WO2006028085A1 - X-ray ct device, image processing program, and image processing method - Google Patents

X-ray ct device, image processing program, and image processing method Download PDF

Info

Publication number
WO2006028085A1
WO2006028085A1 PCT/JP2005/016326 JP2005016326W WO2006028085A1 WO 2006028085 A1 WO2006028085 A1 WO 2006028085A1 JP 2005016326 W JP2005016326 W JP 2005016326W WO 2006028085 A1 WO2006028085 A1 WO 2006028085A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
image data
subject
projection
Prior art date
Application number
PCT/JP2005/016326
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Okabe
Ken Ueda
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006535759A priority Critical patent/JP5019879B2/en
Publication of WO2006028085A1 publication Critical patent/WO2006028085A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device

Definitions

  • the present invention relates to an X-ray CT apparatus, and more particularly to a technique effective for reconstructing a three-dimensional X-ray CT image from rotational imaging data obtained by a two-dimensional X-ray detector.
  • This application is a patent application claiming priority based on Japanese Patent Application No. 2004-262671 under Japanese Patent Law, and is incorporated by reference in order to enjoy the benefits of Japanese Patent Application No. 2004-262671. It is an application.
  • a conventional cone beam X-ray CT apparatus includes an X-ray source that irradiates a subject with X-radiating X-rays, an imaging unit that is disposed opposite to the X-ray source and that transmits a transmitted X-ray intensity image transmitted through the subject;
  • An imaging system comprising: a rotating means for rotating the imaging system around the subject; a reconstructing means for reconstructing a reconstructed image of the subject from the transmitted X-ray intensity image; and a transmission X-ray through the rotation center axis of the imaging system
  • Rotation center axis projection position setting means for changing the rotation center axis projection position, which is the position projected on the intensity image, and reconstruction using the rotation center axis projection position set by the rotation center axis projection position setting means Based on the contrast of the reconstructed image obtained, the rotation center axis projection position of the imaging system is estimated, and the reconstructed image force reconstructed at the estimated rotation center axis projection position.
  • X-ray 3D image is generated,
  • the projection position of the rotation center axis of the imaging system is estimated on the premise that the spatial position of the X-ray source two-dimensional X-ray detector is not displaced.
  • Patent Document 1 JP 2000-201918 A.
  • Patent Document 1 an X-ray CT apparatus in which the spatial position of an X-ray source—two-dimensional X-ray detector is displaced by the influence of gravity or centrifugal force (for example, A method to accurately form a three-dimensional X-ray CT image on a C-arm X-ray CT system) It is not considered.
  • An object of the present invention is to form a three-dimensional X-ray CT image even on an X-ray CT apparatus in which the spatial position of the X-ray source two-dimensional X-ray detector is displaced by rotation. Is to provide a reliable X-ray CT system.
  • the X-ray CT apparatus of the present invention includes an X-ray source that irradiates a subject with X-rays, and an X-ray source that is disposed so as to face the X-ray source and that has passed through the subject to detect the X-ray.
  • An X-ray detector that outputs X-ray image data of a subject; a rotating means that rotates and moves the X-ray source and the X-ray detector at predetermined angles; and A spatial displacement amount for calculating a displacement amount of a spatial position of the X-ray source and the X-ray detector and generating spatial displacement correction information for correcting the position of the X-ray image data based on the displacement amount.
  • the correction information generation means Based on the correction information generation means and the spatial displacement correction information, the position of the X-ray image data is corrected, the image reconstruction calculation is performed based on the corrected X-ray image data, and the subject And an image reconstruction means for generating an X-ray CT image.
  • the image processing program includes an X-ray source provided in an X-ray CT apparatus and the X-ray source generated when the X-ray detector is rotated at a predetermined angle. Calculates the displacement amount of the spatial position of the line detector and generates spatial displacement correction information for correcting the position based on the displacement amount for the X-ray image data acquired by the X-ray CT device force A spatial displacement correction information generating step, a reading step of reading X-ray image data obtained by imaging the subject by the X-ray CT apparatus, and the X-ray image based on the spatial displacement correction information V Correct the position of the data and perform image reconstruction based on the X-ray image data! Image reconstruction step to generate the X-ray CT image of the subject and display the X-ray C ⁇ image And causing the computer to execute a display step.
  • the image processing method includes the X-ray source and the X-ray generated when the X-ray source and the X-ray detector provided in an X-ray CT apparatus are rotated at predetermined angles.
  • the displacement amount of the spatial position of the line detector is calculated, and spatial displacement amount correction information for correcting the position based on the displacement amount with respect to the X-ray image data acquired from the X-ray CT apparatus is generated.
  • Spatial displacement correction information generation step and X obtained by imaging the subject by the X-ray CT apparatus Based on the reading step to read line image data and the spatial displacement correction information!
  • the position of the X-ray image data is corrected and the X-ray image data is used!
  • the method includes an image reconstruction step for performing an image reconstruction operation and generating an X-ray CT image of the subject, and a display step for displaying the X-ray CT image.
  • a three-dimensional X-ray CT image can be formed even in an X-ray CT apparatus in which the spatial position of the X-ray source two-dimensional X-ray detector is displaced.
  • FIG. 1 is a block diagram showing a schematic configuration of a C-arm type cone-beam X-ray CT apparatus 1 to which the present invention is applied.
  • FIG. 2 is a conceptual diagram showing a Hall chart 18 used for generating an image distortion correction table.
  • FIG. 4 is a conceptual diagram showing a state where the phantom of FIG. 3 is placed on a bed.
  • FIG. 1 A first figure.
  • FIG. 6 is a flowchart showing a procedure in which geometric parameter calculation means 300 in the embodiment of the present invention performs a geometric parameter calculation process.
  • FIG. 7 is a diagram showing a wire reconstructed cross-sectional image when the projection of the rotation center axis has an error in the + u direction.
  • FIG. 8 is a diagram showing a wire reconstructed cross-sectional image when the projection of the rotation center axis has an error in the u direction.
  • FIG. 9 is a flowchart showing a procedure in which a rotation center axis projection position determining unit 350 determines a rotation center axis projection position.
  • FIG. 10 is a schematic diagram showing a cross-sectional image of a wire reconstruction when a spatial displacement of the X-ray source—two-dimensional X-ray detector remains.
  • FIG. 11 Spatial displacement correction information generating means 380 for generating spatial displacement correction information It is a flowchart which shows.
  • Rotation center axis projection position and X-ray source This is a schematic diagram showing a state where the correction of the spatial displacement of the two-dimensional X-ray detector has been completed and an image is formed on the wire reconstruction cross-sectional image force ⁇ point.
  • FIG. 14 is a block diagram for explaining a second embodiment of the present invention.
  • a conceptual diagram for explaining a second embodiment of the present invention showing a state where the wire wire 70 is fixed to the back surface of the bed 17 with high contrast.
  • FIG. 17 is a flowchart showing a detailed procedure of wire extraction processing, which is one processing shown in FIG.
  • FIG. 18 is a C-arm type cone beam X-ray CT apparatus lb to which the present invention is applied.
  • FIG. 19 is a first flowchart showing a procedure in which the alignment DSA reconstruction means 500 in the third embodiment of the present invention performs alignment DSA reconstruction processing.
  • FIG. 20 is a second flowchart showing a procedure in which the alignment DSA reconstruction means 500 in the third embodiment of the present invention performs alignment DSA reconstruction processing.
  • FIG. 21 is a C-arm type cone beam X-ray CT apparatus lc to which the present invention is applied.
  • FIG. 2 is a block diagram showing a schematic configuration of a cone beam X-ray CT apparatus 1 c equipped with a two-dimensional X-ray detector using PD. Explanation of symbols
  • Ceiling rail 17 ⁇ Bed, 18 ⁇ Hall chart, 18h... Hall, 20 ⁇ Control operation unit, 30 ⁇ Rotating raceway surface (midplane), 31 ⁇ Rotational center axis, 32 ⁇ ⁇ ⁇ ⁇ Rotation center, 33 ⁇ ⁇ ⁇ projection of the rotation axis to the X-ray entrance plane, 35 ⁇ ⁇ ⁇ phantom projection image, 40 ...
  • Subject 50 ... Wire phantom, 50a ... Phantom holder, 51 ... Geometrically correct wire projection position, 52 ... Shifted wire projection position, 53 ... Wire reconstruction image, 54 ... Wire reconstruction cross-sectional image when the rotation center axis projection has an error in the + u direction, 55 ...
  • image collection means 200 ... reconstruction means, 201 ... pre-processing means, 202 ... image distortion correction means, 203 ... filtering means, 204 ... back projection means, 210 Image display means, 300 Geometric parameter calculation means, 320 Image distortion correction table generation means, 330 Image distortion correction table storage means, 350 ... Rotation center axis projection position determination means, 380 ... Spatial displacement correction information generation means, 390 ... Spatial displacement correction information storage means, 400 ... Alignment reconstruction means, 410 ⁇ Wire extraction means, 500 ⁇ Alignment DSA reconstruction means, 540 ... Difference means
  • FIG. 1 is a C-arm type cone-beam X-ray CT apparatus 1 to which the present invention is applied, and includes an X-ray image intensifier 12i and a television camera that captures a visible light image by the X-ray image intensifier 12i.
  • FIG. 12 is a block diagram showing a schematic configuration of an X-ray CT apparatus having an X-ray detector consisting of 12c.
  • FIG. 2 is a conceptual diagram showing a hall chart 18 used for generating an image distortion correction table.
  • the cone-beam X-ray CT apparatus 1 in FIGS. 1 and la is an imaging unit that irradiates a subject 40 with X-rays and captures an X-ray transmission image of the subject 40 to obtain X-ray image data. 10 and each component of the imaging unit 10, and based on the X-ray image data, 3D X-ray C of the subject 40 And a control operation unit 20 for reconstructing the T image.
  • the display device 80 includes an image display device 80 and an input device 90 that also has a trackball and a mouse force for inputting an instruction to move the position of the image displayed on the display device 80.
  • the imaging unit 10 is installed at a position facing the X-ray source 11, the bed 17 on which the subject 40 is placed, the X-ray source 11 that irradiates the subject 40 placed on the bed 17, and the X-ray source 11.
  • a two-dimensional X-ray detector 12 that outputs X-ray image data by detecting X-rays transmitted through the X-ray, and a C-arm 13 that mechanically connects the X-ray source 1 1 and the two-dimensional X-ray detector 12 Is provided.
  • the photographing unit 10 includes a C-type arm holding body 14 for holding the C-type arm 13, a ceiling support 15 for attaching the C-type arm holding body 14 to the ceiling, and the ceiling support 15 in the state shown in FIG. And a ceiling rail 16 that is movably supported in the two-dimensional direction.
  • the X-ray source 11 includes an X-ray tube lit that generates X-rays, and a collimator 11c that controls the direction of X-ray irradiation from the X-ray tube lit in a circular or quadrangular pyramid shape.
  • the two-dimensional X-ray detector 12 includes an X-ray image intensifier 12i that converts an X-ray transmission image into a visible light image, and a television camera 12c that captures a visible light image by the X-ray image intensifier 12i. Is provided.
  • the X-ray CT apparatus and the two-dimensional X-ray detector 12 shown in FIG. 1 include an X-ray image intensifier 12i and a television camera 12c.
  • the two-dimensional X-ray detector 12 May be replaced with a flat panel detector (FPD) using TFT elements.
  • FPD flat panel detector
  • the C-type arm 13 rotates about the rotation center axis 31 for each predetermined projection angle.
  • the X-ray source 11 and the two-dimensional X-ray detector 12 perform X-ray imaging while rotating and moving on substantially the same circular orbit.
  • the rotational movement of the C-arm 13 causes a rotational orbit plane (midplane) 30 that includes a circular orbit drawn by the X-ray source 11 and the two-dimensional X-ray detector 12, a rotation center axis 31, and
  • the rotation center 32 is an intersection of the rotation center axis 31 and the rotation track surface 30.
  • the control calculation unit 20 includes an imaging unit control unit 100 that controls the imaging unit 10, an image collection unit 110 that collects and stores the X-ray image data output from the imaging unit 10, and the acquired X-ray image data.
  • the reconstruction means 200 for reconstructing a three-dimensional X-ray CT image and the mechanical manufacturing error of the imaging unit 10 are numerically expressed, and correction data is obtained when the reconstruction means 200 performs three-dimensional reconstruction.
  • an image display means 210 for displaying the three-dimensional X-ray CT image generated by the reconstruction means 200 is provided.
  • the imaging unit control means 100 includes an imaging system rotation control means 101 that controls rotational movement of the C-shaped arm 13 around the rotation center axis 31 (hereinafter referred to as “propeller rotation”), and a ceiling support.
  • An imaging system position control means 102 is provided for controlling the position of the holder 15 on the ceiling rail 16 and controlling the position of the C-arm 13 relative to the subject 40 in a two-dimensional manner. Further, the imaging unit control means 100 adjusts the position of the subject 40 by controlling the positions of the X-ray irradiation control means 103 and the bed 17 that control ON / OFF of the tube current flowing through the X-ray tube lit.
  • a detection system control means 105 for controlling the taking of an X-ray transmission image by the two-dimensional X-ray detector 12.
  • the reconstruction unit 200 includes a preprocessing unit 201, an image distortion correction unit 202, a filtering unit 203, and a back projection unit 204.
  • the preprocessing unit 201 is a unit for converting the X-ray image data collected by the image collection unit 110 into a distribution image of X-ray absorption coefficients.
  • a natural logarithmic conversion operation is performed on each pixel data of an X-ray transmission image taken with the subject 40 placed on the bed 17.
  • a distribution image of the X-ray absorption coefficients of the subject 40 and the bed 17 is obtained.
  • the image distortion correction unit 202 is a method for calculating the distribution image of the X-ray absorption coefficient generated by the preprocessing unit 201. Correct image distortion. This image distortion is image distortion that occurs when an X-ray transmission image is converted into a visible light image by the X-ray image intensifier 12i, and is stored in the image distortion correction table storage means 330 described later. Using the table, the image distortion of the X-ray absorption coefficient distribution image obtained by the preprocessing means 201 is corrected.
  • the filtering means 203 performs filtering processing in X-ray CT image reconstruction.
  • the back projection means 204 performs a back projection operation based on the filtered X-ray image data, and generates a three-dimensional X-ray CT image.
  • Back projection means 204 detects the X-ray source and X-ray detection based on the spatial displacement correction information for each X-ray image data after filtering (X-ray image data obtained by photographing each projection angular force)! Correct the amount of spatial displacement with the vessel.
  • the back projection means 204 generates a projection image based on each X-ray image data.
  • the back projection means 204 generates an X-ray CT image by performing a back projection operation on this projection image.
  • the back projection means 204 generates a projection image from each X-ray image data after the filtering process. Next, the back projection means 204 corrects the spatial displacement amount between the X-ray source and the X-ray detector based on the spatial displacement amount correction information for this projection image. Then, the back projection means 204 may generate an X-ray CT image by performing a back projection operation on the corrected projection image.
  • the geometric parameter calculation unit 300 is a unit that calculates a geometric parameter required when the reconstruction unit 200 performs image reconstruction.
  • the geometric parameters handled by the geometric parameter calculation means 300 are the image distortion caused by the rotation orbit plane 30, the rotation center axis 31, and the X-ray image intensifier eye 12i.
  • the geometric parameter calculation means 300 includes an image distortion correction table generation means 320, an image distortion correction table storage means 330, a rotation center axis projection position determination means 350, a spatial displacement.
  • An amount correction information generation unit 380 and a spatial displacement amount correction information storage unit 390 are provided. Each component of the geometric parameter calculation means 300 will be described later.
  • the image distortion correction table generating unit 320 generates an image distortion correction table used by the above-described image distortion correcting unit 202 using the hall chart 18 shown in FIG.
  • the hole chart 18 in FIG. 2 is formed by drilling a number of small holes 18h in a lattice arrangement on a plate made of a material that easily absorbs X-rays.
  • the Hall chart 18 is fixed to the X-ray incident surface of the X-ray image intensifier 12i, and an X-ray transmission image of the Hall chart 18 (hereinafter referred to as “Hall chart distortion projection image”) is taken.
  • preprocessing means 201 preprocesses the whole chart distortion projection image.
  • the projection position of each hole 18h in the hall chart distortion projection image is detected.
  • the virtual projection position of each hole 18h is calculated assuming that the Hall chart 18 is projected onto the X-ray incident surface without distortion.
  • calculation for converting the detected projection position of each hole 18h so as to coincide with the virtual projection position is performed for each hole 18h, and an image distortion correction table is generated.
  • the detector mounting angle is corrected by rotating the image.
  • the image distortion correction table storage means 330 stores the image distortion correction table generated by the image distortion correction table generation means 320 on a magnetic disk or the like. Then, when the image distortion correction unit 202 corrects the distortion of the X-ray transmission image, the stored image distortion correction table is read out. In the case of FPD, save the detector mounting correction angle. In the case of FPD, this correction angle is read when correcting the rotation of the X-ray transmission image.
  • the cone beam X-ray CT apparatus 1 is an X-ray transmission image (hereinafter referred to as “phantom projection image”! Of an index body, for example, a wire phantom 50. , And output phantom X-ray image data.
  • phantom projection image Of an index body, for example, a wire phantom 50.
  • the rotation center axis projection position determining means 350 is based on the phantom X-ray image data, and serves as a rotation center axis projection meter serving as a reference for forming a three-dimensional X-ray CT image of the phantom projection image 35. To decide. The method by which the rotation center axis projection position determining means 350 determines the rotation center axis projection parameters will be described later.
  • the spatial displacement correction information generating unit 380 calculates the spatial displacement of the X-ray source 11 2D X-ray detector 12 generated for each projection angle. Then, the image reconstruction calculation is performed on the phantom X-ray image data using the rotation center axis projection parameters determined by the rotation center axis projection position determining means 350, and the resulting wire phantom 50 is reconstructed. Spatial displacement correction information is generated to form the sectioned image (hereinafter referred to as “wire reconstructed cross-sectional image”) at one point.
  • the spatial displacement correction information storage means 390 is generated by the spatial displacement correction information generation means 380.
  • the generated spatial displacement correction information is stored in a magnetic disk or the like. Then, when the back projection means 204 adjusts the spatial displacement amount of the X-ray source 11-2D X-ray detector 12 to correct the X-ray image data, the stored spatial displacement amount correction information is read out.
  • the specification example of the C-arm type cone beam X-ray CT apparatus 1 is as follows.
  • the distance between the X-ray tube l it and the rotation center axis 31 is 800 mm, and the distance between the rotation center axis 31 and the X-ray incident surface of the two-dimensional X-ray detector 1 2, that is, the X-ray image intensifier 12i
  • the distance is 400mm
  • the X-ray image intensifier 12i has a circular X-ray entrance surface size of 400mm
  • the image size is 1024 X 1024 (number of scanning lines).
  • the pitch of the two-dimensional X-ray detector 12 is 0.4 mm.
  • the imaging system rotation control means 101 passes the 2D X-ray detector 12 from the left hand direction of the subject 40 (one 100 °) to the ceiling direction (0 °), and to the right hand direction of the subject 40 (+ 100 °), that is, the X-ray tube l it passes from the right hand direction of the subject 40 (+ 100 °) to the ceiling direction (0 °) and to the left hand direction of the subject 40 (one 100 °).
  • a two-dimensional X-ray transmission image of the subject 40 is taken over a projection angle of 200 degrees.
  • a typical example of the rotational speed of the C-arm 13 is 40 degrees per second and the scan time is 5 seconds.
  • the imaging system rotation control means 101 starts propeller rotation of the C-arm 13.
  • the X-ray irradiation control means 103 irradiates the X-ray tube l it with X-rays.
  • the detection system control means 105 starts taking a visible light image by the television camera 12c.
  • the X-ray irradiated with the X-ray tube l it force passes through the subject 40 and then enters the X-ray image intensifier 12i.
  • the X-ray transmission image is converted into a visible light image by the X-ray image intensifier 12i and captured by the television camera 12c.
  • the television camera 12c converts a visible light image into a video signal, and the video signal undergoes AZD conversion, and then is recorded in the image collecting means 110 as two-dimensional X-ray image data such as a digital signal.
  • the standard scanning mode for shooting with the TV camera 12c is 30 frames per second and 1024 scanning lines.
  • the rotation angle pitch is 1.33 degrees, and 150 X-ray transmission images are acquired in 5 seconds.
  • the reconstruction unit 200 reads the two-dimensional X-ray image data from the image collection unit 110 in parallel with the above-described imaging or after the imaging is completed, and performs image reconstruction based on the X-ray image data Calculation is performed to reconstruct the 3D X-ray CT image of the subject 40.
  • the image display means 210 displays a three-dimensional X-ray CT image on a display device 80 composed of a CRT device, a liquid crystal display device, or the like.
  • the image display unit 210 may display a two-dimensional image based on the two-dimensional X-ray image data recorded in the image collection unit 110.
  • FIG. 3 is a conceptual diagram for explaining a state in which the wire phantom 50 is rotated and photographed.
  • FIG. 4 is a conceptual diagram showing a state where the state of FIG. 3 is viewed from the bed 17 toward the C-arm 13.
  • FIG. 5 is a schematic diagram showing a phantom projection image 35 of the wire-like phantom 50 obtained as a result of the rotational shooting shown in FIGS.
  • FIG. 6 is a flowchart showing a procedure in which the geometric parameter calculation means 300 performs a geometric parameter calculation process.
  • description will be made in the order of steps in FIG.
  • the Hall chart 18 is fixed to the X-ray incident surface of the X-ray image intensifier 12i to perform rotational imaging, and the image collection means 110 collects a Hall chart distortion projection image at each projection angle (S310).
  • the number of hall chart distortion projection images to be collected is 150 as described above.
  • the image distortion correction table generating means 320 generates an image distortion correction table based on the 150 Hall chart distortion projection images obtained in step S310.
  • the image distortion correction table storage means 330 stores the image distortion correction table generated in step S320 (S330).
  • the phantom holder 50a is placed on the bed 17.
  • the phantom holder 50a is shown in FIGS.
  • the wire-like phantom 50 is positioned so as to protrude from the bed 17 as close as possible to the rotation center axis 31.
  • the X-ray source 11 and the two-dimensional X-ray detector 12 perform rotational imaging of the wire phantom 50, take an X-ray transmission image of the wire phantom 50, and output phantom X-ray image data.
  • the X-ray transmission image of the wire phantom 50 includes a phantom projection image 35 that is a projection image of the wire phantom 50.
  • the image collecting means 110 collects phantom X-ray image data (S340). As shown in FIG. 5, the phantom projection image 35 is displayed at a position close to the projection 33 on the X-ray incident surface of the rotation center axis 31 at all projection angles. When shooting of the wire phantom 50 is completed, the wire phantom 50 and the wire phantom holder 50a are removed from the bed 17.
  • the rotation center axis projection position determining means 350 uses the phantom projection image 35 included in the phantom X-ray image data collected in step S340, and serves as a reference for imaging a three-dimensional X-ray CT image.
  • the rotation center axis projection parameter is determined (S350). Details of the specific processing of the calculation will be described later with reference to FIGS. In the following process, it is sufficient to perform the process using the phantom X-ray image data limited to the rotation path plane (mitd plane) 30, and this can reduce the amount of calculation.
  • the target wire reconstruction point is one point with the highest contrast (hereinafter referred to as “reference wire reconstruction image”).
  • reference wire reconstruction image One point with the highest contrast
  • processing related to correcting the amount of spatial displacement of the X-ray source 11—two-dimensional X-ray detector 12 generated at each projection angle so as to form the reference wire reconstructed image 56a is performed.
  • the projection position 52 of the wire phantom 50 is estimated for each phantom projection image 35, and the left and right coordinates (u) and the body axis direction are estimated.
  • There is a straight line with coordinates (V)! ⁇ finds the u coordinate of the intersection of the straight line representing the projection position 52 and the rotating orbital plane 30 (S370).
  • the projection data profile in the u-axis direction is used.
  • X-ray source generated at each projection angle 11-Reconstruction of wire phantom 50 reconstructed by correcting the spatial displacement of the two-dimensional X-ray detector 12 and using the rotation center axis projection parameters obtained in step S350
  • Spatial displacement correction information is generated to form a cross-sectional image at one point (S380). Details of the specific processing of the calculation will be described later with reference to FIGS.
  • the spatial displacement correction information calculated in step S380 is stored in the spatial displacement correction information storage unit 390 (S390).
  • the spatial displacement correction information stored in the spatial displacement correction information storage means 390 is obtained by correcting the spatial displacement amount of the X-ray source 11—two-dimensional X-ray detector 12 generated at each projection angle in the back projection means 204. It is used to form a reconstructed cross-sectional image of the wire-like phantom 50 at one point.
  • FIGS. 7 and 8 are conceptual diagrams showing how the wire reconstructed image 53 is formed by adjusting the rotation center axis projection parameter
  • FIG. 9 is a rotation center axis in the rotation center axis projection position determining means 350.
  • FIG. 10 is a conceptual diagram showing a wire reconstruction cross-sectional image obtained as a result of the rotation center axis projection position determination process.
  • FIG. 7 and 8 also show the force in the foot direction of the subject 40.
  • the X-ray image intensifier 12i and the television camera 12c pass from the direction of the left hand of the subject 40 to the direction of the ceiling and pass from the direction of the right hand of the subject 40. Move with.
  • Fig. 7 shows the image reconstruction process when the projection of the rotation center axis 31 on the two-dimensional X-ray detector 12 has an error in the + u direction with reference to the actual wire projection position 52 (solid line). The results are shown.
  • the reconstructed cross-sectional image 54 of the wire-like phantom 50 does not form a single point, but draws a semicircular arc opened on the right side as shown in FIG.
  • the position (geometrically positive U, wire projection position 51: dotted line) is equal to the displacement of force.
  • Fig. 8 shows that the projection of the rotation center axis 31 on the two-dimensional X-ray detector 12 is the actual wire projection position.
  • the reconstructed cross-sectional images 54 and 55 shown in FIGS. 7 and 8 are forces that also have a plurality of semicircular forces. This is because the source 11 is drawn assuming that there is a spatial displacement of the two-dimensional X-ray detector 12.
  • the rotation center axis projection position (hereinafter referred to as center) is set to the initial position (design position) (S 351).
  • the preprocessing means 201 performs preprocessing of the phantom X-ray image data collected in step S340 (S352).
  • the image distortion correction unit 202 performs image distortion correction processing on the phantom X-ray image data that has been preprocessed in step S352 (S353).
  • the filtering means 203 performs a filtering process on the phantom X-ray image data that has been subjected to the image distortion correction process in step S353 (S354). [0056] (Step S355)
  • the back projection means 204 performs back projection processing on the phantom X-ray image data subjected to the filtering processing in step S354 with the value of the rotation center axis projection position (center), and generates a wire reconstructed image 53 (S355). .
  • a wire region is extracted from the wire reconstructed image 53 generated in step S355, and the radius of the arc with the highest contrast is calculated (S356).
  • a threshold processing method is used to extract the wire region, and a parameter fitting method to a circular curve equation can be used to calculate the radius of the arc.
  • step S356 It is determined whether the arc radius calculated in step S356 can be regarded as zero (S357). If it can be regarded as zero, the current center value is output and the process is terminated. If it cannot be regarded as zero, the process proceeds to step S358.
  • step S357 If the radius of the arc cannot be regarded as zero in step S357, it is determined whether it is the case of FIG. 7 or FIG. 8, and correction is performed by adding / subtracting so that the center value is correct accordingly. Then, the process from step S355 is performed again.
  • FIG. 10 shows a wire reconstructed image 53 after the rotation center axis projection position determination process (step S350).
  • FIG. 10 shows that the wire reconstruction cross-sectional image 56 is imaged at three positions because the spatial displacement of the X-ray source 11—two-dimensional X-ray detector 12 to be corrected remains.
  • the figure localized at several points like the wire reconstructed cross-sectional image 56 is schematic and actually forms an image roughly, but when the wire reconstructed image 53 is enlarged, a straight line appears in the projection angle direction. In many cases, it will be drawn.
  • step S360 described above of the plurality of wire reconstruction points displayed in FIG. 10, the wire reconstruction point having the highest contrast is fixed to the reference wire reconstruction image 56a.
  • a process for obtaining the wire reconstruction image 56a of FIG. 13 by matching the other wire reconstruction points with the reference wire reconstruction image 56a will be described below with reference to FIGS.
  • FIG. 11 shows that the spatial displacement correction information generation means 380 generates spatial displacement correction information. It is a flowchart which shows the procedure to perform.
  • FIG. 12 is a conceptual diagram for explaining the geometric calculation for generating the spatial displacement correction information. This will be described below in the order of steps in FIG.
  • the projection angle 13 corresponding to the wire projection position 52 calculated in step S370 is set (S381).
  • the coordinates (x, y) of the reference wire reconstruction image 56a fixed in step S360 are converted into the coordinates of the rotational coordinate system (s, t) in the projection angle 13 direction set in step S381 (S382).
  • a theoretical projection position 51 on the two-dimensional X-ray detector 12 is calculated from the coordinate value (s) calculated in step S382 (S383).
  • the actual wire projection position 52 calculated in step S370 is compared with the theoretical projection position 51 calculated in step S383, the displacement 65 is calculated, and the spatial displacement correction value is output (S384).
  • step S381 It is determined whether or not the force has been processed for all projection angles j8. Otherwise, the processing from step S381 is repeated for the next projection angle j8.
  • FIG. 13 shows a wire reconstructed cross-sectional image 57 obtained as a result of three-dimensional reconstruction of the projection image 35 of the wire phantom 50 using the spatial displacement correction information stored in step S390.
  • X-ray source generated at each projection angle of C-type arm 13 When the spatial displacement of 2D X-ray detector 12 is reproducible (This is common because of the mechanical characteristics of C-type arm )
  • X-ray source generated at each projection angle of the C-arm 13 11 When the spatial displacement of the two-dimensional X-ray detector 12 is reproducible, any object can be obtained as long as the spatial displacement correction information is generated. Even in the case of 40, the 3D X-ray CT image can be formed.
  • a phantom made of wire is used for adjusting the geometric parameters. After step S390, it is possible to manually fine-tune the rotation center axis projection position determined in step S350 while visually confirming that the metal arch features are equalized.
  • the second embodiment is a mode in which the wire line and the subject 40 are simultaneously imaged in the first embodiment described above.
  • the cone beam X-ray CT apparatus la that works well in the second embodiment is an alignment reconfiguration that aligns the wire 70 in addition to the X-ray CT apparatus 1 that works in the first embodiment.
  • Means 400 and wire extraction means 410 are provided.
  • FIG. 15 is a conceptual diagram showing a state in which a high-contrast wire 70 is fixed to the back surface of the bed 17.
  • the second embodiment is an implementation for aligning a three-dimensional X-ray CT image when the subject 40 is rotated while the C-arm 13 is repeatedly rotated.
  • the spatial position of the C-arm 13 and the bed 17 can be roughly adjusted by referring to the display value of the cone beam X-ray CT device 1.There is not enough precision to superimpose as a three-dimensional X-ray CT image. Is normal.
  • the position of the wire line 70 is extracted from the X-ray image data of the subject 40 including the wire line 70 with high contrast by the same method as in the first embodiment described above, and the wire
  • the spatial displacement correction information of the X-ray source 11—2D X-ray detector 12 is generated during the image reconstruction calculation so that the position of the line 70 is backprojected to the target reconstruction point. Make the configuration.
  • FIG. 17 is a flowchart showing a detailed process of the wire extraction process which is one process shown in FIG.
  • pre-processing S201 pre-processes the X-ray absorption coefficient distribution images of the subject 40, the bed 17 and the wire wire 70 for the X-ray transmission images of the plurality of subjects 40 obtained by repeated imaging. . [0073] (Step S202)
  • the image distortion correction processing S202 corrects the image distortion of the X-ray absorption coefficient distribution image of the subject 40, the bed 17 and the wire wire 70.
  • the wire extraction process S410 divides the X-ray absorption coefficient distribution image of the subject 40, the bed 17 and the wire wire 70 into two regions of the wire wire 70 and the subject 40, and then extracts wire projection data.
  • the details of the wire extraction processing S410 will be described with reference to FIG.
  • the wire existence range cut-out process S411 cuts out the range where the X-ray transmission image of the wire line 70 exists from the X-ray absorption coefficient distribution image of the wire line 70 whose image distortion is corrected by the image distortion correction process S202. .
  • the blurred image generation process S412 performs a smoothing filter process on the distribution image of the X-ray absorption coefficient of the wire 70 cut out by the wire existence range cutout process S411, and generates the blurred image.
  • Difference processing S413 performs bow I calculation processing of the distribution image of the X-ray absorption coefficient of the wire 70 and the blurred image generated by the blur image generation processing S412. Extract images.
  • the binary key process S414 performs a binarization process by using a predetermined threshold process for the fine structure candidate image extracted in the difference process S413.
  • a fine structure candidate image having a contrast equal to or greater than a predetermined threshold is extracted as wire projection data.
  • Wire area storage processing S415 is the wire projection data extracted in binary key processing S414. Is stored.
  • the geometric parameter calculation process S300 is based on the wire projection data extracted by the wire region extraction process S410, and the spatial displacement correction information of the X-ray source 11—two-dimensional X-ray detector 12 is the same as in the first embodiment. Is generated.
  • the wire projection area included in the X-ray transmission image of the subject 40 may be removed using the wire data extracted in the wire area storing process S415.
  • the filtering process S203 performs a filtering process on the X-ray transmission image of the subject 40 in which the image distortion of the X-ray absorption coefficient distribution image is corrected by the image distortion correction process S202.
  • the back projection process S 204 performs a back projection process on the X-ray transmission image subjected to the filtering process in the filtering process S 203 based on the spatial displacement correction information generated by the geometric parameter calculation process S300. Then, a three-dimensional X-ray CT image of the subject 40 is generated.
  • the force based on the premise that the amount of spatial displacement of the X-ray source 11—two-dimensional X-ray detector 12 is reproducible. Since the wire wire 70, which is the alignment reference, is shown in the X-ray transmission image, even if the spatial displacement is not reproducible, it is possible to form a three-dimensional X-ray CT image.
  • DSA imaging is a rotation image (hereinafter referred to as “mask image”) before injection of contrast agent and a rotation image (hereinafter referred to as “live image”) at the time of contrast agent injection.
  • mask image a rotation image
  • live image a rotation image
  • a cone beam X-ray CT apparatus lb according to the present embodiment will be described with reference to FIG.
  • the cone beam X-ray CT apparatus lb in Fig. 18 is reconstructed by combining the mask and live imaging geometric systems in the reconstruction method 200 of the cone beam X-ray CT apparatus 1 in Fig. 1.
  • Alignment DSA reconstruction means 500, wire extraction means 410, and difference means 540 for subtracting mask data from live data are provided.
  • the cone beam X-ray CT apparatus lb obtains a set of X-ray image data (a plurality of projection images for obtaining one reconstructed image) by imaging a subject before injecting a contrast agent.
  • the cone beam X-ray CT apparatus lb performs a process on the X-ray image data by the preprocessing unit 201, the image distortion correction unit 202, the filtering unit 203, and the back projection unit 204, and a mask image. Is generated.
  • the back projection unit 204 acquires the spatial displacement correction information from the spatial displacement correction information storage unit 390, and corrects the spatial displacement between the X-ray source and the X-ray detector to generate a mask image.
  • the cone beam X-ray CT apparatus lb obtains a set of X-ray image data by photographing the subject after the contrast medium is injected, and performs live based on the X-ray image data set. Generate an image.
  • the cone beam X-ray CT apparatus lb aligns the mask image and the live image based on the respective spatial displacement correction information, and then performs a differential process to generate a DSA image.
  • the processing flow of the X-ray CT apparatus lb according to the third embodiment will be described below based on the flowcharts of FIGS. 19 to 20.
  • the mask image and the live image are photographed together with the wire lines 70 while the subject is placed on the bed.
  • the relative positional relationship between the wire line 70 and the subject remains unchanged in the mask image and the live image unless the subject moves.
  • a mask image and a live image are generated so that the wire 70 forms an image at a point, and as a result, the mask image is captured. It is possible to align the specimen and the subject photographed in the live image and perform DSA processing.
  • a first example and a second example of the present embodiment will be described.
  • a mask image (reconstructed image) and a live image (reconstructed image) constructed using projection data of the wire 70 are subjected to DSA processing.
  • DSA processing is performed on the projection data of the mask image and the projection data of the live image taken in the same view, and a contrast image (blood vessel image) is generated based on the difference data. It is processing.
  • pre-processing of mask X-ray image data S501 performs pre-processing on the X-ray absorption coefficient distribution images of the subject 40, the bed 17 and the wire wire 70 for the mask X-ray transmission image of the subject 40.
  • the image distortion correction processing S502 of the mask X-ray image data corrects the image distortion of the mask X-ray transmission image of the subject 40, the X-ray absorption coefficient distribution image of the bed 17 and the wire wire 70.
  • Wire extraction processing of mask X-ray image data S410m is a mask X-ray transmission image of the subject 40, the X-ray absorption coefficient distribution image of the bed 17 and the wire wire 70, and two regions of the wire wire 70 and the subject 40. Then, wire projection data is extracted.
  • Geometric parameter calculation processing for mask X-ray image data S300m is the same as in the first embodiment, based on the wire projection data extracted by wire region extraction processing S410m, as in the first embodiment. Spatial displacement correction information for detector 12 is generated.
  • pre-processing S511 of live X-ray image data is applied to the live X-ray transmission image of the subject 40. And pre-process the X-ray absorption coefficient distribution images of the subject 40, bed 17 and wire 70.
  • the image distortion correction processing S512 of the live X-ray image data corrects the image distortion of the live X-ray transmission image of the subject 40, the X-ray absorption coefficient distribution image of the bed 17 and the wire wire 70.
  • Wire extraction processing of live X-ray image data The S410L uses live X-ray transmission images of the subject 40, X-ray absorption coefficient distribution images of the bed 17 and the wire wire 70, and two regions of the wire wire 70 and the subject 40. Then, wire projection data is extracted.
  • Geometric parameter calculation processing of live X-ray image data S300L is the same as in the first embodiment based on the wire projection data extracted by wire region extraction processing S410m. Spatial displacement correction information for detector 12 is generated.
  • the mask X-ray image data filtering process S521 performs a filtering process on the mask X-ray transmission image of the subject 40 in which the image distortion of the X-ray absorption coefficient distribution image is corrected by the image distortion correction process S502.
  • the mask X-ray image data backprojection process S 522 is based on the spatial displacement correction information generated by the geometric parameter calculation process S300m on the mask X-ray transmission image subjected to the filtering process S 521. Then, a back projection process is performed to generate a mask 3D X-ray CT image of the subject 40.
  • Live X-ray image data filtering processing S 531 performs filtering processing on the live X-ray transmission image of the subject 40 corrected for image distortion in the distribution image of the X-ray absorption coefficient by image distortion correction processing S 512. . [0103] (Step S532)
  • the live X-ray image data backprojection processing S532 is based on the spatial displacement correction information generated by the geometric parameter calculation processing S300L to the live X-ray transmission image filtered in the filtering processing S531!
  • a live 3D X-ray CT image of the subject 40 is generated by applying a back projection process.
  • Live CT image-mask CT image difference processing S533 is a back projection process of live X-ray image data S Back-projection process of mask X-ray image data from live 3D X-ray CT image of subject 40 generated by S532 S522 By subtracting the mask 3D X-ray CT image of the subject 40 generated by the above, a 3D DSA reconstructed image (angiogram) of the subject 40 is generated.
  • an alignment DSA reconstruction process S500a which is a second example of the third embodiment, will be described with reference to the flowchart of FIG. Step S501 to step S300L are the same as those in the first embodiment described above, and a description thereof will be omitted.
  • Mask-live geometric system comparison process S541 is a geometric parameter calculation process for mask X-ray image data.
  • the spatial displacement correction information at the time of mask imaging calculated by S300m is used to calculate geometric parameters for live X-ray image data.
  • Mask X-ray image data translation processing S542 is a mask-live geometric system comparison process. Based on the relative spatial displacement correction information generated in S541, the mask X-ray image data is live on the projection data. The translation is performed so as to overlap the X-ray image data.
  • Live image—mask image difference processing S543 is a mask X-ray image that is aligned on the projection data by live mask X-ray image data translation processing S542 from live X-ray image data. Subtract image data.
  • Difference Image Data Filtering Processing S551 performs filtering processing on the difference projection data generated by the live image-mask image difference processing S543.
  • Difference image data backprojection processing S 552 is the backprojection processing based on the spatial displacement correction information generated by the geometric parameter calculation processing S300L to the difference projection data filtered in the filtering processing S551. To generate a live three-dimensional DSA reconstructed image (angiographic image) of the subject 40.
  • the live image-mask image is subtracted on the projection data, and the back projection process is performed by force, so that the three-dimensional DSA reconstructed image of the subject 40 is generated.
  • the calculation time can be greatly shortened.
  • step S542 since the mask X-ray image data translation in step S542 is an approximation of the three-dimensional spatial displacement on the two-dimensional projection data, it is not a three-dimensional perfect alignment. In step S542 in the above operation, it was limited to alignment by translation, but by adding deformation processing by rotation or translation that differs for each local coordinate,
  • the fourth embodiment is an implementation in which the present invention is applied to an X-ray CT apparatus provided with an X-ray detector such as a flat panel detector (FPD), which is a C-arm type cone-beam X-ray CT apparatus. It is an aspect.
  • an X-ray detector such as a flat panel detector (FPD), which is a C-arm type cone-beam X-ray CT apparatus. It is an aspect.
  • FPD flat panel detector
  • FIG. 19 is a block diagram showing a schematic configuration of the X-ray CT apparatus according to the present embodiment.
  • the cone beam X-ray CT apparatus lc includes a two-dimensional X-ray detector 12 including an FPD12F.
  • the shape of the FPD12F may be any circular or square shape.
  • the two-dimensional X-ray detector 12 is installed such that its detector element array is parallel (0 °) or 90 ° to the rotation center axis 31.
  • a rectangular flat panel detector (FPD) is used as the two-dimensional X-ray detector 12
  • if the long side is installed at an angle of 90 ° with the central axis of rotation, a cross-sectional image of the large field of view such as the chest and abdomen It is useful for photographing the head and neck, limbs, etc.
  • the two-dimensional X-ray detector 12 may be configured such that its detector element array can be rotated manually or electrically by a predetermined reference angle with respect to the rotation center axis 31.
  • the geometric parameters are the same as the cone beam X-ray CT apparatus 1 in Fig. 1, the rotating orbital plane (mitsubrain) 30, the rotation center axis 31, and the rotation Forces with center 32 In addition to these, there is a deviation of the reference angle (0 ° or 90 °) of the detector mounting angle.
  • FPD flat panel detector
  • the 2D X-ray detector 12 is parallel to the rotation center axis 31 without any errors.
  • FPD it is necessary to correct the deviation of the detector mounting angle by image rotation means as an image distortion correction.
  • the cone beam X-ray CT apparatus lc in Fig. 19 compensates for the deviation of the reference angle (0 ° or 90 °) of the detector mounting angle of the FPD12F instead of the image distortion correction means 202 in Fig. 1.
  • the inclination angle correction information storage means 330a for storing the inclination angle correction information for correction and the inclination angle correction information from the inclination angle correction information storage means 330a are acquired, and the X output from the two-dimensional X-ray detector 12 is acquired.
  • Tilt angle correction means 202a for correcting line image data is provided.
  • the inclination angle correction unit 202a reads out the correction angle when correcting the rotation of the X-ray image data.
  • the geometric parameter calculation means 300 calculates the rotation track surface 30, the rotation center axis 31, and the detector mounting angle.
  • the X-ray entrance surface has a rectangular shape of 400 mm X 300 mm, the image size is 2048 X 1536, and the pixels The pitch is 0.2mm.
  • a flat panel detector (FPD) When a flat panel detector (FPD) is used, light is first converted into light by a light emitter such as Csl on the X-ray incident surface, and the optical signal is converted into electric charge by a photodiode. The accumulated charge is converted into a digital signal by a TFT element at a fixed frame rate and read out.
  • 2D X-ray image data is read out at 30 frames per second with an image size of 1024 X 768. Based on this 2D X-ray image data, an X-ray CT image is reconstructed.
  • Other configurations are the same as those of the cone beam X-ray CT apparatus 1 in FIG. Therefore, the second and third embodiments can be similarly implemented by the cone beam X-ray CT apparatus 1 c described in the fourth embodiment based on the cone beam X-ray CT apparatus 1 of the first embodiment. is there.
  • the cone beam X-ray CT apparatus 1 that generates and displays a three-dimensional X-ray CT image by the geometric parameter calculation means 300 described above, the X-ray source 11 and the two-dimensional X-ray detector 12 Even when the positional relationship is displaced, the back projection means 204 can correct the geometric parameters for generating a clear three-dimensional X-ray CT image, the projection position of the rotation center axis, and the amount of spatial displacement.
  • the 2D X-ray image force can also be detected by a cone-beam X-ray CT system that generates a 3D X-ray CT image.
  • a clear 3D X-ray CT image can be generated and displayed even when the positional relationship with the instrument is displaced.
  • the imaging performance of the head, abdomen, and the like, and the diagnostic performance in the orthopedic field such as the tooth jaw, the lumbar vertebra, and the limbs can be improved.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
  • the above embodiment can be applied to a cone beam X-ray CT apparatus other than the force C-arm type using a C-type arm type cone beam X-ray CT apparatus. It can also be applied when the rotational angle is not 200 degrees.
  • the present invention is not limited to the process of generating a medical image based on X-ray transmission data obtained by imaging a subject, but the spatial position of the X-ray source and the X-ray detector is displaced. It can be applied to all line CT devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

An X-ray CT device includes: an X-ray source for irradiating X-rays to an examinee; an X-ray detector arranged to oppose to the X-ray source for detecting X-rays which have transmitted through the examinee and outputting X-ray image data on the examinee; rotation means for rotating the X-ray source and the X-ray detector by a predetermined angle; spatial displacement amount correction information generation means for calculating a displacement amount of the spatial position of the X-ray source and the X-ray detector and generating spatial displacement amount correction information for subjecting the X-ray image data to the position correction based on the displacement amount; and image reconfiguration means for performing position correction of the X-ray image data according to the spatial displacement amount correction information, performing image reconfiguration calculation according to the X-ray image data after the position correction, and generating the X-ray CT image of the examinee.

Description

明 細 書  Specification
X線 CT装置、画像処理プログラム、及び画像処理方法  X-ray CT apparatus, image processing program, and image processing method
技術分野  Technical field
[0001] 本発明は、 X線 CT装置に係り、特に、 2次元 X線検出器による回転撮影データから 3次元的 X線 CT像を再構成するのに有効な技術に関するものである。本出願は、 日 本国特許法に基づく特許出願特願第 2004— 262671号に基づくパリ優先権主張を 伴う出願であり、特願第 2004— 262671号の利益を享受するために参照による援用 を受ける出願である。  [0001] The present invention relates to an X-ray CT apparatus, and more particularly to a technique effective for reconstructing a three-dimensional X-ray CT image from rotational imaging data obtained by a two-dimensional X-ray detector. This application is a patent application claiming priority based on Japanese Patent Application No. 2004-262671 under Japanese Patent Law, and is incorporated by reference in order to enjoy the benefits of Japanese Patent Application No. 2004-262671. It is an application.
背景技術  Background art
[0002] 従来のコーンビーム X線 CT装置は、 X放射状の X線を被写体に照射する X線源と 該 X線源に対向配置され被写体を透過した透過 X線強度画像を撮影する撮像手段 とを備える撮影系と、該撮影系を被写体の周囲に回転させる回転手段と、透過 X線 強度画像から被写体の再構成像を再構成する再構成手段と、撮影系の回転中心軸 を透過 X線強度画像上に投影した位置である回転中心軸投影位置を変化させる回 転中心軸投影位置設定手段とを具備し、回転中心軸投影位置設定手段が設定した 回転中心軸投影位置を用いて再構成した再構成像のコントラストに基づ ヽて、撮影 系の回転中心軸投影位置を推定し、推定された回転中心軸投影位置で再構成され た再構成像力 前記被写体の X線断層像又は Z及び X線 3次元像を生成し、その X 線断層像又は Z及び X線 3次元像を表示する。(例えば、特許文献 1)  [0002] A conventional cone beam X-ray CT apparatus includes an X-ray source that irradiates a subject with X-radiating X-rays, an imaging unit that is disposed opposite to the X-ray source and that transmits a transmitted X-ray intensity image transmitted through the subject; An imaging system comprising: a rotating means for rotating the imaging system around the subject; a reconstructing means for reconstructing a reconstructed image of the subject from the transmitted X-ray intensity image; and a transmission X-ray through the rotation center axis of the imaging system Rotation center axis projection position setting means for changing the rotation center axis projection position, which is the position projected on the intensity image, and reconstruction using the rotation center axis projection position set by the rotation center axis projection position setting means Based on the contrast of the reconstructed image obtained, the rotation center axis projection position of the imaging system is estimated, and the reconstructed image force reconstructed at the estimated rotation center axis projection position. And X-ray 3D image is generated, and the X-ray tomogram or Show Z and X-ray 3-dimensional image. (For example, Patent Document 1)
上記特許文献 1では、 X線源 2次元 X線検出器の空間位置が変位しな ヽ前提で の撮影系の回転中心軸投影位置が推定されて 、る。  In the above Patent Document 1, the projection position of the rotation center axis of the imaging system is estimated on the premise that the spatial position of the X-ray source two-dimensional X-ray detector is not displaced.
特許文献 1:特開 2000- 201918号公報。  Patent Document 1: JP 2000-201918 A.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しカゝしながら、上記特許文献 1では、回転撮影中に X線源— 2次元 X線検出器の空 間位置が重力や遠心力の影響により変位する X線 CT装置 (例えば、 C型アームの X 線 CT装置)に対して 3次元的 X線 CT像を正確に結像させるための手法にっ 、て配 慮されていない。 [0003] However, in Patent Document 1 described above, an X-ray CT apparatus in which the spatial position of an X-ray source—two-dimensional X-ray detector is displaced by the influence of gravity or centrifugal force (for example, A method to accurately form a three-dimensional X-ray CT image on a C-arm X-ray CT system) It is not considered.
[0004] 本発明の目的は、 X線源 2次元 X線検出器の空間位置が回転によって変位する X線 CT装置にぉ 、ても、 3次元的 X線 CT像を結像することが可能な X線 CT装置を 提供することにある。  An object of the present invention is to form a three-dimensional X-ray CT image even on an X-ray CT apparatus in which the spatial position of the X-ray source two-dimensional X-ray detector is displaced by rotation. Is to provide a reliable X-ray CT system.
課題を解決するための手段  Means for solving the problem
[0005] 本発明の X線 CT装置は、被検体に X線を照射する X線源と、前記 X線源に対向し て配置され、前記被検体を透過した前記 X線を検出して前記被検体の X線画像デー タを出力する X線検出器と、前記 X線源及び前記 X線検出器を、所定の角度毎に回 転移動させる回転手段と、前記所定の角度毎に、前記 X線源及び前記 X線検出器の 空間位置の変位量を算出し、前記 X線画像データに対して前記変位量に基づいた 位置修正をするための空間変位量補正情報を生成する空間変位量補正情報生成 手段と、前記空間変位量補正情報に基づ!ヽて前記 X線画像データを位置修正し、 位置修正後の前記 X線画像データに基づいて画像再構成演算を行い、前記被検体 の X線 CT像を生成する画像再構成手段と、を備えることを特徴とする。 [0005] The X-ray CT apparatus of the present invention includes an X-ray source that irradiates a subject with X-rays, and an X-ray source that is disposed so as to face the X-ray source and that has passed through the subject to detect the X-ray. An X-ray detector that outputs X-ray image data of a subject; a rotating means that rotates and moves the X-ray source and the X-ray detector at predetermined angles; and A spatial displacement amount for calculating a displacement amount of a spatial position of the X-ray source and the X-ray detector and generating spatial displacement correction information for correcting the position of the X-ray image data based on the displacement amount. Based on the correction information generation means and the spatial displacement correction information, the position of the X-ray image data is corrected, the image reconstruction calculation is performed based on the corrected X-ray image data, and the subject And an image reconstruction means for generating an X-ray CT image.
[0006] また、本発明に係る画像処理プログラムは、 X線 CT装置に備えられた X線源及び 前記 X線検出器を所定の角度毎に回転させたときに生じる前記 X線源及び前記 X線 検出器の空間位置の変位量を算出して、前記 X線 CT装置力 取得した X線画像デ ータに対して前記変位量に基づいた位置修正をするための空間変位量補正情報を 生成する空間変位量補正情報生成ステップと、前記 X線 CT装置が被検体を撮影し て得た X線画像データを読み込む読込ステップと、前記空間変位量補正情報に基づ Vヽて前記 X線画像データを位置修正し、その X線画像データに基づ!/ヽて画像再構成 演算を行い、前記被検体の X線 CT像を生成する画像再構成ステップと、前記 X線 C τ像を表示する表示ステップと、をコンピュータに実行させることを特徴とする。 [0006] The image processing program according to the present invention includes an X-ray source provided in an X-ray CT apparatus and the X-ray source generated when the X-ray detector is rotated at a predetermined angle. Calculates the displacement amount of the spatial position of the line detector and generates spatial displacement correction information for correcting the position based on the displacement amount for the X-ray image data acquired by the X-ray CT device force A spatial displacement correction information generating step, a reading step of reading X-ray image data obtained by imaging the subject by the X-ray CT apparatus, and the X-ray image based on the spatial displacement correction information V Correct the position of the data and perform image reconstruction based on the X-ray image data! Image reconstruction step to generate the X-ray CT image of the subject and display the X-ray C τ image And causing the computer to execute a display step.
[0007] また、本発明に係る画像処理方法は、 X線 CT装置に備えられた X線源及び前記 X 線検出器を所定の角度毎に回転させたときに生じる前記 X線源及び前記 X線検出器 の空間位置の変位量を算出して、前記 X線 CT装置から取得した X線画像データに 対して前記変位量に基づいた位置修正をするための空間変位量補正情報を生成す る空間変位量補正情報生成ステップと、前記 X線 CT装置が被検体を撮影して得た X 線画像データを読み込む読込ステップと、前記空間変位量補正情報に基づ!、て前 記 X線画像データを位置修正し、その X線画像データに基づ!、て画像再構成演算を 行い、前記被検体の X線 CT像を生成する画像再構成ステップと、前記 X線 CT像を 表示する表示ステップと、を含むことを特徴とする。 [0007] The image processing method according to the present invention includes the X-ray source and the X-ray generated when the X-ray source and the X-ray detector provided in an X-ray CT apparatus are rotated at predetermined angles. The displacement amount of the spatial position of the line detector is calculated, and spatial displacement amount correction information for correcting the position based on the displacement amount with respect to the X-ray image data acquired from the X-ray CT apparatus is generated. Spatial displacement correction information generation step and X obtained by imaging the subject by the X-ray CT apparatus Based on the reading step to read line image data and the spatial displacement correction information! The position of the X-ray image data is corrected and the X-ray image data is used! The method includes an image reconstruction step for performing an image reconstruction operation and generating an X-ray CT image of the subject, and a display step for displaying the X-ray CT image.
発明の効果  The invention's effect
[0008] 本発明によれば、 X線源 2次元 X線検出器の空間位置が変位する X線 CT装置 においても 3次元的 X線 CT像を結像することができる。  According to the present invention, a three-dimensional X-ray CT image can be formed even in an X-ray CT apparatus in which the spatial position of the X-ray source two-dimensional X-ray detector is displaced.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明を適用した C型アーム方式のコーンビーム X線 CT装置 1の概略構成を 示すブロック図である。  FIG. 1 is a block diagram showing a schematic configuration of a C-arm type cone-beam X-ray CT apparatus 1 to which the present invention is applied.
[図 2]画像歪み補正テーブルの生成に使用されるホールチャート 18を示す概念図で ある。  FIG. 2 is a conceptual diagram showing a Hall chart 18 used for generating an image distortion correction table.
[図 3]ワイヤー状ファントム 50が、ファントム保持体 50aを用いて寝台 17上に載置され [Figure 3] A wire phantom 50 is placed on the bed 17 using the phantom holder 50a.
、回転撮影される状態を説明するための概念図である。 It is a conceptual diagram for demonstrating the state imaged by rotation.
[図 4]図 3のファントムを寝台に載置した状態を示す概念図である。  FIG. 4 is a conceptual diagram showing a state where the phantom of FIG. 3 is placed on a bed.
[図 5]2次元 X線検出器 12で収集されたワイヤー状ファントム 50のファントム投影像 3 [Figure 5] Phantom projection image of 50 wire-like phantoms collected by 2D X-ray detector 12
5を示す模式図である。 FIG.
[図 6]本発明の実施の形態における幾何学パラメータ計算手段 300が、幾何学パラメ ータ計算処理を行う手順を示すフローチャートである。  FIG. 6 is a flowchart showing a procedure in which geometric parameter calculation means 300 in the embodiment of the present invention performs a geometric parameter calculation process.
[図 7]回転中心軸の投影が +u方向に誤差を持つ場合のワイヤー再構成断面像につ いて示した図である。  FIG. 7 is a diagram showing a wire reconstructed cross-sectional image when the projection of the rotation center axis has an error in the + u direction.
[図 8]回転中心軸の投影が u方向に誤差を持つ場合のワイヤー再構成断面像につ いて示した図である。  FIG. 8 is a diagram showing a wire reconstructed cross-sectional image when the projection of the rotation center axis has an error in the u direction.
[図 9]回転中心軸投影位置決定手段 350が、回転中心軸投影位置を決定する手順 を示すフローチャートである。  FIG. 9 is a flowchart showing a procedure in which a rotation center axis projection position determining unit 350 determines a rotation center axis projection position.
[図 10]X線源ー2次元 X線検出器の空間変位が残る場合のワイヤー再構成断面像を 示す模式図である。  FIG. 10 is a schematic diagram showing a cross-sectional image of a wire reconstruction when a spatial displacement of the X-ray source—two-dimensional X-ray detector remains.
[図 11]空間変位量補正情報生成手段 380が、空間変位量補正情報を生成する手順 を示すフローチャートである。 [Fig. 11] Spatial displacement correction information generating means 380 for generating spatial displacement correction information It is a flowchart which shows.
圆 12]空間変位量補正情報を生成するための幾何学的計算を説明するための概念 図である。 [12] It is a conceptual diagram for explaining the geometric calculation for generating the spatial displacement correction information.
圆 13]回転中心軸投影位置と X線源— 2次元 X線検出器の空間変位量の補正が完 了し、ワイヤー再構成断面像力 ^点に結像した状態を示す模式図である。 [13] Rotation center axis projection position and X-ray source—This is a schematic diagram showing a state where the correction of the spatial displacement of the two-dimensional X-ray detector has been completed and an image is formed on the wire reconstruction cross-sectional image force ^ point.
圆 14]本発明の第二の実施形態を説明するためのブロック図である。 [14] FIG. 14 is a block diagram for explaining a second embodiment of the present invention.
圆 15]本発明の第二の実施形態を説明するための概念図であって、寝台 17の裏面 にコントラストの高 、ワイヤー線 70が固定されて 、る状態を示す。 15] A conceptual diagram for explaining a second embodiment of the present invention, showing a state where the wire wire 70 is fixed to the back surface of the bed 17 with high contrast.
圆 16]本発明の第二の実施形態における位置合わせ再構成手段 400が、位置合わ せ再構成処理を行う手順を示すフローチャートである。 16) A flowchart showing a procedure for the alignment reconstruction means 400 in the second embodiment of the present invention to perform alignment reconstruction processing.
[図 17]図 16に示された一処理であるワイヤー抽出処理の詳細な手順を示すフローチ ヤートである。  FIG. 17 is a flowchart showing a detailed procedure of wire extraction processing, which is one processing shown in FIG.
[図 18]本発明を適用した C型アーム方式のコーンビーム X線 CT装置 lbであって、 D FIG. 18 is a C-arm type cone beam X-ray CT apparatus lb to which the present invention is applied.
SAに適用したコーンビーム X線 CT装置 lbの概略構成を示すブロック図である。 圆 19]本発明の第三の実施形態における位置合わせ DSA再構成手段 500が、位置 合わせ DS A再構成処理を行う手順を示す、第一のフローチャートである。 It is a block diagram which shows schematic structure of the cone beam X-ray CT apparatus lb applied to SA. 19] FIG. 19 is a first flowchart showing a procedure in which the alignment DSA reconstruction means 500 in the third embodiment of the present invention performs alignment DSA reconstruction processing.
圆 20]本発明の第三の実施形態における位置合わせ DSA再構成手段 500が、位置 合わせ DS A再構成処理を行う手順を示す、第二のフローチャートである。 20] FIG. 20 is a second flowchart showing a procedure in which the alignment DSA reconstruction means 500 in the third embodiment of the present invention performs alignment DSA reconstruction processing.
[図 21]本発明を適用した C型アーム方式のコーンビーム X線 CT装置 lcであって、 F FIG. 21 is a C-arm type cone beam X-ray CT apparatus lc to which the present invention is applied.
PDを用 、た 2次元 X線検出器を備えたコーンビーム X線 CT装置 1 cの概略構成を示 すブロック図である。 符号の説明 FIG. 2 is a block diagram showing a schematic configuration of a cone beam X-ray CT apparatus 1 c equipped with a two-dimensional X-ray detector using PD. Explanation of symbols
1· ··コーンビーム X線 CT装置、 10· ··撮影部、 11· ··Χ線源、 l lt〜X線管、 11c…コリ メータ、 12· ·· 2次元 X線検出器、 12i"'X線イメージインテンシファイア、 12c…テレビ カメラ、 12f…フラットパネルディテクター(FPD)、 13"'C型アーム、 14 -C型アーム 保持体、 15· ··天井支持体、 16· ··天井レール、 17· ··寝台、 18· ··ホールチャート、 18 h…ホール、 20· ··制御演算部、 30· ··回転軌道面 (ミツドプレーン)、 31· ··回転中心軸 、 32· ··回転中心、 33· ··回転中心軸の X線入射面への投影、 35· ··ファントム投影像、 40…被検体、 50…ワイヤー状ファントム、 50a…ファントム保持体、 51· ··幾何学的に 正しいワイヤー投影位置、 52· ··シフトしたワイヤー投影位置、 53· ··ワイヤー再構成 像、 54…回転中心軸の投影が +u方向に誤差を持つ場合のワイヤー再構成断面像 、 55…回転中心軸の投影が u方向に誤差を持つ場合のワイヤー再構成断面像、 56〜X線源 11— 2次元 X線検出器 12の空間変位が残る場合のワイヤー再構成断面 像、 56a…基準ワイヤー再構成像、 57· ··ワイヤー再構成点を固定した後の再構成断 面像、 65· ··変位量、 70…患者ベッドの裏側に配置した高コントラストのワイヤー線、 80· ··表示装置、 90…入力装置、 100…撮影部制御手段、 101…撮影系回転制御 手段、 102…撮影系位置制御手段、 103—X線照射制御手段、 104…寝台制御手 段、 105…検出系制御手段、 110· ··画像収集手段、 200…再構成手段、 201…前 処理手段、 202· ··画像歪み補正手段、 203· ··フィルタリング手段、 204…逆投影手 段、 210· ··画像表示手段、 300· ··幾何学パラメータ計算手段、 320· ··画像歪み補正 テーブル生成手段、 330· ··画像歪み補正テーブル格納手段、 350…回転中心軸投 影位置決定手段、 380…空間変位量補正情報生成手段、 390…空間変位量補正 情報格納手段、 400…位置合わせ再構成手段、 410· ··ワイヤー抽出手段、 500· ·· 位置合わせ DSA再構成手段、 540…差分手段 1 ··· Cone beam X-ray CT device, 10 ··· Radioscope, 11 ··· X-ray source, llt to X-ray tube, 11c ··· Collimator, 12 ··· 2D X-ray detector, 12i "'X-ray image intensifier, 12c ... TV camera, 12f ... Flat panel detector (FPD), 13" C-type arm, 14-C-type arm holder, 15 ... ceiling support, 16 ... Ceiling rail, 17 ··· Bed, 18 ··· Hall chart, 18h… Hall, 20 ··· Control operation unit, 30 ··· Rotating raceway surface (midplane), 31 ··· Rotational center axis, 32 ··· · · · Rotation center, 33 · · · projection of the rotation axis to the X-ray entrance plane, 35 · · · phantom projection image, 40 ... Subject, 50 ... Wire phantom, 50a ... Phantom holder, 51 ... Geometrically correct wire projection position, 52 ... Shifted wire projection position, 53 ... Wire reconstruction image, 54 ... Wire reconstruction cross-sectional image when the rotation center axis projection has an error in the + u direction, 55 ... Wire reconstruction cross-section image when the projection of the rotation center axis has an error in the u direction, 56 to X-ray source 11 — Wire reconstruction cross-sectional image when spatial displacement of 2D X-ray detector 12 remains, 56a… Reference wire reconstruction image, 57 ··· Reconstruction cross-sectional image after fixing the wire reconstruction point, 65 · ··· Displacement amount 70 ··· High-contrast wire arranged on the back of the patient bed · · · Display device · 90 · Input device · 100 · Imaging unit control means · 101 · Imaging system rotation control means · 102 · Imaging System position control means, 103-X-ray irradiation control means, 104 ... Bed control means, 105 ... detection system control means, 110 ... image collection means, 200 ... reconstruction means, 201 ... pre-processing means, 202 ... image distortion correction means, 203 ... filtering means, 204 ... back projection means, 210 Image display means, 300 Geometric parameter calculation means, 320 Image distortion correction table generation means, 330 Image distortion correction table storage means, 350 ... Rotation center axis projection position determination means, 380 ... Spatial displacement correction information generation means, 390 ... Spatial displacement correction information storage means, 400 ... Alignment reconstruction means, 410 ··· Wire extraction means, 500 ··· Alignment DSA reconstruction means, 540 ... Difference means
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、添付図面に従って本発明に係る X線 CT装置の好ましい実施の形態につい て詳説する。 Hereinafter, preferred embodiments of an X-ray CT apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
<第一実施形態 >  <First embodiment>
図 1は、本発明を適用した C型アーム方式のコーンビーム X線 CT装置 1であって、 X線イメージインテンシファイア 12iと、 X線イメージインテンシファイア 12iによる可視 光像を撮影するテレビカメラ 12cとからなる X線検出器を備えた X線 CT装置の概略 構成を示すブロック図である。図 2は、画像歪み補正テーブルの生成に使用されるホ ールチャート 18を示す概念図である。  FIG. 1 is a C-arm type cone-beam X-ray CT apparatus 1 to which the present invention is applied, and includes an X-ray image intensifier 12i and a television camera that captures a visible light image by the X-ray image intensifier 12i. FIG. 12 is a block diagram showing a schematic configuration of an X-ray CT apparatus having an X-ray detector consisting of 12c. FIG. 2 is a conceptual diagram showing a hall chart 18 used for generating an image distortion correction table.
[0012] 図 1及び図 laのコーンビーム X線 CT装置 1は、被検体 40に対して X線を照射し、 被検体 40の X線透過画像を撮影して X線画像データを得る撮影部 10と、撮影部 10 の各構成要素を制御したり、 X線画像データに基づ ヽて被検体 40の 3次元的 X線 C T像を再構成したりする制御演算部 20とを備える。また、画像を表示する表示装置 8 0と、表示装置 80に表示された画像の位置を移動するための指示を入力するための トラックボールやマウス力もなる入力装置 90とを備える。 The cone-beam X-ray CT apparatus 1 in FIGS. 1 and la is an imaging unit that irradiates a subject 40 with X-rays and captures an X-ray transmission image of the subject 40 to obtain X-ray image data. 10 and each component of the imaging unit 10, and based on the X-ray image data, 3D X-ray C of the subject 40 And a control operation unit 20 for reconstructing the T image. Further, the display device 80 includes an image display device 80 and an input device 90 that also has a trackball and a mouse force for inputting an instruction to move the position of the image displayed on the display device 80.
[0013] (撮影部 10)  [0013] (shooting unit 10)
撮影部 10は、被検体 40を載せる寝台 17と、寝台 17に載せられた被検体 40に X線 を照射する X線源 11と、 X線源 11に対向する位置に設置され、被検体 40を透過した X線を検出することにより X線画像データを出力する 2次元 X線検出器 12と、 X線源 1 1及び 2次元 X線検出器 12を機械的に接続する C型アーム 13とを備える。また撮影 部 10は、 C型アーム 13を保持する C型アーム保持体 14と、 C型アーム保持体 14を 天井に取り付ける天井支持体 15と、天井支持体 15を図 1の状態で、前後左右の 2次 元方向に移動可能に支持する天井レール 16とを備える。  The imaging unit 10 is installed at a position facing the X-ray source 11, the bed 17 on which the subject 40 is placed, the X-ray source 11 that irradiates the subject 40 placed on the bed 17, and the X-ray source 11. A two-dimensional X-ray detector 12 that outputs X-ray image data by detecting X-rays transmitted through the X-ray, and a C-arm 13 that mechanically connects the X-ray source 1 1 and the two-dimensional X-ray detector 12 Is provided. The photographing unit 10 includes a C-type arm holding body 14 for holding the C-type arm 13, a ceiling support 15 for attaching the C-type arm holding body 14 to the ceiling, and the ceiling support 15 in the state shown in FIG. And a ceiling rail 16 that is movably supported in the two-dimensional direction.
[0014] X線源 11は、 X線を発生する X線管 l itと、 X線管 l itからの X線照射の方向を円 錐または四角錐状に制御するコリメータ 11cとを備える。  [0014] The X-ray source 11 includes an X-ray tube lit that generates X-rays, and a collimator 11c that controls the direction of X-ray irradiation from the X-ray tube lit in a circular or quadrangular pyramid shape.
[0015] 2次元 X線検出器 12は、 X線透過像を可視光像に変換する X線イメージインテンシ ファイア 12iと、 X線イメージインテンシファイア 12iによる可視光像を撮影するテレビ カメラ 12cとを備える。なお図 1の X線 CT装置、 2次元 X線検出器 12は、 X線イメージ インテンシファイア 12i及びテレビカメラ 12cを備えるが、第四実施形態に記載したよ うに、 2次元 X線検出器 12は、 TFT素子を用いるフラットパネルディテクター (FPD) 等に置き換えてもよい。  [0015] The two-dimensional X-ray detector 12 includes an X-ray image intensifier 12i that converts an X-ray transmission image into a visible light image, and a television camera 12c that captures a visible light image by the X-ray image intensifier 12i. Is provided. The X-ray CT apparatus and the two-dimensional X-ray detector 12 shown in FIG. 1 include an X-ray image intensifier 12i and a television camera 12c. As described in the fourth embodiment, the two-dimensional X-ray detector 12 May be replaced with a flat panel detector (FPD) using TFT elements.
[0016] 上記 C型アーム 13は、被検体 40の撮影に際して、所定の投影角度毎に回転中心 軸 31を中心として回転移動する。これにより、上記 X線源 11及び 2次元 X線検出器 1 2は、ほぼ同一の円軌道上で回転移動しながら、 X線撮影を行う。この回転移動につ いては、画像再構成演算に使用される幾何学パラメータが存在する。すなわち、 C型 アーム 13が回転移動することにより、 X線源 11と 2次元 X線検出器 12とが描く円軌道 を含む面である回転軌道面 (ミツドプレーン) 30と、回転中心軸 31、及び回転中心軸 31と回転軌道面 30との交点である回転中心 32である。  [0016] When imaging the subject 40, the C-type arm 13 rotates about the rotation center axis 31 for each predetermined projection angle. Thereby, the X-ray source 11 and the two-dimensional X-ray detector 12 perform X-ray imaging while rotating and moving on substantially the same circular orbit. For this rotational movement, there are geometric parameters used for the image reconstruction operation. That is, the rotational movement of the C-arm 13 causes a rotational orbit plane (midplane) 30 that includes a circular orbit drawn by the X-ray source 11 and the two-dimensional X-ray detector 12, a rotation center axis 31, and The rotation center 32 is an intersection of the rotation center axis 31 and the rotation track surface 30.
[0017] これらの幾何学パラメータは、原理的には、撮影部 10の設計データから定まるが、 実際的には撮影部 10の制作誤差や部材の変形に起因して、個々のコーンビーム X 線 CT装置 1に固有の値となる。 [0017] In principle, these geometric parameters are determined from the design data of the photographing unit 10, but in practice, due to production errors of the photographing unit 10 and deformation of members, individual cone beams X Value specific to line CT system 1.
[0018] (制御演算部 20)  [0018] (Control arithmetic unit 20)
制御演算部 20は、撮影部 10を制御する撮影部制御手段 100と、撮影部 10が出力 した X線画像データを収集して格納する画像収集手段 110と、収集された X線画像 データに基づ ヽて 3次元的 X線 CT像を再構成する再構成手段 200と、撮影部 10の 機械的製作上の誤差を数値的に表わし、再構成手段 200における 3次元再構成の 際に補正データとして用いる幾何学パラメータを求めるための幾何学パラメータ計算 手段 300とを備える。更に、再構成手段 200で生成した 3次元的 X線 CT像を表示す る画像表示手段 210を備える。  The control calculation unit 20 includes an imaging unit control unit 100 that controls the imaging unit 10, an image collection unit 110 that collects and stores the X-ray image data output from the imaging unit 10, and the acquired X-ray image data. Next, the reconstruction means 200 for reconstructing a three-dimensional X-ray CT image and the mechanical manufacturing error of the imaging unit 10 are numerically expressed, and correction data is obtained when the reconstruction means 200 performs three-dimensional reconstruction. And a geometric parameter calculation means 300 for obtaining a geometric parameter to be used. Furthermore, an image display means 210 for displaying the three-dimensional X-ray CT image generated by the reconstruction means 200 is provided.
[0019] 撮影部制御手段 100は、 C型アーム 13が、回転中心軸 31の回りを回転する(以下 、「プロペラ回転」という。)回転移動を制御する撮影系回転制御手段 101と、天井支 持体 15の天井レール 16上での位置を制御して C型アーム 13の被検体 40に対する 位置を 2次元的に制御する撮影系位置制御手段 102とを備える。更に撮影部制御手 段 100は、 X線管 l itに流す管電流の ON、 OFF等を制御する X線照射制御手段 10 3と、寝台 17の位置を制御して被検体 40の位置を調整するための寝台制御手段 10 4と、 2次元 X線検出器 12による X線透過像の撮影を制御する検出系制御手段 105 とを備える。  The imaging unit control means 100 includes an imaging system rotation control means 101 that controls rotational movement of the C-shaped arm 13 around the rotation center axis 31 (hereinafter referred to as “propeller rotation”), and a ceiling support. An imaging system position control means 102 is provided for controlling the position of the holder 15 on the ceiling rail 16 and controlling the position of the C-arm 13 relative to the subject 40 in a two-dimensional manner. Further, the imaging unit control means 100 adjusts the position of the subject 40 by controlling the positions of the X-ray irradiation control means 103 and the bed 17 that control ON / OFF of the tube current flowing through the X-ray tube lit. For example, and a detection system control means 105 for controlling the taking of an X-ray transmission image by the two-dimensional X-ray detector 12.
[0020] (再構成手段 200)  [0020] (Reconstruction means 200)
再構成手段 200は、前処理手段 201と、画像歪み補正手段 202と、フィルタリング 手段 203と、逆投影手段 204とを備える。  The reconstruction unit 200 includes a preprocessing unit 201, an image distortion correction unit 202, a filtering unit 203, and a back projection unit 204.
[0021] 前処理手段 201は、画像収集手段 110が収集した X線画像データを X線吸収係数 の分布像に変換するための手段である。本実施の形態では、まず、被検体 40及び 寝台 17を撮影視野内に配置しない状態で予め撮影された空気の X線透過像の各画 素データに対して自然対数変換演算を施す。次に被検体 40を寝台 17に載せた状 態で撮影した X線透過像の各画素データに対して自然対数変換演算を施す。上記 2 つの X線透過画像の差分を取ることにより、被検体 40及び寝台 17の X線吸収係数の 分布像を得る。  The preprocessing unit 201 is a unit for converting the X-ray image data collected by the image collection unit 110 into a distribution image of X-ray absorption coefficients. In the present embodiment, first, natural logarithmic conversion calculation is performed on each pixel data of an X-ray transmission image of air that has been captured in advance without the subject 40 and the bed 17 being placed in the field of view. Next, a natural logarithmic conversion operation is performed on each pixel data of an X-ray transmission image taken with the subject 40 placed on the bed 17. By taking the difference between the two X-ray transmission images, a distribution image of the X-ray absorption coefficients of the subject 40 and the bed 17 is obtained.
[0022] 画像歪み補正手段 202は、前処理手段 201が生成した X線吸収係数の分布像の 画像歪みを補正する。この画像歪みは、 X線イメージインテンシファイア 12iによって X線透過像を可視光像に変換する際に生ずる画像歪みであり、後述する画像歪み 補正テーブル格納手段 330により格納されて 、る画像歪み補正テーブルを用いて、 前処理手段 201で得られた X線吸収係数の分布像の画像歪みを補正する。 [0022] The image distortion correction unit 202 is a method for calculating the distribution image of the X-ray absorption coefficient generated by the preprocessing unit 201. Correct image distortion. This image distortion is image distortion that occurs when an X-ray transmission image is converted into a visible light image by the X-ray image intensifier 12i, and is stored in the image distortion correction table storage means 330 described later. Using the table, the image distortion of the X-ray absorption coefficient distribution image obtained by the preprocessing means 201 is corrected.
[0023] フィルタリング手段 203は、 X線 CT画像再構成におけるフィルタリング処理を行う。  [0023] The filtering means 203 performs filtering processing in X-ray CT image reconstruction.
[0024] 逆投影手段 204は、フィルタリング処理後の X線画像データに基づいて逆投影演 算を行い、 3次元的 X線 CT像を生成する。逆投影手段 204は、フィルタリング処理後 の各々の X線画像データ (各投影角度力も撮影した X線画像データ)に対し、空間変 位量補正情報に基づ!、て X線源と X線検出器との空間変位量を補正をする。次に、 逆投影手段 204は、各々の X線画像データに基づく投影像を生成する。そして、逆 投影手段 204は、この投影像を逆投影演算して X線 CT像を生成する。  [0024] The back projection means 204 performs a back projection operation based on the filtered X-ray image data, and generates a three-dimensional X-ray CT image. Back projection means 204 detects the X-ray source and X-ray detection based on the spatial displacement correction information for each X-ray image data after filtering (X-ray image data obtained by photographing each projection angular force)! Correct the amount of spatial displacement with the vessel. Next, the back projection means 204 generates a projection image based on each X-ray image data. Then, the back projection means 204 generates an X-ray CT image by performing a back projection operation on this projection image.
[0025] また、逆投影手段 204は、フィルタリング処理後の各々の X線画像データから投影 像を生成する。次に、逆投影手段 204は、この投影像に対して空間変位量補正情報 に基づいて X線源と X線検出器との空間変位量を補正する。そして、逆投影手段 20 4は、補正後の投影像を逆投影演算して X線 CT像を生成してもよ 、。  [0025] Further, the back projection means 204 generates a projection image from each X-ray image data after the filtering process. Next, the back projection means 204 corrects the spatial displacement amount between the X-ray source and the X-ray detector based on the spatial displacement amount correction information for this projection image. Then, the back projection means 204 may generate an X-ray CT image by performing a back projection operation on the corrected projection image.
[0026] (幾何学パラメータ計算手段 300)  [0026] (Geometric parameter calculation means 300)
幾何学パラメータ計算手段 300は、再構成手段 200で画像再構成を行う際に必要 となる幾何学パラメータを算出する手段である。幾何学パラメータ計算手段 300が扱 う幾何学パラメータは、回転軌道面 30と、回転中心軸 31と、 X線イメージインテンシフ アイァ 12iによる画像歪みである。これらの幾何学パラメータを算出するために、幾何 学パラメータ計算手段 300は、画像歪み補正テーブル生成手段 320と、画像歪み補 正テーブル格納手段 330と、回転中心軸投影位置決定手段 350と、空間変位量補 正情報生成手段 380と、空間変位量補正情報格納手段 390とを備える。上記した幾 何学パラメータ計算手段 300の各構成要素については、後述する。  The geometric parameter calculation unit 300 is a unit that calculates a geometric parameter required when the reconstruction unit 200 performs image reconstruction. The geometric parameters handled by the geometric parameter calculation means 300 are the image distortion caused by the rotation orbit plane 30, the rotation center axis 31, and the X-ray image intensifier eye 12i. In order to calculate these geometric parameters, the geometric parameter calculation means 300 includes an image distortion correction table generation means 320, an image distortion correction table storage means 330, a rotation center axis projection position determination means 350, a spatial displacement. An amount correction information generation unit 380 and a spatial displacement amount correction information storage unit 390 are provided. Each component of the geometric parameter calculation means 300 will be described later.
[0027] 画像歪み補正テーブル生成手段 320は、上述の画像歪み補正手段 202で使用す る画像歪み補正テーブルを、図 2に示すホールチャート 18を用いて生成する。図 2の ホールチャート 18は、 X線を吸収し易い材料で形成した板材に、格子状配列で多数 の小さなホール 18hを穿設して形成される。画像歪み補正テーブルを生成するには 、まず、 X線イメージインテンシファイア 12iの X線入射面にホールチャート 18を固定 し、このホールチャート 18の X線透過像(以下「ホールチャート歪み投影像」という。 ) を撮影する。次に、前処理手段 201が、ホールチャート歪み投影像に前処理を行う。 そして、ホールチャート歪み投影像における各ホール 18hの投影位置を検出する。 次に、ホールチャート 18が歪みなく X線入射面に投影された場合を仮想した各ホー ル 18hの仮想投影位置を演算する。そして、検出した各ホール 18hの投影位置が、 仮想投影位置に一致するように変換する計算をホール 18h毎に行 ヽ、画像歪み補 正テーブルを生成する。 FPDの場合は、画像回転により検出器取付け角度を補正 する。 The image distortion correction table generating unit 320 generates an image distortion correction table used by the above-described image distortion correcting unit 202 using the hall chart 18 shown in FIG. The hole chart 18 in FIG. 2 is formed by drilling a number of small holes 18h in a lattice arrangement on a plate made of a material that easily absorbs X-rays. To generate an image distortion correction table First, the Hall chart 18 is fixed to the X-ray incident surface of the X-ray image intensifier 12i, and an X-ray transmission image of the Hall chart 18 (hereinafter referred to as “Hall chart distortion projection image”) is taken. Next, preprocessing means 201 preprocesses the whole chart distortion projection image. Then, the projection position of each hole 18h in the hall chart distortion projection image is detected. Next, the virtual projection position of each hole 18h is calculated assuming that the Hall chart 18 is projected onto the X-ray incident surface without distortion. Then, calculation for converting the detected projection position of each hole 18h so as to coincide with the virtual projection position is performed for each hole 18h, and an image distortion correction table is generated. In the case of FPD, the detector mounting angle is corrected by rotating the image.
[0028] 画像歪み補正テーブル格納手段 330は、画像歪み補正テーブル生成手段 320が 生成した画像歪み補正テーブルを、磁気ディスク等に格納する。そして、画像歪み補 正手段 202が X線透過像の歪みを補正する際に、格納した画像歪み補正テーブル を読み出す。 FPDの場合は、検出器取付け補正角を保存する。そして FPDの場合 は、 X線透過像の回転を補正する際に、この補正角を読み出す。  [0028] The image distortion correction table storage means 330 stores the image distortion correction table generated by the image distortion correction table generation means 320 on a magnetic disk or the like. Then, when the image distortion correction unit 202 corrects the distortion of the X-ray transmission image, the stored image distortion correction table is read out. In the case of FPD, save the detector mounting correction angle. In the case of FPD, this correction angle is read when correcting the rotation of the X-ray transmission image.
[0029] コーンビーム X線 CT装置 1は、図 3及び図 4に示すように、指標体、例えば、ワイヤ 一状ファントム 50の X線透過画像 (以下「ファントム投影像」と!、う) 35を撮影し、ファ ントム X線画像データを出力する。  [0029] As shown in FIGS. 3 and 4, the cone beam X-ray CT apparatus 1 is an X-ray transmission image (hereinafter referred to as “phantom projection image”!) Of an index body, for example, a wire phantom 50. , And output phantom X-ray image data.
[0030] 回転中心軸投影位置決定手段 350は、ファントム X線画像データに基づいて、ファ ントム投影像 35の 3次元的 X線 CT像を結像するために基準となる回転中心軸投影 ノ メータを決定する。回転中心軸投影位置決定手段 350が、回転中心軸投影パラ メータを決定する方法にっ 、ては後述する。  [0030] The rotation center axis projection position determining means 350 is based on the phantom X-ray image data, and serves as a rotation center axis projection meter serving as a reference for forming a three-dimensional X-ray CT image of the phantom projection image 35. To decide. The method by which the rotation center axis projection position determining means 350 determines the rotation center axis projection parameters will be described later.
[0031] 空間変位量補正情報生成手段 380は、投影角度毎に生ずる X線源 11 2次元 X 線検出器 12の空間変位量を算出する。そして、回転中心軸投影位置決定手段 350 が決定した回転中心軸投影パラメータを用 ヽてファントム X線画像データに対して画 像再構成演算を行ヽ、その結果得られるワイヤー状ファントム 50の再構成された断 面像 (以下「ワイヤー再構成断面像」という。)を 1点に結像させるための、空間変位量 補正情報を生成する。  The spatial displacement correction information generating unit 380 calculates the spatial displacement of the X-ray source 11 2D X-ray detector 12 generated for each projection angle. Then, the image reconstruction calculation is performed on the phantom X-ray image data using the rotation center axis projection parameters determined by the rotation center axis projection position determining means 350, and the resulting wire phantom 50 is reconstructed. Spatial displacement correction information is generated to form the sectioned image (hereinafter referred to as “wire reconstructed cross-sectional image”) at one point.
[0032] 空間変位量補正情報格納手段 390は、空間変位量補正情報生成手段 380が生 成した空間変位量補正情報を磁気ディスク等に格納する。そして、逆投影手段 204 が X線源 11 - 2次元 X線検出器 12の空間変位量を調整して X線画像データを補正 する際に、格納した空間変位量補正情報を読み出す。 [0032] The spatial displacement correction information storage means 390 is generated by the spatial displacement correction information generation means 380. The generated spatial displacement correction information is stored in a magnetic disk or the like. Then, when the back projection means 204 adjusts the spatial displacement amount of the X-ray source 11-2D X-ray detector 12 to correct the X-ray image data, the stored spatial displacement amount correction information is read out.
[0033] 上記の C型アーム方式コーンビーム X線 CT装置 1の仕様例は次のとおりである。 X 線管 l itと回転中心軸 31との距離は 800mm、回転中心軸 31と 2次元 X線検出器 1 2の X線入射面、すなわち X線イメージインテンシファイア 12iの X線入射面との距離 は 400mm、 X線イメージインテンシファイア 12iの X線入射面の大きさは 400mmの 円形状であって、画像サイズは 1024 X 1024 (走査線数)である。そして 2次元 X線 検出器 12のピッチは 0. 4mmである。 撮影系回転制御手段 101は、 2次元 X線検 出器 12を、被検体 40の左手の方向(一 100° )から天井方向(0° )を通過し、被検 体 40の右手方向( + 100° )まで移動させる、すなわち、 X線管 l itを被検体 40の右 手方向( + 100° )から天井方向(0° )を通過し、被検体 40の左手方向(一 100° ) まで移動させることにより、 200度の投影角度にわたって被検体 40の 2次元 X線透過 画像が撮影される。 C型アーム 13の回転速度の代表例は 1秒当たり 40度で、スキヤ ン時間は 5秒である。 [0033] The specification example of the C-arm type cone beam X-ray CT apparatus 1 is as follows. The distance between the X-ray tube l it and the rotation center axis 31 is 800 mm, and the distance between the rotation center axis 31 and the X-ray incident surface of the two-dimensional X-ray detector 1 2, that is, the X-ray image intensifier 12i The distance is 400mm, the X-ray image intensifier 12i has a circular X-ray entrance surface size of 400mm, and the image size is 1024 X 1024 (number of scanning lines). The pitch of the two-dimensional X-ray detector 12 is 0.4 mm. The imaging system rotation control means 101 passes the 2D X-ray detector 12 from the left hand direction of the subject 40 (one 100 °) to the ceiling direction (0 °), and to the right hand direction of the subject 40 (+ 100 °), that is, the X-ray tube l it passes from the right hand direction of the subject 40 (+ 100 °) to the ceiling direction (0 °) and to the left hand direction of the subject 40 (one 100 °). By moving, a two-dimensional X-ray transmission image of the subject 40 is taken over a projection angle of 200 degrees. A typical example of the rotational speed of the C-arm 13 is 40 degrees per second and the scan time is 5 seconds.
[0034] 次に、本実施形態の C型アーム方式コーンビーム X線 CT装置 1による撮影におけ る動作の概要について説明する。  Next, an outline of an operation in imaging by the C-arm type cone beam X-ray CT apparatus 1 of the present embodiment will be described.
[0035] 先ず撮影系回転制御手段 101は C型アーム 13のプロペラ回転を開始する。回転 加速期間を経たのち、 X線照射制御手段 103は、 X線管 l itに X線を照射させる。検 出系制御手段 105はテレビカメラ 12cによる可視光像の撮像を開始する。 X線管 l it 力も照射された X線は、被検体 40を透過した後、 X線イメージインテンシファイア 12i へ入射する。 X線透過像は X線イメージインテンシファイア 12iにより可視光像に変換 され、テレビカメラ 12cに取り込まれる。テレビカメラ 12cは可視光像をビデオ信号に 変換し、そのビデオ信号が AZD変換を経た後、デジタル信号カゝらなる 2次元の X線 画像データとして画像収集手段 110に記録される。テレビカメラ 12cの撮影における 標準走査モードは毎秒 30フレーム、走査線数 1024本である。回転角度ピッチは 1. 33度で、 5秒間に 150枚の X線透過像を取得する。 200度の回転撮影が完了すると 、 X線照射制御手段 103は X線管 l itの X線照射を終了し、撮影系回転制御手段 10 1は回転を停止する。 First, the imaging system rotation control means 101 starts propeller rotation of the C-arm 13. After the rotation acceleration period, the X-ray irradiation control means 103 irradiates the X-ray tube l it with X-rays. The detection system control means 105 starts taking a visible light image by the television camera 12c. The X-ray irradiated with the X-ray tube l it force passes through the subject 40 and then enters the X-ray image intensifier 12i. The X-ray transmission image is converted into a visible light image by the X-ray image intensifier 12i and captured by the television camera 12c. The television camera 12c converts a visible light image into a video signal, and the video signal undergoes AZD conversion, and then is recorded in the image collecting means 110 as two-dimensional X-ray image data such as a digital signal. The standard scanning mode for shooting with the TV camera 12c is 30 frames per second and 1024 scanning lines. The rotation angle pitch is 1.33 degrees, and 150 X-ray transmission images are acquired in 5 seconds. When the 200-degree rotation imaging is completed, the X-ray irradiation control means 103 ends the X-ray irradiation of the X-ray tube lit, and the imaging system rotation control means 10 1 stops rotating.
[0036] 再構成手段 200は、以上のような撮影に並行し、あるいは撮影終了後に画像収集 手段 110から 2次元の X線画像データを読み出し、この X線画像データに基づ 、て 画像再構成演算を行い、被検体 40の 3次元的 X線 CT像の再構成演算を行う。画像 表示手段 210は、 3次元的 X線 CT像を、 CRT装置や液晶ディスプレイ装置等からな る表示装置 80に表示する。なお画像表示手段 210は、画像収集手段 110に記録さ れた 2次元の X線画像データに基づき、 2次元画像を表示してもよ ヽ。  [0036] The reconstruction unit 200 reads the two-dimensional X-ray image data from the image collection unit 110 in parallel with the above-described imaging or after the imaging is completed, and performs image reconstruction based on the X-ray image data Calculation is performed to reconstruct the 3D X-ray CT image of the subject 40. The image display means 210 displays a three-dimensional X-ray CT image on a display device 80 composed of a CRT device, a liquid crystal display device, or the like. The image display unit 210 may display a two-dimensional image based on the two-dimensional X-ray image data recorded in the image collection unit 110.
[0037] 次に、図 3乃至 6に基づいて、幾何学パラメータ計算手段 300における処理の内容 を説明する。図 3は、ワイヤー状ファントム 50が回転撮影される状態を説明するため の概念図である。図 4は、図 3の状態を、寝台 17から C型アーム 13に向力つて見た状 態を示す概念図である。図 5は、図 3及び図 4の回転撮影の結果得られたワイヤー状 ファントム 50のファントム投影像 35を示す模式図である。図 6は、幾何学パラメータ計 算手段 300が、幾何学パラメータ計算処理を行う手順を示すフローチャートである。 以下、図 6のステップ順に説明をする。  Next, the contents of processing in the geometric parameter calculation means 300 will be described with reference to FIGS. FIG. 3 is a conceptual diagram for explaining a state in which the wire phantom 50 is rotated and photographed. FIG. 4 is a conceptual diagram showing a state where the state of FIG. 3 is viewed from the bed 17 toward the C-arm 13. FIG. 5 is a schematic diagram showing a phantom projection image 35 of the wire-like phantom 50 obtained as a result of the rotational shooting shown in FIGS. FIG. 6 is a flowchart showing a procedure in which the geometric parameter calculation means 300 performs a geometric parameter calculation process. Hereinafter, description will be made in the order of steps in FIG.
[0038] (ステップ S310)  [0038] (Step S310)
ホールチャート 18を X線イメージインテンシファイア 12iの X線入射面に固定して回 転撮影を行い、画像収集手段 110により各投影角度におけるホールチャート歪み投 影像の収集を行う(S310)。収集するホールチャート歪み投影像は、本実施形態の 場合であれば上述のように 150枚になる。  The Hall chart 18 is fixed to the X-ray incident surface of the X-ray image intensifier 12i to perform rotational imaging, and the image collection means 110 collects a Hall chart distortion projection image at each projection angle (S310). In the case of this embodiment, the number of hall chart distortion projection images to be collected is 150 as described above.
[0039] (ステップ S320)  [0039] (Step S320)
画像歪み補正テーブル生成手段 320は、ステップ S310で得られた 150枚のホー ルチャート歪み投影像に基づ 、て、画像歪み補正テーブルを生成する。  The image distortion correction table generating means 320 generates an image distortion correction table based on the 150 Hall chart distortion projection images obtained in step S310.
[0040] (ステップ S330)  [0040] (Step S330)
画像歪み補正テーブル格納手段 330は、ステップ S320で生成された画像歪み補 正テーブルを格納する(S330)。  The image distortion correction table storage means 330 stores the image distortion correction table generated in step S320 (S330).
[0041] (ステップ S340)  [0041] (Step S340)
ワイヤー状ファントム 50の撮影を行う(S340)。図 3に示すように、ファントム保持体 50aを寝台 17上に載置する。そして、ファントム保持体 50aは、図 3及び図 4に示すよ うに、ワイヤー状ファントム 50を回転中心軸 31にできるだけ近い位置に、寝台 17から 突出させて位置させる。そして、 X線源 11及び 2次元 X線検出器 12は、ワイヤー状フ アントム 50の回転撮影を行い、ワイヤー状ファントム 50の X線透過像を撮影し、ファン トム X線画像データを出力する。このワイヤー状ファントム 50の X線透過像には、ワイ ヤー状ファントム 50の投影像であるファントム投影像 35が含まれる。画像収集手段 1 10は、ファントム X線画像データを収集する(S340)。図 5に示すように、ファントム投 影像 35は、全ての投影角度において、回転中心軸 31の X線入射面への投影 33に 近接した位置に表示される。ワイヤー状ファントム 50の撮影が終了すると、ワイヤー 状ファントム 50及びワイヤー状ファントム保持体 50aは、寝台 17上から取り除かれる。 Shoot the wire phantom 50 (S340). As shown in FIG. 3, the phantom holder 50a is placed on the bed 17. The phantom holder 50a is shown in FIGS. Similarly, the wire-like phantom 50 is positioned so as to protrude from the bed 17 as close as possible to the rotation center axis 31. Then, the X-ray source 11 and the two-dimensional X-ray detector 12 perform rotational imaging of the wire phantom 50, take an X-ray transmission image of the wire phantom 50, and output phantom X-ray image data. The X-ray transmission image of the wire phantom 50 includes a phantom projection image 35 that is a projection image of the wire phantom 50. The image collecting means 110 collects phantom X-ray image data (S340). As shown in FIG. 5, the phantom projection image 35 is displayed at a position close to the projection 33 on the X-ray incident surface of the rotation center axis 31 at all projection angles. When shooting of the wire phantom 50 is completed, the wire phantom 50 and the wire phantom holder 50a are removed from the bed 17.
[0042] (ステップ S350)  [0042] (Step S350)
回転中心軸投影位置決定手段 350は、ステップ S340で収集されたファントム X線 画像データに含まれるファントム投影像 35を用い、 3次元的 X線 CT像を結像するた めに基準となるような回転中心軸投影パラメータを決定する (S350)。計算の具体的 な処理の詳細は、図 7乃至 9に基づいて後述する。なお、以下の処理では、回転軌 道面(ミツドプレーン) 30に限定したファントム X線画像データを用いた処理を行えば 十分であり、こうすることで演算量を少なくすることができる。  The rotation center axis projection position determining means 350 uses the phantom projection image 35 included in the phantom X-ray image data collected in step S340, and serves as a reference for imaging a three-dimensional X-ray CT image. The rotation center axis projection parameter is determined (S350). Details of the specific processing of the calculation will be described later with reference to FIGS. In the following process, it is sufficient to perform the process using the phantom X-ray image data limited to the rotation path plane (mitd plane) 30, and this can reduce the amount of calculation.
[0043] (ステップ S360)  [0043] (Step S360)
ステップ S350で回転中心軸投影パラメータを求める際に出力されたワイヤー再構 成像 53を用い、目標とするワイヤー再構成点を、最もコントラストの大きい 1点(以下、 「基準ワイヤー再構成像」という)に固定する。以下、基準ワイヤー再構成像 56aに結 像するように、投影角度ごとに生じる X線源 11— 2次元 X線検出器 12の空間変位量 を補正することに関する処理を行う。  Using the wire reconstruction image 53 output when calculating the rotation center axis projection parameter in step S350, the target wire reconstruction point is one point with the highest contrast (hereinafter referred to as “reference wire reconstruction image”). Secure to. Hereinafter, processing related to correcting the amount of spatial displacement of the X-ray source 11—two-dimensional X-ray detector 12 generated at each projection angle so as to form the reference wire reconstructed image 56a is performed.
[0044] (ステップ S370)  [0044] (Step S370)
ステップ S340で収集されたファントム X線画像データに基づいて、各々のファントム 投影像 35に対して、ワイヤー状ファントム 50の投影位置 52を推定し、左右方向の座 標 (u)及び体軸方向の座標 (V)の値で表される直線、ある!ヽは投影位置 52を表す直 線と回転軌道面 30の交点の u座標を求める(S370)。ここで、ファントム投影像 35に おける投影位置 52を推定するための方法としては、 u軸方向に投影データのプロフ アイルをとり、その最小値、または不良データの混在による誤りを防ぐため U軸方向に 隣接する数点の画像値の 2階微分力も求め、その極小値、をあてる方法などがある。 さらに、 u軸方向に平行な複数ラインで同様の処理を行い、ファントム投影像 35にお ける投影位置 52の推定精度を上げることができる。ここで求めたワイヤー投影位置 5 2は、次のステップ S380にお 、て空間変位量補正情報を生成するために用いられる Based on the phantom X-ray image data collected in step S340, the projection position 52 of the wire phantom 50 is estimated for each phantom projection image 35, and the left and right coordinates (u) and the body axis direction are estimated. There is a straight line with coordinates (V)!ヽ finds the u coordinate of the intersection of the straight line representing the projection position 52 and the rotating orbital plane 30 (S370). Here, as a method for estimating the projection position 52 in the phantom projection image 35, the projection data profile in the u-axis direction is used. There is a method that takes an aisle, finds the minimum value, or obtains the second-order differential force of several image values adjacent in the U-axis direction, and assigns the minimum value to prevent errors due to mixing of bad data. Furthermore, the same processing can be performed with a plurality of lines parallel to the u-axis direction, and the estimation accuracy of the projection position 52 in the phantom projection image 35 can be increased. The wire projection position 52 obtained here is used to generate spatial displacement correction information in the next step S380.
[0045] (ステップ S380) [0045] (Step S380)
投影角度ごとに生ずる X線源 11 - 2次元 X線検出器 12の空間変位量を補正して、 ステップ S350で求めた回転中心軸投影パラメータを用いて再構成するワイヤー状フ アントム 50の再構成断面像を 1点に結像させるための、空間変位量補正情報を生成 する(S380)。計算の具体的な処理の詳細は、図 11及び 12を用い後述する。  X-ray source generated at each projection angle 11-Reconstruction of wire phantom 50 reconstructed by correcting the spatial displacement of the two-dimensional X-ray detector 12 and using the rotation center axis projection parameters obtained in step S350 Spatial displacement correction information is generated to form a cross-sectional image at one point (S380). Details of the specific processing of the calculation will be described later with reference to FIGS.
[0046] (ステップ S390)  [0046] (Step S390)
ステップ S380で計算された空間変位量補正情報を空間変位量補正情報格納手 段 390に格納する(S390)。空間変位量補正情報格納手段 390に格納された空間 変位量補正情報は、逆投影手段 204において、投影角度ごとに生ずる X線源 11— 2 次元 X線検出器 12の空間変位量を補正して、ワイヤー状ファントム 50の再構成断面 像を 1点に結像させるために用いられる。  The spatial displacement correction information calculated in step S380 is stored in the spatial displacement correction information storage unit 390 (S390). The spatial displacement correction information stored in the spatial displacement correction information storage means 390 is obtained by correcting the spatial displacement amount of the X-ray source 11—two-dimensional X-ray detector 12 generated at each projection angle in the back projection means 204. It is used to form a reconstructed cross-sectional image of the wire-like phantom 50 at one point.
[0047] 次に、図 7乃至 10に基づいて、本発明の特徴が含まれる回転中心軸投影位置決 定手段 350と、空間変位量補正情報生成手段 380の詳細について説明する。図 7及 び図 8は、回転中心軸投影パラメータの調整によりワイヤー再構成像 53が結像して いく様子を示す概念図、図 9は、回転中心軸投影位置決定手段 350における回転中 心軸投影位置決定処理 (ステップ S350)のフローチャート、図 10は、回転中心軸投 影位置決定処理の結果得られるワイヤー再構成断面像を示す概念図である。  Next, details of the rotation center axis projection position determining means 350 and the spatial displacement amount correction information generating means 380 including the features of the present invention will be described with reference to FIGS. 7 and 8 are conceptual diagrams showing how the wire reconstructed image 53 is formed by adjusting the rotation center axis projection parameter, and FIG. 9 is a rotation center axis in the rotation center axis projection position determining means 350. A flowchart of the projection position determination process (step S350), FIG. 10 is a conceptual diagram showing a wire reconstruction cross-sectional image obtained as a result of the rotation center axis projection position determination process.
[0048] まず、図 7及び図 8に基づいて、回転中心軸 31の初期位置が異なっている場合に 得られるワイヤー再構成像 53について説明する。図 7及び図 8は被検体 40の足方向 力もみたもので、簡単のため X線イメージインテンシファイア 12i及びテレビカメラ 12c のみを示し、他は省略した。 X線イメージインテンシファイア 12i及びテレビカメラ 12c は、被検体 40の左手の方向から、天井の方向を通過し、被検体 40の右手の方向ま で移動する。 First, a wire reconstruction image 53 obtained when the initial position of the rotation center shaft 31 is different will be described with reference to FIGS. 7 and 8. FIG. 7 and 8 also show the force in the foot direction of the subject 40. For simplicity, only the X-ray image intensifier 12i and the TV camera 12c are shown, and the others are omitted. The X-ray image intensifier 12i and the television camera 12c pass from the direction of the left hand of the subject 40 to the direction of the ceiling and pass from the direction of the right hand of the subject 40. Move with.
[0049] 図 7は、 2次元 X線検出器 12上での回転中心軸 31の投影が実際のワイヤー投影 位置 52 (実線)を基準として +u方向に誤差を持つ場合に画像再構成処理をした結 果を示す。この場合、ワイヤー状ファントム 50の再構成断面像 54は、一点に結像せ ず、図 7に示すように右側に開いた半円状の弧を描き、その半径は投影位置の正し V、位置(幾何学的に正 U、ワイヤー投影位置 51:点線)力ものずれに等しくなる 一方、図 8は、 2次元 X線検出器 12上での回転中心軸 31の投影が実際のワイヤー 投影位置 52 (実線)を基準として u方向に誤差を持つ場合に画像再構成処理をし た結果を示す。この場合、再構成断面像 55は、一点に結像せず、左側に開いた半 円状の弧を描き、その半径は投影位置の正しい位置 (幾何学的に正しいワイヤー投 影位置 51:点線)力ものずれに等しくなる。  [0049] Fig. 7 shows the image reconstruction process when the projection of the rotation center axis 31 on the two-dimensional X-ray detector 12 has an error in the + u direction with reference to the actual wire projection position 52 (solid line). The results are shown. In this case, the reconstructed cross-sectional image 54 of the wire-like phantom 50 does not form a single point, but draws a semicircular arc opened on the right side as shown in FIG. The position (geometrically positive U, wire projection position 51: dotted line) is equal to the displacement of force. On the other hand, Fig. 8 shows that the projection of the rotation center axis 31 on the two-dimensional X-ray detector 12 is the actual wire projection position. The result of image reconstruction when there is an error in the u direction with reference to 52 (solid line) is shown. In this case, the reconstructed cross-sectional image 55 does not form a single point, but draws a semicircular arc that opens to the left, and its radius is the correct position of the projection position (geometrically correct wire projection position 51: dotted line). ) It becomes equal to the shift of force.
[0050] 図 7及び図 8の再構成断面像 54、 55は、複数の半円力も成る力 これは回転中心 軸投影位置のずれの他に、各々の X線画像データにおいて、後述する X線源 11— 2 次元 X線検出器 12の空間変位量がある場合を想定して描かれているためである。  [0050] The reconstructed cross-sectional images 54 and 55 shown in FIGS. 7 and 8 are forces that also have a plurality of semicircular forces. This is because the source 11 is drawn assuming that there is a spatial displacement of the two-dimensional X-ray detector 12.
[0051] 次に、図 9に基づいて、回転中心軸投影位置決定手段 350が、回転中心軸投影位 置を決定する手順を詳細に説明する。  Next, a procedure in which the rotation center axis projection position determining unit 350 determines the rotation center axis projection position will be described in detail with reference to FIG.
[0052] (ステップ S351)  [0052] (Step S351)
回転中心軸投影位置 (以下、 centerと称す)を初期位置 (設計位置)に設定する (S 351)。  The rotation center axis projection position (hereinafter referred to as center) is set to the initial position (design position) (S 351).
[0053] (ステップ S352)  [0053] (Step S352)
前処理手段 201は、ステップ S340で収集されたファントム X線画像データの前処 理を行う(S352)。  The preprocessing means 201 performs preprocessing of the phantom X-ray image data collected in step S340 (S352).
[0054] (ステップ S353) [0054] (Step S353)
画像歪み補正手段 202は、ステップ S352で前処理を行ったファントム X線画像デ ータに対して画像歪み補正処理を行う(S353)。  The image distortion correction unit 202 performs image distortion correction processing on the phantom X-ray image data that has been preprocessed in step S352 (S353).
[0055] (ステップ S354) [0055] (Step S354)
フィルタリング手段 203は、ステップ S353で画像歪み補正処理を行ったファントム X 線画像データについて、フィルタリング処理を行う(S354)。 [0056] (ステップ S355) The filtering means 203 performs a filtering process on the phantom X-ray image data that has been subjected to the image distortion correction process in step S353 (S354). [0056] (Step S355)
逆投影手段 204は、ステップ S354でフィルタリング処理を行ったファントム X線画像 データについて、回転中心軸投影位置(center)の値で、逆投影処理を行い、ワイヤ 一再構成像 53を生成する(S355)。  The back projection means 204 performs back projection processing on the phantom X-ray image data subjected to the filtering processing in step S354 with the value of the rotation center axis projection position (center), and generates a wire reconstructed image 53 (S355). .
[0057] (ステップ S356)  [0057] (Step S356)
ステップ S355で生成したワイヤー再構成像 53から、ワイヤー領域を抽出し、そのう ち最もコントラストの大きい弧の半径を算出する(S356)。ここで、ワイヤー領域の抽 出には例えば閾値処理の方法が用いられ、弧の半径の算出には円曲線の方程式へ のパラメ一タフイッテングの方法などを使用することができる。  A wire region is extracted from the wire reconstructed image 53 generated in step S355, and the radius of the arc with the highest contrast is calculated (S356). Here, for example, a threshold processing method is used to extract the wire region, and a parameter fitting method to a circular curve equation can be used to calculate the radius of the arc.
[0058] (ステップ S357)  [0058] (Step S357)
ステップ S356で算出した弧の半径がゼロと見なせるかを判定する(S357)。ゼロと 見なせれば現在の centerの値を出力して終了する。ゼロと見なせなければステップ S 358へ移行する。  It is determined whether the arc radius calculated in step S356 can be regarded as zero (S357). If it can be regarded as zero, the current center value is output and the process is terminated. If it cannot be regarded as zero, the process proceeds to step S358.
[0059] (ステップ S358)  [0059] (Step S358)
ステップ S357で弧の半径がゼロと見なせなかった場合、図 7の場合か図 8の場合 であるかを判断し、それに応じて centerの値が正しくなるように加減算して補正する。 そして、ステップ S355からの過程を再度行う。  If the radius of the arc cannot be regarded as zero in step S357, it is determined whether it is the case of FIG. 7 or FIG. 8, and correction is performed by adding / subtracting so that the center value is correct accordingly. Then, the process from step S355 is performed again.
[0060] 図 10に、回転中心軸投影位置決定処理 (ステップ S350)後のワイヤー再構成像 5 3を示す。図 10は、これから補正する X線源 11— 2次元 X線検出器 12の空間変位が 残っているため、ワイヤー再構成断面像 56は、 3箇所の位置に結像している様子を 示す。ワイヤー再構成断面像 56のように数点に局在した図は模式的なものであり、 実際にはおおざつぱには結像するが、ワイヤー再構成像 53を拡大すると投影角度 方向に直線が引かれるような図になる場合が多い。  FIG. 10 shows a wire reconstructed image 53 after the rotation center axis projection position determination process (step S350). FIG. 10 shows that the wire reconstruction cross-sectional image 56 is imaged at three positions because the spatial displacement of the X-ray source 11—two-dimensional X-ray detector 12 to be corrected remains. The figure localized at several points like the wire reconstructed cross-sectional image 56 is schematic and actually forms an image roughly, but when the wire reconstructed image 53 is enlarged, a straight line appears in the projection angle direction. In many cases, it will be drawn.
[0061] そこで、上述したステップ S360で、図 10に表示される複数のワイヤー再構成点のう ち、最もコントラストの大きいワイヤー再構成点を基準ワイヤー再構成像 56aに固定 する。以下、図 11乃至 13に基づいて、この基準ワイヤー再構成像 56aに、他のワイ ヤー再構成点を一致させて、図 13のワイヤー再構成像 56aを得るための処理を説明 する。図 11は、空間変位量補正情報生成手段 380が、空間変位量補正情報を生成 する手順を示すフローチャートである。図 12は、空間変位量補正情報を生成するた めの幾何学的計算を説明するための概念図である。以下、図 11のステップ順に説明 する。 Therefore, in step S360 described above, of the plurality of wire reconstruction points displayed in FIG. 10, the wire reconstruction point having the highest contrast is fixed to the reference wire reconstruction image 56a. A process for obtaining the wire reconstruction image 56a of FIG. 13 by matching the other wire reconstruction points with the reference wire reconstruction image 56a will be described below with reference to FIGS. FIG. 11 shows that the spatial displacement correction information generation means 380 generates spatial displacement correction information. It is a flowchart which shows the procedure to perform. FIG. 12 is a conceptual diagram for explaining the geometric calculation for generating the spatial displacement correction information. This will be described below in the order of steps in FIG.
[0062] (ステップ S381)  [0062] (Step S381)
ステップ S370で算出したワイヤー投影位置 52に対応する投影角度 13を設定する( S381)  The projection angle 13 corresponding to the wire projection position 52 calculated in step S370 is set (S381).
(ステップ S382)  (Step S382)
ステップ S360で固定した基準ワイヤー再構成像 56aの座標 (x,y)を、ステップ S38 1で設定した投影角度 13方向の回転座標系(s,t)の座標に変換する(S382)。  The coordinates (x, y) of the reference wire reconstruction image 56a fixed in step S360 are converted into the coordinates of the rotational coordinate system (s, t) in the projection angle 13 direction set in step S381 (S382).
[0063] (ステップ S383)  [0063] (Step S383)
ステップ S382で計算した座標値 (s)から、 2次元 X線検出器 12上の理論的な投影 位置 51を計算する(S383)。  A theoretical projection position 51 on the two-dimensional X-ray detector 12 is calculated from the coordinate value (s) calculated in step S382 (S383).
[0064] (ステップ S384)  [0064] (Step S384)
ステップ S370で算出した実際のワイヤー投影位置 52と、ステップ S383で計算した 理論的な投影位置 51を比較し、その変位量 65を算出し、空間変位補正値を出力す る(S384)。  The actual wire projection position 52 calculated in step S370 is compared with the theoretical projection position 51 calculated in step S383, the displacement 65 is calculated, and the spatial displacement correction value is output (S384).
[0065] (ステップ S385)  [0065] (Step S385)
すべての投影角度 j8について処理した力どうかを判別し、そうでなければ次の投影 角度 j8についてステップ S381からの処理を繰り返す。  It is determined whether or not the force has been processed for all projection angles j8. Otherwise, the processing from step S381 is repeated for the next projection angle j8.
[0066] 図 13に、ステップ S390で格納された空間変位量補正情報を用い、ワイヤー状ファ ントム 50の投影像 35の 3次元再構成を施した結果のワイヤー再構成断面像 57を示 す。 C型アーム 13の投影角度ごとに生ずる X線源 11 - 2次元 X線検出器 12の空間 変位量に再現性がある場合 (C型アームの機械的特性から、この場合が一般的であ る)に、ステップ S360で固定したワイヤー再構成断面像に結像する。 C型アーム 13 の投影角度ごとに生ずる X線源 11— 2次元 X線検出器 12の空間変位量に再現性が ある場合、空間変位量補正情報をいつたん生成しておけば、いかなる被検体 40の場 合でもその 3次元的 X線 CT像を結像することができる。  FIG. 13 shows a wire reconstructed cross-sectional image 57 obtained as a result of three-dimensional reconstruction of the projection image 35 of the wire phantom 50 using the spatial displacement correction information stored in step S390. X-ray source generated at each projection angle of C-type arm 13-When the spatial displacement of 2D X-ray detector 12 is reproducible (This is common because of the mechanical characteristics of C-type arm ) To the wire reconstructed cross-sectional image fixed in step S360. X-ray source generated at each projection angle of the C-arm 13 11—When the spatial displacement of the two-dimensional X-ray detector 12 is reproducible, any object can be obtained as long as the spatial displacement correction information is generated. Even in the case of 40, the 3D X-ray CT image can be formed.
[0067] 本実施の形態では、幾何学パラメータの調整にワイヤーを材料とするファントムを用 いている力 ステップ S390実施後に、メタルアーチフエタトが均等になることを目視で 確認しながら、ステップ S 350で定めた回転中心軸投影位置を手動で更に微調整す ることが可能である。 [0067] In the present embodiment, a phantom made of wire is used for adjusting the geometric parameters. After step S390, it is possible to manually fine-tune the rotation center axis projection position determined in step S350 while visually confirming that the metal arch features are equalized.
[0068] <第二実施形態 > [0068] <Second embodiment>
第二の実施形態は、上述した第一の実施の形態において、ワイヤー線と被検体 40 を同時に撮影する形態である。  The second embodiment is a mode in which the wire line and the subject 40 are simultaneously imaged in the first embodiment described above.
第二の実施の形態に力かるコーンビーム X線 CT装置 laは、第一の実施の形態にか 力る X線 CT装置 1にカ卩えて、ワイヤー線 70の位置合わせを行う位置合わせ再構成 手段 400と、ワイヤー抽出手段 410を備える。  The cone beam X-ray CT apparatus la that works well in the second embodiment is an alignment reconfiguration that aligns the wire 70 in addition to the X-ray CT apparatus 1 that works in the first embodiment. Means 400 and wire extraction means 410 are provided.
[0069] 図 15は、寝台 17の裏面にコントラストの高いワイヤー線 70が固定されている状態を 示す概念図である。 FIG. 15 is a conceptual diagram showing a state in which a high-contrast wire 70 is fixed to the back surface of the bed 17.
[0070] 第二の実施の形態は、 C型アーム 13が繰り返し回転移動をしながら被検体 40の回 転撮影を行う際に、 3次元的 X線 CT像の位置合わせをするための実施の形態を提 供する。 C型アーム 13並びに寝台 17の空間位置は、コーンビーム X線 CT装置 1の 表示値を参照することによりおおよそ合わせることができる力 3次元的 X線 CT像とし て重ね合わせるほどの精度はないのが通常である。そのような場合に、上述した第一 の実施形態と同様の方法で、コントラストの高 、ワイヤー線 70を含んだ被検体 40の X 線画像データから、ワイヤー線 70の位置を抽出し、そのワイヤー線 70の位置を目標 とする再構成点に逆投影されるように、 X線源 11— 2次元 X線検出器 12の空間変位 量補正情報を画像再構成演算時に生成しながら、 3次元再構成を行う。  [0070] The second embodiment is an implementation for aligning a three-dimensional X-ray CT image when the subject 40 is rotated while the C-arm 13 is repeatedly rotated. Provide form. The spatial position of the C-arm 13 and the bed 17 can be roughly adjusted by referring to the display value of the cone beam X-ray CT device 1.There is not enough precision to superimpose as a three-dimensional X-ray CT image. Is normal. In such a case, the position of the wire line 70 is extracted from the X-ray image data of the subject 40 including the wire line 70 with high contrast by the same method as in the first embodiment described above, and the wire The spatial displacement correction information of the X-ray source 11—2D X-ray detector 12 is generated during the image reconstruction calculation so that the position of the line 70 is backprojected to the target reconstruction point. Make the configuration.
[0071] (ステップ S400)  [0071] (Step S400)
次に、図 16のフローチャートに基づいて、第二の実施の形態に力かる X線 CT装置 1 aの処理の流れを説明する。図 17は、図 16に示された一処理であるワイヤー抽出処 理の詳細な処理を示すフローチャートである。  Next, based on the flowchart of FIG. 16, the flow of processing of the X-ray CT apparatus 1a which is useful for the second embodiment will be described. FIG. 17 is a flowchart showing a detailed process of the wire extraction process which is one process shown in FIG.
[0072] (ステップ S 201)  [0072] (Step S 201)
まず、前処理 S201が、繰り返し撮影して得られた複数の被検体 40の X線透過像に 対し、被検体 40、寝台 17およびワイヤー線 70の X線吸収係数の分布像に前処理を 行う。 [0073] (ステップ S202) First, pre-processing S201 pre-processes the X-ray absorption coefficient distribution images of the subject 40, the bed 17 and the wire wire 70 for the X-ray transmission images of the plurality of subjects 40 obtained by repeated imaging. . [0073] (Step S202)
次に、画像歪み補正処理 S202が、被検体 40、寝台 17及びワイヤー線 70の X線 吸収係数の分布像の画像歪みを補正する。  Next, the image distortion correction processing S202 corrects the image distortion of the X-ray absorption coefficient distribution image of the subject 40, the bed 17 and the wire wire 70.
[0074] (ステップ S410) [0074] (Step S410)
ワイヤー抽出処理 S410は、被検体 40、寝台 17及びワイヤー線 70の X線吸収係数 の分布像を、ワイヤー線 70と被検体 40との 2領域に分けた後、ワイヤー投影データ を抽出する。以下、図 17に基づいて、ワイヤー抽出処理 S410の詳細について説明 する。  The wire extraction process S410 divides the X-ray absorption coefficient distribution image of the subject 40, the bed 17 and the wire wire 70 into two regions of the wire wire 70 and the subject 40, and then extracts wire projection data. Hereinafter, the details of the wire extraction processing S410 will be described with reference to FIG.
[0075] (ステップ S411)  [0075] (Step S411)
図 15に示すようにワイヤー線 70は寝台 17に固定されているので、投影角度方向ご とに、ワイヤー線 70の X線透過像内の投影位置はおおよそ予測可能である。そこで、 ワイヤー存在範囲切り出し処理 S411は、画像歪み補正処理 S202により画像歪みを 補正されたワイヤー線 70の X線吸収係数分布像の中から、ワイヤー線 70の X線透過 像の存在する範囲を切り出す。  As shown in FIG. 15, since the wire line 70 is fixed to the bed 17, the projection position in the X-ray transmission image of the wire line 70 can be roughly predicted for each projection angle direction. Therefore, the wire existence range cut-out process S411 cuts out the range where the X-ray transmission image of the wire line 70 exists from the X-ray absorption coefficient distribution image of the wire line 70 whose image distortion is corrected by the image distortion correction process S202. .
[0076] (ステップ S412) [0076] (Step S412)
ぼけ画像生成処理 S412は、ワイヤー存在範囲切り出し処理 S411で切り出された ワイヤー線 70の X線吸収係数の分布像に、平滑フィルタ処理を施し、そのぼけ画像 を生成する。  The blurred image generation process S412 performs a smoothing filter process on the distribution image of the X-ray absorption coefficient of the wire 70 cut out by the wire existence range cutout process S411, and generates the blurred image.
[0077] (ステップ S413) [0077] (Step S413)
差分処理 S413は、ワイヤー線 70の X線吸収係数の分布像と、ぼけ画像生成処理 S412で生成されたぼけ画像との弓 I算処理を行 、、ワイヤー線のような細 、構造体の 候補画像を抽出する。  Difference processing S413 performs bow I calculation processing of the distribution image of the X-ray absorption coefficient of the wire 70 and the blurred image generated by the blur image generation processing S412. Extract images.
[0078] (ステップ S414) [0078] (Step S414)
2値ィ匕処理 S414は、差分処理 S413で抽出された細かい構造体の候補画像に対 して所定の閾値処理を用い、 2値化処理を行う。そして、所定の閾値以上のコントラス トを備える細かい構造体の候補画像をワイヤー投影データとして抽出する。  The binary key process S414 performs a binarization process by using a predetermined threshold process for the fine structure candidate image extracted in the difference process S413. A fine structure candidate image having a contrast equal to or greater than a predetermined threshold is extracted as wire projection data.
[0079] (ステップ S415) [0079] (Step S415)
ワイヤー領域格納処理 S415は、 2値ィ匕処理 S414で抽出したワイヤー投影データ を格納する。 Wire area storage processing S415 is the wire projection data extracted in binary key processing S414. Is stored.
[0080] (ステップ S 300)  [0080] (Step S 300)
幾何学パラメータ計算処理 S300は、ワイヤー領域抽出処理 S410により抽出した ワイヤー投影データに基づいて、第一の実施形態と同様、 X線源 11— 2次元 X線検 出器 12の空間変位量補正情報を生成する。  The geometric parameter calculation process S300 is based on the wire projection data extracted by the wire region extraction process S410, and the spatial displacement correction information of the X-ray source 11—two-dimensional X-ray detector 12 is the same as in the first embodiment. Is generated.
空間変位量補正情報を生成した後、ワイヤー領域格納処理 S415で抽出したワイヤ 一データを用いて、被検体 40の X線透過像に含まれて 、るワイヤー投影領域を取り 除いてもよい。  After generating the spatial displacement correction information, the wire projection area included in the X-ray transmission image of the subject 40 may be removed using the wire data extracted in the wire area storing process S415.
[0081] (ステップ S203)  [0081] (Step S203)
フィルタリング処理 S203は、画像歪み補正処理 S 202により、 X線吸収係数の分布 像の画像歪みを補正した被検体 40の X線透過像に、フィルタリング処理を行う。  The filtering process S203 performs a filtering process on the X-ray transmission image of the subject 40 in which the image distortion of the X-ray absorption coefficient distribution image is corrected by the image distortion correction process S202.
[0082] (ステップ S 204)  [0082] (Step S 204)
逆投影処理 S 204は、フィルタリング処理 S 203でフィルタリング処理を施された X線 透過像に、幾何学パラメータ計算処理 S300が生成した空間変位量補正情報に基づ V、た逆投影処理を施して、被検体 40の 3次元的 X線 CT像を生成する。  The back projection process S 204 performs a back projection process on the X-ray transmission image subjected to the filtering process in the filtering process S 203 based on the spatial displacement correction information generated by the geometric parameter calculation process S300. Then, a three-dimensional X-ray CT image of the subject 40 is generated.
[0083] 第一の実施の形態は、 X線源 11— 2次元 X線検出器 12の空間変位量に再現性が あることを前提としている力 第二の実施の形態では、被検体 40の X線透過像に位 置合わせの基準となるワイヤー線 70が写っているため、仮に空間変位量に再現性が ない場合でも 3次元的 X線 CT像を結像させることが可能である。  [0083] In the first embodiment, the force based on the premise that the amount of spatial displacement of the X-ray source 11—two-dimensional X-ray detector 12 is reproducible. Since the wire wire 70, which is the alignment reference, is shown in the X-ray transmission image, even if the spatial displacement is not reproducible, it is possible to form a three-dimensional X-ray CT image.
[0084] また、第二の実施形態により、複数回の回転撮影によって生成される 3次元的 X線 CT像を、ワイヤー線 70を基準として寸分の違いなく重ね合わせることが可能になり、 術前'術後の比較、造影剤注入タイミング力ゝらの経時変化、造影血管を選択的に変 えてみた場合には血管間の関係 (連絡、短絡)等の診断、あるいは肺部診断に適用 する場合には拡張期と収縮期との比較診断が可能になる。  [0084] In addition, according to the second embodiment, it is possible to superimpose a three-dimensional X-ray CT image generated by a plurality of rotational imaging without any difference in size with respect to the wire line 70, and preoperatively. 'Comparison after surgery, changes in contrast agent injection timing over time, contrasted blood vessels when selectively changing blood vessels (connection, short circuit), etc. Enables comparative diagnosis between diastolic and systolic phases.
[0085] なお、上記第二の実施の形態では、位置合わせの指標体としてコントラストの高!ヽ ワイヤー線 70を用いている力 ワイヤー線 70を付加する代わりに、患者ベッドの裏に 細い溝を掘り、その細い溝をファントムとして使用して位置合わせを行うことも可能で ある。また、ワイヤー線に代えて、微小球体力もなるファントムを使用しても良い。 [0086] <第三実施形態 > [0085] In the second embodiment, instead of adding the force wire wire 70, a thin groove is formed on the back of the patient bed. It is also possible to dig and align the narrow grooves as phantoms. Moreover, it may replace with a wire wire and may use the phantom which also has microsphere power. [0086] <Third embodiment>
第三の実施形態は、上述した第二の実施の形態を、デジタルサブトラクシヨン (以下 「DSA」という。)撮影に適用したものである。 DSA撮影とは、造影剤注入前の回転撮 影像 (以下「マスク像」という。)と、造影剤注入時の回転撮影像 (以下「ライブ像」とい う)とを撮影し、造影血管の 3次元的 X線 CT像を演算する手法である。  In the third embodiment, the second embodiment described above is applied to digital subtraction (hereinafter referred to as “DSA”) imaging. DSA imaging is a rotation image (hereinafter referred to as “mask image”) before injection of contrast agent and a rotation image (hereinafter referred to as “live image”) at the time of contrast agent injection. This is a method to calculate a dimensional X-ray CT image.
[0087] 本実施の形態に係るコーンビーム X線 CT装置 lbを図 18に基づいて説明する。図 18のコーンビーム X線 CT装置 lbは、図 1のコーンビーム X線 CT装置 1の再構成手 段 200にお 、て、マスク像とライブ像の撮影幾何学系を合わせて DS A再構成を行う 位置合わせ DSA再構成手段 500と、ワイヤー抽出手段 410と、ライブデータからマス クデータを引算する差分手段 540、とを備える。  A cone beam X-ray CT apparatus lb according to the present embodiment will be described with reference to FIG. The cone beam X-ray CT apparatus lb in Fig. 18 is reconstructed by combining the mask and live imaging geometric systems in the reconstruction method 200 of the cone beam X-ray CT apparatus 1 in Fig. 1. Alignment DSA reconstruction means 500, wire extraction means 410, and difference means 540 for subtracting mask data from live data are provided.
[0088] 次に、本実施形態に係るコーンビーム X線 CT装置 lbの処理の流れを説明する。  Next, a processing flow of the cone beam X-ray CT apparatus lb according to the present embodiment will be described.
[0089] コーンビーム X線 CT装置 lbは、造影剤を注入する前の被検体を撮影して X線画像 データの組(1の再構成像を得るための複数の投影像)を得る。コーンビーム X線 CT 装置 lbは、その X線画像データに対し第一実施形態と同様、前処理手段 201、画像 歪み補正手段 202、フィルタリング手段 203、逆投影手段 204による各処理を行い、 マスク像を生成する。逆投影手段 204は、空間変位量補正情報格納手段 390から空 間変位量補正情報を取得し、 X線源と X線検出器との空間変位量を補正してマスク 像を生成する。同様に、コーンビーム X線 CT装置 lbは、造影剤を注入した後の被検 体を撮影して X線画像データの組を得て、その X線画像データの組に基づ ヽてライ ブ像を生成する。コーンビーム X線 CT装置 lbは、このマスク像及びライブ像を各々 の空間変位量補正情報に基づ!ヽて位置合わせした後、差分処理して DSA画像を生 成する。  The cone beam X-ray CT apparatus lb obtains a set of X-ray image data (a plurality of projection images for obtaining one reconstructed image) by imaging a subject before injecting a contrast agent. As in the first embodiment, the cone beam X-ray CT apparatus lb performs a process on the X-ray image data by the preprocessing unit 201, the image distortion correction unit 202, the filtering unit 203, and the back projection unit 204, and a mask image. Is generated. The back projection unit 204 acquires the spatial displacement correction information from the spatial displacement correction information storage unit 390, and corrects the spatial displacement between the X-ray source and the X-ray detector to generate a mask image. Similarly, the cone beam X-ray CT apparatus lb obtains a set of X-ray image data by photographing the subject after the contrast medium is injected, and performs live based on the X-ray image data set. Generate an image. The cone beam X-ray CT apparatus lb aligns the mask image and the live image based on the respective spatial displacement correction information, and then performs a differential process to generate a DSA image.
[0090] 以下、図 19乃至図 20のフローチャートに基づいて、第三の実施の形態にかかる X 線 CT装置 lbの処理の流れを説明する。第三実施形態は、寝台に被検体を載置し た状態でマスク像とライブ像とを、それぞれワイヤー線 70とともに撮影する。上記ワイ ヤー線 70と被検体との相対的な位置関係は、被検体が動かない限り、マスク像及び ライブ像において不変である。そのため、ワイヤー線 70がー点に結像するようにマス ク像及びライブ像をそれぞれ生成することにより、結果的にマスク像に撮影された被 検体とライブ像に撮影された被検体との位置合わせが可能となり DSA処理を行うこと ができる。以下、本実施の形態の第一実施例と第二実施例とを説明する。第一実施 例は、ワイヤー線 70の投影データを用いて構成したマスク像 (再構成画像)及びライ ブ像 (再構成画像)を DSA処理するものである。第二実施例は、同じビューで撮影し たマスク像の投影データとライブ像の投影データとで DSA処理を行 ヽ、その差分デ ータに基づ ヽて造影像 (血管画像)を生成する処理である。 The processing flow of the X-ray CT apparatus lb according to the third embodiment will be described below based on the flowcharts of FIGS. 19 to 20. In the third embodiment, the mask image and the live image are photographed together with the wire lines 70 while the subject is placed on the bed. The relative positional relationship between the wire line 70 and the subject remains unchanged in the mask image and the live image unless the subject moves. For this reason, a mask image and a live image are generated so that the wire 70 forms an image at a point, and as a result, the mask image is captured. It is possible to align the specimen and the subject photographed in the live image and perform DSA processing. Hereinafter, a first example and a second example of the present embodiment will be described. In the first embodiment, a mask image (reconstructed image) and a live image (reconstructed image) constructed using projection data of the wire 70 are subjected to DSA processing. In the second embodiment, DSA processing is performed on the projection data of the mask image and the projection data of the live image taken in the same view, and a contrast image (blood vessel image) is generated based on the difference data. It is processing.
[0091] (ステップ S 500)  [0091] (Step S 500)
まず、第三の実施の形態における第一実施例である、位置合わせ DSA再構成処 理 S500を図 19のフローチャートを用いて説明する。  First, an alignment DSA reconstruction process S500, which is a first example of the third embodiment, will be described with reference to the flowchart of FIG.
[0092] (ステップ S 501)  [0092] (Step S 501)
まず、マスク X線画像データの前処理 S501が、被検体 40のマスク X線透過像に対 し、被検体 40、寝台 17およびワイヤー線 70の X線吸収係数の分布像に前処理を行  First, pre-processing of mask X-ray image data S501 performs pre-processing on the X-ray absorption coefficient distribution images of the subject 40, the bed 17 and the wire wire 70 for the mask X-ray transmission image of the subject 40.
[0093] (ステップ S502) [0093] (Step S502)
次に、マスク X線画像データの画像歪み補正処理 S502が、被検体 40のマスク X線 透過像、寝台 17及びワイヤー線 70の X線吸収係数の分布像の画像歪みを補正する  Next, the image distortion correction processing S502 of the mask X-ray image data corrects the image distortion of the mask X-ray transmission image of the subject 40, the X-ray absorption coefficient distribution image of the bed 17 and the wire wire 70.
[0094] (ステップ S410m) [0094] (Step S410m)
マスク X線画像データのワイヤー抽出処理 S410mは、被検体 40のマスク X線透過 像、寝台 17及びワイヤー線 70の X線吸収係数の分布像を、ワイヤー線 70と被検体 4 0との 2領域に分けた後、ワイヤー投影データを抽出する。  Wire extraction processing of mask X-ray image data S410m is a mask X-ray transmission image of the subject 40, the X-ray absorption coefficient distribution image of the bed 17 and the wire wire 70, and two regions of the wire wire 70 and the subject 40. Then, wire projection data is extracted.
[0095] (ステップ S 300m) [0095] (Step S 300m)
マスク X線画像データの幾何学パラメータ計算処理 S300mは、ワイヤー領域抽出 処理 S410mにより抽出した、マスク撮影時のワイヤー投影データに基づいて、第一 の実施形態と同様、 X線源 11 2次元 X線検出器 12の空間変位量補正情報を生成 する。  Geometric parameter calculation processing for mask X-ray image data S300m is the same as in the first embodiment, based on the wire projection data extracted by wire region extraction processing S410m, as in the first embodiment. Spatial displacement correction information for detector 12 is generated.
[0096] (ステップ S511)  [0096] (Step S511)
まず、ライブ X線画像データの前処理 S511が、被検体 40のライブ X線透過像に対 し、被検体 40、寝台 17およびワイヤー線 70の X線吸収係数の分布像に前処理を行 First, pre-processing S511 of live X-ray image data is applied to the live X-ray transmission image of the subject 40. And pre-process the X-ray absorption coefficient distribution images of the subject 40, bed 17 and wire 70.
[0097] (ステップ S 512) [0097] (Step S 512)
次に、ライブ X線画像データの画像歪み補正処理 S512が、被検体 40のライブ X線 透過像、寝台 17及びワイヤー線 70の X線吸収係数の分布像の画像歪みを補正する  Next, the image distortion correction processing S512 of the live X-ray image data corrects the image distortion of the live X-ray transmission image of the subject 40, the X-ray absorption coefficient distribution image of the bed 17 and the wire wire 70.
[0098] (ステップ S410L) [0098] (Step S410L)
ライブ X線画像データのワイヤー抽出処理 S410Lは、被検体 40のライブ X線透過 像、寝台 17及びワイヤー線 70の X線吸収係数の分布像を、ワイヤー線 70と被検体 4 0との 2領域に分けた後、ワイヤー投影データを抽出する。  Wire extraction processing of live X-ray image data The S410L uses live X-ray transmission images of the subject 40, X-ray absorption coefficient distribution images of the bed 17 and the wire wire 70, and two regions of the wire wire 70 and the subject 40. Then, wire projection data is extracted.
[0099] (ステップ S300L) [0099] (Step S300L)
ライブ X線画像データの幾何学パラメータ計算処理 S300Lは、ワイヤー領域抽出 処理 S410mにより抽出した、ライブ撮影時のワイヤー投影データに基づいて、第一 の実施形態と同様、 X線源 11 2次元 X線検出器 12の空間変位量補正情報を生成 する。  Geometric parameter calculation processing of live X-ray image data S300L is the same as in the first embodiment based on the wire projection data extracted by wire region extraction processing S410m. Spatial displacement correction information for detector 12 is generated.
[0100] (ステップ S521)  [0100] (Step S521)
マスク X線画像データのフィルタリング処理 S521は、画像歪み補正処理 S502によ り、 X線吸収係数の分布像の画像歪みを補正した被検体 40のマスク X線透過像に、 フィルタリング処理を行う。  The mask X-ray image data filtering process S521 performs a filtering process on the mask X-ray transmission image of the subject 40 in which the image distortion of the X-ray absorption coefficient distribution image is corrected by the image distortion correction process S502.
[0101] (ステップ S522) [0101] (Step S522)
マスク X線画像データの逆投影処理 S 522は、フィルタリング処理 S 521でフィルタリ ング処理を施されたマスク X線透過像に、幾何学パラメータ計算処理 S300mが生成 した空間変位量補正情報に基づ ヽた逆投影処理を施して、被検体 40のマスク 3次 元的 X線 CT像を生成する。  The mask X-ray image data backprojection process S 522 is based on the spatial displacement correction information generated by the geometric parameter calculation process S300m on the mask X-ray transmission image subjected to the filtering process S 521. Then, a back projection process is performed to generate a mask 3D X-ray CT image of the subject 40.
[0102] (ステップ S531) [0102] (Step S531)
ライブ X線画像データのフィルタリング処理 S 531は、画像歪み補正処理 S 512によ り、 X線吸収係数の分布像の画像歪みを補正した被検体 40のライブ X線透過像に、 フィルタリング処理を行う。 [0103] (ステップ S 532) Live X-ray image data filtering processing S 531 performs filtering processing on the live X-ray transmission image of the subject 40 corrected for image distortion in the distribution image of the X-ray absorption coefficient by image distortion correction processing S 512. . [0103] (Step S532)
ライブ X線画像データの逆投影処理 S 532は、フィルタリング処理 S 531でフィルタリ ング処理を施されたライブ X線透過像に、幾何学パラメータ計算処理 S300Lが生成 した空間変位量補正情報に基づ!ヽた逆投影処理を施して、被検体 40のライブ 3次 元的 X線 CT像を生成する。  The live X-ray image data backprojection processing S532 is based on the spatial displacement correction information generated by the geometric parameter calculation processing S300L to the live X-ray transmission image filtered in the filtering processing S531! A live 3D X-ray CT image of the subject 40 is generated by applying a back projection process.
[0104] (ステップ S 533)  [0104] (Step S 533)
ライブ CT像—マスク CT像差分処理 S533は、ライブ X線画像データの逆投影処理 S 532により生成した被検体 40のライブ 3次元的 X線 CT像から、マスク X線画像データ の逆投影処理 S522により生成した被検体 40のマスク 3次元的 X線 CT像を引算して 、被検体 40の 3次元的 DSA再構成像 (血管造影像)を生成する。  Live CT image-mask CT image difference processing S533 is a back projection process of live X-ray image data S Back-projection process of mask X-ray image data from live 3D X-ray CT image of subject 40 generated by S532 S522 By subtracting the mask 3D X-ray CT image of the subject 40 generated by the above, a 3D DSA reconstructed image (angiogram) of the subject 40 is generated.
[0105] (ステップ S 500a)  [0105] (Step S 500a)
次に、第三の実施の形態における第二実施例である、位置合わせ DSA再構成処 理 S500aを図 20のフローチャートを用いて説明する。なお、ステップ S501至ステツ プ S300Lは、上述の第一実施例同一であるため、説明を省略する。  Next, an alignment DSA reconstruction process S500a, which is a second example of the third embodiment, will be described with reference to the flowchart of FIG. Step S501 to step S300L are the same as those in the first embodiment described above, and a description thereof will be omitted.
[0106] (ステップ S 541)  [0106] (Step S 541)
マスク—ライブ幾何学系比較処理 S541は、マスク X線画像データの幾何学パラメ ータ計算処理 S300mにより計算したマスク撮影時の空間変位量補正情報を、ライブ X線画像データの幾何学パラメータ計算処理 S300Lにより計算したライブ撮影時の 空間変位量補正情報と比較して、マスク X線画像データを、投影データ上で、ライブ X線画像データと位置合わせするための、相対的な空間変位量補正情報を生成す る。  Mask-live geometric system comparison process S541 is a geometric parameter calculation process for mask X-ray image data. The spatial displacement correction information at the time of mask imaging calculated by S300m is used to calculate geometric parameters for live X-ray image data. Relative spatial displacement correction information for aligning the mask X-ray image data with the live X-ray image data on the projection data compared to the spatial displacement correction information at the time of live shooting calculated by S300L Is generated.
[0107] (ステップ S542)  [0107] (Step S542)
マスク X線画像データ平行移動処理 S542は、マスク—ライブ幾何学系比較処理 S 541で生成した相対的な空間変位量補正情報に基づ ヽて、マスク X線画像データが 、投影データ上でライブ X線画像データと重なるように、平行移動を行う。  Mask X-ray image data translation processing S542 is a mask-live geometric system comparison process. Based on the relative spatial displacement correction information generated in S541, the mask X-ray image data is live on the projection data. The translation is performed so as to overlap the X-ray image data.
[0108] (ステップ S543) [0108] (Step S543)
ライブ画像—マスク画像差分処理 S543は、ライブ X線画像データから、マスク X線 画像データ平行移動処理 S542により、投影データ上で位置合わせしたマスク X線画 像データを引算する。 Live image—mask image difference processing S543 is a mask X-ray image that is aligned on the projection data by live mask X-ray image data translation processing S542 from live X-ray image data. Subtract image data.
[0109] (ステップ S551)  [0109] (Step S551)
差分画像データのフィルタリング処理 S551は、ライブ画像—マスク画像差分処理 S 543により生成した差分投影データに、フィルタリング処理を行う。  Difference Image Data Filtering Processing S551 performs filtering processing on the difference projection data generated by the live image-mask image difference processing S543.
[0110] (ステップ S 552)  [0110] (Step S 552)
差分画像データの逆投影処理 S 552は、フィルタリング処理 S 551でフィルタリング処 理を施された差分投影データに、幾何学パラメータ計算処理 S300Lが生成した空間 変位量補正情報に基づ ヽた逆投影処理を施して、被検体 40のライブ 3次元的 DSA 再構成像 (血管造影像)を生成する。  Difference image data backprojection processing S 552 is the backprojection processing based on the spatial displacement correction information generated by the geometric parameter calculation processing S300L to the difference projection data filtered in the filtering processing S551. To generate a live three-dimensional DSA reconstructed image (angiographic image) of the subject 40.
第二実施例 S500aは、投影データ上でライブ画像—マスク像の引算を施して力ゝら逆 投影処理を行って、被検体 40の 3次元的 DSA再構成像を生成するため、第一実施 例 S500と比べ、演算時間を大幅に短縮できるという利点がある。  In the second embodiment S500a, the live image-mask image is subtracted on the projection data, and the back projection process is performed by force, so that the three-dimensional DSA reconstructed image of the subject 40 is generated. Compared to the embodiment S500, there is an advantage that the calculation time can be greatly shortened.
一方、ステップ S542によるマスク X線画像データ平行移動は、 3次元的な空間変位 を 2次元の投影データ上に近似したものであるので、 3次元的に完全な位置合わせ にはなっていない。なお、上術のステップ S542では、平行移動による位置合わせと 限定したが、回転や、局所座標ごとに異なる平行移動による変形処理を加える事で、 On the other hand, since the mask X-ray image data translation in step S542 is an approximation of the three-dimensional spatial displacement on the two-dimensional projection data, it is not a three-dimensional perfect alignment. In step S542 in the above operation, it was limited to alignment by translation, but by adding deformation processing by rotation or translation that differs for each local coordinate,
3次元的な拡大率補正を加味した位置合わせを行う事も可能である。 It is also possible to perform alignment with a three-dimensional magnification correction.
演算時間と、 3次元的に完全な位置合わせは、トレードオフとなるので、種々の場合 に応じ、第一実施例 S500、第二実施例 S500aを選択できるようにするのも一つの方 法である。  There is a trade-off between calculation time and 3D perfect alignment, so it is possible to select the first embodiment S500 and the second embodiment S500a according to various cases. is there.
[0111] <第四実施形態 >  [0111] <Fourth embodiment>
第四実施形態は、本発明を C型アーム方式のコーンビーム X線 CT装置であって、 フラットパネルディテクター (FPD)カゝらなる X線検出器を備えた X線 CT装置に適用し た実施態様である。以下図 19に基づいて、本実施の形態について説明する。図 19 は、本実施形態に係る X線 CT装置の概略構成を示すブロック図である。  The fourth embodiment is an implementation in which the present invention is applied to an X-ray CT apparatus provided with an X-ray detector such as a flat panel detector (FPD), which is a C-arm type cone-beam X-ray CT apparatus. It is an aspect. Hereinafter, the present embodiment will be described with reference to FIG. FIG. 19 is a block diagram showing a schematic configuration of the X-ray CT apparatus according to the present embodiment.
[0112] 図 19のコーンビーム X線 CT装置 lcにおいて、図 1のコーンビーム X線 CT装置 1と 同じ構成には同じ符号を付し、説明を省略する。  [0112] In the cone beam X-ray CT apparatus lc of FIG. 19, the same components as those of the cone beam X-ray CT apparatus 1 of FIG.
[0113] コーンビーム X線 CT装置 lcは、 FPD12Fを備えた 2次元 X線検出器 12を備える。 FPD12Fの形状は円形、方形いかなる形状であってもよい。そして、 2次元 X線検出 器 12はその検出器素子列が回転中心軸 31に平行 (0° )あるいは 90° の角度をな して設置される。例えば、 2次元 X線検出器 12として長方形のフラットパネルディテク ター (FPD)を用いる場合、その長辺を回転中心軸と 90° の角度をなして設置すると 胸部、腹部等、大視野の断面像の撮影に適合するし、長辺を回転中心軸と平行 (0 ° )の角度をなして設置すると、頭頸部、四肢等の撮影に有用である。 2次元 X線検 出器 12は、その検出器素子列が、回転中心軸 31に対し所定の基準角度だけ手動も しくは電動で回転できるようになって 、てもよ 、。 [0113] The cone beam X-ray CT apparatus lc includes a two-dimensional X-ray detector 12 including an FPD12F. The shape of the FPD12F may be any circular or square shape. The two-dimensional X-ray detector 12 is installed such that its detector element array is parallel (0 °) or 90 ° to the rotation center axis 31. For example, when a rectangular flat panel detector (FPD) is used as the two-dimensional X-ray detector 12, if the long side is installed at an angle of 90 ° with the central axis of rotation, a cross-sectional image of the large field of view such as the chest and abdomen It is useful for photographing the head and neck, limbs, etc. if the long side is set at an angle parallel to the rotation center axis (0 °). The two-dimensional X-ray detector 12 may be configured such that its detector element array can be rotated manually or electrically by a predetermined reference angle with respect to the rotation center axis 31.
[0114] FPD12Fを備えたコーンビーム X線 CT装置 lcでは、幾何学パラメータとして、図 1 のコーンビーム X線 CT装置 1と同様に回転軌道面 (ミツドブレーン) 30と、回転中心 軸 31、及び回転中心 32がある力 これらに加えて検出器取付け角の基準角度 (0° あるいは 90° )力ゝらのずれもある。 2次元 X線検出器 12として、フラットパネルディテク ター (FPD)を用いる場合は、画像歪みはないが、この場合 2次元 X線検出器 12が回 転中心軸 31に寸分の誤差もなく平行に設置される事はなぐ前述した検出器取付け 角の基準角度 (0° あるいは 90° )からのずれが存在する。 FPDを用いる場合は、画 像歪み補正として、この検出器取付け角度のずれを画像回転手段により補正する必 要がある。 [0114] In the cone beam X-ray CT apparatus lc equipped with FPD12F, the geometric parameters are the same as the cone beam X-ray CT apparatus 1 in Fig. 1, the rotating orbital plane (mitsubrain) 30, the rotation center axis 31, and the rotation Forces with center 32 In addition to these, there is a deviation of the reference angle (0 ° or 90 °) of the detector mounting angle. When a flat panel detector (FPD) is used as the 2D X-ray detector 12, there is no image distortion, but in this case, the 2D X-ray detector 12 is parallel to the rotation center axis 31 without any errors. There is a deviation from the reference angle (0 ° or 90 °) of the detector mounting angle described above. When using FPD, it is necessary to correct the deviation of the detector mounting angle by image rotation means as an image distortion correction.
[0115] そこで、図 19のコーンビーム X線 CT装置 lcは、図 1の画像歪み補正手段 202に代 えて、 FPD12Fの検出器取付け角の基準角度 (0° あるいは 90° )力ものずれを補 正するための傾き角補正情報を格納するための傾き角補正情報格納手段 330a及 び傾き角補正情報格納手段 330aから傾き角補正情報を取得して、 2次元 X線検出 器 12が出力した X線画像データを補正する傾き角補正手段 202aを備える。傾き角 補正手段 202aは、 X線画像データの回転を補正する際に、この補正角を読み出す 。幾何学パラメータ計算手段 300は、回転軌道面 30と、回転中心軸 31と、検出器取 付け角度とを算出する。  [0115] Therefore, the cone beam X-ray CT apparatus lc in Fig. 19 compensates for the deviation of the reference angle (0 ° or 90 °) of the detector mounting angle of the FPD12F instead of the image distortion correction means 202 in Fig. 1. The inclination angle correction information storage means 330a for storing the inclination angle correction information for correction and the inclination angle correction information from the inclination angle correction information storage means 330a are acquired, and the X output from the two-dimensional X-ray detector 12 is acquired. Tilt angle correction means 202a for correcting line image data is provided. The inclination angle correction unit 202a reads out the correction angle when correcting the rotation of the X-ray image data. The geometric parameter calculation means 300 calculates the rotation track surface 30, the rotation center axis 31, and the detector mounting angle.
[0116] 2次元 X線検出器 12として、フラットパネルディテクター (FPD)を用いる場合は、 X 線入射面の大きさは 400mm X 300mmの長方形状であって、画像サイズは 2048 X 1536、そして画素ピッチは 0. 2mmである。 [0117] フラットパネルディテクター (FPD)を用いる場合は、まず X線入射面で Csl等の発 光体により光に変換され、光信号はフォトダイオードにより電荷に変換される。蓄積し た電荷は一定のフレームレートごとに TFT素子によりデジタル信号に変換され、読み 出される。回転撮影モードでは、毎秒 30フレーム、画像サイズ 1024 X 768で 2次元 X線画像データを読み出す。この 2次元 X線画像データに基づ 、て X線 CT像を再構 成する。その他の構成は、図 1のコーンビーム X線 CT装置 1と同様である。よって、第 二、三実施形態は、第一実施形態のコーンビーム X線 CT装置 1に基づいて説明した 力 第四実施形態に記載のコーンビーム X線 CT装置 1 cによっても同様に実施可能 である。 [0116] When a flat panel detector (FPD) is used as the two-dimensional X-ray detector 12, the X-ray entrance surface has a rectangular shape of 400 mm X 300 mm, the image size is 2048 X 1536, and the pixels The pitch is 0.2mm. [0117] When a flat panel detector (FPD) is used, light is first converted into light by a light emitter such as Csl on the X-ray incident surface, and the optical signal is converted into electric charge by a photodiode. The accumulated charge is converted into a digital signal by a TFT element at a fixed frame rate and read out. In the rotational imaging mode, 2D X-ray image data is read out at 30 frames per second with an image size of 1024 X 768. Based on this 2D X-ray image data, an X-ray CT image is reconstructed. Other configurations are the same as those of the cone beam X-ray CT apparatus 1 in FIG. Therefore, the second and third embodiments can be similarly implemented by the cone beam X-ray CT apparatus 1 c described in the fourth embodiment based on the cone beam X-ray CT apparatus 1 of the first embodiment. is there.
[0118] 以上説明した幾何学パラメータ計算手段 300により、 3次元的 X線 CT像を生成し表 示するコーンビーム X線 CT装置 1において、 X線源 11と 2次元 X線検出器 12との位 置関係が変位する場合にも、逆投影手段 204において鮮明な 3次元的 X線 CT像を 生成するための幾何学パラメータ、回転中心軸の投影位置、空間変位量を補正する ことができる。そして、幾何学パラメータ計算手段を搭載することにより、 2次元 X線像 力も 3次元的 X線 CT像を生成するコーンビーム X線 CT装置にぉ 、て、 X線源と 2次 元 X線検出器との位置関係が変位する場合にも、鮮明な 3次元的 X線 CT像を生成し 表示することができる。これにより、頭部、腹部等の造影撮影、並びに歯顎、腰椎、四 肢等の整形分野の診断性能を向上させることができる。  [0118] In the cone beam X-ray CT apparatus 1 that generates and displays a three-dimensional X-ray CT image by the geometric parameter calculation means 300 described above, the X-ray source 11 and the two-dimensional X-ray detector 12 Even when the positional relationship is displaced, the back projection means 204 can correct the geometric parameters for generating a clear three-dimensional X-ray CT image, the projection position of the rotation center axis, and the amount of spatial displacement. In addition, by installing a geometric parameter calculation means, the 2D X-ray image force can also be detected by a cone-beam X-ray CT system that generates a 3D X-ray CT image. A clear 3D X-ray CT image can be generated and displayed even when the positional relationship with the instrument is displaced. As a result, the imaging performance of the head, abdomen, and the like, and the diagnostic performance in the orthopedic field such as the tooth jaw, the lumbar vertebra, and the limbs can be improved.
[0119] なお本発明は上記実施の形態に限定されるものではなぐ本発明の要旨を逸脱し ない範囲で種々に変形することができる。例えば、上記実施の形態では、 C型アーム 方式のコーンビーム X線 CT装置を用いた力 C型アーム方式以外のコーンビーム X 線 CT装置にも適用することができる。また、回転撮影の全角度が 200度以外の場合 にも適用することができる。  Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, the above embodiment can be applied to a cone beam X-ray CT apparatus other than the force C-arm type using a C-type arm type cone beam X-ray CT apparatus. It can also be applied when the rotational angle is not 200 degrees.
産業上の利用可能性  Industrial applicability
[0120] 本発明は、被検体を撮影して得た X線透過データに基づ ヽて医用画像を生成する 処理に限らず、 X線源と X線検出器との空間位置が変位する X線 CT装置の全てに適 用することができる。 [0120] The present invention is not limited to the process of generating a medical image based on X-ray transmission data obtained by imaging a subject, but the spatial position of the X-ray source and the X-ray detector is displaced. It can be applied to all line CT devices.

Claims

請求の範囲 The scope of the claims
[1] 被検体に X線を照射する X線源と、  [1] An X-ray source that irradiates the subject with X-rays,
前記 X線源に対向して配置され、前記被検体を透過した前記 X線を検出して前記 被検体の X線画像データを出力する X線検出器と、  An X-ray detector that is disposed opposite to the X-ray source, detects the X-ray transmitted through the subject, and outputs X-ray image data of the subject;
前記 X線源及び前記 X線検出器を、所定の角度毎に回転移動させる回転手段と、 前記所定の角度毎に、前記 X線源及び前記 X線検出器の空間位置の変位量を算 出し、前記 X線画像データに対して前記変位量に基づ 、た位置修正をするための空 間変位量補正情報を生成する空間変位量補正情報生成手段と、  Rotating means for rotating the X-ray source and the X-ray detector by a predetermined angle, and calculating a displacement amount of a spatial position of the X-ray source and the X-ray detector for each predetermined angle. Spatial displacement correction information generating means for generating spatial displacement correction information for correcting the position of the X-ray image data based on the displacement;
前記空間変位量補正情報に基づ!ヽて前記 X線画像データを位置修正し、その X線 画像データに基づ ヽて画像再構成演算を行 ヽ前記被検体の X線 CT像を生成する 画像再構成手段と、  Based on the spatial displacement correction information, the position of the X-ray image data is corrected, the image reconstruction operation is performed based on the X-ray image data, and the X-ray CT image of the subject is generated. Image reconstruction means;
前記 X線 CT像を表示する表示手段と、  Display means for displaying the X-ray CT image;
を備えることを特徴とする X線 CT装置。  An X-ray CT apparatus comprising:
[2] 前記画像再構成手段は、前記空間変位量補正情報に基づ!ヽて前記 X線画像デー タを位置修正し、位置修正後の前記 X線画像データに基づいて投影像を生成し、そ の投影像に基づいて画像再構成演算を行う、 [2] The image reconstruction means corrects the position of the X-ray image data based on the spatial displacement correction information, and generates a projection image based on the X-ray image data after the position correction. , Perform image reconstruction based on the projected image,
ことを特徴とする請求項 1に記載の X線 CT装置。  The X-ray CT apparatus according to claim 1, wherein:
[3] 前記画像再構成手段は、前記 X線画像データに基づ!ヽて投影像を生成し、その投 影像を前記空間変位量補正情報に基づ 、て位置修正し、位置修正後の投影像に 基づいて画像再構成演算を行う、 [3] The image reconstruction means is based on the X-ray image data! Then, a projected image is generated, the position of the projected image is corrected based on the spatial displacement correction information, and image reconstruction calculation is performed based on the projected image after the position correction.
ことを特徴とする請求項 1に記載の X線 CT装置。  The X-ray CT apparatus according to claim 1, wherein:
[4] 前記 X線検出器が前記 X線源及び前記 X線検出器の間に配置された指標体を所 定の角度毎に回転移動しながら撮影して生成した前記指標体の投影像を含む指標 体 X線画像データに基づ ヽて画像再構成演算を行!ヽ、前記指標体の再構成像を生 成する指標体再構成像生成手段を、備え、 [4] A projected image of the index body generated by the X-ray detector taking an image of the index body arranged between the X-ray source and the X-ray detector while rotating at predetermined angles. Including index body Image reconstruction calculation based on X-ray image data! A marker body reconstructed image generating means for generating a reconstructed image of the index body;
前記空間変位量補正情報生成手段は、前記再構成像と前記投影像との位置関係 に基づいて、前記変位量を算出する、  The spatial displacement correction information generating means calculates the displacement based on a positional relationship between the reconstructed image and the projected image;
ことを特徴とする請求項 1に記載の X線 CT装置。 The X-ray CT apparatus according to claim 1, wherein:
[5] 複数の X線画像データの組の間で前記指標体に対応する X線画像データ部分を 用いて位置合わせをする位置合わせ手段を更に備える、 [5] The apparatus further comprises alignment means for performing alignment between a plurality of sets of X-ray image data using an X-ray image data portion corresponding to the index body.
ことを特徴とする請求項 4に記載の X線 CT装置。  The X-ray CT apparatus according to claim 4, wherein:
[6] 前記位置合わせ手段は、各々の X線画像データから前記指標体に対応する X線画 像データ部分を抽出し、前記指標体に対応する X線画像データ部分の差分が最も 小さくなる位置を検出することにより位置合わせを行う、 [6] The positioning means extracts an X-ray image data portion corresponding to the index body from each X-ray image data, and determines a position where the difference of the X-ray image data portion corresponding to the index body is the smallest. Align by detecting
ことを特徴とする請求項 5に記載の X線 CT装置。  The X-ray CT apparatus according to claim 5, wherein:
[7] 前記被検体を載置した寝台を、更に備え、 [7] It further comprises a bed on which the subject is placed,
前記指標体は、前記寝台に載置される前記被検体の体軸方向に沿って伸長される ことを特徴とする請求項 4記載の X線 CT装置。  The X-ray CT apparatus according to claim 4, wherein the index body is extended along a body axis direction of the subject placed on the bed.
[8] 前記画像再構成手段は、前記被検体の血管に造影剤が注入される前に前記被検 体の血管及び前記指標体を撮影して得られたマスク X線画像データに基づいて前記 指標体の断面を一点に結像させてマスク像を再構成するとともに、前記造影剤が注 入された後に前記被検体の血管及び前記指標体を撮影して得られたライブ X線画像 データに基づいて前記ワイヤー線の断面を一点に結像させてライブ像を再構成し、 前記マスク像と前記ライブ像とを、各々に含まれる前記指標体の断面を基準に位置 合わせを行!、差分処理して造影血管像を生成する差分手段と、を更に備える、 ことを特徴とする請求項 7に記載の X線 CT装置。 [8] The image reconstructing means is based on the mask X-ray image data obtained by imaging the blood vessel and the index body of the subject before the contrast agent is injected into the blood vessel of the subject. A mask image is reconstructed by forming an image of the cross section of the index body at one point, and the live X-ray image data obtained by imaging the blood vessel of the subject and the index body after the contrast agent is injected. Based on the cross-section of the wire line, the live image is reconstructed by forming the cross-section of the wire line at one point, and the mask image and the live image are aligned based on the cross-section of the index body included in each! The X-ray CT apparatus according to claim 7, further comprising difference means that generates a contrasted blood vessel image by processing.
[9] 前記 X線検出器は、前記被検体の血管に造影剤が注入される前に前記被検体の 血管及び前記指標体を撮影して得られたマスク X線画像データと、前記造影剤が注 入された後に前記被検体の血管及び前記指標体を撮影して得られたライブ X線画像 データとを出力し、 [9] The X-ray detector includes mask X-ray image data obtained by imaging the blood vessel and the index body of the subject before the contrast agent is injected into the blood vessel of the subject, and the contrast agent. And the live X-ray image data obtained by photographing the blood vessel of the subject and the index body after being injected,
前記画像再構成手段は、同一のビューにぉ ヽて撮影されたマスク X線画像データ に基づくマスク投影像とライブ X線画像データに基づくライブ投影像とを前記指標体 投影像に基づいて位置合わせを行った後差分処理してビューごとの差分投影像を 生成し、全てのビューの差分投影像を再構成することにより造影血管像を再構成す る、 ことを特徴とする請求項 7に記載の X線 CT装置。 The image reconstruction means aligns a mask projection image based on mask X-ray image data photographed in the same view and a live projection image based on live X-ray image data based on the index object projection image. After that, differential processing is performed to generate a differential projection image for each view, and a contrasted blood vessel image is reconstructed by reconstructing the differential projection images of all views. The X-ray CT apparatus according to claim 7, wherein:
[10] 前記空間変位量補正情報生成手段は、前記 X線源と前記 X線検出器とが回転移 動したときの回転中心軸が一に定まるように前記空間変位量補正情報を生成する、 ことを特徴とする請求項 1に記載の X線 CT装置。 [10] The spatial displacement correction information generating means generates the spatial displacement correction information so that a rotation center axis is fixed to one when the X-ray source and the X-ray detector are rotationally moved. The X-ray CT apparatus according to claim 1, wherein:
[11] X線 CT装置に備えられた X線源及び前記 X線検出器を所定の角度毎に回転させ たときに生じる前記 X線源及び前記 X線検出器の空間位置の変位量を算出して、前 記 X線 CT装置から取得した X線画像データに対して前記変位量に基づいた位置修 正をするための空間変位量補正情報を生成する空間変位量補正情報生成ステップ と、 [11] Calculate the amount of displacement of the spatial position of the X-ray source and X-ray detector that occurs when the X-ray source and the X-ray detector provided in the X-ray CT apparatus are rotated at a predetermined angle. A spatial displacement correction information generating step for generating spatial displacement correction information for correcting the position based on the displacement with respect to the X-ray image data acquired from the X-ray CT apparatus;
前記 X線 CT装置が被検体を撮影して得た X線画像データを読み込む読込ステツ プと、  A reading step for reading X-ray image data obtained by imaging the subject by the X-ray CT apparatus;
前記空間変位量補正情報に基づ!ヽて前記 X線画像データを位置修正し、その X線 画像データに基づ!ヽて画像再構成演算を行 ヽ、前記被検体の X線 CT像を生成する 画像再構成ステップと、  Based on the spatial displacement correction information, the position of the X-ray image data is corrected, and based on the X-ray image data, an image reconstruction operation is performed to obtain an X-ray CT image of the subject. Generating an image reconstruction step;
前記 X線 CT像を表示する表示ステップと、  A display step for displaying the X-ray CT image;
をコンピュータに実行させることを特徴とする画像処理プログラム。  An image processing program for causing a computer to execute.
[12] 前記 X線検出器が前記 X線源及び前記 X線検出器の間に配置された指標体を所 定の角度毎に回転移動しながら撮影して生成した前記指標体の投影像を含む指標 体 X線画像データに基づ ヽて画像再構成演算を行!ヽ、前記指標体の再構成像を生 成する指標体再構成像生成ステップを更に含み、  [12] A projected image of the index body generated by the X-ray detector taking an image of the index body arranged between the X-ray source and the X-ray detector while rotating at a predetermined angle. Including index body Image reconstruction calculation based on X-ray image data!指標, further comprising an index body reconstructed image generating step for generating a reconstructed image of the index body,
前記空間変位量補正情報生成ステップは、前記再構成像と前記投影像との位置 関係に基づいて、前記変位量を算出する、  The spatial displacement correction information generation step calculates the displacement based on a positional relationship between the reconstructed image and the projected image.
ことを特徴とする請求項 11に記載の画像処理プログラム。  The image processing program according to claim 11, wherein:
[13] 前記読込ステップにおいて、複数の X線画像データの組を読込み、 [13] In the reading step, a plurality of sets of X-ray image data are read,
前記複数の X線画像データの組の間で前記指標体に対応する X線画像データ部 分を用 、て位置合わせをする位置合わせステップを更に含む、  An alignment step of performing alignment using an X-ray image data portion corresponding to the index body between the plurality of sets of X-ray image data;
ことを特徴とする請求項 12に記載の画像処理プログラム。  The image processing program according to claim 12, wherein:
[14] 前記読込ステップにおいて、前記被検体の血管に造影剤を注入される前に前記被 検体の血管を撮影して得られた第一 X線画像データと、前記造影剤を注入された後 に前記被検体の血管を撮影して得られた第二 X線画像データと、を読込み、 前記画像再構成ステップにお ヽて、前記第一 X線画像データに基づ ヽてマスク像 を再構成するとともに前記第二 X線画像データに基づいてライブ像を再構成し、 前記位置合わせステップにお ヽて、前記マスク像と前記ライブ像とを前記指標体の 再構成像に基づ ヽて位置合わせを行 ヽ、 [14] In the reading step, before the contrast agent is injected into the blood vessel of the subject, the subject Reading first X-ray image data obtained by imaging a blood vessel of a specimen, and second X-ray image data obtained by imaging the blood vessels of the subject after the contrast medium is injected, In the image reconstruction step, a mask image is reconstructed based on the first X-ray image data, and a live image is reconstructed based on the second X-ray image data, and the alignment step Then, the mask image and the live image are aligned based on the reconstructed image of the index body.
位置合わせされた前記マスク像と前記ライブ像とを差分処理して造影血管像を生 成する差分ステップを更に含む、  A difference step of generating a contrast-enhanced blood vessel image by performing a difference process on the aligned mask image and the live image;
ことを特徴とする請求項 13に記載の画像処理プログラム。  The image processing program according to claim 13.
[15] 前記読込ステップにおいて、前記被検体の血管に造影剤を注入される前に前記被 検体の血管を撮影して得られた第一 X線画像データと、前記造影剤を注入された後 に前記被検体の血管を撮影して得られた第二 X線画像データと、を読込み、 前記画像再構成ステップにお 、て、同一のビューにぉ 、て撮影された前記第一 X 線画像データに基づく第一投影像と前記第二 X線画像データに基づく第二投影像と を前記指標体投影像に基づいて位置合わせを行った後差分処理してビュー毎の差 分投影像を生成し、全てのビューの差分投影像を再構成することにより造影血管像 を再構成する、 [15] In the reading step, first X-ray image data obtained by imaging the blood vessel of the subject before the contrast agent is injected into the blood vessel of the subject, and after the contrast agent is injected And the second X-ray image data obtained by imaging the blood vessel of the subject, and the first X-ray image captured in the same view in the image reconstruction step. The first projection image based on the data and the second projection image based on the second X-ray image data are aligned based on the index object projection image, and then subjected to differential processing to generate a differential projection image for each view. And reconstruct the contrast-enhanced blood vessel image by reconstructing the differential projection images of all views.
ことを特徴とする請求項 13に記載の画像処理プログラム。  The image processing program according to claim 13.
[16] X線 CT装置に備えられた X線源及び前記 X線検出器を所定の角度毎に回転させ たときに生じる前記 X線源及び前記 X線検出器の空間位置の変位量を算出して、前 記 X線 CT装置から取得した X線画像データに対して前記変位量に基づいた位置修 正をするための空間変位量補正情報を生成する空間変位量補正情報生成ステップ と、 [16] Calculate the displacement of the spatial position of the X-ray source and X-ray detector that occurs when the X-ray source and the X-ray detector provided in the X-ray CT apparatus are rotated at a predetermined angle. A spatial displacement correction information generating step for generating spatial displacement correction information for correcting the position based on the displacement with respect to the X-ray image data acquired from the X-ray CT apparatus;
前記 X線 CT装置が被検体を撮影して得た X線画像データを読み込む読込ステツ プと、  A reading step for reading X-ray image data obtained by imaging the subject by the X-ray CT apparatus;
前記空間変位量補正情報に基づ!ヽて前記 X線画像データを位置修正し、その X線 画像データに基づ!ヽて画像再構成演算を行 ヽ、前記被検体の X線 CT像を生成する 画像再構成ステップと、 前記 X線 CT像を表示する表示ステップと、 Based on the spatial displacement correction information, the position of the X-ray image data is corrected, and based on the X-ray image data, an image reconstruction operation is performed to obtain an X-ray CT image of the subject. Generating an image reconstruction step; A display step for displaying the X-ray CT image;
を含むことを特徴とする画像処理方法。  An image processing method comprising:
[17] 前記 X線検出器が前記 X線源及び前記 X線検出器の間に配置された指標体を所 定の角度毎に回転移動しながら撮影して生成した前記指標体の投影像を含む指標 体 X線画像データに基づ ヽて画像再構成演算を行!ヽ、前記指標体の再構成像を生 成する指標体再構成像生成ステップを更に含み、  [17] A projected image of the index body generated by photographing the X-ray detector while rotating and moving the index body arranged between the X-ray source and the X-ray detector at predetermined angles. Including index body Image reconstruction calculation based on X-ray image data!指標, further comprising an index body reconstructed image generating step for generating a reconstructed image of the index body,
前記空間変位量補正情報生成ステップは、前記再構成像と前記投影像との位置 関係に基づいて、前記変位量を算出する、  The spatial displacement correction information generation step calculates the displacement based on a positional relationship between the reconstructed image and the projected image.
ことを特徴とする請求項 16に記載の画像処理方法。  The image processing method according to claim 16.
[18] 前記読込ステップにおいて、複数の X線画像データの組を読込み、 [18] In the reading step, a plurality of sets of X-ray image data are read,
前記複数の X線画像データの組の間で前記指標体に対応する X線画像データ部 分を用 、て位置合わせをする位置合わせステップを更に含む、  An alignment step of performing alignment using an X-ray image data portion corresponding to the index body between the plurality of sets of X-ray image data;
ことを特徴とする請求項 17に記載の画像処理方法。  The image processing method according to claim 17, wherein:
[19] 前記読込ステップにおいて、前記被検体の血管に造影剤を注入される前に前記被 検体の血管を撮影して得られた第一 X線画像データと、前記造影剤を注入された後 に前記被検体の血管を撮影して得られた第二 X線画像データと、を読込み、 前記画像再構成ステップにお ヽて、前記第一 X線画像データに基づ ヽてマスク像 を再構成するとともに前記第二 X線画像データに基づいてライブ像を再構成し、 前記位置合わせステップにお ヽて、前記マスク像と前記ライブ像とを前記指標体の 再構成像に基づ ヽて位置合わせを行 ヽ、 [19] In the reading step, first X-ray image data obtained by imaging a blood vessel of the subject before the contrast agent is injected into the blood vessel of the subject, and after the contrast agent is injected The second X-ray image data obtained by imaging the blood vessel of the subject is read, and the mask image is regenerated based on the first X-ray image data in the image reconstruction step. And a live image is reconstructed based on the second X-ray image data, and the mask image and the live image are based on the reconstructed image of the index body in the alignment step. Align,
位置合わせされた前記マスク像と前記ライブ像とを差分処理して造影血管像を生 成する差分ステップを更に含む、  A difference step of generating a contrast-enhanced blood vessel image by performing a difference process on the aligned mask image and the live image;
ことを特徴とする請求項 18に記載の画像処理方法。  The image processing method according to claim 18, wherein:
[20] 前記読込ステップにおいて、前記被検体の血管に造影剤を注入される前に前記被 検体の血管を撮影して得られた第一 X線画像データと、前記造影剤を注入された後 に前記被検体の血管を撮影して得られた第二 X線画像データと、を読込み、 前記画像再構成ステップにお 、て、同一のビューにぉ 、て撮影された前記第一 X 線画像データに基づく第一投影像と前記第二 X線画像データに基づく第二投影像と を前記指標体投影像に基づいて位置合わせを行った後差分処理してビュー毎の差 分投影像を生成し、全てのビューの差分投影像を再構成することにより造影血管像 を再構成する、 [20] In the reading step, first X-ray image data obtained by imaging a blood vessel of the subject before the contrast agent is injected into the blood vessel of the subject, and after the contrast agent is injected And the second X-ray image data obtained by imaging the blood vessel of the subject, and the first X-ray image captured in the same view in the image reconstruction step. A first projection image based on the data and a second projection image based on the second X-ray image data; After performing alignment based on the index object projection image, differential processing is performed to generate a differential projection image for each view, and the contrast projection blood vessel image is reconstructed by reconstructing the differential projection images of all the views. ,
ことを特徴とする請求項 18に記載の画像処理方法。  The image processing method according to claim 18, wherein:
PCT/JP2005/016326 2004-09-09 2005-09-06 X-ray ct device, image processing program, and image processing method WO2006028085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535759A JP5019879B2 (en) 2004-09-09 2005-09-06 X-ray CT apparatus, image processing program, and image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004262671 2004-09-09
JP2004-262671 2004-09-09

Publications (1)

Publication Number Publication Date
WO2006028085A1 true WO2006028085A1 (en) 2006-03-16

Family

ID=36036366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016326 WO2006028085A1 (en) 2004-09-09 2005-09-06 X-ray ct device, image processing program, and image processing method

Country Status (2)

Country Link
JP (1) JP5019879B2 (en)
WO (1) WO2006028085A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325920A (en) * 2006-05-12 2007-12-20 Toshiba Corp Three-dimensional image processing device and reconstruction area designating method
JP2008168128A (en) * 2007-01-09 2008-07-24 Siemens Ag Clinical workflow for combined 2d/3d diagnostic and therapeutic phlebographic examination using robotic angiography system
WO2008092009A2 (en) 2007-01-24 2008-07-31 Imaging Sciences International Llc Adjustable scanner
JP2009047424A (en) * 2007-08-13 2009-03-05 Hitachi-Ge Nuclear Energy Ltd Radiographic inspection device and piping inspection method using the device
JP2010004959A (en) * 2008-06-24 2010-01-14 Toshiba Corp X-ray ct apparatus
JP2011067542A (en) * 2009-09-28 2011-04-07 Fujifilm Corp Radiographic imaging apparatus, radiographic imaging method, and position calculating method
US9460512B2 (en) 2006-05-12 2016-10-04 Toshiba Medical Systems Corporation Three-dimensional image processing apparatus and reconstruction region specification method
JP2017205333A (en) * 2016-05-19 2017-11-24 株式会社バイオネット研究所 Ct image correction method and ct image device
KR20200061143A (en) * 2018-11-23 2020-06-02 오스템임플란트 주식회사 Dental CT apparatus, Arranging method of dental CT apparatus and computer-readable recording medium
CN113129239A (en) * 2021-05-06 2021-07-16 上海联影医疗科技股份有限公司 Image correction method, image correction device, electronic equipment and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093248A1 (en) * 2013-12-19 2015-06-25 株式会社 日立メディコ X-ray tomography device employing c-arm and method for controlling same
CN111879798B (en) * 2020-06-19 2023-02-24 中国人民解放军战略支援部队信息工程大学 Nano CT projection position drift correction method and device based on acquisition sequence subdivision

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564639A (en) * 1991-09-06 1993-03-19 Nec Corp Aligning mechanism for transverse cross section image of human body
JPH0824248A (en) * 1994-07-15 1996-01-30 Hitachi Medical Corp X-ray photograpting apparatus and cone beam ct apparatus
JPH09149901A (en) * 1995-11-30 1997-06-10 Toshiba Corp Image generating device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620371A1 (en) * 1996-05-21 1997-12-04 Philips Patentverwaltung X-ray procedure
US6466638B1 (en) * 2000-02-11 2002-10-15 Kabushiki Kaisha Toshiba Image mapping method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564639A (en) * 1991-09-06 1993-03-19 Nec Corp Aligning mechanism for transverse cross section image of human body
JPH0824248A (en) * 1994-07-15 1996-01-30 Hitachi Medical Corp X-ray photograpting apparatus and cone beam ct apparatus
JPH09149901A (en) * 1995-11-30 1997-06-10 Toshiba Corp Image generating device and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325920A (en) * 2006-05-12 2007-12-20 Toshiba Corp Three-dimensional image processing device and reconstruction area designating method
US9460512B2 (en) 2006-05-12 2016-10-04 Toshiba Medical Systems Corporation Three-dimensional image processing apparatus and reconstruction region specification method
JP2008168128A (en) * 2007-01-09 2008-07-24 Siemens Ag Clinical workflow for combined 2d/3d diagnostic and therapeutic phlebographic examination using robotic angiography system
US8934602B2 (en) 2007-01-24 2015-01-13 Dental Imaging Technologies Corporation Adjustable scanner
WO2008092009A2 (en) 2007-01-24 2008-07-31 Imaging Sciences International Llc Adjustable scanner
EP2119326A2 (en) * 2007-01-24 2009-11-18 Imaging Sciences International, Llc Adjustable scanner
KR101499267B1 (en) * 2007-01-24 2015-03-05 이미징 사이언시즈 인터내셔널 엘엘씨 An apparatus for dental and facial imaging
EP2119326A4 (en) * 2007-01-24 2013-10-23 Dental Imaging Technologies Corp Adjustable scanner
JP2009047424A (en) * 2007-08-13 2009-03-05 Hitachi-Ge Nuclear Energy Ltd Radiographic inspection device and piping inspection method using the device
JP2010004959A (en) * 2008-06-24 2010-01-14 Toshiba Corp X-ray ct apparatus
JP2011067542A (en) * 2009-09-28 2011-04-07 Fujifilm Corp Radiographic imaging apparatus, radiographic imaging method, and position calculating method
JP2017205333A (en) * 2016-05-19 2017-11-24 株式会社バイオネット研究所 Ct image correction method and ct image device
KR20200061143A (en) * 2018-11-23 2020-06-02 오스템임플란트 주식회사 Dental CT apparatus, Arranging method of dental CT apparatus and computer-readable recording medium
KR102203548B1 (en) 2018-11-23 2021-01-15 오스템임플란트 주식회사 Dental CT apparatus, Arranging method of dental CT apparatus and computer-readable recording medium
CN113129239A (en) * 2021-05-06 2021-07-16 上海联影医疗科技股份有限公司 Image correction method, image correction device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPWO2006028085A1 (en) 2008-05-08
JP5019879B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5019879B2 (en) X-ray CT apparatus, image processing program, and image processing method
JP6181459B2 (en) Radiation therapy system
JP4537129B2 (en) System for scanning objects in tomosynthesis applications
WO2013005833A1 (en) X-ray imaging device and calibration method therefor
JP2012045278A (en) X-ray imaging apparatus and x-ray imaging method
JP2007007411A (en) Method or x-ray device for creating a series of recordings of medical x-ray images
JP4966120B2 (en) X-ray angiography equipment
US20090257559A1 (en) X-ray moving image radiographing apparatus
JP4408664B2 (en) Cone beam X-ray CT apparatus and phantom used therefor
JP2011167334A (en) Radiographic apparatus
KR20140044158A (en) Radiography system for dental model and jig device used thereof
US8213565B2 (en) Method for correcting truncated projection data
JP4573593B2 (en) X-ray image correction method and apparatus
JPH119583A (en) X-ray ct scanner
JP4444100B2 (en) Multidimensional structure analysis method
CN112120722B (en) X-ray tomosynthesis apparatus, image processing apparatus, and recording medium
US11730438B2 (en) Positional information acquisition device, positional information acquisition method, positional information acquisition program, and radiography apparatus
JP6853376B2 (en) How to reconstruct a 2D image from multiple X-ray images
JP4610304B2 (en) X-ray CT system
JP2008036272A (en) Cone beam x-ray ct system
JPH11221206A (en) Device and method for x-ray ct imaging utilizing c-arm
JP4935581B2 (en) X-ray diagnostic equipment
JP2015047392A (en) X-ray tomography apparatus
JP2015150220A (en) X-ray CT apparatus and imaging method
JP5572521B2 (en) X-ray CT apparatus and image reconstruction method for X-ray CT apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535759

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase