WO2006027996A1 - Resist composition for euv and method of forming resist pattern - Google Patents

Resist composition for euv and method of forming resist pattern Download PDF

Info

Publication number
WO2006027996A1
WO2006027996A1 PCT/JP2005/016011 JP2005016011W WO2006027996A1 WO 2006027996 A1 WO2006027996 A1 WO 2006027996A1 JP 2005016011 W JP2005016011 W JP 2005016011W WO 2006027996 A1 WO2006027996 A1 WO 2006027996A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
euv
resist composition
acid
integer
Prior art date
Application number
PCT/JP2005/016011
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Hada
Taku Hirayama
Daiju Shiono
Takeo Watanabe
Hiroo Kinoshita
Original Assignee
Tokyo Ohka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co., Ltd. filed Critical Tokyo Ohka Kogyo Co., Ltd.
Publication of WO2006027996A1 publication Critical patent/WO2006027996A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Definitions

  • the present invention relates to a resist composition for EUV and a resist pattern forming method used for EUV lithography.
  • EUV Extraviolet; wavelength of about 13.5 nm
  • ArF excimer laser (193 nm) ArF excimer laser (193 nm)
  • electron beam has been proposed and studied (for example, see Patent Documents 1 to 3).
  • EUV exposure is usually performed in a vacuum.
  • EUV lithography since EUV is highly linear, an exposure apparatus is usually configured using a reflection engineering system that uses a mirror such as a multilayer mirror.
  • a base material component that has film-forming ability and changes in alkali solubility by the action of an acid.
  • a chemically amplified resist containing an acid generator component that generates an acid upon exposure is known. Chemically amplified resists are classified into a negative type in which alkali solubility is reduced by exposure and a positive type in which alkali solubility is increased by exposure.
  • resins are mainly used as the base component of chemically amplified resists.
  • the hydroxyl group of polyhydroxystyrene-based resin and the power of (meth) acrylic-based resin can be one of the loxy groups.
  • the part protected with an acid dissociable, dissolution inhibiting group can be used (for example, (See Patent Documents 4 and 5).
  • the management width of the variation in the line width is about lOnm or less.
  • polymers that are generally used as base materials have an average square radius per molecule as large as several nanometers, and the above management range is only about several polymers. Therefore, as long as a polymer is used as the base material component, it is very difficult to reduce LER.
  • a base material component it has been proposed to use a low molecular weight material having an alkali-soluble group such as a hydroxyl group, part or all of which is protected with an acid dissociable, dissolution inhibiting group (example).
  • a low molecular weight material having an alkali-soluble group such as a hydroxyl group, part or all of which is protected with an acid dissociable, dissolution inhibiting group (example).
  • an acid dissociable, dissolution inhibiting group example.
  • Such a low molecular weight material is expected to have a small contribution to the increase in LER due to the low mean molecular diameter due to its low molecular weight.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-177537
  • Patent Document 2 JP 2003-140361 A
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-75998
  • Patent Document 4 JP-A-5-249682
  • Patent Document 5 Japanese Patent No. 2881969
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2002-099088
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an EUV resist composition and a resist pattern forming method that are suitable for lithography using EUV with less outgassing.
  • R to R are each independently an alkyl group having 1 to 10 carbon atoms or aromatic carbon.
  • a hydride group which may contain heteroatoms in its structure; g and j are each independently an integer of 1 or more, k and q are 0 or an integer of 1 or more, and g + j + k + q is 5 or less; h is an integer of 1 or more, 1 and m are each independently 0 or an integer of 1 or more, and h + 1 + m force or less; i is 1 or more N and o are each independently an integer of 0 or 1 and i + n + o is 4 or less; p is 0 or 1; X is the following general formula (la) or (Lb)
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms or aromatic carbon.
  • An EUV resist composition comprising an acid generator component (B) that generates
  • the second aspect of the present invention is a method in which the EUV resist composition according to any one of claims 1 to 4 is applied on a substrate, pre-betaized, and EUV is selectively exposed, and then PEB is applied.
  • the resist pattern forming method is characterized in that a resist pattern is formed by performing (post-exposure heating) and alkali development.
  • the present invention can provide a resist composition for EUV and a resist pattern forming method suitable for lithography using EUV with less outgassing.
  • a resist composition for EUV comprising: a protective body (A1); and an acid generator component (B) that generates an acid upon exposure (hereinafter also referred to as component (B)).
  • the polyhydric phenol compound (a) is the one before being protected with the acid dissociable, dissolution inhibiting group, and the one protected with the acid dissociable, dissolution inhibiting group is the protector (A1) It is.
  • the component (B) force is generated by exposure.
  • the acid acts on the protective body (Al)
  • the acid dissociable, dissolution inhibiting group is dissociated, thereby changing the entire protective body (A1) from alkali-insoluble to alkali-soluble.
  • the exposed portion turns into alkali-soluble while the resist pattern is formed. Since the alkali remains insoluble and does not change, a positive resist pattern can be formed by alkali development.
  • R 1 to R 5 are each independently linear, branched or cyclic
  • the alkyl group or aromatic hydrocarbon group may contain a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in its structure.
  • Examples of the aromatic hydrocarbon group include a full group, a tolyl group, a xylyl group, a mesityl group, a phenethyl group, and a naphthyl group.
  • g and j are each independently an integer of 1 or more, preferably 1 or 2
  • k and q are each independently 0 or 1 or more, preferably an integer not exceeding 2
  • h is an integer of 1 or more, preferably 1 to 2, 1, and m are each independently 0 or 1 or more, preferably an integer not exceeding 2, and h + 1 + m is 4 or less.
  • i is an integer of 1 or more, preferably 1 to 2
  • n and o are each independently 0 or 1 or more, preferably an integer not exceeding 2
  • i + n + o is 4 or less.
  • p is 0 or 1, preferably 1.
  • X is a group represented by the above general formula (la) or (lb).
  • R 1 and R are the above
  • R, y, and z are each independently an integer of 0 or 1 and r + y + z is 4 or less.
  • R is a cycloalkyl group, the number of i is 1, and R is lower alkyl
  • a group in which the number of k is 1 and the number of g is 1 is preferable.
  • R is a cycloalkyl group, the number of j is 1, and R is a lower alkyl group.
  • the number of k is 1, the number of g is 1, the power q, 1, m, n, and o force, and h and i are A compound of 1 is preferable because a fine pattern can be formed with high resolution with reduced LER.
  • X is preferably the general formula (lb).
  • the most preferable one is the polyvalent phenolic compound represented by the following formula (I 1) and the polyvalent phenol represented by (I 2) Phenolic compound.
  • the polyvalent phenol compound (a) preferably has a molecular weight of 300 to 2500, more preferably 450 to 1500, and even more preferably 500 to 1200!
  • LER line edge roughness
  • the pattern shape is improved, and the resolution is also improved.
  • a resist pattern having a good profile shape can be formed.
  • the polyhydric phenol compound (a) preferably has a molecular weight dispersity (MwZMn) of 1.5 or less because LER is reduced. This is because the polyphenolic compound (a) has a dispersity of 1.
  • MwZMn molecular weight dispersity
  • Multiple protectors with different numbers of phenolic hydroxyl groups (protection numbers) that are protected by acid dissociable, dissolution inhibiting groups in polyphenolic materials by having a narrow molecular weight distribution of 5 or less (A1) Even if it is contained, it is considered that the alkali solubility of each protector (A1) becomes relatively uniform. The smaller the degree of dispersion, the more preferable it is, and preferably 1.4 or less, and most preferably 1.3 or less.
  • the dispersity is generally used for polydisperse compounds such as polymers, but even monodisperse compounds may contain impurities such as by-products during production and residual starting materials. Therefore, when analyzed by gel permeation chromatography (GPC) or the like, a distribution may appear in its molecular weight. That is, in the case of a monodispersed compound, a dispersity of 1 means that the purity is 100%, and the greater the dispersity, the greater the amount of impurities.
  • GPC gel permeation chromatography
  • the degree of dispersion is generally used for a compound that exhibits such an apparent molecular weight distribution.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer to be measured can be calculated by measuring Mw and Mn by, for example, GPC and determining the MwZMn ratio.
  • the degree of dispersion is determined by synthesizing the polyhydric phenolic compound (a), which is the final target product, and then purifying and removing reaction by-products and impurities, or by using a known method such as molecular weight fractionation. The quantity part can be removed and adjusted.
  • the polyvalent phenolic compound (a) needs to be a material capable of forming an amorphous film by spin coating.
  • an amorphous film means an optically transparent film that does not crystallize.
  • the spin coating method is one of the commonly used thin film forming methods, and whether or not the polyhydric phenol compound is a material that can form an amorphous film by the spin coating method is determined by the 8-inch silicon coating method. This can be determined by whether or not the coating film formed on the wafer by spin coating is transparent. More specifically, for example, the determination can be made as follows. First, the polyhydric phenol material is generally used as a resist solvent.
  • a mixed solvent of ethyl lactate Z propylene glycol monomethyl ether acetate 40Z60 (mass ratio) (hereinafter abbreviated as ⁇ ). ) Is dissolved to a concentration of 14% by mass and subjected to ultrasonic treatment (dissolution treatment) using an ultrasonic cleaner. The solution is spin-coated on the wafer at 1500 rpm, and optionally a dry baking (PAB: Post Applied Bake) is applied at 110 ° C for 90 seconds. Then, it is confirmed whether an amorphous film is formed depending on whether it is transparent. A transparent, cloudy film is not a monolithic film.
  • PAB Post Applied Bake
  • the polyphenolic compound (a) has good stability of the amorphous film formed as described above. Even after being left for a week, it is preferable that the amorphous state be maintained.
  • the protector (A1) is protected by substituting part or all of the hydroxyl groups of the phenolic hydroxyl group of the polyhydric phenol compound (a) with an acid dissociable, dissolution inhibiting group.
  • the acid dissociable, dissolution inhibiting group is not particularly limited, and is proposed for hydroxystyrene-based resins and (meth) acrylic acid-based resins used in chemically amplified resist compositions for KrF and ArF. It can be used by appropriately selecting from unreasonable forces.
  • Specific examples include a chain alkoxyalkyl group, a tertiary alkyloxycarbonyl group, a tertiary alkyl group, a tertiary alkoxycarboalkyl group, and a cyclic ether group.
  • the chain alkoxyalkyl group includes: 1 ethoxyethyl group, 1 ethoxymethyl group, 1-methoxymethylethyl group, 1-methoxymethyl group, 1 isopropoxycetyl group, 1 methoxypropyl group, 1 ethoxypropyl group, 1 n Butoxetyl group and the like.
  • tertiary alkyloxycarbonyl group examples include a tert-butyloxycarboxyl group and a tert-amyloxycarboxyl group.
  • Tertiary alkyl groups include chain tertiary alkyl groups such as tert butyl group and tert-amyl group, fatty acids such as 2-methyladamantyl group and 2-ethyladadamantyl group. And tertiary alkyl groups containing an aromatic polycyclic group.
  • tertiary alkoxy carboalkyl group examples include a tert butyloxy carboxymethyl group, a tert-amyloxy carbonylmethyl group, and the like.
  • Examples of the cyclic ether group include a tetrahydrovinyl group and a tetrahydrofuranyl group.
  • 1 ethoxyethyl group and 1 ethoxymethyl group are preferred because chain alkoxyalkyl groups are preferred because they have excellent dissociation properties, can improve the uniformity of the protector (A1), and can improve LER. preferable.
  • a plurality of polyhydric phenolic compounds having different numbers of phenolic hydroxyl groups protected by acid dissociable, dissolution inhibiting groups (hereinafter referred to as isomers) Is included, the closer the number of protected isomers, the better the effect of the present invention.
  • the ratio of each isomer in the protected form (A1) can be measured by means such as reverse phase chromatography.
  • the protector (A1) is, for example, one or two or more polyphenolic compounds (a), wherein all or part of the phenolic hydroxyl groups are acid-dissociable by a known method. It can be produced by a method of protecting with a dissolution inhibiting group.
  • the number of protected isomers can be adjusted by the conditions of the method of protecting with the acid dissociable, dissolution inhibiting group.
  • the content of the protective body (A1) in the EUV resist composition of the present invention may be adjusted according to the resist film thickness to be formed.
  • the EUV resist composition of the present invention comprises an unprotected body (A2), wherein the phenolic hydroxyl group in the polyhydric phenol compound (a) is protected with an acid dissociable, dissolution inhibiting group. You may have.
  • the unprotected body (A2) is one in which the hydroxyl group of the phenolic hydroxyl group of the polyhydric phenol compound (a) is not protected at all by the acid dissociable, dissolution inhibiting group, that is, the polyhydric phenol compound (a). It is.
  • the ratio is preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 10% by mass or less, and most preferably 0% by mass.
  • LER can be reduced and the resolution is excellent when a pattern is formed.
  • the ratio of unprotected body (A2) to the total amount of protected body (A1) and unprotected body (A2) is, for example, removal of unprotected body (A2) by gel permeation chromatography (GPC), etc. Can be adjusted.
  • the ratio of the unprotected body (A2) to the total amount of the protected body (A1) and the unprotected body (A2) can be measured by means such as reverse phase chromatography.
  • the protection rate of the phenolic hydroxyl group of the polyhydric phenol compound (a) is 5 to 50 mol% in view of resolution and roughness reduction effect.
  • known acid generators used in conventional chemically amplified resist compositions can be used without particular limitation.
  • acid generators include so-called onium salt acid generators such as odonium salts and sulfo salt, oxime sulfonate acid generators, bisalkyl or bisarylsulfonyldiazomethanes.
  • diazomethane acid generators such as poly (bissulfo) diazomethanes, nitrobenzyl sulfonate acid generators, iminosulfonate acid generators, and disulfone acid generators.
  • the acid salt-based acid generator include trifluoromethanoate sulfonate or nonafluorobutane sulfonate of diphenylodium, trifluoromethanesulfonate or nona of bis (4-tert butylphenol) ododonium.
  • oxime sulfonate-based acid generators include ⁇ - (P-toluenesulfo-luoximino) -benzyl cyanide, a- (p-chlorobenzenebenzene-sulfoximino) -benzil cyanide, a- ( 4-Nitrobenzenesulfo-ruximino) -Benzyl cyanide, a- (4-Nitro-2-trifluoromethylbenzenesulfo-ruximino) -Benzyl cyanide, a- (Benzenesulfo-ruximino) -4-Black mouth Benzyl cyanide, a-(Benzenesulfo-ruximino)-2, 4-dichlorobenzil cyanide, a-(Benzenesulfo-ruxinomino)-2, 6 -dichlorobenzil cyanide, a-(Benzenesulf
  • bisalkyl or bisarylsulfol-diazomethanes include bis (isopropylsulfol) diazomethane, bis ( ⁇ toluenesulfol) diazomethane, and bis (1,1- Examples thereof include dimethylethylsulfol) diazomethane, bis (cyclohexylsulfol) diazomethane, and bis (2,4 dimethylphenylsulfol) diazomethane.
  • Poly (bissulfonyl) diazomethanes include, for example, 1,3 bis (phenylsulfo-diazomethylsulfol) propane (a compound with a structure shown below), decomposition point 135 ° C.
  • an onium salt having a fluorinated alkyl sulfonate ion as an ion.
  • component (B) one type of acid generator may be used alone, or two or more types may be used in combination.
  • the content of component (B) is 0.5 to 30 parts by mass, preferably 110 parts by mass with respect to 100 parts by mass of component (A). By setting it within the above range, pattern formation is sufficiently performed. Moreover, it is preferable because a uniform solution can be obtained and storage stability is improved.
  • Component (D) is usually used in the range of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
  • the EUV resist composition of the present invention includes, as an optional component, for the purpose of preventing sensitivity deterioration due to the blending of the component (D), and improving the resist pattern shape, retention stability, and the like.
  • Organic carboxylic acids or phosphorus oxo acids or derivatives thereof (E) (hereinafter (E)
  • component (D) and the component (E) can be used in combination, or any one of them can be used.
  • organic carboxylic acids examples include malonic acid, succinic acid, malic acid, succinic acid, and benzoic acid. Acid, salicylic acid and the like are preferred.
  • Phosphoric acid or its derivatives include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenol ester and other phosphoric acid or derivatives such as those esters, phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid Phosphonic acid such as n-butyl ester, phenol phosphonic acid, diphosphoric phosphonic acid ester, dibenzyl phosphonic acid ester and derivatives thereof, phosphinic acid such as phosphinic acid, phenol phosphinic acid and the like And derivatives such as esters, of which phosphonic acid is particularly preferred.
  • Component (E) is used in a proportion of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
  • the EUV resist composition of the present invention further has, as desired, miscible additives such as an additional resin for improving the performance of the resist film and an interface for improving the coating property.
  • miscible additives such as an additional resin for improving the performance of the resist film and an interface for improving the coating property.
  • An activator, a dissolution inhibitor, a plasticizer, a stabilizer, a colorant, an antihalation agent, a dye, and the like can be appropriately added and contained.
  • additional resin examples include those proposed as base resins for conventional chemically amplified KrF positive resist compositions, ArF positive resist compositions, and the like.
  • the ratio of the additional resin should be within a range that does not impair the effects of the present invention. For example, it is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total solid content of the resist composition. .
  • the EUV resist composition of the present invention can be produced by dissolving the above materials in an organic solvent.
  • each component to be used can be dissolved into a uniform solution.
  • any one or two of the known solvents for chemically amplified resists can be used. These can be appropriately selected and used.
  • latones such as ⁇ -butyrolatatane, ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, 2-heptanone, ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol Monoacetate, propylene glycol, propylene glycol monoacetate, dipropy Polyhydric alcohols such as lenglycol or dipropylene glycol monoacetate monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether and derivatives thereof, cyclic ethers such as dioxane, Mention may be made of esters such as methyl lactate, ethyl acetate (EL), methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate
  • organic solvents can be used alone or as a mixed solvent of two or more.
  • a mixed solvent obtained by mixing propylene glycol monomethyl ether acetate (PGMEA) and a polar solvent is preferable.
  • the mixing ratio may be appropriately determined in consideration of the compatibility between PGMEA and the polar solvent, preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. Preferably within range! /.
  • the mass ratio of PGMEA: EL is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. ,.
  • a mixed solvent of at least one selected from among PGMEA and EL and ⁇ -petit-mouth rataton is also preferable.
  • the mixing ratio of the former and the latter is preferably 70: 30-95: 5.
  • PGME propylene glycol monomethyl ether
  • ⁇ ⁇ ⁇ methyl amyl ketone
  • BuOAc butyl acetate
  • MMP 3-methylmethoxypropionate
  • An organic solvent contained as a component can be preferably used.
  • PGME propylene glycol monomethyl ether
  • MAK methylamyl ketone
  • BuOAc butyl acetate
  • MMP 3-methylmethoxypropionate
  • the amount of the organic solvent used is not particularly limited, and is a concentration that can be applied to a substrate or the like, and is appropriately set according to the coating film thickness. Is used in a range of 2 to 20% by mass, preferably 5 to 15% by mass.
  • the resist pattern forming method of the present invention can be performed, for example, as follows. That is, first, a EUV resist composition useful for the present invention is coated on a substrate such as a silicon wafer with a spinner or the like, and is subjected to pre-beta under a temperature condition of 80 to 150 ° C, preferably 130 to 150 ° C. 40 to 120 seconds, and preferably for 60 to 90 seconds, for example by an EUV exposure apparatus which was selectively exposed through a desired mask pattern in a vacuum (e.g. 1 X 10 _7 ⁇ 1 X 10 _5 Pa) Thereafter, PEB (post-exposure heating) is applied for 40 to 120 seconds, preferably 60 to 90 seconds, under a temperature of 80 to 150 ° C.
  • PEB post-exposure heating
  • alkali developing solution for example 0.1 to 10 mass 0/0 tetramethylammonium - developing is conducted using an Umuhido port Kishido solution. In this way, a resist pattern faithful to the mask pattern can be obtained.
  • An organic or inorganic antireflection film can be provided between the substrate and the coating layer of the resist composition.
  • the EUV resist composition and resist pattern forming method of the present invention are suitable for lithography using EUV with less degassing during exposure.
  • the protective body (A1) The polyhydric phenolic compound (a), which is a material for the above, can be synthesized very easily, with good yield and purity, and can be produced stably and inexpensively industrially.
  • a polyhydric phenolic compound represented by the above formula (I 1) molecular weight 981: hereinafter abbreviated as low molecular weight compound (a-1)
  • TPS-PFBS rho-n-butanesulfonate
  • PGMEA propylene glycol monomethyl ether acetate
  • the obtained resist composition solution was applied on a silicon substrate so as to have a film thickness of 10%, and heated for 90 seconds at a temperature of 130 ° C.
  • low molecular weight compound (a-1) was used instead of the low molecular weight compound (a-1) (molecular weight 106 1: hereinafter referred to as low molecular weight compound (a'-1)).
  • a resist composition solution was prepared in the same manner as in 1, and the same evaluation was performed. The results are shown in Table 1.
  • R is a group represented by the following formula (Ila).
  • the protection rate is ⁇ 1 the number of phenolic hydroxyl groups protected with 1 ethoxyethyl group Z (the number of phenolic hydroxyl groups + the number of phenolic hydroxyl groups protected with 1-ethoxyethyl group) ⁇ X 100.
  • a resist composition solution was prepared and evaluated in the same manner as in Reference Example 1 except that the protector (a-2) obtained in Synthesis Example was used instead of the low molecular compound (a-1). . The results are shown in the table Shown in 2.
  • a resist composition solution was prepared in the same manner as in Reference Example 1 except that a protective body (abbreviated as “a′-2”) was used, and the same evaluation was performed. The results are shown in Table 2.
  • the resist composition of Example 1 using the protector (a-2) as the base material component was a low molecular compound protector (a ' It can be seen that compared with Comparative Example 1 using 2), degassing was suppressed because the total pressure change was small.
  • the resist composition and the resist pattern forming method of the present invention are the same as those of EUV lithography. It is applied to the EUV resist composition and resist pattern forming method used.

Abstract

A resist composition for EUV, characterized by comprising: a protected compound (A1) which is a polyhydric phenol compound (a) represented by the following general formula (I) in which part or all of the phenolic hydroxy groups have been protected by an acid-dissociable dissolution-inhibitive group; and an acid generator ingredient (B) which generates an acid upon exposure to light.

Description

明 細 書  Specification
EUV用レジスト組成物およびレジストパターン形成方法  EUV resist composition and resist pattern forming method
技術分野  Technical field
[0001] 本発明は、 EUVリソグラフィ一に用いられる EUV用レジスト組成物およびレジスト ノ《ターン形成方法に関する。  The present invention relates to a resist composition for EUV and a resist pattern forming method used for EUV lithography.
本願は、 2004年 9月 9日に出願された特願 2004— 262, 306号に基づき優先権を 主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2004-262,306 filed on September 9, 2004, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩 により急速にパターンの微細化が進んで 、る。  In recent years, in the manufacture of semiconductor elements and liquid crystal display elements, pattern miniaturization has rapidly progressed due to advances in lithography technology.
微細化の手法としては、一般に、露光光源の短波長化が行われている。具体的に は、従来は、 g線、 i線に代表される紫外線が用いられていた力 現在では、 KrFェキ シマレーザーや、 ArFエキシマレーザーを用いた半導体素子の量産が開始されてい る。さらに最近では、 ArFエキシマレーザー(193nm)によるリソグラフィープロセスの 次世代技術となる EUV (Extreme Ultraviolet (極端紫外光);波長約 13. 5nm) や電子線によるリソグラフィプロセスも提案され、研究されている(例えば特許文献 1 〜3参照)。 EUVによる露光は、通常、真空中で行われる。また、 EUVリソグラフィに おいては、 EUVの直進性が高いため、通常、多層膜ミラー等のミラーを用いた反射 工学系を用いて露光装置が構成される。  As a technique for miniaturization, the wavelength of an exposure light source is generally shortened. Specifically, the power used in the past, typically ultraviolet rays such as g-line and i-line, has now begun mass production of semiconductor devices using KrF excimer laser and ArF excimer laser. More recently, a lithography process using EUV (Extreme Ultraviolet; wavelength of about 13.5 nm), which is the next generation technology of lithography process using ArF excimer laser (193 nm), and electron beam has been proposed and studied ( For example, see Patent Documents 1 to 3). EUV exposure is usually performed in a vacuum. Also, in EUV lithography, since EUV is highly linear, an exposure apparatus is usually configured using a reflection engineering system that uses a mirror such as a multilayer mirror.
[0003] 他方、微細な寸法のパターンを再現可能な高解像性の条件を満たすレジスト材料 の 1つとして、膜形成能を有し、酸の作用によりアルカリ溶解性の変化する基材成分 と、露光により酸を発生する酸発生剤成分とを含有する化学増幅型レジストが知られ ている。化学増幅型レジストには、露光によりアルカリ可溶性が低下するネガ型と、露 光によりアルカリ可溶性が増大するポジ型とがある。  [0003] On the other hand, as one of resist materials that can satisfy a high-resolution condition that can reproduce a pattern with a fine size, a base material component that has film-forming ability and changes in alkali solubility by the action of an acid. A chemically amplified resist containing an acid generator component that generates an acid upon exposure is known. Chemically amplified resists are classified into a negative type in which alkali solubility is reduced by exposure and a positive type in which alkali solubility is increased by exposure.
現在、化学増幅型レジストの基材成分としては主に樹脂が用いられており、たとえ ばポジ型の場合、ポリヒドロキシスチレン系榭脂の水酸基や (メタ)アクリル系榭脂の力 ルポキシ基の一部を酸解離性溶解抑制基で保護したものが用いられて ヽる(例えば 特許文献 4, 5参照)。 At present, resins are mainly used as the base component of chemically amplified resists. For example, in the case of positive type, the hydroxyl group of polyhydroxystyrene-based resin and the power of (meth) acrylic-based resin can be one of the loxy groups. The part protected with an acid dissociable, dissolution inhibiting group can be used (for example, (See Patent Documents 4 and 5).
しかし、このような材料を用いてパターンを形成した場合、パターンの上面や側壁の 表面に荒れ (ラフネス)が生じる問題がある。このようなラフネスは、従来はあまり問題 となっていなかった。しかし、近年、半導体素子等の急激な微細化に伴い、いっそう の高解像度、例えば寸法幅 90nm以下の解像度が求められており、それに伴って、 ラフネスが深刻な問題となってきている。例えばラインパターンを形成する場合、バタ ーン側壁表面の荒れ、すなわち LER (ラインエッジラフネス)により、形成される線幅 にばらつきが生じる力 その線幅のばらつきの管理幅は、寸法幅の 10%程度以下と することが望まれており、パターン寸法が小さいほど LERの影響は大きい。例えば 90 nm程度の寸法を持つラインパターンを形成する場合、その線幅のばらつきの管理幅 は、 lOnm程度以下とすることが望まれている。しかし、一般的に基材として用いられ ているポリマーは、一分子当たりの平均自乗半径が数 nm前後と大きぐ上記の管理 幅はポリマー数個分程度の幅でしかない。そのため、基材成分としてポリマーを使う 限り、 LERの低減は非常に困難である。  However, when a pattern is formed using such a material, there is a problem that roughness is generated on the upper surface of the pattern or the surface of the side wall. Such roughness has not been a problem in the past. However, in recent years, with the rapid miniaturization of semiconductor elements and the like, higher resolution, for example, resolution with a dimension width of 90 nm or less, has been demanded, and accordingly, roughness has become a serious problem. For example, when forming a line pattern, the roughness of the surface of the side wall of the pattern, that is, the force that causes variation in the formed line width due to LER (line edge roughness), the management width of the variation in the line width is 10% of the dimension width. It is desired to be less than or equal to the degree. The smaller the pattern size, the greater the influence of LER. For example, when a line pattern having a dimension of about 90 nm is formed, it is desired that the management width of the variation in the line width is about lOnm or less. However, polymers that are generally used as base materials have an average square radius per molecule as large as several nanometers, and the above management range is only about several polymers. Therefore, as long as a polymer is used as the base material component, it is very difficult to reduce LER.
[0004] 一方、基材成分として、水酸基等のアルカリ可溶性基を有し、その一部または全部 が酸解離性溶解抑制基で保護された低分子材料を用いることが提案されて ヽる (例 えば特許文献 6参照)。このような低分子材料は、低分子量であるが故に自乗平均半 径が小さぐ LER増大への寄与は小さいものと予想される。 [0004] On the other hand, as a base material component, it has been proposed to use a low molecular weight material having an alkali-soluble group such as a hydroxyl group, part or all of which is protected with an acid dissociable, dissolution inhibiting group (example). For example, see Patent Document 6). Such a low molecular weight material is expected to have a small contribution to the increase in LER due to the low mean molecular diameter due to its low molecular weight.
特許文献 1 :特開 2003— 177537号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-177537
特許文献 2 :特開 2003— 140361号公報  Patent Document 2: JP 2003-140361 A
特許文献 3:特開 2003 - 75998号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2003-75998
特許文献 4:特開平 5— 249682号公報  Patent Document 4: JP-A-5-249682
特許文献 5:特許第 2881969号公報  Patent Document 5: Japanese Patent No. 2881969
特許文献 6 :特開 2002— 099088号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2002-099088
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、本発明者らの検討によれば、化学増幅型レジストを用いて EUVによるリソグ ラフィーを行った場合、特に基材成分として低分子材料を用いた場合、露光時にレジ スト膜から脱ガスが生じるという問題がある。かかる脱ガスは、露光の際に基板に到達 する露光光を弱めたり、ミラーやマスクを汚染して、安定した露光を行えなくなる等の 問題を引き起こしてしまう。 [0005] However, according to the study of the present inventors, when EUV lithography is performed using a chemically amplified resist, particularly when a low-molecular material is used as a base material component, the resist during exposure is registered. There is a problem that degassing occurs from the strike film. Such degassing causes problems such as weakening the exposure light reaching the substrate during exposure and contaminating the mirror and the mask, making it impossible to perform stable exposure.
本発明は、上記事情に鑑みてなされたものであって、脱ガスが少なぐ EUVによる リソグラフィー用として好適な EUV用レジスト組成物およびレジストパターン形成方法 を提供することを目的とする。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an EUV resist composition and a resist pattern forming method that are suitable for lithography using EUV with less outgassing.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、鋭意検討の結果、特定の構造を有する多価フエノール化合物のフ ェノール性水酸基を酸解離性溶解抑制基で保護した保護体が、脱ガスの少な ヽ材 料であることを見出し、本発明を完成させた。 [0006] As a result of intensive studies, the present inventors have found that a protector in which a phenolic hydroxyl group of a polyhydric phenol compound having a specific structure is protected with an acid dissociable, dissolution inhibiting group is a degassing material with little degassing. As a result, the present invention was completed.
すなわち、本発明の第一の態様は、下記一般式 (I)  That is, the first aspect of the present invention is the following general formula (I)
[0007] [化 1] [0007] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
[式 (I)中、 R 〜R はそれぞれ独立に炭素数 1〜10のアルキル基または芳香族炭 [In the formula (I), R to R are each independently an alkyl group having 1 to 10 carbon atoms or aromatic carbon.
11 17  11 17
化水素基であって、その構造中にヘテロ原子を含んでもよく;g、 jはそれぞれ独立に 1以上の整数であり、 k、 qは 0または 1以上の整数であり、かつ g+j +k + qが 5以下で あり; hは 1以上の整数であり、 1、 mはそれぞれ独立に 0または 1以上の整数であり、か つ h+1+m力 以下であり; iは 1以上の整数であり、 n、 oはそれぞれ独立に 0または 1 以上の整数であり、かつ i+n+oが 4以下であり; pは 0または 1であり;Xは下記一般 式 (la)または(lb)  A hydride group which may contain heteroatoms in its structure; g and j are each independently an integer of 1 or more, k and q are 0 or an integer of 1 or more, and g + j + k + q is 5 or less; h is an integer of 1 or more, 1 and m are each independently 0 or an integer of 1 or more, and h + 1 + m force or less; i is 1 or more N and o are each independently an integer of 0 or 1 and i + n + o is 4 or less; p is 0 or 1; X is the following general formula (la) or (Lb)
[0008] [化 2] [0008] [Chemical 2]
Figure imgf000006_0001
Figure imgf000006_0001
(式 (la)中、 R 、R はそれぞれ独立に炭素数 1〜10のアルキル基または芳香族炭 (In the formula (la), R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms or aromatic carbon.
18 19  18 19
化水素基であって、その構造中にヘテロ原子を含んでもよく;r、 y、 zはそれぞれ独立 に 0又は 1以上の整数であり、かつ r+y+zが 4以下である)で表される基である]で表 される多価フエノールイ匕合物(a)におけるフエノール性水酸基の一部または全部が 酸解離性溶解抑制基で保護されている保護体 (A1)と、露光により酸を発生する酸 発生剤成分 (B)とを含有することを特徴とする EUV用レジスト組成物である。  A hydrogen halide group that may contain heteroatoms in the structure; r, y, and z are each independently 0 or an integer of 1 or more, and r + y + z is 4 or less). A protected body (A1) in which part or all of the phenolic hydroxyl groups in the polyvalent phenolic compound (a) represented by the formula (1) are protected with acid dissociable, dissolution inhibiting groups; An EUV resist composition comprising an acid generator component (B) that generates
また、本発明の第二の態様は、請求項 1〜4のいずれか一項に記載の EUV用レジ スト組成物を基板上に塗布し、プリベータし、 EUVを選択的に露光した後、 PEB (露 光後加熱)を施し、アルカリ現像してレジストパターンを形成することを特徴とするレジ ストパターン形成方法である。  In addition, the second aspect of the present invention is a method in which the EUV resist composition according to any one of claims 1 to 4 is applied on a substrate, pre-betaized, and EUV is selectively exposed, and then PEB is applied. The resist pattern forming method is characterized in that a resist pattern is formed by performing (post-exposure heating) and alkali development.
発明の効果  The invention's effect
[0009] 本発明により、脱ガスが少なぐ EUVによるリソグラフィー用として好適な EUV用レ ジスト組成物およびレジストパターン形成方法を提供できる。  The present invention can provide a resist composition for EUV and a resist pattern forming method suitable for lithography using EUV with less outgassing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] < EUV用レジスト組成物》 [0010] <EUV resist composition>
本発明の EUV用レジスト組成物は、上記一般式 (I)で表される多価フエノールイ匕合 物(a)におけるフエノール性水酸基の一部または全部が酸解離性溶解抑制基で保 護されている保護体 (A1)と、露光により酸を発生する酸発生剤成分 (B) (以下、 (B) 成分ということがある)とを含有することを特徴とする EUV用レジスト組成物である。  In the EUV resist composition of the present invention, part or all of the phenolic hydroxyl groups in the polyvalent phenolic compound (a) represented by the above general formula (I) are protected with acid dissociable, dissolution inhibiting groups. A resist composition for EUV, comprising: a protective body (A1); and an acid generator component (B) that generates an acid upon exposure (hereinafter also referred to as component (B)).
[0011] ここで、多価フエノールイ匕合物 (a)は、酸解離性溶解抑制基で保護される前のもの であり、酸解離性溶解抑制基で保護されたものが保護体 (A1)である。 Here, the polyhydric phenol compound (a) is the one before being protected with the acid dissociable, dissolution inhibiting group, and the one protected with the acid dissociable, dissolution inhibiting group is the protector (A1) It is.
本発明の EUV用レジスト組成物においては、露光により前記 (B)成分力 発生し た酸が保護体 (Al)に作用すると、酸解離性溶解抑制基が解離し、これによつて保 護体 (A1)全体がアルカリ不溶性カゝらアルカリ可溶性に変化する。そのため、レジスト ノ ターンの形成にぉ 、て、該レジスト組成物力もなるレジスト膜を選択的に露光する と、または露光に加えて露光後加熱すると、露光部はアルカリ可溶性へ転じる一方で 未露光部はアルカリ不溶性のまま変化しな 、ので、アルカリ現像することによりポジ型 のレジストパターンが形成できる。 In the EUV resist composition of the present invention, the component (B) force is generated by exposure. When the acid acts on the protective body (Al), the acid dissociable, dissolution inhibiting group is dissociated, thereby changing the entire protective body (A1) from alkali-insoluble to alkali-soluble. For this reason, when the resist film having the resist composition strength is selectively exposed or heated after the exposure in addition to the exposure, the exposed portion turns into alkali-soluble while the resist pattern is formed. Since the alkali remains insoluble and does not change, a positive resist pattern can be formed by alkali development.
[0012] 上記一般式 (I)中、 R 〜R は、それぞれ独立に、直鎖状、分岐状または環状の、 In the above general formula (I), R 1 to R 5 are each independently linear, branched or cyclic,
11 17  11 17
炭素数 1〜10、好ましくは 1〜5の低級アルキル基、 5〜6の環状アルキル基または芳 香族炭化水素基である。該アルキル基または芳香族炭化水素基は、その構造中に、 酸素原子、窒素原子、硫黄原子等のへテロ原子を含んでもよい。芳香族炭化水素基 としては、フ -ル基、トリル基、キシリル基、メシチル基、フ ネチル基、ナフチル基 などが挙げられる。  A lower alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, a cyclic alkyl group having 5 to 6 carbon atoms, or an aromatic hydrocarbon group. The alkyl group or aromatic hydrocarbon group may contain a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom in its structure. Examples of the aromatic hydrocarbon group include a full group, a tolyl group, a xylyl group, a mesityl group, a phenethyl group, and a naphthyl group.
g、 jはそれぞれ独立に 1以上、好ましくは 1〜2の整数であり、 k、 qはそれぞれ独立 に 0または 1以上、好ましくは 2を超えない整数であり、かつ g+j +k+qが 5以下であ る。  g and j are each independently an integer of 1 or more, preferably 1 or 2, k and q are each independently 0 or 1 or more, preferably an integer not exceeding 2, and g + j + k + q Is 5 or less.
hは 1以上、好ましくは 1〜2の整数であり、 1、 mはそれぞれ独立に 0または 1以上、 好ましくは 2を超えない整数であり、かつ h+1+mが 4以下である。  h is an integer of 1 or more, preferably 1 to 2, 1, and m are each independently 0 or 1 or more, preferably an integer not exceeding 2, and h + 1 + m is 4 or less.
iは 1以上、好ましくは 1〜2の整数であり、 n、 oはそれぞれ独立に 0または 1以上、 好ましくは 2を超えない整数であり、かつ i+n+oが 4以下である。  i is an integer of 1 or more, preferably 1 to 2, n and o are each independently 0 or 1 or more, preferably an integer not exceeding 2, and i + n + o is 4 or less.
pは 0または 1であり、好ましくは 1である。  p is 0 or 1, preferably 1.
Xは上記一般式 (la)または (lb)で表される基である。式 (la)中、 R 、 R は、上記  X is a group represented by the above general formula (la) or (lb). In the formula (la), R 1 and R are the above
18 19  18 19
R 〜R と同様、それぞれ独立に炭素数 1〜10のアルキル基または芳香族炭化水 Like R to R, each independently an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon
11 17 11 17
素基であって、その構造中にヘテロ原子を含んでもよい。また、 r、 y、 zはそれぞれ独 立に 0又は 1以上の整数であり、かつ r+y+zが 4以下である。  It is a basic group and may contain a hetero atom in its structure. R, y, and z are each independently an integer of 0 or 1 and r + y + z is 4 or less.
[0013] これらの中でも、 R がシクロアルキル基であり、 iの数が 1、かつ R が低級アルキル [0013] Among these, R is a cycloalkyl group, the number of i is 1, and R is lower alkyl
11 12  11 12
基であり、 kの数が 1、かつ gの数が 1のものが、好ましい。  A group in which the number of k is 1 and the number of g is 1 is preferable.
さらに、好ましくは、 R がシクロアルキル基であり、 jの数が 1、かつ R が低級アルキ  More preferably, R is a cycloalkyl group, the number of j is 1, and R is a lower alkyl group.
11 12  11 12
ル基であり、 kの数が 1、かつ gの数が 1であり、力つ qと 1と mと nと o力 であり、 hと iがと もに 1である化合物が、 LERの低減された高解像性で微細なパターンが形成できる ので好ましい。 The number of k is 1, the number of g is 1, the power q, 1, m, n, and o force, and h and i are A compound of 1 is preferable because a fine pattern can be formed with high resolution with reduced LER.
Xは好ましくは前記一般式 (lb)である。  X is preferably the general formula (lb).
[0014] 多価フ ノールイ匕合物(a)のなかでも、最も好ましいものは、下記式 (I 1)で表さ れる多価フエノールイ匕合物、及び (I 2)で表される多価フエノールイ匕合物である。 Among the polyvalent phenolic compounds (a), the most preferable one is the polyvalent phenolic compound represented by the following formula (I 1) and the polyvalent phenol represented by (I 2) Phenolic compound.
[0015] [化 3] [0015] [Chemical 3]
Figure imgf000008_0001
Figure imgf000008_0001
[0016] 本発明にお 、て、多価フエノール化合物(a)は、分子量が 300〜2500であることが 好ましく、 450〜1500力より好ましく、 500〜1200力さらに好まし!/、。 [0016] In the present invention, the polyvalent phenol compound (a) preferably has a molecular weight of 300 to 2500, more preferably 450 to 1500, and even more preferably 500 to 1200!
分子量が 2500以下であることにより、 LER (ラインエッジラフネス)が低減され、パタ ーン形状が向上し、また、解像性も向上する。また、 300以上であることにより、良好 なプロファイル形状のレジストパターンが形成できる。  When the molecular weight is 2500 or less, LER (line edge roughness) is reduced, the pattern shape is improved, and the resolution is also improved. In addition, when it is 300 or more, a resist pattern having a good profile shape can be formed.
[0017] また、多価フ ノール化合物(a)は、分子量の分散度(MwZMn)が 1. 5以下であ ると、 LERが低減され、好ましい。これは、多価フエノールイ匕合物(a)が、分散度が 1. 5以下という狭い分子量分布を有することにより、多価フエノール材料中に、酸解離性 溶解抑制基で保護されて!ヽるフエノール性水酸基の数 (保護数)が異なる複数の保 護体 (A1)が含まれて 、ても、各保護体 (A1)のアルカリ溶解性が比較的均一になる ためと考えられる。分散度は小さいほど好ましぐより好ましくは 1. 4以下、最も好まし くは 1. 3以下である。 [0017] Further, the polyhydric phenol compound (a) preferably has a molecular weight dispersity (MwZMn) of 1.5 or less because LER is reduced. This is because the polyphenolic compound (a) has a dispersity of 1. Multiple protectors with different numbers of phenolic hydroxyl groups (protection numbers) that are protected by acid dissociable, dissolution inhibiting groups in polyphenolic materials by having a narrow molecular weight distribution of 5 or less (A1) Even if it is contained, it is considered that the alkali solubility of each protector (A1) becomes relatively uniform. The smaller the degree of dispersion, the more preferable it is, and preferably 1.4 or less, and most preferably 1.3 or less.
なお、分散度とは通常、ポリマー等の多分散系の化合物に用いられるものであるが 、単分散の化合物であっても、製造時における副生物や残留する出発物質などの不 純物の存在により、ゲルパーミエーシヨンクロマトグラフィー(GPC)等で分析した際に 、見かけ上、その分子量に分布が生じる場合がある。つまり、単分散の化合物の場合 に分散度が 1であるとは純度が 100%であることを意味し、分散度が大きいほど不純 物の量が多い。  The dispersity is generally used for polydisperse compounds such as polymers, but even monodisperse compounds may contain impurities such as by-products during production and residual starting materials. Therefore, when analyzed by gel permeation chromatography (GPC) or the like, a distribution may appear in its molecular weight. That is, in the case of a monodispersed compound, a dispersity of 1 means that the purity is 100%, and the greater the dispersity, the greater the amount of impurities.
本発明において、分散度は、このような見かけ上の分子量分布を示すィ匕合物につ Vヽて、一般的に用
Figure imgf000009_0001
ヽるポリマーの質量平均分子量 (Mw)および数平均分子 量(Mn)の測定方法、例えば GPC等により Mwおよび Mnを測定し、 MwZMn比を 求めることにより算出できる。
In the present invention, the degree of dispersion is generally used for a compound that exhibits such an apparent molecular weight distribution.
Figure imgf000009_0001
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer to be measured can be calculated by measuring Mw and Mn by, for example, GPC and determining the MwZMn ratio.
分散度は、最終目的生成物である多価フ ノールイ匕合物 (a)を合成後、反応副生 成物や不純物を精製除去したり、分子量分別処理等の公知の方法により不要な分 子量部分を除去して調節することができる。  The degree of dispersion is determined by synthesizing the polyhydric phenolic compound (a), which is the final target product, and then purifying and removing reaction by-products and impurities, or by using a known method such as molecular weight fractionation. The quantity part can be removed and adjusted.
また、多価フエノールイ匕合物(a)は、スピンコート法によりアモルファス (非晶質)な膜 を形成しうる材料である必要がある。ここで、アモルファスな膜とは結晶化しない光学 的に透明な膜を意味する。スピンコート法は、一般的に用いられている薄膜形成手 法の 1つであり、多価フエノール化合物がスピンコート法によりアモルファスな膜を形 成しうる材料であるかどうかは、 8インチシリコンゥエーハ上にスピンコート法により形 成した塗膜が全面透明である力否かにより判別できる。より具体的には、例えば以下 のようにして判別できる。まず、当該多価フエノール材料に、一般的にレジスト溶剤に 用いられて 、る溶剤を用いて、例えば乳酸ェチル Zプロピレングリコールモノメチル エーテルアセテート =40Z60 (質量比)の混合溶剤(以下、 ΕΜと略記する)を、濃 度が 14質量%となるよう溶解し、超音波洗浄器を用いて超音波処理 (溶解処理)を 施して溶解させ、該溶液を、ウェハ上に 1500rpmにてスピンコートし、任意に乾燥べ ーク(PAB : Post Applied Bake)を 110°C、 90秒の条件で施し、この状態で、 目 視にて、透明かどうかによりアモルファスな膜が形成されているかどうかを確認する。 なお、透明でな ヽ曇った膜はァモノレファスな膜ではな ヽ。 Further, the polyvalent phenolic compound (a) needs to be a material capable of forming an amorphous film by spin coating. Here, an amorphous film means an optically transparent film that does not crystallize. The spin coating method is one of the commonly used thin film forming methods, and whether or not the polyhydric phenol compound is a material that can form an amorphous film by the spin coating method is determined by the 8-inch silicon coating method. This can be determined by whether or not the coating film formed on the wafer by spin coating is transparent. More specifically, for example, the determination can be made as follows. First, the polyhydric phenol material is generally used as a resist solvent. For example, a mixed solvent of ethyl lactate Z propylene glycol monomethyl ether acetate = 40Z60 (mass ratio) (hereinafter abbreviated as ΕΜ). ) Is dissolved to a concentration of 14% by mass and subjected to ultrasonic treatment (dissolution treatment) using an ultrasonic cleaner. The solution is spin-coated on the wafer at 1500 rpm, and optionally a dry baking (PAB: Post Applied Bake) is applied at 110 ° C for 90 seconds. Then, it is confirmed whether an amorphous film is formed depending on whether it is transparent. A transparent, cloudy film is not a monolithic film.
本発明において、多価フエノールイ匕合物(a)は、上述のようにして形成されたァモ ルファスな膜の安定性が良好であることが好ましぐ例えば上記 PAB後、室温環境下 で 2週間放置した後でも、アモルファスな状態が維持されて 、ることが好ま 、。  In the present invention, it is preferred that the polyphenolic compound (a) has good stability of the amorphous film formed as described above. Even after being left for a week, it is preferable that the amorphous state be maintained.
[0019] 保護体 (A1)は、上記多価フエノールイ匕合物(a)のフエノール性水酸基の水酸基の 一部または全部を酸解離性溶解抑制基で置換することにより保護したものである。 酸解離性溶解抑制基としては、特に制限はなぐ KrFや ArF用の化学増幅型レジ スト組成物に用いられるヒドロキシスチレン系榭脂、(メタ)アクリル酸系榭脂等におい て提案されて 、るもののな力から適宜選択して用いることができる。 [0019] The protector (A1) is protected by substituting part or all of the hydroxyl groups of the phenolic hydroxyl group of the polyhydric phenol compound (a) with an acid dissociable, dissolution inhibiting group. The acid dissociable, dissolution inhibiting group is not particularly limited, and is proposed for hydroxystyrene-based resins and (meth) acrylic acid-based resins used in chemically amplified resist compositions for KrF and ArF. It can be used by appropriately selecting from unreasonable forces.
具体的には、鎖状アルコキシアルキル基、第 3級アルキルォキシカルボニル基、第 3級アルキル基、第 3級アルコキシカルボ-ルアルキル基及び環状エーテル基等が 挙げられる。  Specific examples include a chain alkoxyalkyl group, a tertiary alkyloxycarbonyl group, a tertiary alkyl group, a tertiary alkoxycarboalkyl group, and a cyclic ether group.
[0020] 鎖状アルコキシアルキル基としては、 1 エトキシェチル基、 1 エトキシメチル基、 1ーメトキシメチルェチル基、 1ーメトキシメチル基、 1 イソプロポキシェチル基、 1 メトキシプロピル基、 1 エトキシプロピル基、 1 n ブトキシェチル基等が挙げられ る。  [0020] The chain alkoxyalkyl group includes: 1 ethoxyethyl group, 1 ethoxymethyl group, 1-methoxymethylethyl group, 1-methoxymethyl group, 1 isopropoxycetyl group, 1 methoxypropyl group, 1 ethoxypropyl group, 1 n Butoxetyl group and the like.
第 3級アルキルォキシカルボ-ル基としては、 tert ブチルォキシカルボ-ル基、 t ert—ァミルォキシカルボ-ル基等が挙げられる。  Examples of the tertiary alkyloxycarbonyl group include a tert-butyloxycarboxyl group and a tert-amyloxycarboxyl group.
第 3級アルキル基としては、 tert ブチル基、 tert—ァミル基などのような鎖状第 3 級アルキル基、 2—メチルァダマンチル基、 2—ェチルァダマンチル基などのような脂 肪族多環式基を含む第 3級アルキル基等が挙げられる。  Tertiary alkyl groups include chain tertiary alkyl groups such as tert butyl group and tert-amyl group, fatty acids such as 2-methyladamantyl group and 2-ethyladadamantyl group. And tertiary alkyl groups containing an aromatic polycyclic group.
第 3級アルコキシカルボ-ルアルキル基としては、 tert ブチルォキシカルボ-ルメ チル基、 tert—ァミルォキシカルボニルメチル基等が挙げられる。  Examples of the tertiary alkoxy carboalkyl group include a tert butyloxy carboxymethyl group, a tert-amyloxy carbonylmethyl group, and the like.
環状エーテル基としては、テトラヒドロビラ-ル基、テトラヒドロフラニル基等が挙げら れる。 これらの中でも、解離性に優れ、保護体 (A1)の均一性を高め、 LERを向上させる ことが可能な点から、鎖状アルコキシアルキル基が好ましぐ 1 エトキシェチル基や 1 エトキシメチル基がより好ましい。 Examples of the cyclic ether group include a tetrahydrovinyl group and a tetrahydrofuranyl group. Among these, 1 ethoxyethyl group and 1 ethoxymethyl group are preferred because chain alkoxyalkyl groups are preferred because they have excellent dissociation properties, can improve the uniformity of the protector (A1), and can improve LER. preferable.
[0021] また、保護体 (A1)中に、酸解離性溶解抑制基により保護されているフエノール性 水酸基の数 (保護数)が異なる複数の多価フ ノールイヒ合物(以下、異性体と 、うこと 力 Sある)が含まれている場合、各異性体の保護数が近いほど、本発明の効果に優れ 、好ましい。  [0021] Further, in the protected body (A1), a plurality of polyhydric phenolic compounds having different numbers of phenolic hydroxyl groups protected by acid dissociable, dissolution inhibiting groups (protection number) (hereinafter referred to as isomers) Is included, the closer the number of protected isomers, the better the effect of the present invention.
保護体 (A1)における各異性体の割合は、逆相クロマトグラフィー等の手段により測 定することができる。  The ratio of each isomer in the protected form (A1) can be measured by means such as reverse phase chromatography.
[0022] 保護体 (A1)は、例えば、一種または 2種以上の多価フエノールイ匕合物(a)につ ヽ て、そのフエノール性水酸基の全部または一部を、周知の手法により酸解離性溶解 抑制基で保護する方法等により製造できる。  [0022] The protector (A1) is, for example, one or two or more polyphenolic compounds (a), wherein all or part of the phenolic hydroxyl groups are acid-dissociable by a known method. It can be produced by a method of protecting with a dissolution inhibiting group.
また、保護体 (A1)において、各異性体の保護数は、上記酸解離性溶解抑制基で 保護する方法の条件等により調節できる。  In the protected body (A1), the number of protected isomers can be adjusted by the conditions of the method of protecting with the acid dissociable, dissolution inhibiting group.
[0023] 本発明の EUV用レジスト組成物における保護体 (A1)の含有量は、形成しょうとす るレジスト膜厚に応じて調整すればょ 、。 [0023] The content of the protective body (A1) in the EUV resist composition of the present invention may be adjusted according to the resist film thickness to be formed.
[0024] 本発明の EUV用レジスト組成物は、前記多価フエノールイ匕合物(a)における前記 フエノール性水酸基が酸解離性溶解抑制基で保護されて ヽな ヽ未保護体 (A2)を含 有していてもよい。 [0024] The EUV resist composition of the present invention comprises an unprotected body (A2), wherein the phenolic hydroxyl group in the polyhydric phenol compound (a) is protected with an acid dissociable, dissolution inhibiting group. You may have.
未保護体 (A2)は、上記多価フ ノールイ匕合物(a)のフエノール性水酸基の水酸基 が酸解離性溶解抑制基により全く保護されていないもの、すなわち多価フエノールイ匕 合物(a)である。  The unprotected body (A2) is one in which the hydroxyl group of the phenolic hydroxyl group of the polyhydric phenol compound (a) is not protected at all by the acid dissociable, dissolution inhibiting group, that is, the polyhydric phenol compound (a). It is.
本発明の EUV用レジスト組成物中、未保護体 (A2)の割合は少ないほど好ましぐ たとえば前記保護体 (A1)と未保護体 (A2)との合計量に対する未保護体 (A2)の割 合が 60質量%以下であることが好ましぐ 50質量%以下であることがより好ましぐ 10 質量%以下であることがさらに好ましぐ最も好ましくは 0質量%である。該未保護体( A2)の割合が 60質量%以下であることにより、パターンを形成した際、 LERを低減で き、解像性にも優れる。 保護体 (A1)と未保護体 (A2)との合計量に対する未保護体 (A2)の割合は、たと えばゲルパーミュエーシヨンクロマトグラフ(GPC)により未保護体 (A2)を除去する等 により調整できる。 In the EUV resist composition of the present invention, the smaller the proportion of unprotected body (A2), the better. For example, the ratio of unprotected body (A2) to the total amount of the above-mentioned protected body (A1) and unprotected body (A2). The ratio is preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 10% by mass or less, and most preferably 0% by mass. When the ratio of the unprotected body (A2) is 60% by mass or less, LER can be reduced and the resolution is excellent when a pattern is formed. The ratio of unprotected body (A2) to the total amount of protected body (A1) and unprotected body (A2) is, for example, removal of unprotected body (A2) by gel permeation chromatography (GPC), etc. Can be adjusted.
保護体 (A1)と未保護体 (A2)との合計量に対する未保護体 (A2)の割合は、逆相 クロマトグラフィー等の手段により測定することができる。  The ratio of the unprotected body (A2) to the total amount of the protected body (A1) and the unprotected body (A2) can be measured by means such as reverse phase chromatography.
[0025] 本発明の EUV用レジスト組成物中、多価フ ノール化合物(a)のフ ノール性水酸 基の保護率は、解像性、ラフネス低減効果を考慮すると、 5〜50モル%が好ましぐ 7 〜30モル0 /0がより好ましい。 [0025] In the EUV resist composition of the present invention, the protection rate of the phenolic hydroxyl group of the polyhydric phenol compound (a) is 5 to 50 mol% in view of resolution and roughness reduction effect. preferred member 7 and more preferably 30 mol 0/0.
[0026] (B)成分としては、従来の化学増幅型レジスト組成物において使用されている公知 の酸発生剤力も特に限定せずに用いることができる。このような酸発生剤としては、こ れまで、ョードニゥム塩やスルホ -ゥム塩などのォ-ゥム塩系酸発生剤、ォキシムスル ホネート系酸発生剤、ビスアルキルまたはビスァリールスルホ-ルジァゾメタン類、ポ リ(ビススルホ -ル)ジァゾメタン類などのジァゾメタン系酸発生剤、ニトロべンジルス ルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など 多種のものが知られて 、る。  [0026] As the component (B), known acid generators used in conventional chemically amplified resist compositions can be used without particular limitation. Examples of such acid generators include so-called onium salt acid generators such as odonium salts and sulfo salt, oxime sulfonate acid generators, bisalkyl or bisarylsulfonyldiazomethanes. There are various known diazomethane acid generators such as poly (bissulfo) diazomethanes, nitrobenzyl sulfonate acid generators, iminosulfonate acid generators, and disulfone acid generators.
[0027] ォ-ゥム塩系酸発生剤の具体例としては、ジフエ-ルョードニゥムのトリフルォロメタ ンスルホネートまたはノナフルォロブタンスルホネート、ビス(4—tert ブチルフエ- ル)ョードニゥムのトリフルォロメタンスルホネートまたはノナフルォロブタンスルホネー ト、トリフエ-ルスルホ-ゥムのトリフルォロメタンスルホネート、そのヘプタフルォロプ 口パンスルホネートまたはそのノナフルォロブタンスルホネート、トリ(4 メチルフエ- ル)スノレホニゥムのトリフノレオロメタンスノレホネート、そのヘプタフノレォロプロパンスノレ ホネートまたはそのノナフルォロブタンスルホネート、ジメチル(4ーヒドロキシナフチ ル)スノレホニゥムのトリフノレオロメタンスノレホネート、そのヘプタフノレォロプロパンスノレ ホネートまたはそのノナフルォロブタンスルホネート、モノフエ-ルジメチルスルホ -ゥ ムのトリフルォロンメタンスルホネート、そのヘプタフルォロプロパンスルホネートまた はそのノナフルォロブタンスルホネート、ジフエ-ルモノメチルスルホ-ゥムのトリフル ォロメタンスルホネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフル ォロブタンスルホネート、(4 メチルフエ-ル)ジフエ-ルスルホ-ゥムのトリフルォロ メタンスルホネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフルォロ ブタンスルホネート、(4—メトキシフエ-ル)ジフエ-ルスルホ-ゥムのトリフルォロメタ ンスルホネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフルォロブ タンスルホネート、トリ(4— tert—ブチル)フエ-ルスルホ-ゥムのトリフルォロメタンス ルホネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフルォロブタン スルホネートなどが挙げられる。 [0027] Specific examples of the acid salt-based acid generator include trifluoromethanoate sulfonate or nonafluorobutane sulfonate of diphenylodium, trifluoromethanesulfonate or nona of bis (4-tert butylphenol) ododonium. Fluorobutane sulfonate, triphenyl sulfone trifluoromethane sulfonate, its heptafluoropropane sulfonate, or its nonafluorobutane sulfonate, tri (4 methylphenol) snorephonium trifanololomethane sulphonate , Its heptafluororenopropane sulfonate or its nonafluorobutane sulfonate, dimethyl (4-hydroxynaphthyl) snorephonium trifanololemethane sulfonate, its heptafluororenopropane sulfonate Or its nonafluorobutane sulfonate, monophenyl dimethyl sulfone trifluoromethane sulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate, diphenyl monomethyl sulfone Trifluoromethane sulfonate, heptafluoropropane sulfonate or nonafluorobutane sulfonate, trifluoro of (4 methylphenol) diphenylsulfone Methane sulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate, (4-methoxyphenol) diphenyl sulfone trifluoromethane sulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate, tri (4 Examples thereof include trifluoromethane sulfonate of tert-butyl) phenol sulfone, heptafluoropropane sulfonate or nonafluorobutane sulfonate thereof.
ォキシムスルホネート系酸発生剤の具体例としては、 α - (P -トルエンスルホ -ルォ キシィミノ) -ベンジルシア-ド、 a - (p -クロ口ベンゼンスルホ -ルォキシィミノ) -ベンジ ルシア-ド、 a - (4-二トロベンゼンスルホ -ルォキシィミノ) -ベンジルシア-ド、 a - (4 -ニトロ- 2-トリフルォロメチルベンゼンスルホ -ルォキシィミノ) -ベンジルシア-ド、 a - (ベンゼンスルホ -ルォキシィミノ) -4-クロ口べンジルシア-ド、 a - (ベンゼンスルホ -ルォキシィミノ) - 2, 4-ジクロロべンジルシア-ド、 a - (ベンゼンスルホ -ルォキシィ ミノ)- 2, 6 -ジクロロべンジルシア-ド、 a - (ベンゼンスルホ -ルォキシィミノ)- 4 -メト キシベンジルシア-ド、 a - (2-クロ口ベンゼンスルホ -ルォキシィミノ) -4-メトキシべ ンジルシア-ド、 a - (ベンゼンスルホ -ルォキシィミノ) -チェン- 2-ィルァセトニトリル 、 a - (4-ドデシルベンゼンスルホ -ルォキシィミノ) -ベンジルシア-ド、 a - [ (p-トル エンスルホ -ルォキシィミノ) -4-メトキシフエ-ル]ァセトニトリル、 at - [ (ドデシルペン ゼンスルホ -ルォキシィミノ) -4-メトキシフエ-ル]ァセトニトリル、 at - (トシルォキシィ ミノ) -4-チェ-ルシア-ド、 a - (メチルスルホ -ルォキシィミノ) - 1 -シクロペンテ-ル ァセトニトリル、 (X - (メチルスルホ -ルォキシィミノ) - 1 -シクロへキセ-ルァセトニトリル 、 a - (メチルスルホ -ルォキシィミノ) - 1 -シクロヘプテュルァセトニトリル、 a - (メチル スルホ -ルォキシィミノ)- 1 -シクロオタテュルァセトニトリル、 a - (トリフルォロメチルス ルホ -ルォキシィミノ) - 1 -シクロペンテ-ルァセトニトリル、 a - (トリフルォロメチルス ルホ -ルォキシィミノ) -シクロへキシルァセトニトリル、 a - (ェチルスルホ -ルォキシィ ミノ) -ェチルァセトニトリル、 a - (プロピルスルホ -ルォキシィミノ) -プロピルァセトニト リル、 a - (シクロへキシルスルホニルォキシィミノ) -シクロペンチルァセトニトリル、 a - (シクロへキシルスルホ -ルォキシィミノ) -シクロへキシルァセトニトリル、 ひ - (シクロへ キシルスルホ -ルォキシィミノ) - 1 -シクロペンテ-ルァセトニトリル、 a - (ェチルスル ホ -ルォキシィミノ) - 1 -シクロペンテ-ルァセトニトリル、 ひ - (イソプロピルスルホ-ル ォキシィミノ) - 1 -シクロペンテ-ルァセトニトリル、 (X - (η-ブチルスルホ -ルォキシイミ ノ) - 1 -シクロペンテ-ルァセトニトリル、 at - (ェチルスルホ -ルォキシィミノ) - 1 -シクロ へキセ-ルァセトニトリル、 OC - (イソプロピルスルホ -ルォキシィミノ)- 1 -シクロへキセ -ルァセト-トリル、 α - (η-ブチルスルホ -ルォキシィミノ) - 1 -シクロへキセ-ルァセ トニトリル、 α—(メチルスルホ -ルォキシィミノ) フエ-ルァセトニトリル、 α (メチ ルスルホニルォキシィミノ)—ρ—メトキシフエ二ルァセトニトリル、 α (トリフルォロメ チルスルホ -ルォキシィミノ) フエ-ルァセトニトリル、 α (トリフルォロメチルスル ホ -ルォキシィミノ) ρーメトキシフエ-ルァセトニトリル、 ひ (ェチルスルホ -ルォ キシィミノ)—ρ—メトキシフエ-ルァセトニトリル、 (X - (プロピルスルホ-ルォキシイミ ノ) ρ メチルフエ-ルァセトニトリル、 α (メチルスルホ -ルォキシィミノ)—ρ ブ ロモフエ-ルァセトニトリルなどが挙げられる。これらの中で、 α (メチルスルホ -ル ォキシィミノ)一 Ρ—メトキシフエ-ルァセトニトリルが好ましい。 Specific examples of oxime sulfonate-based acid generators include α- (P-toluenesulfo-luoximino) -benzyl cyanide, a- (p-chlorobenzenebenzene-sulfoximino) -benzil cyanide, a- ( 4-Nitrobenzenesulfo-ruximino) -Benzyl cyanide, a- (4-Nitro-2-trifluoromethylbenzenesulfo-ruximino) -Benzyl cyanide, a- (Benzenesulfo-ruximino) -4-Black mouth Benzyl cyanide, a-(Benzenesulfo-ruximino)-2, 4-dichlorobenzil cyanide, a-(Benzenesulfo-ruxinomino)-2, 6 -dichlorobenzil cyanide, a-(Benzenesulfo- (Luoxyimino) -4-methoxybenzyl cyanide, a- (2-chlorobenzenesulfo-Luoxyimino) -4-methoxybenzil cyanide, a- (Benzenesulfo-Luoxy) B) -Chen-2-ylacetonitrile, a- (4-dodecylbenzenesulfo-ruximino) -benzyl cyanide, a-[(p-toluenesulfo-ruximino) -4-methoxyphenyl] acetonitrile, at- [(Dodecylpen senesulfo-ruximino) -4-methoxyphenyl] acetonitrile, at- (tosyloxymino) -4-chelciado, a- (methylsulfo-ruximino) -1-cyclopentalacetonitrile, (X- ( Methylsulfo-ruximino)-1 -cyclohex-l-acetonitrile, a-(Methylsulfo-ruximino)-1 -cycloheptulacetonitrile, a-(Methylsulfo-ruximino)-1 -cyclootatulacetonitrile, a- (Trifluoromethylsulfo-roximino)-1 -cyclopenteru-acetonitrile, a-(Trifluoro Methylstyrene sulfo - Ruokishiimino) - hexyl § Seto nitrile cyclohexane, a - (Echirusuruho - Ruokishii amino) - E chill § Seto nitrile, a - (propylsulfonyl - Ruokishiimino) - Kishirusuruhoniru (cyclohexane - propyl § Seto nits Lil, a Oxymino) -cyclopentylacetonitrile, a- (cyclohexylsulfo-oxyximino) -cyclohexylhexonitrile, bis- (cyclohexylsulfo-ruximino) -1-cyclopentyl-acetonitrile, a- (ethylsulfur) (Holoxymino)-1 -Cyclopenta-acetonitrile, H-(Isopropylsulfo-oxyximino)-1 -Cyclopenta-Lucetonitrile, (X-(η-Butylsulfo-Luoxyimino)-1 -Cyclopenta-Luacetonitrile, at-(Ethylsulfo- (Luoxyimino)-1 -Cyclohexyl-Luacetonitrile, OC-(Isopropylsulfo-Luoxyimino)-1 -Cyclohexe-Luaceto-Tolyl, α- (η-Butylsulfo-Luoxyimino)-1 -Cyclohexyl-Luacetonitrile, α — (Methylsulfo-ruximino) Phenylacetonitrile, α (Methylsulfonyloxyximino) -ρ-Methoxyphenylacetonitrile, α (Trifluoromethylsulfo-luoxyimino) Phenylacetonitrile, α (Trifluoromethylsulfoxy-luminimino) ρ - Examples thereof include toxiphenylacetonitrile, ((ethylsulfo-luoxyimino) -ρ-methoxyphenylacetonitrile, (X- (propylsulfo-loxyimino) ρ-methylphenylacetonitrile, α (methylsulfo-luoxyimino) -ρ bromo-fertonitrile and the like. Of these, α (methylsulfo-oxyximino) mono-methoxyphenylacetonitrile is preferred.
ジァゾメタン系酸発生剤のうち、ビスアルキルまたはビスァリールスルホ -ルジァゾメ タン類の具体例としては、ビス(イソプロピルスルホ -ル)ジァゾメタン、ビス(ρ トルェ ンスルホ -ル)ジァゾメタン、ビス( 1 , 1—ジメチルェチルスルホ -ル)ジァゾメタン、ビ ス(シクロへキシルスルホ -ル)ジァゾメタン、ビス(2, 4 ジメチルフエ-ルスルホ-ル )ジァゾメタン等が挙げられる。  Among diazomethane acid generators, specific examples of bisalkyl or bisarylsulfol-diazomethanes include bis (isopropylsulfol) diazomethane, bis (ρ toluenesulfol) diazomethane, and bis (1,1- Examples thereof include dimethylethylsulfol) diazomethane, bis (cyclohexylsulfol) diazomethane, and bis (2,4 dimethylphenylsulfol) diazomethane.
また、ポリ(ビススルホニル)ジァゾメタン類としては、例えば、以下に示す構造をもつ 1 , 3 ビス(フエ-ルスルホ-ルジァゾメチルスルホ -ル)プロパン(ィ匕合物 Α、分解 点 135°C)、 1 , 4 ビス(フエ-ルスルホ-ルジァゾメチルスルホ -ル)ブタン(化合物 B、分解点 147°C)、 1 , 6 ビス(フエ-ルスルホ-ルジァゾメチルスルホ -ル)へキサ ン(化合物 C、融点 132°C、分解点 145°C)、 1 , 10 ビス(フエ-ルスルホ-ルジァゾ メチルスルホ -ル)デカン(ィ匕合物 D、分解点 147°C)、 1 , 2 ビス(シクロへキシルス ルホ-ルジァゾメチルスルホ -ル)ェタン(ィ匕合物 E、分解点 149°C)、 1 , 3 ビス(シ クロへキシルスルホ-ルジァゾメチルスルホ -ル)プロパン(ィ匕合物 F、分解点 153°C )、 1 , 6 ビス(シクロへキシルスルホ-ルジァゾメチルスルホ -ル)へキサン(ィ匕合物 G、融点 109°C、分解点 122°C)、 1 , 10 ビス(シクロへキシルスルホ-ルジァゾメチ ルスルホニル)デカン (ィ匕合物 H、分解点 116°C)などを挙げることができる。 Poly (bissulfonyl) diazomethanes include, for example, 1,3 bis (phenylsulfo-diazomethylsulfol) propane (a compound with a structure shown below), decomposition point 135 ° C. ), 1,4 bis (phenylsulfol diazomethylsulfol) butane (Compound B, decomposition point 147 ° C), 1,6 bis (phenolsulfol diazomethylsulfol) hexane (Compound C, melting point 132 ° C, decomposition point 145 ° C), 1,10 bis (phenolsulfol diazomethylsulfol) decane (compound D, decomposition point 147 ° C), 1,2 bis (Cyclohexylsulfol diazomethylsulfol) ethane (Compound E, decomposition point 149 ° C), 1,3 bis (cyclohexylsulfoldiazomethylsulfol) propane ( Compound F, decomposition point 153 ° C), 1, 6 bis (cyclohexylsulfol diazomethylsulfol) hexa (I 匕合 product G, mp 109 ° C, decomposition point 122 ° C), 1, 10-bis (Kishirusuruho cyclohexane - Rujiazomechi (Lusulfonyl) decane (I compound H, decomposition point 116 ° C).
[化 4]  [Chemical 4]
Figure imgf000015_0001
Figure imgf000015_0001
[0031] 本発明にお!/、ては、中でも (B)成分としてフッ素化アルキルスルホン酸イオンをァ 二オンとするォニゥム塩を用いることが好まし 、。 [0031] In the present invention, it is preferable to use, as the component (B), an onium salt having a fluorinated alkyl sulfonate ion as an ion.
[0032] (B)成分としては、 1種の酸発生剤を単独で用いてもよいし、 2種以上を組み合わ せて用いてもよい。 (B)成分の含有量は、(A)成分 100質量部に対し、 0. 5 30質量部、好ましくは 1 10質量部とされる。上記範囲とすることでパターン形成が十分に行われる。また、 均一な溶液が得られ、保存安定性が良好となるため好まし 、。 [0032] As the component (B), one type of acid generator may be used alone, or two or more types may be used in combination. The content of component (B) is 0.5 to 30 parts by mass, preferably 110 parts by mass with respect to 100 parts by mass of component (A). By setting it within the above range, pattern formation is sufficiently performed. Moreover, it is preferable because a uniform solution can be obtained and storage stability is improved.
[0033] 本発明の EUV用レジスト組成物には、レジストパターン形状、引き置き経時安定性 などを向上させるために、さらに任意の成分として、含窒素有機化合物 (D) (以下、 ([0033] In the EUV resist composition of the present invention, a nitrogen-containing organic compound (D) (hereinafter, (
D)成分と ヽぅ)を配合させることができる。 D) component and i) can be blended.
この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意 に用いれば良ぐ例えば、 n キシルァミン、 n プチルァミン、 n—ォクチルアミ ン、 n—ノ-ルァミン、 n—デシルァミン等のモノアルキルァミン;ジェチルァミン、ジ— n—プロピルァミン、ジ—n プチルァミン、ジ—n—ォクチルァミン、ジシクロへキシ ルァミン等のジアルキルァミン;トリメチルァミン、トリエチルァミン、トリ—n—プロピル ァミン、トリー n—ブチルァミン、トリー n キシルァミン、トリー n—ペンチルァミン、ト リー n プチルァミン、トリー n—ォクチルァミン、トリー n—ノニルァミン、トリー n—デ 力-ルァミン、トリ—n—ドデシルァミン等のトリアルキルァミン;ジエタノールァミン、トリ エタノールァミン、ジイソプロパノールァミン、トリイソプロパノールァミン、ジ一 n—オタ タノールァミン、トリー n—ォクタノールァミン等のアルキルアルコールァミンが挙げら れる。これらの中でも、特に第 2級脂肪族アミンゃ第 3級脂肪族ァミンが好ましぐ炭 素数 5 10のトリアルキルァミンがさらに好ましぐトリ一 n—ォクチルァミンが最も好ま しい。 Since a wide variety of components (D) have already been proposed, any known one can be used. For example, n xylamine, n ptylamine, n-octylamine, n-noramine, n- Monoalkylamines such as decylamine; dialkylamines such as jetylamine, di-n-propylamine, di-n-ptylamine, di-n-octylamine, dicyclohexylamine; trimethylamine, triethylamine, tri- n -propyl Trialkylamines such as triamine, tri- n- butyramine, tri- n- xylamine, tri- n- pentylamine, tri- n- ptylumamine, tri- n- octylamine, tri- n- nonylamine, tri- n -de-force-lamine, tri- n -dodecylamine Diethanolamine, triethanolamine, diisopropano Amin, triisopropanolamine § Min, di one n- OTA Tanoruamin, alkyl alcohols § Min such tree n- O click pentanol § Min like et be. Of these, secondary aliphatic amines are most preferred, and tri-n-octylamine, which is more preferred to trialkylamines having a carbon number of 510, which are preferred to tertiary aliphatic amines.
これらは単独で用いてもょ 、し、 2種以上を組み合わせて用いてもょ 、。 (D)成分は、(A)成分 100質量部に対して、通常 0. 01 5. 0質量部の範囲で用 いられる。  These can be used alone or in combination of two or more. Component (D) is usually used in the range of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
[0034] また、本発明の EUV用レジスト組成物には、前記 (D)成分の配合による感度劣化 の防止、またレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意 の成分として、有機カルボン酸又はリンのォキソ酸若しくはその誘導体 (E) (以下、( [0034] In addition, the EUV resist composition of the present invention includes, as an optional component, for the purpose of preventing sensitivity deterioration due to the blending of the component (D), and improving the resist pattern shape, retention stability, and the like. , Organic carboxylic acids or phosphorus oxo acids or derivatives thereof (E) (hereinafter (
E)成分という)を含有させることができる。なお、(D)成分と (E)成分は併用することも できるし、いずれか 1種を用いることもできる。 E) component)). The component (D) and the component (E) can be used in combination, or any one of them can be used.
有機カルボン酸としては、例えば、マロン酸、クェン酸、リンゴ酸、コハク酸、安息香 酸、サリチル酸などが好適である。 Examples of organic carboxylic acids include malonic acid, succinic acid, malic acid, succinic acid, and benzoic acid. Acid, salicylic acid and the like are preferred.
リンのォキソ酸若しくはその誘導体としては、リン酸、リン酸ジー n—ブチルエステル 、リン酸ジフエ-ルエステルなどのリン酸又はそれらのエステルのような誘導体、ホス ホン酸、ホスホン酸ジメチルエステル、ホスホン酸ージー n—ブチルエステル、フエ- ルホスホン酸、ホスホン酸ジフエ-ルエステル、ホスホン酸ジベンジルエステルなどの ホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フエ-ルホスフィン 酸などのホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中 で特にホスホン酸が好まし 、。  Phosphoric acid or its derivatives include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenol ester and other phosphoric acid or derivatives such as those esters, phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid Phosphonic acid such as n-butyl ester, phenol phosphonic acid, diphosphoric phosphonic acid ester, dibenzyl phosphonic acid ester and derivatives thereof, phosphinic acid such as phosphinic acid, phenol phosphinic acid and the like And derivatives such as esters, of which phosphonic acid is particularly preferred.
(E)成分は、(A)成分 100質量部当り 0. 01〜5. 0質量部の割合で用いられる。  Component (E) is used in a proportion of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
[0035] 本発明の EUV用レジスト組成物には、さらに所望により、混和性のある添加剤、例 えばレジスト膜の性能を改良するための付加的榭脂、塗布性を向上させるための界 面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料などを 適宜、添加含有させることができる。 [0035] The EUV resist composition of the present invention further has, as desired, miscible additives such as an additional resin for improving the performance of the resist film and an interface for improving the coating property. An activator, a dissolution inhibitor, a plasticizer, a stabilizer, a colorant, an antihalation agent, a dye, and the like can be appropriately added and contained.
付加的榭脂としては、たとえば、従来の化学増幅型の KrF用ポジ型レジスト組成物 、 ArF用ポジ型レジスト組成物等のベース榭脂として提案されて ヽるものが挙げられ る。  Examples of the additional resin include those proposed as base resins for conventional chemically amplified KrF positive resist compositions, ArF positive resist compositions, and the like.
付加的榭脂の割合は、本発明の効果を損なわない範囲とし、たとえばレジスト組成 物の総固形分に対し、 20質量%以下であることが好ましぐ 10質量%以下であること 力 り好ましい。  The ratio of the additional resin should be within a range that does not impair the effects of the present invention. For example, it is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total solid content of the resist composition. .
[0036] 本発明の EUV用レジスト組成物は、上記材料を有機溶剤に溶解させて製造するこ とがでさる。  The EUV resist composition of the present invention can be produced by dissolving the above materials in an organic solvent.
有機溶剤としては、使用する各成分を溶解し、均一な溶液とすることができるもので あればよぐ従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを 1種または 2種以上適宜選択して用いることができる。  As the organic solvent, it is sufficient if each component to be used can be dissolved into a uniform solution. Conventionally, any one or two of the known solvents for chemically amplified resists can be used. These can be appropriately selected and used.
例えば、 γ —ブチロラタトン等のラタトン類や、アセトン、メチルェチルケトン、シクロ へキサノン、メチルイソアミルケトン、 2—へプタノンなどのケトン類、エチレングリコー ル、エチレングリコーノレモノアセテート、ジエチレングリコール、ジエチレングリコーノレ モノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピ レングリコール、またはジプロピレングリコールモノアセテートのモノメチルエーテル、 モノェチルエーテル、モノプロピルエーテル、モノブチルエーテルまたはモノフエニル エーテルなどの多価アルコール類およびその誘導体や、ジォキサンのような環式ェ 一テル類や、乳酸メチル、乳酸ェチル(EL)、酢酸メチル、酢酸ェチル、酢酸ブチル 、ピルビン酸メチル、ピルビン酸ェチル、メトキシプロピオン酸メチル、エトキシプロピ オン酸ェチルなどのエステル類などを挙げることができる。 For example, latones such as γ-butyrolatatane, ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, 2-heptanone, ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol Monoacetate, propylene glycol, propylene glycol monoacetate, dipropy Polyhydric alcohols such as lenglycol or dipropylene glycol monoacetate monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether and derivatives thereof, cyclic ethers such as dioxane, Mention may be made of esters such as methyl lactate, ethyl acetate (EL), methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, and the like.
これらの有機溶剤は単独で用いてもよぐ 2種以上の混合溶剤として用いてもょ 、。  These organic solvents can be used alone or as a mixed solvent of two or more.
[0037] また、プロピレングリコールモノメチルエーテルアセテート(PGMEA)と極性溶剤と を混合した混合溶媒は好ましい。その配合比(質量比)は、 PGMEAと極性溶剤との 相溶性等を考慮して適宜決定すればよいが、好ましくは 1 : 9〜9 : 1、より好ましくは 2 : 8〜8: 2の範囲内とすることが好まし!/、。 [0037] A mixed solvent obtained by mixing propylene glycol monomethyl ether acetate (PGMEA) and a polar solvent is preferable. The mixing ratio (mass ratio) may be appropriately determined in consideration of the compatibility between PGMEA and the polar solvent, preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. Preferably within range! /.
より具体的には、極性溶剤として ELを配合する場合は、 PGMEA :ELの質量比が 好ましくは 1: 9〜9: 1、より好ましくは 2: 8〜8: 2であると好まし!/、。  More specifically, when EL is added as a polar solvent, the mass ratio of PGMEA: EL is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. ,.
また、有機溶剤として、その他には、 PGMEA及び ELの中カゝら選ばれる少なくとも 1種と γ—プチ口ラタトンとの混合溶剤も好ましい。この場合、混合割合としては、前 者と後者の質量比が好ましくは 70: 30-95 : 5とされる。  In addition, as the organic solvent, a mixed solvent of at least one selected from among PGMEA and EL and γ-petit-mouth rataton is also preferable. In this case, the mixing ratio of the former and the latter is preferably 70: 30-95: 5.
[0038] また、本発明においては、特にプロピレングリコールモノメチルエーテル(PGME)、 メチルアミルケトン(ΜΑΚ)、酢酸ブチル(BuOAc)、 3—メチルメトキシプロピオネー ト(MMP)力 選ばれる 1種以上を主成分として含む有機溶剤を好適に用いることが できる。 [0038] In the present invention, in particular, one or more selected from propylene glycol monomethyl ether (PGME), methyl amyl ketone (ブ チ ル), butyl acetate (BuOAc), and 3-methylmethoxypropionate (MMP) are mainly used. An organic solvent contained as a component can be preferably used.
このような特定の有機溶剤を主成分としてレジスト溶媒に用いることにより、 EUVや 電子線のような露光系を真空状態とせねばならない状況下において汚染物質が発 生しにくい。その理由は、これらの有機溶剤は、 EUVや電子線を露光プロセスで要 する加熱条件で揮発しやすい傾向があるためであると推測される。これらの有機溶剤 は安全性の面でも好ましぐ産業上好適である。  By using such a specific organic solvent as the main component in the resist solvent, contaminants are unlikely to be generated in situations where the exposure system such as EUV or electron beam must be in a vacuum state. The reason is presumed that these organic solvents tend to volatilize under heating conditions that require EUV and electron beam in the exposure process. These organic solvents are industrially preferable in terms of safety.
具体的には、上記プロピレングリコールモノメチルエーテル(PGME)、メチルァミル ケトン(MAK)、酢酸ブチル(BuOAc)、 3—メチルメトキシプロピオネート(MMP)か ら選ばれる 1種以上の割合力 70質量%以上、好ましくは 80質量%以上、さらには 9 0質量%以上であると好まし 、。 Specifically, one or more specific forces selected from the above propylene glycol monomethyl ether (PGME), methylamyl ketone (MAK), butyl acetate (BuOAc), and 3-methylmethoxypropionate (MMP) 70 mass% or more , Preferably 80% by weight or more, more preferably 9 It is preferable to be 0% by mass or more.
[0039] 有機溶剤の使用量は、特に限定されず、基板等に塗布可能な濃度で、塗布膜厚 に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が 2 〜20質量%、好ましくは 5〜15質量%の範囲内となる様に用いられる。 [0039] The amount of the organic solvent used is not particularly limited, and is a concentration that can be applied to a substrate or the like, and is appropriately set according to the coating film thickness. Is used in a range of 2 to 20% by mass, preferably 5 to 15% by mass.
[0040] <レジストパターン形成方法 > [0040] <Resist pattern formation method>
本発明のレジストパターン形成方法は例えば以下の様にして行うことができる。 すなわち、まずシリコンゥエーハのような基板上に、本発明に力かる EUV用レジスト 組成物をスピンナーなどで塗布し、 80〜150°C、好ましくは 130〜150°Cの温度条 件下、プレベータを 40〜120秒間、好ましくは 60〜90秒間施し、これに例えば EUV 露光装置により、真空中(例えば 1 X 10_7〜1 X 10_5Pa)で所望のマスクパターンを 介して選択的に露光した後、 80〜150°Cの温度条件下、 PEB (露光後加熱)を 40〜 120秒間、好ましくは 60〜90秒間施す。 The resist pattern forming method of the present invention can be performed, for example, as follows. That is, first, a EUV resist composition useful for the present invention is coated on a substrate such as a silicon wafer with a spinner or the like, and is subjected to pre-beta under a temperature condition of 80 to 150 ° C, preferably 130 to 150 ° C. 40 to 120 seconds, and preferably for 60 to 90 seconds, for example by an EUV exposure apparatus which was selectively exposed through a desired mask pattern in a vacuum (e.g. 1 X 10 _7 ~1 X 10 _5 Pa) Thereafter, PEB (post-exposure heating) is applied for 40 to 120 seconds, preferably 60 to 90 seconds, under a temperature of 80 to 150 ° C.
次いでこれをアルカリ現像液、例えば 0. 1〜10質量0 /0テトラメチルアンモ-ゥムヒド 口キシド水溶液を用いて現像処理する。このようにして、マスクパターンに忠実なレジ ストパターンを得ることができる。 Then alkali developing solution, for example 0.1 to 10 mass 0/0 tetramethylammonium - developing is conducted using an Umuhido port Kishido solution. In this way, a resist pattern faithful to the mask pattern can be obtained.
なお、基板とレジスト組成物の塗布層との間には、有機系または無機系の反射防止 膜を設けることちできる。  An organic or inorganic antireflection film can be provided between the substrate and the coating layer of the resist composition.
[0041] 上述のように、本発明の EUV用レジスト組成物およびレジストパターン形成方法に おいては、露光の際の脱ガスが少なぐ EUVによるリソグラフィー用として好適である さらに、保護体 (A1)の材料となる多価フエノールイ匕合物(a)は、非常に容易に、収 率や純度もよく合成可能であり、工業的に安定して安価に製造できる。 [0041] As described above, the EUV resist composition and resist pattern forming method of the present invention are suitable for lithography using EUV with less degassing during exposure. Further, the protective body (A1) The polyhydric phenolic compound (a), which is a material for the above, can be synthesized very easily, with good yield and purity, and can be produced stably and inexpensively industrially.
実施例  Example
[0042] 以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定され るものではない。  Examples of the present invention will be described below, but the scope of the present invention is not limited to these examples.
[参考例 1]  [Reference Example 1]
上記式 (I 1)で表される多価フ ノールイ匕合物(分子量 981:以下、低分子化合 物(a— 1)と略す) 100質量部と、 10質量部のトリフエ-ルスルホ-ゥムーノナフルォ ロー n—ブタンスルホネート(以下、 TPS— PFBSと略す)と、 1質量部のトリー n—オタ チルァミンとを、プロピレングリコールモノメチルエーテルアセテート(以下、 PGMEA と略す) 2000質量部に溶解してレジスト組成物溶液を得た。 100 parts by mass of a polyhydric phenolic compound represented by the above formula (I 1) (molecular weight 981: hereinafter abbreviated as low molecular weight compound (a-1)) and 10 parts by mass of trisulfol sulfomononafluo A resist composition prepared by dissolving rho-n-butanesulfonate (hereinafter abbreviated as TPS-PFBS) and 1 part by mass of tri-n-octylamine in 2000 parts by mass of propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMEA) A solution was obtained.
[0043] (全圧の変化量)  [0043] (Change in total pressure)
得られたレジスト組成物溶液を、シリコン基板上に膜厚 lOOnm士 10%になるように 塗布し、 130°Cの温度条件で 90秒加熱した。  The obtained resist composition solution was applied on a silicon substrate so as to have a film thickness of 10%, and heated for 90 seconds at a temperature of 130 ° C.
、 、で、圧力: 1 X 10_7〜1 X 10_5Pa、温度:常温(25°C)の条件下で、兵庫県立 大学-ユースバル放射光学施設にて、波長 13. 5nmの光を用いて 60秒間露光を行 つた。このとき、露光前と後について、装置内の基板を配置する室内の全圧力の変化 量を測定し、露光後の全圧力から露光前の全圧力を差し引いた値を全圧変化量とし て求めた。その結果を表 1に示す。 , In the pressure: 1 X 10 _7 ~1 X 10 _5 Pa, temperature: under the conditions of room temperature (25 ° C), Hyogo College - at Yusubaru radiation optical facility using light having a wavelength of 13. 5 nm The exposure was performed for 60 seconds. At this time, before and after exposure, measure the amount of change in the total pressure in the chamber where the substrate in the apparatus is placed, and obtain the value obtained by subtracting the total pressure before exposure from the total pressure after exposure as the total pressure change amount. It was. The results are shown in Table 1.
[0044] [参考例 2]  [0044] [Reference Example 2]
低分子化合物 (a— 1)に代えて、下記式 (Π)で表される低分子化合物 (分子量 106 1:以下、低分子化合物 (a' - 1)と略す)を用いた以外は参考例 1と同様にしてレジス ト組成物溶液を調製し、同様の評価を行った。その結果を表 1に示す。  Reference example except that the low molecular weight compound (a-1) was used instead of the low molecular weight compound (a-1) (molecular weight 106 1: hereinafter referred to as low molecular weight compound (a'-1)). A resist composition solution was prepared in the same manner as in 1, and the same evaluation was performed. The results are shown in Table 1.
[0045] [化 5] [0045] [Chemical 5]
Figure imgf000020_0001
Figure imgf000020_0001
[式 (Π)中、 Rは下記式 (Ila)で表される基である。 ] [In the formula (Π), R is a group represented by the following formula (Ila). ]
[0046] [化 6] [0046] [Chemical 6]
(Ila)(Ila)
Figure imgf000020_0002
[0047] [表 1]
Figure imgf000020_0002
[0047] [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0048] 表 1の結果より、基材成分として低分子化合物(a— 1)を用いた参考例 1のレジスト 組成物は、全圧変化量が小さぐ脱ガスが抑えられていたことがわかる。一方、一般 式 (I)に含まれない低分子化合物 (a'—1)を用いた参考例 2では、全圧変化量が参 考例 1の約 2倍と大き力つた。 [0048] From the results in Table 1, it can be seen that the resist composition of Reference Example 1 using the low molecular weight compound (a-1) as a base component suppressed degassing with a small total pressure change. . On the other hand, in Reference Example 2 using the low molecular weight compound (a′-1) not included in the general formula (I), the total pressure change amount was about twice as large as that in Reference Example 1.
なお、参考例 1および参考例 2では、保護率による脱ガスへの影響を除く目的で、 便宜的に、未保護の低分子化合物を用いた。  In Reference Example 1 and Reference Example 2, unprotected low molecular weight compounds were used for the purpose of excluding the influence of the protection rate on degassing.
[0049] [合成例 (保護体 (A1)の製造例) ]  [0049] [Synthesis Example (Production Example of Protective Body (A1))]
低分子化合物(a— 1) 10gをテトラヒドロフラン 33gに溶解し、これにェチルビ-ルェ 一テル 1. 8gを添加して攪拌しながら室温にて 12時間反応させた。反応終了後、水 Z酢酸ェチル系にて抽出精製を行った。これにより、低分子化合物(a— 1)のフエノ ール性水酸基の一部が 1—ヱトキシヱチル基で保護された保護体 (以下、保護体 (a 2)と略す) 10. lgを得た。  10 g of the low molecular weight compound (a-1) was dissolved in 33 g of tetrahydrofuran, and 1.8 g of ethyl birue ether was added thereto and reacted at room temperature for 12 hours with stirring. After completion of the reaction, extraction and purification were carried out using a water-Z ethyl acetate system. As a result, 10.lg of a protected body (hereinafter abbreviated as protected body (a2)) in which a part of the phenolic hydroxyl group of the low molecular weight compound (a-1) was protected with a 1-oxytoxyl group was obtained.
得られた保護体(a - 2)につ!/、て、 JEOL社製の 400MHzのプロトン NMRにより、 保護体 (a— 2)中のフエノール性水酸基の数および 1 エトキシェチル基で保護され たフエノール性水酸基の数を測定し、保護率 (モル%)を求めたところ、 19. 9モル% であった。なお、該保護率は、 { 1 エトキシェチル基で保護されたフエノール性水酸 基の数 Z (フエノール性水酸基の数 + 1—エトキシェチル基で保護されたフエノール 性水酸基の数) } X 100である。  The obtained protector (a-2)! / By the proton NMR of JEOL 400MHz, the number of phenolic hydroxyl groups in the protector (a-2) and the phenol protected with 1 ethoxyethyl group When the number of ionic hydroxyl groups was measured and the protection rate (mol%) was determined, it was 19.9 mol%. The protection rate is {1 the number of phenolic hydroxyl groups protected with 1 ethoxyethyl group Z (the number of phenolic hydroxyl groups + the number of phenolic hydroxyl groups protected with 1-ethoxyethyl group)} X 100.
[0050] [実施例 1]  [0050] [Example 1]
低分子化合物 (a— 1)に代えて、合成例で得た保護体 (a— 2)を用いた以外は参考 例 1と同様にしてレジスト組成物溶液を調製し、同様の評価を行った。その結果を表 2に示す。 A resist composition solution was prepared and evaluated in the same manner as in Reference Example 1 except that the protector (a-2) obtained in Synthesis Example was used instead of the low molecular compound (a-1). . The results are shown in the table Shown in 2.
[0051] [比較例 1] [0051] [Comparative Example 1]
低分子化合物 (a— 1)に代えて、下記式 (ΠΙ)で表される低分子化合物 (分子量 54 5)の水酸基の 60モル%がー CH COO-C (CH )で保護された保護体 (以下、保  Instead of the low molecular weight compound (a-1), 60 mol% of the hydroxyl group of the low molecular weight compound (molecular weight 54 5) represented by the following formula (ΠΙ) is protected with CH COO-C (CH). (Hereafter,
2 3 3  2 3 3
護体 (a '— 2)と略す)を用 、た以外は参考例 1と同様にしてレジスト組成物溶液を調 製し、同様の評価を行った。その結果を表 2に示す。  A resist composition solution was prepared in the same manner as in Reference Example 1 except that a protective body (abbreviated as “a′-2”) was used, and the same evaluation was performed. The results are shown in Table 2.
[0052] [化 7] [0052] [Chemical 7]
Figure imgf000022_0001
Figure imgf000022_0001
[0053] [表 2] [0053] [Table 2]
Figure imgf000022_0002
Figure imgf000022_0002
[0054] 表 2の結果より、基材成分として保護体 (a— 2)を用いた実施例 1のレジスト組成物 は、一般式 (I)に含まれない低分子化合物の保護体 (a'— 2)を用いた比較例 1に比 ベ、全圧変化量が小さぐ脱ガスが抑えられていたことがわかる。 [0054] From the results shown in Table 2, the resist composition of Example 1 using the protector (a-2) as the base material component was a low molecular compound protector (a ' It can be seen that compared with Comparative Example 1 using 2), degassing was suppressed because the total pressure change was small.
産業上の利用可能性  Industrial applicability
[0055] 本発明のレジスト組成物およびレジストパターン形成方法は、 EUVリソグラフィ一に 用いられる EUV用レジスト組成物およびレジストパターン形成方法に適用される。 [0055] The resist composition and the resist pattern forming method of the present invention are the same as those of EUV lithography. It is applied to the EUV resist composition and resist pattern forming method used.

Claims

請求の範囲 The scope of the claims
下記一般式 (I)  The following general formula (I)
Figure imgf000024_0001
Figure imgf000024_0001
[式 (I)中、 R 〜R はそれぞれ独立に炭素数 1〜10のアルキル基または芳香族炭 [In the formula (I), R to R are each independently an alkyl group having 1 to 10 carbon atoms or aromatic carbon.
11 17  11 17
化水素基であって、その構造中にヘテロ原子を含んでもよく;g、 jはそれぞれ独立に 1以上の整数であり、 k、 qは 0または 1以上の整数であり、かつ g+j +k + qが 5以下で あり; hは 1以上の整数であり、 1、 mはそれぞれ独立に 0または 1以上の整数であり、か つ h+1+m力 以下であり; iは 1以上の整数であり、 n、 oはそれぞれ独立に 0または 1 以上の整数であり、かつ i+n+oが 4以下であり; pは 0または 1であり;Xは下記一般 式 (la)または(lb) A hydride group which may contain heteroatoms in its structure; g and j are each independently an integer of 1 or more, k and q are 0 or an integer of 1 or more, and g + j + k + q is 5 or less; h is an integer of 1 or more, 1 and m are each independently 0 or an integer of 1 or more, and h + 1 + m force or less; i is 1 or more N and o are each independently an integer of 0 or 1 and i + n + o is 4 or less; p is 0 or 1; X is the following general formula (la) or (Lb)
[化 2] [Chemical 2]
Figure imgf000024_0002
Figure imgf000024_0002
(式 (la)中、 R 、R はそれぞれ独立に炭素数 1〜10のアルキル基または芳香族炭 (In the formula (la), R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms or aromatic carbon.
18 19  18 19
化水素基であって、その構造中にヘテロ原子を含んでもよく;r、 y、 zはそれぞれ独立 に 0又は 1以上の整数であり、かつ r+y+zが 4以下である)で表される基である Ίで表 される多価フエノールイ匕合物(a)におけるフエノール性水酸基の一部または全部が 酸解離性溶解抑制基で保護されている保護体 (A1)と、露光により酸を発生する酸 発生剤成分 (B)とを含有することを特徴とする EUV用レジスト組成物。 And a heteroatom in the structure thereof; r, y, and z are each independently 0 or an integer of 1 or more, and r + y + z is 4 or less) Is a group A protective body (A1) in which a part or all of the phenolic hydroxyl groups in the polyphenolic compound (a) to be produced are protected with an acid dissociable, dissolution inhibiting group, and an acid generator component that generates an acid upon exposure ( A resist composition for EUV, comprising B).
[2] 前記多価フエノールイ匕合物(a)の分子量が 300〜2500である請求項 1記載の EU V用レジスト組成物。 [2] The EUV resist composition according to [1], wherein the polyvalent phenolic compound (a) has a molecular weight of 300 to 2500.
[3] 前記多価フエノール化合物(a)の分子量の分散度が 1. 5以下である請求項 1また は 2記載の EUV用レジスト組成物。  [3] The EUV resist composition according to claim 1 or 2, wherein the polyvalent phenol compound (a) has a molecular weight dispersity of 1.5 or less.
[4] さらに含窒素有機化合物(D)を含有する請求項 1または 2に記載の EUV用レジスト 組成物。 [4] The EUV resist composition according to claim 1 or 2, further comprising a nitrogen-containing organic compound (D).
[5] 請求項 1または 2に記載の EUV用レジスト組成物を基板上に塗布し、プリベータし [5] The EUV resist composition according to claim 1 or 2 is applied onto a substrate and pre-betaized.
、 EUVを選択的に露光した後、 PEB (露光後加熱)を施し、アルカリ現像してレジスト パターンを形成することを特徴とするレジストパターン形成方法。 A method of forming a resist pattern, comprising selectively exposing EUV, then applying PEB (post-exposure heating), and alkali developing to form a resist pattern.
PCT/JP2005/016011 2004-09-09 2005-09-01 Resist composition for euv and method of forming resist pattern WO2006027996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-262306 2004-09-09
JP2004262306A JP2006078744A (en) 2004-09-09 2004-09-09 Resist composition for euv, and resist pattern forming method

Publications (1)

Publication Number Publication Date
WO2006027996A1 true WO2006027996A1 (en) 2006-03-16

Family

ID=36036281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016011 WO2006027996A1 (en) 2004-09-09 2005-09-01 Resist composition for euv and method of forming resist pattern

Country Status (4)

Country Link
JP (1) JP2006078744A (en)
KR (1) KR20070057211A (en)
TW (1) TWI292085B (en)
WO (1) WO2006027996A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923192B2 (en) 2004-02-20 2011-04-12 Tokyo Ohka Kogyo Co., Ltd. Base material for pattern-forming material, positive resist composition and method of resist pattern formation
JP3946715B2 (en) 2004-07-28 2007-07-18 東京応化工業株式会社 Positive resist composition and resist pattern forming method
JP4468119B2 (en) 2004-09-08 2010-05-26 東京応化工業株式会社 Resist composition and resist pattern forming method
JP4837323B2 (en) 2004-10-29 2011-12-14 東京応化工業株式会社 Resist composition, resist pattern forming method and compound
US7981588B2 (en) 2005-02-02 2011-07-19 Tokyo Ohka Kogyo Co., Ltd. Negative resist composition and method of forming resist pattern
JP4959171B2 (en) 2005-04-15 2012-06-20 東京応化工業株式会社 Compound, dissolution inhibitor, positive resist composition, resist pattern forming method
JP5138157B2 (en) 2005-05-17 2013-02-06 東京応化工業株式会社 Positive resist composition and resist pattern forming method
WO2006134811A1 (en) * 2005-06-13 2006-12-21 Tokyo Ohka Kogyo Co., Ltd. Polyhydric phenol compound, compound, positive resist composition, and method of forming resist pattern
JP4813103B2 (en) 2005-06-17 2011-11-09 東京応化工業株式会社 COMPOUND, POSITIVE RESIST COMPOSITION AND METHOD FOR FORMING RESIST PATTERN
JP4732038B2 (en) 2005-07-05 2011-07-27 東京応化工業株式会社 COMPOUND, POSITIVE RESIST COMPOSITION AND METHOD FOR FORMING RESIST PATTERN
JP5064405B2 (en) 2006-10-13 2012-10-31 本州化学工業株式会社 Novel bis (formylphenyl) alkanes and novel polynuclear phenols derived therefrom
JP2008164904A (en) * 2006-12-28 2008-07-17 Tokyo Ohka Kogyo Co Ltd Positive resist composition and resist pattern forming method
JP2009053665A (en) * 2007-08-02 2009-03-12 Fujifilm Corp Photosensitive composition and pattern-forming method using the same
JP4977747B2 (en) * 2009-12-10 2012-07-18 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing system
JP2015015291A (en) * 2013-07-03 2015-01-22 東京エレクトロン株式会社 Apparatus for processing substrate, system for processing substrate, method for processing substrate and recording medium for processing substrate
JP6293645B2 (en) 2013-12-27 2018-03-14 東京エレクトロン株式会社 Substrate processing system
JP6337757B2 (en) 2014-01-20 2018-06-06 東京エレクトロン株式会社 Exposure apparatus, resist pattern forming method, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123703A (en) * 1996-10-18 1998-05-15 Fuji Photo Film Co Ltd Positive type photosensitive composition
JP2002099088A (en) * 2000-09-26 2002-04-05 Yasuhiko Shirota Radiation sensitive composition
JP2004191764A (en) * 2002-12-12 2004-07-08 Jsr Corp Acid diffusion control agent and radiation-sensitive resin composition using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123703A (en) * 1996-10-18 1998-05-15 Fuji Photo Film Co Ltd Positive type photosensitive composition
JP2002099088A (en) * 2000-09-26 2002-04-05 Yasuhiko Shirota Radiation sensitive composition
JP2004191764A (en) * 2002-12-12 2004-07-08 Jsr Corp Acid diffusion control agent and radiation-sensitive resin composition using the same

Also Published As

Publication number Publication date
TW200617602A (en) 2006-06-01
TWI292085B (en) 2008-01-01
KR20070057211A (en) 2007-06-04
JP2006078744A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
WO2006027996A1 (en) Resist composition for euv and method of forming resist pattern
WO2006011442A1 (en) Positive resist composition and method of forming resist pattern
US7923192B2 (en) Base material for pattern-forming material, positive resist composition and method of resist pattern formation
JP5000250B2 (en) Pattern formation method
TWI297814B (en) Resist composition and resist pattern forming method
WO2006090591A1 (en) Positive-working resist composition, method for resist pattern formation and compound
JP4987411B2 (en) Pattern formation method
WO2006027997A1 (en) Electron-beam or euv (extreme ultraviolet) resist composition and process for the formation of resist patterns
JP4249096B2 (en) Substrate for pattern forming material, positive resist composition, and resist pattern forming method
TWI333594B (en) Positive resist composition, process for forming resist pattern, and process for ion implantation
WO2007004566A1 (en) Compound, positive resist composition and method for forming resist pattern
WO2006123523A1 (en) Positive resist composition and method of forming resist pattern
WO2007034719A1 (en) Compound, method for producing same, positive resist composition and method for forming resist pattern
WO2007148492A1 (en) Positive resist composition and method of forming resist pattern
JP4249095B2 (en) Substrate for pattern forming material, positive resist composition, and resist pattern forming method
JP4347110B2 (en) Positive resist composition for electron beam or EUV
WO2006112446A1 (en) Compound, dissolution inhibitor, positive-working resist composition, and method for resist pattern formation
WO2006090667A1 (en) Positive resist composition, method for forming resist pattern and compound
TWI471690B (en) Method for manufacturing photoresist composition
WO2006134814A1 (en) Compound, positive resist composition, and method of forming resist pattern
WO2006134811A1 (en) Polyhydric phenol compound, compound, positive resist composition, and method of forming resist pattern
JP5297875B2 (en) Resist composition, method for forming resist pattern, and method for producing resist composition
WO2008026421A1 (en) Compound, positive-type resist composition, and method for formation of resist pattern
JP2005326580A (en) Negative resist composition and resist pattern forming method
JP2006347892A (en) Compound, positive resist composition and method for forming resist pattern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077007019

Country of ref document: KR

122 Ep: pct application non-entry in european phase