WO2006025400A1 - 位置検出装置および被検体内導入システム - Google Patents

位置検出装置および被検体内導入システム Download PDF

Info

Publication number
WO2006025400A1
WO2006025400A1 PCT/JP2005/015787 JP2005015787W WO2006025400A1 WO 2006025400 A1 WO2006025400 A1 WO 2006025400A1 JP 2005015787 W JP2005015787 W JP 2005015787W WO 2006025400 A1 WO2006025400 A1 WO 2006025400A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
deriving
unit
subject
time
Prior art date
Application number
PCT/JP2005/015787
Other languages
English (en)
French (fr)
Inventor
Tetsuo Minai
Takeshi Mori
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004251023A external-priority patent/JP4554301B2/ja
Priority claimed from JP2004261666A external-priority patent/JP4388442B2/ja
Priority claimed from JP2004266067A external-priority patent/JP4505292B2/ja
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to CN200580029128XA priority Critical patent/CN101010026B/zh
Priority to EP05776067A priority patent/EP1792560B1/en
Priority to DE602005027223T priority patent/DE602005027223D1/de
Priority to US11/661,619 priority patent/US8195277B2/en
Publication of WO2006025400A1 publication Critical patent/WO2006025400A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • A61B1/00029Operational features of endoscopes characterised by power management characterised by power supply externally powered, e.g. wireless
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/067Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe using accelerometers or gyroscopes

Definitions

  • the present invention performs position detection of a detection target using a position detection magnetic field having position dependency with respect to intensity at least at a first time and a second time after a predetermined time has elapsed from the first time.
  • the present invention relates to a position detection apparatus and an in-subject introduction system. Background art
  • Capsule-type endoscopes are peristaltic in the body cavity, for example, the stomach and small intestine, until they are spontaneously discharged after being swallowed from the subject's mouth for observation (examination). It has the function to move according to
  • image data imaged inside the body by the capsule endoscope is sequentially transmitted to the outside by wireless communication and stored in a memory provided outside.
  • a receiver equipped with a wireless communication function and a memory function the subject can freely move between swallowing the capsule endoscope and discharging it.
  • a doctor or nurse can make a diagnosis by displaying an organ image on the display based on the image data stored in the memory (for example, patent Reference 1).
  • a conventional capsule endoscope system having a mechanism for detecting the position of the capsule endoscope in a body cavity.
  • a magnetic field having a position dependency with respect to strength is formed inside a subject to which a capsule endoscope is introduced, and the inside of the subject is based on the strength of the magnetic field detected by a magnetic field sensor built in the capsule endoscope. It is possible to detect the position of the capsule endoscope.
  • a force-pseed endoscope system in order to form a magnetic field, a configuration in which a predetermined coil is arranged outside the subject is adopted, and a predetermined current is passed through the powerful coil to cause the inside of the subject. A magnetic field is to be formed.
  • the position of the capsule endoscope in advance Because it is difficult to detect the capsule endoscope, the magnetic field to be formed is formed so that the capsule endoscope has a detectable intensity in the entire region where the capsule endoscope can exist. There is a need. Specifically, in a conventional capsule endoscope system, a magnetic field that can be detected by the capsule endoscope is formed in all extinguisher organs that reach the oral anus.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-19111
  • the conventional capsule endoscope system including the position detection mechanism has a problem that the power consumption is significantly increased.
  • a large current is applied to the coil for several hours to several tens of hours during which the capsule endoscope remains in the subject.
  • the need to continue to supply arises.
  • a magnetic field having a strength that can be detected by the capsule endoscope is formed on the entire digestive organ inside the subject. The required power is enormous and is not appropriate from the viewpoint of reducing power consumption.
  • the conventional capsule endoscope system provided with the position detection mechanism has a problem that power consumption in at least the capsule endoscope increases.
  • position detection is performed at regular time intervals, and the magnetic field sensor built in the capsule endoscope 2 and the detection result of the magnetic field sensor are wirelessly transmitted.
  • the power consumption increases by the drive power of the transmission mechanism.
  • the present invention has been made in view of the above, and uses a position detecting magnetic field to encapsulate.
  • a position detection device capable of forming a necessary and sufficient magnetic field for position detection, and an in-vivo introduction system using the position detection device, for the technology for detecting the position of a detection target such as a telescope
  • the purpose is to do.
  • another object of the present invention relates to a position detection device that detects a position of a detection target such as a capsule endoscope using a position detection magnetic field, while reliably suppressing an increase in power consumption.
  • the position detection device is provided at least at the first time and at the second time when a predetermined time has elapsed from the first time.
  • a position detection device that detects a position of a detection target using a position detection magnetic field that has position dependency with respect to intensity, and includes a magnetic field forming unit that forms a position detection magnetic field of variable intensity, and the detection target Position deriving means for deriving the position of the detection target based on the intensity of the position detection magnetic field detected at the position to be detected, and the position detection at the second time based on the position of the detection target at the first time.
  • a magnetic field intensity control means for controlling the magnetic field forming means so that the magnetic field can be detected by the detection object.
  • the magnetic field strength control means for controlling the strength of the position detecting magnetic field formed by the magnetic field forming means based on the detection symmetrical position at the first time is provided, For example, at a second time after a predetermined time has elapsed from the first time, it is possible to prevent a useless position detection magnetic field from being formed in a region where it can be predicted that the detection target is clearly not present. It is possible to form a magnetic field for position detection that is necessary and sufficient for position detection.
  • the detection target may exist at the second time based on the position of the detection target at the first time.
  • a range deriving unit for deriving a possible range as a specific range, and the magnetic field strength control unit forms the position detection magnetic field having a detectable intensity in the possible range derived by the range deriving unit.
  • the magnetic field forming hand The stage is controlled.
  • the position detecting device further includes a moving speed deriving means for deriving a moving speed of the detection target in the predetermined time in the above invention, wherein the range deriving means includes the A spherical region having a radius of a value obtained by multiplying the moving speed of the detection target by the predetermined time with the position of the detection target at the first time as a center is defined as an existence possible range at the second time.
  • the position detection device is characterized in that, in the above invention, a movement speed deriving means for deriving a movement speed of the detection target in the predetermined time, and a movement of the detection target in the predetermined time.
  • a moving direction deriving unit for deriving a direction, wherein the range deriving unit multiplies the moving direction by the predetermined time for the position of the detection target at the first time.
  • An area including a position moved by a value is set as the possible range.
  • the movement speed deriving means may change the position of the detection target derived by the position deriving means at a plurality of past times.
  • the moving speed is derived based on the following.
  • the position detection device is the movement recording the correspondence relationship between the position of the detection object and the position of the detection object in the object in the invention described above.
  • the moving speed deriving means further comprises a moving speed of the detection target at the predetermined time using the correspondence recorded in the moving speed database based on the position of the detection target at the first time. Is derived.
  • the movement direction deriving unit is configured to perform the predetermined operation based on a change in position detected by the position deriving unit at a plurality of past times.
  • the moving direction of the detection target in time is derived.
  • the position detection device is fixed to a reference coordinate axis that is determined independently of a motion of the detection target in a region where the detection target can exist in the above invention.
  • a first linear magnetic field that linearly travels in the direction of The working magnetic field is a second linear magnetic field that travels linearly in a direction that is different from the first linear magnetic field and that is fixed with respect to the reference coordinate axis, and the moving direction deriving means is the detection target.
  • the movement direction is derived based on the pointing direction of the detection target determined by the relationship between the target coordinate axis fixed with respect to the traveling direction of the first linear magnetic field and the second linear magnetic field.
  • the first linear magnetic field is formed by geomagnetism.
  • the position deriving means includes a magnetic field intensity formed in the vicinity of the magnetic field forming means by the magnetic field forming means, and the detection target.
  • a distance between the magnetic field forming means and the detection target is derived based on the strength of the position detection magnetic field detected by the step, and the position of the detection target is derived using the derived distance.
  • the position detection device uses the predetermined position detection magnetic field at least at the first time and the second time after a predetermined time has elapsed from the first time.
  • a position detection apparatus that performs detection, wherein one or more magnetic field forming means for forming a position detection magnetic field that can be detected in a part of a region where the detection target can be located, and the detection target at the first time Based on the position, the position selection means for selecting the position of the magnetic field forming means for forming the position detection magnetic field so that the magnetic field can be detected at the position of the detection target at the second time, and the detection target And a position deriving unit for deriving the position of the detection target based on the strength of the position detecting magnetic field at an existing position.
  • the magnetic field forming means for forming a position detecting magnetic field that can be detected in a part of the region where the detection target can be located, and the position of the magnetic field forming means at the second time are determined. Since the position selection means for selecting appropriately is provided, it is possible to reliably detect the position at the second time while reducing the drive power necessary for magnetic field formation.
  • the position selection means is configured to detect the detection target derived at the first time among a plurality of preset positions. The closest position is selected.
  • a plurality of the magnetic field forming means are arranged corresponding to a plurality of preset positions, and in the second time, It further comprises drive control means for controlling the magnetic field forming means corresponding to the position selected by the position selection means to drive.
  • the position detection device is the above invention, wherein the magnetic field forming means is held in a movable state by the holding member and at the second time by the position selection means. It further comprises movement control means for controlling the magnetic field forming means to move to a selected position.
  • the position detection device has the possibility that the detection object exists at the second time based on the position of the detection object at the first time in the above invention.
  • a range deriving unit for deriving the possible range is further provided, wherein the position selecting unit is configured to detect the magnetic field for position detection so that the magnetic field can be detected in a region including the possible range derived by the range deriving unit. The position of the magnetic field forming means to be formed is selected.
  • the position detection device is the above-described invention, wherein the movement speed deriving means for deriving the movement speed of the detection object and the movement direction deriving means for deriving the movement direction of the detection object.
  • the range deriving means moves with respect to the position of the detection target at the first time by a moving distance obtained by a product of the moving speed and the predetermined time with respect to the moving direction. It is characterized by deriving the region including the specified position as the possible range of existence.
  • an in-subject introduction system includes an in-subject introduction device introduced into a subject, at least a first time, and a first time after a predetermined time has elapsed from the first time.
  • An intra-subject introduction system comprising: a position detection device that detects a position of the intra-subject introduction device using a position detection magnetic field having position dependency with respect to intensity at two times;
  • the introduction device includes a magnetic field sensor that detects at least the strength of the formed magnetic field, and a wireless transmission unit that transmits a wireless signal including information related to the magnetic field strength detected by the magnetic field sensor, and the position detection device includes: It is received via a predetermined receiving antenna and magnetic field forming means for forming a position detecting magnetic field of variable strength.
  • Position deriving means for deriving the position of the in-subject introduction device based on the intensity of the magnetic field for position detection detected by the magnetic field sensor extracted from the wireless signal; and in the subject at the first time Magnetic field intensity control means for controlling the magnetic field forming means so that the magnetic field for position detection has an intensity detectable by the magnetic field sensor at the second time based on the position of the introduction device.
  • an in-subject introduction system includes an in-subject introduction device to be introduced into a subject, at least a first time, and a first time after a predetermined time has elapsed from the first time.
  • An intra-subject introduction system comprising: a position detection device that detects a position of the intra-subject introduction device using a position detection magnetic field having position dependency with respect to intensity at two times;
  • the introduction device includes a magnetic field sensor that detects at least the strength of the formed magnetic field, and a wireless transmission unit that transmits a wireless signal including information related to the magnetic field strength detected by the magnetic field sensor, and the position detection device includes: Position deriving means for deriving the position of the introduction device in the subject based on the intensity of the magnetic field for position detection detected by the magnetic field sensor extracted from the wireless signal force received via a predetermined receiving antenna;
  • One or more magnetic field forming means for forming a position detection magnetic field that can be detected in a part of a region where the detection target can be located, and the detection target at the first time
  • Position selection means for selecting the position of the magnetic field forming means for forming the position detection magnetic field based on the position so that the magnetic field can be detected at the position of the in-subject introduction apparatus at the
  • an in-subject introduction system is introduced using an in-subject introduction apparatus that is introduced into the subject and moves within the subject, and a predetermined position detection magnetic field.
  • An intra-subject introduction system comprising: a position detection device that detects the position of the intra-subject introduction device within the subject, wherein the intra-subject introduction device is located at the intra-subject introduction device.
  • a magnetic field sensor for detecting the magnetic field for position detection in a region;
  • a wireless transmission means for transmitting a wireless signal including a detection result by the magnetic field sensor, and a driving timing of the wireless transmission means and Z or the magnetic field sensor based on a movement state of the in-subject introduction apparatus in the subject.
  • Timing control means for controlling, the position detection device, the magnetic field forming means for forming the position detection magnetic field, Based on the receiving means for receiving a radio signal including the detection result by the magnetic field sensor and the radio signal subjected to the receiving process by the receiving means, the position of the in-subject introducing device in the subject is derived. It is characterized by having position deriving means.
  • the in-subject introduction device having the wireless transmission means and the timing control means for controlling the drive timing of the Z or magnetic field sensor in accordance with the movement state, it is necessary. In this case, since information used for position detection is output at a necessary timing, it is possible to perform reliable position detection while suppressing power consumption of the intra-subject introduction apparatus.
  • the in-subject introduction system according to the invention of claim 20 is characterized in that, in the above-mentioned invention, the in-subject introduction apparatus is moved as the movement state of the intra-subject introduction apparatus. And a timing deriving unit that controls the drive timing based on the moving speed derived by the speed deriving unit.
  • the in-subject introduction system according to the invention of claim 21 is the above-described invention, wherein the timing control means includes the wireless transmission means and Z or the magnetic field when the moving speed is low.
  • the sensor driving cycle is set to a predetermined long cycle, and when the moving speed is high, the driving cycle is set to a short cycle that is shorter than the long cycle.
  • the in-subject introduction apparatus is in a vibration state of the in-subject introduction apparatus as the moving state. And a timing detection unit that controls the drive timing based on a vibration state detected by the vibration detection unit.
  • the wireless signal transmitted by the wireless transmission means further includes information on the drive timing.
  • the position detection device controls the magnetic field formation timing by the magnetic field forming means based on the information related to the drive timing included in the wireless signal.
  • a magnetic field control means is further provided.
  • the in-subject introduction system according to the invention of claim 24 is characterized in that, in the above-mentioned invention, the position detection device introduces the in-subject at a plurality of times derived by the position deriving means.
  • a moving speed deriving means for deriving the moving speed of the in-subject introduction apparatus based on the position of the apparatus; and a transmitting means for transmitting a radio signal including the moving speed derived by the moving speed deriving means as information
  • the intra-subject introduction device includes: a radio reception unit that performs reception processing of the radio signal transmitted by the transmission unit; and a movement of the intra-subject introduction device based on the radio signal received and processed by the radio reception unit And a moving speed deriving unit for deriving the speed and outputting information on the derived moving speed to the timing control means.
  • the in-subject introduction system according to the invention of claim 25 is characterized in that, in the above invention, the position detection device is configured to generate the magnetic field based on the moving speed derived by the speed deriving means. It further comprises magnetic field control means for controlling the magnetic field formation timing by the means.
  • the position detection apparatus and the in-subject introduction system include a magnetic field strength control means for controlling the strength of the position detection magnetic field formed by the magnetic field formation means based on the position of detection symmetry at the first time. Therefore, for example, at the second time after a predetermined time from the first time, it is possible to prevent the formation of a useless position detection magnetic field for a region where it can be predicted that the detection target is not clearly present. As a result, it is possible to form a magnetic field for position detection having a necessary and sufficient strength for position detection.
  • the position detection device and the in-subject introduction system form a magnetic field for forming a position detection magnetic field that can be detected in a part of a region where a detection target (intra-subject introduction device) can be located. Since it is equipped with a forming means and a position selecting means that appropriately selects the position of the magnetic field forming means at the second time, the position detection at the second time is ensured while reducing the driving power necessary for the magnetic field formation. There is an effect that it can be performed.
  • An in-subject introduction system includes a wireless transmission unit and a radio transmission unit according to a moving state.
  • the in-vivo introduction device having the timing control means for controlling the driving timing of the Z or magnetic field sensor is provided, information used for position detection is output at the necessary timing when necessary. There is an effect that reliable position detection can be performed while suppressing power consumption of the in-sample introduction device.
  • FIG. 1 is a schematic diagram showing an overall configuration of an in-subject introduction system according to Example 1.
  • FIG. 2 is a schematic block diagram showing a configuration of a capsule endoscope provided in the in-subject introduction system.
  • FIG. 3 is a schematic diagram showing a first linear magnetic field formed by a first linear magnetic field forming unit provided in the position detection device.
  • FIG. 4 is a schematic diagram showing configurations of a second linear magnetic field forming unit and a diffusion magnetic field forming unit provided in the position detection device, and an aspect of the second linear magnetic field formed by the second linear magnetic field forming unit. It is.
  • FIG. 5 is a schematic diagram showing an aspect of a diffusion magnetic field formed by a diffusion magnetic field forming unit.
  • FIG. 6 is a schematic block diagram showing a configuration of a processing device provided in the position detection device.
  • FIG. 7 is a schematic diagram showing a relationship between a reference coordinate axis and a target coordinate axis.
  • FIG. 8 is a schematic diagram showing how the second linear magnetic field is used in position derivation.
  • FIG. 9 is a schematic diagram showing a use mode of a diffusion magnetic field in position derivation.
  • FIG. 10 is a schematic diagram for explaining a moving speed and a manner of deriving a possible range using the moving speed.
  • FIG. 11 is a schematic diagram for explaining the magnetic field formation region determined based on the derived possible existence range.
  • FIG. 12 is a flowchart for explaining the operation of the processing apparatus.
  • FIG. 13 is a schematic block diagram illustrating a configuration of a processing apparatus provided in the intra-subject introduction system according to the second embodiment.
  • FIG. 14 is a schematic diagram showing an example of the content of information recorded in a moving speed database.
  • FIG. 15 is a schematic block diagram illustrating a configuration of a processing apparatus provided in the intra-subject introduction system according to the third embodiment.
  • FIG. 16 is a schematic diagram for explaining a mechanism for deriving the possible existence range in the third embodiment.
  • FIG. 17 is a schematic diagram for explaining a modified example of the in-subject introduction system according to the third embodiment.
  • FIG. 18 is a schematic diagram showing an overall configuration of an in-subject introduction system according to Example 4.
  • FIG. 19 is a schematic block diagram showing a configuration of a processing apparatus provided in the intra-subject introduction system.
  • FIG. 20 is a schematic diagram showing an overall configuration of an in-subject introduction system according to Example 5.
  • FIG. 21 is a schematic diagram showing an arrangement pattern of the second linear magnetic field forming unit provided in the position detection device.
  • FIG. 22 is a schematic diagram showing the configuration of the second linear magnetic field forming unit and the diffusion magnetic field forming unit provided in the position detection device, and the mode of the second linear magnetic field formed by the second linear magnetic field forming unit. is there.
  • FIG. 23 is a schematic diagram showing an aspect of a diffusion magnetic field formed by a diffusion magnetic field forming unit.
  • FIG. 24 is a schematic block diagram showing a configuration of a processing device provided in the position detection device.
  • FIG. 25 is a schematic diagram showing how the second linear magnetic field is used in position derivation.
  • FIG. 26 is a schematic diagram showing how the diffusion magnetic field is used in position derivation.
  • FIG. 27 is a schematic diagram for explaining the processing contents of the position selection unit provided in the processing apparatus.
  • FIG. 28 is a schematic diagram illustrating a configuration of a holding member and a second linear magnetic field forming unit provided in the in-subject introduction system according to the sixth embodiment.
  • FIG. 29 is a schematic block diagram showing a configuration of a processing device 12 forming a position detection device provided in the in-subject introduction system.
  • FIG. 30 is a schematic diagram for explaining the operation of the second linear magnetic field forming unit generated by position selection.
  • FIG. 31 is a schematic block diagram illustrating a configuration of a processing apparatus provided in the intra-subject introduction system according to the seventh embodiment.
  • FIG. 32 is a schematic diagram for explaining a manner of deriving the possible existence range.
  • FIG. 33 is a schematic diagram of an overall configuration of the in-subject introduction system according to the eighth embodiment.
  • FIG. 34 is a block diagram schematically showing a configuration of a processing apparatus provided in the in-subject introduction system.
  • FIG. 35 is a schematic diagram showing an overall configuration of an in-subject introduction system according to Example 9.
  • FIG. 36 is a schematic block diagram showing a configuration of a capsule endoscope provided in the intra-subject introduction system.
  • FIG. 37 is a schematic diagram showing the configuration of the second linear magnetic field forming unit and the diffusion magnetic field forming unit provided in the position detection device, and the mode of the second linear magnetic field formed by the second linear magnetic field forming unit. is there.
  • FIG. 38 is a schematic diagram showing an aspect of a diffusion magnetic field formed by a diffusion magnetic field forming unit.
  • FIG. 39 is a schematic block diagram showing a configuration of a processing device included in the position detection device.
  • FIG. 40 is a schematic diagram showing how the second linear magnetic field is used in position derivation.
  • FIG. 41 is a schematic diagram showing how the diffusion magnetic field is used in position derivation.
  • FIG. 42 illustrates processing in the timing control unit provided in the capsule endoscope. It is a flowchart for.
  • FIG. 43 is a schematic block diagram showing a configuration of a capsule endoscope in a modification of the ninth embodiment.
  • FIG. 44 is a schematic diagram showing an overall configuration of an in-subject introduction system according to Example 10.
  • FIG. 45 is a schematic block diagram showing a configuration of a capsule endoscope provided in the in-subject introduction system.
  • FIG. 46 is a schematic block diagram showing a configuration of a processing apparatus provided in the in-subject introduction system.
  • FIG. 47 is a schematic diagram showing an overall configuration of an in-subject introduction system according to Example 11.
  • FIG. 48 is a schematic block diagram showing a configuration of a processing apparatus provided in the in-subject introduction system.
  • Geomagnetic sensor 170, 274 processor
  • the present invention can be applied to any device that detects the position of a detection target using a position detection magnetic field having position dependency over a plurality of times. is there.
  • the second linear magnetic field is described as an example of the position detection magnetic field in the claims, and the second linear magnetic field forming unit for forming the second linear magnetic field is claimed.
  • the present invention can be applied to other magnetic fields and magnetic field forming units.
  • the in-subject introduction system according to the first embodiment will be described.
  • the overall configuration and each component of the in-subject introduction system will be described, and the position detection mechanism will be described, and then the control mechanism related to the strength of the position detection magnetic field used for position detection will be described.
  • FIG. 1 is a schematic diagram illustrating the overall configuration of the intra-subject introduction system according to the first embodiment.
  • the in-subject introduction system according to the first embodiment includes a capsule endoscope 2 that is introduced into the subject 1 and moves along a passage route, and a capsule endoscope 2 Position detection device 3 that detects the positional relationship between the target coordinate axis fixed to the capsule endoscope 2 and the reference coordinate axis fixed to the subject 1 And transmitted from the capsule endoscope 2 received by the position detection device 3.
  • a display device 4 for displaying the contents of the wireless signal, and a portable recording medium 5 for exchanging information between the position detection device 3 and the display device 4. Further, as shown in FIG.
  • the target coordinate axis which is a coordinate axis formed by the X axis, the Y axis, and the Z axis and fixed to the capsule endoscope 2, and the X axis, y
  • the axis is defined by the z-axis and is determined independently of the motion of the force pusher endoscope 2, and specifically, the reference coordinate axis, which is a fixed coordinate axis with respect to the subject 1, is set.
  • the positional relationship of the target coordinate axis with respect to the reference coordinate axis is detected using the mechanism described in (1).
  • the display device 4 is for displaying an in-vivo image captured by the capsule endoscope 2 and received by the position detection device 3, and is displayed by the portable recording medium 5. It has a configuration such as a workstation that displays images based on the obtained data. Specifically, the display device 4 may be configured to directly display an image or the like by a CRT display, a liquid crystal display, or the like, or may be configured to output an image or the like to another medium such as a printer.
  • the portable recording medium 5 is detachable from a processing device 12 and a display device 4 to be described later, and has a structure capable of outputting and recording information when attached to both. Specifically, the portable recording medium 5 is attached to the processing device 12 while the capsule endoscope 2 is moving in the body cavity of the subject 1, and the target coordinate axis with respect to the in-subject image and the reference coordinate axis. The positional relationship is stored. Then, after the capsule endoscope 2 is ejected from the subject 1, the capsule endoscope 2 is taken out from the processing device 12 and attached to the display device 4, and the recorded data is read out by the display device 4.
  • Data is transferred between the processing device 12 and the display device 4 using a portable recording medium 5 such as a CompactFlash (registered trademark) memory.
  • a portable recording medium 5 such as a CompactFlash (registered trademark) memory.
  • the subject 1 can freely move even when the capsule endoscope 2 is moving inside the subject 1.
  • the capsule endoscope 2 functions as an example of a detection target in the claims. Specifically, the capsule endoscope 2 is introduced into the subject 1, acquires in-subject information while moving within the subject 1, and externally transmits a radio signal including the acquired in-subject information. It has the function to transmit to. Ma In addition, the capsule endoscope 2 has a magnetic field detection function for detecting a positional relationship, which will be described later, and has a configuration in which driving power is supplied from the outside. It has a function of receiving a signal and reproducing the received radio signal as drive power.
  • FIG. 2 is a block diagram showing a configuration of the capsule endoscope 2.
  • the force-pessel endoscope 2 has an in-subject information acquisition unit 14 that acquires in-subject information as a mechanism for acquiring in-subject information, and the acquired in-subject information. And a signal processing unit 15 for performing predetermined processing.
  • the capsule endoscope 2 also detects a magnetic field as a magnetic field detection mechanism, outputs a magnetic signal 16 corresponding to the detected magnetic field, an amplification unit 17 for amplifying the output electric signal, and an amplification And an AZD conversion unit 18 for converting the electrical signal output from the unit 17 into a digital signal.
  • the in-subject information acquisition unit 14 is for acquiring in-subject information, that is, an in-subject image that is image data in the subject in the first embodiment.
  • the in-subject information acquisition unit 14 functions as an LED 22 that functions as an illumination unit, an LED drive circuit 23 that controls the drive of the LED 22, and an imaging unit that captures at least a part of the area illuminated by the LED 22.
  • a functioning CCD 24 and a CCD driving circuit 25 for controlling the driving state of the CCD 24 are provided.
  • the illumination unit and the imaging unit it is not essential to use an LED or a CCD.
  • a CMOS or the like may be used as the imaging unit.
  • the magnetic field sensor 16 is for detecting the azimuth and intensity of the magnetic field formed in the region where the capsule endoscope 2 is present.
  • the magnetic field sensor 16 is formed using, for example, an MI (magnetolmpedance) sensor.
  • the Ml sensor has a configuration that uses, for example, an FeCoSiB amorphous wire as a magnetosensitive medium, and when a high frequency current is applied to the magnetosensitive medium, the magnetic impedance of the magnetosensitive medium greatly changes due to an external magnetic field. Magnetic field strength is detected using Ml effect.
  • the magnetic field sensor 16 may be configured using, for example, an MRE (magnetoresistive effect) element, a GMR (giant magnetoresistive effect) magnetic sensor, or the like in addition to the Ml sensor.
  • the target coordinate axes defined by the X axis, the Y axis, and the Z axis are assumed as the coordinate axes of the capsule endoscope 2 to be detected.
  • the magnetic field sensor 16 is formed in the area where the capsule endoscope 2 is located. It has the function of detecting the magnetic field strength of the X-direction component, Y-direction component, and Z-direction component for the generated magnetic field, and outputting an electrical signal corresponding to the magnetic field strength in each direction.
  • the magnetic field strength component in the target coordinate axis detected by the magnetic field sensor 16 is transmitted to the position detection device 3 via the wireless transmission unit 19 described later.
  • the position detection device 3 detects the magnetic field component detected by the magnetic field sensor 16. Based on this value, the positional relationship between the target coordinate axis and the reference coordinate axis is derived.
  • the capsule endoscope 2 includes a transmission circuit 26 and a transmission antenna 27, and a radio transmission unit 19 for performing radio transmission to the outside, and a signal output to the radio transmission unit 19 And a switching unit 20 that appropriately switches between the one output from the signal processing unit 15 and the one output from the AZD conversion unit 18.
  • the capsule endoscope 2 includes a timing generation unit 21 for synchronizing the drive timings of the in-vivo information acquisition unit 14 , the signal processing unit 15, and the switching unit 20.
  • the capsule endoscope 2 is a mechanism for receiving a radio signal for feeding external force, and includes a receiving antenna 28 and a radio signal power received via the receiving antenna 28.
  • a power regeneration circuit 29 that regenerates power
  • a booster circuit 30 that boosts the voltage of the power signal output from the power regeneration circuit 29, and a power signal that has been changed to a predetermined voltage by the booster circuit 30 and accumulates the other
  • a capacitor 31 that supplies power for driving the components.
  • the receiving antenna 28 is formed using, for example, a loop antenna.
  • a loop antenna is fixed at a predetermined position in the capsule endoscope 2, and specifically has a predetermined position and a directing direction on the target coordinate axis fixed to the capsule endoscope 2. It is arranged as follows.
  • the position detection device 3 includes receiving antennas 7a to 7d for receiving a radio signal transmitted from the force-push type endoscope 2, and a power supply for the capsule endoscope 2. Transmitting antennas 8a to 8d for transmitting radio signals, a first linear magnetic field forming unit 9 that forms a first linear magnetic field, a second linear magnetic field forming unit 10 that forms a second linear magnetic field, and a diffusion magnetic field And a processing unit 12 that performs predetermined processing on radio signals received via the receiving antennas 7a to 7d.
  • the receiving antennas 7a to 7d are for receiving a radio signal transmitted from the radio transmitting unit 19 provided in the capsule endoscope 2. Specifically, the receiving antennas 7a to 7d are formed by a loop antenna or the like and have a function of transmitting a received radio signal to the processing device 12.
  • the transmission antennas 8 a to 8 d are for transmitting the radio signal generated by the processing device 12 to the capsule endoscope 2. Specifically, the transmission antennas 8a to 8d are formed by a loop antenna or the like electrically connected to the processing device 12.
  • FIG. 1 schematically shows only these components, and the number of receiving antennas 7a to 7d etc. is not limited to the number shown in FIG.
  • the shape and the like are not limited to those shown in FIG. 1, and any configuration can be adopted.
  • the first linear magnetic field forming unit 9 is for forming a linear magnetic field in a predetermined direction in the subject 1.
  • the “linear magnetic field” is a magnetic field component substantially only in one direction in at least a predetermined spatial region, in this embodiment, a spatial region where the capsule endoscope 2 in the subject 1 can be located.
  • the first linear magnetic field forming unit 9 supplies a predetermined current to the coil formed so as to cover the body portion of the subject 1 and the coil. And a function of forming a linear magnetic field in a spatial region inside the subject 1 by causing a predetermined current to flow through the coil to be produced.
  • an arbitrary direction may be selected as the traveling direction of the first linear magnetic field, but in the first embodiment, the first linear magnetic field is in a reference coordinate axis fixed to the subject 1. It is assumed that the magnetic field is a linear magnetic field traveling in the z-axis direction.
  • FIG. 3 is a schematic diagram showing the first linear magnetic field formed by the first linear magnetic field forming unit 9.
  • the coil forming the first linear magnetic field forming unit 9 is formed so as to include the body of the subject 1 inside and has a configuration extending in the z-axis direction of the reference coordinate axis. Therefore, the first linear magnetic field formed inside the subject 1 by the first linear magnetic field forming unit 9 forms magnetic force lines that travel in the z-axis direction of the reference coordinate axis as shown in FIG. The Rukoto.
  • the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11 will be described.
  • Each of the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11 functions as an example of the magnetic field forming means in the claims, and the formed second linear magnetic field and the diffused magnetic field are claimed. It functions as an example of a magnetic field for position detection in this range.
  • the second linear magnetic field forming unit 10 will be described as an example of the magnetic field forming means with respect to a specific example, but as will be apparent from the description, a diffusion magnetic field forming is used as an example of the magnetic field forming means. Of course, the same holds true even when part 11 is used.
  • the second linear magnetic field forming unit 10 is for forming a second linear magnetic field that is a linear magnetic field traveling in a direction different from the first linear magnetic field. Further, the diffusion magnetic field forming unit 11 is different from the first linear magnetic field forming unit 9 and the second linear magnetic field forming unit 10 in that the magnetic field direction has a position dependency. It is intended to form a magnetic field that diffuses with increasing distance.
  • FIG. 4 is a schematic diagram showing configurations of the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11 and an aspect of the second linear magnetic field formed by the second linear magnetic field forming unit 10.
  • the second linear magnetic field forming unit 10 extends in the y-axis direction on the reference coordinate axis and has a coil 32 formed so that the coil cross section is parallel to the xz plane, and the coil 32 has a current.
  • a current source 33 for supplying.
  • the second linear magnetic field formed by the coil 32 is a linear magnetic field at least inside the subject 1, and the strength gradually decreases as the distance from the coil 32 increases, that is, the strength. It has a position dependency with respect to.
  • the diffusion magnetic field forming unit 11 includes a coil 34 and a current source 35 for supplying current to the coil 34.
  • the coil 32 is arranged so as to form a magnetic field having a traveling direction in a predetermined direction.
  • the linear magnetic field formed by the coil 32 is Arranged so that the traveling direction is the y-axis direction of the reference coordinate axis.
  • the coil 34 is fixed at a position where a diffusion magnetic field that is the same as the magnetic field direction stored in a magnetic field direction database 42 described later is formed.
  • the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11 have a function of adjusting the strength of the magnetic field to be formed according to the control by the magnetic field strength control unit 50 described later.
  • the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11 adjust the current value supplied by the current sources 33 and 35 with respect to the control of the magnetic field strength control unit 50, thereby adjusting the magnetic field strength. It has a function to adjust.
  • FIG. 5 is a schematic diagram showing an aspect of the diffusion magnetic field formed by the diffusion magnetic field forming unit 11.
  • the coil 34 provided in the diffusion magnetic field forming unit 11 is spirally formed on the surface of the subject 1, and the diffusion magnetic field formed by the diffusion magnetic field forming unit 11 is shown in FIG.
  • the magnetic lines of force are radially diffused and formed so as to be incident on the coil 34 again.
  • the first linear magnetic field forming unit 9, the second linear magnetic field forming unit 10, and the diffusion magnetic field forming unit 11 form magnetic fields at different times.
  • the first linear magnetic field forming unit 9 and the like are configured to form a magnetic field according to a predetermined order rather than simultaneously forming a magnetic field, and the magnetic field sensor provided in the capsule endoscope 2 is configured. 16 shall detect the 1st linear magnetic field, the 2nd linear magnetic field and the diffusion magnetic field separately.
  • FIG. 6 is a block diagram schematically showing a specific configuration of the processing apparatus 12.
  • the processing device 12 has a function of receiving a radio signal transmitted by the capsule endoscope 2, and selects one of the receiving antennas 7a to 7d corresponding to the function.
  • the signal processing unit 39 has a function of reconstructing the magnetic field signals S1 to S3 and the image signal S4 based on the extracted original signals and outputting them to appropriate components.
  • the magnetic field signals S1 to S3 are magnetic field signals corresponding to the first linear magnetic field, the second linear magnetic field, and the diffusion magnetic field detected by the magnetic field sensor 16, respectively.
  • the image signal S4 corresponds to the in-subject image acquired by the in-subject information acquisition unit 14. is there.
  • the capsule endoscope 2 as a specific form of the magnetic field signals S to S, for the capsule endoscope 2
  • the image signal S4 is output to the recording unit 43.
  • the recording unit 43 is for outputting the input data to the portable recording medium 5, and records not only the image signal S4 but also the result of position detection described later on the portable recording medium 5. Has a function.
  • the processing device 12 has a function of detecting the position of the capsule endoscope 2 in the subject 1 based on the magnetic field intensity detected by the capsule endoscope 2, and the like. It has a function of detecting the orientation formed by the target coordinate axis fixed with respect to the capsule endoscope 2 with respect to the reference coordinate axis fixed with respect to the capsule endoscope 2. Specifically, out of the signals transmitted by the capsule endoscope 2 and output by the signal processing unit 39, the magnetic field signals S and S corresponding to the detected intensities of the first linear magnetic field and the second linear magnetic field are used. Based on the reference coordinate axis
  • azimuth deriving unit 40 Capsule using azimuth deriving unit 40 for deriving the azimuth of the target coordinate axis, magnetic field signal S and magnetic field signal S corresponding to the detected intensity of the diffusion magnetic field, and derivation result of azimuth deriving unit 40
  • the direction derivation and position derivation by these components will be described in detail later.
  • the processing device 12 has a function of wirelessly transmitting drive power to the capsule endoscope 2, and an oscillator 44 that defines the frequency of a wireless signal to be transmitted, and is output from the oscillator 44.
  • An amplification circuit 46 that amplifies the intensity of the radio signal, and a transmission antenna selection unit 47 that selects a transmission antenna used for transmission of the radio signal are provided.
  • the earned radio signal is received by the receiving antenna 28 provided in the capsule endoscope 2 and functions as driving power for the capsule endoscope 2.
  • the processing device 12 includes a selection control unit 48 that controls an antenna selection mode by the reception antenna selection unit 37 and the transmission antenna selection unit 47.
  • the selection control unit 48 is provided for the capsule endoscope 2 derived by the azimuth deriving unit 40 and the position deriving unit 41, respectively. Based on the position and position, it has a function of selecting the transmitting antenna 8 and the receiving antenna 7 that are most suitable for transmission / reception with respect to the capsule endoscope 2.
  • the processing device 12 has a function of controlling the strength of the magnetic field formed by the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11.
  • the processing device 12 includes a moving speed deriving unit 48 for deriving the moving speed of the capsule endoscope 2 based on the history of the position of the capsule endoscope 2 recorded in the recording unit 43, and a derivation.
  • a range deriving unit 49 for deriving a range in which the capsule endoscope 2 is located based on the obtained moving speed and the past position of the capsule endoscope 2, and a second linear magnetic field forming unit 10 based on the derived range 10
  • a magnetic field strength control unit 50 that controls the formation magnetic field strength of the diffusion magnetic field forming unit 11.
  • the functions of the moving speed deriving unit 48 and the magnetic field strength control unit 50 will be described in detail later.
  • the processing device 12 includes a power supply unit 51 for supplying drive power to these components.
  • the position detection mechanism of the capsule endoscope 2 will be described.
  • the positional relationship between the reference coordinate axis fixed with respect to the subject 1 and the target coordinate axis fixed with respect to the capsule endoscope 2 is determined. Specifically, after deriving the orientation of the target coordinate axis with respect to the reference coordinate axis, using the derived orientation, the position of the origin of the target coordinate axis on the reference coordinate axis, that is, within the subject 1
  • the position of the capsule endoscope 2 is derived. Therefore, in the following, first, the azimuth derivation mechanism will be explained, and then the position derivation mechanism using the derived azimuth will be explained.
  • the present invention is applied to a system having a position detection mechanism that is useful. Of course, it is not limited.
  • FIG. 7 is a schematic diagram showing the relationship between the reference coordinate axis and the target coordinate axis when the capsule endoscope 2 is moving in the subject 1.
  • the capsule endoscope 2 is used for the subject. 1 While traveling along the passage route, it is rotated by a predetermined angle around the traveling direction. Therefore, the target coordinate axis fixed with respect to the capsule endoscope 2 has a azimuth shift as shown in FIG. 7 with respect to the reference coordinate axis fixed with respect to the subject 1.
  • the first linear magnetic field forming unit 9 and the second linear magnetic field forming unit 10 are each fixed to the subject 1. Therefore, the first and second linear magnetic fields formed by the first linear magnetic field forming unit 9 and the second linear magnetic field forming unit 10 are in a fixed direction with respect to the reference coordinate axis, specifically, the first linear magnetic field is the reference coordinate axis.
  • the second linear magnetic field travels in the y-axis direction.
  • the azimuth derivation in the first embodiment is performed using the first linear magnetic field and the second linear magnetic field.
  • the magnetic field sensor 16 provided in the capsule endoscope 2 detects the traveling directions of the first linear magnetic field and the second linear magnetic field supplied in time division.
  • the magnetic field sensor 16 is configured to detect the magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction in the target coordinate axis, and the traveling direction of the detected first and second linear magnetic fields in the target coordinate axis
  • the information on is transmitted to the position detection device 3 via the wireless transmission unit 19.
  • the radio signal transmitted by the capsule endoscope 2 undergoes processing by the signal processing unit 39 and the like, and is output as magnetic field signals S and S.
  • the magnetic field signal S For example, in the example of FIG. 7, the magnetic field signal S
  • the field signal S contains information about the coordinates (X, Y, Z) as the traveling direction of the second linear magnetic field.
  • the azimuth deriving unit 40 receives the magnetic field signals S and S and receives the reference coordinates.
  • the direction of the target coordinate axis with respect to the axis is derived.
  • the orientation deriving unit 40 has an inner product value of 0 for both (X, Y, Z) and (X, Y, Z) on the target coordinate axis.
  • the direction deriving unit 40 performs predetermined coordinate conversion processing based on the above-described correspondence relationship, derives coordinates on the reference coordinate axes of the X axis, the Y axis, and the Z axis in the target coordinate axis, and determines the coordinates to be collected as the direction. Output as information.
  • the above is the azimuth derivation mechanism by the azimuth derivation unit 40.
  • the position deriving unit 41 receives the magnetic field signals S and S from the signal processing unit 39, and the direction deriving unit 40
  • the direction of the force is input, and the information stored in the magnetic field direction database 42 is input.
  • the position deriving unit 41 derives the position of the capsule endoscope 2 as follows based on the input information.
  • the position deriving unit 41 uses the magnetic field signal S and the second linear magnetic field forming unit 10 and the capsule
  • Magnetic field signal S is the presence of capsule endoscope 2
  • the second linear magnetic field corresponds to the detection result of the second linear magnetic field in the region
  • the second linear magnetic field forming unit corresponds to the fact that the second linear magnetic field forming unit 10 is arranged outside the subject 1. It has a characteristic that its strength attenuates as it is separated from 10.
  • the position deriving unit 41 uses the characteristics that are applied, the position deriving unit 41 also calculates the strength of the second linear magnetic field in the vicinity of the second linear magnetic field forming unit 10 (obtained from the current value flowing through the second linear magnetic field forming unit 10) and the magnetic field signal S force. Capsule required
  • the strength of the second linear magnetic field in the region where the type endoscope 2 exists is compared, and the distance r between the second linear magnetic field forming unit 10 and the capsule endoscope 2 is derived.
  • the capsule endoscope 2 is located on the curved surface 52, which is a set of points separated from the second linear magnetic field forming unit 10 by a distance!: It becomes clear that power.
  • the position deriving unit 41 includes the magnetic field signal S and the azimuth information derived by the azimuth deriving unit 40.
  • the position of the capsule endoscope 2 on the curved surface 52 is derived based on the information and the information stored in the magnetic field direction database 42. Specifically, magnetic field signal S and direction information
  • the magnetic field signal S is a signal corresponding to the result of detecting the diffuse magnetic field based on the target coordinate axis.
  • the orientation information is used for the traveling direction of the diffusion magnetic field based on the magnetic field signal S.
  • the traveling direction of the diffusion magnetic field on the reference coordinate axis at the position where the capsule endoscope 2 exists is derived. Since the magnetic field line database 42 records the correspondence between the traveling direction and position of the diffusion magnetic field on the reference coordinate axis, the position deriving unit 41 stores the magnetic field line database 42 in the magnetic field line database 42 as shown in FIG. The position corresponding to the traveling direction of the diffusion magnetic field derived by referring to the obtained information is derived, and the derived position is specified as the position of the capsule endoscope 2. The position derivation mechanism by the position derivation unit 41 has been described above. Next, intensity control of the second linear magnetic field and the diffusion magnetic field will be described.
  • Such control of the magnetic field strength is performed for the purpose of reducing the power consumption required for forming the second linear magnetic field or the like used as the position detection magnetic field. More specifically, in the magnetic field intensity control in the first embodiment, the position of the capsule endoscope 2 is predicted to some extent at the time of position detection to be performed in the future, and the capsule endoscope 2 is used within the predicted range where it works. As long as it can be detected by the magnetic field sensor 16 provided, the strength of the formed magnetic field is reduced.
  • Example 1 the magnetic field strength control is roughly performed according to the following process.
  • the movement speed deriving unit 48 derives the moving speed of the capsule endoscope 2
  • the range deriving unit 49 derives the possible region of the capsule endoscope 2
  • the magnetic field control unit 50 This is control with the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11 based on the possible region.
  • the derivation of the moving speed, the derivation of the possible area, and the control of the second linear magnetic field forming unit 10 will be described.
  • time t means a time at which position detection is performed, and among times t, times t, t, and t are times at which position detection has already been performed, Ie
  • time t is a time corresponding to position detection to be performed in the future.
  • Magnetic field strength control is time t
  • first time in the claims corresponds to time t
  • ⁇ 2 time '' corresponds to time t
  • ⁇ multiple past times '' corresponds to time t, t, t
  • FIG. 10 is a schematic diagram for explaining the moving speed and the derivation mechanism of the existence possible area.
  • the moving speed deriving unit 48 records different times t recorded in the recording unit 43.
  • T based on the position at t, the travel distance r from time t to t and the time t to t
  • the moving distance r in 0 1-1 0-1 0 1 is derived, and the average moving speed in the past is derived using the moving distance.
  • the average value V of the moving speed from time t to t is
  • the movement speed at times t to t If it is derived based on the position detected at a certain number of times, it may be anything other than that shown in Equation (1).
  • the range deriving unit 49 derives the possible region of the capsule endoscope 2 at time t based on the moving speed derived by the moving speed deriving unit 48.
  • the possible region is derived as a spherical region 53 with a radius of 1 2 2 1. That is, in Example 1, the capsule endoscope 2 exists in the spherical region 53 shown in FIG. 11 at time t.
  • the magnetic field strength control unit 50 adjusts the strength of the magnetic field formed by the second linear magnetic field forming unit 10 and the diffusion magnetic field forming unit 11 so as to cover the strong region.
  • FIG. 11 is a schematic diagram showing the control of the magnetic field strength related to the second linear magnetic field forming unit 10 as an example of the control by the magnetic field strength control unit 50.
  • the “magnetic field forming region” means a region where a significant magnetic field is formed with respect to position detection. Specifically, for example, the magnetic field sensor 16 provided in the capsule endoscope 2 detects the magnetic field. A region where a magnetic field of possible strength is formed.
  • the second magnetic field forming unit 10 forms a magnetic field so that the power consumption is minimized under the condition that the magnetic field forming region 54 includes the spherical region 53. Specifically, since the second linear magnetic field has a characteristic that the intensity decreases as the distance from the second linear magnetic field forming unit 10 increases, the second linear magnetic field forming unit 10 is located farthest in the spherical region 53. Magnetic field formation is performed so that the positioned portion and the peripheral edge of the magnetic field formation region 54 overlap. The above is the magnetic field intensity control mechanism by the magnetic field intensity controller 50.
  • the magnetic field strength control unit 50 sets a magnetic field formation region corresponding to the possible existence range, and controls the second linear magnetic field formation unit 10 and the like to realize the magnetic field formation region (step S104). ),
  • the position of the capsule endoscope 2 is derived after a predetermined time while feeding back the control content (step S105). Then, it is determined whether or not the position detection is finished (step S106). If the position detection is not finished (step S106, No), the process returns to step S103 again to repeat the above processing.
  • the processing device 12 corresponds to the above operation, and reconstructs the in-vivo image data based on the radio signal transmitted from the capsule endoscope 2 and records the driving power for the capsule endoscope 2. However, since it is not a feature of the present invention, description thereof is omitted here.
  • step S101 the reason for setting the magnetic field formation region so as to cover the entire subject in step S101 is that it is difficult to derive the possible range by the above-described mechanism at the time of initial position detection. This is because of this. In other words, in the mechanism described above, the possible range of existence is derived using previously detected positions, etc., so only the first position detection operation is performed according to the same mechanism as before. Will be.
  • step S105 the position derivation by the position deriving unit 41 is performed while feeding back the control content by the magnetic field intensity control unit 50 based on the following reason.
  • the derivation of the distance! Between the second linear magnetic field forming unit 10 and the capsule endoscope 2 shown in FIG. 8 is output from the second linear magnetic field forming unit 10.
  • the strength of the second linear magnetic field is attenuated as the distance from the second linear magnetic field forming unit 10 increases.
  • the position deriving unit 41 derives the distance r based on the intensity decay rate of the second linear magnetic field, it is necessary to grasp the magnetic field strength in the vicinity of the second linear magnetic field forming unit 10.
  • the position derivation unit 41 (and the azimuth derivation unit 40 if necessary) receives information related to the control contents from the magnetic field strength control unit 50 and uses the powerful information. Thus, position detection is performed.
  • the in-subject introduction system according to Example 1 detects the position of the capsule endoscope using the formed magnetic field and controls the position of the capsule endoscope by controlling the intensity of the magnetic field used for position detection to a necessary and sufficient value. There is an advantage that power consumption in the entire apparatus 3 can be reduced.
  • the existence range is set as a region, and magnetic field formation is performed to the extent that covers the possible existence range. Therefore, compared to the conventional case where the magnetic field is formed so as to cover the entire subject 1, the magnetic field formation region can be significantly narrowed, and the amount of power required for the magnetic field formation can be reduced. Therefore, it is possible to realize an in-subject introduction system with low power consumption.
  • the magnetic field forming region is set narrower than the conventional one, there is an advantage that the influence on the peripheral device can be reduced more than the conventional one.
  • the strength of the magnetic field formed outside the subject 1 is also reduced, and the influence on the electronic equipment and the like located outside the subject 1 is reduced. Is possible.
  • the in-subject introduction system according to the first example has a derived range centered on the position of the capsule endoscope 2 at time t as the existence possible range.
  • a spherical region 53 having a radius that is the product of the dynamic speed V and the elapsed time ⁇ t is derived.
  • the capsule endoscope 2 has a characteristic that the moving speed changes according to the passage region inside the subject 1.
  • the possible range is the position at time t.
  • the capsule endoscope 2 moves at high speed like the esophagus, the capsule endoscope is located at a position outside the possible range at time t2. Therefore, it is impossible to perform reliable position detection with a high probability that 2 will be located.
  • the moving speed is derived based on the past detection result, and the range that can be reached by the derived moving speed is set as the possible existence range. It will not cause any negative effects as if It is possible to derive the existence range having high certainty. That is, the in-subject introduction system according to the first embodiment has an advantage that the electric power required for magnetic field formation can be reduced while maintaining the position detection accuracy.
  • the intra-subject introduction system that is effective in the second embodiment is related to the position of the capsule endoscope 2 in the subject 1 and the position of the capsule endoscope 2 with respect to the moving speed of the capsule endoscope 2 that is performed as a premise of control of the magnetic field strength. It has a configuration derived using a database in which the relationship with the dynamic speed is recorded in an intensive manner.
  • FIG. 13 is a schematic block diagram illustrating the configuration of the processing device 55 provided in the in-subject introduction system according to the second embodiment.
  • the intra-subject introduction system according to the second embodiment basically has the same configuration as the intra-subject introduction system according to the first embodiment, and although not illustrated, the capsule is similar to the first embodiment.
  • a mold endoscope 2, a display device 4, and a portable recording medium 5 are provided.
  • the position detection device in addition to the processing device 55 described below, the receiving antennas 7a to 7d, the transmitting antennas 8a to 8d, the first linear magnetic field forming unit 9, and the second linear magnetic field forming unit are the same as in the first embodiment. 10 and a diffusion magnetic field forming unit 11.
  • those having the same names and symbols as those of the processing device 12 in the first embodiment have the same structure as the first embodiment unless otherwise specified.
  • the processing device 55 provided in the intra-subject introduction system newly includes a moving speed database 56.
  • the moving speed database 56 has a function of recording information about the correspondence between the position of the capsule endoscope 2 in the subject 1 and the moving speed, and the moving speed deriving unit 57 is recorded in the recording unit 43.
  • it has a function of deriving the moving speed of the capsule endoscope 2 at the second time based on the position of the capsule endoscope 2 at the first time and the information recorded in the moving speed database 56.
  • the moving speed of the capsule endoscope 2 usually fluctuates due to the structure of the digestive tract passing through the subject 1 rather than always maintaining a constant value inside the subject 1, for example, the esophagus While moving at a high speed when passing, the moving speed is reduced when passing through the small intestine It has the property to do.
  • the capsule endoscope 2 pays attention to the characteristic that the moving speed changes depending on the position in the subject 1, and the correspondence relationship between the position in the subject and the moving speed is classified in advance, The movement speed is derived by preparing the categorized correspondence as data.
  • FIG. 14 is a schematic diagram showing an example of the content of information recorded in the moving speed database 56.
  • the moving speed database 56 roughly divides the region through which the capsule endoscope 2 passes into three as an example. Specifically, the moving speed database 56 stores the positions of the first speed area 59 corresponding to the esophagus, the second speed area 60 corresponding to the stomach, and the third speed area 61 corresponding to the small intestine 'large intestine. Each has a function to memorize the maximum speed.
  • the movement speed deriving unit 57 derives the movement speed of the capsule endoscope 2 as follows. That is, the moving speed deriving unit 57 first refers to the recording unit 43 and acquires information related to the position of the capsule endoscope 2 at the first time (time t). And
  • the moving speed deriving unit 57 determines in which speed region the capsule endoscope 2 is positioned at the first time, and the corresponding moving speed is determined. Get information about. For example, in the example of FIG. 14, the moving speed deriving unit 57 determines that the moving speed deriving unit 57 belongs to the second speed area 60, and the speed stored in the moving speed database 56 as corresponding to the second speed area 60 is Capsule endoscope at second time (time t) 2
  • the moving speed can be easily derived. That is, in the second embodiment, the moving speed deriving unit 57 inputs the corresponding information from the moving speed database 56 based on the position of the capsule endoscope 2 that has already been detected at the first time. Is derived. Therefore, the second embodiment has an advantage that the moving speed can be derived quickly and easily without the need for performing an arithmetic process or the like in deriving the moving speed.
  • Example 3 the in-subject introduction system according to Example 3 will be described.
  • the powerful intra-subject introduction system makes it possible to derive the existence range with higher certainty by deriving not only the movement speed but also the movement direction when deriving the existence range.
  • FIG. 15 is a schematic block diagram of the configuration of the processing device 63 provided in the in-subject introduction system according to the third embodiment.
  • the intra-subject introduction system according to Example 3 includes a capsule endoscope 2, a display device 4, and a portable recording medium 5.
  • the position detection device in addition to the processing device 63 described below, the reception antennas 7a to 7d and the like are provided as in the first embodiment. Further, those with the same names and symbols as in Example 2 have the same structure as in Example 2 unless otherwise specified.
  • the processing device 63 has a configuration further including a moving direction deriving unit 64.
  • the movement direction deriving unit 64 has a function of deriving the movement direction of the capsule endoscope 2 based on the directivity direction of the capsule endoscope 2 at the first time recorded in the recording unit 43.
  • the direction is output to the range deriving unit 65.
  • the range deriving unit 65 uses the position of the capsule endoscope 2 recorded in the recording unit 43 at the first time and the moving speed deriving unit 48. Based on the derived moving speed and the moving speed derived by the moving direction deriving unit 64, it has a function of deriving the possible range of the capsule endoscope 2 at the second time.
  • FIG. 16 is a schematic diagram for explaining the derivation mechanism of the possible existence range in the third embodiment.
  • the capsule endoscope 2 is expected to move to a point moved by VA t in the moving direction.
  • the predetermined area that contains it is derived as the possible existence range 66.
  • the magnetic field strength control unit 50 controls the second linear magnetic field forming unit 10 to form the magnetic field forming region 67 including the possible range 66, for example.
  • Example 3 The advantages of the intra-subject introduction system according to the third embodiment will be described.
  • Example 3 a configuration that uses not only the moving speed but also the moving direction is adopted for deriving the possible existence range. Therefore, as in Example 2, it is possible to exist as a spherical region centered on the position of the capsule endoscope 2 at the time t without particularly considering the moving direction.
  • the position of the capsule endoscope 2 at time t is the center.
  • the magnetic field formation region can be narrowed, and the power consumption required for magnetic field formation in the second linear magnetic field forming unit 10 and the like can be further reduced. Has the advantage.
  • Example 3 the moving direction deriving unit 64 records the capsule at time t recorded in the recording unit 43.
  • the direction of movement is derived based on the position of the capsule endoscope 2 at a plurality of past times.
  • FIG. 17 is a schematic diagram for explaining the moving direction deriving mechanism in the present modification. As shown in FIG. 17, in this modification example, at a plurality of past times t 1, t, t
  • a direction vector is derived. It is also effective to derive the moving direction using a powerful method, and in particular, when applied to a position detection device that does not have a function to derive the pointing direction of the capsule endoscope 2, the configuration of this modification example By adopting, it is possible to derive the moving direction of the capsule endoscope 2 without having the function of deriving the pointing direction.
  • FIG. 18 is a schematic diagram illustrating the overall configuration of the in-subject introduction system according to the fourth embodiment.
  • the in-vivo introduction system according to the fourth embodiment includes the capsule endoscope 2, the display device 4, and the portable recording medium 5 as in the first to third embodiments.
  • the configuration of the detection device 68 is different. Specifically, the first linear magnetic field forming unit 9 provided in the position detection device in Example 1 or the like is omitted, and a new geomagnetic sensor 69 is provided.
  • the processing device 70 also has a configuration different from that of the first embodiment.
  • the geomagnetic sensor 69 basically has the same configuration as the magnetic field sensor 16 provided in the capsule endoscope 2. In other words, the geomagnetic sensor 69 has a function of detecting the intensity of the magnetic field component in the predetermined triaxial direction in the arranged region and outputting an electrical signal corresponding to the detected magnetic field intensity. On the other hand, unlike the magnetic field sensor 16, the geomagnetic sensor 69 is arranged on the body surface of the subject 1 and extends in the X-axis, y-axis, and z-axis directions in the reference coordinate axes fixed to the subject 1. Each has a function of detecting the intensity of the corresponding magnetic field component.
  • the geomagnetic sensor 69 has a function of detecting the traveling direction of the geomagnetism, and outputs an electrical signal corresponding to the detected magnetic field strength with respect to the X-axis direction, the y-axis direction, and the z-axis direction to the processing device 70. It has a configuration.
  • FIG. 19 is a block diagram showing a configuration of the processing device 70.
  • the processing device 70 basically has the same configuration as the processing device 12 in the first embodiment, but on the reference coordinate axis based on the electrical signal input from the geomagnetic sensor 69. It has a configuration including a geomagnetic azimuth deriving unit 71 for deriving the direction of travel of geomagnetism and outputting the derived result to the azimuth deriving unit 40.
  • the problem is the derivation of the direction of travel of geomagnetism on the reference coordinate axis fixed with respect to the subject 1. That is, since the subject 1 can freely move while the capsule endoscope 2 moves in the body, the positional relationship between the reference coordinate axis fixed to the subject 1 and the geomagnetism. Is expected to change as the subject 1 moves.
  • the viewpoint of deriving the positional relationship of the target coordinate axis with respect to the reference coordinate axis if the traveling direction of the first linear magnetic field in the reference coordinate axis is unknown, the reference coordinate axis and the target are related to the traveling direction of the first linear magnetic field. seat This causes a problem that the correspondence relationship between the marked axes cannot be clarified.
  • the geomagnetic sensor 69 and the geomagnetic azimuth deriving unit 71 are provided to monitor the advancing direction of the geomagnetism that varies on the reference coordinate axis due to the movement of the subject 1 or the like. . That is, based on the detection result of the geomagnetic sensor 69, the geomagnetic azimuth deriving unit 71 derives the traveling direction of the geomagnetism on the reference coordinate axis, and outputs the derived result to the azimuth deriving unit 40.
  • the azimuth deriving unit 40 derives the correspondence between the reference coordinate axis and the target coordinate axis with respect to the direction of geomagnetism by using the input direction of geomagnetism, and the correspondence in the second linear magnetic field. Together with this, it is possible to derive azimuth information.
  • the geomagnetic progression direction and the second linear magnetic field formed by the second linear magnetic field forming unit 10 may be parallel to each other.
  • the extending direction of the coil 34 constituting the second linear magnetic field forming unit 10 is shown in the reference coordinate axis as shown in FIG. For example, it is effective to extend in the z-axis direction instead of the y-axis direction.
  • the positional relationship detection system according to the fourth embodiment has further advantages by using geomagnetism.
  • geomagnetism As the first linear magnetic field, it is possible to omit the mechanism for forming the first linear magnetic field, and the coverage at the time of introduction of the capsule endoscope 2 can be reduced. It is possible to derive the positional relationship of the target coordinate axis with respect to the reference coordinate axis while reducing the burden on the specimen 1.
  • the geomagnetic sensor 69 can be configured using an Ml sensor or the like, it can be sufficiently miniaturized, and the newly installed geomagnetic sensor 69 does not increase the burden on the subject 1. Absent.
  • FIG. 20 is a schematic diagram illustrating the overall configuration of the in-subject introduction system according to the fifth embodiment.
  • the capsule endoscope 2, the display device 4, and the portable recording medium 5 have the same configuration as in the first embodiment, description thereof is omitted here.
  • the difference between the first embodiment and the fifth embodiment is the configuration of the position detection device 103.
  • the position detection device 103 is configured to receive radio signals transmitted from the capsule endoscope 2 and receive power for the capsule endoscope 2 and the receiving antennas 106a to 106d. Transmitting antennas 107a to 107d for transmitting radio signals, a first linear magnetic field forming unit 108 that forms a first linear magnetic field, and a second linear magnetic field forming unit that is held by a holding member 109 and forms a second linear magnetic field 110a to 110d, a diffusion magnetic field forming unit 111 that forms a diffusion magnetic field, and a processing device 112 that performs predetermined processing on radio signals and the like received via the receiving antennas 106a to 106d.
  • the receiving antennas 106a to 106d, the transmitting antennas 107a to 107d, and the first linear magnetic field forming unit 108 are the receiving antennas 7a to 7d, the transmitting antennas 8a to 8d, and the first linear magnetic field forming unit 9 of Example 1. Since the configuration is the same as that described above, the description thereof is omitted here.
  • Second linear magnetic field forming unit 110a to 110d that forms a second linear magnetic field that functions as an example of a position detection magnetic field according to the present invention and functions as an example of a magnetic field forming unit according to the present invention.
  • Second linear magnetic field forming unit 110a ⁇ : L lOd is for forming a second linear magnetic field that travels in a direction different from that of the first linear magnetic field and has a position dependency with respect to strength.
  • FIG. 21 shows a plurality of second linear magnetic field forming units 110a ⁇ : L lOd and second linear magnetic field forming units 110a ⁇ : L 10d fixed to the subject 1 in the fifth embodiment.
  • 6 is a schematic diagram showing the positional relationship of the holding member 109.
  • each of the second linear magnetic field forming units 110a to 110d is placed on a holding member 109 formed so as to cover the trunk of the subject 1.
  • the “magnetic field formation region” refers to a region where a magnetic field having a strength that can be used for position detection is formed.
  • the magnetic field sensor 16 provided in the capsule endoscope 2 can detect the magnetic field. This refers to a strong magnetic field.
  • each of the magnetic field forming regions 132a to 132d is formed so as to include a part of the region where the capsule endoscope 2 to be detected can be located, that is, a part of the entire region of the subject 1.
  • a region obtained by adding the respective magnetic field forming regions is formed so as to include the entire region where the capsule endoscope 2 can be located.
  • FIG. 22 is a schematic diagram showing the configuration of the second linear magnetic field forming unit 110a and the diffusion magnetic field forming unit 111, and the mode of the second linear magnetic field formed by the second linear magnetic field forming unit 110a. is there.
  • the second linear magnetic field forming unit 110a extends in the y-axis direction with respect to the reference coordinate axis, and the coil 133 formed so that the coil cross section is parallel to the xz plane, And a current source 134 for supplying.
  • the second linear magnetic field formed by the coil 133 is a linear magnetic field at least inside the subject 1, and the intensity gradually decreases as the distance from the coil 133 increases. That is, it has position dependency with respect to strength.
  • FIG. 22 is a schematic diagram showing the configuration of the second linear magnetic field forming unit 110a and the diffusion magnetic field forming unit 111, and the mode of the second linear magnetic field formed by the second linear magnetic field forming unit 110a. is there.
  • the second linear magnetic field forming unit 110a extends in the y-
  • the second linear magnetic field forming units 110b to 110d have the same configuration as the second linear magnetic field forming unit 110a, and the traveling direction Are different, but form the same linear magnetic field as the second linear magnetic field forming unit 110a.
  • the diffusion magnetic field forming unit 111 is for forming a diffusion magnetic field having position dependency not only with respect to the magnetic field intensity but also with respect to the magnetic field direction.
  • the diffusion magnetic field forming unit 111 includes a coil coil 135 and a current source 136 for supplying current to the coil 135 as shown in FIG.
  • FIG. 23 is a schematic diagram showing an aspect of the diffusion magnetic field formed by the diffusion magnetic field forming unit 111.
  • the coil 135 provided in the diffusion magnetic field forming unit 111 is formed in a spiral shape on the surface of the subject 1, and the diffusion magnetic field formed by the diffusion magnetic field forming unit 111 is shown in FIG.
  • the magnetic field lines are formed so as to diffuse radially and enter the coil 135 again. ing.
  • the first linear magnetic field forming unit 108, the second linear magnetic field forming unit 110, and the diffusion magnetic field forming unit 111 form magnetic fields at different times. That is, in the fifth embodiment, the first linear magnetic field forming unit 108 and the like are configured to form a magnetic field according to a predetermined order rather than simultaneously forming a magnetic field, and the magnetic field sensor provided in the capsule endoscope 2 16 shall detect the 1st linear magnetic field, the 2nd linear magnetic field and the diffusion magnetic field separately.
  • FIG. 24 is a block diagram schematically showing a specific configuration of the processing device 112.
  • the processing device 112 has a function of performing reception processing of a radio signal transmitted by the capsule endoscope 2, and selects a shift between the receiving antennas 106a to 106d corresponding to the function to be turned on.
  • a signal processing unit 139 for reconstructing an image signal or the like by processing the original signal.
  • the signal processing unit 139 performs the magnetic field signal S to S and the magnetic field signal based on the extracted original signal.
  • the magnetic field signals S to S are respectively the first series detected by the magnetic field sensor 116.
  • the image signal S corresponds to the in-subject image acquired by the in-subject information acquisition unit 14.
  • the recording unit 143 It is expressed by a direction vector corresponding to the detected magnetic field strength on the fixed target coordinate axis, and includes information on the magnetic field traveling direction and magnetic field strength on the target coordinate axis. Further, the image signal S is output to the recording unit 143.
  • the recording unit 143 The recording unit 143
  • the portable recording medium 5 has a function of recording a position detection result to be described later.
  • the processing device 112 has a function of detecting the position of the capsule endoscope 2 inside the subject 1 based on the magnetic field intensity detected by the capsule endoscope 2, and the like. It has a function of detecting the orientation formed by the target coordinate axis fixed with respect to the capsule endoscope 2 with respect to the fixed reference coordinate axis. Specifically, based on the magnetic field signals S and S corresponding to the detected intensities of the first linear magnetic field and the second linear magnetic field among the signals transmitted by the capsule endoscope 2 and output by the signal processing unit 139. Pair with reference coordinate axis
  • the azimuth derivation unit 140 for deriving the azimuth of the target coordinate axis to be detected, the magnetic field signal S and the magnetic field signal S corresponding to the detected intensity of the diffusion magnetic field, and the derivation result of the azimuth derivation unit 140
  • the direction derivation and position derivation by these components will be described in detail later.
  • the processing device 112 has a function of wirelessly transmitting drive power to the capsule endoscope 2, and an oscillator 144 that defines the frequency of a wireless signal to be transmitted and an output from the oscillator 144.
  • An amplifying circuit 146 that amplifies the intensity of the radio signal and a transmission antenna selection unit 147 that selects a transmission antenna used for transmitting the radio signal.
  • the earned radio signal is received by the receiving antenna 28 provided in the capsule endoscope 2 and functions as driving power for the capsule endoscope 2.
  • the processing device 112 includes a selection control unit 148 that controls an antenna selection mode by the reception antenna selection unit 137 and the transmission antenna selection unit 147.
  • the selection control unit 148 is based on the azimuth and position of the capsule endoscope 2 derived by the azimuth deriving unit 140 and the position deriving unit 141, respectively. A function of selecting the antenna 106;
  • the processing device 112 selects, based on the position of the capsule endoscope 2, a plurality of second linear magnetic field forming units 110a to 110a: L10d, and selects the selected second linear magnetic field.
  • the forming unit 110 has a function of controlling to form a second linear magnetic field.
  • the processing device 112 includes a second linear magnetic field forming unit 110a that functions as a magnetic field forming unit 110a: a position selection unit 149 that selects an appropriate position from the positions of L lOd, and a position selection unit 149.
  • a drive control unit 150 that controls the second linear magnetic field forming unit 110 corresponding to the selected position to form a second linear magnetic field, and driving power is supplied to each component of the processing device 112.
  • a power supply unit 151 for supplying power.
  • the position selection unit 149 is for selecting a position where a magnetic field forming means for forming a magnetic field for position detection should be present at the time of position detection at a second time after a predetermined time has elapsed from the first time. It is.
  • a configuration including the second linear magnetic field forming units 110a to 110d is adopted as an example of the magnetic field forming means in the claims, and the position selecting unit 149 is the second linear magnetic field forming unit 110a. From the position P to P where ⁇ 110d is placed, the second time
  • the position selection unit 149 comprehensively grasps the positions P to P of the second linear magnetic field forming units 110a to 110d and the ranges of the magnetic field forming regions 132a to 132d. And position selection
  • the selection unit 149 is positioned as the position of the magnetic field forming means for forming the second linear magnetic field at the second time.
  • the drive control unit 150 has a function of driving the second linear magnetic field forming unit 110 corresponding to the position selected by the position selection unit 149. Specifically, the drive control unit 150 has a function of performing drive control with respect to the current source 134 included in each of the second linear magnetic field forming units 110a to LlOd, and the positions P to P and the second linear magnetic field. Between forming part 110a ⁇ 110d
  • the drive control unit 150 forms a predetermined magnetic field forming region 132 for the second linear magnetic field forming unit 110 corresponding to the information on the selected position output from the position selecting unit 149.
  • the second linear magnetic field forming unit 110 that does not correspond to the selected position is controlled to stop the magnetic field formation.
  • the second linear magnetic field forming unit 110a ⁇ the position detection method for detecting the position of the capsule endoscope 2 as the detection target, taking as an example the case where the second linear magnetic field forming unit 110a is selected from LlOd.
  • the force mechanism will be described, and then the selection mechanism for selecting the optimum medium force of the second linear magnetic field forming unit 11 Oa ⁇ : L lOd used for position derivation and the like will be described.
  • the position detection of the capsule endoscope 2 performed by the position detection device 103 will be described.
  • the positional relationship is derived between the reference coordinate axis fixed with respect to the subject 1 and the target coordinate axis fixed with respect to the capsule endoscope 2 Specifically, after deriving the orientation of the target coordinate axis with respect to the reference coordinate axis, using the derived orientation, the position of the origin of the target coordinate axis on the reference coordinate axis, that is, within the capsule type inside the subject 1 The position of endoscope 2 is derived. Therefore, in the following, after describing the azimuth derivation mechanism, the position derivation mechanism using the derived azimuth will be described. However, the present invention is not limited to a system having a position detection mechanism that is useful. Of course.
  • the direction deriving mechanism performed by the direction deriving unit 140 will be described.
  • This direction deriving mechanism is the same as the direction deriving mechanism performed by the direction deriving unit 40 described with reference to FIG. 7, and will be described with reference to FIG.
  • the capsule endoscope 2 travels along the passage path inside the subject 1 and rotates by a predetermined angle about the traveling direction. Therefore, the target coordinate axis fixed with respect to the capsule endoscope 2 has a azimuth shift as shown in FIG. 7 with respect to the reference coordinate axis fixed with respect to the subject 1.
  • the first linear magnetic field forming unit 108 and the second linear magnetic field forming unit 110a are each fixed to the subject 1. Therefore, the first and second linear magnetic fields formed by the first linear magnetic field forming unit 108 and the second linear magnetic field forming unit 110a are in a fixed direction with respect to the reference coordinate axis, specifically, the first linear magnetic field is the reference coordinate axis.
  • the second linear magnetic field forming unit 110a is used in the z-axis direction, the second linear magnetic field proceeds in the y-axis direction.
  • the azimuth derivation in the fifth embodiment is performed using the first linear magnetic field and the second linear magnetic field.
  • the magnetic field sensor 16 provided in the capsule endoscope 2 detects the traveling directions of the first linear magnetic field and the second linear magnetic field supplied in time division.
  • the magnetic field sensor 16 is configured to detect the magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction in the target coordinate axis, and the traveling direction of the detected first and second linear magnetic fields in the target coordinate axis Information on the position detection device 103 via the wireless transmission unit 19 Sent.
  • the radio signal transmitted by the capsule endoscope 2 is processed as the magnetic field signals S and S through processing by the signal processing unit 139 and the like. For example, in the example of FIG.
  • the number S contains information about the coordinates (X, Y, Z) as the direction of travel of the first linear magnetic field.
  • the magnetic field signal S contains information about coordinates (X, Y, Z) as the direction of travel of the second linear magnetic field.
  • the azimuth deriving unit 140 receives the magnetic field signals S and S and receives the base signals.
  • the orientation of the target coordinate axis with respect to the quasi-coordinate axis is derived. Specifically, the azimuth deriving unit 140 calculates the inner product for both (X, Y, Z) and (X, Y, Z) on the target coordinate axis.
  • Coordinates (X, Y, Z) whose value is 0 correspond to the direction of the Z axis in the reference coordinate axis.
  • the direction deriving unit 140 performs a predetermined coordinate conversion process based on the above-described correspondence relationship, derives the coordinates on the reference coordinate axes of the target coordinate axes, such as the X axis, the Y axis, and the Z axis, and determines the coordinates to be applied in the direction Output as information.
  • the position deriving unit 141 receives magnetic field signals S and S from the signal processing unit 139, receives direction information from the direction deriving unit 140,
  • the information stored in the database 142 is input. Based on the input information, the position deriving unit 141 derives the position of the capsule endoscope 2 as follows.
  • the position deriving unit 141 uses the magnetic field signal S to connect the second linear magnetic field forming unit 110a to the cover.
  • the distance between the cell-type endoscope 2 is derived.
  • the magnetic field signal S is sent from the capsule endoscope 2
  • the second linear magnetic field corresponds to the detection result of the second linear magnetic field in the existing region, and the second linear magnetic field is formed in response to the second linear magnetic field forming unit 110a disposed outside the subject 1. As the distance from the portion 110a increases, the strength decreases. Using this characteristic, the position deriving unit 141 obtains the strength of the second linear magnetic field in the vicinity of the second linear magnetic field forming unit 110a (obtained from the current value flowing through the second linear magnetic field forming unit 110a) and the magnetic field signal S force. Comparison with the intensity of the second linear magnetic field in the region where capsule endoscope 2 exists
  • the distance! Between the second linear magnetic field forming unit 110a and the capsule endoscope 2 is derived. As a result of deriving the distance r, the capsule endoscope 2 has a second linear magnetic field as shown in FIG. It becomes clear that the image is located on the curved surface 52, which is a set of points separated from the formation part 110a by a distance r.
  • the position deriving unit 141 is the one derived by the magnetic field signal S and the direction deriving unit 140.
  • the position of the capsule endoscope 2 on the curved surface 52 is derived based on the positional information and the information stored in the magnetic field direction database 142. Specifically, the magnetic field signal S and
  • the traveling direction of the diffusion magnetic field at the position where the capsule endoscope 2 is present is derived.
  • the magnetic field signal S corresponds to the result of detecting the diffuse magnetic field based on the target coordinate axis.
  • the traveling direction of the diffusion magnetic field in the reference coordinate axis at the position where the capsule endoscope 2 exists is derived. Since the magnetic field direction database 142 records the correspondence between the traveling direction and position of the diffuse magnetic field on the reference coordinate axis, the position deriving unit 141 stores the magnetic field direction database 142 in the magnetic field direction database 142 as shown in FIG. The position corresponding to the traveling direction of the diffusion magnetic field derived by referring to the stored information is derived, and the derived position is specified as the position of the capsule endoscope 2. The above is the position deriving mechanism by the position deriving unit 141.
  • the magnetic field forming regions 132a to 132d formed by the second linear magnetic field forming units 110a to 110d are the subject 1 on which the capsule endoscope 2 can be located.
  • the position selection unit 149 since the position selection unit 149 detects the position where the second linear magnetic field forming unit 110 should be present in the positions P to P because the position is detected by the position selection unit 149. And select the number corresponding to the selected position.
  • the drive controller 150 is configured so that only the two linear magnetic field generators 110 are driven.
  • FIG. 27 is a schematic diagram showing an example of a position where the capsule endoscope 2 is present at the first time.
  • the position selection unit 149 extracts information related to the position of the capsule endoscope 2 at the first past time from the information recorded in the recording unit 143. Further, as described above, the position selection unit 149 performs the specific values of the positions P to P and the range of the magnetic field formation regions 132a to 132d.
  • the position selection unit 149 knows where the capsule endoscope 2 is located at the first time and the relationship between the position of the capsule endoscope 2 and the positions P to P.
  • the position selection unit 149 selects the most appropriate position of the magnetic field forming means at the time of position detection performed at the second time, which is a time that has passed a predetermined time from the first time. To do. In the fifth embodiment, the position selection unit 149 at the first time among the positions P to P.
  • the capsule endoscope 2 at the first time has a distance r with respect to the position P.
  • the position selection unit 149 Located in the 1st zone, at a distance r «r) with respect to the position P. Therefore, the position selection unit 149
  • the selected position is output to the drive control unit 150 as a position where the second linear magnetic field forming unit 110 that forms the second linear magnetic field at the second time should exist.
  • the drive control unit 150 drives the second linear magnetic field forming unit 110 corresponding to the position selected by the position selection unit 149. As described above, the drive control unit 150 is positioned at the positions P to
  • the second linear magnetic field forming unit 110b performs predetermined control so that the second linear magnetic field is formed.
  • information on the position selected by the position selection unit 149 is also output to the azimuth deriving unit 140 and the position deriving unit 141. That is, for example, the traveling direction and the intensity distribution are different between the second linear magnetic field formed by the second linear magnetic field forming unit 110a and the second linear magnetic field formed by the second linear magnetic field forming unit 110b. This is because the azimuth deriving unit 140 and the position deriving unit 141 need to grasp which of the second linear magnetic field forming units 110a to LlOd forms a magnetic field when performing azimuth derivation and position derivation, respectively. .
  • advantages of the in-subject introduction system according to the fifth embodiment will be described.
  • the in-subject introduction system has position dependency with respect to strength, and forms a second linear magnetic field that functions as a magnetic field forming means for forming a second linear magnetic field that functions as a magnetic field for position detection.
  • a configuration including a plurality of units 110 is employed.
  • each of the second linear magnetic field forming portions 11 Oa to 11 Od does not cover the entire subject 1 alone even with respect to the deviation of the corresponding magnetic field forming regions 132a to 132d.
  • the entire formation region 132a to 132d is configured to cover the entire subject 1. Therefore, the second linear magnetic field forming unit 110a to L10d requires less electric power for magnetic field formation than the magnetic field forming means for forming the magnetic field forming region that covers the entire subject 1 alone. Become.
  • the position selecting unit 149 by appropriately selecting the position of the second linear magnetic field forming unit by the position selecting unit 149, it is possible to reliably generate a significant magnetic field in the position detection of the capsule endoscope 2 while reducing the amount of power required for magnetic field formation. It is possible to form.
  • the influence of the magnetic field on the electronic devices etc. existing outside the subject 1 by narrowing the range of the magnetic field forming regions 132a to 132d formed by the individual second linear magnetic field forming units 110a to: LlOd Can be reduced.
  • the position P is used as a reference for position selection by the position selection unit 149.
  • Example 5 By adopting a powerful configuration, in Example 5, it is possible to reliably form a second linear magnetic field having a detectable intensity in the region where the capsule endoscope 2 is located at the second time. ⁇ ⁇ Has advantages.
  • the magnetic field is formed by the second linear magnetic field forming unit 110 corresponding to the selected position at the second time after a predetermined time has elapsed from the first time.
  • the position of the capsule endoscope 2 at the second time is the same as the position force at the first time. It will be different. Therefore, when the position of the second linear magnetic field forming unit 110 is selected based on the position at the first time, the capsule endoscope 2 is located in a region outside the corresponding magnetic field forming region 132 at the second time. There is a fear.
  • Example 5 the position closest to the position of the capsule endoscope 2 at the first time is the position P to P.
  • the capsule endoscope 2 is located within the range of the magnetic field forming region 132 formed corresponding to the selected position P at the second time. It is. In other words, taking the positional relationship shown in FIG. 27 as an example, the capsule endoscope 2 at the first time is close to the position P.
  • the distance between the magnetic field forming region 132b and the peripheral edge of the magnetic field forming region 132b is larger than the distance between the magnetic field forming region 132a and the peripheral edge. Accordingly, in the example shown in FIG. 27, the capsule endoscope 2 is less likely to deviate from the magnetic field formation region 132b than the possibility of deviation from the magnetic field formation region 132a at time 2. By selecting the selected position, the possibility of deviating from the corresponding magnetic field formation region can be reduced, and reliable position detection can be performed at the second time.
  • the in-subject introduction system that works in the sixth embodiment has a configuration in which a single second linear magnetic field forming unit moves to a position selected by the position selection unit to form a second linear magnetic field.
  • FIG. 28 shows the second linear magnetic field forming unit provided in the in-vivo introduction system according to the sixth embodiment.
  • 10 is a schematic diagram showing a relationship between 110 and a holding member 154.
  • the in-subject introduction system according to Example 6 basically has the same configuration as the in-subject introduction system according to Example 5, and although not shown, is the same as Example 5.
  • 1 includes a capsule endoscope 2, a display device 4, and a portable recording medium 5.
  • the position detection device in addition to the holding member 154 and the processing device 156 described later, the reception antennas 106a to 106d, the transmission antennas 107a to 107d, the first linear magnetic field forming unit 108, and the second linear magnetic field are the same as in the fifth embodiment.
  • a forming unit 110 and a diffusion magnetic field forming unit 111 are included.
  • components having the same name “symbol as in the fifth embodiment have the same structure” function as in the fifth embodiment unless otherwise specified.
  • the second linear magnetic field forming unit 110 has the same structure ′ function as each of the second linear magnetic field forming units 110a ⁇ : L lOd in the Example 5. On the other hand, it is held in a movable state rather than being fixed to the holding member 154. Specifically, the holding member 154 is configured to function as a guide member, while the second linear magnetic field forming unit 110 is configured to move along the holding member 154 by the movable mechanism 155. . Further, on the holding member 154, it corresponds to the positions P to P in Example 5.
  • Stop points 154a to 154d are formed at the positions, and the movable mechanism 155 detects the stop points 154a to 154d, and moves the second linear magnetic field forming unit 110 to the positions P to P, respectively. It has a function to move.
  • FIG. 29 is a schematic block diagram showing the configuration of the processing apparatus 156.
  • the processing device 156 has a configuration that is basically the same as that of the processing device 112 in the fifth embodiment, but newly includes a movement control unit 157 that controls the movement state of the second linear magnetic field forming unit 110 by the movable mechanism 155. Has configuration. Specifically, the movement control unit 157 determines whether the position selection unit 149 is in the position P to P.
  • FIG. 30 is a schematic diagram for explaining a movement mode of the second linear magnetic field forming unit 110 based on the position selection performed by the position selection unit 149.
  • the position selection unit 149 determines the position P based on the position of the capsule endoscope 2 at the first time. To function as magnetic field forming means when detecting the position at the second time
  • P is selected as the position where the second linear magnetic field forming unit 110 to be placed is to be placed.
  • the position selection unit 149 sends information about the selected position P to the movement control unit 157.
  • the movement control unit 157 instructs the movable mechanism 155 to move the second linear magnetic field forming unit 110 to the position P. Upon receiving instructions, the movable mechanism 155 is shown in FIG.
  • the second linear magnetic field forming unit 110 is moved in the counterclockwise direction along the holding member 154 to detect the stop point 154b.
  • the second linear magnetic field forming unit 110 forms the second linear magnetic field in a state of being arranged at the position P.
  • the in-vivo introduction system according to Example 6 is similar to the second linear magnetic field forming unit 11 Oa ⁇ : LlOd in Example 5, and the second linear magnetic field that functions as the position detection magnetic field is formed by the second linear magnetic field.
  • the linear magnetic field forming unit 110 has a function of forming a magnetic field so as to cover only a part of the subject 1. Therefore, as in the case of the fifth embodiment, there is an advantage that it is possible to reduce the electric power required for forming the second linear magnetic field.
  • the second linear magnetic field forming unit 110 is configured by adopting a configuration in which a single mechanism that can move to a plurality of positions is used instead of providing a plurality of second linear magnetic field forming units 110.
  • the same function as when a plurality of are provided is realized. Therefore, in the sixth embodiment, the number of second linear magnetic field forming units 110 can be reduced compared to the fifth embodiment.
  • the configuration is simplified and the manufacturing cost is reduced. An in-subject introduction system that can do this has an advantage.
  • the in-subject introduction system according to Example 7 does not select the position of the magnetic field forming means directly based on the position of the capsule endoscope 2 at the first time. Based on the above, the position of the capsule endoscope 2 at the second time is predicted, and the position is selected based on the prediction result.
  • FIG. 31 shows the configuration of the processing apparatus 159 provided in the in-subject introduction system according to the seventh embodiment. It is a schematic block diagram shown.
  • the processing device 159 basically has the same configuration as the processing device 112 in the fifth embodiment.
  • the processing device 159 includes a moving speed deriving unit 160 that derives the moving speed of the capsule endoscope 2, a moving direction deriving unit 161 that derives the moving direction of the capsule endoscope 2, and a first time point.
  • a range deriving unit 162 for deriving the possible range of the capsule endoscope 2 at the second time based on the position of the capsule endoscope 2 and the derived moving speed and moving direction.
  • the position selection unit 163 determines the position of the magnetic field forming unit that forms the second linear magnetic field at the time of position detection at the second time as the positions P to P. Has a function to select from.
  • the moving speed deriving unit 160 has a function of deriving the moving speed of the capsule endoscope 2 from the first time to the second time based on the information recorded in the recording unit 43. Specifically, the moving speed deriving unit 160 derives the moving speed by, for example, deriving an average speed based on the amount of change in the position of the capsule endoscope 2 detected at a plurality of past times. It has a function.
  • the moving direction deriving unit 161 has a function of deriving the moving direction of the capsule endoscope 2 from the first time to the second time based on the information recorded in the recording unit 143.
  • the processing device 159 has a configuration including the azimuth deriving unit 140 as in the fifth embodiment. Information regarding the azimuth of the target coordinate axis with respect to the reference coordinate axis derived by the azimuth deriving unit 140 at the first time, that is, the capsule Information regarding which direction the mold endoscope 2 is directed with respect to the reference coordinate axis is recorded in the recording unit 143.
  • the movement direction deriving unit 161 records the directivity direction of the capsule endoscope 2 (generally, the longitudinal direction of the capsule endoscope 2) based on the information related to the orientation detected at the first time. Extracted from part 143, the direction to be applied is derived as the moving direction.
  • FIG. 32 is a schematic diagram for explaining the derivation of the possible range by the range derivation unit 162.
  • the range deriving unit 162 first selects the capsule endoscope 2 at the first time (time t in FIG. 32). The information regarding the position of is extracted from the recording unit 143. Then, with respect to the extracted position, the difference between the second time and the first time At at the moving speed v in the direction of the moving direction vector (a, b, c)
  • the region stretched by the value multiplied by is encapsulated at the second time (time t in Fig. 32).
  • the position where the type endoscope 2 exists is estimated, and a possible existence range 164 including such a region is derived.
  • the position selection unit 163 performs position selection based on the possible existence range derived by the range deriving unit 162. That is, in Example 5 and the like, for example, as shown in FIG. 27, the position of the second linear magnetic field forming unit 110 is selected based on the position of the capsule endoscope 2 at the first time.
  • Example 7 has a function of selecting the position of the second linear magnetic field forming unit 110 based on the position of the possible range that is the predicted range of the position of the capsule endoscope 2 at the second time.
  • the position selection mechanism itself is the same as in the fifth and sixth embodiments, and the operation of the drive control unit 150 and the like based on the position selection result is the same as in the fifth embodiment. To do.
  • Example 7 advantages of the in-subject introduction system according to the seventh embodiment will be described.
  • a range deriving unit 162 is newly provided, and the range deriving unit 162 selects the position of the second linear magnetic field forming unit 110 based on the predicted position of the capsule endoscope 2 at the second time. Adopt the configuration to do.
  • the in-subject introduction system according to the seventh embodiment further reliably applies a magnetic field for position detection at the position where the capsule endoscope 2 exists at the second time. It is possible to form.
  • the in-subject introduction system according to the seventh embodiment reliably enjoys advantages such as reduced power consumption even for position detection in a region where the capsule endoscope 2 moves irregularly, for example. It is possible to perform accurate position detection.
  • the intra-subject introduction system according to Example 8 has a function of performing position detection by using geomagnetism instead of the first linear magnetic field.
  • FIG. 33 is a schematic diagram illustrating the overall configuration of the in-subject introduction system according to the eighth embodiment.
  • the in-subject introduction system according to Example 8 is the same as Examples 5-7.
  • the capsule endoscope 2, the display device 4, and the portable recording medium 5 are provided, but the configuration of the position detection device 168 is different.
  • the first linear magnetic field forming unit 108 provided in the position detection device in Example 5 or the like is omitted, and a new geomagnetic sensor 169 is provided.
  • the processing device 170 also has a configuration different from that of the fifth embodiment.
  • the geomagnetic sensor 169 basically has the same configuration as the magnetic field sensor 16 provided in the capsule endoscope 2. That is, the geomagnetic sensor 169 has a function of detecting the strength of the magnetic field component in a predetermined triaxial direction in the arranged region and outputting an electrical signal corresponding to the detected magnetic field strength.
  • the geomagnetic sensor 169 is arranged on the body surface of the subject 1 and is respectively in the X-axis, y-axis, and z-axis directions in the reference coordinate axes fixed to the subject 1. It has a function to detect the intensity of the corresponding magnetic field component.
  • the geomagnetic sensor 169 has a function of detecting the traveling direction of the geomagnetism, and outputs an electrical signal corresponding to the magnetic field intensity detected in the X-axis direction, the y-axis direction, and the z-axis direction to the processing device 170.
  • FIG. 34 is a block diagram showing the configuration of the processing device 170.
  • the processing device 170 basically has the same configuration as the processing device 112 in the fifth embodiment, while the geomagnetism on the reference coordinate axis based on the electric signal input from the geomagnetic sensor 169.
  • a geomagnetic azimuth deriving unit 171 for deriving the derived direction and outputting the derived result to the azimuth deriving unit 140.
  • a problem that arises when geomagnetism is used as the first linear magnetic field is the derivation of the advancing direction of geomagnetism on the reference coordinate axis fixed to the subject 1. That is, since the subject 1 can freely move while the capsule endoscope 2 moves in the body, the positional relationship between the reference coordinate axis fixed to the subject 1 and the geomagnetism. Is expected to change as the subject 1 moves. On the other hand, from the viewpoint of deriving the positional relationship of the target coordinate axis with respect to the reference coordinate axis, if the traveling direction of the first linear magnetic field in the reference coordinate axis is unknown, the reference coordinate axis and the target are related to the traveling direction of the first linear magnetic field.
  • Example 8 the geomagnetic sensor 169 and the geomagnetic direction deriving unit 171 are provided to monitor the direction of geomagnetism that changes on the reference coordinate axis due to movement of the subject 1 or the like. Yes. That is, based on the detection result of the geomagnetic sensor 169, the geomagnetic direction deriving unit 171 derives the traveling direction of the geomagnetism on the reference coordinate axis, and outputs the derived result to the direction deriving unit 140.
  • the azimuth deriving unit 140 derives the correspondence between the reference coordinate axis and the target coordinate axis with respect to the direction of geomagnetism by using the input direction of geomagnetism, and the correspondence between the second linear magnetic field and At the same time, it is possible to derive azimuth information.
  • the direction of geomagnetism and the second linear magnetic field formed by the second linear magnetic field forming unit 110 may be parallel to each other. In such a case, it is possible to detect the positional relationship by using data on the direction of the target coordinate axis and the position of the origin at the immediately preceding time.
  • the extending direction of the coil 134 constituting the second linear magnetic field forming unit 110 is represented by y on the reference coordinate axis as shown in FIG. It is also effective to adopt a configuration that extends in the z-axis direction, for example, rather than in the axial direction.
  • the positional relationship detection system according to the eighth embodiment has further advantages by using geomagnetism.
  • geomagnetism As the first linear magnetic field, it is possible to omit the mechanism for forming the first linear magnetic field, and the coverage at the time of introduction of the capsule endoscope 2 can be reduced. It is possible to derive the positional relationship of the target coordinate axis with respect to the reference coordinate axis while reducing the burden on the specimen 1.
  • the geomagnetic sensor 169 can be configured using an Ml sensor or the like. The force can be sufficiently reduced, and the burden on the subject 1 will not increase by newly providing the geomagnetic sensor 169. ! /
  • the present invention has been described over Examples 5 to 8, the present invention is not limited to the above-described examples, and those skilled in the art will be able to conceive various examples and modifications. It is possible.
  • the second linear magnetic field is adopted as an example of the position detection magnetic field
  • the second linear magnetic field forming unit 110 is used as an example of the magnetic field forming means.
  • the first linear magnetic field, diffusion magnetic field or other magnetic field is used as the position detection magnetic field
  • the first linear magnetic field forming unit 108, diffusion magnetic field forming unit 111 or other magnetic field forming unit is used as the magnetic field forming means.
  • the inside of the subject 1 is divided into a plurality of regions, and a configuration including a plurality of first linear magnetic field forming units 108 for each of the divided regions is adopted, corresponding to a plurality of first linear magnetic field forming units 108.
  • Variations such as adopting a configuration in which the selected position is selected by the position selection unit can be considered.
  • the magnetic field forming region includes an area where the capsule endoscope is located at the second time based on the position of the capsule endoscope 2 at the first time. For example, with positions P to P
  • the present invention need not be limited to the intra-subject introduction system as an application target of the position detection device.
  • the present invention is applicable to all position detection devices that perform position detection using a magnetic field for position detection, and the advantages of the present invention over general position detection devices. It is because it can enjoy.
  • Examples 5 to 8 are combined with each other.
  • a mechanism for moving the single second linear magnetic field forming unit 110 to the selected position and a mechanism such as a range deriving unit as shown in the seventh embodiment are combined with each other.
  • the advantages of the present invention can also be enjoyed with respect to a position detection device using a combination and an in-subject introduction system without contradicting each other.
  • FIG. 35 is a schematic diagram illustrating the overall configuration of the in-subject introduction system according to the ninth embodiment.
  • the display device 4 and the portable recording medium 5 have the same configuration as in Examples 1 and 5, The description is omitted here.
  • the differences between the first and fifth embodiments and the ninth embodiment are the configurations of the capsule endoscope 2 and the position detection device 203.
  • the difference between the capsule endoscope 2 according to the ninth embodiment and the capsule endoscope 2 that works on the first and fifth embodiments is that, as shown in FIG. Timing deriving unit 228 for deriving the moving speed of endoscope 2 and timing for controlling the drive timing of in-subject information acquisition unit 14, magnetic field sensor 16, wireless transmission unit 19 and the like based on the deriving result of velocity deriving unit 228
  • the control unit 21 is provided.
  • the switching unit 20 includes a magnetic field signal output via the AZD conversion unit 18, an image signal output via the signal processing unit 15, and a drive timing output from the timing control unit 21 (described later). It has a function of switching the signal as appropriate and outputting it to the wireless transmitter 19. Accordingly, these signals are included in the radio signal transmitted via the radio transmission unit 19. As will be described later, in the processing device 212 (described later) provided in the position detection device 203, the capsule type is used.
  • the radio signals transmitted from the endoscope 2 are magnetic field signals S to S and image signals S and S, respectively.
  • the speed deriving unit 228 is for deriving the moving speed as an example of the moving state of the capsule endoscope 2.
  • an acceleration sensor such as a small gyroscope and a mechanism for time-integrating the acceleration detected by the acceleration sensor are provided, and the derived moving speed is determined by the timing control unit 21. It has a function to output.
  • the timing control unit 21 has a function of controlling at least the drive timing of the magnetic field sensor 16 and the wireless transmission unit 19 among the components of the capsule endoscope 2. Specifically, the timing control unit 21 sets the drive cycle of the magnetic field sensor 16 and the like based on the movement state of the capsule endoscope 2, in this embodiment 9, based on the movement speed of the capsule endoscope 2, It has a function to drive the magnetic field sensor 16 etc. at a timing according to the set drive cycle. That is, as the capsule endoscope 2 moves, the in-subject information acquisition unit 14 and the magnetic field sensor 16 have a function of repeatedly performing the in-subject information acquisition operation and the magnetic field detection operation, respectively.
  • the wireless transmission unit 19 has a configuration that repeats a predetermined wireless transmission operation.
  • the timing control unit 21 This is for defining the cycle of the repeated operation, and the setting of the drive cycle will be described in detail later.
  • the timing control unit 21 has a function of generating a drive timing signal as information regarding drive timing such as a set drive cycle, and the generated drive timing signal is transmitted via the radio transmission unit 19. It is transmitted to the position detection device 3 together with other signals. Furthermore, the timing control unit 21 has a function of controlling the operation content of the switching unit 20, and specifically switches the magnetic field signal, the image signal, and the drive timing signal input to the switching unit 20. Control the timing ff3 ⁇ 4.
  • the position detection device 203 includes reception antennas 2007a to 207d for receiving a radio signal transmitted from the capsule endoscope 2, and a first linear magnetic field formation for forming a first linear magnetic field. 209, a second linear magnetic field forming unit 210 that forms a second linear magnetic field, a diffusion magnetic field forming unit 211 that forms a diffusion magnetic field, and a radio signal received via the receiving antennas 207a to 207d, etc. And a processing device 212 for performing the above processing.
  • the receiving antennas 207a to 207d, the first linear magnetic field forming unit 209, and the second linear magnetic field forming unit 210 are the receiving antennas 7a to 7d, the first linear magnetic field forming unit 9, and the second linear magnetic field forming unit of Example 1. Since this is the same configuration as 10, the description is omitted here.
  • FIG. 37 is a schematic diagram showing the configurations of the second linear magnetic field forming unit 210 and the diffusion magnetic field forming unit 211 and the mode of the second linear magnetic field formed by the second linear magnetic field forming unit 210. is there.
  • the second linear magnetic field forming unit 210 includes a coil 233 that extends in the y-axis direction on the reference coordinate axis and has a coil cross section that is parallel to the xz plane.
  • the second linear magnetic field formed by the coil 233 is a linear magnetic field at least inside the subject 1 and gradually decreases in intensity as the distance from the coil 233 increases. It has a position dependency with respect to the characteristic, that is, the strength.
  • the diffusion magnetic field forming unit 211 includes a coil 234.
  • the coil 233 is arranged so as to form a magnetic field having a traveling direction in a predetermined direction.
  • the traveling direction of the linear magnetic field formed by the coil 233 is a reference.
  • the coil 234 is provided with a magnetic line orientation direction It is fixed at a position where the same diffusion magnetic field as the magnetic field direction stored in the database 242 is formed.
  • FIG. 38 is a schematic diagram showing an aspect of the diffusion magnetic field formed by the diffusion magnetic field forming unit 211.
  • the coil 234 provided in the diffusion magnetic field forming unit 211 is formed in a spiral shape on the surface of the subject 1, and the diffusion magnetic field formed by the diffusion magnetic field forming unit 211 is shown in FIG.
  • the magnetic lines of force diffuse radially and diffuse so as to enter the coil 234 again.
  • the diffusion magnetic field forming unit 211 is also arranged outside the subject 1 and forms a magnetic field radially, so that the formed diffusion magnetic field has a characteristic that the intensity decreases as the distance from the coil 234 increases.
  • FIG. 39 is a block diagram schematically showing a specific configuration of the processing device 212.
  • the processing device 212 has a function of performing reception processing of a radio signal transmitted by the capsule endoscope 2.
  • the processing device 212 includes a reception antenna selection unit 237 that selects any one of the reception antennas 207a to 207d, and a demodulation process for a radio signal received through the selected reception antenna.
  • a receiving circuit 238 that extracts the original signal included in the radio signal
  • a signal processing unit 239 that reconstructs the image signal and the like by processing the extracted original signal.
  • the signal processing unit 239 generates a magnetic field signal S ⁇ based on the extracted original signal.
  • the magnetic field signals S to S are respectively magnetic field sensors 1
  • the image signal S is obtained from the subject acquired by the in-subject information acquisition unit 14.
  • the drive timing signal S corresponding to the in-vivo image is generated by the timing controller 21.
  • the processing device 212 has a function of detecting the position of the capsule endoscope 2 inside the subject 1 based on the magnetic field intensity detected by the capsule endoscope 2, and the like. It has a function of detecting the orientation formed by the target coordinate axis fixed with respect to the capsule endoscope 2 with respect to the fixed reference coordinate axis. Specifically, based on the magnetic field signals S and S corresponding to the detected intensities of the first linear magnetic field and the second linear magnetic field among the signals transmitted by the capsule endoscope 2 and output by the signal processing unit 239. Pair with reference coordinate axis
  • the azimuth deriving unit 240 for deriving the azimuth of the target coordinate axis to be detected, the magnetic field signal S and the magnetic field signal S corresponding to the detected intensity of the diffusion magnetic field, and the derivation result of the azimuth deriving unit 240
  • the direction derivation and position derivation by these components will be described in detail later.
  • the processing device 212 includes a selection control unit 248 that controls the antenna selection mode by the reception antenna selection unit 237.
  • the selection control unit 248 receives radio signals transmitted from the capsule endoscope 2 based on the azimuth and position of the capsule endoscope 2 derived by the azimuth deriving unit 240 and the position deriving unit 241 respectively. It has a function of selecting the most suitable receiving antenna 2007.
  • the selection control unit 248, the reception circuit 238, and the reception antennas 207a to 207d constitute a reception unit 244, which functions as an example of reception means in the claims.
  • the processing device 212 has a function of controlling the driving timing of the first linear magnetic field forming unit 209 and the like based on the driving timing signal extracted by the signal processing unit 239. Specifically, the processing device 212 generates the drive timing signal S output from the signal processing unit 239.
  • the processing device 212 further includes a power supply unit 251 having a function of supplying driving power to the above components.
  • the capsule endoscope 2 acquires the in-subject information while moving inside the subject 1.
  • the processing device 212 performs predetermined processing on the wireless signal transmitted intermittently.
  • a position detection operation using a magnetic field signal or the like included in each of the wireless signals repeatedly transmitted from the capsule endoscope 2 will be described, and then the capsule endoscope will be described.
  • a description will be given of the drive timing control processing of the wireless transmission unit 19 and the like that transmits the wireless signal performed on the mirror 2 side.
  • the position detection operation will be described.
  • the positional relationship is derived between the reference coordinate axis fixed with respect to the subject 1 and the target coordinate axis fixed with respect to the capsule endoscope 2.
  • the position of the origin of the target coordinate axis on the reference coordinate axis that is, within the subject 1
  • the position of the capsule cell endoscope 2 is derived. Therefore, in the following description, the azimuth derivation mechanism will be described first, and then the position derivation mechanism using the derived azimuth will be described.
  • the direction deriving mechanism performed by the direction deriving unit 240 will be described.
  • This direction deriving mechanism is the same as the direction deriving mechanism performed by the direction deriving unit 40 described with reference to FIG. 7, and will be described with reference to FIG.
  • the capsule endoscope 2 travels along the passage path inside the subject 1 and rotates by a predetermined angle about the traveling direction. Therefore, the target coordinate axis fixed with respect to the capsule endoscope 2 has a azimuth shift as shown in FIG. 7 with respect to the reference coordinate axis fixed with respect to the subject 1.
  • the first linear magnetic field forming unit 209 and the second linear magnetic field forming unit 210 are each fixed to the subject 1. Therefore, the first and second linear magnetic fields formed by the first linear magnetic field forming unit 209 and the second linear magnetic field forming unit 210 are in a fixed direction with respect to the reference coordinate axis, specifically, the first linear magnetic field is When the second linear magnetic field forming unit 210 is used in the z-axis direction on the reference coordinate axis, the second linear magnetic field proceeds in the y-axis direction.
  • the azimuth derivation in Example 9 uses the first linear magnetic field and the second linear magnetic field.
  • the magnetic field sensor 16 provided in the capsule endoscope 2 detects the traveling directions of the first linear magnetic field and the second linear magnetic field supplied in time division.
  • the magnetic field sensor 16 is configured to detect the magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction in the target coordinate axis, and the traveling direction of the detected first and second linear magnetic fields in the target coordinate axis
  • the information on is transmitted to the position detection device 3 via the wireless transmission unit 19.
  • the radio signal transmitted by the capsule endoscope 2 is processed as the magnetic field signals S and S through the processing by the signal processing unit 239 and the like.
  • the signal processing unit 239 For example, in the example of FIG.
  • the number S contains information about the coordinates (X, Y, Z) as the direction of travel of the first linear magnetic field.
  • the magnetic field signal S contains information about coordinates (X, Y, Z) as the direction of travel of the second linear magnetic field.
  • the azimuth deriving unit 240 receives the input of the magnetic field signals S and S, and
  • the orientation of the target coordinate axis with respect to the quasi-coordinate axis is derived.
  • the azimuth deriving unit 240 calculates the inner product for both (X, Y, Z) and (X, Y, Z) on the target coordinate axis.
  • Coordinates (X, Y, Z) whose value is 0 correspond to the direction of the Z axis in the reference coordinate axis.
  • the azimuth deriving unit 240 then performs a predetermined coordinate conversion process based on the above correspondence, derives coordinates on the reference coordinate axes of the target coordinate axes, such as the X axis, the Y axis, and the Z axis. Output as information.
  • the above is the direction deriving mechanism by the direction deriving unit 240.
  • the position deriving unit 241 receives magnetic field signals S and S from the signal processing unit 239, receives direction information from the direction deriving unit 240,
  • the information stored in the database 242 is input.
  • the position deriving unit 241 derives the position of the capsule endoscope 2 as follows based on the input information.
  • the position deriving unit 241 uses the magnetic field signal S to link the second linear magnetic field forming unit 210 with the capsule.
  • the magnetic field signal S is the presence of the capsule endoscope 2.
  • the second linear magnetic field corresponds to the detection result of the second linear magnetic field in the current region, and the second linear magnetic field corresponds to the second linear magnetic field forming unit 210 being arranged outside the subject 1.
  • the position deriving unit 241 also calculates the intensity of the second linear magnetic field in the vicinity of the second linear magnetic field forming unit 210 (obtained from the current value flowing through the second linear magnetic field forming unit 210) and the magnetic field signal S force.
  • the position deriving unit 241 is the one derived by the magnetic field signal S and the direction deriving unit 240.
  • the position of the capsule endoscope 2 on the curved surface 52 is derived based on the position information and the information stored in the magnetic field direction database 42. Specifically, magnetic field signal S and direction
  • the traveling direction of the diffusion magnetic field at the position where the capsule endoscope 2 is present is derived.
  • the magnetic field signal S corresponds to the result of detecting the diffuse magnetic field based on the target coordinate axis.
  • the traveling direction of the diffusion magnetic field on the reference coordinate axis at the position where the capsule endoscope 2 is present is derived. Since the magnetic field direction database 242 records the correspondence between the traveling direction and position of the diffusion magnetic field on the reference coordinate axis, the position deriving unit 241 is stored in the magnetic field direction database 242 as shown in FIG. The position corresponding to the traveling direction of the diffusion magnetic field derived by referring to the obtained information is derived, and the derived position is specified as the position of the capsule endoscope 2. By performing the above processing, the azimuth and position of the capsule endoscope 2 in the subject 1 are derived, and the position detection is completed.
  • the above-described position detection operation is repeatedly performed with reception of a radio signal repeatedly transmitted from the capsule endoscope 2 side.
  • the detected azimuth and position of the capsule endoscope 2 are recorded in the portable recording medium 5 via the recording unit 243, and are used for diagnosis by a doctor or the like together with the recorded image data. .
  • FIG. 42 illustrates drive timing control processing performed by the timing control unit 21 included in the capsule endoscope 2. It is a flowchart for.
  • the timing control unit 21 acquires the moving speed of the force-push endoscope 2 derived by the speed deriving unit 228 (step S201), and the acquired moving speed is a predetermined value. It is determined whether or not it is larger than the threshold value (step S202). If it is larger than the threshold value (step S202, No), the drive cycle is set to a predetermined long cycle (step S203). On the other hand, if it is smaller than the threshold (step S202, Yes), the drive cycle is set to a predetermined short cycle shorter than the long cycle (step S204).
  • a drive timing signal including at least information related to the set drive cycle is generated (step S205), and the in-vivo information acquisition unit 14, the magnetic field sensor 16, and the wireless transmission are performed at the drive timing according to the set drive cycle.
  • the unit 19 is driven (step S206).
  • the timing control unit 21 sets the timing of magnetic field formation by the first linear magnetic field forming unit 209, the second linear magnetic field forming unit 210, and the diffusion magnetic field forming unit 211.
  • the magnetic field control unit 249 controls to synchronize with the driven timing. That is, the magnetic field control unit 249 derives the drive cycle based on the drive timing signal generated by the timing control unit 21 and reconfigured by the signal processing unit 239, and at the timing corresponding to the derived drive cycle, The forming unit 209, the second linear magnetic field forming unit 210, and the diffusion magnetic field forming unit 211 are controlled to be driven. Specifically, the magnetic field control unit 249 controls the drive timing of the first linear magnetic field forming unit 209 and the like by controlling the supply timing of the drive power held in the power supply unit 251.
  • the ninth embodiment has an advantage that the drive timing of the wireless transmission unit 19 and the like can be optimized with respect to the moving state of the capsule endoscope 2.
  • control using the moving speed of the capsule endoscope 2 is performed as the moving state.
  • the timing controller 21 sets the drive cycle to a short cycle when the capsule endoscope 2 moves at a high speed, and sets the drive cycle to a low speed when the capsule endoscope 2 moves at a low speed.
  • the drive cycle is set to a long cycle, and control is performed so that the wireless transmission unit 19 and the like operate at a drive timing corresponding to the set drive cycle. Therefore, when the moving speed of the capsule endoscope 2 is low, the frequency of wireless signal transmission and the like decreases, and there is an advantage that unnecessary operations can be reduced in the capsule endoscope 2. Arise.
  • the moving distance of the capsule endoscope 2 per unit time is also small, so that it is detected by the magnetic field sensor 16.
  • the first linear magnetic field, etc. has almost the same direction'intensity in the short cycle, and it is not necessary to drive the magnetic field sensor 16 etc. in the short cycle. Therefore, in the ninth embodiment, when the moving speed of the capsule endoscope 2 is low, the driving cycle is set to a long cycle, so that the same magnetic field detection and the wireless information including the information related to the similar magnetic field are obtained multiple times. The repetition of signal transmission is avoided, and the capsule endoscope 2 is prevented from operating wastefully.
  • the capsule endoscope 2 normally has a configuration that is driven by finite power supplied by a small primary battery or the like, for example, for storage in the capsule. Therefore, there is a limit to the power that can be used by the capsule endoscope 2.
  • the configuration of the ninth embodiment it is possible to avoid power consumption due to useless operation. It becomes life.
  • the magnitude relationship with the predetermined threshold value is derived in step S202, and two cycles are set according to the magnitude relationship.
  • driving is performed according to the moving speed.
  • any period setting algorithm may be used.
  • a plurality of threshold values may be provided to increase the corresponding drive cycle value, or the drive cycle may be set so that the product of the moving speed and the drive cycle becomes a constant value.
  • a radio signal is transmitted every time it moves by an approximately equal distance regardless of the moving speed, and the capsule type endoscope is used.
  • the ninth embodiment has an advantage that power consumption in the position detection device 203 can be reduced. That is, the magnetic field control unit 249 provided in the processing device 212 constituting the position detection device 203 has a function of controlling the driving state of the first linear magnetic field forming unit 209 and the like based on the driving timing signal. Specifically, the magnetic field control unit 249 performs control based on the drive timing signal generated by the timing control unit 21 provided in the capsule endoscope 2, so that the magnetic field sensor 16 detects the magnetic field at the timing.
  • the first linear magnetic field forming unit 209 Only the first linear magnetic field forming unit 209, the second linear magnetic field forming unit 210, and the diffusion magnetic field forming unit 211 can be driven.
  • the first linear magnetic field forming unit 209 and the like have a function of forming a magnetic field based on the power supplied from the power supply unit 251 provided in the processing device 212. Therefore, the power supply unit 251 consumes less power by optimizing the drive timing in accordance with the drive cycle of the magnetic field sensor 16 compared to the conventional case where the magnetic field is formed over the entire period. Can be reduced.
  • Example 9 a modification of the in-subject introduction system according to Example 9 will be described.
  • the vibration state of the force-pseed endoscope is detected as the moving state of the capsule endoscope, and the drive timing is controlled based on the vibration state.
  • FIG. 43 is a schematic block diagram showing the configuration of the capsule endoscope 254 constituting the present modification.
  • a vibration detection unit 255 is newly provided instead of the speed deriving unit, and the timing control unit 256 controls the drive timing based on the detection result of the vibration detection unit 255.
  • the vibration detection unit 255 is for detecting the movement state of the capsule endoscope 254 in the same manner as the speed deriving unit 228 in Example 9, and the vibration of the capsule endoscope 254 is used as the movement state. It is for detecting a state.
  • the vibration detection unit 255 includes an acceleration sensor, a cantilever, and the like, and has a function of detecting the vibration state of the capsule endoscope 254.
  • the “vibration state” is a broad concept indicating a state of exercising at an acceleration equal to or higher than a certain threshold, and is not limited to a single vibration motion or the like.
  • the transfer of the capsule endoscope 254 is performed.
  • the timing control unit 256 sets the drive cycle to infinity (ie, when the capsule endoscope 254 is stopped inside the subject 1). It is possible to temporarily stop the functions of the magnetic field sensor 216 and the like. Therefore, it is possible to prevent the magnetic field sensor 216 and the like from being driven in vain when stopped (that is, when the position does not change), and as a result, it is possible to reduce power consumption.
  • the orientation deriving unit 240 derives the orientation of the force-push type endoscope 254 as in the ninth embodiment, and the capsule endoscope 254 may change the azimuth while staying in a predetermined region (that is, in the state of the value of the moving speed value ⁇ ). Since this modification has a function of detecting the vibration and controlling the drive timing, even when the capsule endoscope 254 changes its azimuth while maintaining the moving speed of 0, the predetermined value is maintained. It can operate at the drive timing, and has the advantage of being able to reliably detect the position (especially derivation of the direction) even when it is applied.
  • the position detection device side derives the movement state of the capsule endoscope and wirelessly transmits information on the derived movement state to the capsule endoscope. Is adopted. In the following description, those with the same reference numerals as those in Example 9 have the same structure as in Example 9 unless otherwise specified.
  • FIG. 44 is a schematic diagram of an overall configuration of the intra-subject introduction system according to the tenth embodiment.
  • the in-subject introduction system according to the tenth embodiment basically has the same configuration as the in-subject introduction system according to the ninth embodiment, while the position detection device 258 is newly provided.
  • FIG. 45 is a block diagram schematically showing the configuration of the capsule endoscope 257.
  • the capsule endoscope 257 has the basic configuration While it is the same as the capsule endoscope 2 in the ninth embodiment, it is processed by a wireless reception unit 261 that newly receives a wireless signal transmitted from the position detection device 258, and a wireless reception unit 261.
  • the medium force of the signal also has a configuration including a signal processing unit 264 for extracting the moving speed of the capsule endoscope 257.
  • the radio reception unit 261 receives a radio signal transmitted from the position detection device 258 and performs a reception process of extracting a predetermined original signal by performing demodulation or the like.
  • the radio reception unit 261 includes a reception antenna 262 for receiving a radio signal, and a reception circuit 263 that performs reception processing such as demodulation on the radio signal received via the reception antenna 262. Composed.
  • the signal processing unit 264 is for reconstructing information included in the radio signal based on the original signal extracted from the radio signal by the radio reception unit 261.
  • the wireless signal transmitted from the position detection device 258 includes information on the moving speed of the capsule endoscope 257, and the signal processing unit 264 It has a function of extracting information related to the moving speed of the endoscope 257 and outputting the information to the timing control unit 221.
  • FIG. 46 is a schematic block diagram showing the configuration of the processing apparatus 260.
  • the processing device 260 has basically the same configuration as the processing device 12 in the ninth embodiment, and is based on the information recorded in the recording unit 243.
  • the moving speed deriving unit 267 is for deriving the moving speed of the capsule endoscope 257 based on the past position detection result regarding the capsule endoscope 257.
  • the recording unit 243 has a function of recording the position of the capsule endoscope 257 derived by the position deriving unit 241 with respect to a plurality of times as described in the ninth embodiment.
  • the moving speed deriving unit 267 acquires the position of the capsule endoscope 257 recorded in the recording unit 243 at a plurality of past times and information on the times at which the positions were derived.
  • the moving speed of the capsule endoscope 257 is derived.
  • the capsule endoscope 257 is positioned at (X, y, z) at time t, and only At from time t
  • the transmission circuit 268 is for generating a radio signal including information on the moving speed derived by the moving speed deriving unit 267. Specifically, the transmission circuit 268 generates a radio signal by performing necessary processing such as modulation processing.
  • Transmission antenna selection section 269 is for selecting a transmission antenna most suitable for transmission of a radio signal from among a plurality of transmission antennas 259a to 259d. Specifically, similar to the reception antenna selection unit 237, the transmission antenna selection unit 269 has a function of selecting the transmission antennas of the transmission antennas 259a to 259d based on the control of the selection control unit 248.
  • the transmission circuit 268, the transmission antenna selection unit 269, and the transmission antennas 259a to 259d constitute a transmission unit 270.
  • the in-subject introduction system according to Example 10 controls the drive timing of the magnetic field sensor 216 and the like provided in the capsule endoscope 257 according to the moving speed of the capsule endoscope 257 as in Example 9.
  • the position detection device 258 has a configuration for controlling the magnetic field formation timing of the first linear magnetic field forming unit 209. Therefore, as in the ninth embodiment, the capsule endoscope 257 and the like are prevented from performing unnecessary operations, and there are advantages such as reduction in power consumption.
  • the moving speed of the capsule endoscope 257 is configured to be performed by the moving speed deriving unit 267 provided in the processing device 260.
  • the tenth embodiment has an advantage that it is possible to prevent the capsule endoscope 257 from becoming large because it is not necessary to dispose the speed deriving portion inside the capsule endoscope 257.
  • Example 11 Next, the in-subject introduction system according to Example 11 will be described.
  • the in-subject introduction system that works in Example 11 has a function of performing position detection by using geomagnetism instead of the first linear magnetic field.
  • FIG. 47 is a schematic diagram illustrating the overall configuration of the in-subject introduction system according to the eleventh embodiment.
  • the in-subject introduction system according to the eleventh embodiment includes the capsule endoscope 2, the display device 4, and the portable recording medium 5 as in the ninth embodiment, while the position detection device.
  • the configuration of 272 is different. Specifically, the first linear magnetic field forming unit 209 provided in the position detection device in Example 9 or the like is omitted, and a new geomagnetic sensor 273 is provided. Further, the processing device 274 has a configuration different from that of the ninth embodiment.
  • the geomagnetic sensor 273 basically has the same configuration as the magnetic field sensor 16 provided in the capsule endoscope 2. That is, the geomagnetic sensor 273 has a function of detecting the strength of the magnetic field component in a predetermined triaxial direction in the arranged region and outputting an electrical signal corresponding to the detected magnetic field strength.
  • the geomagnetic sensor 273 is arranged on the body surface of the subject 1 and is respectively in the X-axis, y-axis, and z-axis directions in the reference coordinate axes fixed to the subject 1. It has a function to detect the intensity of the corresponding magnetic field component.
  • the geomagnetic sensor 273 has a function of detecting the advancing direction of the geomagnetism, and outputs an electrical signal corresponding to the magnetic field strength detected in the X axis direction, the y axis direction, and the z axis direction to the processing device 274.
  • FIG. 48 is a block diagram showing the configuration of the processing device 274.
  • the processing device 274 has basically the same configuration as the processing device 212 in the ninth embodiment, while the geomagnetic sensor 273 inputs the geomagnetic field on the reference coordinate axis based on the input electric signal. It has a configuration including a geomagnetic direction deriving unit 275 that derives the traveling direction and outputs the derived result to the direction deriving unit 240.
  • the problem is the derivation of the direction of travel of geomagnetism on the reference coordinate axis fixed to the subject 1. That is, the subject 1 can freely move while the capsule endoscope 2 moves inside the body. Therefore, the positional relationship between the reference coordinate axis fixed to the subject 1 and the geomagnetism is expected to change as the subject 1 moves.
  • the viewpoint of deriving the positional relationship of the target coordinate axis with respect to the reference coordinate axis if the traveling direction of the first linear magnetic field in the reference coordinate axis is unknown, the reference coordinate axis and the target are related to the traveling direction of the first linear magnetic field. The problem is that the correspondence between the coordinate axes cannot be clarified.
  • Example 11 the geomagnetic sensor 273 and the geomagnetic direction deriving unit 275 are provided for monitoring the advancing direction of the geomagnetism that varies on the reference coordinate axis due to the movement of the subject 1 or the like. Yes. That is, based on the detection result of the geomagnetic sensor 273, the geomagnetic azimuth deriving unit 275 derives the traveling direction of the geomagnetism on the reference coordinate axis, and outputs the derived result to the azimuth deriving unit 240.
  • the azimuth deriving unit 240 derives the correspondence between the reference coordinate axis and the target coordinate axis with respect to the direction of geomagnetism by using the input direction of geomagnetism, and the correspondence between the second linear magnetic field and At the same time, it is possible to derive azimuth information.
  • the direction of geomagnetism and the second linear magnetic field formed by the second linear magnetic field forming unit 210 may be parallel to each other. In such a case, it is possible to detect the positional relationship by using data on the direction of the target coordinate axis and the position of the origin at the immediately preceding time. Further, in order to avoid that the geomagnetism and the second linear magnetic field are parallel to each other, the extending direction of the coil 234 constituting the second linear magnetic field forming unit 210 is represented by y on the reference coordinate axis as shown in FIG. It is also effective to adopt a configuration that extends in the z-axis direction, for example, rather than in the axial direction.
  • the intra-subject introduction system according to Example 11 has the additional advantage of using geomagnetism in addition to the advantage of Example 9.
  • the geomagnetic sensor 273 can be configured using an Ml sensor or the like, and the force can be sufficiently reduced in size. The burden on 1 will not increase!
  • the position detection device and the in-subject introduction system that are useful for the present invention are useful for medical observation devices that are introduced into the human body and observe the test site. It is suitable for detecting the position of a detection target such as a capsule endoscope by forming a necessary and sufficient magnetic field for position detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Endoscopes (AREA)

Abstract

 処理装置12は、位置検出用磁場の強度を制御する機構として、過去の位置検出結果を記録する記録部43と、カプセル型内視鏡2の位置の変化に基づきカプセル型内視鏡2の移動速度を導出する移動速度導出部48と、導出した移動速度とカプセル型内視鏡2の過去の位置とに基づきカプセル型内視鏡2が位置する範囲を導出する範囲導出部49と、導出された範囲に基づき第2直線磁場形成部10および拡散磁場形成部11に対して形成磁場強度の制御を行う磁場強度制御部50とを備え、位置依存性を有する位置検出用磁場を用いてカプセル型内視鏡等の検出対象の位置検出を行う際に、必要かつ充分な位置検出用磁場を形成することが可能な位置検出装置を実現する。

Description

明 細 書
位置検出装置および被検体内導入システム
技術分野
[0001] 本発明は、少なくとも第 1時刻および該第 1時刻から所定時間経過した第 2時刻に おいて、強度に関して位置依存性を有する位置検出用磁場を用 、て検出対象の位 置検出を行う位置検出装置および被検体内導入システムに関するものである。 背景技術
[0002] 近年、内視鏡の分野にお!、ては、飲込み型のカプセル型内視鏡が提案されて 、る 。このカプセル型内視鏡には、撮像機能と無線通信機能とが設けられている。カプセ ル型内視鏡は、観察 (検査)のために被検体の口から飲込まれた後、自然排出される までの間、体腔内、例えば胃、小腸などの臓器の内部をその蠕動運動に従って移動 し、順次撮像する機能を有する。
[0003] 体腔内を移動する間、カプセル型内視鏡によって体内で撮像された画像データは 、順次無線通信により外部に送信され、外部に設けられたメモリに蓄積される。無線 通信機能とメモリ機能とを備えた受信機を携帯することにより、被検体は、カプセル型 内視鏡を飲み込んだ後、排出されるまでの間に渡って、自由に行動できる。カプセル 型内視鏡が排出された後、医者もしくは看護士においては、メモリに蓄積された画像 データに基づ 、て臓器の画像をディスプレイに表示させて診断を行うことができる(例 えば、特許文献 1参照。)。
[0004] さらに、従来のカプセル型内視鏡システムにおいては、体腔内におけるカプセル型 内視鏡の位置を検出する機構を備えたものも提案されている。例えば、カプセル型 内視鏡を導入する被検体の内部に強度に関して位置依存性を有する磁場を形成し 、カプセル型内視鏡に内蔵した磁場センサによって検出された磁場の強度に基づき 被検体内におけるカプセル型内視鏡の位置を検出することが可能である。かかる力 プセル型内視鏡システムでは、磁場を形成するために、所定のコイルを被検体外部 に配置した構成を採用しており、力かるコイルに所定の電流を流すことによって、被 検体内部に磁場を形成することとしている。ここで、事前にカプセル型内視鏡の位置 を検出することは困難であることから、形成する磁場は、被検体内部においてカプセ ル型内視鏡が存在しうる領域すべてにおいて、カプセル型内視鏡が検出可能な強 度となるよう形成する必要がある。具体的には、従来のカプセル型内視鏡システムで は、口腔力 肛門に至る消ィ匕器官すべてにおいて、カプセル型内視鏡が検出可能 な磁場を形成する。
[0005] 特許文献 1 :特開 2003— 19111号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、位置検出機構を備えた従来のカプセル型内視鏡システムは、消費電 力が大幅に増加するという課題を有する。すなわち、強度に関して位置依存性を有 する磁場を被検体内に形成するために、カプセル型内視鏡が被検体内に留まる数 時間〜十数時間の間に渡ってコイルに対して大電流を供給し続ける必要性が生じる 。特に、従来のカプセル型内視鏡システムでは、上述したように被検体内部の消化 器官全体に対して、カプセル型内視鏡が検出可能な強度の磁場を形成することとし ていたため、磁場形成に必要となる電力は膨大なものとなり、消費電力低減の観点 からは妥当ではない。
[0007] また、位置検出機構を備えた従来のカプセル型内視鏡システムは、少なくともカブ セル型内視鏡における消費電力が増加するという課題を有する。具体的には、従来 のカプセル型内視鏡システムでは、一定の時間間隔で位置検出を行うこととしており 、カプセル型内視鏡 2に内蔵した磁場センサおよび磁場センサの検出結果を無線送 信する送信機構の駆動電力の分だけ消費電力が増加するという課題を有する。
[0008] 特に、カプセル型内視鏡は被検体への負担を軽減するため、できる限り小型化す ることが好ましいという前提が存在する。従って、カプセル型内視鏡に内蔵するバッテ リー等は小型のものが使用され、保持する電力量にも制限が生じるのが通常である。 従って、カプセル型内視鏡における消費電力の増加による影響は通常の電子機器 の場合よりも大きぐ消費電力増加の抑制は、カプセル型内視鏡システムにおいて非 常に重要である。
[0009] 本発明は、上記に鑑みてなされたものであって、位置検出用磁場を用いてカプセ ル型内視鏡等の検出対象の位置検出を行う技術に関して、必要かつ充分な位置検 出用磁場を形成することが可能な位置検出装置および位置検出装置を用いた被検 体内導入システムを実現することを目的とする。
[0010] また、本発明の他の目的は、位置検出用磁場を用いてカプセル型内視鏡等の検 出対象の位置検出を行う位置検出装置等に関して、消費電力の増加を抑制しつつ 確実な位置検出を行うことを可能とする被検体内導入システムを実現することにある
課題を解決するための手段
[0011] 上述した課題を解決し、目的を達成するために、請求項 1の発明にかかる位置検 出装置は、少なくとも第 1時刻および該第 1時刻から所定時間経過した第 2時刻にお いて、強度に関して位置依存性を有する位置検出用磁場を用いて検出対象の位置 検出を行う位置検出装置であって、可変な強度の位置検出用磁場を形成する磁場 形成手段と、前記検出対象が存在する位置において検出された前記位置検出用磁 場の強度に基づき前記検出対象の位置を導出する位置導出手段と、前記第 1時刻 における前記検出対象の位置に基づき、前記第 2時刻において前記位置検出用磁 場が前記検出対象によって検出可能な強度となるよう前記磁場形成手段を制御する 磁場強度制御手段とを備えたことを特徴とする。
[0012] この請求項 1の発明によれば、第 1時刻における検出対称の位置に基づき磁場形 成手段によって形成される位置検出用磁場の強度を制御する磁場強度制御手段を 備えることとしたため、例えば、第 1時刻から所定時間だけ経過した第 2時刻にお 、て 、検出対象が明らかに存在しないと予測できる領域に関して無駄な位置検出用磁場 が形成されることを防止することが可能となり、位置検出に際して必要かつ充分な強 度の位置検出用磁場を形成することが可能である。
[0013] また、請求項 2の発明にかかる位置検出装置は、上記の発明において、前記第 1時 刻における前記検出対象の位置に基づき、前記第 2時刻において前記検出対象が 存在することが可能な範囲として存在可能範囲を導出する範囲導出手段をさらに備 え、前記磁場強度制御手段は、前記範囲導出手段によって導出された存在可能範 囲において検出可能な強度の前記位置検出用磁場を形成するよう前記磁場形成手 段を制御することを特徴とする。
[0014] また、請求項 3の発明にかかる位置検出装置は、上記の発明において、前記所定 時間における前記検出対象の移動速度を導出する移動速度導出手段をさらに備え 、前記範囲導出手段は、前記第 1時刻における前記検出対象の位置を中心とし、前 記検出対象の移動速度に前記所定時間を乗算した値の半径を有する球状領域を前 記第 2時刻における存在可能範囲とすることを特徴とする。
[0015] また、請求項 4の発明にかかる位置検出装置は、上記の発明において、前記所定 時間における前記検出対象の移動速度を導出する移動速度導出手段と、前記所定 時間における前記検出対象の移動方向を導出する移動方向導出手段とをさらに備 え、前記範囲導出手段は、前記第 1時刻における前記検出対象の位置に対して、前 記移動方向に前記移動速度と前記所定時間とを乗算した値だけ移動した位置を含 む領域を前記存在可能範囲とすることを特徴とする。
[0016] また、請求項 5の発明にかかる位置検出装置は、上記の発明において、前記移動 速度導出手段は、前記位置導出手段によって過去の複数の時刻において導出され た前記検出対象の位置の変化に基づき前記移動速度を導出することを特徴とする。
[0017] また、請求項 6の発明にかかる位置検出装置は、上記の発明において、前記被検 体内部における前記検出対象の位置と前記検出対象の位置との間の対応関係を記 録した移動速度データベースをさらに備え、前記移動速度導出手段は、前記第 1時 刻における前記検出対象の位置に基づき、前記移動速度データベースに記録され た対応関係を用いて前記所定時間における前記検出対象の移動速度を導出するこ とを特徴とする。
[0018] また、請求項 7の発明にかかる位置検出装置は、上記の発明において、前記移動 方向導出手段は、前記位置導出手段によって過去の複数の時刻において検出され た位置の変化に基づき前記所定時間における前記検出対象の移動方向を導出する ことを特徴とする。
[0019] また、請求項 8の発明にかかる位置検出装置は、上記の発明において、前記検出 対象が存在しうる領域には、前記検出対象の動きと無関係に定まる基準座標軸に対 して固定された方向に直線的に進行する第 1直線磁場が形成され、前記位置検出 用磁場は、前記第 1直線磁場と異なる方向であって、前記基準座標軸に対して固定 された方向に直線的に進行する第 2直線磁場であり、前記移動方向導出手段は、前 記検出対象に対して固定された対象座標軸と、前記第 1直線磁場および前記第 2直 線磁場の進行方向との関係によって定まる前記検出対象の指向方向に基づき前記 移動方向を導出することを特徴とする。
[0020] また、請求項 9の発明にかかる位置検出装置は、上記の発明において、前記第 1直 線磁場は、地磁気によって形成されることを特徴とする。
[0021] また、請求項 10の発明にかかる位置検出装置は、上記の発明において、前記位置 導出手段は、前記磁場形成手段によって前記磁場形成手段近傍において形成され る磁場の強度と、前記検出対象によって検出された位置検出用磁場の強度とに基づ き前記磁場形成手段と前記検出対象との間の距離を導出し、導出した距離を用いて 前記検出対象の位置を導出することを特徴とする。
[0022] また、請求項 11の発明にかかる位置検出装置は、少なくとも第 1時刻および該第 1 時刻から所定時間経過した第 2時刻において、所定の位置検出用磁場を用いて検 出対象の位置検出を行う位置検出装置であって、前記検出対象が位置しうる領域の 一部において検出可能な位置検出用磁場を形成する 1以上の磁場形成手段と、前 記第 1時刻における前記検出対象の位置に基づき、前記第 2時刻における前記検出 対象の位置において磁場検出が可能なように、前記位置検出用磁場を形成する前 記磁場形成手段の位置を選択する位置選択手段と、前記検出対象が存在する位置 における前記位置検出用磁場の強度に基づき前記検出対象の位置を導出する位置 導出手段とを備えたことを特徴とする。
[0023] この請求項 11の発明によれば、検出対象が位置しうる領域の一部で検出可能な位 置検出用磁場を形成する磁場形成手段と、第 2時刻において磁場形成手段の位置 を適切に選択する位置選択手段とを備えることとしたため、磁場形成に必要な駆動 電力等を低減しつつ、第 2時刻における位置検出を確実に行うことが可能である。
[0024] また、請求項 12の発明にかかる位置検出装置は、上記の発明において、前記位置 選択手段は、あらかじめ設定した複数の位置のうち、前記第 1時刻に導出された前記 検出対象に対して最も近接する位置を選択することを特徴とする。 [0025] また、請求項 13の発明に力かる位置検出装置は、上記の発明において、前記磁場 形成手段は、あらかじめ設定した複数の位置に対応して複数配置され、前記第 2時 刻において、前記位置選択手段によって選択された位置に対応した前記磁場形成 手段が駆動するよう制御する駆動制御手段をさらに備えたことを特徴とする。
[0026] また、請求項 14の発明にかかる位置検出装置は、上記の発明において、前記磁場 形成手段を移動可能な状態で保持する保持部材と、前記第 2時刻において、前記位 置選択手段によって選択された位置に前記磁場形成手段が移動するよう制御する 移動制御手段とをさらに備えたことを特徴とする。
[0027] また、請求項 15の発明にかかる位置検出装置は、上記の発明において、前記第 1 時刻における前記検出対象の位置に基づき、前記第 2時刻において前記検出対象 が存在する可能性を有する存在可能範囲を導出する範囲導出手段をさらに備え、前 記位置選択手段は、前記範囲導出手段によって導出された存在可能範囲を含む領 域において磁場検出が可能なように、前記位置検出用磁場を形成する前記磁場形 成手段の位置を選択することを特徴とする。
[0028] また、請求項 16の発明にかかる位置検出装置は、上記の発明において、前記検出 対象の移動速度を導出する移動速度導出手段と、前記検出対象の移動方向を導出 する移動方向導出手段とをさらに備え、前記範囲導出手段は、前記第 1時刻におけ る前記検出対象の位置に対して、前記移動方向に対して前記移動速度と前記所定 時間との積によって得られる移動距離だけ移動した位置を含む領域を存在可能範囲 として導出することを特徴とする。
[0029] また、請求項 17の発明にかかる被検体内導入システムは、被検体内に導入される 被検体内導入装置と、少なくとも第 1時刻および該第 1時刻から所定時間経過した第
2時刻において、強度に関して位置依存性を有する位置検出用磁場を用いて前記 被検体内導入装置の位置検出を行う位置検出装置とを備えた被検体内導入システ ムであって、前記被検体内導入装置は、形成された磁場の強度を少なくとも検出す る磁場センサと、前記磁場センサによって検出された磁場強度に関する情報を含む 無線信号を送信する無線送信手段とを備え、前記位置検出装置は、可変な強度の 位置検出用磁場を形成する磁場形成手段と、所定の受信アンテナを介して受信され た前記無線信号から抽出された、前記磁場センサによって検出された前記位置検出 用磁場の強度に基づき前記被検体内導入装置の位置を導出する位置導出手段と、 前記第 1時刻における前記被検体内導入装置の位置に基づき、前記第 2時刻にお いて前記位置検出用磁場が前記磁場センサによって検出可能な強度となるよう前記 磁場形成手段を制御する磁場強度制御手段とを備えたことを特徴とする。
[0030] また、請求項 18の発明にかかる被検体内導入システムは、被検体内に導入される 被検体内導入装置と、少なくとも第 1時刻および該第 1時刻から所定時間経過した第
2時刻において、強度に関して位置依存性を有する位置検出用磁場を用いて前記 被検体内導入装置の位置検出を行う位置検出装置とを備えた被検体内導入システ ムであって、前記被検体内導入装置は、形成された磁場の強度を少なくとも検出す る磁場センサと、前記磁場センサによって検出された磁場強度に関する情報を含む 無線信号を送信する無線送信手段とを備え、前記位置検出装置は、所定の受信ァ ンテナを介して受信された前記無線信号力 抽出された、前記磁場センサによって 検出された前記位置検出用磁場の強度に基づき前記被検体内導入装置の位置を 導出する位置導出手段と、前記検出対象が位置しうる領域の一部において検出可 能な位置検出用磁場を形成する 1以上の磁場形成手段と、前記第 1時刻における前 記検出対象の位置に基づき、前記第 2時刻における前記被検体内導入装置の位置 において磁場検出が可能なように、前記位置検出用磁場を形成する前記磁場形成 手段の位置を選択する位置選択手段とを備えたことを特徴とする。
[0031] また、請求項 19の発明にかかる被検体内導入システムは、被検体に導入され、該 被検体の内部を移動する被検体内導入装置と、所定の位置検出用磁場を用いて前 記被検体の内部における前記被検体内導入装置の位置を検出する位置検出装置と を備えた被検体内導入システムであって、前記被検体内導入装置は、当該被検体 内導入装置が位置する領域における前記位置検出用磁場を検出する磁場センサと
、前記磁場センサによる検出結果を含む無線信号を送信する無線送信手段と、前記 被検体内部における当該被検体内導入装置の移動状態に基づき前記無線送信手 段および Zまたは前記磁場センサの駆動タイミングを制御するタイミング制御手段と を備え、前記位置検出装置は、前記位置検出用磁場を形成する磁場形成手段と、 前記磁場センサによる検出結果を含む無線信号の受信処理を行う受信手段と、前記 受信手段によって受信処理がなされた前記無線信号に基づき、前記被検体の内部 における前記被検体内導入装置の位置を導出する位置導出手段とを備えたことを特 徴とする。
[0032] この請求項 19の発明によれば、移動状態にあわせて無線送信手段および Zまた は磁場センサの駆動タイミングを制御するタイミング制御手段を有する被検体内導入 装置を備えることとしたため、必要な場合に必要なタイミングで位置検出に使用する 情報を出力することとなるため、被検体内導入装置の消費電力を抑制しつつ確実な 位置検出を行うことが可能である。
[0033] また、請求項 20の発明に力かる被検体内導入システムは、上記の発明にお 、て、 前記被検体内導入装置は、前記移動状態として当該被検体内導入装置の移動速 度を導出する速度導出手段をさらに備え、前記タイミング制御手段は、前記速度導 出手段によって導出された移動速度に基づき前記駆動タイミングを制御することを特 徴とする。
[0034] また、請求項 21の発明に力かる被検体内導入システムは、上記の発明において、 前記タイミング制御手段は、前記移動速度が低速の場合に前記無線送信手段およ び Zまたは前記磁場センサの駆動周期を所定の長周期に設定し、前記移動速度が 高速の場合に前記駆動周期を前記長周期よりも短い周期である短周期に設定する ことを特徴とする。
[0035] また、請求項 22の発明に力かる被検体内導入システムは、上記の発明にお 、て、 前記被検体内導入装置は、前記移動状態として当該被検体内導入装置の振動状 態を検出する振動検出手段をさらに備え、前記タイミング制御手段は、前記振動検 出手段によって検出された振動状態に基づき前記駆動タイミングを制御することを特 徴とする。
[0036] また、請求項 23の発明に力かる被検体内導入システムは、上記の発明にお 、て、 前記無線送信手段によって送信される無線信号には、前記駆動タイミングに関する 情報がさらに含まれ、前記位置検出装置は、前記無線信号に含まれる前記駆動タイ ミングに関する情報に基づき前記磁場形成手段による磁場形成タイミングを制御する 磁場制御手段をさらに備えたことを特徴とする。
[0037] また、請求項 24の発明に力かる被検体内導入システムは、上記の発明にお 、て、 前記位置検出装置は、前記位置導出手段によって導出された複数の時刻における 被検体内導入装置の位置に基づき前記被検体内導入装置の移動速度を導出する 移動速度導出手段と、前記移動速度導出手段によって導出された移動速度を情報 として含む無線信号を送信する送信手段とをさらに備え、前記被検体内導入装置は 、前記送信手段によって送信された前記無線信号の受信処理を行う無線受信手段と 、前記無線受信手段によって受信処理された前記無線信号に基づき当該被検体内 導入装置の移動速度を導出し、導出した移動速度に関する情報を前記タイミング制 御手段に出力する移動速度導出部とをさらに備えたことを特徴とする。
[0038] また、請求項 25の発明に力かる被検体内導入システムは、上記の発明にお 、て、 前記位置検出装置は、前記速度導出手段によって導出された移動速度に基づき、 前記磁場形成手段による磁場形成タイミングを制御する磁場制御手段をさらに備え たことを特徴とする。
発明の効果
[0039] 本発明にカゝかる位置検出装置および被検体内導入システムは、第 1時刻における 検出対称の位置に基づき磁場形成手段によって形成される位置検出用磁場の強度 を制御する磁場強度制御手段を備えることとしたため、例えば、第 1時刻から所定時 間だけ経過した第 2時刻において、検出対象が明らかに存在しないと予測できる領 域に関して無駄な位置検出用磁場が形成されることを防止することが可能となり、位 置検出に際して必要かつ充分な強度の位置検出用磁場を形成することが可能であ るという効果を奏する。
[0040] 本発明にカゝかる位置検出装置および被検体内導入システムは、検出対象 (被検体 内導入装置)が位置しうる領域の一部で検出可能な位置検出用磁場を形成する磁 場形成手段と、第 2時刻において磁場形成手段の位置を適切に選択する位置選択 手段とを備えることとしたため、磁場形成に必要な駆動電力等を低減しつつ、第 2時 刻における位置検出を確実に行うことが可能であるという効果を奏する。
[0041] 本発明にかかる被検体内導入システムは、移動状態にあわせて無線送信手段およ び Zまたは磁場センサの駆動タイミングを制御するタイミング制御手段を有する被検 体内導入装置を備えることとしたため、必要な場合に必要なタイミングで位置検出に 使用する情報を出力することとなるため、被検体内導入装置の消費電力を抑制しつ つ確実な位置検出を行えるという効果を奏する。
図面の簡単な説明
[図 1]図 1は、実施例 1にかかる被検体内導入システムの全体構成について示す模式 図である。
[図 2]図 2は、被検体内導入システムに備わるカプセル型内視鏡の構成を示す模式 的なブロック図である。
[図 3]図 3は、位置検出装置に備わる第 1直線磁場形成部によって形成される第 1直 線磁場を示す模式図である。
[図 4]図 4は、位置検出装置に備わる第 2直線磁場形成部および拡散磁場形成部の 構成を示すと共に、第 2直線磁場形成部によって形成される第 2直線磁場の態様を 示す模式図である。
[図 5]図 5は、拡散磁場形成部によって形成される拡散磁場の態様を示す模式図で ある。
[図 6]図 6は、位置検出装置に備わる処理装置の構成を示す模式的なブロック図であ る。
[図 7]図 7は、基準座標軸と対象座標軸との関係を示す模式図である。
[図 8]図 8は、位置導出の際における第 2直線磁場の利用態様を示す模式図である。
[図 9]図 9は、位置導出の際における拡散磁場の利用態様を示す模式図である。
[図 10]図 10は、移動速度および移動速度を用いた存在可能範囲の導出態様を説明 するための模式図である。
[図 11]図 11は、導出された存在可能範囲に基づき定まる磁場形成領域につ!ヽて説 明するための模式図である。
[図 12]図 12は、処理装置の動作を説明するためのフローチャートである。
[図 13]図 13は、実施例 2にかかる被検体内導入システムに備わる処理装置の構成を 示す模式的なブロック図である。 [図 14]図 14は、移動速度データベースに記録された情報の内容の一例を示す模式 図である。
[図 15]図 15は、実施例 3にかかる被検体内導入システムに備わる処理装置の構成を 示す模式的なブロック図である。
[図 16]図 16は、実施例 3における存在可能範囲の導出メカニズムについて説明する ための模式図である。
[図 17]図 17は、実施例 3にかかる被検体内導入システムの変形例につ 、て説明する ための模式図である。
[図 18]図 18は、実施例 4にかかる被検体内導入システムの全体構成を示す模式図 である。
[図 19]図 19は、被検体内導入システムに備わる処理装置の構成を示す模式的なブ ロック図である。
[図 20]図 20は、実施例 5にかかる被検体内導入システムの全体構成について示す 模式図である。
圆 21]図 21は、位置検出装置に備わる第 2直線磁場形成部の配置パターンを示す 模式図である。
圆 22]図 22は、位置検出装置に備わる第 2直線磁場形成部および拡散磁場形成部 の構成を示すと共に、第 2直線磁場形成部によって形成される第 2直線磁場の態様 を示す模式図である。
[図 23]図 23は、拡散磁場形成部によって形成される拡散磁場の態様を示す模式図 である。
圆 24]図 24は、位置検出装置に備わる処理装置の構成を示す模式的なブロック図 である。
圆 25]図 25は、位置導出の際における第 2直線磁場の利用態様を示す模式図であ る。
圆 26]図 26は、位置導出の際における拡散磁場の利用態様を示す模式図である。
[図 27]図 27は、処理装置に備わる位置選択部の処理内容を説明するための模式図 である。 [図 28]図 28は、実施例 6にかかる被検体内導入システムに備わる保持部材および第 2直線磁場形成部の構成を示す模式図である。
[図 29]図 29は、被検体内導入システムに備わる位置検出装置を形成する処理装置 12の構成を示す模式的なブロック図である。
圆 30]図 30は、位置選択によって生じる第 2直線磁場形成部の動作について説明 するための模式図である。
[図 31]図 31は、実施例 7にかかる被検体内導入システムに備わる処理装置の構成を 示す模式的なブロック図である。
[図 32]図 32は、存在可能範囲の導出態様を説明するための模式図である。
[図 33]図 33は、実施例 8にかかる被検体内導入システムの全体構成を示す模式図 である。
[図 34]図 34は、被検体内導入システムに備わる処理装置の構成を模式的に示すブ ロック図である。
[図 35]図 35は、実施例 9にかかる被検体内導入システムの全体構成を示す模式図 である。
[図 36]図 36は、被検体内導入システムに備わるカプセル型内視鏡の構成を示す模 式的なブロック図である。
圆 37]図 37は、位置検出装置に備わる第 2直線磁場形成部および拡散磁場形成部 の構成を示すと共に、第 2直線磁場形成部によって形成される第 2直線磁場の態様 を示す模式図である。
[図 38]図 38は、拡散磁場形成部によって形成される拡散磁場の態様を示す模式図 である。
圆 39]図 39は、位置検出装置に備わる処理装置の構成を示す模式的なブロック図 である。
圆 40]図 40は、位置導出の際における第 2直線磁場の利用態様を示す模式図であ る。
圆 41]図 41は、位置導出の際における拡散磁場の利用態様を示す模式図である。
[図 42]図 42は、カプセル型内視鏡に備わるタイミング制御部における処理を説明す るためのフローチャートである。
[図 43]図 43は、実施例 9の変形例におけるカプセル型内視鏡の構成を示す模式的 なブロック図である。
[図 44]図 44は、実施例 10にかかる被検体内導入システムの全体構成を示す模式図 である。
[図 45]図 45は、被検体内導入システムに備わるカプセル型内視鏡の構成を示す模 式的なブロック図である。
[図 46]図 46は、被検体内導入システムに備わる処理装置の構成を示す模式的なブ ロック図である。
[図 47]図 47は、実施例 11にかかる被検体内導入システムの全体構成を示す模式図 である。
[図 48]図 48は、被検体内導入システムに備わる処理装置の構成を示す模式的なブ ロック図である。
符号の説明
1 被検体
2, 254, 257 カプセル型内視鏡
3, 103, 203, 258, 272 位置検出装置
4 表示装置
5 携帯型記録媒体
7a~7d, 28, 106a〜106d, 207a〜207d, 262 受信アンテナ
8a〜8d, 27, 107a〜107d, 259a〜259d 送信アンテナ
9, 108, 209 第 1直線磁場形成部
10, 110, 110a〜110d, 210 第 2直線磁場形成部
11, 111 , 211 拡散磁場形成部
12, 112, 212, 260 処理装置
14 被検体内情報取得部
15 信号処理部
16 磁場センサ 増幅部
AZD変換部
, 270 無線送信部
切替部
, 256 タイミング発生部
LED LED駆動回路
CCD CCD駆動回路
, 268 送信回路
電力再生回路
昇圧回路
蓄電器
, 34, 133, 135, 233, 234 コイル, 35 電流源
. 137, 237 受信アンテナ選択咅. 138, 238, 263 受信回路
. 139, 239, 264 信号処理部. 140, 240 方位導出部
, 141, 241 位置導出部
, 142, 242 磁力線方位データベース, 143, 243 記録部
, 144 発振器
, 146 増幅回路
, 147, 269 送信アンテナ選択部, 267 移動速度導出部
範囲導出部
磁場強度制御部 , 251 電力供給部
曲面
球状領域
磁場形成領域
, 156, 159 処理装置 移動速度データベース, 160 移動速度導出部 第 1速度領域
第 2速度領域
第 3速度領域
処理装置
, 161 移動方向導出部, 162 範囲導出部
, 164 存在可能範囲
, 132a〜132d 磁場形成領域, 168 位置検出装置
, 169, 273 地磁気センサ, 170, 274 処理装置
, 171 , 275 地磁気方位導出部9, 154 保持部材
9 位置選択部
0 駆動制御部
4a〜154d 停止ポイント5 可動機構
7 移動制御部
8 速度導出部
8 選択制御部
9 磁場制御部 255 振動検出部
261 無線受信部
発明を実施するための最良の形態
[0044] 以下、この発明を実施するための最良の形態 (以下では、単に「実施例」と称する) である位置検出装置および被検体内導入システムについて説明する。なお、図面は 模式的なものであり、各部分の厚みと幅との関係、それぞれの部分の厚みの比率な どは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの 寸法の関係や比率が異なる部分が含まれていることはもちろんである。なお、以下の 説明では、位置検出のメカニズムとして、第 1直線磁場、第 2直線磁場および拡散磁 場を用いた技術を例として説明するが、後述するようにかかる構成に限定して解釈す るべきではないことはもちろんであり、複数の時刻に渡って位置依存性を有する位置 検出用磁場を用 、て検出対象の位置検出を行うものであれば、本発明を適用するこ とが可能である。また、以下に示す実施例においては、特許請求の範囲における位 置検出用の磁場として第 2直線磁場を例として説明し、第 2直線磁場を形成する第 2 直線磁場形成部を特許請求の範囲における磁場形成手段として説明を行うが、後述 するように、この他の磁場および磁場形成部に対して本発明を適用することが可能で あることはもちろんである。
実施例 1
[0045] まず、実施例 1にかかる被検体内導入システムにつ 、て説明する。本実施例 1では 、被検体内導入システムの全体構成および各構成要素に関して説明すると共に位置 検出メカニズムに関して説明した後、位置検出に使用される位置検出用磁場の強度 に関する制御メカニズムに関する説明を行うこととする。
[0046] 図 1は、本実施例 1にかかる被検体内導入システムの全体構成について示す模式 図である。図 1に示すように、本実施例 1にかかる被検体内導入システムは、被検体 1 の内部に導入されて通過経路に沿って移動するカプセル型内視鏡 2と、カプセル型 内視鏡 2との間で無線通信を行うと共に、カプセル型内視鏡 2に固定された対象座標 軸と、被検体 1に対して固定された基準座標軸との間の位置関係を検出する位置検 出装置 3と、位置検出装置 3によって受信された、カプセル型内視鏡 2から送信され た無線信号の内容を表示する表示装置 4と、位置検出装置 3と表示装置 4との間の 情報の受け渡しを行うための携帯型記録媒体 5とを備える。また、図 1に示すように、 本実施例 1では、 X軸、 Y軸および Z軸によって形成され、カプセル型内視鏡 2に対し て固定された座標軸である対象座標軸と、 X軸、 y軸および z軸によって形成され、力 プセル型内視鏡 2の運動とは無関係に定められ、具体的には被検体 1に対して固定 された座標軸である基準座標軸とを設定しており、以下に説明する機構を用いて基 準座標軸に対する対象座標軸の位置関係を検出することとしている。
[0047] 表示装置 4は、位置検出装置 3によって受信された、カプセル型内視鏡 2によって 撮像された被検体内画像等を表示するためのものであり、携帯型記録媒体 5によつ て得られるデータに基づいて画像表示を行うワークステーション等のような構成を有 する。具体的には、表示装置 4は、 CRTディスプレイ、液晶ディスプレイ等によって直 接画像等を表示する構成としても良いし、プリンタ等のように、他の媒体に画像等を 出力する構成としても良い。
[0048] 携帯型記録媒体 5は、後述する処理装置 12および表示装置 4に対して着脱可能で あって、両者に対する装着時に情報の出力および記録が可能な構造を有する。具体 的には、携帯型記録媒体 5は、カプセル型内視鏡 2が被検体 1の体腔内を移動して いる間は処理装置 12に装着されて被検体内画像および基準座標軸に対する対象 座標軸の位置関係を記憶する。そして、カプセル型内視鏡 2が被検体 1から排出され た後に、処理装置 12から取り出されて表示装置 4に装着され、記録したデータが表 示装置 4によって読み出される構成を有する。処理装置 12と表示装置 4との間のデ ータの受け渡しをコンパクトフラッシュ (登録商標)メモリ等の携帯型記録媒体 5によつ て行うことで、処理装置 12と表示装置 4との間が有線接続された場合と異なり、カブ セル型内視鏡 2が被検体 1内部を移動中であっても、被検体 1が自由に行動すること が可能となる。
[0049] 次に、カプセル型内視鏡 2につ 、て説明する。カプセル型内視鏡 2は、特許請求の 範囲における検出対象の一例として機能するものである。具体的には、カプセル型 内視鏡 2は、被検体 1の内部に導入され、被検体 1内を移動しつつ被検体内情報を 取得し、取得した被検体内情報を含む無線信号を外部に送信する機能を有する。ま た、カプセル型内視鏡 2は、後述する位置関係の検出のための磁場検出機能を有す ると共に駆動電力が外部から供給される構成を有し、具体的には外部から送信され た無線信号を受信し、受信した無線信号を駆動電力として再生する機能を有する。
[0050] 図 2は、カプセル型内視鏡 2の構成を示すブロック図である。図 2に示すように、力 プセル型内視鏡 2は、被検体内情報を取得する機構として、被検体内情報を取得す る被検体内情報取得部 14と、取得された被検体内情報に対して所定の処理を行う 信号処理部 15とを備える。また、カプセル型内視鏡 2は、磁場検出機構として磁場を 検出し、検出磁場に対応した電気信号を出力する磁場センサ 16と、出力された電気 信号を増幅するための増幅部 17と、増幅部 17から出力された電気信号をディジタル 信号に変換する AZD変換部 18とを備える。
[0051] 被検体内情報取得部 14は、被検体内情報、本実施例 1においては被検体内の画 像データたる被検体内画像を取得するためのものである。具体的には、被検体内情 報取得部 14は、照明部として機能する LED22と、 LED22の駆動を制御する LED 駆動回路 23と、 LED22によって照明された領域の少なくとも一部を撮像する撮像部 として機能する CCD24と、 CCD24の駆動状態を制御する CCD駆動回路 25とを備 える。なお、照明部および撮像部の具体的な構成としては、 LED, CCDを用いること は必須ではなぐ例えば撮像部として CMOS等を用いることとしても良い。
[0052] 磁場センサ 16は、カプセル型内視鏡 2の存在領域に形成されている磁場の方位お よび強度を検出するためのものである。具体的には、磁場センサ 16は、例えば、 MI ( Magnetolmpedance)センサを用いて形成されている。 Mlセンサは、例えば FeCoSiB 系アモルファスワイヤを感磁媒体として用いた構成を有し、感磁媒体に高周波電流を 通電した際に、外部磁界に起因して感磁媒体の磁気インピーダンスが大きく変化す る Ml効果を利用して磁場強度の検出を行っている。なお、磁場センサ 16は、 Mlセ ンサ以外にも、例えば MRE (磁気抵抗効果)素子、 GMR (巨大磁気抵抗効果)磁気 センサ等を用いて構成することとしても良 、。
[0053] 図 1にも示したように、本実施例 1では、検出対象たるカプセル型内視鏡 2の座標軸 として、 X軸、 Y軸および Z軸によって規定された対象座標軸を想定している。かかる 対象座標軸に対応して、磁場センサ 16は、カプセル型内視鏡 2が位置する領域に形 成された磁場について、 X方向成分、 Y方向成分および Z方向成分の磁場強度を検 出し、それぞれの方向における磁場強度に対応した電気信号を出力する機能を有 する。磁場センサ 16によって検出された、対象座標軸における磁場強度成分は、後 述の無線送信部 19を介して位置検出装置 3に送信され、位置検出装置 3は、磁場セ ンサ 16によって検出された磁場成分の値に基づいて対象座標軸と基準座標軸の位 置関係を導出することとなる。
[0054] さらに、カプセル型内視鏡 2は、送信回路 26および送信アンテナ 27を備えると共に 外部に対して無線送信を行うための無線送信部 19と、無線送信部 19に対して出力 する信号に関して、信号処理部 15から出力されたものと AZD変換部 18から出力さ れたものとの間で適宜切り替える切替部 20とを備える。また、カプセル型内視鏡 2は 、被検体内情報取得部 14、信号処理部 15および切替部 20の駆動タイミングを同期 させるためのタイミング発生部 21を備える。
[0055] また、カプセル型内視鏡 2は、外部力 の給電用の無線信号を受信するための機 構として、受信アンテナ 28と、受信アンテナ 28を介して受信された無線信号力ゝら電 力を再生する電力再生回路 29と、電力再生回路 29から出力された電力信号の電圧 を昇圧する昇圧回路 30と、昇圧回路 30によって所定の電圧に変化した電力信号を 蓄積し、上記した他の構成要素の駆動電力として供給する蓄電器 31とを備える。
[0056] 受信アンテナ 28は、例えばループアンテナを用いて形成される。かかるループアン テナは、カプセル型内視鏡 2内の所定の位置に固定されており、具体的にはカプセ ル型内視鏡 2に固定された対象座標軸における所定の位置および指向方向を有す るよう配置されている。
[0057] 次に、位置検出装置 3について説明する。位置検出装置 3は、図 1に示すように、力 プセル型内視鏡 2から送信される無線信号を受信するための受信アンテナ 7a〜7dと 、カプセル型内視鏡 2に対して給電用の無線信号を送信するための送信アンテナ 8a 〜8dと、第 1直線磁場を形成する第 1直線磁場形成部 9と、第 2直線磁場を形成する 第 2直線磁場形成部 10と、拡散磁場を形成する拡散磁場形成部 11と、受信アンテ ナ 7a〜7dを介して受信された無線信号等に対して所定の処理を行う処理装置 12と を備える。 [0058] 受信アンテナ 7a〜7dは、カプセル型内視鏡 2に備わる無線送信部 19から送信さ れた無線信号を受信するためのものである。具体的には、受信アンテナ 7a〜7dは、 ループアンテナ等によって形成され、処理装置 12に対して受信した無線信号を伝達 する機能を有する。
[0059] 送信アンテナ 8a〜8dは、処理装置 12によって生成された無線信号をカプセル型 内視鏡 2に対して送信するためのものである。具体的には、送信アンテナ 8a〜8dは 、処理装置 12と電気的に接続されたループアンテナ等によって形成されている。
[0060] なお、受信アンテナ 7a〜7d、送信アンテナ 8a〜8dおよび以下に述べる第 1直線 磁場形成部 9等の具体的な構成としては、図 1に示したものに限定されないことに注 意が必要である。すなわち、図 1はこれらの構成要素についてあくまで模式的に示す ものであって、受信アンテナ 7a〜7d等の個数は図 1に示した個数に限定されること はなぐ配置される位置、具体的な形状等についても、図 1に示したものに限定される こと無く任意の構成を採用することが可能である。
[0061] 第 1直線磁場形成部 9は、被検体 1内において所定方向の直線磁場を形成するた めのものである。ここで、「直線磁場」とは、少なくとも所定の空間領域、本実施例 1で は被検体 1内部のカプセル型内視鏡 2が位置しうる空間領域において、実質上 1方 向のみの磁場成分力もなる磁場のことをいう。第 1直線磁場形成部 9は、具体的には 、図 1にも示すように、被検体 1の胴体部分を覆うように形成されたコイルと、かかるコ ィルに対して所定の電流を供給する電流源(図示省略)とを備え、カゝかるコイルに所 定の電流を流すことによって、被検体 1内部の空間領域内に直線磁場を形成する機 能を有する。ここで、第 1直線磁場の進行方向としては任意の方向を選択することとし て良いが、本実施例 1においては、第 1直線磁場は、被検体 1に対して固定された基 準座標軸における z軸方向に進行する直線磁場であることとする。
[0062] 図 3は、第 1直線磁場形成部 9によって形成される第 1直線磁場を示す模式図であ る。図 3に示すように、第 1直線磁場形成部 9を形成するコイルは、被検体 1の胴部を 内部に含むよう形成されると共に基準座標軸における z軸方向に延伸した構成を有 する。従って、第 1直線磁場形成部 9によって被検体 1内部に形成される第 1直線磁 場は、図 3に示すように、基準座標軸における z軸方向に進行する磁力線が形成され ることとなる。
[0063] 次に、第 2直線磁場形成部 10および拡散磁場形成部 11について説明する。第 2 直線磁場形成部 10および拡散磁場形成部 11は、それぞれ特許請求の範囲におけ る磁場形成手段の一例として機能するものであり、形成される第 2直線磁場および拡 散磁場は、特許請求の範囲における位置検出用磁場の一例として機能するものであ る。なお、以下の説明においては、特に具体例に関して第 2直線磁場形成部 10を磁 場形成手段の例として説明するが、説明からも明らかなように、磁場形成手段の例と して拡散磁場形成部 11を用いた場合であっても同様に成立することはもちろんであ る。
[0064] 第 2直線磁場形成部 10は、第 1直線磁場とは異なる方向に進行する直線磁場であ る第 2直線磁場を形成するためのものである。また、拡散磁場形成部 11は、第 1直線 磁場形成部 9、第 2直線磁場形成部 10とは異なり、磁場方向が位置依存性を有する 拡散磁場、本実施例 1では拡散磁場形成部 11から離隔するにつれて拡散する磁場 を形成するためのものである。
[0065] 図 4は、第 2直線磁場形成部 10および拡散磁場形成部 11の構成を示すと共に、第 2直線磁場形成部 10によって形成される第 2直線磁場の態様を示す模式図である。 図 4に示すように、第 2直線磁場形成部 10は、基準座標軸における y軸方向に延伸 し、コイル断面が xz平面と平行となるよう形成されたコイル 32と、コイル 32に対して電 流供給を行うための電流源 33とを備える。このため、コイル 32によって形成される第 2直線磁場は、図 4に示すように、少なくとも被検体 1内部においては直線磁場となる と共に、コイル 32から離れるにつれて徐々に強度が減衰する特性、すなわち強度に 関して位置依存性を有することとなる。
[0066] また、拡散磁場形成部 11は、コイル 34と、コイル 34に対して電流供給を行うための 電流源 35とを備える。ここで、コイル 32は、あら力じめ定めた方向に進行方向を有す る磁場を形成するよう配置されており、本実施例 1の場合には、コイル 32によって形 成される直線磁場の進行方向が基準座標軸における y軸方向となるよう配置されて いる。また、コイル 34は、後述する磁力線方位データベース 42に記憶された磁場方 向と同一の拡散磁場を形成する位置に固定されて 、る。 [0067] なお、本実施例 1において、第 2直線磁場形成部 10および拡散磁場形成部 11は、 後述する磁場強度制御部 50による制御に従って、形成する磁場の強度を調整する 機能を有する。具体的には、第 2直線磁場形成部 10および拡散磁場形成部 11は、 磁場強度制御部 50の制御に対して電流源 33、 35によって供給される電流値を調整 することによって、磁場強度の調整を行う機能を有する。
[0068] 図 5は、拡散磁場形成部 11によって形成される拡散磁場の態様を示す模式図であ る。図 5に示すように、拡散磁場形成部 11に備わるコイル 34は、被検体 1の表面上に 渦巻き状に形成されており、拡散磁場形成部 11によって形成される拡散磁場は、図 5に示すようにコイル 34 (図 5にて図示省略)によって形成された磁場において、磁力 線が放射状にー且拡散し、再びコイル 34に入射するよう形成されて 、る。
[0069] なお、本実施例 1にお!/ヽて、第 1直線磁場形成部 9、第 2直線磁場形成部 10および 拡散磁場形成部 11は、それぞれ異なる時刻に磁場を形成することとする。すなわち 、本実施例 1では、第 1直線磁場形成部 9等は、同時に磁場を形成するのではなぐ 所定の順序に従つて磁場を形成する構成とし、カプセル型内視鏡 2に備わる磁場セ ンサ 16は、第 1直線磁場、第 2直線磁場および拡散磁場を別個独立に検出すること とする。
[0070] 次に、処理装置 12の構成について説明する。図 6は、処理装置 12の具体的な構 成を模式的に示すブロック図である。まず、処理装置 12は、カプセル型内視鏡 2によ つて送信された無線信号の受信処理を行う機能を有し、かかる機能に対応して、受 信アンテナ 7a〜7dの ゝずれかを選択する受信アンテナ選択部 37と、選択した受信 アンテナを介して受信された無線信号に対して復調処理等を行うことによって、無線 信号に含まれる原信号を抽出する受信回路 38と、抽出された原信号を処理すること によって画像信号等を再構成する信号処理部 39とを有する。
[0071] 具体的には、信号処理部 39は、抽出された原信号に基づき磁場信号 S1〜S3およ び画像信号 S4を再構成し、それぞれ適切な構成要素に対して出力する機能を有す る。ここで、磁場信号 S1〜S3は、それぞれ磁場センサ 16によって検出された第 1直 線磁場、第 2直線磁場および拡散磁場に対応する磁場信号である。また、画像信号 S4は、被検体内情報取得部 14によって取得された被検体内画像に対応するもので ある。なお、磁場信号 S〜Sの具体的な形態としては、カプセル型内視鏡 2に対して
1 3
固定された対象座標軸における検出磁場強度に対応した方向ベクトルによって表現 され、対象座標軸における磁場進行方向および磁場強度に関する情報を含むものと する。また、画像信号 S4は、記録部 43に対して出力される。記録部 43は、入力され たデータを携帯型記録媒体 5に対して出力するためのものであり、画像信号 S4以外 にも、後述する位置検出の結果等についても携帯型記録媒体 5に記録する機能を有 する。
[0072] また、処理装置 12は、カプセル型内視鏡 2によって検出された磁場強度等に基づ き、被検体 1内部におけるカプセル型内視鏡 2の位置を検出する機能と、被検体 1に 対して固定された基準座標軸に対してカプセル型内視鏡 2に対して固定された対象 座標軸のなす方位とを検出する機能を有する。具体的には、カプセル型内視鏡 2〖こ よって送信され、信号処理部 39によって出力される信号のうち、第 1直線磁場および 第 2直線磁場の検出強度に対応した磁場信号 S、 Sに基づき基準座標軸に対する
1 2
対象座標軸のなす方位を導出する方位導出部 40と、拡散磁場の検出強度に対応し た磁場信号 Sおよび磁場信号 Sと、方位導出部 40の導出結果とを用いてカプセル
3 2
型内視鏡 2の位置を導出する位置導出部 41と、位置導出部 41による位置導出の際 に、拡散磁場を構成する磁力線の進行方向と位置との対応関係を記録した磁力線 方位データベース 42とを備える。これらの構成要素による方位導出および位置導出 に関しては、後に詳細に説明する。
[0073] さらに、処理装置 12は、カプセル型内視鏡 2に対して駆動電力を無線送信する機 能を有し、送信する無線信号の周波数を規定する発振器 44と、発振器 44から出力 される無線信号の強度を増幅する増幅回路 46と、無線信号の送信に用いる送信ァ ンテナを選択する送信アンテナ選択部 47とを備える。カゝかる無線信号は、カプセル 型内視鏡 2に備わる受信アンテナ 28によって受信され、カプセル型内視鏡 2の駆動 電力として機能することとなる。
[0074] また、処理装置 12は、受信アンテナ選択部 37および送信アンテナ選択部 47によ るアンテナ選択態様を制御する選択制御部 48を備える。選択制御部 48は、方位導 出部 40および位置導出部 41によってそれぞれ導出されたカプセル型内視鏡 2の方 位および位置に基づき、カプセル型内視鏡 2に対する送受信に最も適した送信アン テナ 8および受信アンテナ 7を選択する機能を有する。
[0075] また、処理装置 12は、第 2直線磁場形成部 10および拡散磁場形成部 11によって 形成される磁場の強度を制御する機能を有する。具体的には、処理装置 12は、記録 部 43に記録された、カプセル型内視鏡 2の位置の履歴に基づきカプセル型内視鏡 2 の移動速度を導出する移動速度導出部 48と、導出した移動速度とカプセル型内視 鏡 2の過去の位置とに基づきカプセル型内視鏡 2が位置する範囲を導出する範囲導 出部 49と、導出された範囲に基づき第 2直線磁場形成部 10および拡散磁場形成部 11に対して形成磁場強度の制御を行う磁場強度制御部 50とを備える。移動速度導 出部 48および磁場強度制御部 50の機能については、後に詳細に説明する。また、 処理装置 12は、これらの構成要素に対して駆動電力を供給するための電力供給部 51を備える。
[0076] 次に、本実施例 1にかかる被検体内導入システムの動作について説明する。以下 では、検出対象たるカプセル型内視鏡 2の位置検出メカニズムにつ 、て説明した後 に、位置導出等に使用される第 2直線磁場および拡散磁場の強度制御メカニズムに っ 、て説明を行 、、最後に全体としての動作にっ 、て説明を行う。
[0077] まず、カプセル型内視鏡 2の位置検出メカニズムについて説明する。本実施例 1に カゝかる被検体内導入システムでは、被検体 1に対して固定された基準座標軸と、カブ セル型内視鏡 2に対して固定された対象座標軸との間で位置関係を導出する構成を 有し、具体的には、基準座標軸に対する対象座標軸の方位を導出した上で、導出し た方位を利用しつつ基準座標軸上における対象座標軸の原点の位置、すなわち被 検体 1内部におけるカプセル型内視鏡 2の位置を導出することとしている。従って、以 下ではまず方位導出メカニズムについて説明した後、導出した方位を用いた位置導 出メカニズムについて説明することとなるが、本発明の適用対象が力かる位置検出メ 力-ズムを有するシステムに限定されないことはもちろんである。
[0078] 方位導出部 40によって行われる方位導出メカニズムについて説明する。図 7は、被 検体 1中をカプセル型内視鏡 2が移動している際における基準座標軸と対象座標軸 との関係を示す模式図である。既に説明したように、カプセル型内視鏡 2は、被検体 1内部を通過経路に沿って進行しつつ、進行方向を軸として所定角度だけ回転して いる。従って、カプセル型内視鏡 2に対して固定された対象座標軸は、被検体 1に固 定された基準座標軸に対して、図 7に示すような方位のずれを生じることとなる。
[0079] 一方で、第 1直線磁場形成部 9および第 2直線磁場形成部 10は、それぞれ被検体 1に対して固定される。従って、第 1直線磁場形成部 9および第 2直線磁場形成部 10 によって形成される第 1、第 2直線磁場は、基準座標軸に対して一定の方向、具体的 には第 1直線磁場は基準座標軸における z軸方向、第 2直線磁場は y軸方向に進行 する。
[0080] 本実施例 1における方位導出は、かかる第 1直線磁場および第 2直線磁場を利用し て行われる。具体的には、まず、カプセル型内視鏡 2に備わる磁場センサ 16によって 、時分割に供給される第 1直線磁場および第 2直線磁場の進行方向が検出される。 磁場センサ 16は、対象座標軸における X軸方向、 Y軸方向および Z軸方向の磁場成 分を検出するよう構成されており、検出された第 1、第 2直線磁場の対象座標軸にお ける進行方向に関する情報は、無線送信部 19を介して位置検出装置 3に対して送 信される。
[0081] カプセル型内視鏡 2によって送信された無線信号は、信号処理部 39等による処理 を経て、磁場信号 S、 Sとして出力される。例えば、図 7の例においては、磁場信号 S
1 2
には、第 1直線磁場の進行方向として座標 (X、 Y、 Z )に関する情報が含まれ、磁
1 1 1 1
場信号 Sには、第 2直線磁場の進行方向として座標 (X、 Y、 Z )に関する情報が含
2 2 2 2 まれる。これに対して、方位導出部 40は、磁場信号 S、 Sの入力を受けて基準座標
1 2
軸に対する対象座標軸の方位の導出を行う。具体的には、方位導出部 40は、対象 座標軸において、(X、 Y、 Z )および (X、 Y、 Z )の双方に対する内積の値が 0とな
1 1 1 2 2 2
る座標 (X、 Y、 Z )を基準座標軸における Z軸の方向に対応するものとして把握する
3 3 3
。そして、方位導出部 40は、上記の対応関係に基づいて所定の座標変換処理を行 い、対象座標軸における X軸、 Y軸および Z軸の基準座標軸における座標を導出し、 カゝかる座標を方位情報として出力する。以上が方位導出部 40による方位導出メカ- ズムである。
[0082] 次に、位置導出部 41によるカプセル型内視鏡 2の位置導出メカニズムを説明する。 位置導出部 41は、信号処理部 39から磁場信号 S、 Sが入力され、方位導出部 40
2 3
力も方位情報が入力されると共に、磁力線方位データベース 42に記憶された情報を 入力する構成を有する。位置導出部 41は、入力されるこれらの情報に基づき、以下 の通りにカプセル型内視鏡 2の位置導出を行う。
[0083] まず、位置導出部 41は、磁場信号 Sを用いて、第 2直線磁場形成部 10とカプセル
2
型内視鏡 2との間の距離の導出を行う。磁場信号 Sは、カプセル型内視鏡 2の存在
2
領域における第 2直線磁場の検出結果に対応するものであり、第 2直線磁場は、第 2 直線磁場形成部 10が被検体 1外部に配置されたことに対応して、第 2直線磁場形成 部 10から離隔するにつれてその強度が減衰する特性を有する。力かる特性を利用し て、位置導出部 41は、第 2直線磁場形成部 10近傍における第 2直線磁場の強度( 第 2直線磁場形成部 10に流す電流値より求まる)と、磁場信号 S力も求まるカプセル
2
型内視鏡 2の存在領域における第 2直線磁場の強度とを比較し、第 2直線磁場形成 部 10とカプセル型内視鏡 2との間の距離 rを導出する。力かる距離 rを導出した結果、 図 8に示すように、カプセル型内視鏡 2は、第 2直線磁場形成部 10から距離!:だけ離 れた点の集合である曲面 52上に位置することが明ら力となる。
[0084] そして、位置導出部 41は、磁場信号 S、方位導出部 40によって導出された方位情
3
報および磁力線方位データベース 42に記憶された情報に基づきカプセル型内視鏡 2の曲面 52上における位置を導出する。具体的には、磁場信号 Sおよび方位情報
3
に基づき、カプセル型内視鏡 2の存在位置における拡散磁場の進行方向を導出する 。磁場信号 Sは、拡散磁場を対象座標軸に基づき検出した結果に対応する信号で
3
あるから、かかる磁場信号 Sに基づく拡散磁場の進行方向に関して、方位情報を用
3
、て対象座標軸カゝら基準座標軸へ座標変換処理を施すことによって、カプセル型内 視鏡 2の存在位置における、基準座標軸における拡散磁場の進行方向が導出され る。そして、磁力線方位データベース 42は、基準座標軸における拡散磁場の進行方 向と位置との対応関係を記録していることから、位置導出部 41は、図 9に示すように、 磁力線方位データベース 42に記憶された情報を参照することによって導出した拡散 磁場の進行方向に対応した位置を導出し、導出した位置をカプセル型内視鏡 2の位 置として特定する。以上が位置導出部 41による位置導出メカニズムである。 [0085] 次に、第 2直線磁場および拡散磁場の強度制御について説明する。かかる磁場強 度の制御は、位置検出用磁場として使用される第 2直線磁場等の形成に必要となる 電力の消費量を低減する目的でなされるものである。より具体的には、本実施例 1に おける磁場強度制御は、これから行われる位置検出の際において、カプセル型内視 鏡 2の位置をある程度予測し、力かる予測範囲においてカプセル型内視鏡 2の備わ る磁場センサ 16によって検出することが可能な限りで形成磁場の強度を低減するも のである。
[0086] 本実施例 1では、磁場強度制御は、大別して以下のプロセスに従って行われる。す なわち、移動速度導出部 48によるカプセル型内視鏡 2の移動速度の導出と、範囲導 出部 49によるカプセル型内視鏡 2の存在可能領域の導出と、磁場制御部 50による、 存在可能領域に基づく第 2直線磁場形成部 10および拡散磁場形成部 11との制御 である。以下、移動速度の導出、存在可能領域の導出および第 2直線磁場形成部 1 0等の制御についてそれぞれ説明する。
[0087] なお、以下の説明及び図 10以下において、時刻 tは位置検出が行われる時刻を意 味し、時刻 tのうち、時刻 t 、 tおよび tは、既に位置検出が行われた時刻、すなわち
- 1 0 1
過去の時刻であって、時刻 tは、これから行われる位置検出に対応した時刻であって
2
、磁場強度制御は、時刻 t
2における位置検出に関して行われるものとする。すなわち
、本実施例 1において、特許請求の範囲における「第 1時刻」は時刻 tに対応し、「第
1
2時刻」は時刻 tに対応し、「過去の複数の時刻」は、時刻 t 、 t、 tに対応するものと
2 - 1 0 1
して説明を行う。
[0088] 図 10は、移動速度および存在可能領域の導出メカニズムについて説明するための 模式図である。まず、移動速度導出部 48は、記録部 43に記録された、異なる時刻 t
-1
、 t、 tにおける位置に基づき、時刻 t 〜tにおける移動距離 r および時刻 t〜tに
0 1 - 1 0 - 1 0 1 おける移動距離 rを導出し、移動距離を用いて過去の平均移動速度を導出する。具
0
体的には、例えば、時刻 t 〜tにおける平均速度 V と、時刻 t〜tにおける平均速
- 1 0 - 1 0 1
度 Vとを用いることによって、時刻 t〜tにおける移動速度の平均値 Vを、
0 1 2
v= (v +v ) /2= (l/2) {r Z (t— t ) } + {r / (t -t ) } …(1)
- 1 0 - 1 0 - 1 0 1 0
と導出する。なお、本実施例 1において、時刻 t〜tにおける移動速度は、過去の複 数の時刻に検出された位置に基づき導出されるものであれば(1)式に示すもの以外 でも良ぐ例えば最も単純な構成として、 v=vとして時刻 t〜tにおける移動速度を
0 1 2
導出することとしても良い。
[0089] そして、範囲導出部 49は、移動速度導出部 48によって導出された移動速度に基 づき、時刻 tにおけるカプセル型内視鏡 2の存在可能領域を導出する。範囲導出部
2
49は、図 10に示すように、時刻 tに検出したカプセル型内視鏡 2の位置を中心とし
1
て、導出した移動速度と、時刻 tから時刻 tまでの経過時間 A t ( =t -t )とを乗算し
1 2 2 1 た値を半径とした球状領域 53として存在可能領域を導出する。すなわち、本実施例 1においては、カプセル型内視鏡 2は、時刻 tに図 11に示す球状領域 53中に存在
2
するものと範囲導出部 49によって推測される。
[0090] 存在可能領域が導出された後、磁場強度制御部 50は、力かる領域をカバーするよ う第 2直線磁場形成部 10および拡散磁場形成部 11による形成磁場の強度の調整を 行う。図 11は、磁場強度制御部 50による制御の例として、第 2直線磁場形成部 10に 関する磁場強度の制御について示す模式図である。なお、図 11において、「磁場形 成領域」とは、位置検出に関して有意な磁場が形成される領域のことをいい、具体的 には、例えばカプセル型内視鏡 2に備わる磁場センサ 16によって検出可能な強度の 磁場が形成される領域を言う。磁場強度制御部 50の制御によって、第 2磁場形成部 10は、磁場形成領域 54が球状領域 53を含むという条件の下で、消費電力が最も小 さくなるよう磁場を形成する。具体的には、第 2直線磁場は、第 2直線磁場形成部 10 から離隔するにつれて強度が減衰する特性を有することから、第 2直線磁場形成部 1 0は、球状領域 53のうち最も遠方に位置する部分と、磁場形成領域 54の周縁部とが 重なるよう磁場形成を行う。以上が磁場強度制御部 50による磁場強度制御メカニズ ムである。
[0091] 以上説明した位置検出メカニズムおよび磁場強度制御メカニズムを用いて、処理 装置 12は、図 12に示すフローチャートに従って動作する。まず、磁場強度制御部 50 は、最初の位置検出を行うために、磁場形成領域が被検体 1全体を覆うよう第 2直線 磁場形成部 10等を制御し、かかる制御に対応した磁場が形成される (ステップ S101 ) oそして、形成された磁場を利用して、上述のメカニズムにより位置導出が行われ( ステップ S102)、検出した位置等に基づき、ステップ S102における位置検出力も所 定時間(= A t)経過後におけるカプセル型内視鏡 2の存在可能範囲の導出を行う( ステップ S 103)。
[0092] その後、磁場強度制御部 50は、存在可能範囲に対応した磁場形成領域を設定し 、かかる磁場形成領域を実現するよう第 2直線磁場形成部 10等に対して制御を行い (ステップ S104)、制御内容をフィードバックしつつ所定時間経過後のカプセル型内 視鏡 2の位置導出を行う(ステップ S105)。そして、位置検出が終了する力否かを判 定し (ステップ S106)、終了しない場合には(ステップ S106, No)、再びステップ S10 3に戻って、上述の処理を繰り返す。なお、処理装置 12は、以上の動作と対応して、 カプセル型内視鏡 2から送信された無線信号に基づく被検体内画像データの再構 成'記録およびカプセル型内視鏡 2に対する駆動電力の送信等の動作を行うが、本 発明の特徴部分ではないことから、ここでは説明を省略する。
[0093] なお、ステップ S101にお ヽて被検体全体を覆うよう磁場形成領域を設定することと したのは、最初に行う位置検出の際には、上述したメカニズムによる存在可能範囲の 導出が困難なためである。すなわち、上述したメカニズムでは、過去に検出された位 置等を用いて存在可能範囲の導出を行うことから、最初に行われる位置検出動作の みに関しては、従来と同様のメカニズムに従って位置検出が行われることとなる。
[0094] また、ステップ S105において、磁場強度制御部 50による制御内容をフィードバック しつつ位置導出部 41による位置導出を行うこととしたのは以下の理由に基づく。すな わち、位置導出動作のうち、特に図 8に示す第 2直線磁場形成部 10とカプセル型内 視鏡 2との間の距離!:の導出では、第 2直線磁場形成部 10から出力される第 2直線磁 場の強度が、第 2直線磁場形成部 10から離れるに従って減衰する特性を利用したも のである。具体的には、位置導出部 41は、第 2直線磁場の強度減衰率に基づき距 離 rを導出するため、第 2直線磁場形成部 10の近傍における磁場強度を把握する必 要がある。従って、ステップ S105における位置導出の際には、位置導出部 41 (およ び必要に応じて方位導出部 40)は、磁場強度制御部 50から制御内容に関する情報 が入力され、力かる情報を利用して位置検出を行うこととしている。
[0095] 次に、本実施例 1にかかる被検体内導入システムの利点について説明する。本実 施例 1にかかる被検体内導入システムは、形成磁場を用いてカプセル型内視鏡の位 置検出を行うと共に、位置検出に用いる磁場の強度を必要充分な値に制御すること によって、位置検出装置 3全体における消費電力を低減できるという利点を有する。
[0096] すなわち、本実施例 1にかかる被検体内導入システムでは、図 11に示すように、位 置検出を行う時点(=t )においてカプセル型内視鏡 2が存在する可能性の高い領
2
域として存在可能範囲を設定し、カゝかる存在可能範囲をカバーする限度で磁場形成 を行うこととしている。そのため、従来のように被検体 1全体をカバーするように磁場形 成を行った場合と比較して、磁場形成領域を大幅に狭くすることが可能となり、磁場 形成に要する電力量を低減することが可能であって、低消費電力の被検体内導入シ ステムを実現することが可能である。
[0097] また、本実施例 1にかかる被検体内導入システムでは、磁場形成領域を従来よりも 狭く設定することとしたため、従来よりも周辺機器に及ぼす影響を低減できるという利 点を有する。すなわち、磁場形成領域を狭く設定することによって、被検体 1の外部 に形成される磁場の強度も低減されることとなり、被検体 1の外部に位置する電子機 器等に及ぼす影響を低減することが可能である。
[0098] さらに、本実施例 1にかかる被検体内導入システムは、図 11に示すように、存在可 能範囲として、時刻 tにおけるカプセル型内視鏡 2の位置を中心とし、導出された移
1
動速度 Vと経過時間 Δ tを乗算した値を半径とした球状領域 53を導出することとして いる。存在可能範囲を球状領域 53によって定義することによって、高い確実性を有 する存在可能範囲を導出することが可能である。
[0099] 一般に、カプセル型内視鏡 2は、被検体 1内部における通過領域に応じて移動速 度が変化する特性を有する。従って、例えば、存在可能範囲を時刻 tにおける位置
1
に対して一律に定めることとした場合には、食道のようにカプセル型内視鏡 2が高速 で移動する領域では、時刻 t2にお 、て存在可能範囲を外れた位置にカプセル型内 視鏡 2が位置することになる確率が高ぐ確実な位置検出を行えないこととなる。これ に対して、本実施例 1では、過去の検出結果に基づき移動速度を導出し、導出した 移動速度によって到達可能な範囲について存在可能範囲として設定する構成を採 用することから、存在可能範囲を一律に定めた場合のような弊害が生じることはなぐ 高い確実性を有する存在可能範囲を導出することが可能である。すなわち、本実施 例 1にかかる被検体内導入システムは、位置検出精度を維持しつつ磁場形成に要す る電力を低減できると 、う利点を有する。
実施例 2
[0100] 次に、実施例 2にかかる被検体内導入システムについて説明する。本実施例 2にか 力る被検体内導入システムは、磁場強度の制御の前提として行われるカプセル型内 視鏡 2の移動速度に関して、被検体 1内部におけるカプセル型内視鏡 2の位置と移 動速度との関係をあら力じめ記録したデータベースを用いて導出する構成を有する。
[0101] 図 13は、本実施例 2にかかる被検体内導入システムに備わる処理装置 55の構成 を示す模式的なブロック図である。なお、本実施例 2にかかる被検体内導入システム は、基本的には実施例 1にかかる被検体内導入システムと同様の構成を有し、図示 は省略したものの、実施例 1と同様にカプセル型内視鏡 2、表示装置 4および携帯型 記録媒体 5を備える。また、位置検出装置に関しても、以下で説明する処理装置 55 の他、実施例 1と同様に受信アンテナ 7a〜7d、送信アンテナ 8a〜8d、第 1直線磁場 形成部 9、第 2直線磁場形成部 10および拡散磁場形成部 11を有する。さらに、処理 装置 55にお 、て、実施例 1における処理装置 12と同様の名称 ·符号を有するものは 、以下で特に言及しない限りにおいて、実施例 1と同様の構造'機能を有することとす る。
[0102] 本実施例 2にかかる被検体内導入システムに備わる処理装置 55は、図 13に示すよ うに、新たに移動速度データベース 56を備える。移動速度データベース 56は、被検 体 1内におけるカプセル型内視鏡 2の位置と移動速度との対応関係に関する情報を 記録する機能を有し、移動速度導出部 57は、記録部 43に記録された、第 1時刻に おけるカプセル型内視鏡 2の位置と、移動速度データベース 56に記録された情報と に基づき第 2時刻におけるカプセル型内視鏡 2の移動速度を導出する機能を有する
[0103] カプセル型内視鏡 2の移動速度は、被検体 1内部で常に一定値を維持するのでは なぐ通過する消化器官の構造等に起因して変動するのが通常であり、例えば食道 を通過する際には高速で移動する一方で、小腸を通過する際には移動速度が低下 する性質を有する。本実施例 2では、カプセル型内視鏡 2が被検体 1内の位置に応じ て移動速度が変化する特性に着目し、あらかじめ被検体内の位置と移動速度との対 応関係を類型化し、類型化した対応関係をデータとして用意しておくことによって移 動速度の導出を行うこととする。
[0104] 図 14は、移動速度データベース 56に記録された情報の内容の一例を示す模式図 である。図 14に示すように、移動速度データベース 56は、一例として、カプセル型内 視鏡 2が通過する領域を 3つに大別する。具体的には移動速度データベース 56は、 食道に対応した第 1速度領域 59、胃に対応した第 2速度領域 60および小腸 '大腸に 対応した第 3速度領域 61の位置を記憶し、それぞれの領域ごとに最大速度を記憶 する機能を有する。
[0105] これに対して、移動速度導出部 57は、次のようにカプセル型内視鏡 2の移動速度 の導出を行う。すなわち、移動速度導出部 57は、最初に記録部 43を参照し、第 1時 刻(時刻 t )におけるカプセル型内視鏡 2の位置に関する情報を取得する。そして、
1
移動速度導出部 57は、取得したカプセル型内視鏡 2の位置に基づき、第 1時刻にお いてカプセル型内視鏡 2がどの速度領域内に位置するかを判定し、対応する移動速 度に関する情報を取得する。例えば、図 14の例では、移動速度導出部 57は、第 2速 度領域 60に属するものと判断し、第 2速度領域 60に対応するものとして移動速度デ ータベース 56に記憶された速度を、第 2時刻(時刻 t )におけるカプセル型内視鏡 2
2
の移動速度として把握して範囲導出部 49に出力する機能を有する。
[0106] 本実施例 2にかかる被検体内導入システムの利点について説明する。本実施例 2 では、実施例 1における利点に加えて、移動速度の導出を簡易に行えるという利点を 有する。すなわち、本実施例 2において、移動速度導出部 57は、既に検出された第 1時刻におけるカプセル型内視鏡 2の位置に基づき、対応する情報を移動速度デー タベース 56から入力することによって移動速度を導出する。従って、本実施例 2では 、移動速度の導出にあたって演算処理等を行う必要が無ぐ迅速かつ簡易に移動速 度を導出することが可能であるという利点を有する。
実施例 3
[0107] 次に、実施例 3にかかる被検体内導入システムについて説明する。本実施例 3にか 力る被検体内導入システムは、存在可能範囲の導出の際に、移動速度のみならず 移動方向に関しても導出することによって、より確実性の高い存在可能範囲を導出 することを可能としている。
[0108] 図 15は、本実施例 3にかかる被検体内導入システムに備わる処理装置 63の構成 を示す模式的なブロック図である。なお、実施例 2の場合と同様に、図示は省略する ものの本実施例 3にかかる被検体内導入システムは、カプセル型内視鏡 2、表示装 置 4および携帯型記録媒体 5を備えることとし、位置検出装置に関しても、以下で説 明する処理装置 63の他、実施例 1と同様に受信アンテナ 7a〜7d等を備えることとす る。さらに、実施例 2と同様の名称'符号を付したものは、以下で特に言及しない 限り、実施例 2と同様の構造'機能を有することとする。
[0109] 図 15に示すように、処理装置 63は、移動方向導出部 64をさらに備えた構成を有 する。移動方向導出部 64は、記録部 43に記録された、第 1時刻におけるカプセル型 内視鏡 2の指向方向に基づきカプセル型内視鏡 2の移動方向を導出する機能を有し 、導出した移動方向について、範囲導出部 65に出力する機能を有する。移動方向 導出部 64を新たに設けたことに対応して、範囲導出部 65は、記録部 43に記録され た、第 1時刻におけるカプセル型内視鏡 2の位置と、移動速度導出部 48によって導 出された移動速度と、移動方向導出部 64によって導出された移動速度とに基づき、 第 2時刻におけるカプセル型内視鏡 2の存在可能範囲を導出する機能を有する。
[0110] 図 16は、本実施例 3における存在可能範囲の導出メカニズムについて説明するた めの模式図である。時刻 t (第 1時刻)におけるカプセル型内視鏡 2の位置に対して、
1
移動速度導出部 48によって移動速度 Vが導出され、移動方向導出部 64によって移 動方向(a、 b、 c )が導出されたものとする。これに対して、時刻 t (第 2時刻)におけ
1 1 1 2 るカプセル型内視鏡 2は、図 16に示すように、移動方向に V A tだけ移動した地点に 移動することが予想されることから、範囲導出部 65は、力かる地点を含む所定の領域 を存在可能範囲 66として導出する。そして、磁場強度制御部 50は、例えば第 2直線 磁場形成部 10に対して、存在可能範囲 66を含む磁場形成領域 67を形成するよう制 御を行う。
[0111] 本実施例 3にかかる被検体内導入システムの利点について説明する。本実施例 3 では、上述のように存在可能範囲の導出にあたって、移動速度のみならず、移動方 向も用いる構成を採用する。従って、実施例 2のように、移動方向を特に考慮せず 、時刻 tにおけるカプセル型内視鏡 2の位置を中心とした球状領域として存在可能範
1
囲を導出した場合と比較して、存在可能範囲を狭めることが可能である。従って、図 1 6に示す例のような場合には、時刻 tにおけるカプセル型内視鏡 2の位置を中心とし
1
た球状領域を存在可能範囲とした場合と比較して、磁場形成領域を狭めた構成とす ることが可能であり、第 2直線磁場形成部 10等における磁場形成に要する電力消費 をさらに低減できるという利点を有する。
[0112] (変形例)
次に、実施例 3にかかる被検体内導入システムの変形例について説明する。実施 例 3では、移動方向導出部 64が、記録部 43に記録された、時刻 tにおけるカプセル
1
型内視鏡 2の指向方向に基づき移動方向を導出することとしたが、本変形例では、 過去の複数の時刻におけるカプセル型内視鏡 2の位置に基づ 、て移動方向を導出 することとする。
[0113] 図 17は、本変形例における移動方向導出メカニズムについて説明するための模式 図である。図 17に示すように、本変形例では、過去の複数の時刻 t 、 t、 tにおける
- 1 0 1 位置に基づき、時刻 t から時刻 tにかけての移動方向ベクトル (a、 b、 c )と、時刻 t
- 1 0 2 2 2 0 から時刻 tにかけての移動方向ベクトル(a、 b、 c )に基づいて、時刻 tから時刻 tに
1 3 3 3 1 2 かけての移動方向ベクトル (a、 b、 c )を導出する。具体的には、例えば過去の移動
4 4 4
方向ベクトルの平均値を演算することによって、時刻 tから時刻 tにかけての移動方
1 2
向ベクトルを導出する。力かる手法で移動方向の導出を行うことも有効であり、特に、 カプセル型内視鏡 2の指向方向まで導出する機能を有さない位置検出装置に適用 する場合には、本変形例の構成を採用することによって、指向方向の導出機能を有 さなくともカプセル型内視鏡 2の移動方向を導出することが可能である。
実施例 4
[0114] 次に、実施例 4にかかる被検体内導入システムについて説明する。実施例 4にかか る被検体内導入システムは、第 1直線磁場の代わりに、地磁気を用いることによって 位置検出を行う機能を有する。 [0115] 図 18は、実施例 4にかかる被検体内導入システムの全体構成を示す模式図である 。図 18に示すように、本実施例 4にかかる被検体内導入システムは、実施例 1〜3と 同様にカプセル型内視鏡 2、表示装置 4および携帯型記録媒体 5を備える一方、位 置検出装置 68の構成が異なるものとなる。具体的には、実施例 1等で位置検出装置 に備わっていた第 1直線磁場形成部 9が省略され、新たに地磁気センサ 69を備えた 構成を有する。また、処理装置 70についても、実施例 1等とは異なる構成を有する。
[0116] 地磁気センサ 69は、基本的にはカプセル型内視鏡 2に備わる磁場センサ 16と同様 の構成を有する。すなわち、地磁気センサ 69は、配置された領域において、所定の 3軸方向の磁場成分の強度を検出し、検出した磁場強度に対応した電気信号を出 力する機能を有する。一方で、地磁気センサ 69は、磁場センサ 16とは異なり、被検 体 1の体表面上に配置され、被検体 1に対して固定された基準座標軸における X軸、 y軸および z軸の方向にそれぞれ対応した磁場成分の強度を検出する機能を有する 。すなわち、地磁気センサ 69は、地磁気の進行方向を検出する機能を有し、 X軸方 向、 y軸方向および z軸方向に関して検出した磁場強度に対応した電気信号を処理 装置 70に対して出力する構成を有する。
[0117] 次に、本実施例 4における処理装置 70について説明する。図 19は、処理装置 70 の構成を示すブロック図である。図 19に示すように、処理装置 70は、基本的には実 施例 1における処理装置 12と同様の構成を有する一方で、地磁気センサ 69から入 力される電気信号に基づいて基準座標軸上における地磁気の進行方向を導出し、 導出結果を方位導出部 40に対して出力する地磁気方位導出部 71を備えた構成を 有する。
[0118] 第 1直線磁場として地磁気を利用した場合に問題となるのは、被検体 1に対して固 定された基準座標軸上における地磁気の進行方向の導出である。すなわち、被検体 1はカプセル型内視鏡 2が体内を移動する間も自由に行動することが可能であること から、被検体 1に対して固定された基準座標軸と地磁気との間の位置関係は、被検 体 1の移動に伴い変動することが予想される。一方、基準座標軸に対する対象座標 軸の位置関係を導出する観点からは、基準座標軸における第 1直線磁場の進行方 向が不明となった場合には、第 1直線磁場の進行方向に関して基準座標軸と対象座 標軸の対応関係を明らかにすることができないという問題を生じることとなる。
[0119] 従って、本実施例 4では、被検体 1の移動等によって基準座標軸上において変動 することとなる地磁気の進行方向をモニタするために地磁気センサ 69および地磁気 方位導出部 71を備えることとしている。すなわち、地磁気センサ 69の検出結果に基 づいて、地磁気方位導出部 71は、基準座標軸上における地磁気の進行方向を導出 し、導出結果を方位導出部 40に出力する。これに対して、方位導出部 40は、入力さ れた地磁気の進行方向を用いることによって、地磁気の進行方向に関して基準座標 軸と対象座標軸との対応関係を導出し、第 2直線磁場における対応関係とあわせて 方位情報を導出することを可能として 、る。
[0120] なお、被検体 1の方向によっては地磁気の進行方向と第 2直線磁場形成部 10によ つて形成される第 2直線磁場とが互いに平行となる場合がある。カゝかる場合には、直 前の時刻における対象座標軸の方位および原点の位置に関するデータも用いること によって、位置関係の検出を行うことが可能である。また、地磁気と第 2直線磁場とが 互 ヽに平行となることを回避するために、第 2直線磁場形成部 10を構成するコイル 3 4の延伸方向を図 3に示したように基準座標軸における y軸方向とするのではなぐ例 えば z軸方向に延伸する構成とすることも有効である。
[0121] 次に、本実施例 4にかかる位置関係検出システムの利点について説明する。本実 施例 4にかかる位置関係検出システムは、実施例 1における利点に加え、地磁気を 利用したことによるさらなる利点を有している。すなわち、第 1直線磁場として地磁気 を利用する構成を採用することによって、第 1直線磁場を形成する機構を省略した構 成とすることが可能であり、カプセル型内視鏡 2の導入時における被検体 1の負担を 軽減しつつ基準座標軸に対する対象座標軸の位置関係を導出することが可能であ る。なお、地磁気センサ 69は、 Mlセンサ等を用いて構成することが可能であることか ら小型化が十分可能であり、地磁気センサ 69を新たに設けることによって被検体 1の 負担が増加することはない。
[0122] また、地磁気を第 1直線磁場として利用する構成を採用することにより、消費電力低 減の観点からも利点を有することとなる。すなわち、コイル等を用いて第 1直線磁場を 形成した場合には、コイルに流す電流等に起因して電力消費量が増加することとな る力 地磁気を利用することによって、力かる電力消費の必要が無くなることから、低 消費電力のシステムを実現することが可能である。
実施例 5
[0123] 次に、実施例 5にかかる被検体内導入システムについて説明する。図 20は、本実 施例 5にかかる被検体内導入システムの全体構成について示す模式図である。図 2 0において、カプセル型内視鏡 2、表示装置 4および携帯型記録媒体 5は、実施例 1 と同一構成なので、ここでは説明を省略する。実施例 1と本実施例 5との異なる点は、 位置検出装置 103の構成である。
[0124] 次に、位置検出装置 103について説明する。位置検出装置 103は、図 20に示すよ うに、カプセル型内視鏡 2から送信される無線信号を受信するための受信アンテナ 1 06a〜106dと、カプセル型内視鏡 2に対して給電用の無線信号を送信するための 送信アンテナ 107a〜 107dと、第 1直線磁場を形成する第 1直線磁場形成部 108と、 保持部材 109によって保持され、第 2直線磁場を形成する第 2直線磁場形成部 110 a〜110dと、拡散磁場を形成する拡散磁場形成部 111と、受信アンテナ 106a〜10 6dを介して受信された無線信号等に対して所定の処理を行う処理装置 112とを備え る。
[0125] なお、受信アンテナ 106a〜106d、送信アンテナ 107a〜107dおよび第 1直線磁 場形成部 108は、実施例 1の受信アンテナ 7a〜7d、送信アンテナ 8a〜8dおよび第 1直線磁場形成部 9と同一構成なので、ここでは説明を省略する。
[0126] 次に、本発明における位置検出用磁場の一例として機能する第 2直線磁場を形成 し、本発明にお ヽて磁場形成手段の一例として機能する第 2直線磁場形成部 110a 〜110dについて説明する。第 2直線磁場形成部 110a〜: L lOdは、第 1直線磁場と は異なる方向に進行し、強度に関して位置依存性を有する直線磁場である第 2直線 磁場を形成するためのものである。
[0127] 図 21は、本実施例 5において、複数配置される第 2直線磁場形成部 110a〜: L lOd と、第 2直線磁場形成部 110a〜: L 10dを被検体 1に対して固定する保持部材 109の 位置関係について示す模式図である。図 21に示すように、第 2直線磁場形成部 110 a〜110dのそれぞれは、被検体 1の胴部を覆うよう形成された保持部材 109上にお いて、 x軸方向および y軸方向の端部の点である点 P〜P上に配置され、磁場形成
1 4
領域 132a〜132dに対応した第 2直線磁場を形成する機能を有する。ここで、「磁場 形成領域」とは、位置検出の際に利用可能な強度の磁場が形成される領域をいい、 本実施例 5では、カプセル型内視鏡 2に備わる磁場センサ 16によって検出可能な強 度の磁場のことをいう。図 21に示すように、磁場形成領域 132a〜 132dのそれぞれ は、検出対象たるカプセル型内視鏡 2が位置しうる領域の一部、すなわち被検体 1の 全体領域の一部を含むよう形成される一方、それぞれの磁場形成領域を足しあわせ た領域が、カプセル型内視鏡 2が位置しうる領域の全体を含むよう形成される。
[0128] 図 22は、第 2直線磁場形成部 110aおよび拡散磁場形成部 111の構成を示すと共 に、第 2直線磁場形成部 110aによって形成される第 2直線磁場の態様を示す模式 図である。図 22に示すように、第 2直線磁場形成部 110aは、基準座標軸における y 軸方向に延伸し、コイル断面が xz平面と平行となるよう形成されたコイル 133と、コィ ル 133に対して電流供給を行うための電流源 134とを備える。このため、コイル 133 によって形成される第 2直線磁場は、図 22に示すように、少なくとも被検体 1内部に おいては直線磁場となると共に、コイル 133から離れるにつれて徐々に強度が減衰 する特性、すなわち強度に関して位置依存性を有することとなる。なお、図 22におい ては第 2直線磁場形成部 110aのみにっ 、て示したが、第 2直線磁場形成部 110b 〜110dも第 2直線磁場形成部 110aと同様の構成を有し、進行方向は異なるものの 第 2直線磁場形成部 110aと同様の直線磁場を形成することとする。
[0129] 次に、拡散磁場形成部 111について説明する。拡散磁場形成部 111は、磁場強度 のみならず磁場方向に関しても位置依存性を有する拡散磁場を形成するためのもの である。具体的には、拡散磁場形成部 111は、図 22〖こも示すよう〖こコイル 135と、コ ィル 135に対して電流供給を行うための電流源 136とを備える。
[0130] 図 23は、拡散磁場形成部 111によって形成される拡散磁場の態様を示す模式図 である。図 23に示すように、拡散磁場形成部 111に備わるコイル 135は、被検体 1の 表面上に渦巻き状に形成されており、拡散磁場形成部 111によって形成される拡散 磁場は、図 23に示すようにコイル 135 (図 23にて図示省略)によって形成された磁場 において、磁力線が放射状にー且拡散し、再びコイル 135に入射するよう形成され ている。
[0131] なお、本実施例 5において、第 1直線磁場形成部 108、第 2直線磁場形成部 110お よび拡散磁場形成部 111は、それぞれ異なる時刻に磁場を形成することとする。すな わち、本実施例 5では、第 1直線磁場形成部 108等は、同時に磁場を形成するので はなぐ所定の順序に従って磁場を形成する構成とし、カプセル型内視鏡 2に備わる 磁場センサ 16は、第 1直線磁場、第 2直線磁場および拡散磁場を別個独立に検出 することとする。
[0132] 次に、処理装置 112の構成について説明する。図 24は、処理装置 112の具体的な 構成を模式的に示すブロック図である。まず、処理装置 112は、カプセル型内視鏡 2 によって送信された無線信号の受信処理を行う機能を有し、カゝかる機能に対応して、 受信アンテナ 106a〜 106dの 、ずれかを選択する受信アンテナ選択部 137と、選択 した受信アンテナを介して受信された無線信号に対して復調処理等を行うことによつ て、無線信号に含まれる原信号を抽出する受信回路 138と、抽出された原信号を処 理することによって画像信号等を再構成する信号処理部 139とを有する。
[0133] 具体的には、信号処理部 139は、抽出された原信号に基づき磁場信号 S〜Sおよ
1 3 び画像信号 s
4を再構成し、それぞれ適切な構成要素に対して出力する機能を有す る。ここで、磁場信号 S〜Sは、それぞれ磁場センサ 116によって検出された第 1直
1 3
線磁場、第 2直線磁場および拡散磁場に対応する磁場信号である。また、画像信号 Sは、被検体内情報取得部 14によって取得された被検体内画像に対応するもので
4
ある。なお、磁場信号 S〜Sの具体的な形態としては、カプセル型内視鏡 2に対して
1 3
固定された対象座標軸における検出磁場強度に対応した方向ベクトルによって表現 され、対象座標軸における磁場進行方向および磁場強度に関する情報を含むものと する。また、画像信号 Sは、記録部 143に対して出力される。記録部 143は、入力さ
4
れたデータを携帯型記録媒体 5に対して出力するためのものであり、画像信号 S以
4 外にも、後述する位置検出の結果等についても携帯型記録媒体 5に記録する機能を 有する。
[0134] また、処理装置 112は、カプセル型内視鏡 2によって検出された磁場強度等に基 づき、被検体 1内部におけるカプセル型内視鏡 2の位置を検出する機能と、被検体 1 に対して固定された基準座標軸に対してカプセル型内視鏡 2に対して固定された対 象座標軸のなす方位とを検出する機能を有する。具体的には、カプセル型内視鏡 2 によって送信され、信号処理部 139によって出力される信号のうち、第 1直線磁場お よび第 2直線磁場の検出強度に対応した磁場信号 S、 Sに基づき基準座標軸に対
1 2
する対象座標軸のなす方位を導出する方位導出部 140と、拡散磁場の検出強度に 対応した磁場信号 Sおよび磁場信号 Sと、方位導出部 140の導出結果とを用いて力
3 2
プセル型内視鏡 2の位置を導出する位置導出部 141と、位置導出部 141による位置 導出の際に、拡散磁場を構成する磁力線の進行方向と位置との対応関係を記録し た磁力線方位データベース 142とを備える。これらの構成要素による方位導出およ び位置導出に関しては、後に詳細に説明する。
[0135] さらに、処理装置 112は、カプセル型内視鏡 2に対して駆動電力を無線送信する機 能を有し、送信する無線信号の周波数を規定する発振器 144と、発振器 144から出 力される無線信号の強度を増幅する増幅回路 146と、無線信号の送信に用いる送 信アンテナを選択する送信アンテナ選択部 147とを備える。カゝかる無線信号は、カブ セル型内視鏡 2に備わる受信アンテナ 28によって受信され、カプセル型内視鏡 2の 駆動電力として機能することとなる。
[0136] また、処理装置 112は、受信アンテナ選択部 137および送信アンテナ選択部 147 によるアンテナ選択態様を制御する選択制御部 148を備える。選択制御部 148は、 方位導出部 140および位置導出部 141によってそれぞれ導出されたカプセル型内 視鏡 2の方位および位置に基づき、カプセル型内視鏡 2に対する送受信に最も適し た送信アンテナ 107および受信アンテナ 106を選択する機能を有する。
[0137] また、処理装置 112は、カプセル型内視鏡 2の位置に基づき、複数配置された第 2 直線磁場形成部 110a〜: L 10dの 、ずれかを選択し、選択した第 2直線磁場形成部 1 10に対して第 2直線磁場を形成するよう制御する機能を有する。具体的には、処理 装置 112は、磁場形成手段として機能する第 2直線磁場形成部 110a〜: L lOdの位 置の中から適切な位置を選択する位置選択部 149と、位置選択部 149によって選択 された位置に対応する第 2直線磁場形成部 110に対して第 2直線磁場を形成するよ う制御を行う駆動制御部 150と、処理装置 112の各構成要素に対して駆動電力を供 給する電力供給部 151とを備える。
[0138] 位置選択部 149は、第 1時刻から所定時間だけ経過した第 2時刻における位置検 出の際に位置検出用磁場を形成する磁場形成手段が存在すべき位置を選択するた めのものである。本実施例 5では、特許請求の範囲における磁場形成手段の例とし て第 2直線磁場形成部 110a〜 110dを備えた構成を採用しており、位置選択部 149 は、第 2直線磁場形成部 110a〜110dが配置された位置 P〜Pの中から、第 2時刻
1 4
において第 2直線磁場を形成する第 2直線磁場形成部 110が存在すべき位置を選 択する機能を有する。
[0139] 具体的には、位置選択部 149は、あら力じめ第 2直線磁場形成部 110a〜110dの 位置 P〜Pおよび磁場形成領域 132a〜132dの範囲を把握する。そして、位置選
1 4
択部 149は、把握した位置等と、第 1時刻におけるカプセル型内視鏡 2の位置とに基 づき、第 2時刻において第 2直線磁場を形成する磁場形成手段の位置として位置 P
1
〜Pの中から最も適切な位置を選択し、選択した位置に関する情報を駆動制御部 1
4
50に対して出力する機能を有する。
[0140] 駆動制御部 150は、位置選択部 149によって選択された位置に対応する第 2直線 磁場形成部 110を駆動させる機能を有する。具体的には、駆動制御部 150は、第 2 直線磁場形成部 110a〜: L lOdのそれぞれに備わる電流源 134に対して駆動制御を 行う機能を有すると共に、位置 P〜Pと第 2直線磁場形成部 110a〜110dとの間の
1 4
対応関係をあらかじめ把握する機能を有する。力かる機能に基づき、駆動制御部 15 0は、位置選択部 149から出力された選択位置に関する情報に対応する第 2直線磁 場形成部 110に対して、所定の磁場形成領域 132を形成するよう制御を行うと共に、 選択位置に対応しない第 2直線磁場形成部 110に対して、磁場形成を停止するよう 制御を行う。
[0141] 次に、本実施例 5にかかる被検体内導入システムの動作について説明する。以下 では、第 2直線磁場形成部 110a〜: L lOdの中から第 2直線磁場形成部 110aが選択 された場合を例に、検出対象たるカプセル型内視鏡 2の位置を検出する位置検出メ 力-ズムについて説明し、その後、位置導出等に使用される第 2直線磁場形成部 11 Oa〜: L lOdの中力 最適のものを選択する選択メカニズムについて説明する。 [0142] まず、位置検出装置 103によって行われるカプセル型内視鏡 2の位置検出につい て説明する。本実施例 5にかかる被検体内導入システムでは、被検体 1に対して固定 された基準座標軸と、カプセル型内視鏡 2に対して固定された対象座標軸との間で 位置関係を導出する構成を有し、具体的には、基準座標軸に対する対象座標軸の 方位を導出した上で、導出した方位を利用しつつ基準座標軸上における対象座標 軸の原点の位置、すなわち被検体 1内部におけるカプセル型内視鏡 2の位置を導出 することとしている。従って、以下ではまず方位導出メカニズムについて説明した後、 導出した方位を用いた位置導出メカニズムについて説明することとなるが、本発明の 適用対象が力かる位置検出メカニズムを有するシステムに限定されないことはもちろ んである。
[0143] 方位導出部 140によって行われる方位導出メカニズムについて説明する。なお、こ の方位導出メカニズムは、図 7を用いて説明した方位導出部 40によって行われる方 位導出メカニズムと同様なので、図 7を用いて説明する。既に説明したように、カプセ ル型内視鏡 2は、被検体 1内部を通過経路に沿って進行しつつ、進行方向を軸とし て所定角度だけ回転している。従って、カプセル型内視鏡 2に対して固定された対象 座標軸は、被検体 1に固定された基準座標軸に対して、図 7に示すような方位のずれ を生じることとなる。
[0144] 一方で、第 1直線磁場形成部 108および第 2直線磁場形成部 110aは、それぞれ 被検体 1に対して固定される。従って、第 1直線磁場形成部 108および第 2直線磁場 形成部 110aによって形成される第 1、第 2直線磁場は、基準座標軸に対して一定の 方向、具体的には第 1直線磁場は基準座標軸における z軸方向、第 2直線磁場形成 部 110aを用いた場合の第 2直線磁場は y軸方向に進行する。
[0145] 本実施例 5における方位導出は、かかる第 1直線磁場および第 2直線磁場を利用し て行われる。具体的には、まず、カプセル型内視鏡 2に備わる磁場センサ 16によって 、時分割に供給される第 1直線磁場および第 2直線磁場の進行方向が検出される。 磁場センサ 16は、対象座標軸における X軸方向、 Y軸方向および Z軸方向の磁場成 分を検出するよう構成されており、検出された第 1、第 2直線磁場の対象座標軸にお ける進行方向に関する情報は、無線送信部 19を介して位置検出装置 103に対して 送信される。
[0146] カプセル型内視鏡 2によって送信された無線信号は、信号処理部 139等による処 理を経て、磁場信号 S、 Sとして出力される。例えば、図 7の例においては、磁場信
1 2
号 Sには、第 1直線磁場の進行方向として座標 (X、 Y、 Z )に関する情報が含まれ
1 1 1 1
、磁場信号 Sには、第 2直線磁場の進行方向として座標 (X、 Y、 Z )に関する情報
2 2 2 2
が含まれる。これに対して、方位導出部 140は、磁場信号 S、 Sの入力を受けて基
1 2
準座標軸に対する対象座標軸の方位の導出を行う。具体的には、方位導出部 140 は、対象座標軸において、(X、 Y、 Z )および (X、 Y、 Z )の双方に対する内積の
1 1 1 2 2 2
値が 0となる座標 (X、 Y、 Z )を基準座標軸における Z軸の方向に対応するものとし
3 3 3
て把握する。そして、方位導出部 140は、上記の対応関係に基づいて所定の座標変 換処理を行い、対象座標軸における X軸、 Y軸および Z軸の基準座標軸における座 標を導出し、力かる座標を方位情報として出力する。
[0147] 次に、導出した方位情報を用いた、位置導出部 141によるカプセル型内視鏡 2の 位置導出メカニズムを説明する。位置導出部 141は、信号処理部 139から磁場信号 S、 Sが入力され、方位導出部 140から方位情報が入力されると共に、磁力線方位
2 3
データベース 142に記憶された情報を入力する構成を有する。位置導出部 141は、 入力されるこれらの情報に基づき、以下の通りにカプセル型内視鏡 2の位置導出を 行う。
[0148] まず、位置導出部 141は、磁場信号 Sを用いて、第 2直線磁場形成部 110aとカブ
2
セル型内視鏡 2との間の距離の導出を行う。磁場信号 Sは、カプセル型内視鏡 2の
2
存在領域における第 2直線磁場の検出結果に対応するものであり、第 2直線磁場は 、第 2直線磁場形成部 110aが被検体 1外部に配置されたことに対応して、第 2直線 磁場形成部 110aから離隔するにつれてその強度が減衰する特性を有する。かかる 特性を利用して、位置導出部 141は、第 2直線磁場形成部 110a近傍における第 2 直線磁場の強度 (第 2直線磁場形成部 110aに流す電流値より求まる)と、磁場信号 S力 求まるカプセル型内視鏡 2の存在領域における第 2直線磁場の強度とを比較
2
し、第 2直線磁場形成部 110aとカプセル型内視鏡 2との間の距離!:を導出する。かか る距離 rを導出した結果、図 25に示すように、カプセル型内視鏡 2は、第 2直線磁場 形成部 110aから距離 rだけ離れた点の集合である曲面 52上に位置することが明らか となる。
[0149] そして、位置導出部 141は、磁場信号 S、方位導出部 140によって導出された方
3
位情報および磁力線方位データベース 142に記憶された情報に基づきカプセル型 内視鏡 2の曲面 52上における位置を導出する。具体的には、磁場信号 Sおよび方
3 位情報に基づき、カプセル型内視鏡 2の存在位置における拡散磁場の進行方向を 導出する。磁場信号 Sは、拡散磁場を対象座標軸に基づき検出した結果に対応す
3
る信号であるから、かかる磁場信号 Sに基づく拡散磁場の進行方向に関して、方位
3
情報を用いて対象座標軸から基準座標軸へ座標変換処理を施すことによって、カブ セル型内視鏡 2の存在位置における、基準座標軸における拡散磁場の進行方向が 導出される。そして、磁力線方位データベース 142は、基準座標軸における拡散磁 場の進行方向と位置との対応関係を記録していることから、位置導出部 141は、図 2 6に示すように、磁力線方位データベース 142に記憶された情報を参照することによ つて導出した拡散磁場の進行方向に対応した位置を導出し、導出した位置をカプセ ル型内視鏡 2の位置として特定する。以上が位置導出部 141による位置導出メカ二 ズムである。
[0150] 次に、位置検出の際に使用される第 2直線磁場形成部 110の選択メカニズムにつ いて説明する。本実施例 5にかかる被検体内導入システムでは、第 2直線磁場形成 部 110a〜110dのそれぞれによって形成される磁場形成領域 132a〜132dは、カプ セル型内視鏡 2が位置しうる被検体 1内部の一部領域のみを含むよう形成されること から、本実施例 5では、位置選択部 149によって位置検出の際に第 2直線磁場形成 部 110が存在すべき位置を位置 P〜Pの中から選択し、選択した位置に対応した第
1 4
2直線磁場形成部 110のみが駆動するよう駆動制御部 150による制御が行われる構 成を有する。
[0151] 図 27は、第 1時刻におけるカプセル型内視鏡 2が存在する位置の一例について示 す模式図である。以下、図 27に示す例を用いて、位置選択部 149による第 2直線磁 場形成部 110の位置の選択および駆動制御部 150による駆動制御にっ 、て説明す る。 [0152] 位置選択部 149は、記録部 143に記録された情報の中から、過去の第 1時刻にお けるカプセル型内視鏡 2の位置に関する情報を抽出する。また、位置選択部 149は、 上述したように位置 P〜Pの具体的な値および磁場形成領域 132a〜132dの範囲
1 4
、および位置 P〜Pと磁場形成領域 132a〜132dとの間の対応関係を把握しており
1 4
、この結果、位置選択部 149は、第 1時刻においてカプセル型内視鏡 2がどこに位置 し、カプセル型内視鏡 2の位置と位置 P〜Pとの関係について把握する。
1 4
[0153] 力かる位置の把握に基づき、位置選択部 149は、第 1時刻から所定時間だけ経過 した時刻である第 2時刻に行う位置検出の際に、最も適切な磁場形成手段の位置を 選択する。本実施例 5では、位置選択部 149は、位置 P〜Pのうち、第 1時刻におけ
1 4
るカプセル型内視鏡 2の位置に最も近接する位置を選択する。具体的には、図 27の 例において、第 1時刻におけるカプセル型内視鏡 2は、位置 Pに対して距離 rの領
1 1 域に位置し、位置 Pに対して距離 r «r )に位置する。従って、位置選択部 149は、
2 2 1
最も近接する位置として位置 P
2を選択し、選択した位置を、第 2時刻において第 2直 線磁場を形成する第 2直線磁場形成部 110が存在すべき位置として駆動制御部 15 0に対して出力する。
[0154] 一方、駆動制御部 150は、位置選択部 149によって選択された位置に対応した第 2直線磁場形成部 110を駆動させる。上述したように、駆動制御部 150は、位置 P〜
1
Pと第 2直線磁場形成部 110a〜l 10dとの間の対応関係をあら力じめ把握して 、る
4
ため、例えば、図 27の例では位置選択部 149から位置 Pを選択した旨の情報が入
2
力されたことに対応して、第 2直線磁場形成部 110bによって第 2直線磁場が形成さ れるよう所定の制御を行う。
[0155] なお、選択メカニズムにおいて、位置選択部 149によって選択された位置に関する 情報は、方位導出部 140および位置導出部 141に対しても出力される。すなわち、 例えば第 2直線磁場形成部 110aによって形成される第 2直線磁場と、第 2直線磁場 形成部 110bによって形成される第 2直線磁場との間では進行方向および強度分布 が相違することから、方位導出部 140および位置導出部 141は、それぞれ方位導出 および位置導出を行う際に、第 2直線磁場形成部 110a〜: L lOdのいずれが磁場を 形成するかを把握する必要があるためである。 [0156] 次に、本実施例 5にかかる被検体内導入システムの利点について説明する。本実 施例にカゝかる被検体内導入システムは、強度に関して位置依存性を有し、位置検出 用磁場として機能する第 2直線磁場を形成する磁場形成手段として機能する第 2直 線磁場形成部 110を複数備えた構成を採用する。上述したように、それぞれの第 2直 線磁場形成部 11 Oa〜 11 Odは、対応する磁場形成領域 132a〜 132dの ヽずれに関 しても単独で被検体 1全体をカバーするのではなぐ磁場形成領域 132a〜132d全 体によって被検体 1全体をカバーする構成を有する。従って、第 2直線磁場形成部 1 10a〜: L 10dは、単独で被検体 1全体をカバーする磁場形成領域を形成する磁場形 成手段と比較して、それぞれにおいて磁場形成に要する電力量は少なくなる。その ため、上述したように第 2直線磁場形成部 110a〜l 10dの中カゝら選択位置に対応し たもののみを駆動させることとした場合には、従来の被検体内導入システムと比較し て、位置検出用磁場 (第 2直線磁場)の形成に必要となる電力量を低減することが可 能となる。
[0157] 一方で、本実施例 5では、個々の第 2直線磁場形成部 110a〜: L lOdによって形成 される磁場形成領域 132a〜132dの範囲を狭めたことによって、位置検出の際に検 出対象たるカプセル型内視鏡 2が占める位置において有意な磁場を形成できなくな るといった弊害が発生することはない。すなわち、本実施例 5においては、上述したよ うに磁場形成領域 132a〜132dの全体によつてカプセル型内視鏡 2が位置しうる被 検体 1全体をカバーする第 2直線磁場を形成することが可能である。従って、位置選 択部 149によって第 2直線磁場形成部の位置を適切に選択することで、磁場形成に 要する電力量を低減しつつカプセル型内視鏡 2の位置検出において有意な磁場を 確実に形成することが可能である。
[0158] さらに、個々の第 2直線磁場形成部 110a〜: L lOdによって形成される磁場形成領 域 132a〜132dの範囲を狭めることによって、被検体 1外部に存在する電子機器等 に対する磁場の影響を低減できるという利点を有する。すなわち、磁場形成領域を狭 く設定することによって被検体 1の外部に形成される磁場の強度も低減されることとな り、被検体 1の外部に位置する電子機器等に及ぼす影響を低減することが可能であ る。 [0159] また、本実施例 5では、位置選択部 149による位置選択の際の基準として、位置 P
1
〜Pの中から、第 1時刻におけるカプセル型内視鏡 2の位置に最も近接する位置を
4
選択することとしている。力かる構成を採用することによって、本実施例 5では、第 2時 刻においてカプセル型内視鏡 2が位置する領域に対して、検出可能な強度の第 2直 線磁場を確実に形成できると ヽぅ利点を有する。
[0160] 選択した位置に対応した第 2直線磁場形成部 110によって磁場が形成されるのは 第 1時刻から所定時間だけ経過した第 2時刻である。ここで、第 1時刻と第 2時刻との 間にカプセル型内視鏡 2が移動した場合には、第 2時刻におけるカプセル型内視鏡 2の位置は、第 1時刻における位置力も所定距離だけ異なることとなる。従って、第 1 時刻における位置に基づき第 2直線磁場形成部 110の位置を選択する場合には、 第 2時刻において、対応する磁場形成領域 132から外れた領域にカプセル型内視 鏡 2が位置するおそれがある。
[0161] これに対して、本実施例 5では、第 1時刻におけるカプセル型内視鏡 2の位置と最も 近接する位置を位置 P〜Pの
1 4 中から選択することによって、第 2時刻において、選択 した位置 Pに対応して形成された磁場形成領域 132の範囲内にカプセル型内視鏡 2 が位置する確実性を向上させることが可能である。すなわち、図 27に示す位置関係 を例にして説明すると、第 1時刻におけるカプセル型内視鏡 2は、位置 Pに近接する
2 分だけ磁場形成領域 132bの周縁部との間の距離が磁場形成領域 132aの周縁部と の間の距離よりも大きな値となる。従って、図 27の例においてカプセル型内視鏡 2は 、時刻 2において、磁場形成領域 132aから逸脱する可能性よりも磁場形成領域 132 bから逸脱する可能性の方が低 、こととなり、最も近接した位置を選択することによつ て、対応する磁場形成領域から逸脱する可能性を低減でき、第 2時刻において確実 な位置検出を行うことができる。
実施例 6
[0162] 次に、実施例 6にかかる被検体内導入システムについて説明する。本実施例 6にか 力る被検体内導入システムは、単一の第 2直線磁場形成部が、位置選択部によって 選択された位置に移動して第 2直線磁場を形成する構成を有する。
[0163] 図 28は、本実施例 6にかかる被検体内導入システムに備わる第 2直線磁場形成部 110と、保持部材 154との関係について示す模式図である。なお、本実施例 6にかか る被検体内導入システムは、基本的には実施例 5にかかる被検体内導入システムと 同様の構成を有し、図示は省略したものの、実施例 5と同様にカプセル型内視鏡 2、 表示装置 4および携帯型記録媒体 5を備える。また、位置検出装置に関しても、保持 部材 154および後述する処理装置 156の他、実施例 5と同様に受信アンテナ 106a 〜106d、送信アンテナ 107a〜107d、第 1直線磁場形成部 108、第 2直線磁場形 成部 110および拡散磁場形成部 111を有する。また、本実施例 6において、実施例 5 と同様の名称'符号を有する構成要素は、以下で特に言及しない限り、実施例 5と同 様の構造'機能を有する。
[0164] 図 28に示すように、本実施例 6においては、第 2直線磁場形成部 110は、実施例 5 における第 2直線磁場形成部 110a〜: L lOdのそれぞれと同様の構造'機能を有する 一方で、保持部材 154に対して固定されるのではなぐ可動な状態で保持される。具 体的には、保持部材 154は、ガイド部材として機能するよう構成される一方、第 2直線 磁場形成部 110は、可動機構 155によって、保持部材 154に沿って移動するよう構 成されている。また、保持部材 154上には、実施例 5における位置 P〜Pに対応した
1 4 位置に停止ポイント 154a〜154dが形成されており、可動機構 155は、停止ポイント 154a〜 154dのそれぞれを検知することによって第 2直線磁場形成部 110を、位置 P 〜Pのそれぞれに対して移動させる機能を有する。
1 4
[0165] 次に、位置検出装置に備わる処理装置 156について説明する。図 29は、処理装 置 156の構成を示す模式的なブロック図である。処理装置 156は、実施例 5における 処理装置 112と基本的に共通する構成を有する一方で、新たに可動機構 155による 第 2直線磁場形成部 110の移動状態を制御する移動制御部 157を備えた構成を有 する。具体的には、移動制御部 157は、位置選択部 149によって位置 P〜Pの中か
1 4 ら選択された位置に第 2直線磁場形成部 110を移動させるよう可動機構 155を制御 する機能を有する。
[0166] 図 30は、位置選択部 149によって行われる位置選択に基づく第 2直線磁場形成部 110の移動態様について説明するための模式図である。位置選択部 149は、実施 例 5の場合と同様に第 1時刻におけるカプセル型内視鏡 2の位置等に基づき、位置 P 〜Pのいずれかの中から、第 2時刻の位置検出の際に磁場形成手段として機能す
1 4
る第 2直線磁場形成部 110が配置されるべき位置として、図 27の例と同様に Pを選
2 択する。位置選択部 149は、選択した位置 Pに関する情報を移動制御部 157に対し
2
て出力し、移動制御部 157は、可動機構 155に対して第 2直線磁場形成部 110を位 置 Pまで移動するよう指示する。力かる指示を受けて、可動機構 155は、図 30に示
2
すように第 2直線磁場形成部 110を保持部材 154に沿って反時計回りの方向に移動 させ、停止ポイント 154bを検知することによって、第 2直線磁場形成部 110が位置 P
2 に配置する。このため、第 2時刻の位置検出の際には、第 2直線磁場形成部 110は、 位置 Pに配置された状態で第 2直線磁場を形成することとなる。
2
[0167] 次に、本実施例 6にかかる被検体内導入システムの利点について説明する。本実 施例 6にかかる被検体内導入システムは、実施例 5における第 2直線磁場形成部 11 Oa〜: L lOdと同様に、位置検出用磁場として機能する第 2直線磁場を形成する第 2 直線磁場形成部 110が被検体 1の一部のみをカバーするよう磁場を形成する機能を 有する。従って、実施例 5の場合と同様に、第 2直線磁場を形成する際に必要となる 電力を低減することが可能である等の利点を有する。
[0168] また、本実施例 6では、第 2直線磁場形成部 110を複数設けるのではなぐ単一の 機構を複数の位置に移動可能な構成を採用することによって、第 2直線磁場形成部 110を複数設けた場合と同様の機能を実現する。従って、本実施例 6では第 2直線 磁場形成部 110の個数を実施例 5と比較して低減することが可能であり、実施例 5の 利点に加えて、構成が単純化し、製造コストを低減することが可能な被検体内導入シ ステムを実現できると ヽぅ利点を有する。
実施例 7
[0169] 次に、実施例 7にかかる被検体内導入システムについて説明する。本実施例 7にか 力る被検体内導入システムは、第 1時刻におけるカプセル型内視鏡 2の位置に基づ き直接的に磁場形成手段の位置選択を行うのではなぐ第 1時刻における位置に基 づ ヽて第 2時刻におけるカプセル型内視鏡 2の位置を予測し、予測結果に基づき位 置選択を行う構成を有する。
[0170] 図 31は、実施例 7にかかる被検体内導入システムに備わる処理装置 159の構成を 示す模式的なブロック図である。図 31に示すように、処理装置 159は、基本的には 実施例 5における処理装置 112と同様の構成を有する。一方で、処理装置 159は、 カプセル型内視鏡 2の移動速度を導出する移動速度導出部 160と、カプセル型内視 鏡 2の移動方向を導出する移動方向導出部 161と、第 1時刻におけるカプセル型内 視鏡 2の位置および導出された移動速度および移動方向に基づき第 2時刻における カプセル型内視鏡 2の存在可能範囲を導出する範囲導出部 162とを備える。そして 、位置選択部 163は、範囲導出部 162によって導出された存在可能範囲に基づき、 第 2時刻における位置検出の際に第 2直線磁場を形成する磁場形成手段の位置を、 位置 P〜Pの中から選択する機能を有する。
1 4
[0171] 移動速度導出部 160は、記録部 43に記録された情報に基づき第 1時刻から第 2時 刻にかけてのカプセル型内視鏡 2の移動速度を導出する機能を有する。具体的には 、移動速度導出部 160は、過去の複数の時刻において検出されたカプセル型内視 鏡 2の位置の変化量に基づき、例えば平均速度を導出することによって、移動速度 の導出を行う機能を有する。
[0172] 移動方向導出部 161は、記録部 143に記録された情報に基づき第 1時刻から第 2 時刻にかけてのカプセル型内視鏡 2の移動方向を導出する機能を有する。処理装置 159は、実施例 5と同様に方位導出部 140を備えた構成を有し、第 1時刻において 方位導出部 140によって導出された、基準座標軸に対して対象座標軸のなす方位 に関する情報すなわちカプセル型内視鏡 2が基準座標軸に対してどの方向を指向 するかに関する情報が記録部 143に記録される。これに対して、移動方向導出部 16 1は、第 1時刻において検出された方位に関する情報に基づきカプセル型内視鏡 2 の指向方向(一般には、カプセル型内視鏡 2の長手方向)を記録部 143から抽出し、 力かる方向を移動方向として導出する。
[0173] 範囲導出部 162は、移動速度導出部 160および移動方向導出部 161による導出 結果に基づき、第 2時刻にお 、てカプセル型内視鏡 2が存在する可能性が高 、範囲 である存在可能範囲を導出するためのものである。図 32は、範囲導出部 162による 存在可能範囲の導出について説明するための模式図である。図 32に示すように、範 囲導出部 162は、まず第 1時刻(図 32における時刻 t )におけるカプセル型内視鏡 2 の位置に関する情報を記録部 143から抽出する。そして、抽出した位置に対して、移 動方向ベクトル (a、 b、 c )に向カゝつて移動速度 vに第 2時刻と第 1時刻の差分値 A t
1 1 1
を乗算した値だけ延伸した領域を第 2時刻(図 32における時刻 t )においてカプセル
2
型内視鏡 2が存在する位置と推定し、かかる領域を含む存在可能範囲 164を導出す る。
[0174] 位置選択部 163は、範囲導出部 162によって導出された存在可能範囲に基づき位 置選択を行う。すなわち、実施例 5等では、例えば図 27に示したように第 1時刻にお けるカプセル型内視鏡 2の位置に基づき第 2直線磁場形成部 110の位置の選択を 行ったが、本実施例 7では、第 2時刻におけるカプセル型内視鏡 2の位置の予測範 囲である存在可能範囲の位置に基づき、第 2直線磁場形成部 110の位置の選択を 行う機能を有する。なお、位置選択メカニズムそのものに関しては実施例 5, 6と同様 であり、位置選択の結果に基づく駆動制御部 150等の動作に関しても実施例 5と同 様になることから、ここでの説明を省略する。
[0175] 次に、本実施例 7にかかる被検体内導入システムの利点について説明する。本実 施例 7では、範囲導出部 162を新たに設け、範囲導出部 162によって、第 2時刻にお けるカプセル型内視鏡 2の予測位置に基づく第 2直線磁場形成部 110の位置選択を 行う構成を採用する。このため、本実施例 7にかかる被検体内導入システムは、実施 例 5等における利点に加え、第 2時刻におけるカプセル型内視鏡 2の存在する位置 において、さらに確実に位置検出用の磁場を形成することが可能である。このため、 本実施例 7にかかる被検体内導入システムは、例えばカプセル型内視鏡 2が不規則 に移動する領域等における位置検出に対しても消費電力の低減等の利点を享受し つつ確実な位置検出を行うことが可能である。
実施例 8
[0176] 次に、実施例 8にかかる被検体内導入システムについて説明する。実施例 8にかか る被検体内導入システムは、第 1直線磁場の代わりに、地磁気を用いることによって 位置検出を行う機能を有する。
[0177] 図 33は、実施例 8にかかる被検体内導入システムの全体構成を示す模式図である 。図 33に示すように、本実施例 8にかかる被検体内導入システムは、実施例 5〜7と 同様にカプセル型内視鏡 2、表示装置 4および携帯型記録媒体 5を備える一方、位 置検出装置 168の構成が異なるものとなる。具体的には、実施例 5等で位置検出装 置に備わっていた第 1直線磁場形成部 108が省略され、新たに地磁気センサ 169を 備えた構成を有する。また、処理装置 170についても、実施例 5等とは異なる構成を 有する。
[0178] 地磁気センサ 169は、基本的にはカプセル型内視鏡 2に備わる磁場センサ 16と同 様の構成を有する。すなわち、地磁気センサ 169は、配置された領域において、所 定の 3軸方向の磁場成分の強度を検出し、検出した磁場強度に対応した電気信号を 出力する機能を有する。一方で、地磁気センサ 169は、磁場センサ 16とは異なり、被 検体 1の体表面上に配置され、被検体 1に対して固定された基準座標軸における X 軸、 y軸および z軸の方向にそれぞれ対応した磁場成分の強度を検出する機能を有 する。すなわち、地磁気センサ 169は、地磁気の進行方向を検出する機能を有し、 X 軸方向、 y軸方向および z軸方向に関して検出した磁場強度に対応した電気信号を 処理装置 170に対して出力する構成を有する。
[0179] 次に、本実施例 8における処理装置 170について説明する。図 34は、処理装置 17 0の構成を示すブロック図である。図 34に示すように、処理装置 170は、基本的には 実施例 5における処理装置 112と同様の構成を有する一方で、地磁気センサ 169か ら入力される電気信号に基づいて基準座標軸上における地磁気の進行方向を導出 し、導出結果を方位導出部 140に対して出力する地磁気方位導出部 171を備えた 構成を有する。
[0180] 第 1直線磁場として地磁気を利用した場合に問題となるのは、被検体 1に対して固 定された基準座標軸上における地磁気の進行方向の導出である。すなわち、被検体 1はカプセル型内視鏡 2が体内を移動する間も自由に行動することが可能であること から、被検体 1に対して固定された基準座標軸と地磁気との間の位置関係は、被検 体 1の移動に伴い変動することが予想される。一方、基準座標軸に対する対象座標 軸の位置関係を導出する観点からは、基準座標軸における第 1直線磁場の進行方 向が不明となった場合には、第 1直線磁場の進行方向に関して基準座標軸と対象座 標軸の対応関係を明らかにすることができないという問題を生じることとなる。 [0181] 従って、本実施例 8では、被検体 1の移動等によって基準座標軸上において変動 することとなる地磁気の進行方向をモニタするために地磁気センサ 169および地磁 気方位導出部 171を備えることとしている。すなわち、地磁気センサ 169の検出結果 に基づいて、地磁気方位導出部 171は、基準座標軸上における地磁気の進行方向 を導出し、導出結果を方位導出部 140に出力する。これに対して、方位導出部 140 は、入力された地磁気の進行方向を用いることによって、地磁気の進行方向に関し て基準座標軸と対象座標軸との対応関係を導出し、第 2直線磁場における対応関係 とあわせて方位情報を導出することを可能として 、る。
[0182] なお、被検体 1の方向によっては地磁気の進行方向と第 2直線磁場形成部 110に よって形成される第 2直線磁場とが互いに平行となる場合がある。かかる場合には、 直前の時刻における対象座標軸の方位および原点の位置に関するデータも用いる ことによって、位置関係の検出を行うことが可能である。また、地磁気と第 2直線磁場 とが互いに平行となることを回避するために、第 2直線磁場形成部 110を構成するコ ィル 134の延伸方向を図 3に示したように基準座標軸における y軸方向とするのでは なぐ例えば z軸方向に延伸する構成とすることも有効である。
[0183] 次に、本実施例 8にかかる位置関係検出システムの利点について説明する。本実 施例 8にかかる位置関係検出システムは、実施例 5における利点に加え、地磁気を 利用したことによるさらなる利点を有している。すなわち、第 1直線磁場として地磁気 を利用する構成を採用することによって、第 1直線磁場を形成する機構を省略した構 成とすることが可能であり、カプセル型内視鏡 2の導入時における被検体 1の負担を 軽減しつつ基準座標軸に対する対象座標軸の位置関係を導出することが可能であ る。なお、地磁気センサ 169は、 Mlセンサ等を用いて構成することが可能であること 力 小型化が十分可能であり、地磁気センサ 169を新たに設けることによって被検体 1の負担が増加することはな!/、。
[0184] また、地磁気を第 1直線磁場として利用する構成を採用することにより、消費電力低 減の観点からも利点を有することとなる。すなわち、コイル等を用いて第 1直線磁場を 形成した場合には、コイルに流す電流等に起因して電力消費量が増加することとな る力 地磁気を利用することによって、力かる電力消費の必要が無くなることから、低 消費電力のシステムを実現することが可能である。
[0185] 以上、実施例 5〜8に渡って本発明について説明したが、本発明は上記の実施例 に限定されるものではなぐ当業者であれば様々な実施例、変形例等に想到すること が可能である。例えば、実施例 5〜8においては、位置検出用磁場の例として第 2直 線磁場を採用し、磁場形成手段の例として第 2直線磁場形成部 110を用いて説明し たが、力かる構成に限定する必要はなぐ第 1直線磁場、拡散磁場またはその他の磁 場を位置検出用磁場として使用し、第 1直線磁場形成部 108、拡散磁場形成部 111 またはその他の磁場形成部を磁場形成手段として使用することとしても良い。すなわ ち、例えば被検体 1内部を複数の領域に分割し、分割した領域毎に第 1直線磁場形 成部 108を複数備えた構成を採用し、複数の第 1直線磁場形成部 108に対応した位 置を位置選択部によって選択する構成を採用すること等の変形例が考えられる。ま た、位置選択部による位置の選択態様としては、第 1時刻におけるカプセル型内視 鏡 2の位置に基づき第 2時刻においてカプセル型内視鏡が位置する領域を磁場形 成領域が包含するよう選択するものであれば、例えば位置 P〜Pとの
1 4 間の距離を用 いるもの以外の選択態様を採用することとしても良い。
[0186] また、本発明は、位置検出装置の適用対象として被検体内導入システムに限定す る必要はない。上述の説明からも明らかなように、本発明は、位置検出用磁場を用い て位置検出を行う位置検出装置全般に対して適用可能であり、一般的な位置検出 装置に対して本発明の利点を享受しうるためである。
[0187] さらに、実施例 5〜8を互いに組み合わせた構成を採用することも可能である。例え ば、実施例 6で示したように、単一の第 2直線磁場形成部 110を選択位置に移動させ る機構と、実施例 7で示したように、範囲導出部等の機構のように、互いに矛盾するこ とのな 、組み合わせを用いた位置検出装置、被検体内導入システムにつ 、ても本発 明の利点を享受しうる。
実施例 9
[0188] 次に、実施例 9にかかる被検体内導入システムについて説明する。図 35は、本実 施例 9にかかる被検体内導入システムの全体構成について示す模式図である。図 3 5において、表示装置 4および携帯型記録媒体 5は、実施例 1, 5と同一構成なので、 ここでは説明を省略する。実施例 1, 5と実施例 9との異なる点は、カプセル型内視鏡 2と位置検出装置 203の構成である。
[0189] 本実施例 9にかかるカプセル型内視鏡 2が実施例 1, 5に力かるカプセル型内視鏡 2と異なる点は、図 36に示すように、被検体 1内部におけるカプセル型内視鏡 2の移 動速度を導出する速度導出部 228と、速度導出部 228の導出結果に基づき被検体 内情報取得部 14、磁場センサ 16、無線送信部 19等の駆動タイミングを制御するタイ ミング制御部 21とを備える点である。
[0190] 切替部 20は、 AZD変換部 18を介して出力される磁場信号と、信号処理部 15を介 して出力される画像信号と、タイミング制御部 21 (後述)から出力される駆動タイミング 信号とを適宜切り替えて無線送信部 19に対して出力する機能を有する。従って、無 線送信部 19を介して送信される無線信号にはこれらの信号が含まれることとなり、後 述するように、位置検出装置 203に備わる処理装置 212 (後述)においては、カプセ ル型内視鏡 2から送信される無線信号は、それぞれ磁場信号 S〜S、画像信号 Sお
1 3 4 よび駆動タイミング信号 Sとして再構成される。
5
[0191] 速度導出部 228は、カプセル型内視鏡 2の移動状態の一例として移動速度を導出 するためのものである。カプセル型内視鏡 2の具体的な構成としては、例えば、小型 ジャイロ等の加速度センサと、加速度センサによって検出された加速度を時間積分 演算する機構を備えると共に、導出した移動速度をタイミング制御部 21に対して出 力する機能を有する。
[0192] タイミング制御部 21は、カプセル型内視鏡 2の構成要素のうち少なくとも磁場セン サ 16および無線送信部 19の駆動タイミングに関して制御する機能を有する。具体的 には、タイミング制御部 21は、カプセル型内視鏡 2の移動状態、本実施例 9において はカプセル型内視鏡 2の移動速度に基づき、磁場センサ 16等の駆動周期を設定し、 設定した駆動周期にあわせたタイミングで磁場センサ 16等を駆動させる機能を有す る。すなわち、カプセル型内視鏡 2の移動に伴い、被検体内情報取得部 14および磁 場センサ 16は、それぞれ被検体内情報の取得動作および磁場検出動作を繰り返し 行う機能を有しており、かかる繰り返し動作に対応して無線送信部 19も所定の無線 送信動作を繰り返す構成を有する。本実施例 9において、タイミング制御部 21は、か 力る繰り返し動作の周期を規定するためのものであり、駆動周期の設定等について 後に詳細に説明する。
[0193] また、タイミング制御部 21は、設定した駆動周期等の駆動タイミングに関する情報と して駆動タイミング信号を生成する機能を有し、生成された駆動タイミング信号は無 線送信部 19を介して位置検出装置 3に対して他の信号と共に送信される。さらに、タ イミング制御部 21は、切替部 20の動作内容を制御する機能を有し、具体的には、切 替部 20に対して入力される磁場信号、画像信号および駆動タイミング信号を切り替 えるタイミングを ff¾御する。
[0194] 次に、位置検出装置 203について説明する。位置検出装置 203は、図 35に示すよ うに、カプセル型内視鏡 2から送信される無線信号を受信するための受信アンテナ 2 07a〜207dと、第 1直線磁場を形成する第 1直線磁場形成部 209と、第 2直線磁場 を形成する第 2直線磁場形成部 210と、拡散磁場を形成する拡散磁場形成部 211と 、受信アンテナ 207a〜207dを介して受信された無線信号等に対して所定の処理を 行う処理装置 212とを備える。なお、受信アンテナ 207a〜207d、第 1直線磁場形成 部 209および第 2直線磁場形成部 210は、実施例 1の受信アンテナ 7a〜7d、第 1直 線磁場形成部 9および第 2直線磁場形成部 10と同一構成なので、ここでは説明を省 略する。
[0195] 図 37は、第 2直線磁場形成部 210および拡散磁場形成部 211の構成を示すと共 に、第 2直線磁場形成部 210によって形成される第 2直線磁場の態様を示す模式図 である。図 37に示すように、第 2直線磁場形成部 210は、基準座標軸における y軸方 向に延伸し、コイル断面が xz平面と平行となるよう形成されたコイル 233を備える。こ のため、コイル 233によって形成される第 2直線磁場は、図 37に示すように、少なくと も被検体 1内部においては直線磁場となると共に、コイル 233から離れるにつれて徐 々に強度が減衰する特性、すなわち強度に関して位置依存性を有することとなる。
[0196] また、拡散磁場形成部 211は、コイル 234を備える。ここで、コイル 233は、あらかじ め定めた方向に進行方向を有する磁場を形成するよう配置されており、本実施例 9 の場合には、コイル 233によって形成される直線磁場の進行方向が基準座標軸にお ける y軸方向となるよう配置されている。また、コイル 234は、後述する磁力線方位デ ータベース 242に記憶された磁場方向と同一の拡散磁場を形成する位置に固定さ れている。
[0197] 図 38は、拡散磁場形成部 211によって形成される拡散磁場の態様を示す模式図 である。図 38に示すように、拡散磁場形成部 211に備わるコイル 234は、被検体 1の 表面上に渦巻き状に形成されており、拡散磁場形成部 211によって形成される拡散 磁場は、図 38に示すようにコイル 234 (図 38にて図示省略)によって形成された磁場 において、磁力線が放射状にー且拡散し、再びコイル 234に入射するよう形成され ている。また、拡散磁場形成部 211に関しても被検体 1外部に配置されており、放射 状に磁場を形成することから、形成される拡散磁場は、コイル 234から離れるにつれ て強度が減衰する特性を有する。
[0198] 次に、処理装置 212について説明する。図 39は、処理装置 212の具体的な構成を 模式的に示すブロック図である。まず、処理装置 212は、カプセル型内視鏡 2によつ て送信された無線信号の受信処理を行う機能を有する。かかる機能に対応して、処 理装置 212は、受信アンテナ 207a〜207dのいずれかを選択する受信アンテナ選 択部 237と、選択した受信アンテナを介して受信された無線信号に対して復調処理 等を行うことによって、無線信号に含まれる原信号を抽出する受信回路 238と、抽出 された原信号を処理することによって画像信号等を再構成する信号処理部 239とを 有する。具体的には、信号処理部 239は、抽出された原信号に基づき磁場信号 S〜
1
S、画像信号 Sおよび駆動タイミング信号 Sを再構成し、それぞれ適切な構成要素
3 4 5
に対して出力する機能を有する。ここで、磁場信号 S〜Sは、それぞれ磁場センサ 1
1 3
6によって検出された第 1直線磁場、第 2直線磁場および拡散磁場に対応する磁場 信号である。また、画像信号 Sは、被検体内情報取得部 14によって取得された被検
4
体内画像に対応し、駆動タイミング信号 Sは、タイミング制御部 21によって生成され
5
た駆動タイミング信号に対応するものである。このうち、信号処理部 239によって再構 成された画像信号 Sは、記録部 243に対して出力される。記録部 243は、入力され
4
たデータを携帯型記録媒体 5に対して出力するためのものであり、画像信号 S以外
4 にも、後述する位置検出の結果等についても携帯型記録媒体 5に記録する機能を有 する。 [0199] また、処理装置 212は、カプセル型内視鏡 2によって検出された磁場強度等に基 づき、被検体 1内部におけるカプセル型内視鏡 2の位置を検出する機能と、被検体 1 に対して固定された基準座標軸に対してカプセル型内視鏡 2に対して固定された対 象座標軸のなす方位とを検出する機能を有する。具体的には、カプセル型内視鏡 2 によって送信され、信号処理部 239によって出力される信号のうち、第 1直線磁場お よび第 2直線磁場の検出強度に対応した磁場信号 S、 Sに基づき基準座標軸に対
1 2
する対象座標軸のなす方位を導出する方位導出部 240と、拡散磁場の検出強度に 対応した磁場信号 Sおよび磁場信号 Sと、方位導出部 240の導出結果とを用いて力
3 2
プセル型内視鏡 2の位置を導出する位置導出部 241と、位置導出部 241による位置 導出の際に、拡散磁場を構成する磁力線の進行方向と位置との対応関係を記録し た磁力線方位データベース 242とを備える。これらの構成要素による方位導出およ び位置導出に関しては、後に詳細に説明する。
[0200] さらに、処理装置 212は、受信アンテナ選択部 237によるアンテナ選択態様を制御 する選択制御部 248を備える。選択制御部 248は、方位導出部 240および位置導 出部 241によってそれぞれ導出されたカプセル型内視鏡 2の方位および位置に基づ き、カプセル型内視鏡 2から送信される無線信号の受信に最も適した受信アンテナ 2 07を選択する機能を有する。なお、選択制御部 248、受信回路 238および受信アン テナ 207a〜207dによって受信部 244が構成され、特許請求の範囲における受信 手段の一例として機能する。
[0201] また、処理装置 212は、信号処理部 239によって抽出される駆動タイミング信号に 基づき、第 1直線磁場形成部 209等の駆動タイミングを制御する機能を有する。具体 的には、処理装置 212は、信号処理部 239から出力される駆動タイミング信号 Sに
5 基づき第 1直線磁場形成部 209、第 2直線磁場形成部 210および拡散磁場形成部 2 11の駆動タイミングを制御する磁場制御部 249を備える。そして、処理装置 212は、 以上の構成要素に対して駆動電力を供給する機能を有する電力供給部 251をさら に備える。
[0202] 次に、本実施例 9にかかる被検体内導入システムの動作について説明する。本実 施例 9では、カプセル型内視鏡 2は被検体 1内部を移動しつつ被検体内情報の取得 、磁場検出およびこれらの無線送信を間欠的に繰り返し行うことに対応して、処理装 置 212は、間欠的に送信される無線信号に対して所定の処理を行う。以下では、こ れらの動作の中で、カプセル型内視鏡 2から繰り返し送信される無線信号のそれぞ れに含まれる磁場信号等を用いた位置検出動作について説明した後、カプセル型 内視鏡 2側にお 、て行われる無線信号の送信を行う無線送信部 19等の駆動タイミン グの制御処理にっ 、て説明を行う。
[0203] まず、位置検出動作について説明する。本実施例 9にかかる被検体内導入システ ムでは、被検体 1に対して固定された基準座標軸と、カプセル型内視鏡 2に対して固 定された対象座標軸との間で位置関係を導出する構成を有し、具体的には、基準座 標軸に対する対象座標軸の方位を導出した上で、導出した方位を利用しつつ基準 座標軸上における対象座標軸の原点の位置、すなわち被検体 1内部におけるカブ セル型内視鏡 2の位置を導出することとしている。従って、以下ではまず方位導出メ 力-ズムにつ 、て説明した後、導出した方位を用いた位置導出メカニズムにつ 、て 説明することとなるが、本発明の適用対象が力かる位置検出メカニズムを有するシス テムに限定されないことはもちろんである。
[0204] 方位導出部 240によって行われる方位導出メカニズムについて説明する。なお、こ の方位導出メカニズムは、図 7を用いて説明した方位導出部 40によって行われる方 位導出メカニズムと同様なので、図 7を用いて説明する。既に説明したように、カプセ ル型内視鏡 2は、被検体 1内部を通過経路に沿って進行しつつ、進行方向を軸とし て所定角度だけ回転している。従って、カプセル型内視鏡 2に対して固定された対象 座標軸は、被検体 1に固定された基準座標軸に対して、図 7に示すような方位のずれ を生じることとなる。
[0205] 一方で、第 1直線磁場形成部 209および第 2直線磁場形成部 210は、それぞれ被 検体 1に対して固定される。従って、第 1直線磁場形成部 209および第 2直線磁場形 成部 210によって形成される第 1、第 2直線磁場は、基準座標軸に対して一定の方 向、具体的には第 1直線磁場は基準座標軸における z軸方向、第 2直線磁場形成部 210を用 、た場合の第 2直線磁場は y軸方向に進行する。
[0206] 本実施例 9における方位導出は、かかる第 1直線磁場および第 2直線磁場を利用し て行われる。具体的には、まず、カプセル型内視鏡 2に備わる磁場センサ 16によって 、時分割に供給される第 1直線磁場および第 2直線磁場の進行方向が検出される。 磁場センサ 16は、対象座標軸における X軸方向、 Y軸方向および Z軸方向の磁場成 分を検出するよう構成されており、検出された第 1、第 2直線磁場の対象座標軸にお ける進行方向に関する情報は、無線送信部 19を介して位置検出装置 3に対して送 信される。
[0207] カプセル型内視鏡 2によって送信された無線信号は、信号処理部 239等による処 理を経て、磁場信号 S、 Sとして出力される。例えば、図 7の例においては、磁場信
1 2
号 Sには、第 1直線磁場の進行方向として座標 (X、 Y、 Z )に関する情報が含まれ
1 1 1 1
、磁場信号 Sには、第 2直線磁場の進行方向として座標 (X、 Y、 Z )に関する情報
2 2 2 2
が含まれる。これに対して、方位導出部 240は、磁場信号 S、 Sの入力を受けて基
1 2
準座標軸に対する対象座標軸の方位の導出を行う。具体的には、方位導出部 240 は、対象座標軸において、(X、 Y、 Z )および (X、 Y、 Z )の双方に対する内積の
1 1 1 2 2 2
値が 0となる座標 (X、 Y、 Z )を基準座標軸における Z軸の方向に対応するものとし
3 3 3
て把握する。そして、方位導出部 240は、上記の対応関係に基づいて所定の座標変 換処理を行い、対象座標軸における X軸、 Y軸および Z軸の基準座標軸における座 標を導出し、力かる座標を方位情報として出力する。以上が方位導出部 240による 方位導出メカニズムである。
[0208] 次に、導出した方位情報を用いた、位置導出部 241によるカプセル型内視鏡 2の 位置導出メカニズムを説明する。位置導出部 241は、信号処理部 239から磁場信号 S、 Sが入力され、方位導出部 240から方位情報が入力されると共に、磁力線方位
2 3
データベース 242に記憶された情報を入力する構成を有する。位置導出部 241は、 入力されるこれらの情報に基づき、以下の通りにカプセル型内視鏡 2の位置導出を 行う。
[0209] まず、位置導出部 241は、磁場信号 Sを用いて、第 2直線磁場形成部 210とカプセ
2
ル型内視鏡 2との間の距離の導出を行う。磁場信号 Sは、カプセル型内視鏡 2の存
2
在領域における第 2直線磁場の検出結果に対応するものであり、第 2直線磁場は、 第 2直線磁場形成部 210が被検体 1外部に配置されたことに対応して、第 2直線磁 場形成部 210から離隔するにつれてその強度が減衰する特性を有する。かかる特性 を利用して、位置導出部 241は、第 2直線磁場形成部 210近傍における第 2直線磁 場の強度 (第 2直線磁場形成部 210に流す電流値より求まる)と、磁場信号 S力も求
2 まるカプセル型内視鏡 2の存在領域における第 2直線磁場の強度とを比較し、第 2直 線磁場形成部 210とカプセル型内視鏡 2との間の距離!:を導出する。かかる距離!:を 導出した結果、図 40に示すように、カプセル型内視鏡 2は、第 2直線磁場形成部 21 0から距離!:だけ離れた点の集合である曲面 52上に位置することが明らかとなる。
[0210] そして、位置導出部 241は、磁場信号 S、方位導出部 240によって導出された方
3
位情報および磁力線方位データベース 42に記憶された情報に基づきカプセル型内 視鏡 2の曲面 52上における位置を導出する。具体的には、磁場信号 Sおよび方位
3
情報に基づき、カプセル型内視鏡 2の存在位置における拡散磁場の進行方向を導 出する。磁場信号 Sは、拡散磁場を対象座標軸に基づき検出した結果に対応する
3
信号であるから、かかる磁場信号 Sに基づく拡散磁場の進行方向に関して、方位情
3
報を用いて対象座標軸から基準座標軸へ座標変換処理を施すことによって、カプセ ル型内視鏡 2の存在位置における、基準座標軸における拡散磁場の進行方向が導 出される。そして、磁力線方位データベース 242は、基準座標軸における拡散磁場 の進行方向と位置との対応関係を記録していることから、位置導出部 241は、図 41 に示すように、磁力線方位データベース 242に記憶された情報を参照することによつ て導出した拡散磁場の進行方向に対応した位置を導出し、導出した位置をカプセル 型内視鏡 2の位置として特定する。以上の処理を行うことによって、被検体 1内におけ るカプセル型内視鏡 2の方位および位置が導出され、位置検出が完了する。
[0211] 以上の位置検出動作は、カプセル型内視鏡 2側から繰り返し送信される無線信号 の受信に伴 、繰り返し行われる。検出したカプセル型内視鏡 2の方位および位置は 記録部 243を介して携帯型記録媒体 5に記録され、同じく記録される画像データと共 に、医師等の診断の際に用いられることとなる。
[0212] 次に、カプセル型内視鏡 2側において行われる無線信号の送信を行う無線送信部 19等の駆動タイミングの制御処理について説明する。図 42は、カプセル型内視鏡 2 に備わるタイミング制御部 21によって行われる駆動タイミングの制御処理を説明する ためのフローチャートである。
[0213] 図 42に示すように、タイミング制御部 21は、速度導出部 228によって導出された力 プセル型内視鏡 2の移動速度を取得し (ステップ S 201)、取得した移動速度が所定 の閾値よりも大きいか否かの判定を行う(ステップ S202)。閾値よりも大きい場合には (ステップ S202, No)、駆動周期を所定の長周期に設定する (ステップ S 203)。一方 で、閾値よりも小さい場合には (ステップ S 202, Yes)、駆動周期を、長周期よりも短 い所定の短周期に設定する (ステップ S204)。その後、少なくとも設定した駆動周期 に関する情報を含む駆動タイミング信号を生成する (ステップ S205)と共に、設定し た駆動周期に従った駆動タイミングで被検体内情報取得部 14、磁場センサ 16およ び無線送信部 19を駆動させる (ステップ S206)。
[0214] なお、本実施例 9では、第 1直線磁場形成部 209、第 2直線磁場形成部 210および 拡散磁場形成部 211による磁場形成のタイミングにつ 、て、タイミング制御部 21によ つて設定された駆動タイミングと同期するよう磁場制御部 249が制御することとしてい る。すなわち、磁場制御部 249は、タイミング制御部 21によって生成され、信号処理 部 239によって再構成された駆動タイミング信号に基づき駆動周期を導出し、導出し た駆動周期に対応したタイミングで第 1直線磁場形成部 209、第 2直線磁場形成部 2 10および拡散磁場形成部 211が駆動するよう制御する。具体的には、磁場制御部 2 49は、電力供給部 251に保持された駆動電力の供給タイミングを制御することによつ て、第 1直線磁場形成部 209等の駆動タイミングを制御する。
[0215] 次に、本実施例 9にかかる被検体内導入システムの利点について説明する。まず、 本実施例 9にかかる被検体内導入システムは、上述したように、カプセル型内視鏡 2 の移動状態に基づき無線送信部 19、磁場センサ 16および被検体内情報取得部 14 の駆動タイミングを制御する構成を有する。従って、本実施例 9では、無線送信部 19 等の駆動タイミングをカプセル型内視鏡 2の移動状態に対して最適化できるという利 点を有する。
[0216] 例えば、本実施例 9では移動状態としてカプセル型内視鏡 2の移動速度を用いた 制御を行うこととしている。具体的には、タイミング制御部 21は、カプセル型内視鏡 2 が高速で移動する場合には駆動周期を短周期に設定し、低速で移動する場合には 駆動周期を長周期に設定し、設定した駆動周期に応じた駆動タイミングで無線送信 部 19等が動作するよう制御する。従って、カプセル型内視鏡 2の移動速度が低い場 合には、無線信号の送信等の頻度が低下することとなり、カプセル型内視鏡 2におい て無駄な動作を低減できると 、う利点が生じる。
[0217] 一般的に、カプセル型内視鏡 2が低速で移動する場合には単位時間あたりのカブ セル型内視鏡 2の移動距離も小さなものとなることから、磁場センサ 16によって検出 される第 1直線磁場等は、短周期においてはほぼ同様の方向'強度となり、磁場セン サ 16等を短周期で駆動させる必要性に乏しい。従って、本実施例 9では、カプセル 型内視鏡 2の移動速度が低い場合に駆動周期を長周期とすることによって、複数回 に渡って同様の磁場の検出および同様の磁場に関する情報を含む無線信号の送信 を繰り返すことを回避し、カプセル型内視鏡 2が無駄に動作することを抑制することと している。
[0218] カゝかる構成を採用することによって、被検体内導入システム全体における処理の煩 雑ィ匕が回避できる他、カプセル型内視鏡 2における消費電力を低減することが可能と なるという利点を有する。カプセル型内視鏡 2は、例えば、カプセル内に格納するた めに小型の一次電池等によって供給される有限の電力によって駆動する構成を有す るのが通常である。従って、カプセル型内視鏡 2が利用しうる電力には限界があり、本 実施例 9の構成を採用することによって無駄な動作に起因した電力消費を回避する こと〖こよる禾 IJ点は顕著なちのとなる。
[0219] なお、図 42に示すフローチャートでは、ステップ S202において所定の閾値との大 小関係を導出し、大小関係に応じて 2通りの周期を設定することとしたが、移動速度 に応じて駆動周期を定める限りにおいて、任意の周期設定アルゴリズムを用いること として良い。具体的には、閾値を複数設けて対応する駆動周期の値を増やすこととし ても良いし、移動速度と駆動周期の積が一定の値となるよう駆動周期を設定すること としても良い。特に、移動速度と駆動周期の積をほぼ一定の値とした構成の場合に は、移動速度と無関係にほぼ等しい距離だけ移動する度に無線信号の送信等が行 われることとなり、カプセル型内視鏡 2の位置の変化等の検出を効果的に行うことを 可能としつつ、カプセル型内視鏡 2の電力消費を低減することが可能である。 [0220] また、本実施例 9では、位置検出装置 203における消費電力も低減できるという利 点を有する。すなわち、位置検出装置 203を構成する処理装置 212に備わる磁場制 御部 249は、駆動タイミング信号に基づき第 1直線磁場形成部 209等の駆動状態を 制御する機能を有する。具体的には、磁場制御部 249は、カプセル型内視鏡 2に備 わるタイミング制御部 21によって生成された駆動タイミング信号に基づく制御を行うこ とによって、磁場センサ 16が磁場検出を行うタイミングにおいてのみ第 1直線磁場形 成部 209、第 2直線磁場形成部 210および拡散磁場形成部 211を駆動させることが 可能となる。上述したように、第 1直線磁場形成部 209等は、処理装置 212に備わる 電力供給部 251から供給される電力に基づき磁場を形成する機能を有する。従って 、従来のようにすベての期間に渡って磁場を形成した場合と比較して、磁場センサ 1 6の駆動周期にあわせて駆動タイミングを最適化することによって、電力供給部 251 の消費電力を低減することが可能である。
[0221] (変形例)
次に、実施例 9にかかる被検体内導入システムの変形例について説明する。本変 形例に力かる被検体内導入システムでは、カプセル型内視鏡の移動状態として、力 プセル型内視鏡の振動状態を検出することとし、振動状態に基づく駆動タイミング制 御を行う構成を有する。
[0222] 図 43は、本変形例を構成するカプセル型内視鏡 254の構成を示す模式的なブロッ ク図である。図 43に示すように、本変形例においては速度導出部の代わりに振動検 出部 255が新たに設けられ、タイミング制御部 256は、振動検出部 255の検出結果 に基づき駆動タイミングを制御する構成を有する。
[0223] 振動検出部 255は、実施例 9における速度導出部 228と同様にカプセル型内視鏡 254の移動状態を検出するためのものであり、移動状態としてカプセル型内視鏡 25 4の振動状態を検出するためのものである。具体的には、振動検出部 255は、加速 度センサ、カンチレバー等によって構成され、カプセル型内視鏡 254の振動状態を 検出する機能を有する。ここで、「振動状態」とは、ある閾値以上の加速度で運動する 状態を示す広い概念であり、単振動運動等に限定されるものではない。
[0224] 本変形例の利点にっ 、て説明する。本変形例では、カプセル型内視鏡 254の移 動状態として、振動状態を用いることとしており、例えば、カプセル型内視鏡 254が被 検体 1内部で停止している際には、タイミング制御部 256は、駆動周期を無限大とす る(すなわち、磁場センサ 216等の機能を一時的に停止する)ことが可能である。従つ て、停止時 (すなわち位置が変化しない時期)に磁場センサ 216等を無駄に駆動さ せることを防止することが可能となり、この結果、消費電力を低減することが可能であ る。
[0225] また、本変形例では、位置検出の際に、実施例 9と同様に方位導出部 240による力 プセル型内視鏡 254の方位についても導出する構成を有し、カプセル型内視鏡 254 は、所定の領域に留まりつつ(すなわち、移動速度の値力^の状態において)方位を 変化させる場合がある。本変形例では振動を検出して駆動タイミングの制御を行う機 能を有することから、カプセル型内視鏡 254が、移動速度について 0の状態を維持し つつ方位を変化させた場合にも所定の駆動タイミングで動作することが可能であり、 力かる場合についても位置検出(特に方位の導出)を確実に行えるという利点を有す る。
実施例 10
[0226] 次に、実施例 10にかかる被検体内導入システムについて説明する。本実施例 10 にかかる被検体内導入システムでは、位置検出装置側でカプセル型内視鏡の移動 状態を導出し、導出した移動状態に関する情報をカプセル型内視鏡に対して無線送 信する構成を採用する。なお、以下の説明において、実施例 9と同様の符号'名称を 付したものは、以下で特に言及のない限り実施例 9と同様の構造'機能を有することと する。
[0227] 図 44は、本実施例 10にかかる被検体内導入システムの全体構成を示す模式図で ある。図 44に示すように、本実施例 10にかかる被検体内導入システムは、基本的に は実施例 9にかかる被検体内導入システムと同様の構成を有する一方で、位置検出 装置 258は、あらたに送信アンテナ 259a〜259dを備えた構成を有する。
[0228] 次に、本実施例 10にかかる被検体内導入システムを構成するカプセル型内視鏡 2 57について説明する。図 45は、カプセル型内視鏡 257の構成を模式的に示すプロ ック図である。図 45に示すように、カプセル型内視鏡 257は、基本的な構成としては 実施例 9におけるカプセル型内視鏡 2と同様である一方で、新たに位置検出装置 25 8から送信される無線信号の受信処理を行う無線受信部 261と、無線受信部 261〖こ よって処理された信号の中力もカプセル型内視鏡 257の移動速度を抽出するための 信号処理部 264とを備えた構成を有する。
[0229] 無線受信部 261は、位置検出装置 258から送信される無線信号を受信し、復調等 を行うことによって所定の原信号を抽出する受信処理を行うためのものである。具体 的には、無線受信部 261は、無線信号を受信するための受信アンテナ 262と、受信 アンテナ 262を介して受信された無線信号に対して復調等の受信処理を行う受信回 路 263とによって構成される。
[0230] 信号処理部 264は、無線受信部 261によって無線信号から抽出された原信号に基 づき、無線信号に含まれる情報を再構成するためのものである。本実施例 10におい ては、後述するように位置検出装置 258から送信される無線信号にはカプセル型内 視鏡 257の移動速度に関する情報が含まれており、信号処理部 264は、カプセル型 内視鏡 257の移動速度に関する情報を抽出して、タイミング制御部 221に対して出 力する機能を有する。
[0231] 次に、位置検出装置 258に備わる処理装置 260の構成について説明する。図 46 は、処理装置 260の構成を示す模式的なブロック図である。図 246に示すように、処 理装置 260は、基本的には実施例 9における処理装置 12と同様の構成を有する一 方で、記録部 243に記録された情報に基づきカプセル型内視鏡 257の移動速度を 導出する移動速度導出部 267と、移動速度に関する情報を含む無線信号を生成す る送信回路 268と、送信回路 268によって生成された無線信号を送信するアンテナ を選択する送信アンテナ選択部 269とを備える。
[0232] 移動速度導出部 267は、カプセル型内視鏡 257に関する過去の位置検出結果に 基づき、カプセル型内視鏡 257の移動速度を導出するためのものである。具体的に は、記録部 243は、実施例 9でも説明したように位置導出部 241によって導出される カプセル型内視鏡 257の位置を複数の時刻に関して記録する機能を有する。移動 速度導出部 267は、記録部 243に記録されたカプセル型内視鏡 257の過去の複数 の時刻における位置および位置が導出された時刻に関する情報を取得することによ つて、カプセル型内視鏡 257の移動速度の導出を行っている。具体的には、例えば カプセル型内視鏡 257が時刻 tにおいて(X、 y、 z )に位置し、時刻 tから A tだけ
1 1 1 1 1
経過した時刻 tにおいて (X、 y、 z )に位置したものとする。移動速度 Vは、これらの
2 2 2 2
情報を用いて、
v= { (x -x ) 2+ (y -y ) 2+ (z— z ) 2} 1/2/ A t …
2 1 2 1 2 1 (2)
によって定義することが可能である。
[0233] 送信回路 268は、移動速度導出部 267によって導出された移動速度に関する情報 を含む無線信号を生成するためのものである。具体的には、送信回路 268は、変調 処理等の必要な処理を行うことによって無線信号を生成する。
[0234] 送信アンテナ選択部 269は、複数配置された送信アンテナ 259a〜259dのうち、 無線信号の送信に最も適した送信アンテナを選択するためのものである。具体的に は、受信アンテナ選択部 237と同様に、送信アンテナ選択部 269は選択制御部 248 の制御に基づき送信アンテナ 259a〜259dの中力も送信アンテナを選択する機能を 有する。なお、送信回路 268、送信アンテナ選択部 269および送信アンテナ 259a〜 259dによって、送信部 270を構成する。
[0235] 次に、本実施例 10にかかる被検体内導入システムの利点について説明する。本実 施例 10にかかる被検体内導入システムは、実施例 9と同様にカプセル型内視鏡 257 の移動速度に応じてカプセル型内視鏡 257に備わる磁場センサ 216等の駆動タイミ ングを制御すると共に、位置検出装置 258に備わる第 1直線磁場形成部 209の磁場 形成タイミングを制御する構成を有する。従って、実施例 9と同様にカプセル型内視 鏡 257等において無駄な動作を行うことを抑制し、消費電力の低減等の利点を有す る。
[0236] また、本実施例 10では、カプセル型内視鏡 257の移動速度を処理装置 260に備 わる移動速度導出部 267によって行う構成を有し、力かる構成を採用することによつ て新たな利点を有する。まず、本実施例 10では、カプセル型内視鏡 257の内部に速 度導出部を配置する必要が無ぐカプセル型内視鏡 257が大型化することを防止で きるという利点を有する。
実施例 11 [0237] 次に、実施例 11にかかる被検体内導入システムについて説明する。実施例 11に 力かる被検体内導入システムは、第 1直線磁場の代わりに、地磁気を用いることによ つて位置検出を行う機能を有する。
[0238] 図 47は、実施例 11にかかる被検体内導入システムの全体構成を示す模式図であ る。図 47に示すように、本実施例 11にかかる被検体内導入システムは、実施例 9と 同様にカプセル型内視鏡 2、表示装置 4および携帯型記録媒体 5を備える一方、位 置検出装置 272の構成が異なるものとなる。具体的には、実施例 9等で位置検出装 置に備わっていた第 1直線磁場形成部 209が省略され、新たに地磁気センサ 273を 備えた構成を有する。また、処理装置 274についても、実施例 9等とは異なる構成を 有する。
[0239] 地磁気センサ 273は、基本的にはカプセル型内視鏡 2に備わる磁場センサ 16と同 様の構成を有する。すなわち、地磁気センサ 273は、配置された領域において、所 定の 3軸方向の磁場成分の強度を検出し、検出した磁場強度に対応した電気信号を 出力する機能を有する。一方で、地磁気センサ 273は、磁場センサ 16とは異なり、被 検体 1の体表面上に配置され、被検体 1に対して固定された基準座標軸における X 軸、 y軸および z軸の方向にそれぞれ対応した磁場成分の強度を検出する機能を有 する。すなわち、地磁気センサ 273は、地磁気の進行方向を検出する機能を有し、 X 軸方向、 y軸方向および z軸方向に関して検出した磁場強度に対応した電気信号を 処理装置 274に対して出力する構成を有する。
[0240] 次に、本実施例 11における処理装置 274について説明する。図 48は、処理装置 2 74の構成を示すブロック図である。図 48に示すように、処理装置 274は、基本的に は実施例 9における処理装置 212と同様の構成を有する一方で、地磁気センサ 273 力 入力される電気信号に基づいて基準座標軸上における地磁気の進行方向を導 出し、導出結果を方位導出部 240に対して出力する地磁気方位導出部 275を備え た構成を有する。
[0241] 第 1直線磁場として地磁気を利用した場合に問題となるのは、被検体 1に対して固 定された基準座標軸上における地磁気の進行方向の導出である。すなわち、被検体 1はカプセル型内視鏡 2が体内を移動する間も自由に行動することが可能であること から、被検体 1に対して固定された基準座標軸と地磁気との間の位置関係は、被検 体 1の移動に伴い変動することが予想される。一方、基準座標軸に対する対象座標 軸の位置関係を導出する観点からは、基準座標軸における第 1直線磁場の進行方 向が不明となった場合には、第 1直線磁場の進行方向に関して基準座標軸と対象座 標軸の対応関係を明らかにすることができないという問題を生じることとなる。
[0242] 従って、本実施例 11では、被検体 1の移動等によって基準座標軸上において変動 することとなる地磁気の進行方向をモニタするために地磁気センサ 273および地磁 気方位導出部 275を備えることとしている。すなわち、地磁気センサ 273の検出結果 に基づいて、地磁気方位導出部 275は、基準座標軸上における地磁気の進行方向 を導出し、導出結果を方位導出部 240に出力する。これに対して、方位導出部 240 は、入力された地磁気の進行方向を用いることによって、地磁気の進行方向に関し て基準座標軸と対象座標軸との対応関係を導出し、第 2直線磁場における対応関係 とあわせて方位情報を導出することを可能として 、る。
[0243] なお、被検体 1の方向によっては地磁気の進行方向と第 2直線磁場形成部 210に よって形成される第 2直線磁場とが互いに平行となる場合がある。かかる場合には、 直前の時刻における対象座標軸の方位および原点の位置に関するデータも用いる ことによって、位置関係の検出を行うことが可能である。また、地磁気と第 2直線磁場 とが互いに平行となることを回避するために、第 2直線磁場形成部 210を構成するコ ィル 234の延伸方向を図 3に示したように基準座標軸における y軸方向とするのでは なぐ例えば z軸方向に延伸する構成とすることも有効である。
[0244] 次に、本実施例 11に力かる被検体内導入システムの利点にっ 、て説明する。本実 施例 11にかかる被検体内導入システムは、実施例 9における利点に加え、地磁気を 利用したことによるさらなる利点を有している。すなわち、第 1直線磁場として地磁気 を利用する構成を採用することによって、第 1直線磁場を形成する機構を省略した構 成とすることが可能であり、カプセル型内視鏡 2の導入時における被検体 1の負担を 軽減しつつ基準座標軸に対する対象座標軸の位置関係を導出することが可能であ る。なお、地磁気センサ 273は、 Mlセンサ等を用いて構成することが可能であること 力も小型化が十分可能であり、地磁気センサ 273を新たに設けることによって被検体 1の負担が増加することはな!/、。
[0245] また、地磁気を第 1直線磁場として利用する構成を採用することにより、消費電力低 減の観点からも利点を有することとなる。すなわち、コイル等を用いて第 1直線磁場を 形成した場合には、コイルに流す電流等に起因して電力消費量が増加することとな る力 地磁気を利用することによって、力かる電力消費の必要が無くなることから、低 消費電力のシステムを実現することが可能である。
産業上の利用可能性
[0246] 以上のように、本発明に力かる位置検出装置および被検体内導入システムは、人 体の内部に導入されて、被検部位を観察する医療用観察装置に有用であり、特に、 必要かつ充分な位置検出用磁場を形成してカプセル型内視鏡等の検出対象の位 置検出を行うのに適して 、る。

Claims

請求の範囲
[1] 少なくとも第 1時刻および該第 1時刻から所定時間経過した第 2時刻において、強 度に関して位置依存性を有する位置検出用磁場を用いて検出対象の位置検出を行 う位置検出装置であって、
可変な強度の位置検出用磁場を形成する磁場形成手段と、
前記検出対象が存在する位置において検出された前記位置検出用磁場の強度に 基づき前記検出対象の位置を導出する位置導出手段と、
前記第 1時刻における前記検出対象の位置に基づき、前記第 2時刻において前記 位置検出用磁場が前記検出対象によって検出可能な強度となるよう前記磁場形成 手段を制御する磁場強度制御手段と、
を備えたことを特徴とする位置検出装置。
[2] 前記第 1時刻における前記検出対象の位置に基づき、前記第 2時刻において前記 検出対象が存在することが可能な範囲として存在可能範囲を導出する範囲導出手 段をさらに備え、
前記磁場強度制御手段は、前記範囲導出手段によって導出された存在可能範囲 において検出可能な強度の前記位置検出用磁場を形成するよう前記磁場形成手段 を制御することを特徴とする請求項 1に記載の位置検出装置。
[3] 前記所定時間における前記検出対象の移動速度を導出する移動速度導出手段を さらに備え、
前記範囲導出手段は、前記第 1時刻における前記検出対象の位置を中心とし、前 記検出対象の移動速度に前記所定時間を乗算した値の半径を有する球状領域を前 記第 2時刻における存在可能範囲とすることを特徴とする請求項 1または 2に記載の 位置検出装置。
[4] 前記所定時間における前記検出対象の移動速度を導出する移動速度導出手段と 前記所定時間における前記検出対象の移動方向を導出する移動方向導出手段と をさらに備え、 前記範囲導出手段は、前記第 1時刻における前記検出対象の位置に対して、前記 移動方向に前記移動速度と前記所定時間とを乗算した値だけ移動した位置を含む 領域を前記存在可能範囲とすることを特徴とする請求項 1または 2に記載の位置検 出装置。
[5] 前記移動速度導出手段は、前記位置導出手段によって過去の複数の時刻におい て導出された前記検出対象の位置の変化に基づき前記移動速度を導出することを 特徴とする請求項 3または 4に記載の位置検出装置。
[6] 前記被検体内部における前記検出対象の位置と前記検出対象の位置との間の対 応関係を記録した移動速度データベースをさらに備え、
前記移動速度導出手段は、前記第 1時刻における前記検出対象の位置に基づき、 前記移動速度データベースに記録された対応関係を用いて前記所定時間における 前記検出対象の移動速度を導出することを特徴とする請求項 3または 4に記載の位 置検出装置。
[7] 前記移動方向導出手段は、前記位置導出手段によって過去の複数の時刻におい て検出された位置の変化に基づき前記所定時間における前記検出対象の移動方向 を導出することを特徴とする請求項 4〜6のいずれか一つに記載の位置検出装置。
[8] 前記検出対象が存在しうる領域には、前記検出対象の動きと無関係に定まる基準 座標軸に対して固定された方向に直線的に進行する第 1直線磁場が形成され、 前記位置検出用磁場は、前記第 1直線磁場と異なる方向であって、前記基準座標 軸に対して固定された方向に直線的に進行する第 2直線磁場であり、
前記移動方向導出手段は、前記検出対象に対して固定された対象座標軸と、前記 第 1直線磁場および前記第 2直線磁場の進行方向との関係によって定まる前記検出 対象の指向方向に基づき前記移動方向を導出することを特徴とする請求項 4〜6の いずれか一つに記載の位置検出装置。
[9] 前記第 1直線磁場は、地磁気によって形成されることを特徴とする請求項 8に記載 の位置検出装置。
[10] 前記位置導出手段は、前記磁場形成手段によって前記磁場形成手段近傍におい て形成される磁場の強度と、前記検出対象によって検出された位置検出用磁場の強 度とに基づき前記磁場形成手段と前記検出対象との間の距離を導出し、導出した距 離を用いて前記検出対象の位置を導出することを特徴とする請求項 1〜9のいずれ か一つに記載の位置検出装置。
[11] 少なくとも第 1時刻および該第 1時刻から所定時間経過した第 2時刻において、所 定の位置検出用磁場を用 、て検出対象の位置検出を行う位置検出装置であって、 前記検出対象が位置しうる領域の一部において検出可能な位置検出用磁場を形 成する 1以上の磁場形成手段と、
前記第 1時刻における前記検出対象の位置に基づき、前記第 2時刻における前記 検出対象の位置において磁場検出が可能なように、前記位置検出用磁場を形成す る前記磁場形成手段の位置を選択する位置選択手段と、
前記検出対象が存在する位置における前記位置検出用磁場の強度に基づき前記 検出対象の位置を導出する位置導出手段と、
を備えたことを特徴とする位置検出装置。
[12] 前記位置選択手段は、あらかじめ設定した複数の位置のうち、前記第 1時刻に導出 された前記検出対象に対して最も近接する位置を選択することを特徴とする請求項 1 1に記載の位置検出装置。
[13] 前記磁場形成手段は、あらかじめ設定した複数の位置に対応して複数配置され、 前記第 2時刻において、前記位置選択手段によって選択された位置に対応した前 記磁場形成手段が駆動するよう制御する駆動制御手段をさらに備えたことを特徴と する請求項 11または 12に記載の位置検出装置。
[14] 前記磁場形成手段を移動可能な状態で保持する保持部材と、
前記第 2時刻において、前記位置選択手段によって選択された位置に前記磁場形 成手段が移動するよう制御する移動制御手段と、
をさらに備えたことを特徴とする請求項 11または 12に記載の位置検出装置。
[15] 前記第 1時刻における前記検出対象の位置に基づき、前記第 2時刻において前記 検出対象が存在する可能性を有する存在可能範囲を導出する範囲導出手段をさら に備え、
前記位置選択手段は、前記範囲導出手段によって導出された存在可能範囲を含 む領域において磁場検出が可能なように、前記位置検出用磁場を形成する前記磁 場形成手段の位置を選択することを特徴とする請求項 11, 13または 14に記載の位 置検出装置。
[16] 前記検出対象の移動速度を導出する移動速度導出手段と、
前記検出対象の移動方向を導出する移動方向導出手段と、
をさらに備え、
前記範囲導出手段は、前記第 1時刻における前記検出対象の位置に対して、前記 移動方向に対して前記移動速度と前記所定時間との積によって得られる移動距離 だけ移動した位置を含む領域を存在可能範囲として導出することを特徴とする請求 項 15に記載の位置検出装置。
[17] 被検体内に導入される被検体内導入装置と、少なくとも第 1時刻および該第 1時刻 カゝら所定時間経過した第 2時刻にお ヽて、強度に関して位置依存性を有する位置検 出用磁場を用いて前記被検体内導入装置の位置検出を行う位置検出装置とを備え た被検体内導入システムであって、
前記被検体内導入装置は、
形成された磁場の強度を少なくとも検出する磁場センサと、
前記磁場センサによって検出された磁場強度に関する情報を含む無線信号を送 信する無線送信手段と、
を備え、
前記位置検出装置は、
可変な強度の位置検出用磁場を形成する磁場形成手段と、
所定の受信アンテナを介して受信された前記無線信号力 抽出された、前記磁場 センサによって検出された前記位置検出用磁場の強度に基づき前記被検体内導入 装置の位置を導出する位置導出手段と、
前記第 1時刻における前記被検体内導入装置の位置に基づき、前記第 2時刻にお いて前記位置検出用磁場が前記磁場センサによって検出可能な強度となるよう前記 磁場形成手段を制御する磁場強度制御手段と、
を備えたことを特徴とする被検体内導入システム。
[18] 被検体内に導入される被検体内導入装置と、少なくとも第 1時刻および該第 1時刻 カゝら所定時間経過した第 2時刻にお ヽて、強度に関して位置依存性を有する位置検 出用磁場を用いて前記被検体内導入装置の位置検出を行う位置検出装置とを備え た被検体内導入システムであって、
前記被検体内導入装置は、
形成された磁場の強度を少なくとも検出する磁場センサと、
前記磁場センサによって検出された磁場強度に関する情報を含む無線信号を送 信する無線送信手段と、
を備え、
前記位置検出装置は、
所定の受信アンテナを介して受信された前記無線信号力 抽出された、前記磁場 センサによって検出された前記位置検出用磁場の強度に基づき前記被検体内導入 装置の位置を導出する位置導出手段と、
前記検出対象が位置しうる領域の一部において検出可能な位置検出用磁場を形 成する 1以上の磁場形成手段と、
前記第 1時刻における前記検出対象の位置に基づき、前記第 2時刻における前記 被検体内導入装置の位置において磁場検出が可能なように、前記位置検出用磁場 を形成する前記磁場形成手段の位置を選択する位置選択手段と、
を備えたことを特徴とする被検体内導入システム。
[19] 被検体に導入され、該被検体の内部を移動する被検体内導入装置と、所定の位置 検出用磁場を用いて前記被検体の内部における前記被検体内導入装置の位置を 検出する位置検出装置とを備えた被検体内導入システムであって、
前記被検体内導入装置は、
当該被検体内導入装置が位置する領域における前記位置検出用磁場を検出する 磁場センサと、
前記磁場センサによる検出結果を含む無線信号を送信する無線送信手段と、 前記被検体内部における当該被検体内導入装置の移動状態に基づき前記無線 送信手段および Zまたは前記磁場センサの駆動タイミングを制御するタイミング制御 手段と、
を備え、
前記位置検出装置は、
前記位置検出用磁場を形成する磁場形成手段と、
前記磁場センサによる検出結果を含む無線信号の受信処理を行う受信手段と、 前記受信手段によって受信処理がなされた前記無線信号に基づき、前記被検体 の内部における前記被検体内導入装置の位置を導出する位置導出手段と、 を備えたことを特徴とする被検体内導入システム。
[20] 前記被検体内導入装置は、前記移動状態として当該被検体内導入装置の移動速 度を導出する速度導出手段をさらに備え、
前記タイミング制御手段は、前記速度導出手段によって導出された移動速度に基 づき前記駆動タイミングを制御することを特徴とする請求項 19に記載の被検体内導 人システム。
[21] 前記タイミング制御手段は、前記移動速度が低速の場合に前記無線送信手段およ び Zまたは前記磁場センサの駆動周期を所定の長周期に設定し、前記移動速度が 高速の場合に前記駆動周期を前記長周期よりも短い周期である短周期に設定する ことを特徴とする請求項 19または 20に記載の被検体内導入システム。
[22] 前記被検体内導入装置は、前記移動状態として当該被検体内導入装置の振動状 態を検出する振動検出手段をさらに備え、
前記タイミング制御手段は、前記振動検出手段によって検出された振動状態に基 づき前記駆動タイミングを制御することを特徴とする請求項 19に記載の被検体内導 人システム。
[23] 前記無線送信手段によって送信される無線信号には、前記駆動タイミングに関する 情報がさらに含まれ、
前記位置検出装置は、前記無線信号に含まれる前記駆動タイミングに関する情報 に基づき前記磁場形成手段による磁場形成タイミングを制御する磁場制御手段をさ らに備えたことを特徴とする請求項 19〜22のいずれか一つに記載の被検体内導入 システム。
[24] 前記位置検出装置は、
前記位置導出手段によって導出された複数の時刻における被検体内導入装置の 位置に基づき前記被検体内導入装置の移動速度を導出する移動速度導出手段と、 前記移動速度導出手段によって導出された移動速度を情報として含む無線信号を 送信する送信手段と、
をさらに備え、
前記被検体内導入装置は、
前記送信手段によって送信された前記無線信号の受信処理を行う無線受信手段と 前記無線受信手段によって受信処理された前記無線信号に基づき当該被検体内 導入装置の移動速度を導出し、導出した移動速度に関する情報を前記タイミング制 御手段に出力する移動速度導出部と、
をさらに備えたことを特徴とする請求項 19に記載の被検体内導入システム。
[25] 前記位置検出装置は、前記速度導出手段によって導出された移動速度に基づき、 前記磁場形成手段による磁場形成タイミングを制御する磁場制御手段をさらに備え たことを特徴とする請求項 24に記載の被検体内導入システム。
PCT/JP2005/015787 2004-08-30 2005-08-30 位置検出装置および被検体内導入システム WO2006025400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200580029128XA CN101010026B (zh) 2004-08-30 2005-08-30 位置检测装置以及被检体内导入系统
EP05776067A EP1792560B1 (en) 2004-08-30 2005-08-30 Position sensor
DE602005027223T DE602005027223D1 (de) 2004-08-30 2005-08-30 Positionssensor
US11/661,619 US8195277B2 (en) 2004-08-30 2005-08-30 Prospective position detecting magnetic field control based on a possible existence range of an object

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-251023 2004-08-30
JP2004251023A JP4554301B2 (ja) 2004-08-30 2004-08-30 位置検出装置および被検体内導入システム
JP2004261666A JP4388442B2 (ja) 2004-09-08 2004-09-08 位置検出装置および被検体内導入システム
JP2004-261666 2004-09-08
JP2004-266067 2004-09-13
JP2004266067A JP4505292B2 (ja) 2004-09-13 2004-09-13 被検体内導入システム

Publications (1)

Publication Number Publication Date
WO2006025400A1 true WO2006025400A1 (ja) 2006-03-09

Family

ID=36000050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015787 WO2006025400A1 (ja) 2004-08-30 2005-08-30 位置検出装置および被検体内導入システム

Country Status (4)

Country Link
US (1) US8195277B2 (ja)
EP (2) EP1792560B1 (ja)
DE (1) DE602005027223D1 (ja)
WO (1) WO2006025400A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138962A1 (de) * 2007-05-16 2008-11-20 Siemens Aktiengesellschaft Miniaturisiertes gerät
EP2036483A1 (en) * 2006-07-05 2009-03-18 Olympus Corporation System for guiding medical device
US8335556B2 (en) 2006-06-29 2012-12-18 Olympus Medical Systems Corp. Magnetically driven capsule medical device and capsule medical device system with position detection
JP2021527801A (ja) * 2018-05-05 2021-10-14 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッドAnkon Medical Technologies (Shanghai) Co.,Ltd リモートオブジェクトの位置と方向のための携帯式システム及び方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9211084B2 (en) * 2006-09-14 2015-12-15 Olympus Corporation Medical guidance system and control method of medical device
JP5395671B2 (ja) * 2006-11-16 2014-01-22 ストライカー・コーポレーション 無線内視鏡カメラ
JP5198686B2 (ja) * 2010-07-01 2013-05-15 オリンパスメディカルシステムズ株式会社 プローブ形状検出装置及びプローブ形状検出装置の作動方法
JP6177087B2 (ja) * 2013-10-16 2017-08-09 オリンパス株式会社 体外端末、カプセル内視鏡システム、カプセル内視鏡制御方法およびプログラム
JP6249867B2 (ja) * 2014-04-18 2017-12-20 オリンパス株式会社 カプセル内視鏡システム、カプセル内視鏡、受信装置、カプセル内視鏡の撮像制御方法、及びプログラム
US10782114B2 (en) * 2016-12-20 2020-09-22 Boston Scientific Scimed Inc. Hybrid navigation sensor
US11058321B2 (en) 2016-12-20 2021-07-13 Boston Scientific Scimed Inc. Current driven sensor for magnetic navigation
EP3576622A1 (en) 2017-02-06 2019-12-11 Boston Scientific Scimed Inc. Sensor assemblies for electromagnetic navigation systems
CN112336295B (zh) * 2019-08-08 2024-07-05 上海安翰医疗技术有限公司 磁性胶囊内窥镜的控制方法、装置、存储介质、电子装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635009A (en) * 1979-08-30 1981-04-07 Matsushita Electric Ind Co Ltd Azimuth meter system
JPH04112305A (ja) * 1990-09-03 1992-04-14 Agency Of Ind Science & Technol 被駆動体の制御装置
WO1996041119A1 (en) 1995-06-07 1996-12-19 Biosense, Inc. Magnetic location system with adaptive feedback control
JPH0947989A (ja) * 1995-08-08 1997-02-18 Kawasaki Heavy Ind Ltd ロボット作業教示装置
JPH0972192A (ja) * 1995-09-07 1997-03-18 Nippon Steel Corp 掘進管先端位置探査方法
JP2003019111A (ja) 2001-05-20 2003-01-21 Given Imaging Ltd 生体内信号源の位置を探知するアレーシステム及び方法
JP2003070728A (ja) * 2001-06-20 2003-03-11 Olympus Optical Co Ltd カプセル式内視鏡
JP2004041709A (ja) * 2002-05-16 2004-02-12 Olympus Corp カプセル医療装置
JP2004521662A (ja) * 2000-05-15 2004-07-22 ギブン・イメージング・リミテツド インビボカメラのキャプチャレートおよび表示レートを制御するためのシステム
JP2004535878A (ja) * 2001-07-26 2004-12-02 ギブン・イメージング・リミテッド 生体内撮像装置において照明または撮像器の利得を制御するための装置および方法
JP2005245941A (ja) * 2004-03-08 2005-09-15 Olympus Corp 受信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US5711299A (en) * 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
ES2210498T3 (es) 1996-02-15 2004-07-01 Biosense, Inc. Transductores posicionables independientemente para sistema de localizacion.
US6263230B1 (en) 1997-05-08 2001-07-17 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
IL134017A (en) * 2000-01-13 2008-04-13 Capsule View Inc Camera for photography inside the intestines
US6939292B2 (en) * 2001-06-20 2005-09-06 Olympus Corporation Capsule type endoscope
JP3917885B2 (ja) * 2002-04-08 2007-05-23 オリンパス株式会社 カプセル内視鏡システム
WO2005004033A2 (en) * 2003-07-02 2005-01-13 Given Imaging Ltd. Imaging sensor array and device and method for use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635009A (en) * 1979-08-30 1981-04-07 Matsushita Electric Ind Co Ltd Azimuth meter system
JPH04112305A (ja) * 1990-09-03 1992-04-14 Agency Of Ind Science & Technol 被駆動体の制御装置
WO1996041119A1 (en) 1995-06-07 1996-12-19 Biosense, Inc. Magnetic location system with adaptive feedback control
JPH0947989A (ja) * 1995-08-08 1997-02-18 Kawasaki Heavy Ind Ltd ロボット作業教示装置
JPH0972192A (ja) * 1995-09-07 1997-03-18 Nippon Steel Corp 掘進管先端位置探査方法
JP2004521662A (ja) * 2000-05-15 2004-07-22 ギブン・イメージング・リミテツド インビボカメラのキャプチャレートおよび表示レートを制御するためのシステム
JP2003019111A (ja) 2001-05-20 2003-01-21 Given Imaging Ltd 生体内信号源の位置を探知するアレーシステム及び方法
JP2003070728A (ja) * 2001-06-20 2003-03-11 Olympus Optical Co Ltd カプセル式内視鏡
JP2004535878A (ja) * 2001-07-26 2004-12-02 ギブン・イメージング・リミテッド 生体内撮像装置において照明または撮像器の利得を制御するための装置および方法
JP2004041709A (ja) * 2002-05-16 2004-02-12 Olympus Corp カプセル医療装置
JP2005245941A (ja) * 2004-03-08 2005-09-15 Olympus Corp 受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1792560A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335556B2 (en) 2006-06-29 2012-12-18 Olympus Medical Systems Corp. Magnetically driven capsule medical device and capsule medical device system with position detection
EP2036483A1 (en) * 2006-07-05 2009-03-18 Olympus Corporation System for guiding medical device
EP2036483A4 (en) * 2006-07-05 2010-03-03 Olympus Corp SYSTEM FOR LEADING A MEDICAL DEVICE
US8386020B2 (en) 2006-07-05 2013-02-26 Olympus Corporation Medical-device guidance system
WO2008138962A1 (de) * 2007-05-16 2008-11-20 Siemens Aktiengesellschaft Miniaturisiertes gerät
JP2021527801A (ja) * 2018-05-05 2021-10-14 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッドAnkon Medical Technologies (Shanghai) Co.,Ltd リモートオブジェクトの位置と方向のための携帯式システム及び方法
JP7361051B2 (ja) 2018-05-05 2023-10-13 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッド リモートオブジェクトの位置と方向のための携帯式システム及び方法

Also Published As

Publication number Publication date
US8195277B2 (en) 2012-06-05
DE602005027223D1 (de) 2011-05-12
US20070260139A1 (en) 2007-11-08
EP1792560A1 (en) 2007-06-06
EP2319386A1 (en) 2011-05-11
EP1792560A4 (en) 2009-08-19
EP2319386B1 (en) 2013-10-09
EP1792560B1 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
WO2006025400A1 (ja) 位置検出装置および被検体内導入システム
US8052595B2 (en) Position detecting apparatus, body-insertable apparatus system, and position detecting method
US8050738B2 (en) Position detecting apparatus using the magnetic field direction of the earth's magnetic field
WO2005115219A1 (ja) 位置関係検出装置および位置関係検出システム
CN101010026B (zh) 位置检测装置以及被检体内导入系统
JP2005192632A (ja) 被検体内移動状態検出システム
US20080039688A1 (en) Body-insertable apparatus system
WO2006030772A1 (ja) 被検体内導入システム、受信装置および被検体内導入装置
WO2005063122A1 (ja) 被検体内位置検出システム
WO2005063123A1 (ja) 被検体内位置検出システム
US20070238988A1 (en) Body insertable system, receiving apparatus, and body insertable apparatus
JP4388442B2 (ja) 位置検出装置および被検体内導入システム
JP4505292B2 (ja) 被検体内導入システム
JP4520258B2 (ja) 被検体内導入システム
JP4523322B2 (ja) 位置検出装置、被検体内位置検出システム
JP4700308B2 (ja) 位置検出装置および被検体内導入システム
JP2006149686A (ja) 位置検出装置および被検体内導入システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005776067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580029128.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11661619

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005776067

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661619

Country of ref document: US