WO2006025511A1 - Hydrogen generating composition - Google Patents

Hydrogen generating composition Download PDF

Info

Publication number
WO2006025511A1
WO2006025511A1 PCT/JP2005/016061 JP2005016061W WO2006025511A1 WO 2006025511 A1 WO2006025511 A1 WO 2006025511A1 JP 2005016061 W JP2005016061 W JP 2005016061W WO 2006025511 A1 WO2006025511 A1 WO 2006025511A1
Authority
WO
WIPO (PCT)
Prior art keywords
generating composition
hydrogen
particles
water
hydrogen generating
Prior art date
Application number
PCT/JP2005/016061
Other languages
French (fr)
Inventor
Taiichi Sugita
Masaya Yano
Masakazu Sugimoto
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004249944A external-priority patent/JP2006066323A/en
Priority claimed from JP2005162323A external-priority patent/JP2006335603A/en
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to EP05776651A priority Critical patent/EP1805105A1/en
Priority to US11/661,230 priority patent/US7771612B2/en
Publication of WO2006025511A1 publication Critical patent/WO2006025511A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/10Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generating composition which generates a hydrogen gas effectively by supplying water (including water vapor) to aluminum, and is useful, particularly, in a hydrogen generating apparatus for supplying hydrogen to a fuel cell.
  • a hydrogen generating composition which can stably produce hydrogen at a normal temperature
  • a hydrogen generating composition containing an aluminum powder and a calcium oxide powder in which a ratio of the aluminum powder is 85% by weight or less per 100% by weight of the sum of the aluminum powder and the calcium oxide powder has been known (for example, Japanese Patent Application Laid-Open No.2004-231466) .
  • the powder having a particle size distribution of 50 to 150 ⁇ m is preferably used as an aluminum powder.
  • this hydrogen generating composition since a content of calcium oxide is large, calcium oxide is converted into calcium hydroxide by a reaction with water, an amount of a produced calcium ion is increased, therefore, it is hardly said that this is a suitable method as a method of generating a hydrogen gas to be supplied to a fuel cell. That is, it was found out that when an amount of a produced calcium ion is increased, a large amount of the ion is contained in water contained in a produced hydrogen gas, the calcium ion together with a hydrogen gas reaches a solid electrolyte of a fuel cell, and causes a problem of suppression of proton conducting function.
  • An object of the present invention is to provide a hydrogen generating composition which can generate a hydrogen gas effectively and at a high reaction rate at around room temperature, particularly, the produced hydrogen gas hardly suppressing proton conducting function of a solid electrolyte.
  • the present inventors intensively studied, and found out that, by reducing a particle diameter of aluminum particles, and adding aggregation suppressing particles, a sufficient reaction yield can be attained even when an amount of calcium oxide is reduced, and a concentration of a calcium ion contained in a hydrogen gas can be reduced, which resulted in completion of the present invention.
  • the hydrogen generating composition of the present invention comprises aluminum particles having an average particle diameter of 40 ⁇ m or less, 0.1 to 10 parts by weight of an alkaline inorganic compound, and 0.1 to 30 parts by weight of aggregation suppressing particles, the each part being relative to 100 parts by weight of the aluminum particles .
  • the hydrogen generating composition of the present invention since the aluminum particles have an average particle diameter of 40 ⁇ m or less, and 0.1 to 30 parts by weight of aggregation suppressing particles are contained, a sufficient reaction rate can be attained even when an amount of calcium oxide is 0.1 to 10 parts by weight and a concentration of a calcium ion contained in a produced hydrogen gas can be lowered.
  • the aggregation suppressing particles by addition of the aggregation suppressing particles, aggregation and solidification of the aluminum particles and aluminum oxide can be suppressed, and a higher reaction yield can be attained.
  • the hydrogen generating composition which can generate efficiently a hydrogen gas at around room temperature at a high reaction yield, the generated hydrogen gas hardly suppressing proton conducting function of a solid electrolyte, can be provided.
  • the alkaline inorganic compound is calcium oxide, and the aggregation suppressing particles is carbon black.
  • the hydrogen generating composition of the present invention is a tablet in which a particle mixture is densified, in order to enhance a hydrogen generation amount per unit volume while a reaction rate and a reaction yield of hydrogen generation are sufficiently maintained.
  • a density is 0.4 to l.Og/cm 3 .
  • Fig.l is a graph showing changes in a reaction yield with time obtained from an amount of a generated hydrogen gas in Examples and Comparative Examples.
  • Fig.2 is a graph showing changes in an amount of a generated hydrogen gas with time in Examples 5 to 7.
  • the hydrogen generating composition of the present invention contains 0.1 to 10 parts by weight of an alkaline inorganic compound, and 0.1 to 30 parts by weight of aggregation suppressing particles relative to 100 parts by weight of aluminum particles of an average particle diameter of 40 ⁇ m or less.
  • Aluminum particles have an average particle diameter of 40 ⁇ m or less, preferably 1 to 15 ⁇ m.
  • an average diameter is smaller than 1 ⁇ m, there is a tendency that manufacturing becomes difficult, secondary aggregation occurs, reduction in a surface area is remarkable by sintering upon temperature raising, and therefore hydrogen generation is reduced.
  • an average particle diameter exceeds 40 ⁇ m, a reaction yield becomes insufficient unless a content of calcium oxide is increased.
  • aluminum particles are prepared by an atomizing method.
  • an oxidized surface later is removed.
  • various commercially available aluminum particles can be used.
  • a content of aluminum particles is preferably 50 to 99.5% by weight, more preferably 70 to 90% by weight in a hydrogen generating composition.
  • a content of aluminum particles is less than 50% by weight, there is a tendency that a total generation amount of a hydrogen gas becomes insufficient.
  • an alkaline inorganic compound examples include oxide, hydroxide and carbonate of an alkali metal or an alkaline earth metal, and an alkaline inorganic compound is preferably one or more kinds selected from the group consisting of calcium oxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, borax, sodium carbonate, and calcium carbonate.
  • An alkaline inorganic compound can be added as particles, or by a method of making the compound carried in other particles.
  • an average particle diameter thereof is preferably 1 to 50 ⁇ m.
  • an average particle diameter of alkaline inorganic compound particles is less than 1 ⁇ m, there is a tendency that a hydrogen generation time is delayed.
  • the average particle diameter exceeds 50 ⁇ m there is a tendency that particles are vigorously reacted with water to produce the heat, and a large amount of water is used.
  • examples of a method of making an alkaline inorganic compound carried in other particles include a method of mixing the other particles such as carbon black or aluminum oxide in a dispersion or an solution of an alkaline inorganic compound and, thereafter, drying this, thereby, making the compound carried in other particles.
  • a content of an alkaline inorganic compound is 0.1 to 10 parts by weight, preferably 1 to 5 parts by weight, more preferably 1 to 1.5 parts by weight relative to 100 parts by weight of aluminum particles.
  • a content of an alkaline inorganic compound is less than 0.1 part by weight, a reaction rate and a reaction yield cannot be improved.
  • the content exceeds 10 parts by weight, a large amount of calcium ion is contained in a produced hydrogen gas, thereby, proton conducting function of a solid electrolyte is suppressed.
  • aggregation suppressing particles fine particles which are inert to a hydrogen generation reaction can be used, and it is preferable that aggregation suppressing particles is one or more kinds selected from the group consisting of carbon black, silica, cerium oxide, aluminum oxide, and titanium oxide. Among them, carbon black is particularly preferable in order to enhance aggregation suppressing effect.
  • aggregation suppressing particles are contained at 0.1 to 30 parts by weight, preferably 10 to 25 parts by weight relative to 100 parts by weight of the aluminum particles.
  • a content of aggregation suppressing particles is less than 0.1 part by weight, there is a tendency that the effect of suppressing aggregation adhesion of aluminum particles is reduced. And it becomes difficult to attain a high reaction yield.
  • the content exceeds 30 parts by weight, a content of aluminumparticles is reduced relatively, and there is a tendency that a total generation amount of a hydrogen gas is insufficient.
  • carbon black any carbon black such as channel black, thermal black, acetylene black, kechen black, and furnace black can be used.
  • carbon black there is hydrophilized carbon black, but in order to enhance aggregation suppressing effect, untreated hydrophobic carbon black is preferably used in the present invention. Alternatively, these are used tomake calcium oxide to be carried.
  • An average primary particle diameter of carbon black is preferably 0.01 to 0.5 ⁇ m.
  • active carbon or zeolite may be further added.
  • active carbon include coconut shell carbon, charcoal, and peat carbon, and active carbon acts also as a water retention agent. It is preferable that active carbon has iodide adsorbing performance of 800 to 1200 mg/g.
  • an inorganic electrolyte may be added.
  • chloride of an alkali metal, an alkaline earth metal, and a heavymetal, and sulfate of an alkali metal are preferable and, for example, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, ferric chloride, and sodium sulfate are used.
  • the hydrogen generating composition of the present invention may be a powdery mixture, or may be densified mixture such as a pellet and a tablet obtained by densifying bypressing. By performing such the densification, a hydrogen generation amount per unit volume can be increased.
  • a density in order to maintain a reaction rate and a reaction yield of hydrogen generation, a density is preferably 0.4 to 1.5 g/cm 3 , and it is more preferably that a density is 0.7 to 1.1 g/cm 3 .
  • the pressing can be performed by pressing a powdery mixture until such the density is obtained.
  • a hydrogen generation method using the hydrogen generating composition of the present invention generates a hydrogen gas by supplying water to the hydrogen generating composition of the present invention.
  • Water can be supplied as a liquid or a gas (water vapor) .
  • a hydrogen generating composition is filled in a sealed container (a hydrogen generating composition may be held by an absorbent cotton or a non-woven fabric) , and a hydrogen gas may be supplied to a fuel cell via a tube connected to a sealed container while water is supplied with a syringe pump or a micropump.
  • a sealed container may be heated,
  • a reaction temperature upon hydrogen generation is preferably 30 to 9O 0 C, more preferably 35 to 50 0 C.
  • the hydrogen generating method of the present invention can generate a hydrogen gas at around room temperature, efficiently, and at a high reaction yield, and a produced hydrogen gas hardly suppresses proton conducting function of a solid electrolyte
  • the method is preferably used in utility of supplying a generated hydrogen gas to a fuel cell.
  • Carbon black manufactured by Cabot Corporation: Vulcan XC-72R, average particle diameter 20 nm
  • calcium oxide (Wako Pure Chemical Industries, Ltd., A-12112, powder reagent) 0.015 g and 1 cc of water were placed into a 20 cc beaker and mixed, and the mixture was placed into a dryer at 6O 0 C, and allowed to stand for 6 hours to dry it, thereby to prepare carbon black carrying calcium oxide.
  • Example 5 According to the same manner as that of Example 5 except that the powdery hydrogen generating composition obtained in Example 5 was formulated into a tablet having a density of 0.48 g/ml by pressing, a hydrogen generating composition was prepared, and a hydrogen generation amount was measured. A change with time in a hydrogen generation amount thereupon is shown in Fig.2. As a result, as shown in Fig.2, even when a volume was densified to a half, a hydrogen generation amount was almost the same as compared with a powdery generating composition.
  • Example 5 According to the same manner as that of Example 5 except that the powdery hydrogen generating composition obtained in Example 5 was formulated into a tablet having a density of 0.97 g/ml by pressing, a hydrogen generating composition was prepared, and a hydrogen generation amount was measured. A change with time in a hydrogen generation amount thereupon is shown in Fig.2. As a result, as shown in Fig.2, even when a volume was densified to 1/4, a hydrogen generation amount was approximately the same as that of the powdery generating composition until 100 minutes passed.
  • a powdery hydrogen generating composition was prepared from Ig of an aluminum powder, 0.18 g of carbon black, and 0.015 g of calcium oxide, and 10 ml of water was added to a beaker to react them. After completion of the reaction, remaining water was diluted 1000-fold, a calcium concentration was measured by induction-coupled plasma-mass spectroscopy (ICP-MS), and it was fount to be 12, 500 ng/ml as expressed by a concentration before dilution.
  • ICP-MS induction-coupled plasma-mass spectroscopy

Abstract

An object of the present invention is to provide a hydrogen generating composition which can efficiently generate a hydrogen gas at around room temperature and in which a generated hydrogen gas hardly suppresses proton conducting function of a solid electrolyte. The hydrogen generating composition of the present invention contains aluminum particles having an average particle diameter of 40 m or less, 0.1 to 10 parts by weight of an alkaline inorganic compound, and 0.1 to 30 parts by weight of aggregation suppressing particles, the each part being relative to 100 parts by weight of the aluminum particles.

Description

DESCRIPTION
HYDROGEN GENERATING COMPOSITION
TECHNICAL FIELD
The present invention relates to a hydrogen generating composition which generates a hydrogen gas effectively by supplying water (including water vapor) to aluminum, and is useful, particularly, in a hydrogen generating apparatus for supplying hydrogen to a fuel cell.
BACKGROUND ART
Conventionally, as a method of generating a hydrogen gas by a reaction of water and aluminum, a method of reacting water and aluminum while a new surface of aluminum is produced by cutting it in water has been known (for example, see Japanese Patent Application Laid-Open No.2001-31401) .
However, according to this method, since new surfaces and fine particles of aluminum are successively produced, it was difficult to control a rate of reacting water and aluminum. In addition, unless heating is performed from the outside, a reaction rate becomes insufficient, and there is also a problem of heating controlling.
In addition, a method of supplying water to- a powder in which an aluminum powder and a metal powder having smaller ionization tendency are mixed so as to react water and aluminum has been known (for example, see Japanese Patent Application Laid-Open No.2002-104801) . In this method, by mixing the metal powder having smaller ionization tendency than that of aluminum, an apparent rate of reacting water and aluminum can be enhanced.
Further, as a hydrogen generating composition which can stably produce hydrogen at a normal temperature, a hydrogen generating composition containing an aluminum powder and a calcium oxide powder in which a ratio of the aluminum powder is 85% by weight or less per 100% by weight of the sum of the aluminum powder and the calcium oxide powder, has been known (for example, Japanese Patent Application Laid-Open No.2004-231466) . And, as an aluminum powder, the powder having a particle size distribution of 50 to 150μm is preferably used.
However, in this hydrogen generating composition, since a content of calcium oxide is large, calcium oxide is converted into calcium hydroxide by a reaction with water, an amount of a produced calcium ion is increased, therefore, it is hardly said that this is a suitable method as a method of generating a hydrogen gas to be supplied to a fuel cell. That is, it was found out that when an amount of a produced calcium ion is increased, a large amount of the ion is contained in water contained in a produced hydrogen gas, the calcium ion together with a hydrogen gas reaches a solid electrolyte of a fuel cell, and causes a problem of suppression of proton conducting function. On the other hand, in a hydrogen generating composition containing aluminum as a main component, it was found out that, when aluminum oxide is produced by progression of a reaction, aggregation and solidification of reaction products are easily caused, aluminum particles are shut therein, and a reaction yield is lowered. And, such the aggregation and solidification phenomenon becomes remarkable as a particle diameter of aluminum particles is smaller.
DISCLOSURE OF THE INVENTION
An object of the present invention is to provide a hydrogen generating composition which can generate a hydrogen gas effectively and at a high reaction rate at around room temperature, particularly, the produced hydrogen gas hardly suppressing proton conducting function of a solid electrolyte.
In order to attain the aforementioned object, the present inventors intensively studied, and found out that, by reducing a particle diameter of aluminum particles, and adding aggregation suppressing particles, a sufficient reaction yield can be attained even when an amount of calcium oxide is reduced, and a concentration of a calcium ion contained in a hydrogen gas can be reduced, which resulted in completion of the present invention.
That is, the hydrogen generating composition of the present invention comprises aluminum particles having an average particle diameter of 40 μm or less, 0.1 to 10 parts by weight of an alkaline inorganic compound, and 0.1 to 30 parts by weight of aggregation suppressing particles, the each part being relative to 100 parts by weight of the aluminum particles .
According to the hydrogen generating composition of the present invention, since the aluminum particles have an average particle diameter of 40 μm or less, and 0.1 to 30 parts by weight of aggregation suppressing particles are contained, a sufficient reaction rate can be attained even when an amount of calcium oxide is 0.1 to 10 parts by weight and a concentration of a calcium ion contained in a produced hydrogen gas can be lowered. In addition, by addition of the aggregation suppressing particles, aggregation and solidification of the aluminum particles and aluminum oxide can be suppressed, and a higher reaction yield can be attained. As a result, the hydrogen generating composition which can generate efficiently a hydrogen gas at around room temperature at a high reaction yield, the generated hydrogen gas hardly suppressing proton conducting function of a solid electrolyte, can be provided.
In the forgoing, in order to improve both of a reaction rate and a reaction yield of hydrogen generation, it is particularly preferable that the alkaline inorganic compound is calcium oxide, and the aggregation suppressing particles is carbon black.
It is preferable that the hydrogen generating composition of the present invention is a tablet in which a particle mixture is densified, in order to enhance a hydrogen generation amount per unit volume while a reaction rate and a reaction yield of hydrogen generation are sufficiently maintained.
In the present invention, in order to maintain a reaction rate and a reaction yield of hydrogen generation, it is particularly preferable that a density is 0.4 to l.Og/cm3.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig.l is a graph showing changes in a reaction yield with time obtained from an amount of a generated hydrogen gas in Examples and Comparative Examples; and
Fig.2 is a graph showing changes in an amount of a generated hydrogen gas with time in Examples 5 to 7.
BEST MODE FOR CARRYING OUT THE INVENTION
The hydrogen generating composition of the present invention contains 0.1 to 10 parts by weight of an alkaline inorganic compound, and 0.1 to 30 parts by weight of aggregation suppressing particles relative to 100 parts by weight of aluminum particles of an average particle diameter of 40 μm or less.
Aluminum particles have an average particle diameter of 40 μm or less, preferably 1 to 15 μm. When an average diameter is smaller than 1 μm, there is a tendency that manufacturing becomes difficult, secondary aggregation occurs, reduction in a surface area is remarkable by sintering upon temperature raising, and therefore hydrogen generation is reduced. When an average particle diameter exceeds 40 μm, a reaction yield becomes insufficient unless a content of calcium oxide is increased.
It is preferable that aluminum particles are prepared by an atomizing method. In addition, it is preferable that an oxidized surface later is removed. As such aluminum particles, various commercially available aluminum particles can be used.
A content of aluminum particles is preferably 50 to 99.5% by weight, more preferably 70 to 90% by weight in a hydrogen generating composition. When a content of aluminum particles is less than 50% by weight, there is a tendency that a total generation amount of a hydrogen gas becomes insufficient.
Examples of an alkaline inorganic compound include oxide, hydroxide and carbonate of an alkali metal or an alkaline earth metal, and an alkaline inorganic compound is preferably one or more kinds selected from the group consisting of calcium oxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, borax, sodium carbonate, and calcium carbonate.
An alkaline inorganic compound can be added as particles, or by a method of making the compound carried in other particles. When alkaline inorganic compound particles are used, an average particle diameter thereof is preferably 1 to 50 μm. When an average particle diameter of alkaline inorganic compound particles is less than 1 μm, there is a tendency that a hydrogen generation time is delayed. When the average particle diameter exceeds 50 μm, there is a tendency that particles are vigorously reacted with water to produce the heat, and a large amount of water is used.
In addition, examples of a method of making an alkaline inorganic compound carried in other particles include a method of mixing the other particles such as carbon black or aluminum oxide in a dispersion or an solution of an alkaline inorganic compound and, thereafter, drying this, thereby, making the compound carried in other particles.
A content of an alkaline inorganic compound is 0.1 to 10 parts by weight, preferably 1 to 5 parts by weight, more preferably 1 to 1.5 parts by weight relative to 100 parts by weight of aluminum particles. When a content of an alkaline inorganic compound is less than 0.1 part by weight, a reaction rate and a reaction yield cannot be improved. On the other hand, when the content exceeds 10 parts by weight, a large amount of calcium ion is contained in a produced hydrogen gas, thereby, proton conducting function of a solid electrolyte is suppressed.
As aggregation suppressing particles, fine particles which are inert to a hydrogen generation reaction can be used, and it is preferable that aggregation suppressing particles is one or more kinds selected from the group consisting of carbon black, silica, cerium oxide, aluminum oxide, and titanium oxide. Among them, carbon black is particularly preferable in order to enhance aggregation suppressing effect.
In the present invention, aggregation suppressing particles are contained at 0.1 to 30 parts by weight, preferably 10 to 25 parts by weight relative to 100 parts by weight of the aluminum particles. When a content of aggregation suppressing particles is less than 0.1 part by weight, there is a tendency that the effect of suppressing aggregation adhesion of aluminum particles is reduced. And it becomes difficult to attain a high reaction yield. When the content exceeds 30 parts by weight, a content of aluminumparticles is reduced relatively, and there is a tendency that a total generation amount of a hydrogen gas is insufficient.
As carbon black, any carbon black such as channel black, thermal black, acetylene black, kechen black, and furnace black can be used. In such carbon black, there is hydrophilized carbon black, but in order to enhance aggregation suppressing effect, untreated hydrophobic carbon black is preferably used in the present invention. Alternatively, these are used tomake calcium oxide to be carried. An average primary particle diameter of carbon black is preferably 0.01 to 0.5μm.
In the present invention, active carbon or zeolite may be further added. Examples of active carbon include coconut shell carbon, charcoal, and peat carbon, and active carbon acts also as a water retention agent. It is preferable that active carbon has iodide adsorbing performance of 800 to 1200 mg/g.
In addition, an inorganic electrolyte may be added. As an inorganic electrolyte, chloride of an alkali metal, an alkaline earth metal, and a heavymetal, and sulfate of an alkali metal are preferable and, for example, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, ferric chloride, and sodium sulfate are used.
The hydrogen generating composition of the present invention may be a powdery mixture, or may be densified mixture such as a pellet and a tablet obtained by densifying bypressing. By performing such the densification, a hydrogen generation amount per unit volume can be increased.
In the present invention, in order to maintain a reaction rate and a reaction yield of hydrogen generation, a density is preferably 0.4 to 1.5 g/cm3, and it is more preferably that a density is 0.7 to 1.1 g/cm3.
The pressing can be performed by pressing a powdery mixture until such the density is obtained. In order to avoid deformation of a material and blocking of a material due to excessive densification of mixed particles, it is preferable to perform the pressing at a pressure of 3 to 50 MPa.
In the present invention, as shown in the following equation A, for example, calcium oxide is reacted with water to produce calcium hydroxide.
CaO+H2O→Ca (OH) 2 " (A)
Produced calcium hydroxide is reacted with aluminum to produce calcium aluminate and hydrogen, and a representative reaction is the following equation B.
3Ca (OH) 2+2Al→3CaO-Al2θ3+3H2"- (B)
As calcium aluminate, in addition to a compound of 3CaO1Al2O3 in the equation B, compounds of Caθ-2A12O3, CaO1Al2O3, Ca3[Al(OH)6I 2, and 2Ca (OH) 2"A1 (OH) 2'5/2H2O are known.
On the other hand, a hydrogen generation method using the hydrogen generating composition of the present invention generates a hydrogen gas by supplying water to the hydrogen generating composition of the present invention. Water can be supplied as a liquid or a gas (water vapor) . Specifically, for example, when a hydrogen gas is supplied to a fuel cell of portable electronic equipments, a hydrogen generating composition is filled in a sealed container (a hydrogen generating composition may be held by an absorbent cotton or a non-woven fabric) , and a hydrogen gas may be supplied to a fuel cell via a tube connected to a sealed container while water is supplied with a syringe pump or a micropump. Thereupon, if necessary, a sealed container may be heated,
In view of balance between heating energy and a reaction rate, a reaction temperature upon hydrogen generation is preferably 30 to 9O0C, more preferably 35 to 500C. And, when a hydrogen gas is generated at a stable generation amount, it is preferable to supply water at a supplying rate of 1.0 to 3.0 ml/h per g of an aluminum powder.
Since the hydrogen generating method of the present invention can generate a hydrogen gas at around room temperature, efficiently, and at a high reaction yield, and a produced hydrogen gas hardly suppresses proton conducting function of a solid electrolyte, the method is preferably used in utility of supplying a generated hydrogen gas to a fuel cell.
Examples
Examples specifically showing the feature and the effect of the present invention will be explained below. Assessment item in Examples was measured as follows: (1) Hydrogen generation amount
After a generated hydrogen gas is dried via a silica gel dryer, an instant hydrogen generation flow rate and a hydrogen generation total amount were measured with a mass flowmeter (manufactured by KOT-LOC) .
Example 1
One gram of an aluminum powder (manufactured by Kojundo Chemical Laboratory Co. , Ltd. : average particle diameter 3 μm) , 0.23 g of carbon black (manufactured by Cabot Corporation: Vulcan XC-72R, average particle diameter 20 nm) , and 0.015 g of calcium oxide (Wako Pure Chemical Industries, Ltd. , A-12112, powder reagent) were placed into a 20 cc beaker and mixed, and the mixture was placed in a vessel in hot water, and retained at a temperature of 600C. While water was supplied with a microsyringe pump at a supplying rate of 1.0 ml/h (a total supply amount water was 3.0 ml) , a generated gas was taken out through a tube. Thereupon, a generation amount was measured with a mass flowmeter while hydrogen was collected by a water displacing method. A change with time in a reaction yield obtained from a hydrogen generation amount thereupon is shown in Fig.l. A reaction yield when 150 minutes had passed from initiation of water supply was 62% . Like this, by using carbon black jointly, a higher reaction yield than that of other Examples was exhibited.
Example 2
One gram of an aluminum powder (manufactured by Kojundo Chemical Laboratory Co. , Ltd. : average particle diameter 3 μm) , 0.23 g of carbon black (manufactured by Cabot Corporation: Vulcan XC-72R, average particle diameter 20 nm) , 0.015g of calcium oxide (Wako Pure Chemical Industries, Ltd., A-12112, powder reagent), and 0.05g of potassium chloride were placed into a 20 cc beaker and mixed, and the mixture was placed in a vessel in hot water, and retained at a temperature of 6O0C. While water was supplied with a microsyringe pump at a supply rate of 1.0 ml/h (a total supply amount of water was 3.0 ml) , a generated gas was taken out through a tube. Thereupon, a generation amount was measured with a mass flowmeter while hydrogen was collected by a water replacing method. A change with time in a reaction yield obtained from a hydrogen generation amount thereupon is shown in Fig.1. A reaction yield when 150 minutes had passed from initiation of water supply was 52%. Like this, by using carbon black jointly, a higher reaction yield other than that of other Examples was exhibited.
Example 3
One gram of an aluminum powder (manufactured by Kojundo Chemical Laboratory Co. , Ltd. : average particle diameter 3 μm) , and 0.015 g of calcium oxide (Wako Pure Chemical Industries, Ltd., A-12112, powder reagent) were placed into a 20 cc beaker and mixed, and the mixture was placed into a vessel in hot water, and was retained at 60°C. While water was supplied with a microsyringe pump at a supply rate of 1.0 ml/h (a total supply amount of water was 3.0 ml) , a generated gas was taken out through a tube. Thereupon, a generation amount was measured with a mass flowmeter while hydrogen was collected by a water replacing method. A change with time in a reaction yield obtained from a hydrogen generation amount thereupon is shown in Fig.l. A reaction yield when 150 minutes had passed from initiation of water supply was 48%. Comparative Example 1
One gram of an aluminum powder (manufactured by Kojundo Chemical Laboratory Co. , Ltd. : average particle diameter 3 μm) , and 0.23 g of carbon black (manufactured by Cabot Corporation: Vulcan XC-72R, average particle diameter 20 nm) were placed into a 20 cc beaker and mixed, and the mixture was placed in a vessel in hot water, and retained at a temperature of 60°C. While water was supplied with a microsyringe pump at a supply rate of 1.0 ml/h (a total supply amount of water was 3.0 ml), a generated gas was taken out through a tube. A generation amount was measured with a mass flowmeter while hydrogen was collected by a water replacing method. A change with time in a reaction yield obtained from a hydrogen generation amount thereupon is shown in Fig.l. A reaction yield when 150 minutes had passed from initiation of water supply was 37%.
Comparative Example 2
One gram of an aluminum powder (manufactured by Kojundo Chemical Laboratory Co., Ltd. : average particle diameter 3 μm) was placed into a 20 cc beaker, mixed, and placed into a vessel in hot water, and retained at a temperature of 60°C. While water was supplied with a microsyringe pump at a supply rate of 1.0 ml/h (a total supply amount of water was 3.0 ml), a generated gas was taken out though a tube. Thereupon, a generation amount was measured with a mass flowmeter while hydrogen was collected by a water replacing method. A changed with time in a reaction yield obtained from a hydrogen generation amount thereupon is shown in Fig.l. A reaction yield when 150 minutes had passed from initiation of water supply was 28%.
Example 4
Carbon black (manufactured by Cabot Corporation: Vulcan XC-72R, average particle diameter 20 nm) 0.23 g, calcium oxide (Wako Pure Chemical Industries, Ltd., A-12112, powder reagent) 0.015 g and 1 cc of water were placed into a 20 cc beaker and mixed, and the mixture was placed into a dryer at 6O0C, and allowed to stand for 6 hours to dry it, thereby to prepare carbon black carrying calcium oxide. Its total amount (0.245 g) and Ig of an aluminum powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.: average particle diameter 3 μm) were placed into a 20 cc beaker and mixed, and the mixture was placed into a vessel in hot water, and retained at a temperature of 60°C. While water was supplied with a microsyring pump at a supply rate of 1.0 ml/h (a total supply amount of water was 3.0 ml) , a generated gas was taken out through a tube. Thereupon, a generation amount was measured with a mass flowmeter while hydrogen was collected by a water replacing method. A change with time in a reaction yield obtained from a hydrogen generation amount thereupon was approximately the same as that of Example 1, and a reaction yield when 150 minutes had passed from initiation of water supply was 60%.
Example 5
One gram of an aluminum powder (manufactured by Kojundo Chemical Laboratory Co. , Ltd. : average particle diameter 3 μm) , 0.23 g of carbon black (manufactured by Cabot Corporation: Vulcan XC-72R, average particle diameter 20 nm) , and 0.015 g of calcium oxide (Wako Pure Chemical Industries, Ltd. , A-12112, powder reagent) were placed into a 20 cc beaker, and mixed, and the mixture was placed into a vessel in hot water, and was retained at a temperature of 450C. While water was supplied with a microsyringe pump at a supply rate of 1.0 ml/h (a total supply amount of water was 3 ml) , a generated gas was taken out through a tube. Thereupon, a generation amount was measured with a mass flowmeter while hydrogen was collected by a water replacing method. A change with time in a hydrogen generation amount thereupon is shown in Fig.2. A density of a mixedpowdery hydrogen generating composition was 0.24 g/ml.
Example 6
According to the same manner as that of Example 5 except that the powdery hydrogen generating composition obtained in Example 5 was formulated into a tablet having a density of 0.48 g/ml by pressing, a hydrogen generating composition was prepared, and a hydrogen generation amount was measured. A change with time in a hydrogen generation amount thereupon is shown in Fig.2. As a result, as shown in Fig.2, even when a volume was densified to a half, a hydrogen generation amount was almost the same as compared with a powdery generating composition.
Example 7
According to the same manner as that of Example 5 except that the powdery hydrogen generating composition obtained in Example 5 was formulated into a tablet having a density of 0.97 g/ml by pressing, a hydrogen generating composition was prepared, and a hydrogen generation amount was measured. A change with time in a hydrogen generation amount thereupon is shown in Fig.2. As a result, as shown in Fig.2, even when a volume was densified to 1/4, a hydrogen generation amount was approximately the same as that of the powdery generating composition until 100 minutes passed.
Reference Example
As in Example 1, a powdery hydrogen generating composition was prepared from Ig of an aluminum powder, 0.18 g of carbon black, and 0.015 g of calcium oxide, and 10 ml of water was added to a beaker to react them. After completion of the reaction, remaining water was diluted 1000-fold, a calcium concentration was measured by induction-coupled plasma-mass spectroscopy (ICP-MS), and it was fount to be 12, 500 ng/ml as expressed by a concentration before dilution.
In addition, water before dilution was distilled at 60°C,. a concentration of calcium in water contained in a fraction was measured by the same apparatus and it was found to be 17.6 ng/ml. Like this, it was found that, at a temperature and a remaining water calcium concentration near the condition at an actual reaction, a concentration of calcium contained in a generated water steam is suppressed low.
To the contrary, in the case where a powdery hydrogen generating composition was prepared from 1 g of an aluminum powder and 0.20 g of calcium oxide, when a reaction was initiated by addition of water, a mist was flown, and calcium oxide was flown to such an extent that a wall surface of a beaker became white.

Claims

1. A hydrogen generating composition comprising aluminum particles having an average particle diameter of 40 μm or less, 0.1 to 10 parts by weight of an alkaline inorganic compound, and 0.1 to 30 parts by weight of aggregation suppressing particles, the each part being relative to 100 parts by weight of the aluminum particles.
2. The hydrogen generating composition according to claim 1, wherein the alkaline inorganic compound is one or more compounds selected from the group consisting of calcium oxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, borax, sodium carbonate, and calcium carbonate.
3. The hydrogen generating composition according to claim 1 or 2, wherein the aggregation suppressing particles is one or more compounds selected from the group consisting of carbon black, silica, cerium oxide, aluminum oxide, and titanium oxide.
4. The hydrogen generating composition according to claim 1, wherein the alkaline inorganic compound is calcium oxide, and the aggregation suppressing particles are carbon black.
5. The hydrogen generating composition according to any one of claims 1 to 4, wherein a mixture of the particles forms a densified tablet.
6. The hydrogen generating composition according to claim 5, whose density is 0.4 to 1.5g/cm3.
PCT/JP2005/016061 2004-08-30 2005-08-26 Hydrogen generating composition WO2006025511A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05776651A EP1805105A1 (en) 2004-08-30 2005-08-26 Hydrogen generating composition
US11/661,230 US7771612B2 (en) 2004-08-30 2005-08-26 Hydrogen generating composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-249944 2004-08-30
JP2004249944A JP2006066323A (en) 2004-08-30 2004-08-30 Cell of fuel cell
JP2005162323A JP2006335603A (en) 2005-06-02 2005-06-02 Hydrogen generating agent and hydrogen generating method
JP2005-162323 2005-06-02

Publications (1)

Publication Number Publication Date
WO2006025511A1 true WO2006025511A1 (en) 2006-03-09

Family

ID=35159896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016061 WO2006025511A1 (en) 2004-08-30 2005-08-26 Hydrogen generating composition

Country Status (4)

Country Link
US (1) US7771612B2 (en)
EP (1) EP1805105A1 (en)
KR (1) KR20070050479A (en)
WO (1) WO2006025511A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749796A1 (en) * 2005-07-25 2007-02-07 Air Products and Chemicals, Inc. Method for generating hydrogen gas
CN102397785A (en) * 2010-09-09 2012-04-04 柳林军 Silicon-hydrogen energy catalyst
US20130039846A1 (en) * 2010-04-27 2013-02-14 Toshiharu Fukai Method for producing hydrogen
EP2832685A4 (en) * 2012-03-28 2015-09-02 Hitachi Shipbuilding Eng Co Continuous production method for hydrogen
EP2832684A4 (en) * 2012-03-28 2015-09-09 Hitachi Shipbuilding Eng Co Hydrogen production method
US9359199B2 (en) 2007-03-20 2016-06-07 Jung-Tae Park Apparatus for generating hydrogen gas using composition for generating hydrogen gas and composition for generating hydrogen gas
GB2569381A (en) * 2017-12-18 2019-06-19 Ihod Ltd Fuel compositions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292541A1 (en) * 2005-11-10 2008-11-27 Hiromaito Co. Ltd. Hydrogen Generating Agent and Use Thereof
CN101953007B (en) * 2008-05-26 2014-05-28 罗姆股份有限公司 Fuel cell and method of manufacture thereof
JP4744641B1 (en) * 2010-10-18 2011-08-10 ミズ株式会社 Device for adding hydrogen to biological fluids
RU2473460C2 (en) * 2011-04-26 2013-01-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Hydroreactive composition for obtaining hydrogen by chemical decomposition of mineralised and sewage water
GB2491355A (en) * 2011-05-31 2012-12-05 Inova Power Ltd Metal and sodium hydr(oxide) composite powder for hydrogen generation
AU2012287009B2 (en) 2011-07-25 2018-01-18 H2 Catalyst, Llc Methods and systems for producing hydrogen
US10449532B2 (en) * 2013-04-25 2019-10-22 H2 Catalyst, Llc Catalysts and fuels for producing hydrogen
KR102258741B1 (en) 2019-12-24 2021-06-01 주식회사 패트리온 Metal fuel production method and composition thereof for hydrogen production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028411A1 (en) * 1997-12-02 1999-06-10 Alutech Ltd. Oxygen-scavenging compositions
US20020037452A1 (en) * 2000-06-23 2002-03-28 Schmidt David G. Novel compositions for use in batteries, capacitors, fuel cells and similar devices and for hydrogen production
US20020048548A1 (en) * 2000-08-14 2002-04-25 Chaklader Asoke Chandra Das Hydrogen generation from water split reaction
WO2004052775A1 (en) * 2002-12-12 2004-06-24 Erling Reidar Andersen Method for producing hydrogen
JP2004231466A (en) * 2003-01-30 2004-08-19 Uchiya Thermostat Kk Hydrogen generating material and method and apparatus for generating hydrogen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072115A2 (en) * 2004-12-31 2006-07-06 Hydrogen Power, Inc. Method and composition for production of hydrogen
KR100837291B1 (en) * 2005-01-07 2008-06-11 히다치 막셀 가부시키가이샤 Hydrogen generating material, hydrogen generator and fuel cell
WO2007010897A1 (en) * 2005-07-20 2007-01-25 Hitachi Maxell, Ltd. Hydrogen-generating material and process for producing hydrogen-generating material
US20070020174A1 (en) * 2005-07-25 2007-01-25 Jianguo Xu Method for generating hydrogen gas
JP5160414B2 (en) * 2006-05-09 2013-03-13 アクアフェアリー株式会社 Charger
WO2008027524A2 (en) * 2006-08-30 2008-03-06 Hydrogen Power Inc. Production of hydrogen from aluminum and water
CN101152956A (en) * 2006-09-29 2008-04-02 日立麦克赛尔株式会社 Hydrogen producing apparatus, fuel cell system and electronic equipment
US20080128655A1 (en) * 2006-12-05 2008-06-05 Diwakar Garg Process and apparatus for production of hydrogen using the water gas shift reaction
KR100803074B1 (en) * 2007-03-20 2008-02-18 박정태 Composition for generating hydrogen gas, and apparatus for generating high purity hydrogen gas using thereof
WO2009151500A1 (en) * 2008-04-02 2009-12-17 Cedar Ridge Research Llc Aluminum-alkali hydroxide recyclable hydrogen generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028411A1 (en) * 1997-12-02 1999-06-10 Alutech Ltd. Oxygen-scavenging compositions
US20020037452A1 (en) * 2000-06-23 2002-03-28 Schmidt David G. Novel compositions for use in batteries, capacitors, fuel cells and similar devices and for hydrogen production
US20020048548A1 (en) * 2000-08-14 2002-04-25 Chaklader Asoke Chandra Das Hydrogen generation from water split reaction
WO2004052775A1 (en) * 2002-12-12 2004-06-24 Erling Reidar Andersen Method for producing hydrogen
JP2004231466A (en) * 2003-01-30 2004-08-19 Uchiya Thermostat Kk Hydrogen generating material and method and apparatus for generating hydrogen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200457, Derwent World Patents Index; Class E36, AN 2004-587247 *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749796A1 (en) * 2005-07-25 2007-02-07 Air Products and Chemicals, Inc. Method for generating hydrogen gas
US9359199B2 (en) 2007-03-20 2016-06-07 Jung-Tae Park Apparatus for generating hydrogen gas using composition for generating hydrogen gas and composition for generating hydrogen gas
US20130039846A1 (en) * 2010-04-27 2013-02-14 Toshiharu Fukai Method for producing hydrogen
CN102397785A (en) * 2010-09-09 2012-04-04 柳林军 Silicon-hydrogen energy catalyst
EP2832685A4 (en) * 2012-03-28 2015-09-02 Hitachi Shipbuilding Eng Co Continuous production method for hydrogen
EP2832684A4 (en) * 2012-03-28 2015-09-09 Hitachi Shipbuilding Eng Co Hydrogen production method
GB2569381A (en) * 2017-12-18 2019-06-19 Ihod Ltd Fuel compositions
WO2019137743A1 (en) * 2017-12-18 2019-07-18 Ihod Limited Composition for generating hydrogen
CN111788148A (en) * 2017-12-18 2020-10-16 爱霍德有限公司 Composition for generating hydrogen
JP2021506724A (en) * 2017-12-18 2021-02-22 アイホッド リミテッド Composition for producing hydrogen
GB2569381B (en) * 2017-12-18 2022-05-04 Ihod Ltd Compositions for generating hydrogen
CN111788148B (en) * 2017-12-18 2024-01-26 爱霍德有限公司 Composition for generating hydrogen

Also Published As

Publication number Publication date
KR20070050479A (en) 2007-05-15
US20080251753A1 (en) 2008-10-16
EP1805105A1 (en) 2007-07-11
US7771612B2 (en) 2010-08-10

Similar Documents

Publication Publication Date Title
US7771612B2 (en) Hydrogen generating composition
KR101375584B1 (en) Optimizing hydrogen generating efficiency in fuel cell cartridges
US7883805B2 (en) Hydrogen generating material, hydrogen generator and fuel cell
EP1905735A1 (en) Hydrogen-generating material and process for producing hydrogen-generating material
US7959896B2 (en) Hydrogen storage system materials and methods including hydrides and hydroxides
US20100209338A1 (en) Hydrogen-generating material composition, hydrogen-generating material formed body, and method for producing hydrogen
JPH06506661A (en) chemical oxygen generator
JP2007210878A (en) Hydrogen generation agent composition
CN101010256A (en) Hydrogen generation composition
JP2006335603A (en) Hydrogen generating agent and hydrogen generating method
JP5660430B2 (en) Hydrogen generating material, method for producing the same, method for producing hydrogen, and hydrogen producing apparatus
JP2007326742A (en) Manufacturing method of hydrogen
JP2008037683A (en) Hydrogen-generating agent, and apparatus and method for generating hydrogen
JP2010006673A (en) Hydrogen generating agent
JP5014649B2 (en) Hydrogen generator and hydrogen generation method
CN102190289A (en) Silicon powder composition for generating hydrogen gas
JP2007076967A (en) Hydrogen-generating agent and method for generating hydrogen
JP2008021514A (en) Hydrogen gas generating device for fuel cell
JP2003146604A (en) Compression molding for hydrogen generation and method and device for generating hydrogen using the same
CN106477522B (en) A kind of hydrogen aluminum metal compound and preparation method thereof
JP2006240931A (en) Method for generating hydrogen and hydrogen generating agent
US20190039889A1 (en) Fuel cartridge
US20190062158A1 (en) Distribution of reactant solution in a fuel cartridge
CN115259081B (en) Silicon-based composite material for controllable hydrolysis hydrogen production and preparation method and application thereof
CN107459018B (en) Aluminum-based composite hydrogen production agent, preparation method and application thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580028821.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005776651

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077006047

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005776651

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11661230

Country of ref document: US