TR21も、コレクタ接地トランジスタとして機能するように 設けられる。トランジスタ TR21のベースは、第 2ノード Bに接続される一方、ノィァス 抵抗器 R21を介して高電位源 Vccにも接続される。トランジスタ TR21のコレクタは、 高電位源 Vccに接続される。トランジスタ TR21のェミッタは、ノィァス抵抗器 R22を 介して低電位源 GNDに接続される一方、直流阻止コンデンサ C22を介して第 2出力 端子 T2にも接続される。基準電位源の間には、バイパスコンデンサ C21も接続され ている。  Composed. This transistor TR21 is also provided to function as a common collector transistor. The base of the transistor TR21 is connected to the second node B, and is also connected to the high potential source Vcc via the noise resistor R21. The collector of transistor TR21 is connected to the high potential source Vcc. The emitter of the transistor TR21 is connected to the low potential source GND via the noise resistor R22, and is also connected to the second output terminal T2 via the DC blocking capacitor C22. A bypass capacitor C21 is also connected between the reference potential sources.
[0024] ノィァス抵抗器 Rl, Rl l, R21は、例えば数千オームのような比較的大きな抵抗 値を有する。振幅調整抵抗器 R2, R3は、例えば数百オームのような比較的小さな抵 抗値を有する。ノ ィァス抵抗器 R2及び R3の抵抗値は等しく設定される。また、振幅 調整抵抗器 R12及び R22の抵抗値も等しく設定される。直流阻止コンデンサ及びバ ィパスコンデンサは、例えば数十乃至数千ピコファラッドのような容量値を有する。こ れらの数値は単なる一例であって、用途に応じて様々な抵抗値及び容量値を選択 することができる。  [0024] The noise resistors Rl, Rll, R21 have a relatively large resistance value, for example, several thousand ohms. The amplitude adjusting resistors R2, R3 have a relatively small resistance value, for example several hundred ohms. The resistance values of the noise resistors R2 and R3 are set equal. Also, the resistance values of the amplitude adjusting resistors R12 and R22 are set equal. The DC blocking capacitor and the bypass capacitor have capacitance values such as tens to thousands of picofarads. These numerical values are merely examples, and various resistance values and capacitance values can be selected depending on the application.
[0025] 動作が次に説明される。入力端子 T1には、例えば局部発振周波数のような単一の 不平衡信号が入力される。この信号は、トランジスタ TR1のベースに入力され、それ に応じてコレクタ及びェミッタ間に電流が流れる。ベース電流が増加すると、コレクタ 電流も増加し、抵抗器 R2による電圧降下も大きくなる。従って、第 1ノード Aにおける 電位は下がる。一方、ベース電流が増加すると、ェミッタ電流も増加し、抵抗器 R3に よる電圧降下も大きくなる。従って、第 2ノード Bにおける電位は上がる。逆に、ベース 電流が減少すると、コレクタ電流も減少し、抵抗器 R2による電圧降下は小さくなる。 従って、第 1ノード Aにおける電位は上がる。一方、ベース電流が減少すると、ェミッタ 電流も減少し、抵抗器 R3による電圧降下も小さくなる。従って、第 2ノード Bにおける 電位は下がる。以上のような動作により、入力端子 T1に図 4の上段に示されるような 信号が入力された場合に、第 1及び第 2ノード A, Bに、図 4の中段及び下段に示され るような平衡信号が出力される。ここまでは、概ね図 3に説明された回路の動作と同 様である。 [0025] The operation will now be described. A single unbalanced signal such as a local oscillation frequency is input to the input terminal T1. This signal is input to the base of the transistor TR1, and a current flows between the collector and the emitter accordingly. As the base current increases, the collector The current also increases and the voltage drop due to resistor R2 increases. Therefore, the potential at the first node A drops. On the other hand, when the base current increases, the emitter current also increases and the voltage drop due to resistor R3 also increases. Therefore, the potential at the second node B increases. Conversely, when the base current decreases, the collector current also decreases and the voltage drop due to resistor R2 decreases. Therefore, the potential at the first node A increases. On the other hand, when the base current decreases, the emitter current also decreases, and the voltage drop due to resistor R3 decreases. Therefore, the potential at the second node B decreases. As a result of the above operation, when a signal as shown in the upper part of FIG. 4 is input to the input terminal T1, the first and second nodes A and B are shown in the middle and lower parts of FIG. A balanced signal is output. Up to this point, the operation of the circuit described in Figure 3 is almost the same.
[0026] 本実施例では、第 1ノード Aと第 1出力端子 T2の間に、第 1出力部 510が設けられ ている。また、第 2ノード Bと第 2出力端子 T3の間に、第 2出力部 520が設けられてい る。第 1出力部 510は、コレクタ接地トランジスタ TR11から構成されている。コレクタ 接地トランジスタでは、そのベースに流れる信号とェミッタに流れる信号とが等振幅で あって同相である。従って、第 1ノード Aと第 1出力端子 T2には、等振幅且つ同相の 信号が生じる。更に、コレクタ接地トランジスタでは、ベースへの入力インピーダンス が非常に大きい。従って、第 1ノード A力も負荷側を見たときのインピーダンスは、第 1 出力端子 T2に接続される負荷によらず一定である。このため、第 1ノード A (及び第 1 出力端子 T2)に生じる信号は、負荷の合成インピーダンスには依存せず、振幅調整 抵抗器 R2によって決定される。更に、コレクタ接地トランジスタでは、ェミッタ力もべ一 スへの電流の逆方向伝送が極めて少なぐそれらの間の分離度(アイソレーション)が 高い。し力も、コレクタ接地トランジスタの出力インピーダンスは非常に小さい。従って 、第 1出力端子 T2に信号を生じさせるに際し、リーク電流や出力インピーダンスに起 因する電力損失は極めて少な 、。  In the present embodiment, a first output unit 510 is provided between the first node A and the first output terminal T2. A second output unit 520 is provided between the second node B and the second output terminal T3. The first output unit 510 includes a grounded collector transistor TR11. In the common collector transistor, the signal flowing through the base and the signal flowing through the emitter are of equal amplitude and in phase. Therefore, signals having the same amplitude and the same phase are generated at the first node A and the first output terminal T2. In addition, the grounded collector transistor has a very large input impedance to the base. Therefore, the impedance when the first node A force is viewed on the load side is constant regardless of the load connected to the first output terminal T2. For this reason, the signal generated at the first node A (and the first output terminal T2) does not depend on the combined impedance of the load and is determined by the amplitude adjustment resistor R2. In addition, the grounded collector transistor has a high degree of isolation (isolation) between the emitter and the emitter due to very little reverse transmission of current to the base. However, the output impedance of the common collector transistor is very small. Therefore, when generating a signal at the first output terminal T2, there is very little power loss due to leakage current and output impedance.
[0027] 同様に、第 2出力部 520も、コレクタ接地トランジスタ TR21から構成されて 、る。従 つて、第 2ノード Bと第 2出力端子 T3には、等振幅且つ同相の信号が生じる。更に、 第 2ノード Bから負荷側を見たときのインピーダンスは、第 2出力端子 T3に接続される 負荷によらず一定である。このため、第 2ノード B (及び第 2出力端子 T3)に生じる信 号は、負荷の合成インピーダンスには依存せず、振幅調整抵抗器 R3によって決定さ れる。また、コレクタ接地トランジスタ TR21の性質に起因して、第 2出力端子 T3に信 号を生じさせるに際し、リーク電流や出力インピーダンスに起因する電力損失は極め て少ない。 Similarly, the second output unit 520 is also composed of a common collector transistor TR21. Therefore, signals having the same amplitude and the same phase are generated at the second node B and the second output terminal T3. Furthermore, the impedance when the load side is viewed from the second node B is constant regardless of the load connected to the second output terminal T3. Therefore, the signal generated at the second node B (and the second output terminal T3) The signal does not depend on the combined impedance of the load and is determined by the amplitude adjustment resistor R3. In addition, due to the nature of the grounded-collector transistor TR21, when generating a signal at the second output terminal T3, power loss due to leakage current and output impedance is extremely small.
[0028] 従って、振幅調整抵抗器 R2, R3のバランスを正確に維持すれば、第 1及び第 2出 力端子 T2, T3に接続される負荷によらず、等振幅且つ逆相の良好な平衡信号が第 1及び第 2ノード A, Bに生じ、それらがそのまま第 1及び第 2出力端子 T2, T3から出 力される。  [0028] Therefore, if the balance of the amplitude adjusting resistors R2 and R3 is accurately maintained, a good balance of equal amplitude and reverse phase can be obtained regardless of the load connected to the first and second output terminals T2 and T3. Signals are generated at the first and second nodes A and B, and are output as they are from the first and second output terminals T2 and T3.
[0029] 第 1及び第 2出力部 510, 520のような回路は、変換部 501のような回路と共に容易 に集積ィ匕することができるので、回路規模の顕著な増加に配慮することを要しない。 実施例 2  [0029] Circuits such as the first and second output units 510 and 520 can be easily integrated together with a circuit such as the conversion unit 501, so it is necessary to consider a significant increase in circuit scale. do not do. Example 2
[0030] 図 6は、図 5に示されるような不平衡ー平衡変 を簡略ィ匕した説明図である。図中 、第 1及び第 2出力端子 T2, T3よりも左側は、不平衡ー平衡変換器の側を示し、それ らより右側は、接続される負荷 Z , Z の側を示す。平衡信号を生成する信号源は S  FIG. 6 is an explanatory diagram that simplifies the unbalance-equilibrium change as shown in FIG. In the figure, the left side of the first and second output terminals T2 and T3 shows the unbalance-balance converter side, and the right side shows the connected loads Z and Z. The source that generates the balanced signal is S
1し 2し  1 and 2
, Sとして表現されている。第 1ノード A及び第 1出力端子 T2間に描かれている要素 , S. Elements drawn between the first node A and the first output terminal T2
1 2 1 2
Z は、第 1出力端子 T2から信号源側を見たときのインピーダンスを表す。同様に、 Z represents the impedance when the signal source side is viewed from the first output terminal T2. Similarly,
1S 1S
第 2ノード B及び第 2出力端子 T3間に描かれている要素 Z は、第 2出力端子 T3から  The element Z drawn between the second node B and the second output terminal T3 is connected to the second output terminal T3.
2S  2S
信号源側を見たときのインピーダンスを表す。ここで、 z , Z , Z , Z  It represents the impedance when looking at the signal source side. Where z, Z, Z, Z
1L 2L IS 2Sは参照記号 であると共に、インピーダンスをも表すことに留意を要する。  Note that 1L 2L IS 2S is a reference symbol and also represents impedance.
[0031] 高周波数の信号を負荷側に損失無く効率的に伝送するには、第 1及び第 2出力端 子 T2, T3におけるインピーダンスを整合させる必要がある。即ち、 Z =Z 及び Z [0031] In order to efficiently transmit a high-frequency signal to the load side without loss, it is necessary to match impedances at the first and second output terminals T2 and T3. Z = Z and Z
IS 1L 2 IS 1L 2
=Z とする必要がある。図 5の例では、 Z はコレクタ接地トランジスタの性質にIt is necessary to set = Z. In the example of Figure 5, Z is the nature of a common collector transistor.
S 2L IS, 2S S 2L IS, 2S
起因して非常に小さぐ Z 0である。従って、 z ≠z 及び z ≠z となって  Due to the very small Z 0. Therefore, z ≠ z and z ≠ z
IS, 2S IS 1L 2S 2L いる。このため、不平衡信号が高周波数の信号である場合には、図 5の回路では若 干の反射波又は定在波が発生し、伝送効率が低下する虞がある。  IS, 2S IS 1L 2S 2L For this reason, when the unbalanced signal is a high-frequency signal, a slight reflected wave or standing wave is generated in the circuit of FIG. 5, and the transmission efficiency may be reduced.
[0032] 本実施例では、そのような伝送効率の劣化を抑制するために、 Z =Z 及び Z In this embodiment, in order to suppress such deterioration of transmission efficiency, Z = Z and Z
IS 1L 2S IS 1L 2S
=Z を満足させる素子が、第 1ノード A及び第 1出力端子 T2間並びに第 2ノード B= Z satisfies the elements between the first node A and the first output terminal T2 and the second node B.
2し 2
及び第 2出力端子 T3間に設けられる。そのような素子を設けたとしても、実施例 1で 説明された動作は害されない。なぜなら、第 1及び第 2ノード A, Bから負荷側を眺め たときの入力インピーダンスはハイインピーダンスであり、素子のインピーダンス Z , And the second output terminal T3. Even with such an element, in Example 1, The described behavior is not harmed. This is because the input impedance when the load side is viewed from the first and second nodes A and B is high impedance, and the element impedance Z,
1S 1S
Z によらないし、そのような素子 Z , Z に起因してアイソレーション (第 1,第 2出力Z does not depend on the isolation of the elements Z and Z (first and second outputs)
2S IS 2S 2S IS 2S
端子 Τ2, T3から第 1,第 2ノード A, Bへのリーク電流の抑制度)が悪くなつたりはしな いからである。  This is because the degree of suppression of leakage current from terminals Τ2 and T3 to the first and second nodes A and B does not worsen.
[0033] 図 7は、本発明の一実施例による不平衡ー平衡変 を示す。概してこの回路は図 5に示されたものと同様であるが、上記の考察に従って、第 1及び第 2出力部 510, 5 20の出力端に、インピーダンス整合素子 Z , Z がそれぞれ設けられている。インピ  [0033] FIG. 7 illustrates an unbalance-equilibrium change according to one embodiment of the present invention. In general, this circuit is similar to that shown in FIG. 5, but impedance matching elements Z and Z are provided at the output ends of the first and second output sections 510 and 520, respectively, in accordance with the above consideration. . Impi
IS 2S  IS 2S
一ダンス整合素子は、一般的には抵抗成分及びリアクタンス成分を有する。しかし、 高周波数の差動信号が伝送されるこの種の回路には、例えば 50オームの特性イン ピーダンスを有する線路、素子又は回路が接続されることが多い。このため、出力端 子 T2, T3におけるインピーダンスの整合を図る場合にも、主に抵抗値を合わせれば よぐ図示の例でもインピーダンス整合素子が抵抗器 R13, R23として表現されてい る。なお、インピーダンス整合素子のインピーダンス(図示の例では抵抗値)は、負荷 の値に依存して定められる。第 1及び第 2出力端子 T2, T3に接続される 1対の負荷 のインピーダンスが互いに等しければ、インピーダンス整合素子のインピーダンスも 等しく設定される。  A dance matching element generally has a resistance component and a reactance component. However, lines, elements or circuits with a characteristic impedance of, for example, 50 ohms are often connected to this type of circuit where high frequency differential signals are transmitted. For this reason, even when impedance matching is performed at the output terminals T2 and T3, the impedance matching elements are represented as resistors R13 and R23 in the illustrated example in which the resistance values are mainly matched. The impedance (resistance value in the example shown) of the impedance matching element is determined depending on the load value. If the impedance of the pair of loads connected to the first and second output terminals T2 and T3 is equal to each other, the impedance of the impedance matching element is also set equal.
[0034] 本実施例によれば、実質的に等しいインピーダンスを有する 1対の素子を、不平衡 —平衡変^^の 1対の出力端子と負荷の間にそれぞれ挿入することで、インピーダン スの整合性を確保しつつ、良好な平衡信号を出力することができる。このような利点 は、図 3に示されるような従来の回路からは得られないことに留意を要する。その理由 は次のとおりである。まず、良好な平衡信号が出力されるように、図 3に示される回路 の出力端子 T102, T103にインピーダンスの等しい 1対の負荷が接続されたとする。 この回路では、出力端子 T102, T103から信号源側を見たときのインピーダンスは それぞれ異なる。従って、出力端子 T102, T103にてインピーダンスの整合性を確 保するには、出力端子 T102, T103と負荷の間に、異なるインピーダンスを有する素 子をそれぞれ挿入する必要がある。このようにすると、 2つの出力端子における信号 伝送効率は向上する力もしれない。しかし、 2つの出力端子にインピーダンスの異な る回路 (接続する負荷と、新たに挿入された素子との合成回路)が接続されるので、 2 つの出力端子力 の平衡信号は大きく歪む不都合が生じてしまう。図 5に示される例 では、第 1及び第 2出力端子 T2, T3から信号源側を見たときのインピーダンスは、コ レクタ接地トランジスタの性質に起因して、互いに等しい。従って、上記のような不都 合は生じない。 [0034] According to the present embodiment, a pair of elements having substantially the same impedance are inserted between the pair of output terminals of the unbalanced-balanced variable ^^ and the load, respectively. A good balanced signal can be output while ensuring consistency. It should be noted that such an advantage cannot be obtained from a conventional circuit as shown in FIG. The reason is as follows. First, it is assumed that a pair of loads having the same impedance are connected to the output terminals T102 and T103 of the circuit shown in FIG. 3 so that a good balanced signal is output. In this circuit, the impedance when the signal source side is viewed from the output terminals T102 and T103 is different. Therefore, in order to ensure impedance matching at the output terminals T102 and T103, it is necessary to insert elements having different impedances between the output terminals T102 and T103 and the load, respectively. In this way, the signal transmission efficiency at the two output terminals cannot be improved. However, the two output terminals have different impedances. Therefore, the balanced signal of the two output terminal forces will be greatly distorted. In the example shown in Fig. 5, the impedance when the signal source side is viewed from the first and second output terminals T2 and T3 is equal to each other due to the nature of the collector grounded transistor. Therefore, the above inconvenience does not occur.
実施例 3  Example 3
[0035] 実施例 1, 2では、使用されるトランジスタは、 NPN型のバイポーラトランジスタであ つたが、それらの全部又は一部が PNPトランジスタで構成されてもよい。図 8は、 PN Pトランジスタを用いて構成された不平衡-平衡変翻を示す。この場合には、 2つの 基準電位の相対的な大きさを変更する必要があり、正の基準電位(+V )が負の基  In the first and second embodiments, the transistors used are NPN bipolar transistors, but all or part of them may be PNP transistors. Figure 8 shows an unbalance-equilibrium transformation constructed using PNP transistors. In this case, it is necessary to change the relative magnitude of the two reference potentials, and the positive reference potential (+ V) is negative.
CC  CC
準電位 (-V )に変更されて 、る。更に、バイポーラトランジスタだけでなぐ電界効  Changed to quasi-potential (-V). In addition, the field effect achieved only by bipolar transistors.
CC  CC
果トランジスタ (FET)その他のトランジスタを用いて回路を構成することも可能である 。但し、第 1及び第 2出力部のトランジスタに関しては、高周波特性の良好なバイポー ラトランジスタを使用することが好ましい。その高周波特性とは、例えば、無線周波数 の信号に対して、入出力信号が同相且つ等振幅であること、高い入力インピーダンス 及び低い出力インピーダンスを有すること、出力側から入力側へのアイソレーション が十分に確保されること等である。  It is also possible to construct a circuit using a fruit transistor (FET) or other transistor. However, it is preferable to use bipolar transistors with good high frequency characteristics for the transistors of the first and second output sections. The high-frequency characteristics are, for example, that the input and output signals are in-phase and of equal amplitude with respect to radio frequency signals, have high input impedance and low output impedance, and have sufficient isolation from output side to input side. To be secured.
産業上の利用可能性  Industrial applicability
[0036] 本発明は、等振幅且つ逆相の差動信号、相補信号又は平衡信号を、不平衡信号 に基づいて生成する任意の不平衡ー平衡変^^に使用することができる。このような 不平衡-平衡変換器は、低周波数、中間周波数及び z又は高周波数の信号間で周 波数変換を行なうためのミキサゃ、直交変調器等に使用されてもよい。また、不平衡[0036] The present invention can be used for any unbalanced-balanced variable that generates equal amplitude and antiphase differential signals, complementary signals, or balanced signals based on the unbalanced signals. Such an unbalanced-balanced converter may be used in a mixer, a quadrature modulator, or the like for performing frequency conversion between low frequency, intermediate frequency, and z or high frequency signals. Also unbalanced
—平衡変換器は、図 9に示されるような、差動入力式のアナログディジタル変換器の 入力信号を作成するために使用されてもょ ヽ。平衡信号が入力されるアナログデイジ タル変 ^^は、不平衡信号が入力されるものとは異なり、入力信号中の同相ノイズ成 分を相殺し、出力信号に雑音が混入することを抑制することができる。 —Balanced converters may be used to create input signals for differential input analog-to-digital converters, as shown in Figure 9. Analog digital changes ^^ to which a balanced signal is input, unlike those to which an unbalanced signal is input, cancel out common-mode noise components in the input signal and suppress noise from being mixed into the output signal. Can do.

Claims

請求の範囲 The scope of the claims
[1] 不平衡信号を受信し、第 1及び第 2出力端子から平衡信号を出力する不平衡 -平 衡変換器であって、前記不平衡信号に応じて変化する信号を、第 1及び第 2ノードに 与えるトランジスタを有し、  [1] An unbalance-equilibrium converter that receives an unbalanced signal and outputs a balanced signal from the first and second output terminals. The unbalanced signal changes in response to the unbalanced signal. It has a transistor that feeds two nodes,
前記第 1ノードと、第 1の負荷に接続される前記第 1出力端子との間、及び前記第 2 ノードと、第 2の負荷に接続される前記第 2出力端子との間に、コレクタ接地トランジス タが設けられる  Collector ground between the first node and the first output terminal connected to the first load and between the second node and the second output terminal connected to the second load A transistor is provided
ことを特徴とする不平衡ー平衡変^^。  An unbalance-equilibrium change that is characterized by ^^.
[2] 前記第 1及び第 2ノードが、前記トランジスタのコレクタ及びェミッタに接続される ことを特徴とする請求項 1記載の不平衡ー平衡変^^。 [2] The unbalance-balance change according to claim 1, wherein the first and second nodes are connected to a collector and an emitter of the transistor.
[3] 前記不平衡信号が、無線周波数信号である [3] The unbalanced signal is a radio frequency signal
ことを特徴とする請求項 1記載の不平衡ー平衡変^^。  The unbalance-equilibrium change according to claim 1, characterized in that:
[4] 前記第 1及び第 2出力端子が、周波数混合器に接続される [4] The first and second output terminals are connected to a frequency mixer
ことを特徴とする請求項 3記載の不平衡ー平衡変^^。  The unbalance-equilibrium change according to claim 3, characterized by the above.
[5] 前記第 1及び第 2出力端子が、アナログディジタル変換器に接続される [5] The first and second output terminals are connected to an analog-digital converter
ことを特徴とする請求項 1記載の不平衡ー平衡変^^。  The unbalance-equilibrium change according to claim 1, characterized in that:
[6] 前記コレクタ接地トランジスタ及び前記第 1出力端子の間に、及び Z又は前記コレ クタ接地トランジスタ及び前記第 2出力端子の間に、インピーダンス整合素子が設け られる [6] Impedance matching elements are provided between the grounded collector transistor and the first output terminal, and between Z or the grounded collector transistor and the second output terminal.
ことを特徴とする請求項 1記載の不平衡ー平衡変^^。  The unbalance-equilibrium change according to claim 1, characterized in that:
[7] 前記インピーダンス整合素子が、抵抗器より成る [7] The impedance matching element includes a resistor.
ことを特徴とする請求項 1記載の不平衡ー平衡変^^。  The unbalance-equilibrium change according to claim 1, characterized in that:
[8] 前記コレクタ接地トランジスタ力 NPNトランジスタより成る [8] Grounded transistor power consisting of NPN transistor
ことを特徴とする請求項 1記載の不平衡ー平衡変^^。  The unbalance-equilibrium change according to claim 1, characterized in that:
PCT/JP2004/013560 2004-09-16 2004-09-16 Unbalance-balance converter WO2006030513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013560 WO2006030513A1 (en) 2004-09-16 2004-09-16 Unbalance-balance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013560 WO2006030513A1 (en) 2004-09-16 2004-09-16 Unbalance-balance converter

Publications (1)

Publication Number Publication Date
WO2006030513A1 true WO2006030513A1 (en) 2006-03-23

Family

ID=36059780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013560 WO2006030513A1 (en) 2004-09-16 2004-09-16 Unbalance-balance converter

Country Status (1)

Country Link
WO (1) WO2006030513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316481A1 (en) * 2016-11-01 2018-05-02 NXP USA, Inc. Baseband amplifier circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185213A (en) * 1987-01-28 1988-07-30 Hitachi Ltd Input circuit
JPH06350358A (en) * 1992-09-10 1994-12-22 Nec Corp Balanced conversion circuit
JPH07307625A (en) * 1994-05-13 1995-11-21 Nec Corp Unbalance/balance conversion circuit
JPH11298295A (en) * 1998-04-10 1999-10-29 Mitsubishi Electric Corp Unbalance-balance converter and balanced mixer
JP2001211098A (en) * 1999-11-15 2001-08-03 Hitachi Ltd Mobile communication equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185213A (en) * 1987-01-28 1988-07-30 Hitachi Ltd Input circuit
JPH06350358A (en) * 1992-09-10 1994-12-22 Nec Corp Balanced conversion circuit
JPH07307625A (en) * 1994-05-13 1995-11-21 Nec Corp Unbalance/balance conversion circuit
JPH11298295A (en) * 1998-04-10 1999-10-29 Mitsubishi Electric Corp Unbalance-balance converter and balanced mixer
JP2001211098A (en) * 1999-11-15 2001-08-03 Hitachi Ltd Mobile communication equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316481A1 (en) * 2016-11-01 2018-05-02 NXP USA, Inc. Baseband amplifier circuit
CN108011613A (en) * 2016-11-01 2018-05-08 恩智浦美国有限公司 Baseband Amplifier Circuit
US10498299B2 (en) 2016-11-01 2019-12-03 Nxp Usa, Inc. Baseband amplifier circuit

Similar Documents

Publication Publication Date Title
US9071196B2 (en) Double balanced mixer with switching pairs complementary to each other
JP4701346B2 (en) Direct conversion device with compensation means for the transmission path of a wireless communication device
WO2011015533A1 (en) Digital modulated rf power amplifier with impedance compensation circuit
JP2008236135A (en) Frequency converter
US4117415A (en) Bridge amplifiers employing complementary transistors
US6687494B1 (en) Low power radio telephone image reject mixer
US11374536B2 (en) Zero IF transmitter with decoupling between mixer and programmable gain stage
US20010048336A1 (en) Analog multiplying circuit and variable gain amplifying circuit
KR100371876B1 (en) Frequency converter
AU2019266400B2 (en) Low noise broadband amplifier with resistive matching
US20050101281A1 (en) Signal processing device for mobile radio
WO2006030513A1 (en) Unbalance-balance converter
TW498607B (en) Circuit for RF buffer and method of operation
US7852135B2 (en) Circuit arrangement for signal mixing
JP4393926B2 (en) Mixer circuit
JP4623008B2 (en) FM detector circuit
WO2018229977A1 (en) High frequency amplifier
JP4443973B2 (en) Phase shifter
JP3874649B2 (en) Balanced circuit
JPH10322135A (en) Mixer circuit
JPWO2012032736A1 (en) Amplifier circuit
US20080231376A1 (en) Oscillation circuit controlling phase difference of output signals
CN116781061A (en) Common mode level conversion circuit and chip
JP5188281B2 (en) Mixer circuit and transceiver using the same
JPH11154847A (en) 90 degree phase shifter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP