WO2006025428A1 - Visible light-emitting material utilizing surface modification of silica particle and method for producing same - Google Patents

Visible light-emitting material utilizing surface modification of silica particle and method for producing same Download PDF

Info

Publication number
WO2006025428A1
WO2006025428A1 PCT/JP2005/015864 JP2005015864W WO2006025428A1 WO 2006025428 A1 WO2006025428 A1 WO 2006025428A1 JP 2005015864 W JP2005015864 W JP 2005015864W WO 2006025428 A1 WO2006025428 A1 WO 2006025428A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
fine particles
silica fine
heat treatment
visible light
Prior art date
Application number
PCT/JP2005/015864
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Uchino
Natsuko Sagawa
Original Assignee
The New Industry Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The New Industry Research Organization filed Critical The New Industry Research Organization
Priority to JP2006532749A priority Critical patent/JP4961526B2/en
Publication of WO2006025428A1 publication Critical patent/WO2006025428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media

Definitions

  • Visible light emitting material using surface modification of silica fine particles and method for producing the same
  • the present invention relates to a visible light-emitting material using silica fine particles and a method for producing the same, and more specifically, the silica fine particles are modified by subjecting the silica fine particles to surface modification and heat treatment, and the wavelength of visible light.
  • This technology is related to the manufacture of light emitting device materials with broad emission characteristics.
  • New Energy Industrial Technology Development Organization “NEDO) project, “High-efficiency electro-optic conversion composite compound development (common name: strength of the 21st century)” project, about twice that of fluorescent lamps Development of a compound semiconductor for LED and its application as a light source for illumination, aiming to solve the technical problem of putting a light source (LED) with high energy consumption efficiency into practical use!
  • NEDO New Energy Industrial Technology Development Organization
  • the resulting UV LED element (external quantum efficiency of 43% is extremely high, GaN-based LED emitting ultraviolet light, emission wavelength is 405nm) is used as a light source for white LED. Utilization is required.
  • white LEDs have a problem in that green light with a wavelength of around 520 nm, which is mainly achieved by phosphors using blue LEDs and rare earth elements, cannot be produced well.
  • a white LED composed of an InGaN-based blue LED and a phosphor coated with a YAG phosphor is said to have the disadvantage of poor green color rendering with a low spectral intensity of the phosphor.
  • Non-Patent Document 1 the -SiCl bond at the terminal of alkylchlorosilane (CH 3 SiCl) has conventionally been a hydroxyl group. It is known that it is very easy to react with a group, and many studies have been made on surface modification of a silica surface with a hydrocarbon group using its high reactivity (for example, Non-Patent Document 1)
  • SiC silicon carbide
  • Non-patent Document 2 There is an example in which a visible light emitting material has been successfully produced by introducing a carbon-carbide bond in silica by introducing it or by plasma CVD (Non-patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-214162
  • Patent Document 2 WO 98/59015
  • Non-Patent Document 1 R. Wang and S. L. Wunder, Langmuir 16 (2000) 5008
  • Non-Patent Document 2 R. Perez-Rodriguez et al, J. Appl. Phys. 94, 254 (2003), S.Y. Seo et al. Appl Phys. Lett. 84, 717 (2004))
  • Non-Patent Document 3 W. H. Green et al., Science 276, 1826 (1997)
  • the problem to be solved by the present invention is to provide a light-emitting element of a next-generation optical device that can emit white light by photoluminescence (PL).
  • PL photoluminescence
  • a white LED composed of an InGaN-based blue LED and a phosphor coated with a YAG phosphor has a low spectral intensity of the phosphor!
  • a luminescent material that improves green color rendering The purpose is to provide.
  • the purpose of the present invention is to provide a luminescent material that can be used as an excitation light source as an excitation light source, which is the result of the above-mentioned “21st Century Light” project, which is an ultraviolet LED element having an emission wavelength of 405 nm.
  • the surface of silica fine particles is modified with hydrocarbon groups and heat-treated under appropriate conditions to produce visible light emitting materials that emit light in a wide wavelength range.
  • the present invention has been completed by finding that it can be produced.
  • silica fine particles react with alkylchlorosilane
  • the alkylchlorosilane is hydrolyzed by the OH groups on the surface of the silica fine particles and the adsorbed water present around them, and adsorbed on the surface of the silica fine particles.
  • the present invention succeeds in inducing a SiC-derived structure on the surface of the silica fine particle by heat-treating the sample in which the Si-C bond is present on the surface of the silica fine particle. How the light emission from this sample depends on the heat treatment temperature, the heat treatment atmosphere, and the length of the alkyl group that modifies the surface of the silica fine particles will be described later.
  • the silica fine particles having visible light emission characteristics include: (a) a surface modification step of surface-modifying silica fine particles with a hydrocarbon group; and (b) silica fine particles after surface modification at 150 to 300 ° C. It is manufactured by a heat treatment process in which heat treatment is performed for a predetermined time in a temperature range. Here, the heat treatment is performed in order to form a SiC / C complex in the silica fine particles during the thermal decomposition of the hydrocarbon group, and to make it a visible light emission center of the silica fine particles.
  • the silica fine particles having visible light emission characteristics according to the present invention can be formed into a pressure-molded product, and (a) a surface modification step of surface-modifying the silica fine particles with a hydrocarbon group; and (b) surface modification.
  • silica fine particles when the surface of the silica fine particles in the above-described production method is modified with a hydrocarbon group! , Alkylchlorosilane (C H SiCl) (n is an integer of 4 or more), silica fine particles
  • the surface of the Lica fine particles is modified with a hydrocarbon group.
  • the light emission intensity can be increased by heat treatment in a nitrogen atmosphere or an air atmosphere.
  • the nitrogen atmosphere is used to exclude oxygen, and the emission intensity can be improved by excluding oxygen.
  • an inert gas atmosphere such as argon may be used.
  • the emission intensity is not improved, and the following results are obtained.
  • heat treatment is performed for a predetermined time in a nitrogen atmosphere, and then heat treatment is performed for a predetermined time in an air atmosphere.
  • the wavelength can be controlled. Compared to a sample sintered only in a nitrogen atmosphere, a sample sintered in a nitrogen atmosphere and then re-sintered in an air atmosphere emits light as the time for re-sintering in the air atmosphere increases. Long peak wavelength Shift to the side.
  • silica fine particles having visible light emission characteristics according to the present invention are:
  • the modified silica fine particles are prepared by a heat treatment process in which heat treatment is performed for a predetermined time in a temperature range of 150 to 300 ° C.
  • a novel light-emitting element can be provided by using the saccharification material and silica molding material containing silica fine particles obtained by the above-described production method as a phosphor. This is because it is easier to commercialize the glyceride material industrially.
  • the silica fine particles having visible light emission characteristics according to the present invention have a silica fine particle as a nucleus and a Si-C-0-based light emitter on the surface of the nucleus, whereby a novel light emitting material is obtained. Is to provide.
  • the silica fine particles used in the production method according to the present invention are artificial amorphous (non-crystalline) silicon dioxide, and the particle diameter of the fine particles is several ⁇ !
  • fumed silica is used to minimize the size of the silica particles, thereby increasing the OH groups per unit surface area and improving the luminous efficiency.
  • the particle size of the fumed silica force is 1 to: LOOnm, but it is desirable that the particle size be narrow.
  • the silica fine particles or the silica molded body according to the present invention has an effect of emitting light with a broad emission spectrum in the visible light wavelength range with an excitation light wavelength of 300 to 400 nm.
  • an ultraviolet LED element (wavelength: 405 nm), which is the result of the “21st Century Light” project, is used as a light source, and it can be expected to be used as a light emitting material for white LEDs.
  • a white LED composed of an In GaN blue LED and a phosphor coated with a YAG phosphor has a low spectral intensity of the phosphor, and a luminescent element as a phosphor that improves green color rendering. May be used as a child.
  • a phosphor element such as a white LED is obtained by saccharifying the silica fine particles according to the present invention. It is highly possible to put it into practical use!
  • the light-emitting element can be manufactured with low heating temperature, short heating time, it is possible to manufacture the light-emitting element at low cost by using a simple and inexpensive manufacturing facility.
  • the silica fine particles according to the present invention include (a) a surface modification step of surface-modifying silica fine particles with a hydrocarbon group, and (b) silica fine particles after surface modification at a temperature range of 150 to 300 ° C for a predetermined time.
  • the force produced by the heat treatment step for heat treatment One embodiment of this production method will be described in detail below.
  • fumed silica is used as the silica fine particles used for producing the silica glass.
  • Fumed silica is a 1100-1400 ° C burned gas mixture of H and O
  • Spherical particles mainly composed of amorphous diacid silicate (SiO 2) whose average particle size is about lOnm
  • Fumed silica is an ultrafine particle and has a chemically active surface structure because it is produced by rapid cooling.
  • fumed silica is used as the silica fine particles used in the production of silica glass.
  • the fumed silica actually used is as follows.
  • an alkylchlorosilane having 1 to 18 carbon atoms in which all alkyl groups are linear with respect to fumed silica. (CH SiCl) using pentane as the solvent and Ar atmosphere It is made to react with.
  • the sample is prepared by centrifuging to remove unreacted alkylchlorosilane and drying at room temperature.
  • the sample thus prepared is formed into a pellet shape, and is subjected to heat treatment for a predetermined time in a temperature range of 150 to 300 ° C. in air or nitrogen to prepare a sample.
  • n l, 3,8,18 is represented by n 2n-1 3 as alkylchlorosilane (C 3 H 3 SiCl).
  • n 18 (Octadecy Trichloro Silane, ⁇ OT
  • the molded pellets were 150% in the atmosphere using an electric furnace (super-burn, Motoyama Co., Ltd.).
  • the silica molding material having visible light emission characteristics according to the present invention can be obtained.
  • a sample is prepared for a predetermined time of 2 hours.
  • Fig. 2 shows changes in the emission spectrum of the obtained silica molding material depending on the heat treatment temperature in the atmosphere.
  • the emission spectrum is measured using a fluorescence spectrophotometer (a 75 w xenon flash lamp as a light source).
  • the emission intensity reaches a maximum at a heating temperature of 200 ° C.
  • the excitation light wavelength is 400 nm.
  • This sample has been confirmed to emit light in the excitation wavelength range of 300 to 400 nm, as in FIG. [0040]
  • a broad emission of light longer than 430 nm was observed in the non-heated sample, and the emission intensity increased slightly with heating at 150 ° C, and the emission intensity increased with heating at 200 ° C!
  • the emission peak position is shifted, and emission is observed on the longer wavelength side. It can be understood that when the heating temperature is 250 ° C or higher, there is no change in the emission peak position, and the emission intensity decreases!
  • the excitation wavelength is known to emit light with excitation of 350 to 400 nm in the case of carbon carbide! / Luminous emission was measured at an excitation wavelength of 400 nm.
  • FIG. 3 is a luminescence vector diagram measured after heat-treating each sample having a different carbon number at 200 ° C. in the atmosphere.
  • alkyl chlorosilane C H SiCl
  • n l, 3,8, 18 alkyl n 2n- 1 3
  • the addition of a carboxylic acid such as acetic acid is an indispensable condition when preparing a luminescent sample.
  • the production method according to the present invention does not require the addition of carboxylic acid, The main difference is the use of hydrolysis and thermal decomposition reactions of chlorosilanes with basic groups.
  • the sample obtained by the production method according to the present invention can emit light even when heated in a nitrogen atmosphere (no oxidation reaction is observed!), which is different from the prior art. I think it is.
  • Example 1 As another example, in Example 1 described above, it is possible to produce visible light emission characteristics as silica fine particles without producing a pressure-molded body by pressure molding. A method for producing silica fine particles having visible light emission characteristics will be described below.
  • the dried fumed silica is subjected to a heat treatment in the atmosphere at 200 ° C for 2 hours using an electric furnace (super-burn, Motoyama Co., Ltd.), for example.
  • Silica fine particles having visible light emission characteristics according to the present invention can be obtained.
  • FIG. 4 shows the result of measuring the emission spectrum at 200 ° C, which shows the maximum emission intensity, while changing the heat treatment time. According to Fig. 4, it can be understood that light emission having a peak at around 440 nm appears in the heat treatment of 0.5 h, the light emission intensity becomes maximum in the heat treatment of lh, and the light emission intensity decreases in the heat treatment of 2 h or more!
  • the spectrum shown in FIG. 5 shows the change in the infrared spectrum with the heat treatment time.
  • the absorption intensity due to C-H stretching vibration decreased due to the thermal decomposition of the alkyl group
  • the absorption due to the carbo group was observed in the vicinity of 1700 (wave number) cm- 1.
  • excitation wavelength dependence (excitation wavelength: 400 nm or less) of the emission spectrum of a sample of silica heated in the atmosphere at 200 ° C for 2 hours. It can be understood that as the excitation wavelength becomes longer at 350 nm force 375 nm and 400 nm, the emission intensity increases and the emission peak wavelength shifts to around 480 ⁇ m.
  • excitation wavelength dependence (as-prepared is for the unheated sample) (excitation wavelength: 350 nm) of the emission spectrum of the sampled silica heated in nitrogen, vacuum, and atmosphere at 200 ° C for 2 hours.
  • excitation wavelength 350 nm
  • the sample heated in a nitrogen atmosphere has the highest emission intensity.
  • Excitation wavelength dependence of the emission spectrum of a sample heated from 200 ° C for 2 hours in nitrogen, vacuum and air (as-prepared is that of an unheated sample) (excitation wavelength: 400 nm) ing. Even when the excitation wavelength is 400 nm, the sample heated in a nitrogen atmosphere has the highest emission intensity. In addition, it can be understood that the emission intensity of the sample heated in the atmosphere is as high as that of the sample heated in the nitrogen atmosphere as compared with the case where the excitation wavelength is 350 nm.
  • excitation wavelength dependence (excitation wavelength: 400 nm or more) of the emission spectrum of a sample heated at 200 ° C for 2 hours in atmospheric air. From Fig. 10, it is understood that when the excitation wavelength is 400 nm or more, the emission wavelength dependence of the emission spectrum is not so noticeable, and the peak wavelength of the emission spectrum is slightly shifted to around 500 nm. it can.
  • Fig. 11 shows the results of time-resolved luminescence measurement of the luminescence observed from the sample heat-treated in the atmosphere.
  • the pulsed neodymium laser is excited at 355 nm
  • the third harmonic is excited at 355 nm
  • the third harmonic is excited at 355 nm
  • the third harmonic is excited at 355 nm
  • the third harmonic is excited at 355 nm
  • the third harmonic is 0, 25, 50, 75 ns
  • the gate width is all 20 ns.
  • the luminescence lifetime of this sample is shorter than the time resolution of this device, so it is difficult to accurately measure the lifetime.
  • the luminescence lifetime is expected to decay several ns to 10 ns.
  • the spectrum shown in Fig. 12 shows a spectrum with a delay time of 0ns and a spectrum with 50ns multiplied by 20 times. It can be understood that light emission on the short wavelength side is shorter than light emission on the long wavelength side because light emission intensity on the short wavelength side is reduced with light emission with a delay time of 50 ns compared to light emission with 0 ns. This also indicates that there are two luminescent components in the sample heat-treated in the atmosphere.
  • Example 5 the silica fine particles were surface-modified with a hydrocarbon group, and then the surface-modified silica fine particles were added for a predetermined time in a nitrogen atmosphere at a temperature range of 150 to 300 ° C. It will be explained that the emission peak wavelength can be controlled by heat treatment and then heat treatment in an air atmosphere for a predetermined time.
  • a is sintered for 2 hours in a nitrogen atmosphere
  • b is a sample of a sintered in the air for 1 hour
  • c is a sample of a sintered in the air for 1.5 hours.
  • the result, d was the sample of a sintered for 2 hours in the atmosphere, and d was sintered for 2 hours in the atmosphere.
  • the sintering temperature condition is 200 ° C.
  • the emission peak intensity of sample a and sample b is observed around 60 nm, whereas the emission peak intensity of sample c is observed around 70 nm, the emission intensity of sample d is observed around 80 nm, and the emission intensity of sample e is around 80 nm.
  • a is a sample sintered for 2 hours at 200 ° C in a nitrogen atmosphere
  • b is a sample sintered for 2 hours at 200 ° C in an air atmosphere.
  • sample a has a light emission intensity of about 50 ns for a light emission intensity of 1% or less, while sample b has a light emission intensity of about 30 ns for a light emission intensity of 1% or less.
  • the sample a sintered in the nitrogen atmosphere has a slightly longer decay time constant than the sample sintered in the air atmosphere.
  • Example 6 (a) surface modification in which silica fine particles are surface-modified with tetrasalt silicate (SiCl 3)
  • Figure 15 shows a sample of a fumed silica whose surface is modified with tetrasalt silicate (SiCl).
  • FIG. 15 shows an excitation wavelength of 340 nm.
  • Fig. 15 shows a sample in which the surface of fumed silica is surface-modified with tetra-salt silicate (SiCl).
  • the silica fine particles and the silica molding material having visible light emission characteristics according to the present invention are produced by a simple process by surface-modifying silica fine particles and pressurizing and heating, and visible light. Therefore, it can be used as a light emitting material such as a white light emitting element.
  • the ultraviolet LED element (wavelength is 405 nm), which is the result of the “21st Century Akari” project, can be used as the light source. There is a possibility that it can be widely used in industrial products.
  • FIG. 1 The surface of the silica fine particles shows the generated Si-C bond.
  • FIG. 3 Shows emission spectra measured after heat-treating samples with different carbon numbers at 200 ° C.
  • FIG. 4 Shows the results of measuring the emission spectrum at 200 ° C, showing the maximum emission intensity, with different heat treatment times.
  • FIG. 5 Shows change in infrared spectrum with heat treatment time.
  • FIG. 9 Shows changes in infrared spectra when heat treatment was performed at 200 ° C for 2 hours in each atmosphere.
  • FIG. 11 Shows the results of time-resolved luminescence measurements of luminescence observed from samples heat-treated in air.
  • FIG. 12 The time-resolved luminescence measurement results in Fig. 11 show the spectrum with a delay time of 0ns and a spectrum with 50ns multiplied by 20 times.
  • FIG. 13 Emission spectrum (excitation wavelength 400nm) of OTS-modified fumed silica sintered in different sintering atmospheres.
  • a is sintered at 200 ° C in a nitrogen atmosphere
  • b is a sample of a in the atmosphere for 1 hour
  • c is a sample of a in the atmosphere for 1.5 hours
  • d is of a The sample was sintered in air for 2 hours
  • d was sintered in air for 2 hours.
  • FIG. 14 shows the time decay process of emission intensity of OTS-modified fumed silica (excitation wavelength 400 nm, measurement wavelength 470 nm, measurement temperature 300 K).
  • a is a sample sintered for 2 hours at 200 ° C in a nitrogen atmosphere
  • b is a sample sintered for 2 hours at 200 ° C in an air atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

Disclosed is a visible light-emitting material which emits light in a wide wavelength range in the visible region using an ultraviolet LED device having an emission wavelength of 400 nm as the excitation light source. Specifically disclosed is a silica particle having visible light-emitting characteristics which is produced by a process comprising at least the following two steps: (a) a surface modification step for surface modifying a silica particle with a hydrocarbon group; and (b) a heat treatment step for heat treating the surface-modified silica particle for a certain time at 150-300˚C. The surface of a silica particle such as fumed silica is modified with a hydrocarbon group by utilizing the high reactivity of an -SiCl3 bond at the end of an alkylchlorosilane (CnH2n-1SiCl3) with a hydroxyl group.

Description

シリカ微粒子の表面修飾を利用した可視発光材料およびその製造方法 技術分野  Visible light emitting material using surface modification of silica fine particles and method for producing the same
[0001] 本発明は、シリカ微粒子による可視発光材料およびその製造方法に関し、更に詳 細には、シリカ微粒子の表面修飾を行い、熱処理を加えることにより、シリカ微粒子を 改質し、可視光の波長域でブロードな発光特性を持つ発光素子材料の製造に関す る技術である。  [0001] The present invention relates to a visible light-emitting material using silica fine particles and a method for producing the same, and more specifically, the silica fine particles are modified by subjecting the silica fine particles to surface modification and heat treatment, and the wavelength of visible light. This technology is related to the manufacture of light emitting device materials with broad emission characteristics.
背景技術  Background art
[0002] 新エネルギー産業技術総合開発機構 (NEDO) のプロジェクトで、「高効率電光変 換ィ匕合物半導体開発 (通称: 21世紀のあ力り)」プロジェクトがあり、蛍光灯の 2倍程 度のエネルギー消費効率を持つ発光ダイオード (LED)を用いた照明用光源を実用 化する技術的課題の解決を目指し、電気光変換効率の高!ヽ LED用化合物半導体 の開発及びそれを照明用光源として利用するために必要な技術開発を行ってきた。  [0002] New Energy Industrial Technology Development Organization (NEDO) project, “High-efficiency electro-optic conversion composite compound development (common name: strength of the 21st century)” project, about twice that of fluorescent lamps Development of a compound semiconductor for LED and its application as a light source for illumination, aiming to solve the technical problem of putting a light source (LED) with high energy consumption efficiency into practical use! We have been developing the technology necessary for use as
[0003] 産業界では、その成果である紫外 LED素子 (外部量子効率が 43%と極めて高 、 紫外光を発する GaN系 LED、発光波長は 405nm)を光源に使い、白色 LEDの発 光材料として活用が求められて 、る。  [0003] In the industrial world, the resulting UV LED element (external quantum efficiency of 43% is extremely high, GaN-based LED emitting ultraviolet light, emission wavelength is 405nm) is used as a light source for white LED. Utilization is required.
[0004] 現在、白色 LEDは、青色 LEDと希土類元素を用いた蛍光体で実現するものが主 流である力 520nm波長付近の緑色がうまく出せないといった問題があった。例え ば、 InGaN系の青色 LEDと YAG蛍光体を塗布した蛍光体で構成された白色 LED は、蛍光体のスペクトル強度の弱い緑色の演色性が良くないことがデメリットとされて いる。  [0004] Currently, white LEDs have a problem in that green light with a wavelength of around 520 nm, which is mainly achieved by phosphors using blue LEDs and rare earth elements, cannot be produced well. For example, a white LED composed of an InGaN-based blue LED and a phosphor coated with a YAG phosphor is said to have the disadvantage of poor green color rendering with a low spectral intensity of the phosphor.
[0005] また、この InGaN系の青色 LEDの蛍光体では、波長 400nmより長波長側では励 起スペクトル強度が減少するため、様々な蛍光体の提案がなされている(例えば、特 許文献 1)。上述の如ぐ産業界では今後、発光波長 405nmの紫外 LED素子を励 起光源として活用する動きであり、 405nmの励起波長で、可視光でブロードな蛍光 スペクトルを持つ新し 、蛍光材料が求められて 、る。  [0005] In addition, in this InGaN-based blue LED phosphor, since the excitation spectrum intensity decreases at wavelengths longer than 400 nm, various phosphors have been proposed (for example, Patent Document 1). . In the industry as described above, there is a movement to use an ultraviolet LED element having an emission wavelength of 405 nm as an excitation light source, and a new fluorescent material having a broad fluorescence spectrum with visible light at an excitation wavelength of 405 nm is required. And
[0006] 一方、従来から、アルキルクロロシラン(C H SiCl )の末端の、 -SiCl結合は水酸 基と非常に反応しやすいことが知られており、その高い反応性を利用して、シリカ表 面を炭化水素基で表面修飾する研究が数多くなされている (例えば、非特許文献 1) [0006] On the other hand, the -SiCl bond at the terminal of alkylchlorosilane (CH 3 SiCl) has conventionally been a hydroxyl group. It is known that it is very easy to react with a group, and many studies have been made on surface modification of a silica surface with a hydrocarbon group using its high reactivity (for example, Non-Patent Document 1)
[0007] また、炭化ケィ素(SiC)はバンドギャップが広く、熱伝導率が大き!/、など優れた半導 体特性を示すことでよく知られており、近年、半導体としてだけではなく発光材料とし て注目されている。数多くの研究が行われている中で、シリカガラス薄膜にケィ素と炭 素をイオン注入するとシリカガラスネットワーク中に SiC由来の欠陥構造が誘起され、 それにより強い発光が生じることが知られており、例えば、 SiOに C+や Si+をイオン注 [0007] In addition, silicon carbide (SiC) is well known for its excellent semiconductor properties such as wide band gap and high thermal conductivity! It is attracting attention as a material. While many studies have been conducted, it is known that ion implantation of silicon and carbon into a silica glass thin film induces a SiC-derived defect structure in the silica glass network, which causes strong light emission. For example, ion implantation of C + or Si + into SiO
2  2
入やプラズマ CVDで導入し、シリカ中に炭素 ケィ素結合体を形成させ、可視発光 材料の作製に成功して ヽる例がある(非特許文献 2)。  There is an example in which a visible light emitting material has been successfully produced by introducing a carbon-carbide bond in silica by introducing it or by plasma CVD (Non-patent Document 2).
し力しながら、このようなイオン注入法は炭化ケィ素 (SiC)由来の発光中心を誘起す るには有用な方法であるが、イオン注入に際しては、ケィ素や炭素をイオンィ匕するた めの特別な真空設備が必要となるといつた問題がある。  However, such an ion implantation method is useful for inducing the emission center derived from silicon carbide (SiC). However, in the ion implantation, the ion and carbon are ionized. When there is a need for special vacuum equipment, there is a problem.
[0008] また、ゾルゲル法によりシリカガラスを作製する過程で、カルボン酸などの有機化合 物を添加して、熱処理を施すことで、白色発光体を得る技術が報告されている(特許 文献 2,非特許文献 3)。 [0008] In addition, in the process of producing silica glass by the sol-gel method, a technique for obtaining a white light emitter by adding an organic compound such as carboxylic acid and performing heat treatment has been reported (Patent Document 2,). Non-patent document 3).
[0009] 特許文献 1 :特開 2001— 214162号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2001-214162
特許文献 2 :WO 98/59015  Patent Document 2: WO 98/59015
非特許文献 1 : R. Wang and S. L. Wunder, Langmuir 16 (2000) 5008  Non-Patent Document 1: R. Wang and S. L. Wunder, Langmuir 16 (2000) 5008
非特許文献 2 : R. Perez-Rodriguez et al, J. Appl. Phys. 94, 254 (2003), S.Y. Seo et al. Appl Phys. Lett. 84, 717 (2004))  Non-Patent Document 2: R. Perez-Rodriguez et al, J. Appl. Phys. 94, 254 (2003), S.Y. Seo et al. Appl Phys. Lett. 84, 717 (2004))
非特許文献 3 : W. H. Green et al., Science 276, 1826 (1997))  (Non-Patent Document 3: W. H. Green et al., Science 276, 1826 (1997))
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明が解決しょうとする課題は、フォトルミネッセンス (PL)により白色発光を可能 とする次世代の光デバイスの発光素子を提供することである。すなわち、 LEDの特徴 である発光スペクトルの半値幅が狭く単色性が高いものとは異なり、可視光の波長域 において発光スペクトルの半値幅が広ぐブロードな発光特性を有する素子を開発 することである。 The problem to be solved by the present invention is to provide a light-emitting element of a next-generation optical device that can emit white light by photoluminescence (PL). In other words, unlike the LED, which has a narrow emission spectrum half-width and high monochromaticity, we developed a device with broad emission characteristics that has a broad emission spectrum half-width in the visible wavelength range. It is to be.
[0011] また、 InGaN系の青色 LEDと YAG蛍光体を塗布した蛍光体で構成された白色 LE Dにお ヽて、蛍光体のスペクトル強度の弱!ヽ緑色の演色性を改善する発光材料を提 供することを目的とする。同時に、励起光としては、上述の「21世紀のあかり」プロジェ タトの成果である、発光波長 405nmの紫外 LED素子を励起光源として用いることが 可能な発光材料を提供することを目的とする。  [0011] In addition, a white LED composed of an InGaN-based blue LED and a phosphor coated with a YAG phosphor has a low spectral intensity of the phosphor! A luminescent material that improves green color rendering The purpose is to provide. At the same time, the purpose of the present invention is to provide a luminescent material that can be used as an excitation light source as an excitation light source, which is the result of the above-mentioned “21st Century Light” project, which is an ultraviolet LED element having an emission wavelength of 405 nm.
[0012] さらに、イオンィ匕するための特別な真空設備が必要となるイオン注入法以外の、より 簡便な方法によって、炭化ケィ素 (SiC)由来の発光材料を作製することを目的とする 課題を解決するための手段  [0012] Further, there is a problem that a light emitting material derived from silicon carbide (SiC) is produced by a simpler method other than an ion implantation method that requires special vacuum equipment for ionization. Means to solve
[0013] 本発明者らは、シリカガラスの非晶構造における欠陥生成過程について鋭意研究 を続けた結果、シリカ微粒子に半導性又は導電性を有する無機物質の粒子を混合し て加圧成形および焼成工程を行うことにより、可視発光特性を有するシリカガラス発 光材料を得られることを先の研究で知見して 、る。 [0013] As a result of intensive research on the defect generation process in the amorphous structure of silica glass, the present inventors have mixed silica particles with inorganic particles having semiconductivity or conductivity to perform pressure molding and It has been found in previous research that a silica glass light-emitting material having visible light emission characteristics can be obtained by performing the firing step.
さらに研究を進め、上述の従来のアルキルクロロシラン(C H SiCl  Further research has been conducted, and the above-mentioned conventional alkylchlorosilane (C H SiCl
n 2n-l 3 )の末端の- SiC n 2n-l 3) -SiC
1 1
3結合が水酸基と高い反応性があることを利用して、シリカ微粒子表面を炭化水素基 で表面修飾し、適当な条件で熱処理することで、可視域の幅広い波長域で発光する 可視発光材料を作製可能であることを見出し、本発明を完成したものである。  By utilizing the high reactivity of 3 bonds with hydroxyl groups, the surface of silica fine particles is modified with hydrocarbon groups and heat-treated under appropriate conditions to produce visible light emitting materials that emit light in a wide wavelength range. The present invention has been completed by finding that it can be produced.
[0014] 本発明では、より簡便な炭化ケィ素 (SiC)由来の発光材料を作製する方法として、 シリカ微粒子とアルキルクロロシランとの加水分解、脱水縮合反応に着目した。シリカ 微粒子とアルキルクロロシランを反応させるとアルキルクロロシランがシリカ微粒子の 表面の OH基とその周りに存在する吸着水によって加水分解され、シリカ微粒子の表 面に吸着する。 [0014] In the present invention, as a simpler method for producing a light emitting material derived from silicon carbide (SiC), attention was paid to hydrolysis and dehydration condensation reaction between silica fine particles and alkylchlorosilane. When silica fine particles react with alkylchlorosilane, the alkylchlorosilane is hydrolyzed by the OH groups on the surface of the silica fine particles and the adsorbed water present around them, and adsorbed on the surface of the silica fine particles.
[0015] 図 1の構造式に示す如ぐシリカ微粒子の表面には Si-C結合が存在した試料が生 成される。なお、この反応は吸着したアルキル基が配列して自己組織ィ匕膜を形成す ること力 これまでに数多く研究がなされて!/、る。  [0015] A sample in which Si-C bonds exist on the surface of the silica fine particle as shown in the structural formula of Fig. 1 is generated. In this reaction, the ability of the adsorbed alkyl groups to form a self-assembled film has been studied a lot! /
[0016] 本発明は、このシリカ微粒子の表面に Si-C結合が存在した試料を熱処理することで 、シリカ微粒子表面に SiC由来の構造を誘起させることに成功したものである。 この試料からの発光が熱処理温度、熱処理雰囲気、シリカ微粒子の表面を修飾さ せるアルキル基の長さにどのように依存するのかにつ 、ては、後述する。 [0016] The present invention succeeds in inducing a SiC-derived structure on the surface of the silica fine particle by heat-treating the sample in which the Si-C bond is present on the surface of the silica fine particle. How the light emission from this sample depends on the heat treatment temperature, the heat treatment atmosphere, and the length of the alkyl group that modifies the surface of the silica fine particles will be described later.
[0017] 本発明に係る可視発光特性を有するシリカ微粒子は、 (a)シリカ微粒子を炭化水素 基で表面修飾する表面修飾工程と、 (b)表面修飾後のシリカ微粒子を 150〜300°C の温度範囲で所定時間熱処理する熱処理工程により作製する。ここで、熱処理を施 すのは、炭化水素基の熱分解の過程で、シリカ微粒子に SiC/C複合体を形成させ、 それをシリカ微粒子の可視発光中心にさせるためである。  [0017] The silica fine particles having visible light emission characteristics according to the present invention include: (a) a surface modification step of surface-modifying silica fine particles with a hydrocarbon group; and (b) silica fine particles after surface modification at 150 to 300 ° C. It is manufactured by a heat treatment process in which heat treatment is performed for a predetermined time in a temperature range. Here, the heat treatment is performed in order to form a SiC / C complex in the silica fine particles during the thermal decomposition of the hydrocarbon group, and to make it a visible light emission center of the silica fine particles.
[0018] また、本発明に係る可視発光特性を有するシリカ微粒子を加圧成形体とすることが でき、(a)シリカ微粒子を炭化水素基で表面修飾する表面修飾工程と、(b)表面修飾 後のシリカ微粒子を加圧成形して加圧成形体を形成する加圧工程と、 (c)該加圧成 形体を 150〜300°Cの温度範囲で所定時間熱処理する熱処理工程により作製する  [0018] In addition, the silica fine particles having visible light emission characteristics according to the present invention can be formed into a pressure-molded product, and (a) a surface modification step of surface-modifying the silica fine particles with a hydrocarbon group; and (b) surface modification. A pressing step for forming a pressure-molded body by pressure-molding the subsequent silica fine particles, and (c) a heat treatment step in which the pressure-formed body is heat-treated in a temperature range of 150 to 300 ° C. for a predetermined time.
[0019] また、上述の作製方法におけるシリカ微粒子を炭化水素基で表面修飾する場合に お!、て、アルキルクロロシラン(C H SiCl ) (nは 4以上の整数)を用いて、シリカ微粒 [0019] Further, when the surface of the silica fine particles in the above-described production method is modified with a hydrocarbon group! , Alkylchlorosilane (C H SiCl) (n is an integer of 4 or more), silica fine particles
n 2n-l 3  n 2n-l 3
子表面に炭化水素基を修飾することにより作製する。これは、アルキルクロロシラン( It is produced by modifying the hydrocarbon surface on the child surface. This is an alkylchlorosilane (
C H SiCl )の末端の- SiCl結合が水酸基と非常に反応しやすいことを利用して、シ n 2n-l 3 3 By utilizing the fact that the -SiCl bond at the end of C H SiCl) is very reactive with the hydroxyl group,
リカ微粒子表面を炭化水素基で表面修飾するものである。  The surface of the Lica fine particles is modified with a hydrocarbon group.
[0020] また、上述の作製方法におけるシリカ微粒子或いは加圧成形体の熱処理工程にお いて、窒素雰囲気中若しくは空気雰囲気中で加熱処理することで、発光強度を高め ることができる。窒素雰囲気中にしたのは、酸素を除外するためであり、酸素を除外 することで発光強度を向上させることができる。なお、窒素雰囲気以外に、アルゴン等 の不活性ガス雰囲気中でもよい。また、真空中でも可能であるが、後述するように、真 空中の場合は発光強度が向上されな 、と 、つた結果が得られて 、る。  [0020] In addition, in the heat treatment step of the silica fine particles or the pressure-formed body in the above-described production method, the light emission intensity can be increased by heat treatment in a nitrogen atmosphere or an air atmosphere. The nitrogen atmosphere is used to exclude oxygen, and the emission intensity can be improved by excluding oxygen. In addition to the nitrogen atmosphere, an inert gas atmosphere such as argon may be used. In addition, although it is possible even in a vacuum, as will be described later, in the case of the vacuum, the emission intensity is not improved, and the following results are obtained.
[0021] また、上述の作製方法におけるシリカ微粒子或いは加圧成形体の熱処理工程にお いて、窒素雰囲気中で所定時間加熱処理し、その後、空気雰囲気中で所定時間加 熱処理することで、発光ピーク波長を制御することができる。窒素雰囲気中のみで焼 結した試料と比較して、窒素雰囲気中で焼結した後に空気雰囲気中で再焼結した試 料は、空気雰囲気中で再焼結する時間の増加に伴って、発光ピーク波長が長波長 側にシフトするのである。 [0021] Further, in the heat treatment step of the silica fine particles or the pressure-molded body in the above-described production method, heat treatment is performed for a predetermined time in a nitrogen atmosphere, and then heat treatment is performed for a predetermined time in an air atmosphere. The wavelength can be controlled. Compared to a sample sintered only in a nitrogen atmosphere, a sample sintered in a nitrogen atmosphere and then re-sintered in an air atmosphere emits light as the time for re-sintering in the air atmosphere increases. Long peak wavelength Shift to the side.
[0022] また、別の観点から、本発明に係る可視発光特性を有するシリカ微粒子は、  [0022] From another viewpoint, the silica fine particles having visible light emission characteristics according to the present invention are:
(a)シリカ微粒子を四塩ィ匕ケィ素(SiCl )で表面修飾する表面修飾工程と、(b)表面  (a) a surface modification step for surface modification of silica fine particles with tetra-salt silicate (SiCl), and (b) surface
4  Four
修飾後のシリカ微粒子を 150〜300°Cの温度範囲で所定時間熱処理する熱処理ェ 程とにより作製する。  The modified silica fine particles are prepared by a heat treatment process in which heat treatment is performed for a predetermined time in a temperature range of 150 to 300 ° C.
[0023] また、上述の製造方法により得られるシリカ微粒子を含有する榭脂化材料及びシリ 力成形材料を蛍光体として、新規な発光素子を提供することができる。工業的に榭脂 化材料とする方が、製品化が容易なためである。  [0023] In addition, a novel light-emitting element can be provided by using the saccharification material and silica molding material containing silica fine particles obtained by the above-described production method as a phosphor. This is because it is easier to commercialize the glyceride material industrially.
[0024] また、本発明に係る可視発光特性を有するシリカ微粒子は、シリカ微粒子を核とし て、その核の表面に Si-C-0系発光体を備えるものであり、これにより新規な発光材料 を提供するものである。 [0024] Further, the silica fine particles having visible light emission characteristics according to the present invention have a silica fine particle as a nucleus and a Si-C-0-based light emitter on the surface of the nucleus, whereby a novel light emitting material is obtained. Is to provide.
[0025] ここで、本発明に係る製造方法に用いるシリカ微粒子は、人工のアモルファス (非晶 質)の二酸化ケイ素で、微粒子の粒径が数 ηπ!〜 10数 nmという高純度の超微粒子 であるフュームドシリカ(fumed silica)を用いて!/、る。これは、フュームドシリカの表 面活性能に着目したものである。  Here, the silica fine particles used in the production method according to the present invention are artificial amorphous (non-crystalline) silicon dioxide, and the particle diameter of the fine particles is several ηπ! Use fumed silica, a high-purity ultrafine particle of ~ 10 nm! This focuses on the surface activity of fumed silica.
また、フュームドシリカを用いて、シリカ微粒子のサイズを極小化することにより、単 位表面積当りの OH基を増加させて発光効率を向上させるのである。フュームドシリ 力の粒径は、 1〜: LOOnmとするが、粒径は細カゝいほうが望ましい。  In addition, fumed silica is used to minimize the size of the silica particles, thereby increasing the OH groups per unit surface area and improving the luminous efficiency. The particle size of the fumed silica force is 1 to: LOOnm, but it is desirable that the particle size be narrow.
発明の効果  The invention's effect
[0026] 本発明に係るシリカ微粒子或いはシリカ成形体は、励起光波長を 300〜400nmと して、可視光の波長域において発光スペクトルがブロードな発光を行うという効果を 有する。  [0026] The silica fine particles or the silica molded body according to the present invention has an effect of emitting light with a broad emission spectrum in the visible light wavelength range with an excitation light wavelength of 300 to 400 nm.
[0027] また、「21世紀のあかり」プロジェクトの成果である紫外 LED素子(波長は 405nm) を光源に使い、白色 LEDの発光材料として活用が期待できる効果がある。特に、 In GaN系の青色 LEDと YAG蛍光体を塗布した蛍光体で構成された白色 LEDにお ヽ て、蛍光体のスペクトル強度の弱!、緑色の演色性を改善する蛍光体としての発光素 子として利用できる可能性がある。  [0027] In addition, an ultraviolet LED element (wavelength: 405 nm), which is the result of the “21st Century Light” project, is used as a light source, and it can be expected to be used as a light emitting material for white LEDs. In particular, a white LED composed of an In GaN blue LED and a phosphor coated with a YAG phosphor has a low spectral intensity of the phosphor, and a luminescent element as a phosphor that improves green color rendering. May be used as a child.
[0028] さらに、本発明に係るシリカ微粒子を榭脂化することで、白色 LEDなどの蛍光素子 として実用化できる可能性が高!、。 [0028] Furthermore, a phosphor element such as a white LED is obtained by saccharifying the silica fine particles according to the present invention. It is highly possible to put it into practical use!
[0029] なお、低 、加熱温度、短 、加熱時間で発光素子の製造が可能であるため、簡易か つ安価な製造設備により製造でき、コストの安価な発光素子の製造が可能である。 発明を実施するための最良の形態 [0029] Note that since the light-emitting element can be manufactured with low heating temperature, short heating time, it is possible to manufacture the light-emitting element at low cost by using a simple and inexpensive manufacturing facility. BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明を実施するための最良の形態を図面に基づいて説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0031] 本発明に係るシリカ微粒子は、(a)シリカ微粒子を炭化水素基で表面修飾する表面 修飾工程と、 (b)表面修飾後のシリカ微粒子を 150〜300°Cの温度範囲で所定時間 熱処理する熱処理工程により作製する力 この作製方法の一実施例について以下 に詳細に説明する。  [0031] The silica fine particles according to the present invention include (a) a surface modification step of surface-modifying silica fine particles with a hydrocarbon group, and (b) silica fine particles after surface modification at a temperature range of 150 to 300 ° C for a predetermined time. The force produced by the heat treatment step for heat treatment One embodiment of this production method will be described in detail below.
[0032] シリカガラスを製造するために使用するシリカ微粒子は、例えばフュームドシリカを 使用する。フュームドシリカとは、 Hと Oとの混合ガスを燃焼させた 1100〜1400°C  [0032] For example, fumed silica is used as the silica fine particles used for producing the silica glass. Fumed silica is a 1100-1400 ° C burned gas mixture of H and O
2 2  twenty two
の炎で四塩ィ匕ケィ素(SiCl )ガスを酸化、加水分解させることにより作製される、一次  It is produced by oxidizing and hydrolyzing tetra-salt key gas (SiCl 3) gas in the flame of
4  Four
粒子の平均粒径が lOnm程度の非晶質の二酸ィ匕ケィ素(SiO )を主成分とする球状  Spherical particles mainly composed of amorphous diacid silicate (SiO 2) whose average particle size is about lOnm
2  2
の超微粒子のことである。フュームドシリカは、超微粒子であるとともに、急冷によって 作製されるため、化学的に活性の高い表面構造を有している。  It is an ultrafine particle. Fumed silica is an ultrafine particle and has a chemically active surface structure because it is produced by rapid cooling.
[0033] ここで、シリカガラスの製作に使用するシリカ微粒子には、フュームドシリカを使用す る。 [0033] Here, fumed silica is used as the silica fine particles used in the production of silica glass.
ここで、実際に使用したフュームドシリカは、以下の通りである。  Here, the fumed silica actually used is as follows.
•製造メーカー: Sigma, St. Louis, Missouri, USA  • Manufacturer: Sigma, St. Louis, Missouri, USA
•型番: S 5130  • Model number: S 5130
•粒径: 7nm  • Particle size: 7nm
なお、標準的なフュームドシリカの不純物の分析値を以下に示しておく。 •A1 0 0.001%以下, Fe 0 0.0001%以下, ΉΟ 0.001%以下  The analytical values of standard fumed silica impurities are shown below. • A1 0 0.001% or less, Fe 0 0.0001% or less, ΉΟ 0.001% or less
2 3 2 3 2  2 3 2 3 2
[0034] 次に、シリカ微粒子を炭化水素基で表面修飾する表面修飾工程について説明する 本実施例では、フュームドシリカに対し、アルキル基がすべて直鎖である炭素数が 1〜18のアルキルクロロシラン(C H SiCl )を、溶媒にペンタンを用いて Ar雰囲気 で反応させている。その後、遠心分離機にかけ未反応のアルキルクロロシランを取り 除き、室温で乾燥させて試料を作製している。また、このようにして作製した試料をべ レット状に形成し、空気中又は窒素中で 150〜300°Cの温度範囲で所定の時間、熱 処理を行!、試料を作製する。 [0034] Next, a surface modification step for modifying the surface of silica fine particles with a hydrocarbon group will be described. In this example, an alkylchlorosilane having 1 to 18 carbon atoms in which all alkyl groups are linear with respect to fumed silica. (CH SiCl) using pentane as the solvent and Ar atmosphere It is made to react with. After that, the sample is prepared by centrifuging to remove unreacted alkylchlorosilane and drying at room temperature. In addition, the sample thus prepared is formed into a pellet shape, and is subjected to heat treatment for a predetermined time in a temperature range of 150 to 300 ° C. in air or nitrogen to prepare a sample.
[0035] 実施例に示すデータでは、アルキルクロロシラン(C H SiCl )として、 n=l,3,8,18を n 2n- 1 3 [0035] In the data shown in the examples, n = l, 3,8,18 is represented by n 2n-1 3 as alkylchlorosilane (C 3 H 3 SiCl).
用いている。以下説明の便宜のため、 n=18 (Octadecy Trichloro Silane,以下、「OT Used. For convenience of explanation, n = 18 (Octadecy Trichloro Silane, `` OT
S」と略する。)のものを例にして、試料の作製方法を詳細に説明する。 Abbreviated as “S”. ) Will be described in detail as an example.
[0036] (試料の作製方法) [0036] (Sample preparation method)
フュームドシリカ(2g)と撹拌子をナスフラスコに入れ、グローブボックス内で三方コッ クの栓をすることによりアルゴン (Ar)雰囲気にする。次に、グローブボックスからフラ スコを取り出し、三方コックの一方力も Arを流し、撹拌しながらもう一方力もシリンジを 用いてペンタン (50ml)、 OTS(0.5ml)を入れる。三方コックの片方を閉じ、もう片方には 塩ィ匕水素が発生するためゴム風船を取りつけ一日放置する。その後、溶媒のペンタ ンを除くため、栓をはずし室温で乾燥させる。  Put fumed silica (2g) and a stir bar in an eggplant flask and put a three-way cock in the glove box to create an argon (Ar) atmosphere. Next, take out the flask from the glove box, pour Ar with the force of one side of the three-way cock, and add pentane (50 ml) and OTS (0.5 ml) with the other force using the syringe while stirring. Close one side of the three-way cock, and since salty hydrogen is generated on the other side, attach a rubber balloon and leave it for a day. Then remove the stopper and remove at room temperature to remove the pentane solvent.
[0037] 次に、作製した試料を 0. 3g秤量し、高圧成形機 (300kN NTウェーブ N3036- ΟΟ,ΝΡ aシステム (株》を用いて、 176MPaの圧力で直径 19mmのペレットを作製する。 [0037] Next, 0.3 g of the prepared sample is weighed, and a pellet having a diameter of 19 mm is produced at a pressure of 176 MPa using a high-pressure molding machine (300 kN NT wave N3036- ΟΟ, ΝΡa system).
この成形したペレットを電気炉 (super-burn, (株)モトャマ)を用いて、大気中で、 150 The molded pellets were 150% in the atmosphere using an electric furnace (super-burn, Motoyama Co., Ltd.).
〜300°Cの温度範囲で所定の時間、熱処理を行うことで、本発明に係る可視発光特 性を有するシリカ成形材料を得ることができるのである。ここでは、所定の時間を 2時 間として試料を作製して 、る。 By performing the heat treatment in a temperature range of ˜300 ° C. for a predetermined time, the silica molding material having visible light emission characteristics according to the present invention can be obtained. Here, a sample is prepared for a predetermined time of 2 hours.
なお、温度と時間には相関関係があり、温度が高ければ短い加熱時間が、温度が 低ければ長い加熱時間が作製に必要とされる。  Note that there is a correlation between temperature and time. If the temperature is high, a short heating time is required. If the temperature is low, a long heating time is required.
[0038] 図 2に、得られたシリカ成形材料について、大気中の熱処理温度による発光スぺク トル変化を示す。ここで、発光スペクトルの測定は、蛍光分光光度計(75wキセノンフ ラッシュランプを光源)を用いて 、る。 [0038] Fig. 2 shows changes in the emission spectrum of the obtained silica molding material depending on the heat treatment temperature in the atmosphere. Here, the emission spectrum is measured using a fluorescence spectrophotometer (a 75 w xenon flash lamp as a light source).
[0039] 図 2に示されるように,加熱温度 200°Cで発光強度が極大を示すことが理解できる[0039] As shown in FIG. 2, it can be understood that the emission intensity reaches a maximum at a heating temperature of 200 ° C.
。ここで、励起光波長は 400nmを用いている力 本試料は励起波長域 300〜400n mで図 2と同様の発光が確認されている。 [0040] また、非加熱の試料では 430nmより長波長側にブロードな発光が観測され、 150 °Cの加熱でその発光強度は少し増大し、 200°Cの加熱では発光強度の増大に伴!、 、発光のピーク位置がシフトし長波長側にも発光が観測されている。 250°C以上の加 熱では発光のピーク位置に変化はみられず、発光強度は減少して!/、るのが理解でき る。 . Here, the excitation light wavelength is 400 nm. This sample has been confirmed to emit light in the excitation wavelength range of 300 to 400 nm, as in FIG. [0040] In addition, a broad emission of light longer than 430 nm was observed in the non-heated sample, and the emission intensity increased slightly with heating at 150 ° C, and the emission intensity increased with heating at 200 ° C! The emission peak position is shifted, and emission is observed on the longer wavelength side. It can be understood that when the heating temperature is 250 ° C or higher, there is no change in the emission peak position, and the emission intensity decreases!
[0041] (発光スペクトル)  [0041] (Emission spectrum)
次に、フュームドシリカの表面を修飾させるアルキル基の長さの発光への影響につ Next, we will discuss the effect of the length of the alkyl group that modifies the surface of fumed silica on the light emission.
V、て説明する。励起波長は炭化ケィ素では 350〜400nmの励起で発光することが 知られて!/ヽるため、励起波長 400nmで発光測定を行った。 V will explain. The excitation wavelength is known to emit light with excitation of 350 to 400 nm in the case of carbon carbide! / Luminous emission was measured at an excitation wavelength of 400 nm.
[0042] 図 3は、炭素数の異なる各試料を大気中 200°Cで熱処理した後に測定した発光ス ベクトル図である。アルキルクロロシラン(C H SiCl )において、 n=l, 3,8, 18のアルキ n 2n- 1 3 FIG. 3 is a luminescence vector diagram measured after heat-treating each sample having a different carbon number at 200 ° C. in the atmosphere. In alkyl chlorosilane (C H SiCl), n = l, 3,8, 18 alkyl n 2n- 1 3
ルクロロシランにつき、発光スペクトルを測定している力 n=l,3の試料については、非 熱処理,熱処理試料共に顕著な発光は見られなかったのに対し、 n=8,18の試料につ いては、加熱により可視発光が観測できている。なお、 n=l,3では、異なる温度で熱処 理しても明確な発光は観測されていない。このことからこの発光にはある程度の長さ をもったアルキル基が必要であることが理解できる。  For luchlorosilane, the emission spectrum of the sample with n = l, 3 showed no significant luminescence for both the non-heat-treated and heat-treated samples, whereas the sample with n = 8,18 , Visible luminescence can be observed by heating. When n = l, 3, no clear light emission was observed even when heat-treated at different temperatures. From this, it can be understood that an alkyl group having a certain length is necessary for the light emission.
[0043] (発光メカニズム) [0043] (Light emission mechanism)
上記実施例の試料における発光の微視的メカニズムにつ 、て、以下説明を行う。 SiOに C+や Si+をイオン注入やプラズマ CVDで導入することにより、シリカ中に炭素 The microscopic mechanism of light emission in the sample of the above example will be described below. By introducing C + or Si + into SiO by ion implantation or plasma CVD, carbon in silica
2 2
—ケィ素結合体を形成させ、可視発光材料の作製に成功している例があるが、これ ら SiC/C複合体力もの発光スペクトルは、本試料からの発光スペクトルと類似して!/、る ことから,本試料にお!ヽても炭化水素基の熱分解の過程で試料内に SiC/C複合体が 形成され,それが本試料の可視発光中心になっているのではないかと推察できる。  -There are examples of successful formation of visible light emitting materials by forming a key complex, but the emission spectrum of these SiC / C composites is similar to the emission spectrum from this sample! From this, it can be inferred that even in this sample, a SiC / C composite was formed in the sample during the thermal decomposition of the hydrocarbon group, and this was the visible emission center of this sample. .
[0044] また、上述した如ぐ関連する先行技術として、ゾルゲル法によりシリカガラスを作製 する過程で、カルボン酸などの有機化合物を添加して熱処理を施すことにより、白色 発光体を得る技術が報告されているが、この先行技術との差異について説明する。  [0044] Further, as a related prior art as described above, a technique for obtaining a white luminescent material by adding an organic compound such as carboxylic acid and performing heat treatment in the process of producing silica glass by a sol-gel method has been reported. However, the difference from this prior art will be described.
[0045] 先行技術では発光試料作製に際し、酢酸などのカルボン酸の添加が必須条件とし てされている。本発明に係る製造方法は、カルボン酸の添加を必要とせず、炭化水 素基を有したクロロシランの加水分解および熱分解反応を利用している点が大きな 違いだと言える。また、本発明に係る製造方法で得られた試料では、窒素雰囲気下 の加熱 (酸化反応はおきな!ヽ状況)でも発光が得られて!/ヽることから、先行技術とは 異なる発光中心であると考えて 、る。 In the prior art, the addition of a carboxylic acid such as acetic acid is an indispensable condition when preparing a luminescent sample. The production method according to the present invention does not require the addition of carboxylic acid, The main difference is the use of hydrolysis and thermal decomposition reactions of chlorosilanes with basic groups. In addition, the sample obtained by the production method according to the present invention can emit light even when heated in a nitrogen atmosphere (no oxidation reaction is observed!), Which is different from the prior art. I think it is.
実施例 2  Example 2
[0046] また、他の実施例として、上述した実施例 1にお 、て、加圧成形により加圧成形体 を作製せず、シリカ微粒子として可視発光特性を有することも可能である。以下に、 可視発光特性を有するシリカ微粒子の作製方法を説明する。  [0046] As another example, in Example 1 described above, it is possible to produce visible light emission characteristics as silica fine particles without producing a pressure-molded body by pressure molding. A method for producing silica fine particles having visible light emission characteristics will be described below.
[0047] 先ず、実施例 1と同様に、フュームドシリカ(2g)と撹拌子をナスフラスコに入れ、グロ ーブボックス内で三方コックの栓をすることでアルゴン (Ar)雰囲気にする。グローブ ボックス力もフラスコを取り出し、三方コックの一方から Arを流し、撹拌しながらもう一 方からシリンジを用いてペンタン (50ml)、 OTS(0.5ml)を入れる。三方コックの片方を閉 じ、もう片方には塩ィ匕水素が発生するためゴム風船を取りつけ一日放置する。そして 、溶媒のペンタンを除くため、栓をはずし室温で乾燥させる。  [0047] First, in the same manner as in Example 1, fumed silica (2g) and a stirrer are placed in an eggplant flask, and a three-way cock is put in the glove box to make an argon (Ar) atmosphere. Also remove the flask from the glove box force, pour Ar from one side of the three-way cock, and add pentane (50 ml) and OTS (0.5 ml) using a syringe from the other side while stirring. Close one side of the three-way cock, and salty hydrogen will be generated on the other side. Then, to remove the pentane solvent, remove the stopper and dry at room temperature.
[0048] 次に、この乾燥させたフュームドシリカを電気炉 (super-burn, (株)モトャマ)を用いて 、例えば、大気中で 200°Cの温度範囲で 2時間熱処理を行うことで、本発明に係る可 視発光特性を有するシリカ微粒子を得ることができる。  [0048] Next, the dried fumed silica is subjected to a heat treatment in the atmosphere at 200 ° C for 2 hours using an electric furnace (super-burn, Motoyama Co., Ltd.), for example. Silica fine particles having visible light emission characteristics according to the present invention can be obtained.
実施例 3  Example 3
[0049] 上述の実施例では、熱処理の温度、加熱時間及びガス雰囲気には、相関関係があ り、最終的に生成されるシリカ微粒子或いはシリカ成形体の可視発光の強度に影響 することが理解できる。以下、この相関関係について説明する。  [0049] In the above examples, it is understood that there is a correlation between the temperature of the heat treatment, the heating time, and the gas atmosphere, which affects the intensity of visible light emission of the finally produced silica fine particles or silica compact. it can. Hereinafter, this correlation will be described.
なお、以下では、最大の発光強度示した炭素数 18のアルキルシランを表面修飾さ せた試料を用いてデータを示して 、る。  In the following, data is shown using a sample whose surface is modified with an alkylsilane having 18 carbon atoms, which has the maximum emission intensity.
[0050] 図 4に、最大の発光強度を示した 200°Cで熱処理時間を変えて発光スペクトルを測 定した結果を示す。図 4によると、 0.5hの熱処理で 440nm付近にピークをもつ発光が あらわれ、 lhの熱処理では発光強度が最大となり、 2h以上の熱処理では発光強度が 減少して!/ヽることが理解できる。  [0050] FIG. 4 shows the result of measuring the emission spectrum at 200 ° C, which shows the maximum emission intensity, while changing the heat treatment time. According to Fig. 4, it can be understood that light emission having a peak at around 440 nm appears in the heat treatment of 0.5 h, the light emission intensity becomes maximum in the heat treatment of lh, and the light emission intensity decreases in the heat treatment of 2 h or more!
また、発光ピーク位置は熱処理時間とともに長波長側へとシフトしていることがわか る。 It is also clear that the emission peak position shifts to the longer wavelength side with the heat treatment time. The
[0051] 図 5に示すスペクトルは、熱処理時間による赤外スペクトル変化を示している。長波 長側の発光が観測された lh以上熱処理した試料ではアルキル基の熱分解により C- H伸縮振動による吸収強度が減少し、 1700(wave number)cm— 1付近にカルボ-ル基 による吸収が確認できる。このことから長波長側の発光は、アルキル基の熱分解,酸 化過程が関連して 、ることが推測できる。 0.5hの熱処理でみられた短波長側の発光 では赤外スペクトルにそう 、つた変化がみられな 、ことから長波長側の発光とは異な りアルキル基の熱分解、酸化過程と関連して!/ヽな ヽ発光と考える。 [0051] The spectrum shown in FIG. 5 shows the change in the infrared spectrum with the heat treatment time. In the sample heat-treated for lh or longer where long wavelength light emission was observed, the absorption intensity due to C-H stretching vibration decreased due to the thermal decomposition of the alkyl group, and the absorption due to the carbo group was observed in the vicinity of 1700 (wave number) cm- 1. I can confirm. From this, it can be inferred that light emission on the long wavelength side is related to the thermal decomposition and oxidation process of the alkyl group. In the short-wavelength side emission observed with the heat treatment of 0.5 h, no change was seen in the infrared spectrum, which is different from the long-wavelength side emission, which is related to the thermal decomposition of the alkyl group and the oxidation process. ! / Think of it as a dull luminescence.
[0052] 図 6は、アルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフュームド n 2n- 1 3  [0052] FIG. 6 shows a fumed n 2n-1 1 3 surface-modified with alkylchlorosilane (C H SiCl) n = 18.
シリカを、大気中で 200°C · 2時間加熱した試料の発光スペクトルの励起波長依存性 (励起波長: 400nm以下)を示している。励起波長が、 350nm力 375nm、そして 400nmと長波長側になるほど、発光強度が高くなり、かつ、発光ピーク波長が 480η m付近にシフトして 、くことが理解できる。  It shows the excitation wavelength dependence (excitation wavelength: 400 nm or less) of the emission spectrum of a sample of silica heated in the atmosphere at 200 ° C for 2 hours. It can be understood that as the excitation wavelength becomes longer at 350 nm force 375 nm and 400 nm, the emission intensity increases and the emission peak wavelength shifts to around 480 ηm.
[0053] また、図 7は、アルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフユ n 2n- 1 3 [0053] FIG. 7 shows fu n 2n-1 1 3 that has been surface-modified with alkylchlorosilane (C 3 H 3 SiCl) n = 18.
ームドシリカを、窒素、真空、大気中で 200°C ' 2時間加熱した試料の発光スペクトル の励起波長依存性 (as-preparedは未加熱試料のもの)(励起波長: 350nm)を示し ている。励起波長が 350nmの場合は、窒素雰囲気中で加熱された試料が最も発光 強度が高くなつて ヽることが理解できる。  This shows the excitation wavelength dependence (as-prepared is for the unheated sample) (excitation wavelength: 350 nm) of the emission spectrum of the sampled silica heated in nitrogen, vacuum, and atmosphere at 200 ° C for 2 hours. When the excitation wavelength is 350 nm, it can be understood that the sample heated in a nitrogen atmosphere has the highest emission intensity.
[0054] 同様に、図 8は、アルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフ n 2n- 1 3 [0054] Similarly, FIG. 8 shows a structure in which n 2n-1 3 3, which has been surface-modified with alkyl chlorosilane (C H SiCl) n = 18.
ユームドシリカを、窒素、真空、大気中で 200°C ' 2時間加熱した試料の発光スぺタト ルの励起波長依存性 (as-preparedは未加熱試料のもの)(励起波長: 400nm)を示 している。励起波長が 400nmの場合も、窒素雰囲気中で加熱された試料が最も発 光強度が高くなつている。また、励起波長が 350nmの場合と比較すると、大気中で 加熱された試料の発光強度が、窒素雰囲気中で加熱された試料と同程度に高くなつ ていることが理解できる。  Excitation wavelength dependence of the emission spectrum of a sample heated from 200 ° C for 2 hours in nitrogen, vacuum and air (as-prepared is that of an unheated sample) (excitation wavelength: 400 nm) ing. Even when the excitation wavelength is 400 nm, the sample heated in a nitrogen atmosphere has the highest emission intensity. In addition, it can be understood that the emission intensity of the sample heated in the atmosphere is as high as that of the sample heated in the nitrogen atmosphere as compared with the case where the excitation wavelength is 350 nm.
[0055] 熱処理を窒素雰囲気下 200°C ' 2時間で行った発光スペクトルを考察すると、窒素 中で熱処理した試料力 の発光は大気中で熱処理したものに比べ短波長側に発光 ピークがあらわれて 、ることが理解できる。 [0056] また、図 9の赤外スペクトルでは大気中の熱処理でみられたアルキル基の赤外吸収 強度の減少、カルボ-ル基による吸収はみられない。このこと力 も上記に示した大 気中で熱処理した試料からの短波長側の発光はアルキル基の熱分解、及び酸化過 程と関連して 、な 、と考える。 [0055] Considering the emission spectrum of the heat treatment performed at 200 ° C for 2 hours in a nitrogen atmosphere, the emission of the sample force that was heat-treated in nitrogen showed a light emission peak on the short wavelength side as compared to the one that was heat-treated in air. I understand that. [0056] In addition, in the infrared spectrum of FIG. 9, there is no decrease in the infrared absorption intensity of the alkyl group observed by heat treatment in the atmosphere, and no absorption by the carbo group. This force is also considered that the light emission on the short wavelength side from the sample heat-treated in the above atmosphere is related to the thermal decomposition of the alkyl group and the oxidation process.
[0057] 図 10は、アルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフューム n 2n- 1 3  [0057] Fig. 10 shows the fume n 2n-1 3 surface-modified with alkylchlorosilane (C H SiCl) n = 18.
ドシリカを、大気中で 200°C · 2時間加熱した試料の発光スペクトルの励起波長依存 性 (励起波長: 400nm以上)を示している。図 10から、励起波長が 400nm以上の場 合、発光スペクトルの励起波長依存性はあまり顕著に見られず、若干、発光スぺタト ルのピーク波長が 500nm付近にシフトしていっていることが理解できる。  This shows the excitation wavelength dependence (excitation wavelength: 400 nm or more) of the emission spectrum of a sample heated at 200 ° C for 2 hours in atmospheric air. From Fig. 10, it is understood that when the excitation wavelength is 400 nm or more, the emission wavelength dependence of the emission spectrum is not so noticeable, and the peak wavelength of the emission spectrum is slightly shifted to around 500 nm. it can.
実施例 4  Example 4
[0058] また、大気中で熱処理した試料から観測された発光について、時間分解発光測定 を行った結果を図 11に示す。ここで、パルスネオジゥムャグレーザーの 3倍波の 355 nmで励起し、遅延時間は 0,25,50,75ns、ゲート幅はすべて 20nsで測定を行って いる。  [0058] Fig. 11 shows the results of time-resolved luminescence measurement of the luminescence observed from the sample heat-treated in the atmosphere. Here, the pulsed neodymium laser is excited at 355 nm, the third harmonic, and the delay time is 0, 25, 50, 75 ns, and the gate width is all 20 ns.
図 11から、遅延時間を遅らせていくと、発光強度は減少し、 75nsで発光はほぼ消 失していることが理解できる。  From Fig. 11, it can be seen that as the delay time is delayed, the light emission intensity decreases and the light emission almost disappears in 75 ns.
本試料の発光寿命は、本装置の時間分解能より短いため、正確な寿命測定は困 難である力 発光寿命はその減衰の様子力も数 ns〜10nsと予測される。  The luminescence lifetime of this sample is shorter than the time resolution of this device, so it is difficult to accurately measure the lifetime. The luminescence lifetime is expected to decay several ns to 10 ns.
[0059] 図 12に示すスペクトルは遅延時間が 0nsのスペクトルと 50nsのスペクトルを 20倍にし たものを示している。遅延時間 50nsの発光では 0nsの発光に比べ、短波長側の発光 強度が減少して 、ることから、短波長側の発光は長波長側の発光寿命より短 、ことが 理解できる。このことからも大気中で熱処理した試料には 2つの発光成分が存在する と言える。 [0059] The spectrum shown in Fig. 12 shows a spectrum with a delay time of 0ns and a spectrum with 50ns multiplied by 20 times. It can be understood that light emission on the short wavelength side is shorter than light emission on the long wavelength side because light emission intensity on the short wavelength side is reduced with light emission with a delay time of 50 ns compared to light emission with 0 ns. This also indicates that there are two luminescent components in the sample heat-treated in the atmosphere.
[0060] 上述の如ぐ作製した試料力 の発光には短波長側と長波長側の 2つの発光成分 が存在し、短波長側の発光は、長波長側の発光寿命は短い。窒素中での熱処理で は短波長側の発光が観測され、また長波長側の発光を示した大気中で熱処理した 試料では赤外吸収測定よりカルボ-ル基が生成して 、ることから、長波長側の発光 はアルキル基の熱分解、及び酸化過程が関連した発光と考えられる。 [0061] なお、本発明に係るシリカ微粒子及びシリカ成形体の発光特性の時間経過に伴う 変化 ·特性劣化については、通常の保管状態で半年以上保管した場合においても、 特性変化 ·劣化は生じな 、ことが確認できて 、る。 [0060] There are two light emission components on the short wavelength side and the long wavelength side in the light emission of the sample force produced as described above, and the light emission on the short wavelength side has a short emission life on the long wavelength side. In the heat treatment in nitrogen, light emission on the short wavelength side was observed, and in the sample heat-treated in the air that showed light emission on the long wavelength side, a carbo group was generated from the infrared absorption measurement. Emission on the long wavelength side is considered to be emission associated with thermal decomposition of the alkyl group and oxidation process. [0061] Regarding the change and deterioration of the light emission characteristics of the silica fine particles and the silica molded product according to the present invention over time, the characteristic change and deterioration do not occur even when stored in a normal storage state for more than half a year. I can confirm that.
実施例 5  Example 5
[0062] 実施例 5では、シリカ微粒子を炭化水素基で表面修飾する表面修飾し、次 、で、表 面修飾後のシリカ微粒子を 150〜300°Cの温度範囲で窒素雰囲気中で所定時間加 熱処理し、その後、空気雰囲気中で所定時間加熱処理することで、発光ピーク波長 を制御することができることを説明する。  [0062] In Example 5, the silica fine particles were surface-modified with a hydrocarbon group, and then the surface-modified silica fine particles were added for a predetermined time in a nitrogen atmosphere at a temperature range of 150 to 300 ° C. It will be explained that the emission peak wavelength can be controlled by heat treatment and then heat treatment in an air atmosphere for a predetermined time.
[0063] 図 13は、アルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフュームド n 2n- 1 3  [0063] FIG. 13 shows fumed n 2n-1 1 3 which has been surface-modified with alkylchlorosilane (C H SiCl) n = 18.
シリカを、窒素雰囲気で焼結したものと、窒素雰囲気で焼結した後に大気雰囲気で 焼結したものとの発光スペクトルの違いを示している。ここで、励起波長としては、 40 Onmとした。励起波長を 400nmで比較したのは、上述した図 6で示されるように、ァ ルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフュームドシリカを、大 n 2n- 1 3  It shows the difference in emission spectrum between silica sintered in a nitrogen atmosphere and one sintered in a nitrogen atmosphere and then sintered in an air atmosphere. Here, the excitation wavelength was 40 Onm. The excitation wavelength was compared at 400 nm, as shown in Fig. 6 above, with fumed silica surface-modified with alkylchlorosilane (C H SiCl) n = 18, a large n 2n-1 3
気中で 200°C · 2時間加熱した試料の発光スペクトルの励起波長依存性を加味したも のである。  This is based on the excitation wavelength dependence of the emission spectrum of a sample heated in air at 200 ° C for 2 hours.
[0064] 図 13中、 aは窒素雰囲気中で 2時間焼結したもの, bは aの試料を大気中で 1時間焼 結したもの, cは aの試料を大気中で 1. 5時間焼結したもの, dは aの試料を大気中で 2 時間焼結したもの, dは大気中で 2時間焼結したものである。なお、焼結温度条件は 、 200°Cとして ヽる。  [0064] In Fig. 13, a is sintered for 2 hours in a nitrogen atmosphere, b is a sample of a sintered in the air for 1 hour, and c is a sample of a sintered in the air for 1.5 hours. The result, d, was the sample of a sintered for 2 hours in the atmosphere, and d was sintered for 2 hours in the atmosphere. The sintering temperature condition is 200 ° C.
試料 aと試料 bの発光ピーク強度力 60nmあたりに観測されるのに対し、試料 cでは 発光ピーク強度力 70nmあたりに観測され、試料 dでは発光ピーク強度力 80nmあ たりに観測され、試料 eでは発光ピーク強度力 70nmあたりに観測されて!ヽる。 これは、窒素雰囲気中のみで焼結した試料と比較して、窒素雰囲気中で焼結した後 に大気雰囲気中で再焼結した試料は、大気雰囲気中で再焼結する時間の増加に伴 つて、発光ピーク波長が長波長側にシフトすることを示している。  The emission peak intensity of sample a and sample b is observed around 60 nm, whereas the emission peak intensity of sample c is observed around 70 nm, the emission intensity of sample d is observed around 80 nm, and the emission intensity of sample e is around 80 nm. Emission peak intensity force Observed around 70nm! Speak. This is because samples that were sintered in a nitrogen atmosphere and then re-sintered in an air atmosphere, compared to samples that were sintered only in a nitrogen atmosphere, increased the time required for re-sintering in the air atmosphere. This shows that the emission peak wavelength shifts to the longer wavelength side.
[0065] また、作製した試料 a〜dの発光ピーク強度は殆ど変化しない(図 13中、縦軸のスケ 一ルは各試料の発光スペクトル強度にのみ意味をなし、 a〜dの試料の発光スぺタト ル強度には意味をなさないものである。 ) o [0066] 以上のことから、アルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフユ n 2n-l 3 [0065] In addition, the emission peak intensities of the prepared samples a to d hardly change (in FIG. 13, the scale on the vertical axis has meaning only for the emission spectrum intensity of each sample, and the emission of the samples a to d). It doesn't make sense for the spectral strength.) O [0066] From the above, fu n 2n-l 3 which was surface-modified with alkylchlorosilane (CH 3 SiCl) n = 18
ームドシリカを、窒素雰囲気で焼結した後に大気雰囲気で焼結することにより、発光 ピーク位置を 450nm力も 490nmの間で制御することが可能(400nm励起波長を用 It is possible to control the emission peak position between 450 nm force and 490 nm by sintering the silica in a nitrogen atmosphere and then in an air atmosphere (using a 400 nm excitation wavelength).
V、た場合)であることが理解できょう。 You can understand that it is V).
[0067] 次に、表面修飾を行ったフュームドシリカを、窒素雰囲気中で焼結した試料と、大気 雰囲気中で焼結した試料について、発光強度の時間減衰過程を測定した。測定に は、以下の装置を用いている。 [0067] Next, the time decay process of the emission intensity was measured for a sample obtained by sintering the surface-modified fumed silica in a nitrogen atmosphere and a sample sintered in the air atmosphere. The following equipment is used for the measurement.
[0068] (発光強度の時間減衰過程の測定に使用した装置) [0068] (Apparatus used for measuring time decay process of emission intensity)
•励起波長: 400nm (励起源:スぺクトラフィジックス社製 モードロックチタンサフアイ ァレーザー Tsunami+周波数ダブラー Model39)  • Excitation wavelength: 400nm (Excitation source: Spectra Physics, Mode-locked titanium sapphire laser Tsunami + frequency doubler Model39)
•検出器:浜松ホトニタス社製 ピコ秒蛍光寿命測定装置 C4780  • Detector: Hakomatsu Photonicus Picosecond fluorescence lifetime measuring device C4780
[0069] 図 14は、アルキルクロロシラン(C H SiCl ) n=18により表面修飾を行ったフュームド n 2n- 1 3 [0069] FIG. 14 shows fumed n 2n-1 1 3 that has been surface-modified with alkylchlorosilane (C H SiCl) n = 18.
シリカの発光強度の時間減衰過程を示す図である。ここで、励起波長 400nm,測定 波長 470nm,測定温度 300Kとした。 aは窒素雰囲気で 200°Cで 2時間焼結した試 料, bは大気雰囲気で 200°Cで 2時間焼結した試料である。  It is a figure which shows the time decay process of the emitted light intensity of a silica. Here, the excitation wavelength was 400 nm, the measurement wavelength was 470 nm, and the measurement temperature was 300K. a is a sample sintered for 2 hours at 200 ° C in a nitrogen atmosphere, and b is a sample sintered for 2 hours at 200 ° C in an air atmosphere.
測定の結果を示す図 14から、試料 aは発光強度が 1%以下となるのに 50ns程度であ り、一方、試料 bは発光強度が 1%以下となるのに 30ns程度である。  From Fig. 14 showing the measurement results, sample a has a light emission intensity of about 50 ns for a light emission intensity of 1% or less, while sample b has a light emission intensity of about 30 ns for a light emission intensity of 1% or less.
このことから、大気雰囲気中で焼結した試料 よりも、窒素雰囲気中で焼結した試料 a の方が、減衰の時定数がわずかに長 、ことが理解できる。  From this, it can be understood that the sample a sintered in the nitrogen atmosphere has a slightly longer decay time constant than the sample sintered in the air atmosphere.
[0070] この結果は、表面修飾を行ったフュームドシリカを、窒素雰囲気中で焼結した試料と 、大気雰囲気中で焼結した試料とで、異なる発光中心が生成されていることを示唆し ている。大気雰囲気中で焼結した試料では,炭化水素基の熱分解が観測されている ことから、炭化水素基の熱分解過程が発光中心の局所構造を変化させていることが 示唆される。 [0070] This result suggests that different emission centers are generated in the sample obtained by sintering the surface-modified fumed silica in a nitrogen atmosphere and in the sample sintered in an air atmosphere. ing. In samples sintered in the atmosphere, the thermal decomposition of hydrocarbon groups was observed, suggesting that the thermal decomposition process of the hydrocarbon groups changed the local structure of the emission center.
実施例 6  Example 6
[0071] 実施例 6では、 (a)シリカ微粒子を四塩ィ匕ケィ素(SiCl )で表面修飾する表面修飾  [0071] In Example 6, (a) surface modification in which silica fine particles are surface-modified with tetrasalt silicate (SiCl 3)
4  Four
工程と、 (b)表面修飾後のシリカ微粒子を 150〜300°Cの温度範囲で所定時間熱処 理する熱処理工程とにより、作製したシリカ微粒子が可視発光特性を有することを説 明する。 And (b) a heat treatment step in which the surface-modified silica fine particles are heat-treated in a temperature range of 150 to 300 ° C. for a predetermined time. Light up.
図 15は、フュームドシリカの表面を四塩ィ匕ケィ素(SiCl )により表面修飾した試料の  Figure 15 shows a sample of a fumed silica whose surface is modified with tetrasalt silicate (SiCl).
4  Four
発光スペクトルを示している。ここで、上述した炭化水素基で表面修飾した試料と比 ベると、励起波長 400nmでは殆ど発光強度がなぐ励起波長 300〜350nmの範囲 で発光が観測された。なお、図 15は、励起波長が 340nmのものを示している。 図 15から、フュームドシリカの表面を四塩ィ匕ケィ素(SiCl )により表面修飾した試料  The emission spectrum is shown. Here, light emission was observed in the excitation wavelength range of 300 to 350 nm, where almost no emission intensity was observed at the excitation wavelength of 400 nm, compared with the sample surface-modified with the hydrocarbon group described above. Note that FIG. 15 shows an excitation wavelength of 340 nm. Fig. 15 shows a sample in which the surface of fumed silica is surface-modified with tetra-salt silicate (SiCl).
4  Four
1S 420nm付近にピークを持ち、 600nm付近までおよぶブロードな発光スペクトル を有して!/ヽることが理解できょう。  1S You can understand that it has a peak near 420nm and has a broad emission spectrum up to 600nm!
産業上の利用可能性  Industrial applicability
[0072] 本発明に係る可視発光特性を有するシリカ微粒子及びシリカ成形材料は、シリカ微 粒子を表面修飾し、加圧'加熱することによる簡易なプロセスにより製造されるもので あり、また、可視光の波長域でブロードな発光を示す特性があることから、白色発光 素子などの発光材料して利用できる。 [0072] The silica fine particles and the silica molding material having visible light emission characteristics according to the present invention are produced by a simple process by surface-modifying silica fine particles and pressurizing and heating, and visible light. Therefore, it can be used as a light emitting material such as a white light emitting element.
[0073] また、最適励起光が 400nm付近にあることから、「21世紀のあかり」プロジェクトの 成果である紫外 LED素子 (波長は 405nm)を光源に使うことができ、さらに榭脂化す ることで工業ィ匕製品に広く利用できる可能性がある。 [0073] In addition, since the optimum excitation light is around 400 nm, the ultraviolet LED element (wavelength is 405 nm), which is the result of the “21st Century Akari” project, can be used as the light source. There is a possibility that it can be widely used in industrial products.
図面の簡単な説明  Brief Description of Drawings
[0074] [図 1]シリカ微粒子の表面には生成された Si-C結合を示す。 [0074] [Fig. 1] The surface of the silica fine particles shows the generated Si-C bond.
[図 2]作製されたシリカ成形材料について、各熱処理温度(150°C、 200°C、 250°C、 300°C)での発光スペクトル図(アルキルクロロシラン(C H SiCl ) n=18の場合)を示 n 2n- 1 3  [Fig.2] Emission spectrum of the silica molding material produced at each heat treatment temperature (150 ° C, 200 ° C, 250 ° C, 300 ° C) (when alkylchlorosilane (CH SiCl) n = 18) N 2n- 1 3
す。  The
[図 3]炭素数の異なる各試料を 200°Cで熱処理した後、測定した発光スペクトル図を 示す。  [Fig. 3] Shows emission spectra measured after heat-treating samples with different carbon numbers at 200 ° C.
[図 4]最大の発光強度を示した 200°Cで熱処理時間を変えて発光スペクトルを測定し た結果を示す。  [Fig. 4] Shows the results of measuring the emission spectrum at 200 ° C, showing the maximum emission intensity, with different heat treatment times.
[図 5]熱処理時間による赤外スペクトル変化を示す。  [Fig. 5] Shows change in infrared spectrum with heat treatment time.
[図 6]大気中で 200°C · 2時間加熱した試料の発光スペクトルの励起波長依存性 (励 起波長: 400nm以下) (アルキルクロロシラン(C H SiCl ) n=18の場合)を示す。  [Fig. 6] Excitation wavelength dependence of the emission spectrum of a sample heated at 200 ° C for 2 hours in the atmosphere (excitation wavelength: 400 nm or less) (when alkylchlorosilane (C H SiCl) n = 18).
n 2n-l 3 [図 7]窒素、真空、大気中で 200°C ' 2時間加熱した試料の発光スペクトルの励起波 長依存性 (as-preparedは未加熱試料のもの)(励起波長: 350nm)を示す。 n 2n-l 3 [Fig. 7] Excitation wavelength dependence of the emission spectrum of a sample heated at 200 ° C for 2 hours in nitrogen, vacuum, and atmosphere (as-prepared is for an unheated sample) (excitation wavelength: 350 nm).
[図 8]窒素、真空、大気中で 200°C ' 2時間加熱した試料の発光スペクトルの励起波 長依存性(as-preparedは未加熱試料のもの)(励起波長: 400nm)を示す。  [Fig. 8] Excitation wavelength dependence of the emission spectrum of a sample heated at 200 ° C for 2 hours in nitrogen, vacuum and air (as-prepared is for an unheated sample) (excitation wavelength: 400 nm).
[図 9]熱処理を各雰囲気下 200°C · 2時間で行った赤外スペクトルの変化を示す。  [Fig. 9] Shows changes in infrared spectra when heat treatment was performed at 200 ° C for 2 hours in each atmosphere.
[図 10]大気中で 200°C · 2時間加熱した試料の発光スペクトルの励起波長依存性 (励 起波長: 400nm以上) (アルキルクロロシラン(C H SiCl ) n=18の場合)を示す。  [Fig. 10] Shows the excitation wavelength dependence of the emission spectrum of a sample heated at 200 ° C for 2 hours in the atmosphere (excitation wavelength: 400 nm or more) (in the case of alkylchlorosilane (C H SiCl) n = 18).
n 2n-l 3  n 2n-l 3
[図 11]大気中で熱処理した試料から観測された発光について、時間分解発光測定 を行った結果を示す。  [Fig. 11] Shows the results of time-resolved luminescence measurements of luminescence observed from samples heat-treated in air.
[図 12]図 11の時間分解発光測定結果において、遅延時間が 0nsのスペクトルと 50ns のスペクトルを 20倍にしたものを示す。  [Fig. 12] The time-resolved luminescence measurement results in Fig. 11 show the spectrum with a delay time of 0ns and a spectrum with 50ns multiplied by 20 times.
[図 13]異なる焼結雰囲気で焼結した OTS修飾フュームドシリカの発光スペクトル (励 起波長 400nm)。図中、 aは窒素雰囲気で 200°C焼結したもの, bは aの試料を大気 中で 1時間焼結, cは aの試料を大気中で 1. 5時間焼結, dは aの試料を大気中で 2時 間焼結, dは大気中で 2時間焼結したものである。  [Fig. 13] Emission spectrum (excitation wavelength 400nm) of OTS-modified fumed silica sintered in different sintering atmospheres. In the figure, a is sintered at 200 ° C in a nitrogen atmosphere, b is a sample of a in the atmosphere for 1 hour, c is a sample of a in the atmosphere for 1.5 hours, d is of a The sample was sintered in air for 2 hours, and d was sintered in air for 2 hours.
[図 14]OTS修飾フュームドシリカの発光強度の時間減衰過程を示す (励起波長 400 nm,測定波長 470nm,測定温度 300K)。 aは窒素雰囲気で 200°Cで 2時間焼結し た試料, bは大気雰囲気で 200°Cで 2時間焼結した試料である。  FIG. 14 shows the time decay process of emission intensity of OTS-modified fumed silica (excitation wavelength 400 nm, measurement wavelength 470 nm, measurement temperature 300 K). a is a sample sintered for 2 hours at 200 ° C in a nitrogen atmosphere, and b is a sample sintered for 2 hours at 200 ° C in an air atmosphere.
[図 15]フュームドシリカの表面を四塩ィ匕ケィ素(SiCl )により表面修飾した試料の発 [Fig.15] Development of a sample in which the surface of fumed silica is surface-modified with tetrasalt silicate (SiCl)
4  Four
光スペクトルを示して 、る。 Show the light spectrum.
符号の説明 Explanation of symbols
1 シリカ成形材料  1 Silica molding material

Claims

請求の範囲 The scope of the claims
[1] (a)シリカ微粒子を炭化水素基で表面修飾する表面修飾工程と、  [1] (a) a surface modification step of modifying silica fine particles with a hydrocarbon group;
(b)表面修飾後のシリカ微粒子を 150〜300°Cの温度範囲で所定時間熱処理する 熱処理工程と、  (b) a heat treatment step in which the silica particles after the surface modification are heat treated for a predetermined time in a temperature range of 150 to 300 ° C;
からなることを特徴とする可視発光特性を有するシリカ微粒子の製造方法。  A process for producing silica fine particles having visible light emission characteristics, comprising:
[2] (a)シリカ微粒子を炭化水素基で表面修飾する表面修飾工程と、 [2] (a) a surface modification step for modifying the surface of silica fine particles with a hydrocarbon group;
(b)表面修飾後のシリカ微粒子を加圧成形して加圧成形体を形成する加圧工程と、 (b) a pressurizing step of press-molding the silica fine particles after the surface modification to form a press-molded body;
(c)該加圧成形体を 150〜300°Cの温度範囲で所定時間熱処理する熱処理工程と からなることを特徴とする可視発光特性を有するシリカ成形材料の製造方法。 (c) A method for producing a silica molding material having visible light emission characteristics, comprising: a heat treatment step of heat-treating the pressure-molded body for a predetermined time in a temperature range of 150 to 300 ° C.
[3] 請求項 1又は 2記載の製造方法における熱処理工程において、加熱温度を 200°C とし、加熱時間を 2時間としたことを特徴とする可視発光特性を有するシリカ微粒子若 しくはシリカ成形材料の製造方法。 [3] Silica fine particles or silica molding material having visible light emission characteristics, characterized in that in the heat treatment step in the production method according to claim 1 or 2, the heating temperature is 200 ° C. and the heating time is 2 hours. Manufacturing method.
[4] 請求項 1乃至 3記載の製造方法における表面修飾工程において、アルキルクロロシ ラン H SiCl ) (nは 4以上の整数)を用いて、シリカ微粒子表面に炭化水素基を n 2n-l 3 [4] In the surface modification step in the production method according to any one of claims 1 to 3, by using alkylchlorosilane H SiCl) (n is an integer of 4 or more), hydrocarbon groups are formed on the surface of the silica fine particles by n 2n-l 3
修飾することを特徴とする可視発光特性を有するシリカ微粒子若しくはシリカ成形材 料の製造方法。  A method for producing silica fine particles or a silica molding material having visible light emission characteristics, characterized by modifying.
[5] 請求項 1乃至 4記載の製造方法における熱処理工程において、窒素雰囲気中でカロ 熱処理することを特徴とする可視発光特性を有するシリカ微粒子若しくはシリカ成形 材料の製造方法。  [5] A method for producing silica fine particles or silica molding material having visible light emission characteristics, characterized in that in the heat treatment step in the production method according to any one of claims 1 to 4, calo-heat treatment is performed in a nitrogen atmosphere.
[6] 請求項 1乃至 4記載の製造方法における熱処理工程において、空気雰囲気中でカロ 熱処理することを特徴とする可視発光特性を有するシリカ微粒子若しくはシリカ成形 材料の製造方法。  [6] A method for producing silica fine particles or a silica molding material having visible light emission characteristics, characterized in that in the heat treatment step in the production method according to any one of [1] to [4], calo-heat treatment is performed in an air atmosphere.
[7] 請求項 1乃至 4記載の製造方法における熱処理工程において、窒素雰囲気中で所 定時間加熱処理し、その後、空気雰囲気中で所定時間加熱処理することを特徴とす る可視発光特性を有するシリカ微粒子若しくはシリカ成形材料の製造方法。  [7] In the heat treatment step of the manufacturing method according to any one of claims 1 to 4, it has a visible light emission characteristic characterized by heat-treating for a predetermined time in a nitrogen atmosphere and then heat-treating for a predetermined time in an air atmosphere. A method for producing silica fine particles or silica molding material.
[8] (a)シリカ微粒子を四塩ィ匕ケィ素(SiCl )で表面修飾する表面修飾工程と、  [8] (a) a surface modification step for surface modification of silica fine particles with tetrasalt silicate (SiCl 3);
4  Four
(b)表面修飾後のシリカ微粒子を 150〜300°Cの温度範囲で所定時間熱処理する 熱処理工程と、 (b) The surface-modified silica fine particles are heat-treated for a predetermined time in a temperature range of 150 to 300 ° C. A heat treatment step;
からなることを特徴とする可視発光特性を有するシリカ微粒子の製造方法。  A process for producing silica fine particles having visible light emission characteristics, comprising:
[9] 請求項 1乃至 8記載の製造方法において、前記シリカ微粒子が気相法によって合 成される、粒径が l〜100nmの高純度のナノサイズのシリカ微粒子であるフュームド シリカ(Fumed Silica)であることを特徴とする可視発光特性を有するシリカ微粒子若し くはシリカ成形材料の製造方法。  [9] The production method according to any one of claims 1 to 8, wherein the silica fine particles are synthesized by a vapor phase method, and are fumed silica (Fumed Silica) that are high-purity nano-sized silica fine particles having a particle size of 1 to 100 nm. A method for producing a silica fine particle or silica molding material having visible light emission characteristics, characterized in that:
[10] シリカ微粒子を核として、該核の表面に Si-C-0系発光体を備えたことを特徴とする 発光材料。  [10] A light-emitting material comprising silica fine particles as nuclei and a Si—C-0-based illuminant provided on the surface of the nuclei.
[11] 請求項 10記載のシリカ微粒子力 気相法によって合成される、粒径が 1〜: LOOnm の高純度のナノサイズのシリカ微粒子であるフュームドシリカ(Fumed Silica)であるこ とを特徴とする発光材料。  [11] The silica fine particle force according to claim 10, characterized in that it is fumed silica, which is a high-purity nano-sized silica fine particle having a particle size of 1 to: LOOnm, synthesized by a gas phase method. Luminescent material.
[12] 請求項 1, 3乃至 8記載のいずれかに記載の製造方法により得られるシリカ微粒子 を含有する榭脂化材料。 [12] A saccharified material containing silica fine particles obtained by the production method according to any one of claims 1, 3 to 8.
[13] 請求項 2乃至 7の ヽずれかに記載の製造方法により得られるシリカ成形材料を蛍光 体として用いた発光素子。 [13] A light emitting device using as a phosphor a silica molding material obtained by the production method according to any one of claims 2 to 7.
[14] 請求項 12記載の榭脂化材料を蛍光体として用いた発光素子。 [14] A light emitting device using the saccharifying material according to [12] as a phosphor.
PCT/JP2005/015864 2004-08-31 2005-08-31 Visible light-emitting material utilizing surface modification of silica particle and method for producing same WO2006025428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532749A JP4961526B2 (en) 2004-08-31 2005-08-31 Visible light emitting material using surface modification of silica fine particles and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-252416 2004-08-31
JP2004252416A JP2007290873A (en) 2004-08-31 2004-08-31 Visible light-emitting material utilizing surface modification of silica fine particle and method for producing same

Publications (1)

Publication Number Publication Date
WO2006025428A1 true WO2006025428A1 (en) 2006-03-09

Family

ID=36000078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015864 WO2006025428A1 (en) 2004-08-31 2005-08-31 Visible light-emitting material utilizing surface modification of silica particle and method for producing same

Country Status (2)

Country Link
JP (2) JP2007290873A (en)
WO (1) WO2006025428A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208283A (en) * 2007-02-28 2008-09-11 Japan Fine Ceramics Center Illuminant and method for producing the same
JP2011026420A (en) * 2009-07-24 2011-02-10 Japan Fine Ceramics Center Illuminant, method for producing illuminant, lighting apparatus, and uv shielding material for cosmetics
CN116534807A (en) * 2023-05-05 2023-08-04 济南德亨医学科技有限公司 Modification method of CdSe nano particles and obtained product

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303308B2 (en) 2007-11-20 2009-07-29 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
CN101814405B (en) 2009-02-24 2012-04-25 夏普株式会社 Electron emitting element, method for producing electron emitting element and each device using the same
JP5365279B2 (en) 2009-03-17 2013-12-11 ソニー株式会社 Luminescent material, luminescent material composite and method for producing the same, fluorescent labeling reagent and method for producing the same, and light emitting device
JP4932873B2 (en) 2009-05-19 2012-05-16 シャープ株式会社 Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and method of manufacturing self-light-emitting element
JP4732533B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP4777448B2 (en) 2009-05-19 2011-09-21 シャープ株式会社 Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP4732534B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
CN101930884B (en) 2009-06-25 2012-04-18 夏普株式会社 Electron emitting element and method for producing electron emitting element, electron emitting device, self luminescence device and image display device
JP4880740B2 (en) 2009-12-01 2012-02-22 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232912A (en) * 1994-01-27 1995-09-05 Degussa Ag Silanized and pyrolitically decomposed silicic acid, its preparation and thickener for liquid
JPH10121042A (en) * 1996-10-03 1998-05-12 Dow Corning Corp Sealed fine silica particle
JP2002256173A (en) * 2000-12-26 2002-09-11 Nippon Aerosil Co Ltd Surface modified inorganic oxide powder and its use
JP2005239436A (en) * 2004-02-24 2005-09-08 Shibaura Institute Of Technology Phosphor silica fine particle and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232912A (en) * 1994-01-27 1995-09-05 Degussa Ag Silanized and pyrolitically decomposed silicic acid, its preparation and thickener for liquid
JPH10121042A (en) * 1996-10-03 1998-05-12 Dow Corning Corp Sealed fine silica particle
JP2002256173A (en) * 2000-12-26 2002-09-11 Nippon Aerosil Co Ltd Surface modified inorganic oxide powder and its use
JP2005239436A (en) * 2004-02-24 2005-09-08 Shibaura Institute Of Technology Phosphor silica fine particle and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208283A (en) * 2007-02-28 2008-09-11 Japan Fine Ceramics Center Illuminant and method for producing the same
JP2011026420A (en) * 2009-07-24 2011-02-10 Japan Fine Ceramics Center Illuminant, method for producing illuminant, lighting apparatus, and uv shielding material for cosmetics
CN116534807A (en) * 2023-05-05 2023-08-04 济南德亨医学科技有限公司 Modification method of CdSe nano particles and obtained product

Also Published As

Publication number Publication date
JPWO2006025428A1 (en) 2008-05-08
JP2007290873A (en) 2007-11-08
JP4961526B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2006025428A1 (en) Visible light-emitting material utilizing surface modification of silica particle and method for producing same
Tian et al. Full‐color inorganic carbon dot phosphors for white‐light‐emitting diodes
Hu et al. Rational synthesis of silane-functionalized carbon dots with high-efficiency full-color solid-state fluorescence for light emitting diodes
Zheng et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability
Zhang et al. Confined synthesis of stable and uniform CsPbBr3 nanocrystals with high quantum yield up to 90% by high temperature solid‐state reaction
Guo et al. Aggregation-induced emission enhancement of carbon quantum dots and applications in light emitting devices
Zhang et al. Highly stable red‐emitting Sr2Si5N8: Eu2+ phosphor with a hydrophobic surface
Dihingia et al. Synthesis of TiO2 nanoparticles and spectroscopic upconversion luminescence of Nd3+-doped TiO2–SiO2 composite glass
Chung et al. Combustion synthesis of Ca 2 Si 5 N 8: Eu 2+ phosphors and their luminescent properties
Cervantes-Vásquez et al. Quantum efficiency of silica-coated rare-earth doped yttrium silicate
CN113189162B (en) Electrochemical luminescence method based on perovskite@covalent organic framework composite material
Yang et al. Fabrication and characterization of transparent ZnO–SiO2/silicone nanocomposites with tunable emission colors
Bouzourâa et al. Optical study of annealed cobalt–porous silicon nanocomposites
Liu et al. Highly optically and thermally stable carbon dots enabled by thermal annealing for laser illumination
Liu et al. Synthesis and White Light Emission of Rare Earth‐Doped HfO2 Nanotubes
JP4966486B2 (en) Method for producing crystalline silicon-containing SiOx molded body and use thereof
Gao et al. Excellent luminescence films of excitation-independent carbon quantum dots toward non-rare-earth phosphor-based white light-emitting diodes
Pan et al. Influence of Ba2+-doping on structural and luminescence properties of Sr2SiO4: Eu2+ phosphors
JP4528948B2 (en) Phosphor glass material
Li et al. Stable CsPbX3 (X= Cl, Br, I) Nanocrystal‐in‐Glass Composite (NGC) for Solid‐State Laser‐Driven White Light Generation
CN114958355B (en) Novel ultraviolet stress luminescent material and preparation method thereof
JP2011105532A (en) METHOD FOR PRODUCING beta-SIALON
JP2015143324A (en) Silica glass member for wavelength conversion, and production method therefor
Xu et al. Ultra‐stable perovskite quantum dot composites encapsulated with mesoporous SiO2 and PbBr (OH) for white light‐emitting diodes
Tuan et al. On the origin of photoluminescence enhancement of Si nanocrystals on silica glass template and Si/SiO2 superlattice

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006532749

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase