WO2006030498A1 - 電子透かしシステム - Google Patents

電子透かしシステム Download PDF

Info

Publication number
WO2006030498A1
WO2006030498A1 PCT/JP2004/013417 JP2004013417W WO2006030498A1 WO 2006030498 A1 WO2006030498 A1 WO 2006030498A1 JP 2004013417 W JP2004013417 W JP 2004013417W WO 2006030498 A1 WO2006030498 A1 WO 2006030498A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog signal
watermark
data
watermarked
acquisition unit
Prior art date
Application number
PCT/JP2004/013417
Other languages
English (en)
French (fr)
Inventor
Masahide Hayama
Original Assignee
Telemidic, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telemidic, Ltd. filed Critical Telemidic, Ltd.
Priority to PCT/JP2004/013417 priority Critical patent/WO2006030498A1/ja
Publication of WO2006030498A1 publication Critical patent/WO2006030498A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/018Audio watermarking, i.e. embedding inaudible data in the audio signal

Definitions

  • the present invention relates to an electronic watermarking device that can embed watermark information according to attribute information of an acquired analog signal, and an electronic watermark decryption device that also acquires the acquired watermarked analog signal power. .
  • Patent Document 1 JP 2003-263182 A
  • the present invention has been made in view of such a situation.
  • the first invention includes an analog signal acquisition unit, an analog signal attribute information acquisition unit that acquires attribute information of the analog signal acquired by the analog signal acquisition unit, and the analog signal attribute information acquisition unit.
  • a watermark information acquisition unit that acquires watermark information to be assigned to the analog signal according to the acquired attribute information, and a watermark signal so that the watermark information acquired by the watermark information acquisition unit can be acquired by reproducing the analog signal.
  • a watermarked analog signal generation unit that generates a watermarked analog signal embedded with a watermark, and a watermarked analog signal output unit that outputs the watermarked analog signal generated by the watermarked analog signal generation unit.
  • the present invention relates to an electronic watermarking apparatus.
  • a second invention relates to the electronic watermarking device according to the first invention, wherein the analog signal acquisition unit has an audio signal acquisition means for acquiring an audio signal which is an analog signal.
  • the analog signal attribute information acquisition unit includes speaker specific attribute information acquisition means for acquiring speaker specific attribute information for specifying a speaker that emits speech as attribute information.
  • the present invention relates to the electronic watermarking apparatus described in the second invention.
  • the watermarked analog signal output unit further converts the watermarked analog signal output into a digital signal
  • the AZD conversion unit converts the watermarked analog signal from the watermarked analog signal.
  • the electronic watermarking device according to any one of the first to third aspects, further comprising: a conversion signal transmission unit that transmits a converted signal that is a digital signal.
  • a fifth invention relates to the electronic power transmission device according to the fourth invention, wherein the converted signal transmission unit has public line output means for transmitting the converted signal to a public communication network.
  • the analog signal acquisition unit of the digital watermark device includes call voice acquisition means for acquiring a telephone call voice analog signal, and the watermarked analog signal generation of the digital watermark device is performed.
  • An electronic watermarking device according to the third aspect of the present invention, wherein a watermarked call voice analog signal that is a watermarked analog signal is generated, and the watermarked analog signal output unit outputs a voice signal for a telephone call.
  • a seventh invention provides a watermarked analog signal acquisition unit for acquiring a watermarked analog signal output from the watermarked analog signal output unit, and a watermarked analog signal acquired by the watermarked analog signal acquisition unit.
  • the present invention relates to a digital watermark decoding apparatus having a playback unit for playing back a signal and a second transparent information acquisition unit for acquiring signal information for playback in the playback unit.
  • the eighth invention is the electronic watermark according to the seventh invention, further comprising an attribute information acquisition unit that acquires attribute information according to the permeability information acquired by the second transparency information acquisition unit. It relates to a decryption device.
  • a process specifying information holding unit that holds process specifying information that is information for specifying a process to be performed according to the attribute information acquired by the attribute information acquiring unit, and the process specifying information
  • a processing execution unit for executing a process according to the processing specifying information held in the holding unit, and the digital watermark decoding apparatus according to the eighth invention
  • the processing in the processing execution unit is a process of reproducing the audio signal that is the analog signal or a process that does not reproduce the digital watermark decoding apparatus according to the ninth aspect of the invention.
  • the processing in the processing execution unit is a process of reproducing the audio signal that is the analog signal or a process that does not reproduce the digital watermark decoding apparatus according to the ninth aspect of the invention.
  • the electronic signal can be embedded in the analog signal in accordance with the attribute information extracted from the analog signal, so that the speaker can be identified and electronically transmitted in real time.
  • Information can be embedded.
  • the embedded permeability information it is possible to execute specific processing such as reproducing analog signals.
  • the electronic permeability information can be embedded in the analog signal, the electronic permeability does not disappear due to the electronic permeability in the transmission line.
  • the first embodiment mainly describes claim 1.
  • the second embodiment mainly describes claim 2.
  • the third embodiment mainly describes claim 3.
  • the fourth embodiment will mainly describe claim 4.
  • the fifth embodiment will mainly describe claim 5.
  • the sixth embodiment will mainly describe claim 6.
  • the seventh embodiment will mainly describe claim 7.
  • the eighth embodiment will mainly describe claim 8.
  • the ninth embodiment will mainly describe claim 9.
  • the tenth embodiment mainly describes claim 10.
  • Embodiment 1 will be described below.
  • the electronic watermarking apparatus of the present embodiment is an electronic watermarking apparatus that can generate an analog signal with a watermark by acquiring an analog signal and embedding the transparent information according to attribute information of the acquired analog signal. About.
  • FIG. 1 is a diagram illustrating an example of functional blocks of the digital watermark apparatus according to the present embodiment.
  • the electronic permeability device 0100 includes an analog signal acquisition unit 0101, an analog signal attribute information acquisition unit 0102, a transparency information acquisition unit 0103, a watermarked analog signal generation unit 0104, and a watermarked analog signal output unit 0105. , It will be power. [0021] Description of configuration requirements>
  • each functional block described below can be realized as hardware, software that can be obtained by developing it on a memory and controlling the nodeware, or both hardware and software.
  • the CPU the CPU, memory, hard disk drive, read drive such as CD-ROM and DVD-ROM, transmission / reception port for various communications, interface, and other peripheral devices
  • the present invention can be realized not only as an apparatus or a system but also as a method.
  • a part of such an invention can be configured as software.
  • a software product used for causing a computer to execute such software and a recording medium in which the product is fixed to a recording medium are naturally included in the technical scope of the present invention. (The same applies throughout this specification.)
  • the “analog signal acquisition unit” is configured to acquire an analog signal.
  • the “analog signal” means an electric signal obtained by continuously changing a video signal, an audio signal, etc. with a fixed value of voltage or current, or with time.
  • Analog signals include, for example, human faces, male faces, female faces, children's faces, specific human faces, medical images, animal images, landscape images, human voices, and music melodies. Signals representing information such as animal calls.
  • the analog signal may also be configured with a plurality of different types of signals, such as a video signal and an audio signal.
  • the analog signal acquisition unit outputs the acquired analog signal to the analog signal attribute information acquisition unit.
  • the “analog signal attribute information acquisition unit” is configured to acquire attribute information of the analog signal acquired by the analog signal acquisition unit.
  • the attribute information may be acquired from the entire analog signal or from a part thereof.
  • attribute information refers to unique properties and characteristics of analog signals.
  • the attribute information identifies a person.
  • Information “Information for identifying people” includes, for example, name, gender, age, position, face shape, hairstyle, presence of glasses, “A” ““ I ”” “U” ⁇ “E” ⁇ This includes information such as the voice pattern, smell, and taste of “O”.
  • pattern recognition technology can be used to acquire attribute information.
  • pattern recognition is a technology that automatically determines what the pattern means and what it means when information (patterns) such as characters, figures and sounds is presented. I mean.
  • a postal code automatic reading device is one of the typical pattern recognition devices in practical use.
  • Speech recognition technology and image recognition technology are also one of pattern recognition technologies.
  • speech recognition refers to a technology in which a computer recognizes speech (recognizes speech). Although the details of the speech recognition technology are omitted, the features of general speech recognition technology are described below. There are two types of speech recognition technology: “specific speaker recognition” that listens to words registered by a specific person in advance, and “unspecified speaker recognition” that listens to the speech of unspecified people.
  • voice recognition technology it is possible to recognize continuous voices that are pronounced like normal conversation. Therefore, a smooth dialogue between people and the system can be realized. In addition, the recognition rate can be increased even for voices with low quality such as telephone lines. Furthermore, by adopting a model that statistically processed a large number of voices collected under various conditions, it is possible to increase the recognition rate for all kinds of voices of unspecified majority speakers regardless of gender. it can.
  • the acquired analog signal feature is extracted and the attribute information can be acquired by specifying the speaker.
  • Image recognition refers to the process by which a computer determines what power an image is and what it means. Face recognition and character recognition are also types of image recognition.
  • biometric authentication refers to a technology for authenticating an individual based on the characteristics of the human body. Biometric authentication includes systems that use fingerprints, voiceprints, retinal patterns, iridescent patterns, hand sizes, and pen speed and pressure when signing. It is also possible to make almost 100% correct judgments, where the practicality of the method using fingerprints and iris patterns is high.
  • “Character recognition” is, for example, an alphabetic print sentence. If it is a character, register a 26-character font in the database in advance, calculate the similarity with the input image one by one, and the image will represent the highest similarity!
  • the acquired analog signal (image signal) force can also extract features and acquire attribute information.
  • the analog signal attribute information acquisition unit transmits the acquired analog signal attribute information or corresponding information to the information acquisition unit.
  • “information corresponding to it” refers to information associated with attribute information.
  • the attribute information power is gender: male, female
  • the information is associated with the attribute information such as “male: 0”, “female: 1”.
  • the attribute information such as “male: 0”, “female: 1”.
  • the “penetration information acquisition unit” is configured to acquire the transmission information to be assigned to the analog signal according to the attribute information acquired by the analog signal attribute information acquisition unit.
  • Permeability information refers to special information embedded in a form that does not significantly affect the quality of analog signals such as image signals and audio signals.
  • information on creator, date of creation, seller, copyright holder, etc. corresponds to the transparency information.
  • the watermark information is usually transparent and the information is not divided. However, the watermark information has a feature that the information can be read and read by computer processing.
  • copyright protection, security level setting, identification of specific persons, classification of information for example, voice calls made to answering machines are voiced when unauthorized copying or alteration of data is prevented
  • it is classified according to the file according to the file), phone transmission 'selection of the forwarding destination, etc.
  • “according to attribute information” means that the information is acquired in response to the attribute information. If the information is the same as the attribute information, the attribute information is completely deleted. If it is included, if it is a part of attribute information (including the case of including information different from the attribute information), it may be information completely different from the attribute information.
  • the transparent information includes, for example, different information such as identification information, time information, and user password of the digital watermarking device itself. And embed security once high, transparent or blue by using the voice pattern (attribute information) of the conversation. It is also possible.
  • the watermark information acquisition unit will set the transparency information specified for Saburo Sato (name: Sato).
  • Saburo, gender: male, age: 25 years old) can be configured to get.
  • the watermark information acquisition unit outputs the acquired watermark blue information to the watermarked analog signal generation unit.
  • the “watermarked analog signal generator” is configured to generate a watermarked analog signal in which a watermark signal is embedded so that the transparent information acquired by the transparent information acquisition unit can be acquired by reproducing the analog signal. Speak. Since the watermarked analog signal is an analog signal, no matter what modulation is present, it is transparent and information is not lost.
  • a method for generating watermarked analog signals information such as creator, creation date, seller, and copyright holder is obtained as transparent information and superimposed with analog signals such as image signals and audio signals.
  • a watermarked analog signal can be used, and the result of the predetermined sum for each predetermined period can show the watermark information. Details of the method are described in “Audio Watermarking Device” (International Application No. PCTZJP03Z06114), and will be described in the last part of the specification.
  • the watermarked analog signal generation unit outputs the generated watermarked analog signal to the watermarked analog signal output unit.
  • the “watermarked analog signal output unit” is configured to output the watermarked analog signal generated by the watermarked analog signal generation unit.
  • the watermarked analog signal may be modulated for output. Examples of modulation include amplitude modulation, frequency modulation, and phase modulation.
  • the watermarked analog signal output unit transmits the output watermarked analog signal, as an example, to a digital watermark decoding device to be described later.
  • FIG. 2 is a diagram showing an example of the processing flow of the present embodiment.
  • the digital watermark apparatus acquires an analog signal (step S0201).
  • the digital watermark apparatus acquires the attribute information of the analog signal acquired in the analog signal acquisition step (step S0202).
  • the digital watermarking apparatus acquires the transparency information to be assigned to the analog signal according to the attribute information acquired in the analog signal attribute information acquisition step (step S0203).
  • the digital watermarking device embeds the watermark signal so that the watermark information acquired in the permeability information acquisition step can be acquired by reproducing the analog signal. Is generated (step S0204).
  • the digital watermarking device outputs the watermarked analog signal generated in the watermarked analog signal generating step (step S0205).
  • FIG. 3 is a diagram showing an example of specific functional blocks of the electronic permeability device of the present embodiment.
  • the digital watermark device 0300 has an analog signal acquisition unit 0301, an analog signal attribute information acquisition unit 0302, a permeability information acquisition unit 0303, a watermarked analog signal generation unit 0304, and a watermarked analog signal output unit 0305. .
  • the “analog signal acquisition unit” acquires an analog signal (an image signal of a human face).
  • the analog signal acquisition unit outputs the acquired analog signal (human face image signal) to the analog signal attribute information acquisition unit.
  • the “analog signal attribute information acquisition unit” is an analog signal acquired by the analog signal acquisition unit.
  • a method for obtaining attribute information (gender: male, presence / absence of glasses: yes) from analog signals (human face image signals) includes the following methods.
  • an analog signal The human face image signal
  • features that match or similar to the analog signal (human face image signal) can be acquired based on the extracted features.
  • the analog signal attribute information acquisition unit transmits the attribute information (gender: male, presence / absence of glasses: yes) of the acquired analog signal (human face image signal) and outputs it to the information acquisition unit.
  • the “permeability information acquisition unit” should be assigned to analog signals (human face image signals) according to the attribute information acquired by the analog signal attribute information acquisition unit (gender: male, presence of glasses: yes) (Name: Taro Yamada, Age: 35 years old, Height: 165cm, Weight: 70kg, Hobby: Saccah)
  • the transparency information acquisition unit outputs the acquired transparency information (name: Taro Yamada, age: 35 years old, height: 165 cm, weight: 70 kg, hobby: soccer) to the watermarked analog signal generation unit.
  • the “analog signal generator with watermark” is an analog signal of the transparent information (name: Taro Yamada, age: 35 years old, height: 165 cm, weight: 70 kg, hobby: soccer) acquired by the information acquisition unit. Generates a watermarked analog signal (human face + permeability information) with a watermark signal embedded so that it can be obtained by playing back (human face image signal). The watermarked analog signal generation unit outputs the generated watermarked analog signal (human face + permeability information) to the watermarked analog signal output unit.
  • the “watermarked analog signal output unit” outputs the watermarked analog signal (human face + permeability information) generated by the watermarked analog signal generation unit.
  • FIG. 4 is a diagram showing an example of a specific processing flow of the present embodiment.
  • the digital watermark apparatus acquires an analog signal (an image signal of a human face) (step S0401).
  • the analog signal attribute information acquisition scan In this step, the digital watermarking device acquires attribute information (gender: male, presence / absence of glasses: presence) of the analog signal (human face image signal) acquired in the analog signal acquisition step (step S0402).
  • the digital watermarking device uses an analog signal (human face) according to the attribute information (gender: male, presence / absence of glasses: presence) acquired in the analog signal attribute information acquisition step.
  • Tora Kare to be assigned to a freight (name: Taro Yamada, age: 35 years old, height: 165 cm, weight: 70 kg, hobby: soccer) is acquired (step S0403).
  • the digital watermarking device uses the transparent information acquired in the watermark information acquisition step (name: Taro Yamada, age: 35 years old, height: 165 cm, weight: 70 kg, hobby: soccer) Is generated by embedding a watermark signal so that it can be obtained by reproducing an analog signal (image signal of a human face) (step S0404).
  • the digital watermark device outputs the watermarked analog signal (human face + watermark information) generated in the watermarked analog signal generation step ( Step S0405).
  • the electronic permeability information can be embedded in accordance with an analog signal, so that the electronic permeability is not lost on the transmission line.
  • the pre-registered permeability information can be embedded according to the analog signal, the electronic permeability can be embedded in real time.
  • the digital watermarking apparatus relates to the digital watermarking apparatus according to the first embodiment, in which the analog signal acquisition unit includes an audio signal acquisition unit that acquires an audio signal that is an analog signal.
  • FIG. 5 is a diagram illustrating an example of functional blocks of the digital watermark apparatus according to the present embodiment.
  • Electronic The permeability device 0500 includes an analog signal acquisition unit 0501, an analog signal attribute information acquisition unit 0502, a transparency information acquisition unit 0503, a watermarked analog signal generation unit 0504, a watermarked analog signal output unit 0505, There will be power.
  • the analog signal acquisition unit includes audio signal acquisition means 0506.
  • the “analog signal acquisition unit” is configured to include audio signal acquisition means for acquiring an audio signal that is an analog signal.
  • the “sound signal” means a signal having a frequency of about 20 Hz to 20 kHz, which is a detection frequency band of human hearing.
  • the sound signal expresses the strength of the sound by the amplitude and the pitch of the sound by the frequency. Since the other points are the same as those in the first embodiment, description thereof is omitted.
  • Genus information includes, for example, name, gender, position, voice pattern of person, sound pattern of “A”, “I”, “U”, “E”, “O”, “ Examples include information on the sound pattern of “A”, “I”, “U”, “E”, “O”, and music melody. Since the other points are the same as those in the first embodiment, description thereof is omitted.
  • the “permeability information acquisition unit”, “watermarked analog signal generation unit”, and “watermarked analog signal output unit” are the same as those in the first embodiment, and thus description thereof is omitted.
  • FIG. 6 is a diagram showing an example of the processing flow of the present embodiment.
  • the digital watermarking apparatus acquires an audio signal that is an analog signal (step S0601).
  • Steps S0602 to S0605 are the same as steps S0202 to S0205 of the first embodiment, and thus description thereof is omitted. [0044] Specific explanation based on functional block diagram>
  • FIG. 7 is a diagram showing an example of a specific functional block of the electronic permeability device of the present embodiment.
  • the digital watermark device 0700 has an analog signal acquisition unit 0701, an analog signal attribute information acquisition unit 0702, a permeability information acquisition unit 0703, a watermarked analog signal generation unit 0704, and a watermarked analog signal output unit 0705.
  • the analog signal acquisition unit includes audio signal acquisition means 0706.
  • the “analog signal acquisition unit” acquires an analog signal (audio signal).
  • the analog signal acquisition unit outputs the acquired analog signal (audio signal) to the analog signal attribute information acquisition unit.
  • the “analog signal attribute information acquisition unit” is an analog signal acquired by the analog signal acquisition unit.
  • Acquire attribute information (gender: male) of (voice signal, voice pattern: “A”).
  • the analog signal attribute information acquisition unit transmits attribute information (gender: male) of the acquired analog signal (audio signal, audio pattern: “A”) and outputs it to the information acquisition unit.
  • the “Permeability Information Acquisition Unit” is the watermark information (name: Suzuki) that should be assigned to the analog signal (audio signal, audio pattern: “A”) according to the attribute information (gender: male) acquired by the analog signal attribute information acquisition unit.
  • Jiro a method for acquiring attribute information (name: Jiro Suzuki) from an analog signal (audio signal, audio pattern: “A”) includes the following methods. For example, an analog signal (speech signal, speech pattern: “A”) is recognized by a speech recognition device, and the analog signal (speech signal, speech pattern: “A”) matches or resembles a feature from the speech recognition device database (Gender: Male, Name: Jiro Suzuki) is extracted. Attribute information (name: Jiro Suzuki) can be acquired based on the extracted features.
  • the transparency information acquisition unit outputs the acquired watermark information (name: Jiro Suzuki) to the watermarked analog signal generation unit.
  • the “watermarked analog signal generator” can acquire the transparent information (name: Jiro Suzuki) acquired by the transparent information acquisition unit by reproducing the analog signal (audio signal, audio pattern: “A”). Generates a watermarked analog signal (sound signal + transparent information) with a watermark signal embedded in it.
  • the watermarked analog signal generation unit outputs the generated watermarked analog signal (audio signal + watermark information) to the watermarked analog signal output unit.
  • the “watermarked analog signal output unit” outputs the watermarked analog signal (audio signal + transmittance information) generated by the watermarked analog signal generation unit.
  • FIG. 8 is a diagram showing an example of a specific processing flow of the present embodiment.
  • the digital watermarking apparatus acquires an analog signal (audio signal) (step S0801).
  • the digital watermarking apparatus acquires attribute information (gender: male) of the analog signal (audio signal, audio pattern: “A”) acquired in the analog signal acquisition step ( Step S0802).
  • the digital watermarking device assigns the analog signal (audio signal, audio pattern: “A”) according to the attribute information (gender: male) acquired in the analog signal attribute information acquisition step.
  • Power information (name: Jiro Suzuki) is acquired (step S0803).
  • the digital watermark device transmits the transparent information (name: Jiro Suzuki) acquired in the transparent information acquisition step to the analog signal (audio signal, audio pattern: “A”).
  • a watermarked analog signal (audio signal + permeability information) in which a watermark signal is embedded so as to be acquired by reproduction is generated (step S0804).
  • the digital watermarking device generates the watermarked analog signal (audio signal) generated in the watermarked analog signal generation step.
  • the digital watermark information can be embedded in accordance with the audio signal, so that the electronic permeability does not disappear on the transmission line. Also, Since the transparent information registered in advance according to the audio signal can be embedded, the electronic transparent information can be embedded in real time.
  • Embodiment 3 will be described below.
  • the electronic watermarking apparatus includes a speaker specific attribute information acquisition unit in which the analog signal attribute information acquisition unit acquires speaker specific attribute information for specifying a speaker that emits speech as attribute information.
  • the present invention relates to the electronic permeability device according to Form 2.
  • FIG. 9 is a diagram showing an example of functional blocks of the digital watermark apparatus of this embodiment.
  • the electronic permeability device 0900 includes an analog signal acquisition unit 0901, an analog signal attribute information acquisition unit 0902, a permeability information acquisition unit 0903, a watermarked analog signal generation unit 0904, and a watermarked analog signal output unit 0905. , It will also be a force.
  • the analog signal acquisition unit includes audio signal acquisition means 0906.
  • the analog signal attribute information acquisition unit includes speaker specific attribute information acquisition means 0907.
  • the “analog signal attribute information acquisition unit” is configured to include speaker specific attribute information acquisition means.
  • “speaker-specific attribute information acquisition means” refers to means for acquiring speaker-specific attribute information for specifying a speaker that emits speech as attribute information. Special speaker In constant attribute information, for example, name, gender, job title, “A”, “I”, “U”, “E” of a specific person
  • FIG. 10 is a diagram showing an example of the processing flow of the present embodiment.
  • the digital watermarking apparatus acquires speaker specifying attribute information for specifying a speaker that emits speech as attribute information (step S 1002).
  • step S1001, step S1003 to step S1005 are the same as step S0601 and step S0603 to step S0605 of the second embodiment, and a description thereof will be omitted.
  • FIG. 11 is a diagram showing an example of a specific functional block of the electronic permeability device of the present embodiment.
  • the electronic permeability device 1100 includes an analog signal acquisition unit 1101, an analog signal attribute information acquisition unit 1102, a permeability information acquisition unit 1103, a watermarked analog signal generation unit 1104, and a watermarked analog signal output unit 1105. , Power.
  • the analog signal acquisition unit includes an audio signal acquisition unit 1106. Further, the analog signal attribute information acquisition unit has speaker specific attribute information acquisition means 1107.
  • the “analog signal acquisition unit” acquires an analog signal (audio signal).
  • the analog signal acquisition unit outputs the acquired analog signal (audio signal) to the analog signal attribute information acquisition unit.
  • the “analog signal attribute information acquisition unit” is an analog signal acquired by the analog signal acquisition unit.
  • Acquire speaker specific attribute information (name: Saburo Sato) of (voice signal, voice pattern: “A”).
  • a method for acquiring the attribute information (name: Saburo Sato) of the analog signal (voice signal, voice pattern: “A”) force is as follows. For example, Ana The log signal (voice signal, voice pattern: “A”) is recognized by the voice recognizer, and the features (gender: same) as the analog signal (voice signal, voice pattern: “A”) from the voice recognizer database (Male, full name: Saburo Sato). Attribute information (name: Saburo Sato) can be acquired based on the extracted features.
  • the analog signal attribute information acquisition unit transmits speaker-specific attribute information (name: Saburo Sato) of the acquired analog signal (audio signal, audio pattern: “A”) to the information acquisition unit.
  • the “penetration information acquisition unit” is the transparent signal to be assigned to the analog signal (voice signal, voice pattern: “a”) according to the speaker specific attribute information (name: Saburo Sato) acquired by the analog signal attribute information acquisition unit.
  • Acquire information name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby: music.
  • the transparent information acquisition unit outputs the acquired transparent information (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby: music) to the analog signal generator with watermark.
  • the “analog signal generator with watermark” is an analog signal for the transparent information (name: Saburo Sato, age: 25, height: 175 cm, weight: 65 kg, hobby: music) acquired by the information acquisition unit. Generates a watermarked analog signal (sound signal + permeability information) with a watermark signal embedded so that it can be acquired by playing (sound signal, sound pattern: “A”). The watermarked analog signal generation unit outputs the generated watermarked analog signal (audio signal + transmittance information) to the watermarked analog signal output unit.
  • the “watermarked analog signal output unit” outputs the watermarked analog signal (audio signal + transmittance information) generated by the watermarked analog signal generation unit.
  • FIG. 12 is a diagram showing an example of a specific processing flow of the present embodiment.
  • the digital watermarking apparatus acquires an analog signal (audio signal, audio pattern: “A”) (step S1201).
  • analog signal attributes In the information acquisition step, the digital watermarking apparatus acquires speaker specific attribute information (name: Saburo Sato) for specifying a speaker who emits speech as attribute information (step S 1202).
  • the digital watermarking device performs an analog signal (audio signal, audio pattern: according to the speaker specific attribute information (name: Saburo Sato) acquired in the analog signal attribute information acquisition step).
  • step S1203 Acquire transparency information (name: Saburo Sato, age: 25 years old, height: 175cm, weight: 65kg, hobby: music) (step S1203) o
  • generate analog signal with watermark In the step, the digital watermarking device uses the watermark information (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby: music) acquired in the watermark information acquisition step as an analog signal (audio signal) Then, an analog signal (audio signal + watermark information) with a watermark embedded therein is generated so that it can be acquired by reproducing the audio pattern: “A”) (step S1204).
  • the digital watermark device outputs the watermarked analog signal (audio signal + transmittance information) generated in the watermarked analog signal generation step (step S 1205).
  • the digital watermarking device of this embodiment can also be configured as described in the following configuration requirements.
  • the “analog signal acquisition unit” is configured to have call voice acquisition means.
  • “call voice acquisition means” means means for acquiring a telephone call voice analog signal.
  • Examples of “phone” include a wireless phone such as a mobile phone and a wired phone such as a fixed phone.
  • the “watermarked analog signal generation unit” is configured to generate a watermarked speech audio analog signal that is a watermarked analog signal that can intermittently acquire speaker-specific attribute information.
  • “speaker-specific attribute information can be acquired intermittently” means that it is not necessary to continuously acquire speaker-specific attribute information. You may get it. [0068] (Watermarked analog signal output unit)
  • the “watermarked analog signal output unit” is configured to output an audio signal for a telephone call.
  • speaker specific attribute information can be acquired according to an audio signal, so that a transparent blueprint corresponding to the specified speaker can be embedded. It can also be used for authentication using telephone. For example, when an important instruction using the telephone is transmitted to the other party, it can be easily proved that it is authentic. In addition, when the phone is shared by multiple people, the voice can be identified and specified, so charging can be made separately. Voices can also be identified and transferred or copied and saved. Furthermore, authentication can be performed with transparency information. For example, authentication of transparency information can be used for money transfer or voting by phone. It is also effective for improving security against trading instructions for securities such as stocks using voice. This is because trading of securities such as stocks can be done at once, and it is possible to omit information input for power authentication, which requires authentication.
  • Embodiment 4 will be described below.
  • the electronic watermarking device of the present embodiment further includes an AZD conversion unit that converts a watermarked analog signal output from the watermarked analog signal output unit into a digital signal, and a digital signal converted from the watermarked analog signal by the AZD conversion unit.
  • the digital watermark apparatus according to any one of Embodiments 1 to 3, further comprising: a converted signal transmission unit that transmits a converted signal that is a signal.
  • FIG. 13 is a diagram showing an example of functional blocks of the digital watermark apparatus of this embodiment.
  • the electronic permeability device 1300 includes an analog signal acquisition unit 1301 and an analog signal attribute information acquisition unit. 1302, a transparent information acquisition unit 1303, a watermarked analog signal generation unit 1304, a watermarked analog signal output unit 1305, an AZD conversion unit 1308, and a conversion signal transmission unit 1309.
  • the analog signal acquisition unit includes an audio signal acquisition unit 1306. Further, the analog signal attribute information acquisition unit has speaker specific attribute information acquisition means 1307.
  • An “AZD converter” (Analog-to-Digital converter) is configured to convert the watermarked analog signal output from the watermarked analog signal output unit into a digital signal.
  • the AZD converter converts a continuous and infinitely subdividable signal such as a watermarked analog signal such as a voice signal or image signal with embedded permeability information into a discrete signal (digital signal) such as a bit string. ).
  • the AZD conversion unit converts an analog signal having components in the time direction and amplitude direction into a digital signal by “sampling” to extract the value at a certain point in time and “quantization” t to quantify the amplitude. To do. It may also be scrambled during the digital process.
  • the converted signal which is a digital signal, can be subjected to band compression.
  • the AZD converter outputs the converted digital signal to the converted signal transmitter.
  • the “conversion signal transmission unit” is configured to transmit a conversion signal that is a digital signal converted from the watermarked analog signal by the AZD conversion unit.
  • the converted signal transmission unit transmits the converted signal, for example, to a digital watermark decoding device described later.
  • FIG. 14 is a diagram showing an example of the processing flow of the present embodiment. Note that step S 1401 and step S 1405 are the same as those in any one of the first to third embodiments, and a description thereof will be omitted.
  • the digital watermarking device converts the watermarked analog signal output from the watermarked analog signal output step into a digital signal (step S 1406).
  • the digital watermarking apparatus transmits a converted signal that is a digital signal converted from the watermarked analog signal in the AZD conversion step (step S 1407).
  • FIG. 15 is a diagram showing an example of specific functional blocks of the electronic permeability device of the present embodiment.
  • the electronic permeability device 1500 includes an analog signal acquisition unit, an analog signal attribute information acquisition unit, a watermark information acquisition unit, a watermarked analog signal generation unit, a watermarked analog signal output unit, an AZD conversion unit 1508,
  • the conversion signal transmission unit 1509 is also powerful.
  • the analog signal acquisition unit, the analog signal attribute information acquisition unit, the watermark information acquisition unit, the watermarked analog signal generation unit, and the watermarked analog signal output unit are any of the first to third embodiments. Since this is the same as Kaichi, the description thereof is omitted.
  • the “AZD converter” converts the watermarked analog signal output from the watermarked analog signal output unit into a digital signal.
  • the “conversion signal transmission unit” transmits a conversion signal that is a digital signal converted from the watermarked analog signal by the AZD conversion unit.
  • step S1601 to step S1605 are the same as any one of the first to third embodiments, and thus the description thereof is omitted.
  • the digital watermarking device converts the watermarked analog signal (audio signal + transmittance information) output from the watermarked analog signal output cassette into a digital signal (step S1701).
  • the electronic transmission device transmits a converted signal which is a digital signal converted from the watermarked analog signal in the AZD conversion step (step S 1702).
  • an analog signal with a watermark can be converted into a digital signal, so that it can be transmitted to a digital communication network.
  • it even if it is digital taro, it will be transparent and information will not disappear!
  • Embodiment 5 will be described below.
  • the digital watermarking apparatus according to the present embodiment relates to the digital watermarking apparatus according to the fourth embodiment, in which the converted signal transmission unit includes public line output means for transmitting the converted signal to the public communication network.
  • FIG. 18 is a diagram illustrating an example of functional blocks of the digital watermark apparatus according to the present embodiment.
  • the electronic permeability device 1800 includes an analog signal acquisition unit 1801, an analog signal attribute information acquisition unit 1802, a permeability information acquisition unit 1803, a watermarked analog signal generation unit 1804, and a permeability analog signal output unit. 1805, an AZD conversion unit 1808, and a conversion signal transmission unit 1809 also become power.
  • the analog signal acquisition unit includes an audio signal acquisition unit 1806. Further, the analog signal attribute information acquisition unit has speaker specific attribute information acquisition means 1807. Further, the converted signal transmission unit has public line output means 1810.
  • the “conversion signal transmission unit” is configured to have public line output means.
  • public line output means means means for transmitting a conversion signal to the public communication network.
  • public communication network refers to a communication network that provides public and equal communication services to a large number of unspecified customers distributed over a wide area. Examples of public communication networks include analog telephone line networks, digital telephone line networks, the Internet, provider-specific content developed by each company, and PC communications such as grassroots BBS.
  • the converted signal transmission unit outputs the converted signal to the public communication network. Since the other points are the same as those in the fifth embodiment, description thereof is omitted.
  • FIG. 19 is a diagram showing an example of the processing flow of the present embodiment.
  • Step S1901 One step S1906 is the same as that in the fifth embodiment, and a description thereof will be omitted.
  • the public line output means transmits the converted signal to the public communication network (step S 1907).
  • the public line output means for transmitting the converted signal to the public communication network since the public line output means for transmitting the converted signal to the public communication network is provided, the converted signal can be transmitted through the public line.
  • a public communication network such as the Internet or IP phone, there is a risk of data being tampered with.
  • the analog signal acquisition unit of the electronic permeability device has call voice acquisition means for acquiring the telephone call voice analog signal, and the watermarked analog signal generation of the electronic transparency device is generated. Generates a watermarked speech voice analog signal, which is a watermarked analog signal that can intermittently acquire speaker-specific attribute information, and the watermarked analog signal output unit outputs a voice signal for a telephone call.
  • FIG. 20 is a diagram showing an example of functional blocks of the digital watermark apparatus of this embodiment.
  • the electronic permeability device 2000 includes an analog signal acquisition unit 2001, an analog signal attribute information acquisition unit 2002, a transparent information acquisition unit 2003, a watermarked analog signal generation unit 2004, and a transparent analog signal output unit. With 2005, there will be power.
  • the analog signal acquisition unit includes a call voice acquisition unit 2006. Further, the analog signal attribute information acquisition unit has speaker specific attribute information acquisition means 2007.
  • analog signal attribute information acquisition unit and “translucency information acquisition unit” are the same as those in the third embodiment, and thus the description thereof is omitted.
  • the “analog signal acquisition unit” is configured to have call voice acquisition means.
  • “call voice acquisition means” means means for acquiring a telephone call voice analog signal.
  • Examples of “phone” include a wireless phone such as a mobile phone and a wired phone such as a fixed phone. Since the call voice acquisition means is the same as that of the third embodiment except that the call voice acquisition means acquires the telephone call voice analog signal, a description thereof will be omitted. [0097] (Analog signal generator with watermark)
  • the “watermarked analog signal generation unit” is configured to generate a watermarked speech audio analog signal that is a watermarked analog signal that can intermittently acquire speaker-specific attribute information.
  • “speaker-specific attribute information can be acquired intermittently” means that it is not necessary to continuously acquire speaker-specific attribute information. You may get it.
  • the watermarked analog signal generation unit is configured to generate a watermarked speech voice analog signal, which is a watermarked analog signal that can intermittently acquire speaker-specific attribute information. Since this is the same as that of Embodiment 3, the description thereof is omitted.
  • the “watermarked analog signal output unit” is configured to output an audio signal for a telephone call.
  • the points other than that the watermarked analog signal output unit outputs an audio signal for a telephone call are the same as in the third embodiment, and the description thereof is omitted.
  • FIG. 21 is a diagram showing an example of the processing flow of the present embodiment.
  • the digital watermarking apparatus acquires a telephone call voice analog signal (step S2101).
  • the digital watermarking apparatus acquires the speaker specific attribute information of the telephone call voice analog signal acquired in the analog signal acquisition step (step S2102).
  • the digital watermark device acquires the transparency information to be assigned to the telephone call voice analog signal according to the speaker specific attribute information acquired in the analog signal attribute information acquisition step (step S2103).
  • the digital watermarking device generates a watermarked speech audio analog signal that is a watermarked analog signal that can intermittently acquire speaker-specific attribute information (step S 2104).
  • the digital watermark device outputs an audio signal for a telephone call (step S2105).
  • the electronic permeability device of the present embodiment it is possible to acquire a call voice analog signal and generate a watermarked call voice analog signal that is a watermarked analog signal that can intermittently acquire speaker-specific attribute information. it can. Therefore, it is possible to insert information intermittently with transparency according to the acquired call voice analog signal. Therefore, it is effective for continuous communication. This is because, in the case of ongoing intermittent communication, the first authenticated person may be replaced in the middle.
  • Embodiment 7 will be described below.
  • the digital watermark decoding apparatus relates to a digital watermark decoding apparatus that acquires and reproduces a watermarked analog signal and acquires watermarked analog signal power transparency information.
  • FIG. 22 is a diagram showing an example of functional blocks of the digital watermark decryption apparatus of the present embodiment.
  • the digital watermark decrypting device 2200 also has a watermarked analog signal acquisition unit 2201, a playback unit 2202, and a second transparent information acquisition unit 2203.
  • the “watermarked analog signal acquisition unit” is configured to acquire the watermarked analog signal output from the watermarked analog signal output unit.
  • the watermarked analog signal acquisition unit outputs the acquired watermarked analog signal to the reproduction unit.
  • the “reproducing unit” is configured to reproduce the watermarked analog signal acquired by the watermarked analog signal acquiring unit.
  • the playback unit uses the acquired watermarked analog
  • the signal is demodulated and output to a speaker, output to a telephone handset, or output to a display for playback.
  • the “second permeability information acquiring unit” is configured to acquire information by transmitting a signal force for reproduction in the reproduction unit.
  • a watermarked analog signal is generated so that the result of a predetermined sum total for each predetermined period of the watermarked analog signal in which the permeability information and the analog signal are superimposed represents the watermark information. think of.
  • by calculating the result of the predetermined sum for each predetermined period of the watermarked analog signal it is possible to obtain the information with transparency. Details of the method are described in “Audio Watermarking Device” (International Application Number: PCTZJP03Z06114) and will be described in the last part of the specification.
  • FIG. 23 is a diagram showing an example of the processing flow of the present embodiment.
  • the digital watermark decryption apparatus acquires the watermarked analog signal output from the watermarked analog signal output step (step S2301).
  • the digital watermark decoding apparatus reproduces the watermarked analog signal acquired in the watermarked analog signal acquisition step (step S2302).
  • the digital watermark decoding apparatus also obtains information by transmitting the signal power for reproduction in the reproduction step (step S 2303).
  • FIG. 24 is a diagram showing an example of functional blocks of the digital watermark decryption apparatus of the present embodiment.
  • the digital watermark decrypting device 2400 also has the power of a watermarked analog signal acquisition unit 2401, a playback unit 2402, and a second transparent information acquisition unit 2403.
  • the “watermarked analog signal acquisition unit” acquires the watermarked analog signal (watermarked audio signal) output from the watermarked analog signal output unit. [0111] (Playback part)
  • the “playback unit” plays back the watermarked analog signal (watermarked audio signal) acquired by the watermarked analog signal acquisition unit.
  • the “second permeability information acquisition unit” is the watermark information (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby) : Music).
  • FIG. 25 is a diagram showing an example of a specific processing flow of the present embodiment.
  • the digital watermark decoding apparatus acquires the watermarked analog signal (watermarked audio signal) output from the watermarked analog signal output step (step S2501).
  • the digital watermark decoding apparatus reproduces the watermarked analog signal (watermarked audio signal) acquired in the watermarked analog signal acquisition step (step S2502).
  • the digital watermark decoding device uses the signal (watermark signal with watermark) for reproduction in the reproduction step to obtain the transparency information (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby: music) are acquired (step S2503).
  • a watermarked analog signal can be acquired and reproduced, and the watermarked analog signal power can also be transmitted to acquire information. Therefore, it is possible to obtain copyright information such as the copyright of the watermarked analog signal. Furthermore, it can be used for authentication using telephone. For example, when an important instruction using a telephone is communicated to the other party, it can be easily proved that it is authentic. In addition, when a telephone is shared by multiple people, voice can be identified and specified, so that charging can be made separately. Voices can also be identified and transferred or copied and saved. It is also possible to authenticate with watermark information. For example, authentication of information can be used for money transfer and voting by phone. Also used for trading instructions such as stocks using voice It is effective for improving security. This is because transactions of securities such as stocks can compete for a moment and omit the input of information for power authentication, which requires authentication.
  • Embodiment 8 will be described below.
  • the digital watermark decoding device further includes an attribute information acquisition unit that acquires attribute information according to the transparent information acquired by the second transmission information acquisition unit. It relates to a reader.
  • FIG. 26 is a diagram showing an example of functional blocks of the digital watermark decoding apparatus of this embodiment.
  • the digital watermark decoding apparatus 2600 includes a watermarked analog signal acquisition unit 2601, a playback unit 2602, a second transparent information acquisition unit 2603, and an attribute information acquisition unit 2604.
  • the “watermarked analog signal acquisition unit”, “reproduction unit”, and “second permeability information acquisition unit” are the same as in the description of the eighth embodiment, and thus description thereof is omitted.
  • the “attribute information acquisition unit” is configured to acquire attribute information in accordance with the force information acquired by the second transparent information acquisition unit.
  • watermark information and “attribute information” are the same as those in the first embodiment, description thereof is omitted.
  • “according to the permeability information” means that the attribute information is acquired corresponding to the permeability information acquired by the second permeability information acquisition unit.
  • the transparent information is (name: Saburo Sato, gender: male, age: 25 years old)
  • the attribute information acquisition unit will transmit the information in advance (name: Saburo Sato, gender). :Man, Acquires attribute information (name: Saburo Sato) determined according to age: 25).
  • FIG. 27 is a diagram showing an example of the processing flow of the present embodiment. Note that step S2701 is the same as step S2301 to step S2303 in the seventh embodiment, so that the description thereof is omitted.
  • the digital watermark decoding apparatus acquires attribute information according to the transparent information acquired in the second transparent information acquisition step (step S2704).
  • FIG. 28 is a diagram showing an example of functional blocks of the digital watermark decoding apparatus of this embodiment.
  • the digital watermark decoding apparatus 2800 includes a watermarked analog signal acquisition unit 2801, a playback unit 2802, a second transparent information acquisition unit 2803, and an attribute information acquisition unit 2804.
  • the “watermarked analog signal acquisition unit” acquires the watermarked analog signal (watermarked audio signal) output from the watermarked analog signal output unit.
  • the “playback unit” plays back the watermarked analog signal (watermarked audio signal) acquired by the watermarked analog signal acquisition unit.
  • the “second permeability information acquisition unit” is the watermark information (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby) : Music).
  • the “attribute information acquisition unit” is attributed according to the transparent information acquired by the second transparent information acquisition unit (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby: music) Acquire information (name: Saburo Sato).
  • FIG. 29 is a diagram showing an example of a specific processing flow of the present embodiment.
  • the digital watermark decoding apparatus acquires the watermarked analog signal (watermarked audio signal) output from the watermarked analog signal output step (step S2901).
  • the digital watermark decrypting apparatus reproduces the watermarked analog signal (watermarked audio signal) acquired in the watermarked analog signal acquiring step (step S2902).
  • the digital watermark decoding device uses the signal (watermark signal with watermark) for reproduction in the reproduction step to transmit the transparency information (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby: music) is acquired (step S2903).
  • the digital watermark decryption device uses the second watermark and the watermark information acquired in the information acquisition step (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, Acquire attribute information (name: Saburo Sato) according to hobby (music) (step S2904).
  • the digital watermark decoding apparatus of this embodiment it is possible to acquire attribute information for acquiring attribute information according to the information.
  • the ninth embodiment will be described below.
  • the electronic watermark decoding apparatus includes a process specifying information holding unit that holds process specifying information that is information for specifying a process to be performed according to the attribute information acquired by the attribute information acquiring unit, and a process specifying information.
  • the digital watermark decoding apparatus further comprising: a process execution unit for executing a process according to the process identification information held in the holding unit.
  • FIG. 30 is a diagram showing an example of functional blocks of the digital watermark decryption apparatus of the present embodiment.
  • the digital watermark decoding device 3000 includes a watermarked analog signal acquisition unit 3001 and a playback unit 30.
  • a second transparent information acquisition unit 3003 an attribute information acquisition unit 3004, a process identification information holding unit 3005, and a process execution unit 3006.
  • watermarked analog signal acquisition unit “reproduction unit”, “second watermark information acquisition unit”, and “attribute information acquisition unit” are the same as those described in the eighth embodiment, description thereof is omitted.
  • the “process specific information holding unit” is configured to hold process specific information.
  • process identification information refers to information for identifying the process to be performed according to the attribute information acquired by the attribute information acquisition unit.
  • the process specifying information includes information such as not outputting to the display when the attribute information is “image for a large person”.
  • the process identification information holding unit outputs the process identification information to the process execution unit.
  • the “process executing unit” is configured to execute a process according to the process specifying information held in the process specifying information holding unit based on the attribute information acquired from the attribute information acquiring unit.
  • the process execution unit receives the attribute information (boy's When a face is acquired, a watermarked analog signal is output to the display.
  • FIG. 31 is a diagram showing an example of the processing flow of the present embodiment. Note that step S3101 and step S3104 are the same as steps S2701 to S2704 in the eighth embodiment, and a description thereof will be omitted.
  • the digital watermark decrypting apparatus performs the attribute information acquisition step.
  • the process specific information which is information for specifying the process to be performed according to the attribute information acquired in the step is held (step S3105).
  • the digital watermark decrypting apparatus executes a process according to the process specifying information held in the process specifying information holding step (step S3106).
  • FIG. 32 is a diagram showing an example of functional blocks of the digital watermark decryption apparatus of the present embodiment.
  • the digital watermark decryption device 3200 includes a watermarked analog signal acquisition unit, a playback unit, a second watermark information acquisition unit, an attribute information acquisition unit, a process specification information holding unit 3205, and a process execution unit 3206. .
  • the watermarked analog signal acquisition unit, the reproduction unit, the second watermark information acquisition unit, and the attribute information acquisition unit are the same as in the eighth embodiment, and are not shown.
  • the “watermarked analog signal acquisition unit” acquires the watermarked analog signal (watermarked audio signal) output from the watermarked analog signal output unit.
  • the “playback unit” plays back the watermarked analog signal (watermarked audio signal) acquired by the watermarked analog signal acquisition unit.
  • the “second permeability information acquisition unit” is the watermark information (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby) : Music).
  • the “attribute information acquisition unit” is attributed according to the transparent information acquired by the second transparent information acquisition unit (name: Saburo Sato, age: 25 years old, height: 175 cm, weight: 65 kg, hobby: music) Acquire information (name: Saburo Sato).
  • the “processing specific information holding unit” is used for processing specific information (if it is Taro Yamada's voice pattern, Output to peak power).
  • the “process execution unit” is the process specification information (Taro Yamada's voice pattern) held in the process specification information holding unit. ) (Depending on the voice pattern, the voice pattern does not match, so the call is not possible).
  • step S 3301 -step S 3304 are the same as step S 2901 and step S 2904 in the eighth embodiment, and a description thereof will be omitted.
  • the digital watermark decryption device uses process identification information (Taro Yamada), which is information for identifying the process to be performed according to the attribute information (name: Saburo Sato) acquired in the attribute information acquisition step. If the voice pattern is, it is possible to make a call) (step S3405).
  • the digital watermark decrypting device performs processing according to the processing specific information held in the processing specific information holding step (if the voice pattern of Taro Yamada can make a call) Execute "Do not allow call because pattern does not match! /,") (Step S3406).
  • the digital watermark decoding apparatus of this embodiment it is possible to execute a process according to the process specifying information.
  • Embodiment 10 will be described below.
  • the digital watermark decryption apparatus relates to the digital watermark decryption apparatus according to the ninth embodiment, in which the process in the processing execution unit is a process of reproducing an audio signal that is an analog signal or a process of not performing reproduction. [0148] Description based on basic functional block diagram>
  • the digital watermark decoding device of the present embodiment includes a watermarked analog signal acquisition unit, a playback unit, a second transparent information acquisition unit, an attribute information acquisition unit, a process identification information holding unit, a process execution unit, There will be power. Since the configuration requirements are the same as those in the ninth embodiment, they are not shown.
  • the process specifying information corresponds to information such as (when the attribute information is “voice pattern other than registrant”, the call is disabled).
  • the description is omitted because it is similar to the description of the ninth embodiment.
  • the “process execution unit” is configured such that the process in the process execution unit is a process of reproducing an audio signal that is an analog signal or a process of not reproducing.
  • the attribute information is “registrant's voice pattern” and the process specification information is (if the attribute information is “non-registrant voice pattern”, the call is disabled). .
  • the process execution unit executes a process of “enabling a call”.
  • the attribute information is “voice pattern other than registrant” and the process specification information is (the attribute information is “voice pattern other than registrant”, the call is disabled. ). In this case, the process execution unit executes a process of “making the call impossible”.
  • FIG. 35 is a diagram showing an example of the processing flow of the present embodiment. Step S3501 Since one step S3505 is the same as step S3101 to step S3105 of the ninth embodiment, description thereof is omitted.
  • the digital watermark decrypting apparatus executes the process without reproducing or reproducing the audio signal that is an analog signal (step S3506).
  • the process in the process execution unit is a process of reproducing an audio signal that is an analog signal or a process that does not perform reproduction. Therefore, it becomes possible to make a call impossible with a person who does not want to make a call.
  • the present invention relates to a device for transparently embedding work identification information or the like in audio data as data, and a device for detecting and decoding the transparent data of the audio data embedded with the transparent data.
  • the data can be embedded with transparency without degrading the sound quality of the original audio data, and the permeability data remains even if it is deformed by lossy compression, etc. If it could be detected, the ideal electronic permeability technology was still established, and the current situation is that it was a stubborn flaw.
  • Reference invention 1 is an audio watermarking apparatus for recording permeability data on an audio recording medium, and includes an audio data acquisition unit that acquires audio data, and permeability data that acquires watermark data.
  • the result of the predetermined sum of the superimposed audio data for each predetermined period represents the watermark data acquired by the watermark data acquiring unit by superimposing the audio data acquired by the acquiring unit and the audio data acquiring unit to be superimposed audio data
  • a watermark generation data generation unit that generates watermark generation data, audio data acquired by the audio data acquisition unit, and permeability generation data generated by the watermark generation data generation unit are superimposed and superimposed.
  • An audio electronic permeability device having a superimposed audio data generation unit for generating audio data .
  • Reference invention 2 is that the data generation unit for generating permeability is a low frequency that cannot be heard by a human ear.
  • the present invention relates to the audio electronic permeability device according to Reference Invention 1 for generating data for generating wave permeability.
  • the permeability generation data generation unit is such that the value and slope at the boundary where the amplitude of the function represented by the watermark generation data generated thereby changes are always zero.
  • the present invention relates to an electronic watermarking device described in Reference Invention 1 or 2 that generates data.
  • the data generation unit for permeability generation is configured such that the result of the predetermined total for each predetermined period represents the permeability data acquired by the watermark data acquisition unit.
  • the present invention relates to the audio electronic force transmitting apparatus according to any one of Reference Inventions 1 to 3, wherein the amplitude of the function represented by the generation data is adaptively changed every half cycle.
  • Reference invention 5 is any one of reference inventions 1 to 4, wherein the result of the predetermined sum for each predetermined period is a sign of the sum of the superimposed audio data for each half period of the watermark generation data.
  • the result of the predetermined sum for each predetermined period is a reference invention in which a sign of a difference between the sums of the superimposed audio data corresponding to the first half period and the second half period of the watermark generation data
  • the present invention relates to the audio electronic permeability device according to any one of 1 to 4.
  • Reference invention 7 is an audio digital watermark decoding device for decoding the permeability data recorded on the audio recording medium, and a superimposed audio data acquisition unit for acquiring the superimposed audio data, and the superimposed audio data
  • a sum calculating unit for calculating a result of the predetermined sum for each predetermined period of the superimposed audio data acquired by the acquiring unit; and watermark data for decoding the watermark data based on the result of the predetermined sum calculated by the sum calculating unit
  • a decoding unit for decoding the permeability data recorded on the audio recording medium, and a superimposed audio data acquisition unit for acquiring the superimposed audio data
  • a sum calculating unit for calculating a result of the predetermined sum for each predetermined period of the superimposed audio data acquired by the acquiring unit
  • watermark data for decoding the watermark data based on the result of the predetermined sum calculated by the sum calculating unit
  • a decoding unit for decoding the permeability data recorded on the audio recording medium, and a superimposed audio data acquisition unit for acquiring the super
  • Reference invention 8 is the reference invention in which the sum calculation unit calculates a sign of the sum of the superimposed audio data acquired by the superimposed audio data acquisition unit over a half cycle time of the data for generating permeability.
  • the sum total calculation unit includes a time of a half cycle of the first half of one cycle of the watermark generation data of the superimposed audio data acquired by the superimposed audio data acquisition unit.
  • the audio digital watermark decoding device according to claim 7.
  • Reference Embodiment 1 is mainly described in Reference Invention 1, Reference Invention 10, and the like.
  • Reference Embodiment 2 is mainly described in Reference Invention 2, Reference Invention 11 and the like.
  • Reference Embodiment 3 is mainly described in Reference Invention 3, Reference Invention 12, and the like.
  • Reference Embodiment 4 is mainly described in Reference Invention 4, Reference Invention 13, and the like.
  • Reference Embodiment 5 is mainly described in Reference Invention 5, Reference Invention 14, and the like.
  • Reference Embodiment 6 is mainly described in Reference Invention 6, Reference Invention 15 and the like.
  • the reference embodiment 7 is mainly described in the reference invention 7, the reference invention 16, and the like.
  • the reference embodiment 8 is mainly described in the reference invention 8, the reference invention 17, and the like.
  • the reference embodiment 9 is mainly described in the reference invention 9, the reference invention 18, and the like.
  • the reference invention described in the reference embodiment 1 obtains copyright identification information and the like as watermark data, superimposes it with audio data to form superimposed audio data, and uses the result of a predetermined sum for each predetermined period, thereby obtaining the copyrighted data.
  • the present invention relates to an audio digital watermarking device that embeds transparent data such as identification information.
  • the audio digital watermark device 3600 of the reference embodiment 1 includes an audio data acquisition unit 3601, a watermark data acquisition unit 3602, a watermark generation data generation unit 3603, a superimposed audio data generation unit 3604, I ’m going to go.
  • the audio data acquisition unit acquires audio data.
  • the permeability data acquisition unit acquires the permeability data.
  • transparent data includes codes and texts such as copyright identification information, and digital data such as IDs used for content distribution.
  • the watermark generation data generation unit superimposes the audio data acquired by the audio data acquisition unit to generate superimposed audio data, so that the result of the predetermined sum for each predetermined period is acquired by the permeability data acquisition unit.
  • the result of the predetermined sum for each predetermined period refers to the result of the predetermined sum for each predetermined period of the watermark generation data of the superimposed audio data.
  • Predetermined period corresponds to half period, 1 period, 1.5 period, 2 period, 2.5 period, 3 period, and so on.
  • the “predetermined sum” corresponds to the sum of half cycles, the sum of one cycle, and so on.
  • the “predetermined summation result” corresponds to a half cycle, a summation over one cycle, a sign of the summation, a sign of the difference of the summation, and the like.
  • the superimposed audio data generation unit generates superimposed audio data by superimposing the audio data acquired by the audio data acquisition unit and the permeability generation data generated by the permeability generation data generation unit.
  • Audio data with a waveform pattern as shown in Fig. 37 is acquired.
  • Audio data such as PCM (Pulse Code Modulation) that has already been digitized may be acquired, or an analog waveform is acquired, sampled / quantized, and converted into digital data. Also good. Also, the compressed audio data may be decoded and extracted as PCM data.
  • PCM Pulse Code Modulation
  • watermark data As an example of data that can be used as digital data, there is a code or character string indicating work identification information, etc., but in both cases it is expressed in binary. For example, when embedding an uncharacterized character string, convert it to ASCII code and display the value in binary.
  • Watermark generation data is represented by a function obtained by multiplying an underlying function (hereinafter referred to as a fundamental function) by an amplitude a.
  • a fundamental function an underlying function
  • a wave of frequency f hertz is used as watermark generation data.
  • the sample of this wave at the sampling rate R is the fundamental function u (t). (Use a mathematical formula to find such a function that does not actually perform sampling.) Where t is the sampling point.
  • Fig. 38 shows an example of the fundamental function u (t), which is adjusted so that the maximum and minimum values are 1 and 0, respectively, by moving the sine wave of period RZf upward. Since the value of this function u (t) is frequently used when embedding watermark data, calculate one period in advance and store the list of function values in memory.
  • the value at the sampling point t in the i-th cycle can be obtained from the value for one cycle using the following relational expression.
  • u (t) u (t- (i-l) -R / f)
  • the superimposed audio data is generated by adding the data for generating the above-mentioned data and the original audio data. Assuming that the sample value ⁇ v (t) of the original audio data, the superimposed audio data is as follows. a (0) -u (0) + v (0) a (R / fl) -u (R / fl) + v (R / fl)
  • the w (t) is made transparent and added up over one cycle of the i-th cycle of the generation data. At this time, a (t) takes a constant value within one period. If this constant value is a,
  • represents the sum total of one cycle of the permeability generation data.
  • V ⁇ v (t)
  • V generally changes with period i, but U is a constant.
  • This constant U is also stored in memory.
  • the value of a is determined so that the absolute value of the sum total of the superimposed audio data is constant and the sign is transparent and represents the bit value of the data. If the bit value is b (0 or 1) and the absolute value of the sum of the superimposed audio data is S,
  • one bit represents one bit in one period, so in general b takes a different value for each i.
  • the function that represents the permeability generation data is obtained by multiplying the fundamental function of the permeability generation data by this amplitude a, that is,
  • FIG. 40 is a schematic diagram of a waveform pattern of watermark generation data corresponding to the character “C” of the watermark data.
  • the sign of amplitude a and the sign of (1 l) b may be reversed depending on the magnitude of force V that matches.
  • the bit value is the sign of the sum of the superimposed audio data, not the sign of the watermark generation data amplitude.
  • audio data for one cycle of permeability generation data enters A 01, where the sum of the above equations is calculated and output to A03.
  • the watermark data enters A02, where it permeates according to the bit value, and the code of (1l) b in the above equation is output to A03 for each period of the generation data.
  • “positive” is output when the bit value ⁇ )
  • “negative” is output when it is 1.
  • A03 uses these two values to generate watermark generation data according to the above equation, and outputs the data for the watermark generation data to A04.
  • A04 by superimposing the data for watermark generation and the original audio data, the superimposed audio data containing the data is generated and output.
  • This watermark data embedding process is reversible, and if there is time-series data of the amplitude of the permeability generating data used when embedding the watermark data, it can be completely restored. Furthermore, even if another person embeds data and then another person embeds another watermark data, if there is time-series data of the amplitude of the wiping data used in each process, The original watermark data can be taken out and restored to the original audio data. In this way, it is possible to embed multiple layers. For example, after the copyright holder embeds information related to copyright, the content distributor prevents illegal secondary distribution with the copyright protected. It is also possible to embed a unique ID for the purpose.
  • the time series data of the permeability generation data used when embedding the permeability data is missing, and the original state cannot be restored (the bit value is superimposed) It is expressed as the sum of audio data, and it is not uniquely determined how to break it down into the original audio data and watermark generation data.) It is also possible to construct. For example, when embeding data, output this time-series data and store it in a place where copyright is managed. A person who claims copyright of audio data has his own transparency, and has the original (asserted) original audio data where he manages the copyright. Then, using the time-series data of the amplitude of the watermark generation data, it is synthesized with the original audio data brought in. If this is actually distributed and matches the superimposed audio data containing transparent data, it can be determined that the person has created it.
  • the force that has been omitted for the detection of the start point of the transparent data and the error processing, etc. can be easily implemented by conventional well-known techniques.
  • a specific bit pattern should be inserted in front of the transparent data and decoding should be started immediately after the pattern is detected. It ’s good. Specifically, it skips unconditionally where the amplitude is zero, and then finds a place that synchronizes with the start code while shifting the start position little by little.
  • There is a method such as decoding by progressing by the period.
  • For error handling there is a method of transparently embedding a checksum or the like as data and checking it at the time of decoding.
  • FIG. 42 shows a process flow of the reference embodiment 1.
  • the audio data acquisition unit acquires audio data (step S4201).
  • the watermark data acquisition unit acquires watermark data (step S4202).
  • the watermark generation data generation unit superimposes the audio data acquired in step S4201 on the basis of the watermark data acquired in step S4202 to obtain superimposed audio data, thereby obtaining a result of a predetermined total for each predetermined period.
  • the superimposed audio data generation unit generates superimposed audio data by superimposing the audio data acquired in step S4201 and the force generation data generated in step S4203 (step S4204).
  • copyright identification information or the like is acquired as watermark data, superimposed on audio data to be superimposed audio data, and permeability information is expressed by a result of a predetermined total for each predetermined period.
  • Reference Embodiment 2 relates to the audio electronic permeability device according to Reference Invention 1 that generates low-frequency watermark generation data that cannot be heard by the human ear.
  • the audio digital watermark device 4300 of the reference embodiment 2 includes an audio data acquisition unit 4301, a transparent data acquisition unit 4302, a watermark generation data generation unit 4303, and a superimposed audio data generation unit 4304. And there will be power.
  • the watermark generation data generation unit generates low frequency power generation data that cannot be heard by the human ear.
  • low frequency that cannot be heard by the human ear means a low frequency of about 20 Hz or less.
  • the configuration is the same as that in the reference embodiment 1 (configuration requirement: data generation unit for permeability generation), and the description is omitted.
  • the watermark generation data uses a low frequency that cannot be heard by the human ear.
  • the sampling rate of the audio data is 44. Ik Hertz and a function with a frequency of 10 Hertz is used as the transparent data.
  • the fundamental function u (t) is a function of period 44. lkZlO.
  • FIG. 44 shows a process flow of the reference embodiment 2.
  • the audio data acquisition unit acquires audio data (step S4401).
  • the watermark data acquisition unit acquires watermark data (step S4402).
  • the watermark generation data generation unit superimposes the audio data acquired in step S4401 on the basis of the watermark data acquired in step S4402 to obtain superimposed audio data, thereby obtaining a result of the predetermined total for each predetermined period.
  • the superimposed audio data generation unit generates superimposed audio data by superimposing the audio data acquired in step S4401 and the permeability generation data generated in step S4403 (step S4404).
  • the original audio data can be obtained even if the amplitude of the watermark generation data is increased. Robust digital watermarking can be realized without degrading sound quality.
  • the reference electronic device according to the reference invention 1 or 2, in which the reference invention described in the reference embodiment 3 uses a function in which the value and the slope at the boundary where the amplitude changes are always zero as a function representing the data for generating the force. About.
  • the audio digital watermark device 4500 of the reference embodiment 3 includes an audio data acquisition unit 4501, a watermark data acquisition unit 4502, a watermark generation data generation unit 4503, a superimposed audio data generation unit 4504, There will be power.
  • the watermark generation data generation unit generates the permeability generation data whose value and slope are always zero at the boundary where the amplitude of the function represented by the generated permeability generation data changes.
  • x is the nth boundary point where the amplitude changes.
  • the basic function u) is the same as the (superimposed audio data generation) of the reference embodiment 1 or 2 except that the condition of (watermark generation data: basic function generation) is satisfied. Is omitted.
  • FIG. 47 shows a processing flow of the reference embodiment 3.
  • the audio data acquisition unit acquires audio data (step S4701).
  • the watermark data acquisition unit acquires watermark data (step S4702).
  • the watermark generation data generation unit superimposes the audio data acquired in step S4701 on the basis of the watermark data acquired in step S4702 to obtain superimposed audio data, thereby obtaining a result of the predetermined total for each predetermined period.
  • the superimposed audio data generation unit generates superimposed audio data by superimposing the audio data acquired in step S4701 and the permeability generation data generated in step S4703 (step S4704).
  • the reference invention described in the reference embodiment 4 is a reference in which the amplitude of the watermark generation data is adaptively changed every half cycle so that the result of the predetermined sum of the superimposed audio data every predetermined cycle represents the watermark data.
  • the present invention relates to an audio electronic permeability device according to any one of claims 1 to 3.
  • the audio digital watermark device 4800 of the reference embodiment 4 includes an audio data acquisition unit 4801, a watermark data acquisition unit 4802, a watermark generation data generation unit 4803, a superimposed audio data generation unit 4804, I ’m going to go.
  • the watermark generation data generation unit adaptively adjusts the amplitude of the watermark generation data every half cycle so that the result of the predetermined sum for each predetermined period represents the permeability data acquired by the permeability data acquisition unit. Change.
  • the configuration is the same as that of any one of the reference embodiments 1 to 3 (configuration requirement: data generation unit for permeability generation), and a description thereof will be omitted.
  • Watermark generation data is represented by a function obtained by multiplying an underlying function (hereinafter referred to as a fundamental function) by an amplitude a.
  • a fundamental function an underlying function
  • a amplitude a an amplitude a
  • this function As shown in Fig. 49, the function value and slope of this function become zero every half cycle. Therefore, if the amplitude is changed before and after the point where the function value and the slope appear in each half cycle become zero, the result is smooth, and the generation of high frequency noise can be prevented.
  • this function includes a 3fZR wave in addition to a wave with a frequency of fZR. The latter amplitude is 1Z3 of the former amplitude, so it is almost inaudible! /.
  • the value at the sampling point t in the i-th cycle can be obtained from the above list of function values using the following relational expression.
  • u (t) u (t- (i-l) -R / f)
  • represents the total sum of the half-cycle of the first period of permeability generation data.
  • V ⁇ v (t)
  • V ⁇ v (t)
  • V and V generally change every period i, but U and U are constants.
  • the values of a and a are determined so that the absolute value of the sum of the audio data superimposed every half cycle of the watermark generation data is constant and the code is transparent and represents the bit value of the data.
  • the function that represents the permeability generation data has the amplitude a, the fundamental function u (t) of the permeability generation data,
  • FIG. 51 is a schematic diagram of a waveform pattern of data for generation corresponding to the character “C” of watermark data.
  • the sign of the transparent data for generation corresponds to the bit value, but in general, it may be inverted depending on the magnitude of V and V. Supports bit values
  • the audio data w (t) synthesized with the data for generating the permeability is as follows.
  • FIG. 52 shows a process flow of the reference embodiment 4.
  • the audio data acquisition unit acquires audio data (step S5201).
  • the watermark data acquisition unit acquires watermark data (step S5202).
  • the watermark generation data generation unit adapts the amplitude of the watermark generation data every half cycle so that the result of the predetermined sum of the superimposed audio data for each predetermined period represents the watermark data acquired in step S5202. (Step S5203).
  • the superimposed audio data generation unit generates superimposed audio data by superimposing the audio data acquired in step S5201 and the force generation data generated in step S5203 (step S5204).
  • the reference invention described in the reference embodiment 5 is a result of the predetermined sum of the superimposed audio data for each predetermined cycle. From the reference invention 1 which is a sign of the sum of the superimposed audio data for each half cycle of the data for generating the permeability. 4. The audio electronic transmission device according to any one of 4 above.
  • the audio digital watermark device 5300 of the reference embodiment 5 includes an audio data acquisition unit 5301, a transparent data acquisition unit 5302, a watermark generation data generation unit 5303, and a superimposed audio data generation unit 5304. And that ’s it.
  • the watermark generation data generation unit generates the watermark generation data so that the result of the predetermined sum for each predetermined period of the superimposed audio data represents the transparent data acquired by the watermark data acquisition unit.
  • the “result of the predetermined sum for each predetermined cycle” refers to the sign of the sum of the superimposed audio data for each half cycle of the watermark generation data.
  • audio data for half a cycle of the generated data for transmission enters A01, where the sum of the above equation is calculated and output to A03.
  • the watermark data enters the A02, where above equation (one l) b or single for each half cycle of Toruryoku generates data according to the bit value (- l) code b is outputted to A03.
  • “positive” is output when the bit value is ⁇
  • “negative” is output when the value is 1
  • “negative” is output when the bit value is ⁇ in the second half period.
  • “Positive” is output.
  • these two values are used to generate watermark generation data according to the above formula, and the watermark generation data is output to A04.
  • A04 generates and outputs superimposed audio data containing watermark data by superimposing the watermark generation data and the original audio data.
  • FIG. 55 shows a processing flow of the reference embodiment 5.
  • the audio data acquisition unit acquires audio data (step S5501).
  • the watermark data acquisition unit acquires watermark data (step S5502).
  • the watermark generation data generation unit generates the watermark generation data so as to represent the transparent data acquired in step S5502 of the sum of the superimposed audio data for each half cycle of the watermark generation data. (Step S5503).
  • the superimposed audio data generation unit generates superimposed audio data by superimposing the audio data acquired in step S5501 and the permeability generation data generated in step S5503 (step S5504).
  • the result of the predetermined sum for each predetermined cycle is the sign of the difference between the sum of the superimposed audio data of the first half cycle and the second half cycle of the watermark generation data.
  • the audio digital watermark device 5600 of the reference embodiment 6 includes an audio data acquisition unit 5601, a watermark data acquisition unit 5602, a watermark generation data generation unit 5603, a superimposed audio data generation unit 5604, I ’m going to go.
  • the watermark generation data generation unit adapts the amplitude of the watermark generation data every half cycle so that the result of the predetermined total sum of the superimposed audio data for each predetermined period represents the transparent data acquired by the watermark data acquisition unit. Change.
  • the result of the predetermined sum for each predetermined cycle refers to the sign of the difference between the sum of the superimposed audio data of the first half cycle and the second half cycle of the watermark generation data.
  • FIG. 57 shows the processing flow of the reference embodiment 6.
  • the audio data acquisition unit acquires audio data (step S5701).
  • the watermark data acquisition unit acquires watermark data (step S5702).
  • the watermark generation data generation unit performs watermarking so that the sign of the difference between the sum of the first half period and the second half period of the watermark generation data of the superimposed audio data represents the watermark data acquired in step S5702. Data for generation is generated (step S5703).
  • the superimposed audio data generation unit generates superimposed audio data by superimposing the audio data acquired in step S5701 and the permeability generation data generated in step S5703 (step S5704).
  • the OZ 1 of each bit of the data is expressed by the sign of the difference between the sum of the predetermined first half period and the second half period of the superimposed audio data including the transparent data. Therefore, robust electronic permeability that does not affect the judgment even when DC offset is applied can be realized.
  • the reference invention described in Reference Embodiment 7 calculates audio digital watermark decoding that calculates a result of a predetermined sum for each predetermined period of watermark generation data of the obtained superimposed audio data and decodes the watermark data based on the result Relates to the device.
  • an audio digital watermark decoding apparatus 5800 of Reference Embodiment 7 includes a superimposed audio data acquisition unit 5801, a sum calculation unit 5802, and a permeability data decoding unit 5803.
  • the superimposed audio data acquisition unit acquires superimposed audio data.
  • the sum total calculation unit calculates a result of a predetermined sum for each predetermined period of the superimposed audio data acquired by the superimposed audio data acquisition unit.
  • the result of the predetermined sum for each predetermined period refers to the result of the predetermined total for each predetermined period of the permeability generation data of the superimposed audio data.
  • Predetermined period corresponds to half period, 1 period, 1.5 period, 2 period, 2.5 period, 3 period, and so on.
  • Predetermined sum corresponds to the sum of half cycles, the sum of one cycle, and so on.
  • the “predetermined summation result” includes a half cycle, a summation over one cycle, the sign of the summation, and the sign of the summation difference.
  • the permeability data decoding unit decodes the permeability data based on the result of the predetermined sum calculated by the sum calculation unit.
  • the acquisition of the superimposed audio data in the reference embodiment 7 is to acquire the superimposed audio data w (t) generated in the reference embodiment 1.
  • Fig. 59 shows the process of detecting this data through a block diagram.
  • each sample value of the superimposed audio data containing watermark data is transmitted and enters B01 for one period of data for generation, where the sum of one period is calculated, and the code is output to B02.
  • B02 0 or 1 is selected according to the code and output as watermark data
  • FIG. 60 shows a processing flow of the reference embodiment 7.
  • the superimposed audio data acquisition unit acquires superimposed audio data of watermark generation data and audio data (step S6001).
  • the total calculation unit calculates a result of a predetermined total for every predetermined period of the watermark generation data of the superimposed audio data acquired in step S6001 (step S6002).
  • the watermark data decoding unit determines and decodes the bit value of the watermark data based on the result of the predetermined sum calculated in step S6002 (step S6003).
  • the watermark generation data is overlapped for a predetermined period. Since the oZi of each bit of the data can be determined by the result of the predetermined sum of the tatami mat audio data, it is easy to detect and decode the watermark data. In addition, since the result of the predetermined sum is not easily affected by the deformation of the audio data, a robust electronic permeability can be realized.
  • the reference invention described in the reference embodiment 8 is the audio according to the reference invention 7, in which the data is decoded based on the sign of the sum of the superimposed audio data over the half cycle time of the watermark generation data.
  • the present invention relates to a digital watermark decoding apparatus.
  • an audio digital watermark decoding apparatus 6100 of Reference Embodiment 8 includes a superimposed audio data acquisition unit 6101, a sum calculation unit 6102, and a permeability data decoding unit 6103.
  • the superimposed audio data acquisition unit acquires superimposed audio data.
  • the sum total calculation unit calculates the sign of the value summed over the half cycle time of the data for generating the permeability.
  • the permeability data decoding unit decodes data based on the sum code calculated by the sum calculation unit.
  • the superimposed audio data acquisition of the reference embodiment 8 is to acquire the superimposed audio data w (t) generated in the reference embodiment 5.
  • the sum of the superimposed audio data over the first half period and the second half period of the i-th cycle is
  • each bit value of the transparent data as shown in the above formula appears as a difference in the sign of the sum of the superimposed audio data, so the sum is calculated for each first half period or each second half period. It is possible to determine the 0/1 of each bit of the data by decoding with the code and decode it.
  • FIG. 62 shows a block diagram of this permeability data detection process.
  • each sample value of the superimposed audio data with watermark data is transparent and enters B01 for every half period of generation data (every first half period or every second half period), where the sum of half periods is calculated.
  • the code power is output at 02.
  • B02 0 or 1 is selected according to the sign and output as permeability data.
  • FIG. 63 shows a processing flow of the reference embodiment 8.
  • the superimposed audio data acquisition unit acquires superimposed audio data of watermark generation data and audio data (step S6301).
  • the sum calculation unit calculates the sign of the sum of the superimposed audio data acquired in step S6301 over the half cycle time of the watermark generation data (every first half cycle or every second half cycle) (step S6302). ).
  • the watermark data decoding unit also determines the bit value of the sum code power calculated in step S6302 and decodes it (step S6303).
  • the reference invention described in the ninth embodiment is a reference invention in which watermark data is decoded based on the sign of the difference between the sum of the superimposed audio data over the first half period of the watermark generation data and the sum of the second half period.
  • the audio digital watermark decoding device according to claim 7.
  • the audio digital watermark decoding apparatus 6400 of the reference embodiment 9 includes a superimposed audio data acquisition unit 6401, a sum calculation unit 6402, and a permeability data decoding unit 6403.
  • the superimposed audio data acquisition unit acquires superimposed audio data.
  • the sum calculation unit calculates the sign of the difference between the sum of the superimposition audio data acquired by the superimposition audio data acquisition unit over the time of the first half cycle of the watermark generation data and the time of the second half cycle.
  • the watermark data decoding unit decodes the permeability data based on the sign of the sum difference calculated by the sum calculation unit.
  • the acquisition of superimposed audio data in the reference embodiment 9 is to acquire the superimposed audio data w (t) generated in the reference embodiment 6.
  • the difference in each bit value of the transparent data appears as a difference in the sign of the above equation! /.
  • bit value can also be determined with this code. This will cancel the DC offset. In the reference embodiment 9, in this way, it is not affected by the DC offset.
  • FIG. 1 A block diagram of the process of detecting this permeability and data is shown in FIG.
  • the superimposed audio data with watermark data passes through and enters the B01 generation data half-cycle at a time, where the difference between the sum of the first half-cycle and the sum of the second-half cycle is calculated, and the sign is output to B02. .
  • B02 0 or 1 is selected according to the sign, and it is transmitted and output as data.
  • FIG. 66 shows the processing flow of the reference embodiment 9.
  • the superimposed audio data acquisition unit acquires superimposed audio data of watermark generation data and audio data (step S6601).
  • the sum calculation unit calculates the sign of the difference between the sum of the superimposed audio data acquired in step S6601 over the time of the first half cycle of the watermark generation data and the sum of the time of the second half cycle (step S6602).
  • the watermark data decoding unit decodes the watermark data so that the sign of the value calculated in step S6602 represents the bit value of the watermark data (step S6603).
  • low-frequency sound that cannot be heard by the human ear is used as the permeability generation data, so the amplitude of the watermark generation data can be arbitrarily set without degrading the sound quality of the original audio data. Can increase the permeability strength.
  • the sign of the predetermined sum for each predetermined period corresponds to the bit value of the watermark data.
  • the data can be detected and Z-decoded.
  • the watermark data embedding process is reversible, and if there is time-series data of the amplitude of the permeability generation data used when embedding the watermark data, it can be completely restored. Furthermore, even if another person embeds data and then another person embeds different watermark data, if there is time-series data of the amplitude of the data used to generate the permeable data used in each process, The original watermark data can be extracted and restored to the original audio data. In this way, it is possible to embed any number of layers. For example, after the copyright holder embeds copyright information, the content distributor prevents illegal secondary distribution with the copyright protected. It is also possible to embed a unique ID.
  • the present invention provides an electronic watermarking device that can embed watermark information according to the acquired analog signal attribute information, and an electronic watermark decryption device that also acquires the watermarked analog signal power and acquires information. Is available.
  • FIG. 2 Flow chart of processing in embodiment 1.
  • FIG. 4 Flow chart of specific processing in embodiment 1.
  • FIG. 6 Flow chart of processing in embodiment 2.
  • FIG. 7 Specific functional block diagram of Embodiment 2.
  • FIG. 8 Flow chart of specific processing in embodiment 2.
  • FIG. 10 Flow chart of processing in embodiment 3.
  • FIG. 12 is a flowchart of specific processing in the third embodiment.
  • FIG. 13 Functional block diagram of Embodiment 4.
  • FIG. 14 is a flowchart of processing in the fourth embodiment.
  • FIG. 15 Specific functional block diagram of Embodiment 4.
  • FIG. 16 Flow chart of specific processing of Embodiment 4.
  • FIG. 17 Flow chart of specific processing of Embodiment 4.
  • FIG. 18 Functional block diagram of Embodiment 5.
  • FIG. 19 is a flowchart of processing in the fifth embodiment.
  • FIG. 21 Flow chart of processing in embodiment 6.
  • FIG. 21 Functional block diagram of Embodiment 7
  • FIG. 23 is a flowchart of processing in the seventh embodiment.
  • FIG. 25 is a flowchart of specific processing in the seventh embodiment.
  • FIG. 27 is a flowchart of processing in the eighth embodiment.
  • FIG. 29 Flow chart of specific processing in embodiment 8.
  • FIG. 31 is a flowchart of processing in the ninth embodiment.
  • FIG. 33 Flow chart of specific processing of Embodiment 9
  • FIG. 34 Flow chart of specific process 2 of embodiment 9.
  • FIG. 35 is a flowchart of processing in embodiment 10.
  • FIG. 36 Functional block diagram of reference embodiment 1
  • FIG. 43 Functional block diagram of reference embodiment 2
  • FIG. 44 is a diagram showing the flow of processing in Reference Embodiment 2.
  • FIG. 45 Functional block diagram of reference embodiment 3
  • FIG. 47 is a diagram showing the flow of processing in Reference Embodiment 3.
  • FIG. 48 Functional block diagram of reference embodiment 4
  • FIG. 49 is a diagram showing a waveform pattern of a basic function of permeability generation data generated in Reference Embodiment 4
  • FIG. 50 is a diagram showing a sampling pattern of a basic function of permeability generation data generated in Reference Embodiment 4.
  • FIG. 51 is a diagram showing a waveform pattern of data for generating the permeability of the letter “C” generated in Reference Embodiment 4.
  • FIG. 52 is a diagram showing the flow of processing in Reference Embodiment 4.
  • FIG. 53 Functional block diagram of reference embodiment 5
  • FIG. 54 is a view showing an electronic permeability embedding process in Reference Embodiment 5.
  • FIG. 55 is a diagram showing a process flow of the reference embodiment 5.
  • FIG. 56 Functional block diagram of reference embodiment 6
  • FIG. 57 is a diagram showing a process flow of the reference embodiment 6.
  • FIG. 58 is a functional block diagram of the reference embodiment 7.
  • FIG. 59 is a diagram showing a digital watermark detection process of Reference Embodiment 7.
  • FIG. 60 is a diagram showing the flow of processing in Reference Embodiment 7.
  • FIG. 61 Functional block diagram of reference embodiment 8
  • FIG. 62 is a diagram showing a digital watermark detection process of Reference Embodiment 8.
  • FIG. 63 is a diagram showing the flow of processing in Reference Embodiment 8.
  • FIG. 64 is a functional block diagram of Reference Embodiment 9.
  • FIG. 65 is a diagram showing a digital watermark detection process in Reference Embodiment 9
  • FIG. 66 is a diagram showing a process flow of the reference embodiment 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)

Abstract

【課題】  従来においては、通話音声などのアナログ信号にリアルタイムに透かし情報を埋め込んだり、通話音声の話者を特定して、特定した話者に応じた透かし情報を埋め込んだりすることはできなかった。 【解決手段】  第一の発明は、アナログ信号取得部と、アナログ信号取得部で取得したアナログ信号の属性情報を取得するアナログ信号属性情報取得部と、アナログ信号属性情報取得部で取得した属性情報に応じてアナログ信号に割り当てるべき透かし情報を取得する透かし情報取得部と、透かし情報取得部で取得した透かし情報をアナログ信号の再生によって取得できるように透かし信号を埋め込んだ透かし入りアナログ信号を生成する透かし入りアナログ信号生成部と、透かし入りアナログ信号生成部にて生成された透かし入りアナログ信号を出力する透かし入りアナログ信号出力部と、を有する電子透かし装置に関する。

Description

明 細 書
電子透かしシステム
技術分野
[0001] 本件発明は、取得したアナログ信号の属性情報に応じて、透かし情報を埋め込む ことのできる電子透力し装置及び取得した透かし入りアナログ信号力も透力し情報を 取得する電子透かし解読装置に関する。
背景技術
[0002] 近年、急速なデジタルィ匕とインターネットの普及により,デジタル化された図書、静 止画、動画、オーディオなどのコンテンツの複写、保存、加工が容易に行うことができ るようになった。そのため、著作権などの権利を有さない者が著作権などの権利を有 する者に無断で違法コピーをしたり、違法にコピーをした複製物を違法に販売したり することが社会問題ィ匕してきた。したがって、コンテンツ製作者の著作権保護ゃコピ 一制御等の技術の必要性が増して 、る。そこで電子透力しと呼ばれる技術が各種提 案されている。特許文献 1に示す方法では、入力された音響信号をデジタル信号に 変換し、電子透力し情報を埋め込んだ後に、電子透力し情報が埋め込まれた透かし 入りデジタル信号を音に変換して出力して ヽる。
特許文献 1:特開 2003— 263182
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、一般にデジタルコンテンツに電子透力し情報を埋め込むことによるデ ジタルコンテンツ、特に音声データの劣化と電子透力し情報の耐久性とはトレードォ フの関係にあり、両立させることが難しい。例えば、音声データのサンプル値の下位 の数ビットで電子透力し情報を表現するとノイズはあまり目立たないが、この情報は周 波数変換したとき高周波成分として現れるため MP3等の圧縮ソフトで圧縮をかけると 容易に消えてしまう。また、はじめ力も MP3圧縮に特ィ匕した電子透かし、たとえば量 子化された周波数成分の偶奇等を使って符号ィ匕するといつた電子透かしもあるが、 圧縮率を変えて再圧縮すると消えてしまう場合が多い。また、従来においては、通話 音声などのアナログ信号にリアルタイムに透力 情報を埋め込んだり、通話音声の話 者を特定して、特定した話者に応じた透力し情報を埋め込んだりすることはできなか つた o
課題を解決するための手段
[0004] 本件発明は、このような状況に鑑みなされたものである。
[0005] 第一の発明は、アナログ信号取得部と、前記アナログ信号取得部で取得したアナ口 グ信号の属性情報を取得するアナログ信号属性情報取得部と、前記アナログ信号属 性情報取得部で取得した属性情報に応じて前記アナログ信号に割り当てるべき透か し情報を取得する透かし情報取得部と、前記透かし情報取得部で取得した透かし情 報を前記アナログ信号の再生によって取得できるように透かし信号を埋め込んだ透 かし入りアナログ信号を生成する透かし入りアナログ信号生成部と、前記透かし入り アナログ信号生成部にて生成された透かし入りアナログ信号を出力する透かし入りァ ナログ信号出力部と、を有する電子透かし装置に関する。
[0006] 第二の発明は、前記アナログ信号取得部は、アナログ信号である音声信号を取得 する音声信号取得手段を有する第一の発明に記載の電子透かし装置に関する。
[0007] 第三の発明は、前記アナログ信号属性情報取得部は、属性情報として音声を発す る話者を特定するための話者特定属性情報を取得する話者特定属性情報取得手段 を有する第二の発明に記載の電子透かし装置に関する。
[0008] 第四の発明は、さらに前記透かし入りアナログ信号出力部力 出力された透かし入 りアナログ信号をデジタル信号に変換する AZD変換部と、前記 AZD変換部で透か し入りアナログ信号から変換されたデジタル信号である変換信号を送信する変換信 号送信部と、を有する第一の発明から第三の発明のいずれか一に記載の電子透か し装置に関する。
[0009] 第五の発明は、前記変換信号送信部は、公衆通信網に前記変換信号を送信する ための公衆回線出力手段を有する第四の発明に記載の電子透力し装置に関する。
[0010] 第六の発明は、前記電子透かし装置の前記アナログ信号取得部は、電話の通話 音声アナログ信号を取得する通話音声取得手段を有し、前記電子透かし装置の前 記透かし入りアナログ信号生成部は、間欠的に前記話者特定属性情報を取得可能 な透かし入りアナログ信号である透かし入り通話音声アナログ信号を生成し、前記透 かし入りアナログ信号出力部は、電話の通話のための音声信号を出力する第三の発 明に記載の電子透かし装置に関する。
[0011] 第七の発明は、前記透かし入りアナログ信号出力部から出力された透かし入りアナ ログ信号を取得する透かし入りアナログ信号取得部と、前記透かし入りアナログ信号 取得部で取得した透かし入りアナログ信号を再生するための再生部と、前記再生部 での再生のための信号力 透力し情報を取得する第二透力し情報取得部と、を有す る電子透かし解読装置に関する。
[0012] 第八の発明は、前記第二透力し情報取得部で取得した透力し情報に応じて属性情 報を取得する属性情報取得部をさらに有する第七の発明に記載の電子透かし解読 装置に関する。
[0013] 第九の発明は、前記属性情報取得部で取得した属性情報に応じて行うべき処理を 特定するための情報である処理特定情報を保持する処理特定情報保持部と、前記 処理特定情報保持部に保持されている処理特定情報に応じた処理を実行するため の処理実行部と、をさらに有する第八の発明に記載の電子透かし解読装置に関する
[0014] 第十の発明は、前記処理実行部での処理は、前記アナログ信号である音声信号を 再生する処理又は、再生をしな 、処理である第九の発明に記載の電子透かし解読 装置に関する。
発明の効果
[0015] 本件発明によれば、アナログ信号力 抽出した属性情報に応じて、アナログ信号中 に電子透力し情報を埋め込むことができるので、話者を特定して、リアルタイムに電 子透力し情報を埋め込むことができる。また、埋め込まれた透力し情報に応じて、ァ ナログ信号を再生する ·しな ヽと 、つた特定の処理を実行することができる。さらに、 アナログ信号中に電子透力 情報を埋め込むことができるので、伝送線路中で電子 透力し情報が消滅することもな 、。
発明を実施するための最良の形態
[0016] 以下に本件発明の実施形態を説明する。実施形態と、請求項との関係はおおむね 次のようなものである。
実施形態 1は、主に、請求項 1について説明している。
実施形態 2は、主に、請求項 2について説明している。
実施形態 3は、主に、請求項 3について説明している。
実施形態 4は、主に、請求項 4について説明している。
実施形態 5は、主に、請求項 5について説明している。
実施形態 6は、主に、請求項 6について説明している。
実施形態 7は、主に、請求項 7について説明している。
実施形態 8は、主に、請求項 8について説明している。
実施形態 9は、主に、請求項 9について説明している。
実施形態 10は、主に :、請求項 10について説明している。
[0017] 以下に、図を用いて本発明の実施の形態を説明する。なお、本発明はこれら実施 の形態に何ら限定されるものではなぐその要旨を逸脱しない範囲において、種々な る態様で実施しうる。
[0018] くく実施形態 1》
以下に、実施形態 1について説明する。
[0019] く実施形態 1の概念〉
以下に、本実施形態の電子透かし装置について説明する。本実施形態の電子透 かし装置は、アナログ信号を取得して、取得したアナログ信号の属性情報に応じた透 力し情報を埋め込むことにより透かし入りアナログ信号を生成することができる電子透 力 装置に関する。
[0020] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 1は、本実施形態の電子透かし装置の機能ブロックの一例を示す図である。電子 透力 装置 0100は、アナログ信号取得部 0101と、アナログ信号属性情報取得部 0 102と、透力し情報取得部 0103と、透かし入りアナログ信号生成部 0104と、透かし 入りアナログ信号出力部 0105と、力もなる。 [0021] く構成要件の説明〉
以下に、本実施形態の電子透かし装置の構成要件を説明する。
なお、以下に記載する各機能ブロックは、ハードウ ア、又はメモリ上に展開しノヽー ドウエアを制御することでその作用が得られるソフトウェア、又はハードウェア及びソフ トウエアの両方として実現され得る。具体的には、コンピュータを利用するものであれ ば、 CPUやメモリ、ハードディスクドライブ、 CD— ROMや DVD— ROMなどの読取ド ライブ、各種通信用の送受信ポート、インターフェース、その他の周辺装置などのハ 一ドウエア構成部や、それらハードウェアを制御するためのドライバプログラムやその 他アプリケーションプログラムなどが挙げられる。
また、この発明は装置またはシステムとして実現できるのみでなぐ方法としても実 現可能である。また、このような発明の一部をソフトウェアとして構成することができる こともできる。さらに、そのようなソフトウェアをコンピュータに実行させるために用いる ソフトウェア製品、及び同製品を記録媒体に固定した記録媒体も、当然にこの発明の 技術的な範囲に含まれる。(本明細書の全体を通じて同様である。 )
[0022] (アナログ信号取得部)
「アナログ信号取得部」は、アナログ信号を取得するように構成されている。ここで「 アナログ信号」とは、画像信号、音声信号などを電圧または電流の固定値、または時 間とともに連続的に変化させた、電気信号のことをいう。アナログ信号には、一例とし て、人の顔、男性の顔、女性の顔、子供の顔、特定の人の顔、医療画像、動物の画 像、風景の画像、人の音声、音楽のメロディー、動物の鳴き声などの情報を表す信号 が挙げられる。なお、アナログ信号は、異なる複数の種類の信号、例えば、映像信号 と音声信号など力も構成されていてもよい。アナログ信号取得部は、取得したアナ口 グ信号をアナログ信号属性情報取得部に出力する。
[0023] (アナログ信号属性情報取得部)
「アナログ信号属性情報取得部」は、アナログ信号取得部で取得したアナログ信号 の属性情報を取得するように構成されている。属性情報は、アナログ信号の全体から 取得してもよいし、一部から取得してもよい。ここで「属性情報」とは、アナログ信号に 備わっている固有の性質.特徴のことをいう。属性情報には、一例として、人を特定す るための情報が挙げられる。「人を特定するための情報」には、一例として、氏名、性 別、年齢、職位、顔の形状、髪型、メガネの有無、「あ」 '「い」'「う」 ·「え」 ·「お」の音声 パターン、匂い、味覚などの情報が挙げられる。属性情報の取得にあたっては、一例 として、パターン認識技術を利用することができる。ここで「パターン認識」とは、文字' 図形 ·音声などの情報 (パターンという)が提示されたときに、コンピュータによって自 動的にそのパターンが何である力、何を意味するかを判定する技術のことをいう。例 えば、郵便番号自動読み取り装置は、実用化されているパターン認識装置の代表的 なものの一つである。音声認識技術や画像認識技術などもパターン認識技術の一つ である。ここで「音声認識」とは、コンピュータが音声を聞き分ける (音声を認識する) 技術のことをいう。音声認識技術の詳細については省略するが、以下に、一般的な 音声認識技術の特徴について説明する。音声認識技術には、特定の人があらかじ め登録した言葉を聞き分ける「特定話者認識」と、不特定の人々の音声を聞き分ける 「不特定話者認識」の二種類がある。また音声認識技術を利用すると、通常会話のよ うに発音された連続した音声を認識することができる。したがって、人とシステムの間 でスムーズな対話を実現できる。また、電話回線などの品質が低い音声においても 認識率を高くすることもできる。さらに、さまざまな条件下で収集した数多くの音声を、 統計的に処理したモデルを採用することにより、老若男女を問わず不特定多数話者 のあらゆる種類の音声に対して認識率を高めることもできる。上述した音声認識技術 を利用することにより、一例として、取得したアナログ信号カゝら特徴を抽出し、話者を 特定することにより、属性情報を取得することができる。また「画像認識」とは、その画 像が何である力、どんなことを意味しているのかをコンピュータが判断する処理のこと をいう。顔認識や文字認識なども、画像認識の一種である。ここで「顔認識」とは、ュ 一ザを照合するのに顔画像や顔の特徴を用いるバイオメトリック認証の一種のことを いう。ここで「バイオメトリック認証」とは、人体の特徴に基づいて個人を認証する技術 のことをいう。バイオメトリック認証には、指紋、声紋、網膜のパターン、虹 (こう)彩の パターン、手の大きさのほか、署名をするときのペンの速度や筆圧などを使用するシ ステムもある。指紋や虹彩のパターンを使う方式の実用性が高ぐほぼ 100%の正し い判定を行うことも可能である。また「文字認識」は、例えば、アルファベットの印刷文 字であれば、あらかじめ、 26文字のフォントをデータベースに登録し、入力画像と一 つずつその類似度を計算し、最も類似度が高!ヽ文字を画像が表して!/ヽる文字である と特定することなどが挙げられる。上述した画像認識技術を利用することにより、取得 したアナログ信号 (画像信号)力も特徴を抽出し、属性情報を取得することができる。 アナログ信号属性情報取得部は、取得したアナログ信号の属性情報又はそれに対 応する情報を透力し情報取得部に出力する。ここで「それに対応する情報」とは、属 性情報と関連付けられた情報のことをいう。属性情報と関連付けられた情報には、一 例として、属性情報力 ^性別:男、女」である場合に、「男: 0」、「女:1」のように属性情 報と関連付けられた情報「0、 1」などが挙げられる。
(透かし情報取得部)
「透力し情報取得部」は、アナログ信号属性情報取得部で取得した属性情報に応じ てアナログ信号に割り当てるべき透力し情報を取得するように構成されて 、る。ここで
「透力し情報」とは、画像信号や音声信号などのアナログ信号の品質に大きな影響を 及ぼさない形で埋め込んだ特別の情報のことをいう。透力し情報には、一例として、 作成者、作成日、販売者、著作権者などの情報が該当する。透かし情報は、通常は 、透力し情報が分力もないが、コンピュータ処理をすることによって透力し情報を読み 取ることができるという特徴がある。透力し情報は、不正コピーやデータの改ざんなど を防止するといつたような著作権保護や、セキュリティーレベルの設定、特定人の認 証、情報の分類 (例えば、留守電に入った電話を音声に従ってファイル別に分類す るなど)、電話の送信'転送先の選択、などが目的とされる。電子透力 をコンテンツ 全体に埋め込めば、具体的に改ざんの個所を特定することも可能になる。また、「属 性情報に応じて」とは、属性情報に対応して透力し情報を取得するという意味であり、 透力し情報が、属性情報と同じである場合、属性情報を完全に含む場合、属性情報 の一部を含む場合 (属性情報と異なる情報を含む場合を含む)属性情報の一部であ る場合、さらに属性情報と完全に異なる情報である場合が考えられる。属性情報と異 なる情報を含む場合の透力し情報には、一例として、さらに電子透かし装置自身の 識別情報、時刻情報、利用者パスワードなどの異なる情報が含まれる。そして、会話 の音声パターン (属性情報)によってセキュリティ一度の高 、透かレ f青報を埋め込む ことも可能である。属性情報が、一例として、(氏名:佐藤三郎)である場合には、透か し情報取得部は、あらカゝじめ佐藤三郎に対応して定められた透カゝし情報 (氏名:佐藤 三郎、性別:男、年齢: 25歳)を取得するように構成することができる。透かし情報取 得部は、取得した透かレ f青報を透かし入りアナログ信号生成部に出力する。
[0025] (透かし入りアナログ信号生成部)
「透かし入りアナログ信号生成部」は、透力し情報取得部で取得した透力し情報を アナログ信号の再生によって取得できるように透かし信号を埋め込んだ透かし入りァ ナログ信号を生成するように構成されて ヽる。透かし入りアナログ信号はアナログ信 号であるので、どのような変調があってとしても透力し情報が消えることがない。透か し入りアナログ信号を生成する方法の一例として、作成者、作成日、販売者、著作権 者などの情報を透力し情報として取得し、画像信号や音声信号などのアナログ信号 と重畳して透かし入りアナログ信号とし、その所定周期ごとの所定総和の結果が透か し情報を表すようにすることができる。その方法の詳細については、「オーディオ電子 透かし装置」(国際出願番号: PCTZJP03Z06114)に詳述されており、明細書の 最後の部分で説明する。透かし入りアナログ信号生成部は、生成した透かし入りアナ ログ信号を、透かし入りアナログ信号出力部に出力する。
[0026] (透かし入りアナログ信号出力部)
「透かし入りアナログ信号出力部」は、透かし入りアナログ信号生成部にて生成され た透かし入りアナログ信号を出力するように構成されて ヽる。透かし入りアナログ信号 は、出力のために変調されていてもよい。変調には、一例として、振幅変調、周波数 変調、位相変調などが挙げられる。透かし入りアナログ信号出力部は、出力した透か し入りアナログ信号を、一例として、後述する電子透かし解読装置に送信する。なお
、虹彩のパターンをアナログ信号として取得し、透力し情報を埋め込んで透かし入り アナログ信号とした信号に、別の音声信号とともに出力することなども可能である。
[0027] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。なお、以下に示す処理の流 れは、方法、計算機に実行させるためのプログラム、またはそのプログラムが記録さ れた読み取り可能な記録媒体として実施されうる(これは、本明細書のその他の処理 の流れにっ ヽても同様である)。
図 2は、本実施形態の処理の流れの一例を示す図である。
まず、アナログ信号取得ステップにおいて、電子透かし装置は、アナログ信号を取 得する (ステップ S0201)。次に、アナログ信号属性情報取得ステップにおいて、電 子透かし装置は、アナログ信号取得ステップで取得したアナログ信号の属性情報を 取得する (ステップ S0202)。次に、透力し情報取得ステップにおいて、電子透かし装 置は、アナログ信号属性情報取得ステップで取得した属性情報に応じてアナログ信 号に割り当てるべき透かレ隋報を取得する (ステップ S0203)。次に、透かし入りアナ ログ信号生成ステップにおいて、電子透かし装置は、透力 情報取得ステップで取得 した透力し情報をアナログ信号の再生によって取得できるように透かし信号を埋め込 んだ透かし入りアナログ信号を生成する (ステップ S0204)。次に、透かし入りアナ口 グ信号出力ステップにおいて、電子透かし装置は、透かし入りアナログ信号生成ステ ップにて生成された透かし入りアナログ信号を出力する (ステップ S0205)。
[0028] く具体的機能ブロック図に基づく説明〉
以下に、本実施形態の電子透かし装置の具体例について説明する。
図 3は、本実施形態の電子透力 装置の具体的機能ブロックの一例を示す図であ る。電子透かし装置 0300は、アナログ信号取得部 0301と、アナログ信号属性情報 取得部 0302と、透力 情報取得部 0303と、透かし入りアナログ信号生成部 0304と 、透かし入りアナログ信号出力部 0305と、力もなる。
[0029] (アナログ信号取得部)
「アナログ信号取得部」は、アナログ信号 (人の顔の画像信号)を取得する。アナ口 グ信号取得部は、取得したアナログ信号 (人の顔の画像信号)をアナログ信号属性 情報取得部に出力する。
[0030] (アナログ信号属性情報取得部)
「アナログ信号属性情報取得部」は、アナログ信号取得部で取得したアナログ信号
(人の顔の画像信号)の属性情報 (性別:男、メガネの有無:有)を取得する。ここでァ ナログ信号 (人の顔の画像信号)から属性情報 (性別:男、メガネの有無:有)を取得 する方法には、一例として、以下のような方法が挙げられる。例えば、アナログ信号( 人の顔の画像信号)を画像認識装置により認識し、画像認識装置のデータベースか ら、アナログ信号 (人の顔の画像信号)と一致又は類似する特徴 (性別:男、メガネの 有無:有、髪型:ショート)を抽出する。抽出した特徴に基づいて属性情報 (性別:男、 メガネの有無:有)を取得することができる。アナログ信号属性情報取得部は、取得し たアナログ信号 (人の顔の画像信号)の属性情報 (性別:男、メガネの有無:有)を透 力し情報取得部に出力する。
[0031] (透かし情報取得部)
「透力 情報取得部」は、アナログ信号属性情報取得部で取得した属性情報 (性別 :男、メガネの有無:有)に応じてアナログ信号 (人の顔の画像信号)に割り当てるべき 透力 情報 (氏名:山田太郎、年齢: 35歳、身長: 165cm、体重: 70kg、趣味:サッカ 一)を取得する。透力し情報取得部は、取得した透力し情報 (氏名:山田太郎、年齢: 35歳、身長: 165cm、体重: 70kg、趣味:サッカー)を透かし入りアナログ信号生成 部に出力する。
[0032] (透かし入りアナログ信号生成部)
「透かし入りアナログ信号生成部」は、透力し情報取得部で取得した透力し情報 (氏 名:山田太郎、年齢: 35歳、身長: 165cm、体重: 70kg、趣味:サッカー)をアナログ 信号 (人の顔の画像信号)の再生によって取得できるように透かし信号を埋め込んだ 透かし入りアナログ信号 (人の顔 +透力 情報)を生成する。透かし入りアナログ信号 生成部は、生成した透かし入りアナログ信号 (人の顔 +透力 情報)を、透かし入りァ ナログ信号出力部に出力する。
[0033] (透かし入りアナログ信号出力部)
「透かし入りアナログ信号出力部」は、透かし入りアナログ信号生成部にて生成され た透かし入りアナログ信号 (人の顔 +透力 情報)を出力する。
[0034] 〈具体的処理の流れ〉
以下に、本実施形態の具体的処理の流れについて説明する。
図 4は、本実施形態の具体的処理の流れの一例を示す図である。
まず、アナログ信号取得ステップにおいて、電子透かし装置は、アナログ信号 (人の 顔の画像信号)を取得する (ステップ S0401)。次に、アナログ信号属性情報取得ス テツプにおいて、電子透かし装置は、アナログ信号取得ステップで取得したアナログ 信号 (人の顔の画像信号)の属性情報 (性別:男、メガネの有無:有)を取得する (ステ ップ S0402)。次に、透力し情報取得ステップにおいて、電子透かし装置は、アナ口 グ信号属性情報取得ステップで取得した属性情報 (性別:男、メガネの有無:有)に 応じてアナログ信号 (人の顔)に割り当てるべき透かレ f青報 (氏名:山田太郎、年齢: 3 5歳、身長: 165cm、体重: 70kg、趣味:サッカー)を取得する(ステップ S0403)。次 に、透かし入りアナログ信号生成ステップにおいて、電子透かし装置は、透かし情報 取得ステップで取得した透力し情報 (氏名:山田太郎、年齢: 35歳、身長: 165cm、 体重: 70kg、趣味:サッカー)をアナログ信号 (人の顔の画像信号)の再生によって取 得できるように透かし信号を埋め込んだ透かし入りアナログ信号 (人の顔 +透力し情 報)を生成する (ステップ S0404)。次に、透かし入りアナログ信号出力ステップにお いて、電子透かし装置は、透かし入りアナログ信号生成ステップにて生成された透か し入りアナログ信号 (人の顔 +透かレ隋報)を出力する (ステップ S0405)。
[0035] く実施形態 1の効果の簡単な説明〉
本実施形態の電子透力 装置によれば、アナログ信号に応じて電子透力 情報を 埋め込むことができるので、伝送線路上で電子透力し情報も消滅することがない。ま た、アナログ信号に応じてあら力じめ登録された透力し情報を埋め込むことができる ので、リアルタイムで電子透力し情報を埋め込むことができる。
[0036] くく実施形態 2》
以下に、実施形態 2について説明する。
[0037] く実施形態 2の概念〉
以下に、本実施形態の電子透かし装置について説明する。本実施形態の電子透 かし装置は、アナログ信号取得部が、アナログ信号である音声信号を取得する音声 信号取得手段を有する実施形態 1に記載の電子透かし装置に関する。
[0038] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 5は、本実施形態の電子透かし装置の機能ブロックの一例を示す図である。電子 透力 装置 0500は、アナログ信号取得部 0501と、アナログ信号属性情報取得部 0 502と、透力し情報取得部 0503と、透かし入りアナログ信号生成部 0504と、透かし 入りアナログ信号出力部 0505と、力もなる。また、アナログ信号取得部は、音声信号 取得手段 0506を有する。
[0039] く構成要件の説明〉
以下に、本実施形態の電子透かし装置の構成要件を説明する。
[0040] (アナログ信号取得部)
「アナログ信号取得部」は、アナログ信号である音声信号を取得する音声信号取得 手段を有するように構成されている。ここで「音声信号」とは、人の聴覚の検知周波数 帯域である、周波数約 20Hz— 20kHzの信号のことをいう。音声信号は、音の強弱を 振幅で、音の高低を周波数によって表現している。それ以外の点は、実施形態 1と同 様なので説明を省略する。
[0041] (アナログ信号属性情報取得部)
属'性情報には、一例として、氏名、性別、職位、人の音声パターン、「あ」、「い」、「う 」、「え」、「お」の音のパターン、特定の人の「あ」、「い」、「う」、「え」、「お」の音のパタ ーン、音楽のメロディーなどの情報が挙げられる。それ以外の点は、実施形態 1と同 様なので説明を省略する。
[0042] (透力 情報取得部)、(透かし入りアナログ信号生成部)、(透かし入りアナログ 信号出力部)
「透力 情報取得部」、「透かし入りアナログ信号生成部」、「透かし入りアナログ信 号出力部」は、実施形態 1と同様なので説明を省略する。
[0043] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 6は、本実施形態の処理の流れの一例を示す図である。
まず、アナログ信号取得ステップにおいて、電子透かし装置は、アナログ信号であ る音声信号を取得する(ステップ S0601)。なお、ステップ S0602—ステップ S0605 については、実施形態 1のステップ S0202—ステップ S0205と同様なので説明を省 略する。 [0044] く具体的機能ブロック図に基づく説明〉
以下に、本実施形態の電子透かし装置の具体例について説明する。
図 7は、本実施形態の電子透力 装置の具体的機能ブロックの一例を示す図であ る。電子透かし装置 0700は、アナログ信号取得部 0701と、アナログ信号属性情報 取得部 0702と、透力 情報取得部 0703と、透かし入りアナログ信号生成部 0704と 、透かし入りアナログ信号出力部 0705と、力もなる。また、アナログ信号取得部は、 音声信号取得手段 0706を有する。
[0045] (アナログ信号取得部)
「アナログ信号取得部」は、アナログ信号 (音声信号)を取得する。アナログ信号取 得部は、取得したアナログ信号 (音声信号)をアナログ信号属性情報取得部に出力 する。
[0046] (アナログ信号属性情報取得部)
「アナログ信号属性情報取得部」は、アナログ信号取得部で取得したアナログ信号
(音声信号、音声パターン:「あ」)の属性情報 (性別:男)を取得する。アナログ信号属 性情報取得部は、取得したアナログ信号 (音声信号、音声パターン:「あ」)の属性情 報 (性別:男)を透力し情報取得部に出力する。
[0047] (透かし情報取得部)
「透力 情報取得部」は、アナログ信号属性情報取得部で取得した属性情報 (性別 :男)に応じてアナログ信号 (音声信号、音声パターン:「あ」)に割り当てるべき透かし 情報 (名前:鈴木次郎)を取得する。ここでアナログ信号 (音声信号、音声パターン:「 あ」)から属性情報 (名前:鈴木次郎)を取得する方法には、一例として、以下のような 方法が挙げられる。例えば、アナログ信号 (音声信号、音声パターン:「あ」)を音声認 識装置により認識し、音声認識装置のデータベースから、アナログ信号 (音声信号、 音声パターン:「あ」)と一致又は類似する特徴 (性別:男、名前:鈴木次郎)を抽出す る。抽出した特徴に基づいて属性情報 (名前:鈴木次郎)を取得することができる。透 カゝし情報取得部は、取得した透かし情報 (名前:鈴木次郎)を透かし入りアナログ信 号生成部に出力する。
[0048] (透かし入りアナログ信号生成部) 「透かし入りアナログ信号生成部」は、透力し情報取得部で取得した透力し情報 (名 前:鈴木次郎)をアナログ信号 (音声信号、音声パターン:「あ」)の再生によって取得 できるように透かし信号を埋め込んだ透かし入りアナログ信号 (音声信号 +透力し情 報)を生成する。透かし入りアナログ信号生成部は、生成した透かし入りアナログ信号 (音声信号 +透かし情報)を、透かし入りアナログ信号出力部に出力する。
[0049] (透かし入りアナログ信号出力部)
「透かし入りアナログ信号出力部」は、透かし入りアナログ信号生成部にて生成され た透かし入りアナログ信号 (音声信号 +透力 情報)を出力する。
[0050] 〈具体的処理の流れ〉
以下に、本実施形態の具体的処理の流れについて説明する。
図 8は、本実施形態の具体的処理の流れの一例を示す図である。
まず、アナログ信号取得ステップにおいて、電子透かし装置は、アナログ信号 (音声 信号)を取得する (ステップ S0801)。次に、アナログ信号属性情報取得ステップにお いて、電子透かし装置は、アナログ信号取得ステップで取得したアナログ信号 (音声 信号、音声パターン:「あ」)の属性情報 (性別:男)を取得する (ステップ S0802)。次 に、透力し情報取得ステップにおいて、電子透かし装置は、アナログ信号属性情報 取得ステップで取得した属性情報 (性別:男)に応じてアナログ信号 (音声信号、音声 パターン:「あ」)に割り当てるべき透力 情報 (名前:鈴木次郎)を取得する (ステップ S0803)。次に、透かし入りアナログ信号生成ステップにおいて、電子透かし装置は 、透力し情報取得ステップで取得した透力し情報 (名前:鈴木次郎)をアナログ信号( 音声信号、音声パターン:「あ」)の再生によって取得できるように透かし信号を埋め 込んだ透かし入りアナログ信号 (音声信号 +透力 情報)を生成する (ステップ S080 4)。次に、透かし入りアナログ信号出力ステップにおいて、電子透かし装置は、透か し入りアナログ信号生成ステップにて生成された透かし入りアナログ信号 (音声信号
+透力し情報)を出力する (ステップ S0805)。
[0051] く実施形態 2の効果の簡単な説明〉
本実施形態の電子透力 装置によれば、音声信号に応じて電子透かし情報を埋め 込むことができるので、伝送線路上で電子透力し情報も消滅することがない。また、 音声信号に応じてあら力じめ登録された透かレ隋報を埋め込むことができるので、リ アルタイムで電子透かレ隋報を埋め込むことができる。
[0052] くく実施形態 3》
以下に、実施形態 3について説明する。
[0053] く実施形態 3の概念〉
以下に、本実施形態の電子透かし装置について説明する。本実施形態の電子透 かし装置は、アナログ信号属性情報取得部が、属性情報として音声を発する話者を 特定するための話者特定属性情報を取得する話者特定属性情報取得手段を有する 実施形態 2に記載の電子透力 装置に関する。
[0054] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 9は、本実施形態の電子透かし装置の機能ブロックの一例を示す図である。電子 透力 装置 0900は、アナログ信号取得部 0901と、アナログ信号属性情報取得部 0 902と、透力し情報取得部 0903と、透かし入りアナログ信号生成部 0904と、透かし 入りアナログ信号出力部 0905と、力もなる。また、アナログ信号取得部は、音声信号 取得手段 0906を有する。さらに、アナログ信号属性情報取得部は、話者特定属性 情報取得手段 0907を有する。
[0055] く構成要件の説明〉
以下に、本実施形態の電子透かし装置の構成要件を説明する。
[0056] (アナログ信号取得部)、(透力 情報取得部)、(透かし入りアナログ信号生成 部)、(透かし入りアナログ信号出力部)
「アナログ信号取得部」、「透力し情報取得部」、「透かし入りアナログ信号生成部」、
「透かし入りアナログ信号出力部」は、実施形態 2と同様なので説明を省略する。
[0057] (アナログ信号属性情報取得部)
「アナログ信号属性情報取得部」は、話者特定属性情報取得手段を有するように構 成されている。ここで「話者特定属性情報取得手段」とは、属性情報として音声を発 する話者を特定するための話者特定属性情報を取得する手段のことを 、う。話者特 定属性情報には、一例として、氏名、性別、職位、特定の人の「あ」、「い」、「う」、「え」
、「お」の音のパターンなどの情報が挙げられる。それ以外の点は、実施形態 2と同様 なので説明を省略する。
[0058] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 10は、本実施形態の処理の流れの一例を示す図である。
アナログ信号属性情報取得ステップにおいて、電子透かし装置は、属性情報として 音声を発する話者を特定するための話者特定属性情報を取得する (ステップ S 1002 )。なお、ステップ S1001、ステップ S1003—ステップ S1005については、実施形態 2のステップ S0601、ステップ S0603—ステップ S0605と同様なので説明を省略す る。
[0059] く具体的機能ブロック図に基づく説明〉
以下に、本実施形態の電子透かし装置の具体例について説明する。
図 11は、本実施形態の電子透力 装置の具体的機能ブロックの一例を示す図で ある。電子透力し装置 1100は、アナログ信号取得部 1101と、アナログ信号属性情 報取得部 1102と、透力 情報取得部 1103と、透かし入りアナログ信号生成部 1104 と、透かし入りアナログ信号出力部 1105と、力らなる。また、アナログ信号取得部は、 音声信号取得手段 1106を有する。さらに、アナログ信号属性情報取得部は、話者 特定属性情報取得手段 1107を有する。
[0060] (アナログ信号取得部)
「アナログ信号取得部」は、アナログ信号 (音声信号)を取得する。アナログ信号取 得部は、取得したアナログ信号 (音声信号)をアナログ信号属性情報取得部に出力 する。
[0061] (アナログ信号属性情報取得部)
「アナログ信号属性情報取得部」は、アナログ信号取得部で取得したアナログ信号
(音声信号、音声パターン:「あ」)の話者特定属性情報 (氏名:佐藤三郎)を取得する 。ここでアナログ信号 (音声信号、音声パターン:「あ」)力も属性情報 (氏名:佐藤三 郎)を取得する方法には、一例として、以下のような方法が挙げられる。例えば、アナ ログ信号 (音声信号、音声パターン:「あ」)を音声認識装置により認識し、音声認識 装置のデータベースから、アナログ信号 (音声信号、音声パターン:「あ」)と一致又は 類似する特徴 (性別:男、氏名:佐藤三郎)を抽出する。抽出した特徴に基づいて属 性情報 (氏名:佐藤三郎)を取得することができる。アナログ信号属性情報取得部は、 取得したアナログ信号 (音声信号、音声パターン:「あ」)の話者特定属性情報 (氏名: 佐藤三郎)を透力し情報取得部に出力する。
[0062] (透かし情報取得部)
「透力 情報取得部」は、アナログ信号属性情報取得部で取得した話者特定属性 情報 (氏名:佐藤三郎)に応じてアナログ信号 (音声信号、音声パターン:「あ」)に割り 当てるべき透カゝし情報 (氏名:佐藤三郎、年齢: 25歳、身長: 175cm、体重: 65kg、 趣味:音楽)を取得する。透力し情報取得部は、取得した透力し情報 (氏名:佐藤三 郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味:音楽)を透かし入りアナログ信号 生成部に出力する。
[0063] (透かし入りアナログ信号生成部)
「透かし入りアナログ信号生成部」は、透力し情報取得部で取得した透力し情報 (氏 名:佐藤三郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味:音楽)をアナログ信号 (音声信号、音声パターン:「あ」)の再生によって取得できるように透かし信号を埋め 込んだ透かし入りアナログ信号 (音声信号 +透力 情報)を生成する。透かし入りァ ナログ信号生成部は、生成した透かし入りアナログ信号 (音声信号 +透力 情報)を 、透かし入りアナログ信号出力部に出力する。
[0064] (透かし入りアナログ信号出力部)
「透かし入りアナログ信号出力部」は、透かし入りアナログ信号生成部にて生成され た透かし入りアナログ信号 (音声信号 +透力 情報)を出力する。
[0065] 〈具体的処理の流れ〉
以下に、本実施形態の具体的処理の流れについて説明する。
図 12は、本実施形態の具体的処理の流れの一例を示す図である。
まず、アナログ信号取得ステップにおいて、電子透かし装置は、アナログ信号 (音声 信号、音声パターン:「あ」)を取得する (ステップ S1201)。次に、アナログ信号属性 情報取得ステップにおいて、電子透かし装置は、属性情報として音声を発する話者 を特定するための話者特定属性情報 (氏名:佐藤三郎)を取得する (ステップ S 1202 )。次に、透かレ f青報取得ステップにおいて、電子透かし装置は、アナログ信号属性 情報取得ステップで取得した話者特定属性情報 (氏名:佐藤三郎)に応じてアナログ 信号 (音声信号、音声パターン:「あ」)に割り当てるべき透力 情報 (氏名:佐藤三郎 、年齢: 25歳、身長: 175cm、体重: 65kg、趣味:音楽)を取得する (ステップ S 1203 ) o次に、透かし入りアナログ信号生成ステップにおいて、電子透かし装置は、透かし 情報取得ステップで取得した透カゝし情報 (氏名:佐藤三郎、年齢: 25歳、身長: 175c m、体重 : 65kg、趣味:音楽)をアナログ信号 (音声信号、音声パターン:「あ」)の再 生によって取得できるように透かし信号を埋め込んだ透かし入りアナログ信号 (音声 信号 +透かし情報)を生成する (ステップ S1204)。次に、透かし入りアナログ信号出 力ステップにおいて、電子透かし装置は、透かし入りアナログ信号生成ステップにて 生成された透かし入りアナログ信号 (音声信号 +透力 情報)を出力する (ステップ S 1205)。
[0066] (その他)
本実施形態の電子透かし装置は、以下の構成要件の説明のように構成することも 可能である。
(アナログ信号取得部)
「アナログ信号取得部」は、通話音声取得手段を有するように構成されている。ここ で「通話音声取得手段」とは、電話の通話音声アナログ信号を取得する手段のことを いう。ここで「電話」には、一例として、携帯電話などの無線電話、固定電話などの有 線電話などが挙げられる。
[0067] (透かし入りアナログ信号生成部)
「透かし入りアナログ信号生成部」は、間欠的に話者特定属性情報を取得可能な透 かし入りアナログ信号である透かし入り通話音声アナログ信号を生成するように構成 されている。ここで「間欠的に話者特定属性情報を取得可能な」とは、連続して話者 特定属性情報を取得する必要はないという意味で使用しており、連続して話者特定 属性情報を取得してもよい。 [0068] (透かし入りアナログ信号出力部)
「透かし入りアナログ信号出力部」は、電話の通話のための音声信号を出力するよう に構成されている。
[0069] く実施形態 3の効果の簡単な説明〉
本実施形態の電子透力 装置によれば、音声信号に応じて話者特定属性情報を 取得できるので、特定した話者に応じた透かレ f青報を埋め込むことができる。さらに 電話を利用した認証に利用できる。例えば、電話を用いた重要指示を相手方に伝え る場合に、自身が真正であることを容易に証明することができる。また電話機を複数 人で共有する場合に、音声を識別して特定できるので、課金を別々にすることができ る。また音声を識別して、転送したり、コピーして保存したりすることもできる。さらに透 力 情報で認証することもできる。例えば、お金の移動や、電話を利用した投票に透 力 情報の認証を利用できる。また音声を利用した株式などの有価証券の取引指示 に対してセキュリティー向上に有効である。なぜならば、株式などの有価証券の取引 は、一刻を争うとともに認証が必須である力 認証のための情報入力を省略できるか らである。
[0070] くく実施形態 4》
以下に、実施形態 4について説明する。
[0071] く実施形態 4の概念〉
以下に、本実施形態の電子透かし装置について説明する。本実施形態の電子透 かし装置は、さらに透かし入りアナログ信号出力部から出力された透かし入りアナログ 信号をデジタル信号に変換する AZD変換部と、 AZD変換部で透かし入りアナログ 信号から変換されたデジタル信号である変換信号を送信する変換信号送信部と、を 有する実施形態 1から 3のいずれか一に記載の電子透かし装置に関する。
[0072] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 13は、本実施形態の電子透かし装置の機能ブロックの一例を示す図である。電 子透力 装置 1300は、アナログ信号取得部 1301と、アナログ信号属性情報取得部 1302と、透力し情報取得部 1303と、透かし入りアナログ信号生成部 1304と、透かし 入りアナログ信号出力部 1305と、 AZD変換部 1308と、変換信号送信部 1309と、 力もなる。また、アナログ信号取得部は、音声信号取得手段 1306を有する。さらに、 アナログ信号属性情報取得部は、話者特定属性情報取得手段 1307を有する。
[0073] く構成要件の説明〉
以下に、本実施形態の電子透かし装置の構成要件を説明する。
[0074] (アナログ信号取得部)、(アナログ信号属性情報取得部)、(透力 情報取得部 )、(透かし入りアナログ信号生成部)、(透かし入りアナログ信号出力部)
「アナログ信号取得部」、「アナログ信号属性情報取得部」、「透力 情報取得部」、「 透かし入りアナログ信号生成部」、「透かし入りアナログ信号出力部」は、実施形態 1 力も 3のいずれか一と同様なので説明を省略する。
[0075] (AZD変換部)
「AZD変換部」(Analog— to— Digital converter)は、透かし入りアナログ信号出 力部から出力された透かし入りアナログ信号をデジタル信号に変換するように構成さ れている。 AZD変換部は、透力 情報が埋め込まれた音声信号や画像信号など透 かし入りアナログ信号のような連続的で無限に細分可能な信号を、ビット列のように離 散的な信号 (デジタル信号)に変換する。 AZD変換部は、時間方向と振幅方向の成 分を持つアナログ信号を、ある時点での値を取り出す「標本化」と、振幅を数値化す る「量子化」 t 、う操作によってデジタル信号に変換する。さらにデジタルィ匕するプロ セスにおいてスクランブルをかけてもよい。また、デジタル信号である変換信号を帯 域圧縮することもできる。 AZD変換部は、変換したデジタル信号を、変換信号送信 部に出力する。
[0076] (変換信号送信部)
「変換信号送信部」は、 AZD変換部で透かし入りアナログ信号カゝら変換されたデ ジタル信号である変換信号を送信するように構成されている。変換信号送信部は、変 換信号を、一例として、後述する電子透かし解読装置に送信する。
[0077] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。 図 14は、本実施形態の処理の流れの一例を示す図である。なお、ステップ S 1401 一ステップ S1405については、実施形態 1から 3のいずれか一と同様なので説明を 省略する。
AZD変換ステップにおいて、電子透かし装置は、透かし入りアナログ信号出カス テツプから出力された透かし入りアナログ信号をデジタル信号に変換する (ステップ S 1406)。次に、変換信号送信ステップにおいて、電子透かし装置は、 AZD変換ステ ップで透かし入りアナログ信号カゝら変換されたデジタル信号である変換信号を送信 する(ステップ S 1407)。
[0078] く具体的機能ブロック図に基づく説明〉
以下に、本実施形態の電子透かし装置の具体例について説明する。
図 15、本実施形態の電子透力 装置の具体的機能ブロックの一例を示す図である 。電子透力 装置 1500は、アナログ信号取得部と、アナログ信号属性情報取得部と 、透かし情報取得部と、透かし入りアナログ信号生成部と、透かし入りアナログ信号出 力部と、 AZD変換部 1508と、変換信号送信部 1509と、力もなる。なお、アナログ信 号取得部と、アナログ信号属性情報取得部と、透かし情報取得部と、透かし入りアナ ログ信号生成部と、透かし入りアナログ信号出力部と、については、実施形態 1から 3 のいずれか一と同様なので図中説明を省略する。
[0079] (AZD変換部)
「AZD変換部」は、透かし入りアナログ信号出力部から出力された透かし入りアナ ログ信号をデジタル信号に変換する。
[0080] (変換信号送信部)
「変換信号送信部」は、 AZD変換部で透かし入りアナログ信号カゝら変換されたデ ジタル信号である変換信号を送信する。
[0081] く具体的処理の流れ〉
以下に、本実施形態の具体的処理の流れについて説明する。
図 16、 17は、本実施形態の具体的処理の流れの一例を示す図である。なお、ステ ップ S1601—ステップ S1605については、実施形態 1から 3のいずれか一と同様な ので説明を省略する。 AZD変換ステップにおいて、電子透かし装置は、透かし入りアナログ信号出カス テツプカも出力された透かし入りアナログ信号 (音声信号 +透力 情報)をデジタル 信号に変換する (ステップ S1701)。次に、変換信号送信ステップにおいて、電子透 カゝし装置は、 AZD変換ステップで透かし入りアナログ信号カゝら変換されたデジタル 信号である変換信号を送信する (ステップ S 1702)。
[0082] く実施形態 4の効果の簡単な説明〉
本実施形態の電子透力 装置によれば、透かし入りアナログ信号をデジタル信号 に変換することができるので、デジタル通信網に送信することが可能となる。またデジ タルイ匕しても透力し情報が消えな!/、。
[0083] くく実施形態 5》
以下に、実施形態 5について説明する。
[0084] く実施形態 5の概念〉
以下に、本実施形態の電子透かし装置について説明する。本実施形態の電子透 かし装置は、変換信号送信部が、公衆通信網に変換信号を送信するための公衆回 線出力手段を有する実施形態 4に記載の電子透かし装置に関する。
[0085] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 18は、本実施形態の電子透かし装置の機能ブロックの一例を示す図である。電 子透力 装置 1800は、アナログ信号取得部 1801と、アナログ信号属性情報取得部 1802と、透力し情報取得部 1803と、透かし入りアナログ信号生成部 1804と、透力し 入りアナログ信号出力部 1805と、 AZD変換部 1808と、変換信号送信部 1809と、 力もなる。また、アナログ信号取得部は、音声信号取得手段 1806を有する。さらに、 アナログ信号属性情報取得部は、話者特定属性情報取得手段 1807を有する。さら に、変換信号送信部は、公衆回線出力手段 1810を有する。
[0086] く構成要件の説明〉
以下に、本実施形態の電子透かし装置の構成要件を説明する。
[0087] (アナログ信号取得部)、(アナログ信号属性情報取得部)、(透力 情報取得部 )、(透かし入りアナログ信号生成部)、(透かし入りアナログ信号出力部)、(AZD変 換部)
「アナログ信号取得部」、「アナログ信号属性情報取得部」、「透力 情報取得部」、「 透かし入りアナログ信号生成部」、「透かし入りアナログ信号出力部」、「AZD変換部 」は、実施形態 4と同様なので説明を省略する。
[0088] (変換信号送信部)
「変換信号送信部」は、公衆回線出力手段を有するように構成されている。ここで「 公衆回線出力手段」とは、公衆通信網に変換信号を送信する手段のことをいう。ここ で「公衆通信網」とは、広域に分布する不特定多数の顧客を対象に公共的で平等な 通信サービスを提供している通信網のことをいう。公衆通信網には、一例として、アナ ログ電話回線網、デジタル電話回線網、インターネット、各企業で展開しているプロ バイダ専用コンテンツ、草の根 BBSなどのパソコン通信などが挙げられる。変換信号 送信部は、変換信号を公衆通信網に出力する。それ以外の点は、実施形態 5と同様 なので説明を省略する。
[0089] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 19は、本実施形態の処理の流れの一例を示す図である。なお、ステップ S1901 一ステップ S1906については、実施形態 5と同様なので説明を省略する。
変換信号送信ステップにおいて、公衆回線出力手段は、公衆通信網に変換信号 を送信する (ステップ S 1907)。
[0090] く実施形態 5の効果の簡単な説明〉
本実施形態の電子透力 装置によれば、公衆通信網に変換信号を送信するため の公衆回線出力手段を有するので、公衆回線を通じて変換信号を送信することがで きる。またインターネット、 IP電話などの公衆通信網を利用する場合には、途中でデ ータが改ざんされる恐れがある。しかし本件発明によれば、改ざんの有無を透力 情 報に基づ ヽて知ることができる。
[0091] くく実施形態 6》
以下に、実施形態 6について説明する。 [0092] く実施形態 6の概念〉
以下に、本実施形態の電子透かし装置について説明する。本実施形態の電子透 かし装置は、電子透力 装置のアナログ信号取得部が、電話の通話音声アナログ信 号を取得する通話音声取得手段を有し、電子透力 装置の透かし入りアナログ信号 生成部が、間欠的に話者特定属性情報を取得可能な透かし入りアナログ信号である 透かし入り通話音声アナログ信号を生成し、透かし入りアナログ信号出力部は、電話 の通話のための音声信号を出力する実施形態 3に記載の電子透力 装置に関する
[0093] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 20は、本実施形態の電子透かし装置の機能ブロックの一例を示す図である。電 子透力 装置 2000は、アナログ信号取得部 2001と、アナログ信号属性情報取得部 2002と、透力し情報取得部 2003と、透かし入りアナログ信号生成部 2004と、透力し 入りアナログ信号出力部 2005と、力もなる。また、アナログ信号取得部は、通話音声 取得手段 2006を有する。さらに、アナログ信号属性情報取得部は、話者特定属性 情報取得手段 2007を有する。
[0094] く構成要件の説明〉
以下に、本実施形態の電子透かし装置の構成要件を説明する。
[0095] (アナログ信号属性情報取得部)、(透かし情報取得部)
「アナログ信号属性情報取得部」、「透力し情報取得部」は、実施形態 3と同様なの で説明を省略する。
[0096] (アナログ信号取得部)
「アナログ信号取得部」は、通話音声取得手段を有するように構成されている。ここ で「通話音声取得手段」とは、電話の通話音声アナログ信号を取得する手段のことを いう。ここで「電話」には、一例として、携帯電話などの無線電話、固定電話などの有 線電話などが挙げられる。通話音声取得手段が、電話の通話音声アナログ信号を取 得すること以外の点については実施形態 3と同様なので説明を省略する。 [0097] (透かし入りアナログ信号生成部)
「透かし入りアナログ信号生成部」は、間欠的に話者特定属性情報を取得可能な透 かし入りアナログ信号である透かし入り通話音声アナログ信号を生成するように構成 されている。ここで「間欠的に話者特定属性情報を取得可能な」とは、連続して話者 特定属性情報を取得する必要はないという意味で使用しており、連続して話者特定 属性情報を取得してもよい。透かし入りアナログ信号生成部が間欠的に話者特定属 性情報を取得可能な透かし入りアナログ信号である透かし入り通話音声アナログ信 号を生成するように構成されて 、ること以外の点にっ 、ては、実施形態 3と同様なの で説明を省略する。
[0098] (透かし入りアナログ信号出力部)
「透かし入りアナログ信号出力部」は、電話の通話のための音声信号を出力するよう に構成されている。透かし入りアナログ信号出力部が電話の通話のための音声信号 を出力すること以外の点については、実施形態 3と同様なので説明を省略する。
[0099] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 21は、本実施形態の処理の流れの一例を示す図である。
まず、アナログ信号取得ステップにおいて、電子透かし装置は、電話の通話音声ァ ナログ信号を取得する (ステップ S2101)。次に、アナログ信号属性情報取得ステツ プにおいて、電子透かし装置は、アナログ信号取得ステップで取得した電話の通話 音声アナログ信号の話者特定属性情報を取得する (ステップ S2102)。次に、透かし 情報取得ステップにおいて、電子透かし装置は、アナログ信号属性情報取得ステツ プで取得した話者特定属性情報に応じて電話の通話音声アナログ信号に割り当てる べき透力し情報を取得する (ステップ S2103)。次に、透かし入りアナログ信号生成ス テツプにおいて、電子透かし装置は、間欠的に話者特定属性情報を取得可能な透 かし入りアナログ信号である透かし入り通話音声アナログ信号を生成する (ステップ S 2104)。次に、透かし入りアナログ信号出力ステップにおいて、電子透かし装置は、 電話の通話のための音声信号を出力する (ステップ S2105)。
[0100] く実施形態 6の効果の簡単な説明〉 本実施形態の電子透力 装置によれば、通話音声アナログ信号を取得し、間欠的 に話者特定属性情報を取得可能な透かし入りアナログ信号である透かし入り通話音 声アナログ信号を生成することができる。したがって、取得した通話音声アナログ信 号に応じて透力し情報を間欠的に挿入することができる。したがって、継続するコミュ 二ケーシヨンを行うような場合に有効である。なぜならば、継続する間歇的なコミュ二 ケーシヨンの場合には、最初に認証された人が、途中で入れ替わる可能性があるか らである。
[0101] くく実施形態 7》
以下に、実施形態 7について説明する。
[0102] く実施形態 7の概念〉
以下に、本実施形態の電子透かし解読装置について説明する。本実施形態の電 子透かし解読装置は、透かし入りアナログ信号を取得 '再生し、透かし入りアナログ信 号力 透力 情報を取得する電子透かし解読装置に関する。
[0103] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 22は、本実施形態の電子透かし解読装置の機能ブロックの一例を示す図である 。電子透かし解読装置 2200は、透かし入りアナログ信号取得部 2201と、再生部 22 02と、第二透力し情報取得部 2203と、力もなる。
[0104] く構成要件の説明〉
以下に、本実施形態の電子透かし解読装置の構成要件を説明する。
[0105] (透かし入りアナログ信号取得部)
「透かし入りアナログ信号取得部」は、透かし入りアナログ信号出力部から出力され た透かし入りアナログ信号を取得するように構成されて ヽる。透かし入りアナログ信号 取得部は、取得した透かし入りアナログ信号を再生部に出力する。
[0106] (再生部)
「再生部」は、透かし入りアナログ信号取得部で取得した透かし入りアナログ信号を 再生するように構成されている。再生部は、一例として、取得した透かし入りアナログ 信号を復調してスピーカに出力したり、電話の受話器に出力したり、ディスプレイに出 力したりして再生する。
[0107] (第二透かし情報取得部)
「第二透力し情報取得部」は、再生部での再生のための信号力も透力し情報を取得 するように構成されている。一例として、透力 情報とアナログ信号が重畳された透か し入りアナログ信号の所定周期ごとの所定総和の結果が透かレ隋報を表すように透 かし入りアナログ信号が生成されている場合を考える。この場合には、透かし入りアナ ログ信号の所定周期ごとの所定総和の結果を計算することにより、透力し情報を取得 することができる。その方法の詳細については、「オーディオ電子透かし装置」(国際 出願番号: PCTZJP03Z06114)に詳述されており、明細書の最後の部分で説明 する。
[0108] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 23は、本実施形態の処理の流れの一例を示す図である。
まず、透かし入りアナログ信号取得ステップにおいて、電子透かし解読装置は、透 かし入りアナログ信号出力ステップから出力された透かし入りアナログ信号を取得す る (ステップ S2301)。次に、再生ステップにおいて、電子透かし解読装置は、透かし 入りアナログ信号取得ステップで取得した透かし入りアナログ信号を再生する (ステツ プ S2302)。次に、第二透力し情報取得ステップにおいて、電子透かし解読装置は、 再生ステップでの再生のための信号力も透力し情報を取得する (ステップ S 2303)。
[0109] く具体的機能ブロック図に基づく説明〉
以下に、本実施形態の電子透かし装置の具体例について説明する。
図 24は、本実施形態の電子透かし解読装置の機能ブロックの一例を示す図である 。電子透かし解読装置 2400は、透かし入りアナログ信号取得部 2401と、再生部 24 02と、第二透力し情報取得部 2403と、力もなる。
[0110] (透かし入りアナログ信号取得部)
「透かし入りアナログ信号取得部」は、透かし入りアナログ信号出力部から出力され た透かし入りアナログ信号 (透かし入り音声信号)を取得する。 [0111] (再生部)
「再生部」は、透かし入りアナログ信号取得部で取得した透かし入りアナログ信号( 透かし入り音声信号)を再生する。
[0112] (第二透かし情報取得部)
「第二透力し情報取得部」は、再生部での再生のための信号 (透かし入り音声信号 )から透かし情報 (氏名:佐藤三郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味: 音楽)を取得する。
[0113] く具体的処理の流れ〉
以下に、本実施形態の具体的処理の流れについて説明する。
図 25は、本実施形態の具体的処理の流れの一例を示す図である。
まず、透かし入りアナログ信号取得ステップにおいて、電子透かし解読装置は、透 かし入りアナログ信号出力ステップから出力された透かし入りアナログ信号 (透かし入 り音声信号)を取得する (ステップ S2501)。次に、再生ステップにおいて、電子透か し解読装置は、透かし入りアナログ信号取得ステップで取得した透かし入りアナログ 信号 (透かし入り音声信号)を再生する (ステップ S2502)。次に、第二透かし情報取 得ステップにおいて、電子透かし解読装置は、再生ステップでの再生のための信号( 透かし入り音声信号)から透力 情報 (氏名:佐藤三郎、年齢 : 25歳、身長:175cm、 体重: 65kg、趣味:音楽)を取得する (ステップ S2503)。
[0114] く実施形態 7の効果の簡単な説明〉
本実施形態の電子透かし解読装置によれば、透かし入りアナログ信号を取得-再 生し、透かし入りアナログ信号力も透力し情報を取得することができる。したがって、 透かし入りアナログ信号の著作権などの権利情報を取得することができる。さらに電 話を利用した認証に利用できる。例えば、電話を用いた重要指示を相手方に伝える 場合に、自身が真正であることを容易に証明することができる。また電話機を複数人 で共有する場合に、音声を識別して特定できるので、課金を別々にすることができる 。また音声を識別して、転送したり、コピーして保存したりすることもできる。さらに透か し情報で認証することもできる。例えば、お金の移動や、電話を利用した投票に透か し情報の認証を利用できる。また音声を利用した株式などの有価証券の取引指示に 対してセキュリティー向上に有効である。なぜならば、株式などの有価証券の取引は 、一刻を争うとともに認証が必須である力 認証のための情報入力を省略できるから である。
[0115] くく実施形態 8》
以下に、実施形態 8について説明する。
[0116] く実施形態 8の概念〉
以下に、本実施形態の電子透かし解読装置について説明する。本実施形態の電 子透かし解読装置は、第二透力し情報取得部で取得した透力し情報に応じて属性 情報を取得する属性情報取得部をさらに有する実施形態 7に記載の電子透かし解 読装置に関する。
[0117] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 26は、本実施形態の電子透かし解読装置の機能ブロックの一例を示す図である 。電子透かし解読装置 2600は、透かし入りアナログ信号取得部 2601と、再生部 26 02と、第二透力し情報取得部 2603と、属性情報取得部 2604と、からなる。
[0118] く構成要件の説明〉
以下に、本実施形態の電子透かし解読装置の構成要件を説明する。
[0119] (透かし入りアナログ信号取得部)、(再生部)、(第二透かし情報取得部)
「透かし入りアナログ信号取得部」、「再生部」、「第二透力し情報取得部」は、実施 形態 8の説明と同様なので説明を省略する。
[0120] (属性情報取得部)
「属性情報取得部」は、第二透かレ 報取得部で取得した透力し情報に応じて属 性情報を取得するように構成されている。ここで「透かし情報」、「属性情報」ついては 、実施形態 1と同様なので説明を省略する。ここで「透力し情報に応じて」とは、第二 透力し情報取得部で取得された透力し情報に対応して属性情報を取得するという意 味である。透カゝし情報が、一例として、(氏名:佐藤三郎、性別:男、年齢: 25歳)であ る場合には、属性情報取得部は、あらかじめ透力し情報 (氏名:佐藤三郎、性別:男、 年齢 : 25歳)に対応して定められた属性情報 (氏名:佐藤三郎)を取得する。
[0121] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 27は、本実施形態の処理の流れの一例を示す図である。なお、ステップ S2701 一ステップ S2703につ!/、ては、実施形態 7のステップ S2301—ステップ S2303と同 様なので説明を省略する。
属性情報取得ステップにおいて、電子透かし解読装置は、第二透力し情報取得ス テツプで取得した透力し情報に応じて属性情報を取得する (ステップ S2704)。
[0122] く具体的機能ブロック図に基づく説明〉
以下に、本実施形態の電子透かし装置の具体例について説明する。
図 28は、本実施形態の電子透かし解読装置の機能ブロックの一例を示す図である 。電子透かし解読装置 2800は、透かし入りアナログ信号取得部 2801と、再生部 28 02と、第二透力し情報取得部 2803と、属性情報取得部 2804と、からなる。
[0123] (透かし入りアナログ信号取得部)
「透かし入りアナログ信号取得部」は、透かし入りアナログ信号出力部から出力され た透かし入りアナログ信号 (透かし入り音声信号)を取得する。
[0124] (再生部)
「再生部」は、透かし入りアナログ信号取得部で取得した透かし入りアナログ信号( 透かし入り音声信号)を再生する。
[0125] (第二透かし情報取得部)
「第二透力し情報取得部」は、再生部での再生のための信号 (透かし入り音声信号 )から透かし情報 (氏名:佐藤三郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味: 音楽)を取得する。
[0126] (属性情報取得部)
「属性情報取得部」は、第二透かレ 報取得部で取得した透力し情報 (氏名:佐藤 三郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味:音楽)に応じて属性情報 (氏 名:佐藤三郎)を取得する。
[0127] く具体的処理の流れ〉 以下に、本実施形態の具体的処理の流れについて説明する。
図 29は、本実施形態の具体的処理の流れの一例を示す図である。
まず、透かし入りアナログ信号取得ステップにおいて、電子透かし解読装置は、透 かし入りアナログ信号出力ステップから出力された透かし入りアナログ信号 (透かし入 り音声信号)を取得する (ステップ S2901)。次に、再生ステップにおいて、電子透か し解読装置は、透かし入りアナログ信号取得ステップで取得した透かし入りアナログ 信号 (透かし入り音声信号)を再生する (ステップ S2902)。次に、第二透かし情報取 得ステップにおいて、電子透かし解読装置は、再生ステップでの再生のための信号( 透かし入り音声信号)から透力 情報 (氏名:佐藤三郎、年齢 : 25歳、身長:175cm、 体重: 65kg、趣味:音楽)を取得する (ステップ S2903)。次に、属性情報取得ステツ プにおいて、電子透かし解読装置は、第二透力し情報取得ステップで取得した透か し情報 (氏名:佐藤三郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味:音楽)に応 じて属性情報 (氏名:佐藤三郎)を取得する (ステップ S2904)。
[0128] く実施形態 8の効果の簡単な説明〉
本実施形態の電子透かし解読装置によれば、透力し情報に応じて属性情報を取得 する属性情報を取得することができる。
[0129] くく実施形態 9》
以下に、実施形態 9について説明する。
[0130] く実施形態 9の概念〉
以下に、本実施形態の電子透かし解読装置について説明する。本実施形態の電 子透かし解読装置は、属性情報取得部で取得した属性情報に応じて行うべき処理を 特定するための情報である処理特定情報を保持する処理特定情報保持部と、処理 特定情報保持部に保持されている処理特定情報に応じた処理を実行するための処 理実行部と、をさらに有する実施形態 8に記載の電子透かし解読装置に関する。
[0131] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
図 30は、本実施形態の電子透かし解読装置の機能ブロックの一例を示す図である 。電子透かし解読装置 3000は、透かし入りアナログ信号取得部 3001と、再生部 30
02と、第二透力し情報取得部 3003と、属性情報取得部 3004と、処理特定情報保 持部 3005と、処理実行部 3006と、からなる。
[0132] く構成要件の説明〉
以下に、本実施形態の電子透かし解読装置の構成要件を説明する。
[0133] (透かし入りアナログ信号取得部)、(再生部)、(第二透かし情報取得部)、(属 性情報取得部)
「透かし入りアナログ信号取得部」、「再生部」、「第二透かし情報取得部」、「属性情 報取得部」は、実施形態 8の説明と同様なので説明を省略する。
[0134] (処理特定情報保持部)
「処理特定情報保持部」は、処理特定情報を保持するように構成されている。ここで 「処理特定情報」とは、属性情報取得部で取得した属性情報に応じて行うべき処理を 特定するための情報のことをいう。処理特定情報には、一例として、属性情報が「大 人向けの画像」である場合には、ディスプレイに出力しない、などの情報が該当する。 処理特定情報保持部は、処理特定情報を処理実行部に出力する。
[0135] (処理実行部)
「処理実行部」は、属性情報取得部から取得した属性情報に基づいて、処理特定 情報保持部に保持されている処理特定情報に応じた処理を実行するように構成され ている。処理実行部は、一例として、処理特定情報が、(属性情報が「大人向けの画 像」である場合には、ディスプレイに出力しない)である場合に、属性情報取得部から 属性情報 (男の子の顔)を取得した場合には、透かし入りアナログ信号をディスプレイ に出力する。
[0136] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 31は、本実施形態の処理の流れの一例を示す図である。なお、ステップ S3101 一ステップ S3104については、実施形態 8のステップ S2701—ステップ S2704と同 様なので説明を省略する。
処理特定情報保持ステップにおいて、電子透かし解読装置は、属性情報取得ステ ップで取得した属性情報に応じて行うべき処理を特定するための情報である処理特 定情報を保持する (ステップ S3105)。次に、処理実行ステップにおいて、電子透か し解読装置は、処理特定情報保持ステップで保持された処理特定情報に応じた処 理を実行する (ステップ S3106)。
[0137] く具体的機能ブロック図に基づく説明〉
以下に、本実施形態の電子透かし装置の具体例について説明する。
図 32は、本実施形態の電子透かし解読装置の機能ブロックの一例を示す図である 。電子透かし解読装置 3200は、透かし入りアナログ信号取得部と、再生部と、第二 透かし情報取得部と、属性情報取得部と、処理特定情報保持部 3205と、処理実行 部 3206と、力らなる。なお、透かし入りアナログ信号取得部と、再生部と、第二透かし 情報取得部と、属性情報取得部と、については、実施形態 8と同様なので図示を省 略する。
[0138] (透かし入りアナログ信号取得部)
「透かし入りアナログ信号取得部」は、透かし入りアナログ信号出力部から出力され た透かし入りアナログ信号 (透かし入り音声信号)を取得する。
[0139] (再生部)
「再生部」は、透かし入りアナログ信号取得部で取得した透かし入りアナログ信号( 透かし入り音声信号)を再生する。
[0140] (第二透かし情報取得部)
「第二透力し情報取得部」は、再生部での再生のための信号 (透かし入り音声信号 )から透かし情報 (氏名:佐藤三郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味: 音楽)を取得する。
[0141] (属性情報取得部)
「属性情報取得部」は、第二透かレ 報取得部で取得した透力し情報 (氏名:佐藤 三郎、年齢: 25歳、身長: 175cm、体重: 65kg、趣味:音楽)に応じて属性情報 (氏 名:佐藤三郎)を取得する。
[0142] (処理特定情報保持部)
「処理特定情報保持部」は、処理特定情報(山田太郎の音声パターンであれば、ス ピー力に出力する)を保持している。
[0143] (処理実行部)
「処理実行部」は、属性情報取得部力も取得した属性情報 (氏名:佐藤三郎)に基 づいて、処理特定情報保持部に保持されている処理特定情報(山田太郎の音声パ ターンであれば、通話可能とする)に応じた処理 (音声パターンが不一致のため通話 可能としない)を実行する。
[0144] 〈具体的処理の流れ〉
以下に、本実施形態の具体的処理の流れについて説明する。
図 33、 34は、本実施形態の具体的処理の流れの一例を示す図である。なお、ステ ップ S 3301—ステップ S 3304については、実施形態 8のステップ S 2901一ステップ S2904と同様なので説明を省略する。
処理特定情報保持ステップにおいて、電子透かし解読装置は、属性情報取得ステ ップで取得した属性情報 (氏名:佐藤三郎)に応じて行うべき処理を特定するための 情報である処理特定情報(山田太郎の音声パターンであれば、通話可能とする)を 保持する (ステップ S3405)。次に、処理実行ステップにおいて、電子透かし解読装 置は、処理特定情報保持ステップで保持された処理特定情報(山田太郎の音声バタ ーンであれば、通話可能とする)に応じた処理 (音声パターンが不一致のため通話可 能としな!/、)を実行する (ステップ S3406)。
[0145] く実施形態 9の効果の簡単な説明〉
本実施形態の電子透かし解読装置によれば、処理特定情報に応じた処理を実行 することができる。
[0146] くく実施形態 10》
以下に、実施形態 10について説明する。
[0147] く実施形態 10の概念〉
以下に、本実施形態の電子透かし解読装置について説明する。本実施形態の電 子透かし解読装置は、処理実行部での処理が、アナログ信号である音声信号を再生 する処理又は、再生をしない処理である実施形態 9に記載の電子透かし解読装置に 関する。 [0148] く基本的機能ブロック図に基づく説明〉
く構成要件の明示〉
以下に、本実施形態の電子透かし装置の構成要件を明示する。
本実施形態の電子透かし解読装置は、透かし入りアナログ信号取得部と、再生部と 、第二透力し情報取得部と、属性情報取得部と、処理特定情報保持部と、処理実行 部と、力もなる。構成要件は、実施形態 9と同様であるので、図示していない。
[0149] く構成要件の説明〉
以下に、本実施形態の電子透かし解読装置の構成要件を説明する。
[0150] (透かし入りアナログ信号取得部)、(再生部)、(第二透かし情報取得部)、(属 性情報取得部)
「透かし入りアナログ信号取得部」、「再生部」、「第二透かし情報取得部」、「属性情 報取得部」は、実施形態 9の説明と同様なので説明を省略する。
[0151] (処理特定情報保持部)
処理特定情報には、一例として、(属性情報が「登録者以外の音声パターン」である 場合には、通話不能とする)、などの情報が該当する。上記以外は、実施形態 9の説 明と同様なので説明を省略する。
[0152] (処理実行部)
「処理実行部」は、処理実行部での処理が、アナログ信号である音声信号を再生す る処理又は、再生をしない処理であるように構成されている。一例として、属性情報が 「登録者の音声パターンである」であり、処理特定情報が、(属性情報が「登録者以外 の音声パターン」である場合には、通話不能とする)であるとする。この場合には、処 理実行部は、「通話可能とする」処理を実行する。また、一例として、属性情報が「登 録者以外の音声パターンである」であり、処理特定情報が、(属性情報が「登録者以 外の音声パターン」である場合には、通話不能とする)であるとする。この場合には、 処理実行部は、「通話不能とする」処理を実行する。
[0153] 〈処理の流れ〉
以下に、本実施形態の処理の流れについて説明する。
図 35は、本実施形態の処理の流れの一例を示す図である。なお、ステップ S3501 一ステップ S3505については、実施形態 9のステップ S3101—ステップ S3105と同 様なので説明を省略する。
処理実行ステップにおいて、電子透かし解読装置は、アナログ信号である音声信 号を再生する処理又は、再生をしな 、処理を実行する (ステップ S3506)。
[0154] く実施形態 10の効果の簡単な説明〉
本実施形態の電子透かし解読装置によれば、処理実行部での処理は、アナログ信 号である音声信号を再生する処理又は、再生をしな 、処理であることを特徴として ヽ る。したがって、通話したくない人と通話不能とすることなどが可能となる。
[0155] 〈く(PCTZJP03Z06114)の内容》
(参照発明の名称):オーディオ電子透かし装置
[0156] (参照技術分野)
本参照発明は、オーディオデータに著作識別情報などを透力しデータとして埋め 込む装置、及びその透力しデータの埋め込まれたオーディオデータ力 透力しデー タを検出し、復号する装置に関する。
[0157] (参照背景技術)
音楽等のオーディオデータに電子透力 を埋め込む技術は数多くあるが、一般に 透力しデータを埋め込むことによる音質の劣化と透力しデータの耐久性とはトレード オフの関係にあり、両立させることが難し力つた。例えば、オーディオデータのサンプ ル値の下位の数ビットで透かしデータを表現するとノイズはあまり目立たないが、この 情報は周波数変換したとき高周波成分として現れるため MP3等の圧縮ソフトで圧縮 をかけると容易に消えてしまう。また、はじめから MP3圧縮に特ィ匕した電子透かし、た とえば量子化された周波数成分の偶奇等を使って符号ィ匕するといつた電子透かしも あるが、圧縮率を変えて再圧縮すると消えてしまう場合が多い。さらに、圧縮方式の シンタックスに着目して音質をまったく劣化させずに透力しデータを埋め込むという方 法もあるが、この場合、ー且波形データに変換すると透力し情報は消えてしまう。その 他にも、たとえば統計的な偏り等を利用した方法もあるが、電子透力しの耐久性を高 めるために 1ビットを表現するのに必要なサンプルの数を増やすとそれだけ埋め込む ことの出来るデータの量が少なくなり、また、偏りを大きくするとそれだけ透力 データ の強度は増す力 元のオーディオデータの音質の劣化の度合いも大きくなるという問 題がある。このように、元のオーディオデータの音質を劣化させることなく透力しデー タを埋め込むことができ、非可逆圧縮等による変形を与えても透力 データが残り、 且つ容易に透力しデータを検出できると 、う理想的な電子透力しの技術はまだ確立 されて ヽな ヽと 、うのが現状であった。
[0158] (参照特許文献)
特開 2002— 304184
[0159] (参照発明の開示)
近年デジタルィ匕が進み、元のオーディオデータと寸分違わな 、コピーを誰でも簡単 に作れるようになつてきた。また、これらのデータは MP3 (MPEGオーディオレイヤー 3)等の圧縮ソフトで圧縮され、インターネットを介して配布されることも多くなつた。 このような行為は、そのオーディオデータを正規に購入したユーザが個人的に利用 する分には問題ないが、違法コピーし、不正に配布される場面も多く見られるようにな つた。このような状況下では著作権者は著作料を徴収することが困難になり、創作意 欲も低下しかねない。
そこで、このような不正行為力 著作権者の権利を守るため、個々のオーディオデ ータにその作者の著作権に関する情報を電子透力しとして埋め込む技術が模索され ている。
[0160] 参照発明 1は、音声記録媒体に透力 データを記録するためのオーディオ電子透 かし装置であって、オーディオデータを取得するオーディオデータ取得部と、透かし データを取得する透力しデータ取得部と、前記オーディオデータ取得部で取得した オーディオデータと重畳して重畳オーディオデータとすることで所定周期ごとの重畳 オーディオデータの所定総和の結果が前記透かしデータ取得部で取得した透かし データを表す透かし生成用データを生成する透かし生成用データ生成部と、前記ォ 一ディォデータ取得部で取得したオーディオデータと、前記透かし生成用データ生 成部で生成した透力 生成用データとを重畳して重畳オーディオデータを生成する 重畳オーディオデータ生成部と、を有するオーディオ電子透力 装置に関する。
[0161] 参照発明 2は、前記透力 生成用データ生成部は、人間の耳で聞きとれない低周 波の透力 生成用データを生成する参照発明 1に記載のオーディオ電子透力 装置 に関する。
[0162] 参照発明 3は、前記透力 生成用データ生成部は、それによつて生成される透かし 生成用データの表す関数の振幅の変化する境界における値と傾きが常にゼロである 前記透力 生成用データを生成する参照発明 1又は 2に記載のオーディオ電子透か し装置に関する。
[0163] 参照発明 4は、前記透力 生成用データ生成部は、前記所定周期ごとの前記所定 総和の結果が前記透かしデータ取得部で取得した透力しデータを表すように、前記 透力し生成用データの表す関数の振幅を半周期ごとに適応的に変化させる参照発 明 1から 3の 、ずれか一に記載のオーディオ電子透力し装置に関する。
[0164] 参照発明 5は、前記所定周期ごとの前記所定総和の結果は、前記透かし生成用デ ータの半周期ごとの前記重畳オーディオデータの総和の符号である参照発明 1から 4のいずれか一に記載のオーディオ電子透力し装置に関する。
[0165] 参照発明 6は、前記所定周期ごとの前記所定総和の結果は、前記透かし生成用デ ータの前半周期と後半周期に対応する前記重畳オーディオデータの総和の差分の 符号である参照発明 1から 4のいずれか一に記載のオーディオ電子透力 装置に関 する。
[0166] 参照発明 7は、音声記録媒体に記録された透力 データを復号するためのオーデ ィォ電子透かし復号装置であって、重畳オーディオデータを取得する重畳オーディ ォデータ取得部と、重畳オーディオデータ取得部で取得した重畳オーディオデータ の前記所定周期ごとの所定総和の結果を算出する総和算出部と、前記総和算出部 で算出された前記所定総和の結果に基づいて前記透かしデータを復号する透かし データ復号部と、を有するオーディオ電子透かし復号装置に関する。
[0167] 参照発明 8は、前記総和算出部は、前記重畳オーディオデータ取得部で取得した 重畳オーディオデータの、前記透力し生成用データの半周期の時間にわたる総和の 符号を算出する参照発明 7に記載のオーディオ電子透かし復号装置に関する。
[0168] 参照発明 9は、前記総和算出部は、前記重畳オーディオデータ取得部で取得した 重畳オーディオデータの、前記透かし生成用データの 1周期の前半の半周期の時間 にわたる総和と後半の半周期の時間にわたる総和の差の符号を算出する参照発明
7に記載のオーディオ電子透かし復号装置に関する。
(参照発明を実施するための最良の形態)
以下に本件参照発明の参照実施形態を説明する。参照実施形態と、参照発明との 関係はおおむね次のようなものである。
参照実施形態 1は、主に、参照発明 1、参照発明 10などに :っ 、て説明している。 参照実施形態 2は、主に、参照発明 2、参照発明 11などに :っ 、て説明している。 参照実施形態 3は、主に、参照発明 3、参照発明 12などに :っ 、て説明している。 参照実施形態 4は、主に、参照発明 4、参照発明 13などに :っ 、て説明している。 参照実施形態 5は、主に、参照発明 5、参照発明 14などに :っ 、て説明している。 参照実施形態 6は、主に、参照発明 6、参照発明 15などに :っ 、て説明している。 参照実施形態 7は、主に、参照発明 7、参照発明 16などに :っ 、て説明している。 参照実施形態 8は、主に、参照発明 8、参照発明 17などに :っ 、て説明している。 参照実施形態 9は、主に、参照発明 9、参照発明 18などに :っ 、て説明している。
[0170] くく参照実施形態 1》
く参照実施形態 1の概念〉
参照実施形態 1に記載の参照発明は、著作識別情報などを透かしデータとして取 得し、オーディオデータと重畳して重畳オーディオデータとし、その所定周期ごとの 所定総和の結果を用いることにより、その著作識別情報などの透力しデータを埋め込 むオーディオ電子透かし装置に関する。
[0171] く構成要件の明示〉
図 36に示すように、参照実施形態 1のオーディオ電子透かし装置 3600は、オーデ ィォデータ取得部 3601と、透かしデータ取得部 3602と、透かし生成用データ生成 部 3603と、重畳オーディオデータ生成部 3604と、カゝらなる。
[0172] く構成の説明〉
く基本機能ブロック図の導入〉
(構成要件:オーディオデータ取得部)
オーディオデータ取得部は、オーディオデータを取得する。 [0173] (構成要件:透かしデータ取得部)
透力しデータ取得部は、透力しデータを取得する。
ここで「透カゝしデータ」には、著作識別情報等のコードやテキスト、コンテンツ配信等 に用 、る ID等のデジタルデータが該当する。
[0174] (構成要件:透かし生成用データ生成部)
透かし生成用データ生成部は、オーディオデータ取得部で取得したオーディオデ ータと重畳して重畳オーディオデータとすることで所定周期ごとの所定総和の結果が 透力 データ取得部で取得した透力 データを表す透力 生成用データを生成する
[0175] ここで「所定周期ごとの所定総和の結果」とは、重畳オーディオデータの、透かし生 成用データの所定周期ごとの所定総和の結果をいう。「所定周期」には、半周期、 1 周期、 1. 5周期、 2周期、 2. 5周期、 3周期、 · · ·などが該当する。「所定総和」には、 半周期分の総和、 1周期分の総和などが該当する。「所定総和の結果」には、半周期 、 1周期にわたる総和、総和の符号、総和の差の符号などが該当する。
[0176] (構成要件:重畳オーディオデータ生成部)
重畳オーディオデータ生成部は、オーディオデータ取得部で取得したオーディオ データと、透力 生成用データ生成部で生成した透力 生成用データとを重畳して 重畳オーディオデータを生成する。
[0177] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 1について、具体的な例を使って詳細に説明す る。
[0178] (オーディオデータ取得)
図 37に示すような波形パターンのオーディオデータを取得する。
なお、オーディオデータとしては、 PCM (Pulse Code Modulation)等のすでに デジタルィ匕されたものを取得してもよいし、アナログ波形を取得し、それをサンプリン グ/量子化してデジタルデータに変換してもよい。また、圧縮されたオーディオデー タを復号して PCMデータとして取り出したものでもよ 、。
[0179] (透かしデータ取得) 次に、透かしデータについて述べる。透力しデータはデジタル情報であれば何でも よぐ一例としては、著作識別情報等を示すコードや文字列があるが、いずれの場合 も 2進数で表しておく。例えば、アルファベットからなる文字列を非圧縮で埋め込む場 合、 ASCIIコードに変換してその値を 2進数表示しておく。
ここでは、一例として、「Copyright」の「C」という文字を透かしデータとして取得す る場合を考える。この文字に対する ASCIIコードは 2進数で表現すると「01000011」 となる。
[0180] (透かし生成用データ:基関数生成)
次に、透かし生成用データの生成方法について述べる。透かし生成用データは、 基になる関数 (以下基関数と呼ぶ)に振幅 aを掛けた関数で表される。一例として、ォ 一ディォデータのサンプリングレートが Rヘルツで、透かし生成用データとして周波数 fヘルツの波を使う場合を考える。ここで、 fは RZfが整数になるように選ぶ。
この波をサンプリングレート Rでサンプリングしたものを基関数 u (t)とする。(実際に サンプリングを実行するのではなぐそのような関数を数式を使って求める。)ここで、 t はサンプル点である。図 38に示すのは基関数 u(t)の一例で、周期 RZfの正弦波を 上方に移動させ、最大値と最小値がそれぞれ 1と 0になるように調整したものである。 この関数 u(t)の値は透かしデータの埋め込み時に頻繁に使われるので、あらかじ め 1周期分を計算し、その関数値のリストをメモリーに格納しておく。
すなわち、
u (0) , u (l) , · ··, u (R/f-l)
をメモリーに格納しておく。
[0181] 図 39に示すように、第 i周期のサンプル点 tにおける値はつぎの関係式を用いて上 記 1周期分の値から求めることができる。
u (t) =u (t-(i-l) -R/f)
[0182] (透力 生成用データ:総和算出)
上記透力し生成用データと元のオーディオデータとを足し合わせることにより重畳 オーディオデータを生成する。元のオーディオデータのサンプル値^ v (t)とすると、 重畳されたオーディオデータはつぎのようになる。 a(0)-u(0)+v(0) a(R/f-l) -u(R/f-l) +v(R/f-l)
a(R/f) -u(R/f) +v(R/f) a(2-R/f-l) -u(2-R/f-l) +v(2-R/f-l)
a(2-R/f) -u(2-R/f) +v(2-R/f) a(3-R/f-l) -u(3-R/f-l) +v(3-R/f-l)
[0183] 透力し生成用データと重畳されたオーディオデータのサンプル点 tにおけるサンプ ル値を w(t)とすると、上記の例は次の式で表すことができる。
w(t) =v(t) +a(t) -u(t)
[0184] この w(t)を透力し生成用データの第 i周期の 1周期にわたって足し合わせる。このと き、 a(t)は 1周期の中では一定の値をとるようにする。この一定値を aとすると、
∑w(t) =∑v(t)+a-∑u(t)
となる。ここで、∑は透力 生成用データの第调期の 1周期分の総和を表す。また、 以降の説明で
V =∑v(t)
U=∑u(t)
とおく。 Vは一般に周期 iごとに変化するが、 Uは一定の定数である。
この定数 Uもメモリーにあら力じめ格納しておく。
[0185] (透かし生成用データ:振幅生成)
次に、この重畳されたオーディオデータの総和の絶対値が一定で符号が透力しデー タのビット値を表すように aの値を決める。ビット値を b(0または 1)とし、重畳オーディ ォデータの総和の絶対値を Sとすると、
(-l)b-S=V+a-U したがって、
a = { (-l)b- S-V }/U
となる。なお、この例では 1周期で 1ビットを表しているので、一般に bは iごとに異なる 値をとる。
[0186] (透かし生成用データ生成)
透力し生成用データを表す関数は、透力し生成用データの基関数にこの振幅 aを かけたもの、すなわち、
{ (-l)b- S-V } -u (t) /U
となる。
[0187] 図 40に示すのは、透かしデータの文字「C」に対応する透かし生成用データの波形 パターンの概略図である。なお、この図では振幅 aの符号と (一 l)bの符号は一致して いる力 Vの大きさによっては反転することもあり得る。ビット値を表しているのは透か し生成用データの振幅の符号ではなぐ重畳オーディオデータの総和の符号である
[0188] (重畳オーディオデータ生成)
以上より、透力し生成用データと重畳された重畳オーディオデータ w(t)は次式のよ うになる。
w (t) =v(t) + { (-l)b- S-V } · u (t) ZU
[0189] (電子透かしの埋め込み過程)
次に、この式を用い、オーディオデータに電子透かしを埋め込む過程を、図 41を参 照しながら説明する。まず、透力 生成用データの 1周期分のオーディオデータが A 01に入り、そこで上式の総和が計算されて A03に出力される。一方、透かしデータ は A02に入り、そこでビット値に応じて透力し生成用データの 1周期ごとに上式の (一 l)bの符号が A03に出力される。すなわち、ビット値力^)のときは「正」、 1のときは「負」 が出力される。 A03ではこれら 2つの値を使って上式に従って透かし生成用データを 生成し、その透かし生成用データのデータを A04に出力する。 A04ではこの透かし 生成用データのデータと元のオーディオデータとを重畳することにより透力しデータ の入った重畳オーディオデータを生成し、出力する。 [0190] (その他)
この透かしデータの埋め込み過程は可逆であり、透かしデータの埋め込み時に使 用された透力 生成用データの振幅の時系列データがあれば完全に元に戻すことが できる。さらに、ある人が透力しデータを埋め込んだあと、別の人が別の透かしデータ を埋め込んでも、それぞれの過程で使用された透力し生成用データの振幅の時系列 データがあれば、それぞれの透かしデータを取り出し、且つ、元のオーディオデータ に戻すことができる。このように、何重にでも埋め込むことができるので、例えば著作 権者が著作権に関する情報を埋め込んだ後、その著作権を保護した状態で、コンテ ンッ配信業者が不正な二次配信を防止する目的で独自の IDを埋め込むといったよう なことも可能となる。
[0191] また、逆に、透力 データを埋め込んだときに使用された透力 生成用データの振 幅の時系列データがな 、と元の状態に戻すことはできな 、 (ビット値は重畳オーディ ォデータの総和で表現されており、これをもとのオーディオデータと透かし生成デー タに分解するする仕方は一意には定まらない)ので、このことを利用して改ざんされに くい電子透かしシステムを構築することも可能である。例えば、透力しデータを埋め込 むときにこの時系列のデータを出力し、著作権を管理しているところにそれを保管し ておく。オーディオデータの著作権を主張する者は、自分の持っている透力しの入つ て 、な 、オリジナルの(と主張する)元のオーディオデータをその著作権を管理して いるところに持つていき、上記透かし生成用データの振幅の時系列データを使つてそ の持ち込まれた元のオーディオデータと合成する。これが実際に配布されて 、る透 力しデータの入った重畳オーディオデータと一致すれば間違いなくその者が作成し たものであると判断できる。
[0192] なお、これまでの説明で、透力しデータの開始点の検出やエラー処理等について は割愛した力 これらは従来のよく知られた技術で容易に実装できる。たとえば、透 力しデータの開始点の検出については、あら力じめ特定のビットパターンを透力しデ ータの前に挿入しておき、そのパターンが見つ力つた直後から復号を開始すればよ い。具体的には、振幅がゼロのところを無条件でスキップし、その後スタート位置を少 しずつずらしながらスタートコードと同期するところを見つけ、その後透かしデータの 1 周期分ずつ進めてデコードする等の方法がある。エラー処理につ 、てはチェックサム 等を透力しデータとして埋め込み、デコード時にチェックする等の方法がある。
[0193] 〈処理の流れ〉
図 42に示すのは、参照実施形態 1の処理の流れである。
まず、オーディオデータ取得部は、オーディオデータを取得する(ステップ S4201) 次に、透かしデータ取得部は、透かしデータを取得する(ステップ S4202)。
次に、透かし生成用データ生成部は、ステップ S4202で取得した透かしデータに 基づ 、て、ステップ S4201で取得したオーディオデータと重畳して重畳オーディオ データとすることで所定周期ごとの所定総和の結果がステップ S4202で取得した透 力 データを表す透力し生成用データを生成する (ステップ S4203)。
次に、重畳オーディオデータ生成部は、ステップ S4201で取得したオーディオデ ータと、ステップ S4203で生成した透力し生成用データとを重畳して重畳オーディオ データを生成する(ステップ S4204)。
[0194] く参照実施形態 1の効果の簡単な説明〉
参照実施形態 1に記載の参照発明では、著作識別情報などを透かしデータとして 取得し、オーディオデータと重畳して重畳オーディオデータとし、その所定周期ごと の所定総和の結果で透力 情報を表現するという手法を用いることにより、透力 デ ータを埋め込むことによる音質の劣化を防止して 、る。
[0195] また、透力し生成用データの 1波長で 1ビットが符号ィ匕されるので、透かし生成用デ ータが長波長であるにもかかわらず、効率よく多くの透力 データを埋め込むことが できる。
[0196] くく参照実施形態 2》
く参照実施形態 2の概念〉
参照実施形態 2に記載の参照発明は、人間の耳では聞き取れない低周波の透か し生成用データを生成する参照発明 1に記載のオーディオ電子透力 装置に関する
[0197] く構成要件の明示〉 図 43に示すように、参照実施形態 2のオーディオ電子透かし装置 4300は、オーデ ィォデータ取得部 4301と、透力しデータ取得部 4302と、透かし生成用データ生成 部 4303と、重畳オーディオデータ生成部 4304と、力もなる。
[0198] く構成の説明〉
く基本機能ブロック図の導入〉
[0199] (構成要件:オーディオデータ取得部)
参照実施形態 1の (構成要件:オーディオデータ取得部)と同様なので説明を省略 する。
[0200] (構成要件:透かしデータ取得部)
参照実施形態 1の (構成要件:透力 データ取得部)と同様なので説明を省略する
[0201] (構成要件:透かし生成用データ生成部)
透かし生成用データ生成部は、人間の耳では聞き取れない低周波の透力し生成 用データを生成する。
ここで「人間の耳では聞き取れない低周波」とは、約 20Hz以下の低い周波数のこと をいう。
それ以外は、参照実施形態 1の (構成要件:透力 生成用データ生成部)と同様な ので説明を省略する。
[0202] (構成要件:重畳オーディオデータ生成部)
参照実施形態 1の (構成要件:重畳オーディオデータ生成部)と同様なので説明を 省略する。
[0203] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 2について、具体的な例を使って詳細に説明す る。
[0204] (オーディオデータ取得)
参照実施形態 1の (オーディオデータ取得)と同様なので説明を省略する。
[0205] (透かしデータ取得)
参照実施形態 1の (透力 データ取得)と同様なので説明を省略する。 [0206] (透かし生成用データ:基関数生成)
参照実施形態 2の場合、透かし生成用データは人間の耳では聞き取れない低周波 を用いる。一例として、オーディオデータのサンプリングレートが 44. Ikヘルツで、透 力し生成用データとして周波数 10ヘルツの関数を使う場合を考える。
基関数 u(t)は、周期 44. lkZlOの関数である。
参照実施形態 2の場合、参照実施形態 1の R=44. lk、 f= 10となる。 それ以外は、参照実施形態 1の (透力 生成用データ:基関数生成)と同様なので 説明を省略する。
[0207] (透力 生成用データ:総和算出)
参照実施形態 2の場合、参照実施形態 1の R=44. lk、 f= 10となること以外は、 参照実施形態 1の (透力 生成用データ:総和算出)と同様なので説明を省略する。
[0208] (透かし生成用データ:振幅生成)
参照実施形態 2の場合、参照実施形態 1の R=44. lk、 f= 10となること以外は、 参照実施形態 1の (透かし生成用データ:振幅生成)と同様なので説明を省略する。
[0209] (透かし生成用データ生成)
参照実施形態 2の場合、参照実施形態 1の R=44. lk、 f= 10となること以外は、 参照実施形態 1の (透力 生成用データ生成)と同様なので説明を省略する。
[0210] (重畳オーディオデータ生成)
参照実施形態 1の (重畳オーディオデータ生成)と同様なので説明を省略する。
[0211] (電子透かしの埋め込み過程)
参照実施形態 1の(電子透かしの埋め込み過程)と同様なので説明を省略する。
[0212] (その他)
参照実施形態 1の(その他)と同様なので説明を省略する。
[0213] 〈処理の流れ〉
図 44に示すのは、参照実施形態 2の処理の流れである。
まず、オーディオデータ取得部は、オーディオデータを取得する(ステップ S4401) 次に、透かしデータ取得部は、透かしデータを取得する(ステップ S4402) 次に、透かし生成用データ生成部は、ステップ S4402で取得した透かしデータに 基づ 、て、ステップ S4401で取得したオーディオデータと重畳して重畳オーディオ データとすることで所定周期ごとの所定総和の結果がステップ S4402で取得した透 力しデータを表す、人間の耳では聞き取れない低周波の透力し生成用データを生成 する(ステップ S4403)。
次に、重畳オーディオデータ生成部は、ステップ S4401で取得したオーディオデ ータと、ステップ S4403で生成した透力し生成用データとを重畳して重畳オーディオ データを生成する(ステップ S4404)。
[0214] く参照実施形態 2の効果の簡単な説明〉
参照実施形態 2に記載の参照発明では、人間の耳では聞き取れない低周波のデ ータを透かし生成用データとして用いて 、るので、透かし生成用データの振幅を大き くしても元のオーディオデータの音質を劣化させることがなく、ロバストな電子透かし を実現できる。
また、透力 生成用データの 1波長で 1ビットが符号ィ匕されるので、透かし生成用デ ータが長波長であるにもかかわらず、効率よく多くの透力 データを埋め込むことが できる。
[0215] くく参照実施形態 3》
く参照実施形態 3の概念〉
参照実施形態 3に記載の参照発明は、透力 生成用データを表す関数として振幅 の変化する境界における値と傾きが常にゼロとなるものを用いる参照発明 1又は 2に 記載のオーディオ電子透力 装置に関する。
[0216] く構成要件の明示〉
図 45に示すように、参照実施形態 3のオーディオ電子透かし装置 4500は、オーデ ィォデータ取得部 4501と、透かしデータ取得部 4502と、透かし生成用データ生成 部 4503と、重畳オーディオデータ生成部 4504と、力もなる。
[0217] く構成の説明〉
く基本機能ブロック図の導入〉
[0218] (構成要件:オーディオデータ取得部) 参照実施形態 1又は 2の (構成要件:オーディオデータ取得部)と同様なので説明 を省略する。
[0219] (構成要件:透かしデータ取得部)
参照実施形態 1又は 2の (構成要件:透カゝしデータ取得部)と同様なので説明を省 略する。
[0220] (構成要件:透かし生成用データ生成部)
透かし生成用データ生成部は、それによつて生成される透力 生成データの表す 関数の振幅の変化する境界における値と傾きが常にゼロである透力 生成用データ を生成する。
それ以外は、参照実施形態 1又は 2の (構成要件:透かし生成用データ生成部)と 同様なので説明を省略する。
[0221] (構成要件:重畳オーディオデータ生成部)
参照実施形態 1又は 2の (構成要件:重畳オーディオデータ生成部)と同様なので 説明を省略する。
[0222] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 3について、具体的な例を使って詳細に説明す る。
[0223] (オーディオデータ取得)
参照実施形態 1又は 2の (オーディオデータ取得)と同様なので説明を省略する。
[0224] (透かしデータ取得)
参照実施形態 1又は 2の (透力 データ取得)と同様なので説明を省略する。
[0225] (透かし生成用データ:基関数生成)
参照実施形態 3の場合、透力 生成用データの表す関数として、振幅の変化する 境界における値と傾きが常にゼロになるものを用いる。そのためには、透かし生成用 データの基関数 u (x)として上記の境界点で値と傾きがゼロになるものを用いればよ い。すなわち、
u (x ) =u (x ) =0
ここで、 xは上記振幅の変化する n番目の境界点である。 図 46に示すのは、 X =η· π (ηは整数)の場合である。
それ以外は、参照実施形態 1又は 2の (透力 生成用データ:基関数生成)と同様 なので説明を省略する。
[0226] (透力し生成用データ:総和算出)
参照実施形態 3の場合、基関数 u )が (透かし生成用データ:基関数生成)の条 件を満足すること以外は、参照実施形態 1又は 2の (透力 生成用データ:総和算出) と同様なので説明を省略する。
[0227] (透かし生成用データ:振幅生成)
参照実施形態 3の場合、基関数 u )が (透かし生成用データ:基関数生成)の条 件を満足すること以外は、参照実施形態 1又は 2の (透力 生成用データ:振幅生成) と同様なので説明を省略する。
[0228] (透かし生成用データ生成)
参照実施形態 1又は 2の (透力 生成用データ生成)と同様なので説明を省略する
[0229] (重畳オーディオデータ生成)
参照実施形態 3の場合、基関数 u )が (透かし生成用データ:基関数生成)の条 件を満足すること以外は、参照実施形態 1又は 2の (重畳オーディオデータ生成)と同 様なので説明を省略する。
[0230] (電子透かしの埋め込み過程)
参照実施形態 1又は 2の(電子透力しの埋め込み過程)と同様なので説明を省略す る。
[0231] (その他)
参照実施形態 1の(その他)と同様なので説明を省略する。
[0232] 〈処理の流れ〉
図 47に示すのは、参照実施形態 3の処理の流れである。
まず、オーディオデータ取得部は、オーディオデータを取得する(ステップ S4701) 次に、透かしデータ取得部は、透かしデータを取得する(ステップ S4702) 次に、透かし生成用データ生成部は、ステップ S4702で取得した透かしデータに 基づ 、て、ステップ S4701で取得したオーディオデータと重畳して重畳オーディオ データとすることで所定周期ごとの所定総和の結果がステップ S4702で取得した透 力 データを表し、透力 生成用データの表す関数の振幅の変化する境界における 値と傾きが常にゼロである透力し生成用データを生成する (ステップ S4703)。 次に、重畳オーディオデータ生成部は、ステップ S4701で取得したオーディオデ ータと、ステップ S4703で生成した透力し生成用データとを重畳して重畳オーディオ データを生成する(ステップ S4704)。
[0233] く参照実施形態 3の効果の簡単な説明〉
参照実施形態 3に記載の参照発明では、透力 生成用データの表す関数の振幅 の変化する境界における値と傾きが常にゼロなので、振幅が変動しても滑らかに繋 がり、高周波ノイズの発生を防止することができる。
また、透力 生成用データの 1波長で 1ビットが符号ィ匕されるので、透かし生成用デ ータが長波長であるにもかかわらず、効率よく多くの透力 データを埋め込むことが できる。
[0234] く〈参照実施形態 4》
く参照実施形態 4の概念〉
参照実施形態 4に記載の参照発明は、重畳オーディオデータの所定周期ごとの所 定総和の結果が透かしデータを表すように、透かし生成用データの振幅を、半周期 ごとに適応的に変化させる参照発明 1から 3のいずれか一に記載のオーディオ電子 透力 装置に関する。
[0235] く構成要件の明示〉
図 48に示すように、参照実施形態 4のオーディオ電子透かし装置 4800は、オーデ ィォデータ取得部 4801と、透かしデータ取得部 4802と、透かし生成用データ生成 部 4803と、重畳オーディオデータ生成部 4804と、カゝらなる。
[0236] く構成の説明〉
く基本機能ブロック図の導入〉
(構成要件:オーディオデータ取得部) 参照実施形態 1から 3のいずれか一の (構成要件:オーディオデータ取得部)と同様 なので説明を省略する。
[0237] (構成要件:透かしデータ取得部)
参照実施形態 1から 3のいずれか一の (構成要件:透かしデータ取得部)と同様なの で説明を省略する。
[0238] (構成要件:透かし生成用データ生成部)
透かし生成用データ生成部は、所定周期ごとの所定総和の結果が透力 データ取 得部で取得した透力 データを表すように、透かし生成用データの振幅を、半周期ご とに適応的に変化させる。
それ以外は、参照実施形態 1から 3のいずれか一の (構成要件:透力 生成用デー タ生成部)と同様なので説明を省略する。
[0239] (構成要件:重畳オーディオデータ生成部)
参照実施形態 1から 3の ヽずれか一の (構成要件:重畳オーディオデータ生成部)と 同様なので説明を省略する。
[0240] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 4について、具体的な例を使って詳細に説明す る。
[0241] (オーディオデータ取得)
参照実施形態 1から 3のいずれか一の (オーディオデータ取得)と同様なので説明 を省略する。
[0242] (透かしデータ取得)
参照実施形態 1から 3のいずれか一の (透かしデータ取得)と同様なので説明を省 略する。
[0243] (透かし生成用データ:基関数生成)
次に、透かし生成用データの生成方法について述べる。透かし生成用データは、 基になる関数 (以下基関数と呼ぶ)に振幅 aを掛けた関数で表される。一例としてつぎ のような関数 u (t)を考える。
u (t) = sin3 (2 -f -t/R) = (3/4) -sin (2 π -f-t/R)
— (1/4) ·5ίη(3·2π -f-t/R)
図 49に示すように、この関数は半周期ごとに関数値と傾きがゼロになる。従って、そ の半周期ごとに現れる関数値と傾きがゼロになる点の前後で振幅を変化させると滑ら かにつながり、高周波ノイズの発生を防止することができる。なお、この関数には周波 数が fZRの波の他に 3fZRの波も含まれる力 後者の振幅は前者の振幅の 1Z3な のでほとんど聞き取れな!/、。
[0244] この関数 u(t)の値は透かしデータの埋め込み時に頻繁に使われるので、あらかじ め半周期分を計算し、その関数値のリストをメモリーに格納しておく。
[0245] 一例として、
u(O), u(l), ···, u(R/f/2-l),
をメモリーに格納しておく。後半の半周期における値
u(R/f/2), u(R/f/2+l), ···, u(R/f-l)
は、前半の半周期における値の符号を反転させたものである。
[0246] また、図 50に示すように、第 i周期のサンプル点 tにおける値はつぎの関係式を用い て上記の関数値のリストから求めることができる。
u(t)=u (t-(i-l) -R/f)
t=(i-l)-R/f, (i-l)-R/f+l, ···,
(i-l)-R+(R/f/2-l), (i-1) -R+R/f/2, ···,
i-R/f-1
[0247] (透力し生成用データ:総和算出)
透力し生成用データの入った重畳オーディオデータのサンプル点 tにおけるサンプ ル値を w(t)とすると、次の式で表すことができる。
w(t) =v(t) +a(t) -u(t)
この w(t)を、透力し生成用データの第调期の半周期分にわたって足し上げる。この とき、 a(t)はこの半周期の中では一定の値をとるようにする。この一定値を aとすると、 ∑w(t) =∑v(t)+a-∑u(t)
となる。ここで、∑は透力 生成用データの第调期の半周期分の総和を表す。また、 以降の説明で
第 i周期の前半の半周期:
V =∑v(t)
li
U =∑u(t)
1
a =a
li i
第 i周期の後半の半周期:
V =∑v(t)
2i
U =∑u(t)
2
a =a
2i i
とおく。 V、 Vは一般に周期 iごとに変化するが、 U、 Uは一定の定数である。(上記
li 2i 1 2
の例では u とな
1 =-u る。 )
2
この定数 u、 uもメモリーにあら力じめ格納しておく。
1 2
[0248] (透かし生成用データ:振幅生成)
次に、この透かし生成用データの半周期ごとの重畳されたオーディオデータの総和 の絶対値が一定で符号が透力しデータのビット値を表すように a、aの値を決める。
li 2i
このとき、透力し生成用データの後半周期の重畳されたオーディオデータの総和が 前半周期の総和と符号が反対になるようにする。ビット値を b (0または 1)とし、透かし 生成用データの半周期ごとの重畳オーディオデータの総和の絶対値を Sとすると、 第调期の前半周期:∑w(t) = (—l)b' S=V +a
li li ·υ 1
第调期の後半周期:∑w(t) =— (— l)b' S=V +a
2i 2i ·υ 2
したがって、
第 i周期の前半周期: a = { (-l)b- S-V }/U
li li 1
第 i周期の後半周期: a = {-(-l)b- S-V }/U
2i 2i 2
となる。なお、この例では 1周期で 1ビットを表しているので、一般に bは iごとに異なる
[0249] (透かし生成用データ生成)
透力 生成用データを表す関数は、透力 生成用データの基関数 u (t)に振幅 a、
li aを力けたもの、すなわち、 第 i周期の前半周期:{{(—l)b'S— V }/U }-u(t)
li 1
第 i周期の後半周期:{{—(—l)b'S—V }/U }-u(t)
2i 2
となる。
[0250] 図 51に示すのは、透かしデータの文字「C」に対応する生成用データの波形パター ンの概略図である。なお、この図では透力し生成用データの符号はビット値に対応し ているが、一般には V、 Vの大きさによって反転することもあり得る。ビット値に対応
li 2i
しているのは透力し生成用データの符号ではなぐ重畳されたオーディオデータの総 和の符号である。
[0251] (重畳オーディオデータ生成)
以上より、透力し生成用データと合成されたオーディオデータ w(t)は次式のように なる。
第 i周期の前半周期:
w(t)=v(t) + {{(-l)b-S-V }/U }-u(t)
li 1
第 i周期の後半周期:
w(t)=v(t) + {{-(-l)b-S-V }/U }-u(t)
2i 2
[0252] (その他)
参照実施形態 1の(その他)と同様なので説明を省略する。
[0253] 〈処理の流れ〉
図 52に示すのは、参照実施形態 4の処理の流れである。
まず、オーディオデータ取得部は、オーディオデータを取得する(ステップ S5201) 次に、透かしデータ取得部は、透かしデータを取得する(ステップ S5202)。
次に、透かし生成用データ生成部は、重畳オーディオデータの所定周期ごとの所 定総和の結果がステップ S5202で取得した透かしデータを表すように、透かし生成 用データの振幅を、半周期ごとに適応的に変化させる (ステップ S5203)。
次に、重畳オーディオデータ生成部は、ステップ S5201で取得したオーディオデ ータと、ステップ S5203で生成した透力し生成用データとを重畳して重畳オーディオ データを生成する(ステップ S5204)。 [0254] く参照実施形態 4の効果の簡単な説明〉
参照実施形態 4に記載の参照発明では、重畳オーディオデータの所定周期ごとの 総和の符号が毎回反転するので DCオフセットが残るのを防止できる。
[0255] くく参照実施形態 5》
[0256] く参照実施形態 5の概念〉
参照実施形態 5に記載の参照発明は、重畳オーディオデータの所定周期ごとの所 定総和の結果力 透力し生成用データの半周期ごとの前記重畳オーディオデータの 総和の符号である参照発明 1から 4のいずれか一に記載のオーディオ電子透力し装 置に関する。
[0257] く構成要件の明示〉
図 53に示すように、参照実施形態 5のオーディオ電子透かし装置 5300は、オーデ ィォデータ取得部 5301と、透力しデータ取得部 5302と、透かし生成用データ生成 部 5303と、重畳オーディオデータ生成部 5304と、カゝらなる。
[0258] く構成の説明〉
く基本機能ブロック図の導入〉
(構成要件:オーディオデータ取得部)
参照実施形態 4の (構成要件:オーディオデータ取得部)と同様なので説明を省略 する。
[0259] (構成要件:透かしデータ取得部)
参照実施形態 4の (構成要件:透力 データ取得部)と同様なので説明を省略する
[0260] (構成要件:透かし生成用データ生成部)
透かし生成用データ生成部は、重畳オーディオデータの所定周期ごとの所定総和 の結果が透かしデータ取得部で取得した透力しデータを表すように、透かし生成用 データを生成する。
ここで「所定周期ごとの所定総和の結果」とは、透かし生成用データの半周期ごとの 重畳オーディオデータの総和の符号のことを 、う。
それ以外は、参照実施形態 4の (構成要件:透力 生成用データ生成部)と同様な ので説明を省略する。
[0261] (構成要件:重畳オーディオデータ生成部)
参照実施形態 4の (構成要件:重畳オーディオデータ生成部)と同様なので説明を 省略する。
[0262] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 5について、具体的な例を使って詳細に説明す る。
[0263] (オーディオデータ取得)
参照実施形態 4の (オーディオデータ取得)と同様なので説明を省略する。
[0264] (透かしデータ取得)
参照実施形態 4の (透力 データ取得)と同様なので説明を省略する。
[0265] (透かし生成用データ:基関数生成)
参照実施形態 4の (透かし生成用データ:基関数生成)と同様なので説明を省略す る。
[0266] (透力し生成用データ:総和算出)
参照実施形態 4の (透かし生成用データ:総和算出)と同様なので説明を省略する
[0267] (透かし生成用データ:振幅生成)
参照実施形態 4の (透かし生成用データ:振幅生成)の説明にお 、て、 第 i周期の前半周期:∑w(t) = (一 l)b'S
第调期の後半周期:∑w(t) =— (—l)b'S
となっているので、透力 生成用データの半周期おきに (前半周期ごとあるいは後半 周期ごとに)重畳オーディオデータの総和を求めれば、その符号で透力しデータの 各ビットの OZ1を判定できる。したがって、 参照実施形態 4に記載されているのと同 様な方法で振幅を生成すればょ 、。
[0268] (透かし生成用データ生成)
参照実施形態 4の (透力 生成用データ生成)と同様なので説明を省略する。
[0269] (重畳オーディオデータ生成) 参照実施形態 4の (重畳オーディオデータ生成)と同様なので説明を省略する。
[0270] (電子透かしの埋め込み過程)
次に、オーディオデータに電子透力 を埋め込む過程を、図 54を参照しながら説 明する。まず、透力し生成用データの半周期分のオーディオデータが A01に入り、そ こで上式の総和が計算されて A03に出力される。一方、透かしデータは A02に入り、 そこでビット値に応じて透力し生成用データの半周期ごとに上式の (一 l)bまたは一 (― l)bの符号が A03に出力される。つまり、前半の半周期ではビット値力 ^のときは「正」 、 1のときは「負」が出力され、後半の半周期ではビット値力^のときは「負」、 1のときは 「正」が出力される。 A03ではこれら 2つの値を使って上式に従って透かし生成用デ ータを生成し、その透かし生成用データのデータを A04に出力する。 A04ではこの 透かし生成用データのデータと元のオーディオデータとを重畳することにより透かし データの入った重畳オーディオデータを生成し、出力する。
[0271] (その他)
参照実施形態 1の(その他)と同様なので説明を省略する。
[0272] 〈処理の流れ〉
図 55に示すのは、参照実施形態 5の処理の流れである。
まず、オーディオデータ取得部は、オーディオデータを取得する(ステップ S5501) 次に、透かしデータ取得部は、透かしデータを取得する(ステップ S5502)。
次に、透かし生成用データ生成部は、重畳オーディオデータの、透かし生成用デ ータ半周期ごとの総和の符号力 ステップ S5502で取得した透力しデータを表すよう に、透かし生成用データを生成する(ステップ S5503)。
次に、重畳オーディオデータ生成部は、ステップ S5501で取得したオーディオデ ータと、ステップ S5503で生成した透力し生成用データとを重畳して重畳オーディオ データを生成する(ステップ S5504)。
[0273] く参照実施形態 5の効果の簡単な説明〉
参照実施形態 5に記載の参照発明では、透力 生成用データの半周期にわたる重 畳オーディオデータの総和の符号が透かしデータの各ビットの OZ1を表すので、透 力しデータの検出 Z復号が容易である。また、その総和の絶対値が常にゼロと異なる 一定の値を持つのでオーディオデータの変形に対して耐久性のある電子透力しを実 現できる。
[0274] くく参照実施形態 6》
く参照実施形態 6の概念〉
参照実施形態 6に記載の参照発明は、所定周期ごとの所定総和の結果は、透かし 生成用データの前半周期と後半周期の重畳オーディオデータの総和の差分の符号 である参照発明 1から 4のいずれか一に記載のオーディオ電子透力し装置に関する
[0275] く構成要件の明示〉
図 56に示すように、参照実施形態 6のオーディオ電子透かし装置 5600は、オーデ ィォデータ取得部 5601と、透かしデータ取得部 5602と、透かし生成用データ生成 部 5603と、重畳オーディオデータ生成部 5604と、カゝらなる。
[0276] く構成の説明〉
く基本機能ブロック図の導入〉
(構成要件:オーディオデータ取得部)
[0277] 参照実施形態 4の (構成要件:オーディオデータ取得部)と同様なので説明を省略 する。
[0278] (構成要件:透かしデータ取得部)
参照実施形態 4の (構成要件:透力 データ取得部)と同様なので説明を省略する
[0279] (構成要件:透かし生成用データ生成部)
透かし生成用データ生成部は、重畳オーディオデータの所定周期ごとの所定総和 の結果が透かしデータ取得部で取得した透力しデータを表すように、透かし生成用 データを、半周期ごとに振幅を適応的に変化させる。
ここで「所定周期ごとの所定総和の結果」とは、透かし生成用データの前半周期と 後半周期の重畳オーディオデータの総和の差の符号のことをいう。
それ以外は、参照実施形態 4の (構成要件:透力 生成用データ生成部)と同様な ので説明を省略する。
[0280] (構成要件:重畳オーディオデータ生成部)
参照実施形態 4の (構成要件:重畳オーディオデータ生成部)と同様なので説明を 省略する。
[0281] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 6について、具体的な例を使って詳細に説明す る。
[0282] (オーディオデータ取得)
参照実施形態 4の (オーディオデータ取得)と同様なので説明を省略する。
[0283] (透かしデータ取得)
参照実施形態 4の (透力 データ取得)と同様なので説明を省略する。
[0284] (透かし生成用データ:基関数生成)
参照実施形態 4の (透かし生成用データ:基関数生成)と同様なので説明を省略す る。
[0285] (透力し生成用データ:総和算出)
参照実施形態 4の (透かし生成用データ:総和算出)と同様なので説明を省略する
[0286] (透かし生成用データ:振幅生成)
参照実施形態 4の (透かし生成用データ:振幅生成)の説明にお 、て、 第 i周期の前半周期:∑w(t) = (一 l)b'S
第调期の後半周期:∑w(t) =— (—l)b'S
となっているので、透かし生成用データの前半の半周期の時間にわたる重畳オーデ ィォデータの総和と後半の半周期の時間にわたる総和の差は
(一 l)b' 2S
となり、この符号で透力しデータの各ビットの OZ1を判定できる。したがって、 参照実 施形態 4に記載されて 、るのと同様な方法で振幅を生成すれよ!/、。
[0287] (透かし生成用データ生成)
参照実施形態 4の (透力 生成用データ生成)と同様なので説明を省略する。 [0288] (重畳オーディオデータ生成)
参照実施形態 4の (重畳オーディオデータ生成)と同様なので説明を省略する。
[0289] (電子透かしの埋め込み過程)
参照実施形態 5の(電子透かしの埋め込み過程)と同様なので説明を省略する。
[0290] (その他)
参照実施形態 1の(その他)と同様なので説明を省略する。
[0291] 〈処理の流れ〉
図 57に示すのは、参照実施形態 6の処理の流れである。
まず、オーディオデータ取得部は、オーディオデータを取得する(ステップ S5701) 次に、透かしデータ取得部は、透かしデータを取得する(ステップ S5702)。
次に、透かし生成用データ生成部は、重畳オーディオデータの、透かし生成用デ ータ前半周期分と後半周期分の総和の差分の符号が、ステップ S5702で取得した 透かしデータを表すように、透かし生成用データを生成する (ステップ S5703)。 次に、重畳オーディオデータ生成部は、ステップ S5701で取得したオーディオデ ータと、ステップ S5703で生成した透力し生成用データとを重畳して重畳オーディオ データを生成する(ステップ S5704)。
[0292] く参照実施形態 6の効果の簡単な説明〉
参照実施形態 6に記載の参照発明では、透力しの入った重畳オーディオデータの 所定の前半周期分と後半周期分の総和の差の符号で透力しデータの各ビットの OZ 1を表現しているので、 DCオフセットがかかっても判定に影響しないロバストな電子 透力 を実現できる。
[0293] くく参照実施形態 7》
く参照実施形態 7の概念〉
参照実施形態 7に記載の参照発明は、取得した重畳オーディオデータの、透かし 生成用データの所定周期分ごとの所定総和の結果を算出し、その結果に基づいて 透かしデータを復号するオーディオ電子透かし復号装置に関する。
[0294] く構成の説明〉 く構成要件の明示〉
図 58に示すように、参照実施形態 7のオーディオ電子透かし復号装置 5800は、重 畳オーディオデータ取得部 5801と、総和算出部 5802と、透力 データ復号部 580 3と、力 なる。
[0295] く構成の説明〉
く基本機能ブロック図の導入〉
(構成要件:重畳オーディオデータ取得部)
重畳オーディオデータ取得部は、重畳オーディオデータを取得する。
[0296] (構成要件:総和算出部)
総和算出部は、重畳オーディオデータ取得部で取得した重畳オーディオデータの 所定周期ごとの所定総和の結果を算出する。
ここで「所定周期ごとの所定総和の結果」とは、重畳オーディオデータの、透力し生 成用データの所定周期ごとの所定総和の結果をいう。「所定周期」には、半周期、 1 周期、 1. 5周期、 2周期、 2. 5周期、 3周期、 · · ·などが該当する。「所定総和」には、 半周期の総和、 1周期の総和などが該当する。「所定総和の結果」には、半周期、 1 周期にわたる総和、総和の符号、および総和の差の符号などが該当する。
[0297] (構成要件:透かしデータ復号部)
透力しデータ復号部は、総和算出部で算出された所定総和の結果に基づいて透 力 データを復号する。
[0298] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 7について、具体的な例を使って詳細に説明す る。
[0299] (重畳オーディオデータ取得)
参照実施形態 7の重畳オーディオデータ取得は、一例として、参照実施形態 1で生 成された重畳オーディオデータ w (t)を取得するものとすると、
w (t) =v(t) + { (-l)b- S-V } -u (t) /U
となる。記号の意味は参照実施形態 1と同様であるとする(以下同じ)。
[0300] (総和算出) 参照実施形態 1で説明したように、第调期の 1周期分にわたる重畳オーディオデー タの総和は、
∑w (t) = (-l)b- S
= +S (b = 0)
=-s (b=l)
となる。
[0301] (透かしデータ復号)
上式のように透力しデータの各ビット値の違 、は重畳オーディオデータの総和の符 号の違いとなって現れているので、 1周期分の総和を求め、その符号で透かしデータ の各ビットの οζιを判定し、復号することが出来る。
[0302] (透力しデータ検出過程)
この透力しデータ検出過程をブロック図で表したものを図 59に示す。図中で透かし データの入った重畳オーディオデータの各サンプル値が透力し生成用データ 1周期 分ずつ B01に入り、そこで 1周期分の総和が計算され、その符号が B02に出力され る。 B02ではその符号に応じて 0または 1が選択され、透かしデータとして出力される
[0303] (その他)
参照実施形態 1の(その他)と同様なので説明を省略する。
[0304] 〈処理の流れ〉
図 60に示すのは、参照実施形態 7の処理の流れである。
まず、重畳オーディオデータ取得部は、透かし生成用データとオーディオデータの 重畳オーディオデータを取得する(ステップ S6001)。
次に、総和算出部は、ステップ S6001で取得した重畳オーディオデータの、透かし 生成用データの所定周期分ごとの所定総和の結果を算出する (ステップ S6002)。 次に、透かしデータ復号部は、ステップ S6002で算出された所定総和の結果に基 づ 、て透かしデータのビット値を判定し、復号する(ステップ S6003)。
[0305] く参照実施形態 7の効果の簡単な説明〉
参照実施形態 7に記載の参照発明では、透かし生成用データの所定周期分の重 畳オーディオデータの所定総和の結果で透力しデータの各ビットの oZiを判定でき るため、透かしデータの検出 Z復号が容易である。また、上記所定総和の結果はォ 一ディォデータの変形に対して影響を受けにくいのでロバストな電子透力しを実現で きる。
[0306] く〈参照実施形態 8》
く参照実施形態 8の概念〉
参照実施形態 8に記載の参照発明は、透かし生成用データの半周期の時間にわ たって重畳オーディオデータを総和した値の符号に基づいて透力しデータを復号す る参照発明 7に記載のオーディオ電子透かし復号装置に関する。
[0307] く構成の説明〉
く構成要件の明示〉
図 61に示すように、参照実施形態 8のオーディオ電子透かし復号装置 6100は、重 畳オーディオデータ取得部 6101と、総和算出部 6102と、透力 データ復号部 610 3と、力 なる。
[0308] く構成の説明〉
く基本機能ブロック図の導入〉
(構成要件:重畳オーディオデータ取得部)
重畳オーディオデータ取得部は、重畳オーディオデータを取得する。
[0309] (構成要件:総和算出部)
総和算出部は、透力し生成用データの半周期の時間にわたって総和した値の符号 を算出する。
[0310] (構成要件:透力 データ復号部)
透力しデータ復号部は、総和算出部で算出された総和の符号に基づいて透力しデ 一タを復号する。
[0311] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 8について、具体的な例を使って詳細に説明す る。
[0312] (重畳オーディオデータ取得) 参照実施形態 8の重畳オーディオデータ取得は、一例として、参照実施形態 5で生 成された重畳オーディオデータ w (t)を取得するものとすると、
第 i周期の前半周期:
w(t)=v(t) + {{(-l)b-S-V }/U }-u(t)
li 1
第 i周期の後半周期:
w(t)=v(t) + {{-(-l)b-S-V }/U }-u(t)
2i 2
となる。記号の意味は参照実施形態 5と同様であるとする(以下同じ)。
[0313] (総和算出)
参照実施形態 5で説明したように、第 i周期の前半周期、後半周期にわたる重畳ォ 一ディォデータの総和は、
第 i周期の前半周期:∑w(t)=V +a
li li ·υ 1
=+S (b = 0)
=-s (b=l)
第 i周期の後半周期:∑w(t)=V +a
2i 2i ·υ 2
=-S (b = 0)
=+S (b = l)
となる。
[0314] (透かしデータ復号)
上式のように透力しデータの各ビット値の違 、は重畳オーディオデータの総和の符 号の違いとなって現れているので、前半周期ごと、あるいは後半周期ごとに総和を求 め、その符号で透力しデータの各ビットの 0/1を判定し、復号することができる。
[0315] (透力しデータ検出過程)
この透力しデータ検出過程をブロック図で表したものを図 62に示す。図中で透かし データの入った重畳オーディオデータの各サンプル値が透力し生成用データ半周 期分ずつ (前半周期ごと、あるいは後半周期ごとに) B01に入り、そこで半周期分の 総和が計算され、その符号力 ¾02に出力される。 B02ではその符号に応じて 0または 1が選択され、透力 データとして出力される。
[0316] (その他) 参照実施形態 1の(その他)と同様なので説明を省略する。
[0317] 〈処理の流れ〉
図 63に示すのは、参照実施形態 8の処理の流れである。
まず、重畳オーディオデータ取得部は、透かし生成用データとオーディオデータの 重畳オーディオデータを取得する(ステップ S6301)。
次に、総和算出部は、ステップ S6301で取得した重畳オーディオデータを、透かし 生成用データの半周期の時間にわたって (前半周期ごとあるいは後半周期ごとに)総 和した値の符号を算出する(ステップ S6302)。
次に、透かしデータ復号部は、ステップ S6302で算出された総和の符号力もビット 値を判定し、復号する (ステップ S6303)。
[0318] く参照実施形態 8の効果の簡単な説明〉
参照実施形態 8に記載の参照発明では、透かし生成用データの半周期の時間に わたる重畳オーディオデータの総和の符号のみで透かしデータの各ビットの OZ1を 判定できるため、透力 データの検出 Z復号が容易である。また、上記所定総和の 絶対値は常にゼロと異なる一定の値をとるので、オーディオデータの変形に対して耐 久性のある頑丈電子透力 を実現できる。
[0319] くく参照実施形態 9》
く参照実施形態 9の概念〉
参照実施形態 9に記載の参照発明は、重畳オーディオデータの、透かし生成用デ ータ前半周期の時間にわたる総和と後半周期の時間にわたる総和の差の符号に基 づいて透かしデータを復号する参照発明 7に記載のオーディオ電子透かし復号装置 に関する。
[0320] く構成の説明〉
く構成要件の明示〉
図 64に示すように、参照実施形態 9のオーディオ電子透かし復号装置 6400は、重 畳オーディオデータ取得部 6401と、総和算出部 6402と、透力 データ復号部 640 3と、力 なる。
[0321] く構成の説明〉 く基本機能ブロック図の導入〉
(構成要件:重畳オーディオデータ取得部)
重畳オーディオデータ取得部は、重畳オーディオデータを取得する。
[0322] (構成要件:総和算出部)
総和算出部は、重畳オーディオデータ取得部で取得した重畳オーディオデータの 、透かし生成用データ前半周期の時間にわたる総和と後半周期の時間にわたる総 和の差の符号を算出する。
[0323] (構成要件:透かしデータ復号部)
透かしデータ復号部は、上記総和算出部で算出された総和の差の符号に基づい て透力 データを復号する。
[0324] く具体例に基づく説明〉
以下、本参照発明の参照実施形態 9について、具体的な例を使って詳細に説明す る。
[0325] (重畳オーディオデータ取得)
参照実施形態 9の重畳オーディオデータ取得は、一例として、参照実施形態 6で生 成された重畳オーディオデータ w (t)を取得するものとすると、
第 i周期の前半周期:
w(t)=v(t) + {{(-l)b-S-V }/U }-u(t)
li 1
第 i周期の後半周期:
w(t)=v(t) + {{-(-l)b-S-V }/U }-u(t)
2i 2
となる。記号の意味は参照実施形態 6と同様であるとする(以下同じ)。
[0326] (総和算出)
[0327] 参照実施形態 6で説明したように、第 i周期の前半周期、後半周期にわたる重畳ォ 一ディォデータの総和は、
第 i周期の前半周期:∑w(t) = +S (b = 0)
=-S (b = l)
第 i周期の後半周期:∑w(t)=—S (b = 0)
=+S (b = l) となる。
[0328] (透かしデータ復号)
参照実施形態 8で説明したように、透力しデータの各ビット値の違 、は上式の符号 の違 ヽとなって現れて!/、る。
[0329] 前半周期分の総和から後半周期分の総和を引くと
+ 2S (b = 0)
-2S (b = l)
となるので、この符号でもビット値を判定できる。このようにすると DCオフセットがキヤ ンセルされる。参照実施形態 9ではこのようにして DCオフセットの影響を受けな 、よう にしている。
[0330] (透力しデータ検出過程)
この透力しデータ検出過程をブロック図で表したものを図 65に示す。図中で透かし データの入った重畳オーディオデータが透力し生成用データ半周期分ずつ B01に 入り、そこで前半周期の総和と後半周期の総和の差分が計算され、その符号が B02 に出力される。 B02ではその符号に応じて 0または 1が選択され、透力しデータとして 出力される。
[0331] (その他)
参照実施形態 1の(その他)と同様なので説明を省略する。
[0332] 〈処理の流れ〉
図 66に示すのは、参照実施形態 9の処理の流れである。
まず、重畳オーディオデータ取得部は、透かし生成用データとオーディオデータの 重畳オーディオデータを取得する(ステップ S6601)。
次に、総和算出部は、ステップ S6601で取得した重畳オーディオデータの、透かし 生成用データ前半周期の時間にわたる総和と後半周期の時間にわたる総和の差の 符号を算出する (ステップ S6602)。
次に、透かしデータ復号部は、ステップ S6602で算出された値の符号が透かしデ ータのビット値を表すように透かしデータを復号する(ステップ S6603)。
[0333] く参照実施形態 9の効果の簡単な説明〉 参照実施形態 9に記載の参照発明では、重畳オーディオデータの、透かし生成用 データ前半周期の時間にわたる総和と後半周期の時間にわたる総和の差の符号で 透かしデータの各ビットの 0/1を判定しているため、 DCオフセットがかかってもキヤ ンセルされ、歪に対してより耐久性のある電子透力しを実現できる。
(参照産業上の利用可能性)
本参照発明によると、人間の耳では聞き取れない低周波数の音を透力 生成用デ ータとして用いて 、るので、元のオーディオデータの音質を劣化させることなく透かし 生成用データの振幅を任意に大きくすることができ、透力 強度を上げることができる
[0334] また、透力し生成用データの 1波長で 1ビットが符号ィ匕されるので、透かし生成用デ ータが長波長であるにもかかわらず、効率よく多くの透力 データを埋め込むことが できる。
[0335] また、透かし生成用データそのものではなぐそれと元のオーディオデータと重畳し て出来る重畳オーディオデータの所定周期ごとの所定総和の結果の符号が透かし データのビット値に対応しているので、容易に透力しデータを検出 Z復号することが できる。
[0336] また、この透かしデータの埋め込み過程は可逆であり、透かしデータの埋め込み時 に使用された透力 生成用データの振幅の時系列データがあれば完全に元に戻す ことができる。さらに、ある人が透力しデータを埋め込んだあと、別の人が別の透かし データを埋め込んでも、それぞれの過程で使用された透力し生成用データの振幅の 時系列データがあれば、それぞれの透かしデータを取り出し、且つ、元のオーディオ データに戻すことができる。このように、何重にでも埋め込むことができるので、例え ば著作権者が著作権情報を埋め込んだ後、その著作権を保護した状態でコンテンツ 配信業者が不正な二次配信を防止する目的で独自の IDを埋め込むといったようなこ とも可能となる。
[0337] また、逆にその半周期ごとの透かしデータの振幅の時系列データがないと元のォ 一ディォデータを復元することは原理的に不可能なので、最初に透力しデータを埋 め込んだときの上記時系列データをもっている者以外は元のオーディオデータを復 元できず、このことを利用して改ざんに対し抑止力のあるシステムを構築することも可 能である。
産業上の利用可能性
[0338] 本件発明は、取得したアナログ信号の属性情報に応じて、透かし情報を埋め込む ことのできる電子透力し装置及び取得した透かし入りアナログ信号力も透力し情報を 取得する電子透かし解読装置に利用可能である。
図面の簡単な説明
[0339] [図 1]実施形態 1の機能ブロック図
[図 2]実施形態 1の処理の流れ図
[図 3]実施形態 1の具体的機能ブロック図
[図 4]実施形態 1の具体的処理の流れ図
[図 5]実施形態 2の機能ブロック図
[図 6]実施形態 2の処理の流れ図
[図 7]実施形態 2の具体的機能ブロック図
[図 8]実施形態 2の具体的処理の流れ図
[図 9]実施形態 3の機能ブロック図
[図 10]実施形態 3の処理の流れ図
[図 11]実施形態 3の具体的機能ブロック図
[図 12]実施形態 3の具体的処理の流れ図
[図 13]実施形態 4の機能ブロック図
[図 14]実施形態 4の処理の流れ図
[図 15]実施形態 4の具体的機能ブロック図
[図 16]実施形態 4の具体的処理その 1の流れ図
[図 17]実施形態 4の具体的処理その 2の流れ図
[図 18]実施形態 5の機能ブロック図
[図 19]実施形態 5の処理の流れ図
[図 20]実施形態 6の機能ブロック図
[図 21]実施形態 6の処理の流れ図 圆 22]実施形態 7の機能ブロック図
[図 23]実施形態 7の処理の流れ図
圆 24]実施形態 7の具体的機能ブロック図
[図 25]実施形態 7の具体的処理の流れ図
圆 26]実施形態 8の機能ブロック図
[図 27]実施形態 8の処理の流れ図
圆 28]実施形態 8の具体的機能ブロック図
[図 29]実施形態 8の具体的処理の流れ図
圆 30]実施形態 9の機能ブロック図
[図 31]実施形態 9の処理の流れ図
圆 32]実施形態 9の具体的機能ブロック図
[図 33]実施形態 9の具体的処理その 1の流れ図
[図 34]実施形態 9の具体的処理その 2の流れ図
[図 35]実施形態 10の処理の流れ図
[図 36]参照実施形態 1の機能ブロック図
圆 37]参照実施形態 1で取得されるオーディオデータの波形パターンを示す図 圆 38]参照実施形態 1で生成される透力 生成用データの基関数の波形パターンを 示す図
圆 39]参照実施形態 1で生成される透力 生成用データの基関数のサンプリングパ ターンを示す図
圆 40]参照実施形態 1で生成される文字「C」の透力 生成用データの波形パターン を示す図
圆 41]参照実施形態 1の電子透力 埋め込み過程を示す図
圆 42]参照実施形態 1の処理の流れを示す図
[図 43]参照実施形態 2の機能ブロック図
[図 44]参照実施形態 2の処理の流れを示す図
[図 45]参照実施形態 3の機能ブロック図
圆 46]参照実施形態 3で生成される透力 生成用データの基関数の波形パターンを 示す図
[図 47]参照実施形態 3の処理の流れを示す図
[図 48]参照実施形態 4の機能ブロック図
[図 49]参照実施形態 4で生成される透力 生成用データの基関数の波形パターンを 示す図
[図 50]参照実施形態 4で生成される透力 生成用データの基関数のサンプリングパ ターンを示す図
[図 51]参照実施形態 4で生成される文字「C」の透力 生成用データの波形パターン を示す図
[図 52]参照実施形態 4の処理の流れを示す図
[図 53]参照実施形態 5の機能ブロック図
[図 54]参照実施形態 5の電子透力 埋め込み過程を示す図
[図 55]参照実施形態 5の処理の流れを示す図
[図 56]参照実施形態 6の機能ブロック図
[図 57]参照実施形態 6の処理の流れを示す図
[図 58]参照実施形態 7の機能ブロック図
[図 59]参照実施形態 7の電子透かし検出過程を示す図
[図 60]参照実施形態 7に処理の流れを示す図
[図 61]参照実施形態 8の機能ブロック図
[図 62]参照実施形態 8の電子透かし検出過程を示す図
[図 63]参照実施形態 8の処理の流れを示す図
[図 64]参照実施形態 9の機能ブロック図
[図 65]参照実施形態 9の電子透かし検出過程を示す図
[図 66]参照実施形態 9の処理の流れを示す図
符号の説明
0100 電子透かし装置
0101 アナログ信号取得部
0102 アナログ信号属性情報取得部 0103 透かし情報取得部
0104 透かし入りアナログ信号生成部
0105 透かし入りアナログ信号出力部

Claims

請求の範囲
[1] アナログ信号取得部と、
前記アナログ信号取得部で取得したアナログ信号の属性情報を取得するアナログ 信号属性情報取得部と、
前記アナログ信号属性情報取得部で取得した属性情報に応じて前記アナログ信 号に割り当てるべき透かレ隋報を取得する透かし情報取得部と、
前記透かし情報取得部で取得した透かし情報を前記アナログ信号の再生によって 取得できるように透かし信号を埋め込んだ透かし入りアナログ信号を生成する透かし 入りアナログ信号生成部と、
前記透かし入りアナログ信号生成部にて生成された透かし入りアナログ信号を出力 する透かし入りアナログ信号出力部と、
を有する電子透かし装置。
[2] 前記アナログ信号取得部は、アナログ信号である音声信号を取得する音声信号取 得手段を有する請求項 1に記載の電子透かし装置。
[3] 前記アナログ信号属性情報取得部は、属性情報として音声を発する話者を特定す るための話者特定属性情報を取得する話者特定属性情報取得手段を有する請求項
2に記載の電子透かし装置。
[4] さらに前記透かし入りアナログ信号出力部から出力された透かし入りアナログ信号 をデジタル信号に変換する AZD変換部と、
前記 AZD変換部で透かし入りアナログ信号カゝら変換されたデジタル信号である変 換信号を送信する変換信号送信部と、
を有する請求項 1から 3のいずれか一に記載の電子透力 装置。
[5] 前記変換信号送信部は、公衆通信網に前記変換信号を送信するための公衆回線 出力手段を有する請求項 4に記載の電子透かし装置。
[6] 前記電子透かし装置の前記アナログ信号取得部は、電話の通話音声アナログ信 号を取得する通話音声取得手段を有し、
前記電子透かし装置の前記透かし入りアナログ信号生成部は、間欠的に前記話者 特定属性情報を取得可能な透かし入りアナログ信号である透かし入り通話音声アナ ログ信号を生成し、
前記透かし入りアナログ信号出力部は、電話の通話のための音声信号を出力する 請求項 3に記載の電子透かし装置。
[7] 前記透かし入りアナログ信号出力部から出力された透かし入りアナログ信号を取得 する透かし入りアナログ信号取得部と、
前記透かし入りアナログ信号取得部で取得した透かし入りアナログ信号を再生する ための再生部と、
前記再生部での再生のための信号力 透力し情報を取得する第二透力し情報取 得部と、
を有する電子透かし解読装置。
[8] 前記第二透力し情報取得部で取得した透力し情報に応じて属性情報を取得する 属性情報取得部をさらに有する請求項 7に記載の電子透かし解読装置。
[9] 前記属性情報取得部で取得した属性情報に応じて行うべき処理を特定するための 情報である処理特定情報を保持する処理特定情報保持部と、
前記処理特定情報保持部に保持されている処理特定情報に応じた処理を実行す るための処理実行部と、
をさらに有する請求項 8に記載の電子透かし解読装置。
[10] 前記処理実行部での処理は、前記アナログ信号である音声信号を再生する処理 又は、再生をしな 、処理である請求項 9に記載の電子透かし解読装置。
PCT/JP2004/013417 2004-09-15 2004-09-15 電子透かしシステム WO2006030498A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013417 WO2006030498A1 (ja) 2004-09-15 2004-09-15 電子透かしシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013417 WO2006030498A1 (ja) 2004-09-15 2004-09-15 電子透かしシステム

Publications (1)

Publication Number Publication Date
WO2006030498A1 true WO2006030498A1 (ja) 2006-03-23

Family

ID=36059765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013417 WO2006030498A1 (ja) 2004-09-15 2004-09-15 電子透かしシステム

Country Status (1)

Country Link
WO (1) WO2006030498A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947466B1 (ko) * 2008-03-28 2010-03-17 주식회사 마크애니 워터마크를 생성하여 방사하는 장치 및 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182324A (ja) * 1998-10-08 2000-06-30 Matsushita Electric Ind Co Ltd デ―タ処理装置及びデ―タ記録媒体
JP2000182323A (ja) * 1998-10-08 2000-06-30 Matsushita Electric Ind Co Ltd デ―タ記録再生装置
JP2002160184A (ja) * 2000-11-27 2002-06-04 Nippon Telegr & Teleph Corp <Ntt> ペットロボット装置及びペットロボット装置プログラム記録媒体
JP2002165191A (ja) * 2000-09-01 2002-06-07 Matsushita Electric Ind Co Ltd 再生装置、再生装置特定装置、再生装置特定システム及びそれらの方法並びに記録媒体
JP2002297199A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 合成音声判別方法と装置及び音声合成装置
JP2002544627A (ja) * 1999-05-19 2002-12-24 ディジマーク コーポレイション 音楽とその他のメディアにデジタル透かしを用いる方法およびシステム
JP2003524199A (ja) * 2000-01-26 2003-08-12 ディジマーク コーポレイション 接続された音声及び他のメディアオブジェクト
JP2003295874A (ja) * 2002-09-06 2003-10-15 Matsushita Electric Ind Co Ltd 機器の報知装置
JP2004004594A (ja) * 2003-03-10 2004-01-08 Sharp Corp 情報通信システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182324A (ja) * 1998-10-08 2000-06-30 Matsushita Electric Ind Co Ltd デ―タ処理装置及びデ―タ記録媒体
JP2000182323A (ja) * 1998-10-08 2000-06-30 Matsushita Electric Ind Co Ltd デ―タ記録再生装置
JP2002544627A (ja) * 1999-05-19 2002-12-24 ディジマーク コーポレイション 音楽とその他のメディアにデジタル透かしを用いる方法およびシステム
JP2003524199A (ja) * 2000-01-26 2003-08-12 ディジマーク コーポレイション 接続された音声及び他のメディアオブジェクト
JP2002165191A (ja) * 2000-09-01 2002-06-07 Matsushita Electric Ind Co Ltd 再生装置、再生装置特定装置、再生装置特定システム及びそれらの方法並びに記録媒体
JP2002160184A (ja) * 2000-11-27 2002-06-04 Nippon Telegr & Teleph Corp <Ntt> ペットロボット装置及びペットロボット装置プログラム記録媒体
JP2002297199A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 合成音声判別方法と装置及び音声合成装置
JP2003295874A (ja) * 2002-09-06 2003-10-15 Matsushita Electric Ind Co Ltd 機器の報知装置
JP2004004594A (ja) * 2003-03-10 2004-01-08 Sharp Corp 情報通信システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947466B1 (ko) * 2008-03-28 2010-03-17 주식회사 마크애니 워터마크를 생성하여 방사하는 장치 및 방법

Similar Documents

Publication Publication Date Title
Nematollahi et al. Digital watermarking
Qiao et al. Noninvertible watermarking methods for mpeg-encoded audio
US7289961B2 (en) Data hiding via phase manipulation of audio signals
JP3856652B2 (ja) 隠れデータ埋込み方法および装置
JP2002062888A (ja) 電子音楽加工装置、電子音楽再生装置及び電子音楽配信システム
Chauhan et al. A survey: Digital audio watermarking techniques and applications
JP4582384B2 (ja) 信号処理装置及びその方法並びにプログラム格納媒体
JP3990853B2 (ja) デジタルコピー防止処理装置、その装置により処理されたデジタルデータを記録した再生可能な記録媒体、デジタルコピー防止処理方法、その方法をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体およびその方法により処理されたデジタルデータを記録した再生可能な記録媒体
Wang et al. A new audio watermarking based on modified discrete cosine transform of MPEG/audio layer III
Radhakrishnan et al. Audio content authentication based on psycho-acoustic model
WO2006030498A1 (ja) 電子透かしシステム
WO2004102528A1 (ja) オーディオ電子透かし装置
Xu et al. Content-based digital watermarking for compressed audio
Loytynoja et al. Audio protection with removable watermarking
WO2001043422A1 (fr) Procede de traitement d&#39;information et support enregistre
Acevedo Audio watermarking: properties, techniques and evaluation
van der Veen et al. Watermarking and fingerprinting for electronic music delivery
Hatada et al. Digital watermarking based on process of speech production
Kirbiz et al. Decode-time forensic watermarking of AAC bitstreams
Loytynoja et al. Audio encryption using fragile watermarking
Wang et al. A new content-based digital audio watermarking algorithm for copyright protection
Aboelezz Watermarking audio files with copyrights
Zmudzinski et al. Psycho-acoustic model-based message authentication coding for audio data
Quan et al. Data hiding in MPEG compressed audio using wet paper codes
JP5486839B2 (ja) 小型検出窓を利用した電子透かし埋め込み検出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04822287

Country of ref document: EP

Kind code of ref document: A1