WO2006021726A2 - Regulation d'une alimentation a decoupage - Google Patents

Regulation d'une alimentation a decoupage Download PDF

Info

Publication number
WO2006021726A2
WO2006021726A2 PCT/FR2005/050646 FR2005050646W WO2006021726A2 WO 2006021726 A2 WO2006021726 A2 WO 2006021726A2 FR 2005050646 W FR2005050646 W FR 2005050646W WO 2006021726 A2 WO2006021726 A2 WO 2006021726A2
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
comparator
threshold
current
Prior art date
Application number
PCT/FR2005/050646
Other languages
English (en)
Other versions
WO2006021726A3 (fr
Inventor
Alain Bailly
Original Assignee
Stmicroelectronics Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics Sa filed Critical Stmicroelectronics Sa
Priority to EP05797771A priority Critical patent/EP1800390A2/fr
Publication of WO2006021726A2 publication Critical patent/WO2006021726A2/fr
Priority to US11/703,530 priority patent/US7825645B2/en
Publication of WO2006021726A3 publication Critical patent/WO2006021726A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to the field of switching ALIMEN ⁇ tations and more particularly the control of a switching power supply from a measurement of the output voltage supplied to the secondary of this power supply.
  • the present invention applies more particularly to a switching power supply of which the inductive element is part of a transformer to isolate the voltage ALIMEN ⁇ tation of the charging voltage supplied to the switching power supply.
  • An optocoupler is then necessary in order to respect the isolation barrier and the absence of a common ground, also for the regulation signal.
  • FIG. 1 very schematically shows, partially in the form of blocks, an example of a conventional switching power supply of this type.
  • the power source is an AC voltage Vac (for example, the mains voltage from the electrical distribution network).
  • the voltage Vac is rectified by a diode bridge 1 (for example, double alternation) whose rectified output terminals 2 and 3 are connected by a capacitor Cp, at the terminals of which a smoothed DC voltage is present.
  • This voltage is applied across a primary winding 4p of a transformer 4 being cut by a switch 5 in series with this winding.
  • the switch 5 is controlled by a pulse train provided by a pulse width modulation circuit (PWM). It can also be a modulation of the frequency of the pulses.
  • PWM pulse width modulation circuit
  • a diode D in series with a capacitor Cs is connected across the winding 4s.
  • the capacitor Cs provides a charge voltage Vout of a load 7 (Q) between output terminals 8 and 9 of the switching power supply. Information on the voltage Vout is also taken (for example at the terminals 8 and 9) to a measuring circuit (MES) constituting a control loop of the closing periods of the switch 5 as a function of a supply voltage setpoint of the charge Q.
  • the circuit 10 controls a photodiode PD of an optocoupler 11 whose phototransistor PT is connected to a regulation circuit 12 (REG) responsible for providing, in block 6 of generating the pulse train, at least a first setpoint signal CT.
  • a second OVL signal for detecting a possible overload, that is to say a too high current demand by the load 7 is also supplied to the circuit 6 by the circuit 12.
  • FIG. 1 is that of a so-called "flyback" converter in which the energy is transferred from the primary to the secondary circuit during the periods when the switch 5 is open.
  • the invention is however not limited to this type of converter and also applies to forward-type converters in which the energy transfer takes place during the closing periods of
  • the cutting switch The cutting switch.
  • Figure 2 shows a typical example of a circuit
  • This circuit comprises, in series with the phototransistor PT between a terminal 23 for applying a direct supply voltage Vcc and the ground 24 on the secondary side, a capacitor C12. Since the circuit 12 is generally in the form of an integrated circuit, the midpoint of this series associa ⁇ tion is connected directly to an input terminal 20 of the control signal FB (that is to say of connection of the PT phototransistor transmitter).
  • An analog comparator 25 (differential amplifi ⁇ ) has its non-inverting input connected to the terminal 20 and its inverting input which receives a fixed reference voltage Vpg conditioning the output voltage Vout of the converter.
  • the output of the comparator 25 controls an interrupter M (for example, a MOS transistor) which connects the terminal 20 to the terminal 26 for supplying a control current (signal CT) to the circuit 6 (FIG. 1).
  • a constant current source 27 also connects the terminal 20 to the ground 24.
  • the role of the comparator 25 is to regulate the potential of the terminal 20 (hence the emitter of the phototransistor) to the value of the voltage V FB .
  • the voltage V FB When the needs of the load decrease, the voltage
  • Vout tends to increase.
  • the circuit 10 (FIG. 1) then controls the emitting diode PD which increases the base current of the phototransistor PT. Assuming the capacitor 12 loaded
  • the voltage Vout tends to drop. This decrease results in a decrease of the current in the optocoupler which tends to lower the voltage of the terminal 20.
  • the capacitor C12 discharges into the current source 27, which causes an increase in the output voltage of the comparator 25 and a decrease in the conduction of the transistor M.
  • the current on the terminal 26 decreases and is interpreted by the circuit 6 to increase the switch closure periods 5 to accumulate more energy and increase the output voltage Vout.
  • the circuit 12 comprises a second comparator 28 for overload detection.
  • This comparator has its inverting input connected to terminal 20 and its non-inverting input which receives a voltage VQVL constituting an overload threshold.
  • the output of comparator 28 is connected to terminal 21 which supplies an OVL overload detection signal to circuit 6.
  • the role of the comparator 28 is to detect when the comparator can no longer maintain the terminal 20 at the voltage V FB by the regulation.
  • the voltage VQVL is chosen lower than the voltage V FB and the comparator 28 switches when the discharge of the capacitor C12 in the current source 27 is such that the terminal FB reaches the threshold VQY ⁇ .
  • the regulation does not allow the capacitor C12 to discharge sufficiently, preventing the triggering of the comparator 28.
  • the compa ⁇ tor 28 is generally a comparator output in all or nothing.
  • the capacitor C12 serves to adjust the inter- vention delay of the comparator 28 following the appearance of an overload (extinction of the phototransistor PT). This delay is necessary to allow the start of the circuit when it is turned on.
  • a transient or temporary current draw for example, at startup
  • a disadvantage is that the entire circuit must be oversized to be able to withstand transient overloads. Indeed, the power supply will provide all the power required at the secondary level as long as the level remains below the protection threshold corresponding to the loss of secondary regulation. However, this level generally corresponds to a higher level than the temporary overloads that the circuit must accept for proper operation.
  • the present invention aims at providing a switching power control circuit that overcomes the disadvantages of known circuits.
  • the invention aims in particular to reduce the tripping threshold of a control circuit in case of overload compared to a conventional circuit, while allowing transient current spikes for starting the supplied loads.
  • the present invention provides a detection circuit of a overload in a load powered by a switching power supply, comprising: a first comparator of a first voltage dependent on the supply voltage of the load with respect to a first threshold, providing a control signal to a pulse generator of control of the power supply ⁇ page; a second comparator of a second voltage with respect to a second threshold, providing a signal indicative of the presence of an overload; and means for controlling said second voltage to a third threshold and less than the second higher than the pre ⁇ Mier, and for deactivating the second comparator as this control is maintained.
  • said means comprise a third comparator of said second voltage with respect to the third threshold, supplying a control signal to an element bypassing a constant current source of charge of a capacitor connected to the mass and at the terminals of which said second voltage is measured.
  • the circuit further comprises means for precharging said capacitor to said third threshold when the circuit is energized.
  • said second and first voltages are taken at the terminals of a dipole behaving as a current source whose value is a function of the voltage across the load.
  • said dipole is a bipolar transistor.
  • said transistor is an NPN type transistor whose emitter is connected to ground by a passive circuit that is at least resistive.
  • the value of the passive circuit is chosen to output a current when the transistor is in the on state which is lower than the constant current supplied by the current source.
  • the circuit further comprises means for forcing the first voltage to said third threshold when the circuit is energized, said passive circuit being a resistive and capacitive circuit.
  • the transistor is a phototransistor of an optocoupler.
  • the second comparator controls an element for supplying a control current to a pulse generating circuit.
  • FIG. described above represents the diagram of a switching power supply circuit of the type to which the present invention applies;
  • Figure 2 shows the wiring diagram of a known control circuit;
  • Figure 3 shows a control circuit according to an embodiment of the present invention;
  • FIGS. 4A and 4B illustrate, in the form of timing diagrams, the operation of the regulation circuit according to the invention.
  • the same elements have been designated by the same references in the different figures. For the sake of clarity, only the elements that are necessary for understanding the invention have been shown in the figures and will be described later.
  • the switching switch have not been exposed, the invention being compatible with any conventional pulse train generation circuit, provided that it uses a control signal (error signal).
  • the secondary side measurement circuit of the switching power supply has not been exposed, the invention being again compatible with any conventional circuit provided that it provides, at a photodiode, a current function of the output voltage of the converter.
  • FIG. 3 represents, by a circuit diagram to be compared with that of FIG. 2, a regulation circuit 30 intended to provide an OVL signal for overload detection (terminal
  • a first comparator 25 (in practice an operational amplifier mounted as a linear comparator) compares the voltage of an input terminal of a signal FB from the emitter of a phototransistor PT of an optocoupler (11). , FIG. 1) with respect to a reference voltage V FB , and controls a MOS transistor M connected between the terminals 20 and 26.
  • a second comparator 31 receives, on an inverting input, a voltage VQVL setting an overload threshold, and has its output connected to the terminal 21.
  • the non-inverting input of the comparator 31 is connected to a terminal 32 corre ⁇ ing to the collector of phototransistor PT optocoupler.
  • the terminal 20 is also connected to the ground 24 by a resistor R, while the terminal 32 is connected to ground by a capacitor C33. If necessary, the resistor R is in series with another capacitor (not shown).
  • the internal circuit 30, a source 34 of constant current BIAS 1 ⁇ e re a terminal 23 supply the voltage Vcc ALIMEN ⁇ tation continues to terminal 32 (non-inverting input of comparator 31).
  • a third comparator 35 controls a switch M 35 (for example, a MOS transistor) bypassing the current source 34.
  • the comparator 35 receives, on its non-inverting input, an initialization voltage V INj , and its inverting input connected to the terminal 32.
  • the role of the comparator 35 is to regulate the potential of the terminal 32, therefore the charge of the capacitor C33, to the voltage V INj .
  • the voltage V INI is chosen lower than the voltage V " OVL-
  • the voltage of the point 20 is regulated at the voltage V FB by the conduction of the transistor M which therefore provides a reference current Ipg to the control circuit of the switching switch (not shown in FIG. 3).
  • the current source 35 acts as the power source 27
  • the current IQ in the capacitor C33 is equal to 1 BIAS -1 R -1 FB ' or 1 R corresponds to the constant current (equal to V FB / R) derived by the resistor R through the phototransistor PT.
  • the comparator 35 manages to regulate the voltage of the terminal 32 and no OVL overload detection signal is transmitted to the circuit (6, FIG. 1) for generating the switching pulses.
  • the current supplied by the source 34 must be greater than the current V FB / R + I FB when the transistor PT is in normal operation.
  • the resistor R is chosen according to the desired rated power for the load without taking into account any inrush currents. Of course, in the dimensioning of the resistor R, it must be taken into account that the current flowing through it must remain lower than the current supplied by the source 34. Otherwise, a non-conducting operation is obtained. account for temporary surcharges.
  • the Circuit of the invention is therefore versatile and can if necessary adapt to applications without problems of temporary overload.
  • the resistive element R is adapted by an external command to allow overloads of longer duration.
  • the current decrease in the phototransistor is such that it can no longer supply the resistor R the sum of the desired nominal currents. Surplus current is then taken to charge the capacitor C33. In particular, if the photo ⁇ transistor turns off, the current I ⁇ S ⁇ e ⁇ - a source 34 is fully used to charge the capacitor C33.
  • the response time of the protection depends on the level of the overload. The lower the amplitude, the longer the triggering delay.
  • an inter ⁇ breaker Kl connects the non-inverting input of comparator 35 at terminal 32.
  • This switch Kl is closed upon starting of the circuit and is used to precharge the capacitor C33 to the voltage V 1NJ . Without this precharging, the collector voltage of the tran ⁇ istor PT would remain lower than its emitter voltage and it could not be turned on.
  • the voltage V INI is chosen greater than the voltage V FB so that the phototransistor PT is suitably polarized.
  • a second switch K2 (optional) connects the non-inverting input of the comparator 35 to the terminal 20.
  • This switch is closed at the same time as the switch K1 and allows a soft start (soft start) of the circuit if, in parallel, an RC network is externally connected to the terminal 20. In this case, when the preload is released, this RC network discharges into the terminal 20, which limits the output power. This actually generates a start ramp.
  • the resistor R is a variable resistor, which makes it possible to adjust the level of the operating threshold.
  • an additional current source injects a current directly into the resistor R, which makes it possible to lower the thresholds of the current peaks.
  • regulator 4A and 4B illustrate, in the form of chrono ⁇ grams, the operation of Figure 3.
  • regulator 4A illustrates an example of shape of the power P supplied to the load
  • Figure 4B illustrates the change of the voltage V32 on the terminal 32.
  • the thresholds VJ N J and VQVL have been indicated in Figure 4A.
  • This Povl threshold ( ⁇ ii depends on the value of the conden ⁇ sateur C33) is the power from which it is considered that there is a detected overload.
  • the level of power absorbed by the load is below the level PovL ' ⁇ a voltage V32 then remains at the level V INj . It is assumed that at a time t1, a temporary overload occurs (for example, linked to a start of training of a computer hard disk). In this case, the power P increases abruptly and remains at a high level for a duration ⁇
  • One advantage of the invention is that it avoids the classic oversized components of a ground fault cir ⁇ tion to accept switching transient surges, especially during operation. These components are here dimensioned according to the permissible power during such transient overloads. However, they do not have to sustain larger overcurrents permanently.
  • Another advantage of the invention is that it maintains the regulation even during start-up current calls.
  • the circuit 6 receives a higher energy demand during these peaks, which is desirable.
  • the invention requires an additional terminal (32) to allow the connection of the collector of the optocoupler transistor PT.
  • the present invention is susceptible of various variations and modifications which will be apparent to those skilled in the art.
  • the practical realization of the regulation circuit of the invention and in particular the dimensioning of the various components is within the abilities of those skilled in the art as a function of the application from the functional indications given above.
  • the invention has been described in connection with an example of preferred application to a switching power supply using an optocoupler for vehi ⁇ culate the control signal and an isolation transformer, it more generally applies, as soon as the control signal can be interpreted by the control circuit in the same way for an overload as for a normal additional current requirement and the load is likely to have transient do not constitute surcharges.
  • the optocoupler is a bipolar transistor whose base is controlled by a voltage-current converter from a measurement of the voltage Vout.
  • the bipolar transistor PT may consist of any dipole behaving as a current source whose value is used to drive the power element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

L'invention concerne un circuit (30) de détection d'une surcharge dans une charge alimentée par une alimentation à découpage, comprenant : un premier comparateur (25) d'une première tension fonction de la tension d'alimentation de la charge par rapport à un premier seuil (VFB), fournissant un signal (CT) de régulation à un générateur (6) d'impulsions de commande de l'alimentation à découpage ; un deuxième comparateur (31) d'une deuxième tension par rapport à un deuxième seuil (VOVL), fournissant un signal (OVL) indicateur de la présence d'une surcharge ; et des moyens (C33, 34, 35, M35) pour asservir ladite deuxième tension sur un troisième seuil (VINI) inférieur au deuxième et supérieur au premier, et pour désactiver le deuxième comparateur tant que cet asservissement est maintenu.

Description

l'
REGULATION D'UNE ALIMENTATION A DECOUPAGE
Domaine de invention
La présente invention concerne le domaine des alimen¬ tations à découpage et plus particulièrement la régulation d'une alimentation à découpage à partir d'une mesure de la tension de sortie fournie au secondaire de cette alimentation.
La présente invention s'applique plus particulièrement à une alimentation à découpage dont l'élément inductif fait partie d'un transformateur, pour isoler la tension d'alimen¬ tation de la charge de la tension fournie à l'alimentation à découpage. Un optocoupleur est alors nécessaire afin de respecter la barrière d'isolement et l'absence de masse commune, également pour le signal de régulation. Exposé de l'art antérieur
La figure 1 représente, de façon très schématique et partiellement sous forme de blocs, un exemple d'alimentation à découpage classique de ce type. Dans cet exemple, la source d'énergie est une tension alternative Vac (par exemple, la tension secteur issue du réseau de distribution électrique) . La tension Vac est redressée par un pont de diodes 1 (par exemple, double alter- nance) dont les bornes de sortie redressée 2 et 3 sont reliées par un condensateur Cp aux bornes duquel est présente une tension continue lissée. Cette tension est appliquée aux bornes d'un enroulement primaire 4p d'un transformateur 4 en étant découpée par un interrupteur 5 en série avec cet enroulement. L'interrupteur 5 est commandé par un train d'impulsions fourni par un circuit 6 de modulation de largeur d'impulsions (PWM) . Il peut aussi s'agir d'une modulation de la fréquence des impulsions.
Côté secondaire (enroulement 4s) du transformateur 4, une diode D en série avec un condensateur Cs est connectée aux bornes de l'enroulement 4s. Le condensateur Cs fournit une ten- sion Vout d'alimentation d'une charge 7 (Q) entre des bornes 8 et 9 de sortie de l'alimentation à découpage. Une information sur la tension Vout est par ailleurs prélevée (par exemple aux bornes 8 et 9) à destination d'un circuit 10 de mesure (MES) constitutif d'une boucle de régulation des périodes de fermeture de l'interrupteur 5 en fonction d'une consigne de tension d'alimentation de la charge Q. Le circuit 10 commande une photo¬ diode PD d'un optocoupleur 11 dont le phototransistor PT est relié à un circuit 12 de régulation (REG) chargé de fournir, au bloc 6 de génération du train d'impulsions, au moins un premier signal de consigne CT. Un deuxième signal OVL de détection d'une éventuelle surcharge, c'est-à-dire d'un appel de courant trop important par la charge 7 est également fourni au circuit 6 par le circuit 12.
L'exemple de la figure 1 est celui d'un convertisseur dit de type "flyback" dans lequel l'énergie est transférée du primaire au secondaire du circuit pendant les périodes où l'interrupteur 5 est ouvert. L'invention n'est toutefois pas limitée à ce type de convertisseur et s'applique également à des convertisseurs de type "forward" dans lesquels le transfert d'énergie s'effectue pendant les périodes de fermeture de
1'interrupteur de découpage.
La figure 2 représente un exemple classique de circuit
12 de régulation dont des bornes de sortie 26 et 21 fournissent, à un circuit 6 de génération de trains d'impulsions, respec- tivement un signal CT de régulation et un signal OVL de détec- tion de surcharge. Ce circuit comporte, en série avec le photo¬ transistor PT entre une borne 23 d'application d'une tension continue d'alimentation Vcc et la masse 24 côté secondaire, un condensateur C12. Le circuit 12 étant généralement réalisé sous la forme d'un circuit intégré, le point milieu de cette associa¬ tion en série est relié directement à une borne 20 d'entrée du signal FB de régulation (c'est-à-dire de connexion de l'émetteur du phototransistor PT) . Un comparateur analogique 25 (amplifi¬ cateur différentiel) a son entrée non-inverseuse reliée à la borne 20 et son entrée inverseuse qui reçoit une tension de référence fixe Vpg conditionnant la tension de sortie Vout du convertisseur. La sortie du comparateur 25 commande un inter¬ rupteur M (par exemple, un transistor MOS) qui relie la borne 20 à la borne 26 de fourniture d'un courant de commande (signal CT) à destination du circuit 6 (figure 1) . Une source de courant constant 27 relie par ailleurs la borne 20 à la masse 24.
Le rôle du comparateur 25 est de réguler le potentiel de la borne 20 (donc de l'émetteur du phototransistor) à la valeur de la tension VFB. Quand les besoins de la charge diminuent, la tension
Vout a tendance à augmenter. Le circuit 10 (figure 1) commande alors la diode émettrice PD qui fait croître le courant de base du phototransistor PT. En supposant le condensateur 12 chargé
(régime établi), l'augmentation du courant dans le phototran- sistor PT fait croître le potentiel de l'entrée non-inverseuse du comparateur 25 dans la mesure où la source de courant 27 ne peut pas évacuer plus de courant (courant constant) . La tension de sortie du comparateur 25 diminue et le courant dans le transistor M augmente. Le courant sur la borne 26 constituant le signal de commande en courant du circuit 6 de génération du train d'impulsions augmente et est interprété, par le circuit 6 pour, dans l'exemple de la figure 1, diminuer les périodes de fermeture de l'interrupteur 5, afin d'accumuler moins d'énergie et diminuer ainsi la tension de sortie Vout. l'l'l'
Si la charge requiert plus d'énergie, la tension Vout a tendance à baisser. Cette baisse se traduit par une diminution du courant dans optocoupleur qui a tendance à faire baisser la tension de la borne 20. En fait, le condensateur C12 se décharge dans la source de courant 27, ce qui provoque une augmentation de la tension de sortie du comparateur 25 et une diminution de la conduction du transistor M. Le courant sur la borne 26 diminue et est interprété par le circuit 6 pour accroître les périodes de fermeture de interrupteur 5 pour accumuler plus d'énergie et augmenter la tension de sortie Vout.
Le circuit 12 comprend un deuxième comparateur 28 de détection de surcharge. Ce comparateur a son entrée inverseuse reliée à la borne 20 et son entrée non-inverseuse qui reçoit une tension VQVL constituant un seuil de surcharge. La sortie du comparateur 28 est reliée à la borne 21 qui fournit un signal de détection de surcharge OVL au circuit 6.
En présence d'une surcharge, l'appel de courant plus important demandé en sortie entraîne une réduction brusque du courant dans optocoupleur qui va même jusqu'à s'éteindre. Sans détection de surcharge, la borne 26 fournirait un signal CT demandant au circuit 6 de fournir encore plus de courant. Or, en cas de surcharge, il convient à l'inverse d'arrêter la fourni¬ ture d'énergie au secondaire.
Le rôle du comparateur 28 est de détecter quand le comparateur ne parvient plus à maintenir la borne 20 à la tension VFB par la régulation. La tension VQVL est choisie inférieure à la tension VFB et le comparateur 28 bascule quand la décharge du condensateur C12 dans la source de courant 27 est telle que la borne FB atteint le seuil VQY^. En fonctionnement normal, la régulation ne laisse pas le condensateur C12 se décharger suffisamment, ce qui empêche le déclenchement du comparateur 28. A la différence du comparateur 25, le compa¬ rateur 28 est généralement un comparateur à sortie en tout ou rien. Dans un circuit de régulation tel qu'illustré par la figure 2, le condensateur C12 sert à régler le délai d'inter¬ vention du comparateur 28 suite à l'apparition d'une surcharge (extinction du phototransistor PT) . Ce délai est nécessaire pour permettre par ailleurs le démarrage du circuit lors de sa mise sous tension.
Un problème se pose dans certains appareils (par exemple de type disque dur informatique ou tête d'impression) dans lesquels un appel de courant transitoire ou temporaire (par exemple, au démarrage) ne doit pas être interprété comme une surcharge. Avec un circuit classique tel qu'illustré par la figure 2, on est obligé de prévoir un condensateur C12 suf¬ fisamment important pour qu' il retarde la détection afin de ne pas déclencher le comparateur 28 lors d'appels de courant transitoires. Un inconvénient est alors que l'ensemble du circuit doit être surdimensionné pour être capable de supporter des surcharges transitoires. En effet, l'alimentation fournira de façon constante toute la puissance requise au secondaire pour autant que le niveau reste inférieur au seuil de protection correspondant à la perte de régulation au secondaire. Or, ce niveau correspond généralement à un niveau supérieur aux surcharges temporaires que le circuit doit accepter pour un fonctionnement correct.
La présente invention vise à proposer un circuit de régulation d'une alimentation à découpage qui pallie les inconvénients des circuits connus.
L'invention vise notamment à permettre de diminuer le seuil de déclenchement d'un circuit de régulation en cas de surcharge par rapport à un circuit classique, tout en laissant passer des pics transitoires de courant servant au démarrage des charges alimentées. Résumé de l'invention
Pour atteindre ces objets ainsi que d'autres, la présente invention prévoit un circuit de détection d'une surcharge dans une charge alimentée par une alimentation à découpage, comprenant : un premier comparateur d'une première tension fonction de la tension d' alimentation de la charge par rapport à un premier seuil, fournissant un signal de régulation à un générateur d'impulsions de commande de l'alimentation à décou¬ page ; un deuxième comparateur d'une deuxième tension par rapport à un deuxième seuil, fournissant un signal indicateur de la présence d'une surcharge ; et des moyens pour asservir ladite deuxième tension sur un troisième seuil inférieur au deuxième et supérieur au pre¬ mier, et pour désactiver le deuxième comparateur tant que cet asservissement est maintenu. Selon un mode de réalisation de la présence invention, lesdits moyens comportent un troisième comparateur de ladite deuxième tension par rapport au troisième seuil, fournissant un signal de commande à un élément court-circuitant une source de courant constant de charge d'un condensateur relié à la masse et aux bornes duquel est mesurée ladite deuxième tension.
Selon un mode de réalisation de la présence invention, le circuit comporte en outre des moyens pour précharger ledit condensateur audit troisième seuil à la mise sous tension du circuit. Selon un mode de réalisation de la présence invention, lesdites deuxième et première tensions sont prélevées aux bornes d'un dipôle se comportant en source de courant dont la valeur est fonction de la tension aux bornes de la charge.
Selon un mode de réalisation de la présence invention, ledit dipôle est un transistor bipolaire.
Selon un mode de réalisation de la présence invention, ledit transistor est un transistor de type NPN dont l'émetteur est relié à la masse par un circuit passif au moins résistif.
Selon un mode de réalisation de la présence invention, la valeur du circuit passif est choisie pour débiter un courant lorsque le transistor est à l'état passant qui soit inférieur au courant constant fourni par la source de courant.
Selon un mode de réalisation de la présence invention, le circuit comporte en outre des moyens pour forcer la première tension audit troisième seuil à la mise sous tension du circuit, ledit circuit passif étant un circuit résistif et capacitif.
Selon un mode de réalisation de la présence invention, le transistor est un phototransistor d'un optocoupleur.
Selon un mode de réalisation de la présence invention, le deuxième comparateur commande un élément de fourniture d'un courant de commande à destination d'un circuit de génération d'impulsions. Brève description des dessins
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 qui a été décrite précédemment représente le schéma d'un circuit d'alimentation à découpage du type auquel s'applique la présente invention ; la figure 2 représente le schéma électrique d'un circuit de régulation connu ; la figure 3 représente un circuit de régulation selon un mode de réalisation de la présente invention ; et les figures 4A et 4B illustrent, sous forme de chronogrammes, le fonctionnement du circuit de régulation selon 1'invention. Description détaillée Les mêmes éléments ont été désignés par les mêmes références aux différentes figures. Pour des raisons de clarté, seuls les éléments qui sont nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite. En particulier, les détails constitutifs du circuit de génération des trains d'impulsions de commande de l'
l'interrupteur à découpage n'ont pas été exposés, l'invention étant compatible avec n'importe quel circuit de génération de train d'impulsions classique, pourvu que celui-ci exploite un signal de régulation (signal d'erreur) . De même, le circuit de mesure côté secondaire de l'alimentation à découpage n'a pas été exposé, l'invention étant là encore compatible avec n'importe quel circuit classique pourvu qu'il fournisse, à une photodiode, un courant fonction de la tension de sortie du convertisseur.
La figure 3 représente, par un schéma électrique à rapprocher de celui de la figure 2, un circuit 30 de régulation destiné à fournir un signal OVL de détection de surcharge (borne
21) ainsi qu'un signal CT de commande (borne 26) à un circuit de génération de train d'impulsions classique (circuit 6, figure
1) . Comme précédemment, un premier comparateur 25 (en pratique un amplificateur opérationnel monté en comparateur linéaire) compare la tension d'une borne 20 d'entrée d'un signal FB venant de l'émetteur d'un phototransistor PT d'un optocoupleur (11, figure 1) par rapport à une tension de consigne VFB, et commande un transistor MOS M connecté entre les bornes 20 et 26.
Selon l'invention, un deuxième comparateur 31 reçoit, sur une entrée inverseuse, une tension VQVL fixant un seuil de surcharge, et a sa sortie reliée à la borne 21. L'entrée non- inverseuse du comparateur 31 est reliée à une borne 32 correspon¬ dant au collecteur du phototransistor PT de optocoupleur. La borne 20 est par ailleurs reliée à la masse 24 par une résistance R, tandis que la borne 32 est reliée à la masse par un condensateur C33. Le cas échéant, la résistance R est en série avec un autre condensateur (non représenté) . Par ailleurs, en interne au circuit 30, une source 34 de courant constant 1BIAS reϋe une borne 23 de fourniture de la tension d'alimen¬ tation continue Vcc à la borne 32 (entrée non-inverseuse du comparateur 31) . Selon l'invention, un troisième comparateur 35 commande un interrupteur M 35 (par exemple, un transistor MOS) court- circuitant la source de courant 34. Le comparateur 35 reçoit, sur son entrée non-inverseuse une tension d'initialisation VINj, et a son entrée inverseuse reliée à la borne 32. Le rôle du comparateur 35 est de réguler le potentiel de la borne 32, donc la charge du condensateur C33, à la tension VINj. La tension VINI est choisie inférieure à la tension V"OVL-
En fonctionnement normal, la tension du point 20 est régulée à la tension VFB par la conduction du transistor M qui fournit donc un courant Ipg de consigne au circuit de commande de l'interrupteur de découpage (non représenté en figure 3) . La source de courant 35 joue le rôle de la source de courant 27
(figure 2), mais de façon inversée. En d'autres termes, au lieu de décharger le condensateur (C12, figure 1), elle accroît la charge du condensateur C33 quand le phototransistor est éteint.
Le courant IQ dans le condensateur C33 est égal à 1BIAS-1R-1FB' ou 1R correspond au courant constant (égal à VFB/R) dérivé par la résistance R à travers le phototransistor PT.
Tant que la somme des deux courants VFB/R et Ipg est capable de dériver ce courant constant en le prélevant sur la source 34, le comparateur 35 parvient à réguler la tension de la borne 32 et aucun signal de détection de surcharge OVL n'est transmis au circuit (6, figure 1) de génération des impulsions de découpage. Pour cela, il faut que le courant fourni par la source 34 soit supérieur au courant VFB/R + IFB quand le transistor PT est passant en fonctionnement normal.
La résistance R est choisie en fonction de la puis- sance nominale souhaitée pour la charge sans tenir compte des éventuels courants d'appel. Bien entendu, dans le dimension- nement de la résistance R, on doit tenir compte du fait que le courant qui la traverse doit rester inférieur au courant fourni par la source 34. Dans le cas contraire, on obtient un fonction- nement sans prise en compte des surcharges temporaires. Le circuit de l'invention est par conséquent versatile et peut le cas échéant s'adapter à des applications sans problème de surcharges temporaires. En variante, l'élément résistif R est adapté par une commande externe pour autoriser des surcharges de plus longues durées.
En cas d'appel de courant important par la charge, la diminution du courant dans le phototransistor est telle qu'il ne peut plus fournir à la résistance R la somme des courants nominaux souhaitée. Le surplus de courant est alors pris pour charger le condensateur C33. En particulier, si le photo¬ transistor s'éteint, le courant IβlAS ^e ^-a source 34 est intégralement utilisé pour charger le condensateur C33.
Le délai d'intervention de la protection dépend du niveau de la surcharge. Plus celle-ci est d'amplitude faible, plus le délai de déclenchement est allongé. Le condensateur C33 est, par exemple, choisi pour ajuster approximativement la durée autorisée des appels transitoires de courant (C=IT/Δu) avec I correspondant au courant de la source 34 et Δu correspondant à
VOVL " VINI- Ainsi, pour une surcharge transitoire, le comparateur
31 n'a pas le temps de commuter pour changer d'état le signal OVL. La disparition de la surcharge remet en conduction le phototransistor PT et le fonctionnement normal réapparaît, la charge du condensateur C33 est ramenée au niveau VINj. Par contre, si la surcharge est suffisamment impor¬ tante pour que la tension aux bornes du condensateur atteigne la tension seuil VQVL, le comparateur 31 bascule.
Pour assurer le démarrage du circuit 30, un inter¬ rupteur Kl relie l'entrée non-inverseuse du comparateur 35 à la borne 32. Cet interrupteur Kl est fermé lors du démarrage du circuit et sert à précharger le condensateur C33 à la tension V1Nj. Sans cette précharge, la tension de collecteur du tran¬ sistor PT resterait inférieure à sa tension d'émetteur et il ne pourrait pas être mis en conduction. La tension VINI est choisie supérieure à la tension VFB pour que le phototransistor PT soit convenablement polarisé.
Selon un mode de réalisation préféré, un deuxième interrupteur K2 (optionnel) relie l'entrée non-inverseuse du comparateur 35 à la borne 20. Cet interrupteur est fermé en même temps que l'interrupteur Kl et permet un démarrage doux (soft start) du circuit si, parallèlement, un réseau RC est connecté en externe sur la borne 20. Dans ce cas, quand la précharge est relâchée, ce réseau RC se décharge dans la borne 20, ce qui limite la puissance de sortie. Cela génère en fait une rampe de démarrage. Selon une variante de réalisation, la résistance R est une résistance variable, ce qui permet d'ajuster le niveau du seuil de fonctionnement.
Selon une autre variante, une source de courant additionnelle injecte un courant directement dans la résistance R, ce qui permet d'abaisser les seuils des pics de courant.
Les figures 4A et 4B illustrent, sous forme de chrono¬ grammes, le fonctionnement du régulateur de la figure 3. La figure 4A illustre un exemple d'allure de la puissance P fournie à la charge, tandis que la figure 4B illustre l'évolution de la tension V32 sur la borne 32. En figure 4B ont été indiqués les seuils VJNJ et VQVL, tandis qu'un seuil PovL a été indiqué en figure 4A. Ce seuil PovL (φii dépend de la valeur du conden¬ sateur C33) correspond à la puissance à partir de laquelle on considère qu'il y a une surcharge détectée.
Initialement, le niveau de puissance absorbé par la charge est en dessous du niveau PovL' ^a tension V32 reste alors au niveau VINj. On suppose qu'à un instant tl, une surcharge temporaire apparaît (par exemple, liée à un début d'entraînement d'un disque dur informatique) . Dans ce cas, la puissance P croît brusquement et reste à un niveau élevé pendant une durée τ
(durée du pic de courant transitoire) . A partir de l'instant tl, la tension V32 croît linéairement mais n'atteint pas le seuil
VQVL a l'instant t2 où la surcharge disparaît. Par conséquent, aucune détection de surcharge n'est transmise au circuit de commande de l'interrupteur de découpage. A partir de l'instant t2, si le fonctionnement normal est retrouvé, la tension V32 rejoint la valeur VINj progressivement.
Supposons qu'à un instant t3, une autre surcharge apparaît mais cette fois avec une intensité plus importante et de façon durable. Comme l'intensité de la surcharge est plus importante, la puissance dans la charge l'est également. Par conséquent, la charge du condensateur C33 à partir de l'instant t3 est plus rapide qu'à partir de l'instant tl. Ceci vient du fait que le condensateur C33 est chargé avec un courant variable
(1BIAS-1R-1FB) • Selon la valeur du courant Ipg, le condensateur
C33 reçoit un courant plus ou moins important. Dès que la tension V32 atteint le seuil VQVL' un signal indicateur d'une surcharge est transmis au circuit de commande de l'interrupteur à découpage afin que celui-ci ouvre l'interrupteur 5 de façon permanente tant que la surcharge subsiste. A partir de l'instant t4 où la détection de surcharge a été transmise au circuit 6, on peut considérer que l'extinction (en pratique retardée) de 1'interrupteur de découpage 5 fait disparaître cette surcharge et la puissance P décroît. En pratique, l'état de surcharge se trouve mémorisé par le fait que la boucle de régulation demande encore plus de puissance parce que le convertisseur s'est arrêté. Ceci entraîne généralement une réinitialisation générale de l'alimentation à découpage et son redémarrage (mode dit hiccup) .
L'interprétation faite du signal de surcharge OVL est compatible avec les utilisations faites habituellement des signaux de détection de surcharge.
Un avantage de la présente invention est qu'elle évite le surdimensionnement classique des constituants d'une alimen¬ tation à découpage pour accepter les surcharges transitoires, notamment en fonctionnement. Ces composants sont ici dimen- sionnés en fonction de la puissance admissible pendant de telles surcharges transitoires. Ils n'ont toutefois pas à supporter des surintensités plus importantes de façon permanente. l'
Un autre avantage de l'invention est qu'elle maintient la régulation même pendant les appels de courant de démarrage.
En effet, comme la détection de surcharge (signal OVL) n'est pas déclenchée, le circuit 6 reçoit une demande d'énergie plus importante pendant ces pics, ce qui est souhaitable.
Dans une réalisation sous forme intégrée, l'invention requiert une borne (32) supplémentaire pour permettre la connexion du collecteur du transistor PT de optocoupleur.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, la réalisation pratique du circuit de régulation de l'invention et notamment le dimensionnement des différents composants est à la portée de l'homme du métier en fonction de l'application à partir des indications fonction- nelles données ci-dessus. De plus, bien que l'invention ait été décrite en relation avec un exemple d' application préféré à une alimentation à découpage utilisant un optocoupleur pour véhi¬ culer le signal de régulation et un transformateur d'isolement, elle s'applique plus généralement, dès que le signal de régula- tion est susceptible d'être interprété, par le circuit de régulation, de la même manière pour une surcharge que pour un besoin normal de courant supplémentaire et que la charge est susceptible d'avoir des appels transitoires qui ne constituent pas des surcharges. Par exemple, le même problème se pose si l'optocoupleur est un transistor bipolaire dont la base est commandée par un convertisseur tension-courant à partir d'une mesure de la tension Vout. En outre, le transistor bipolaire PT pourra être constitué de n'importe quel dipôle se comportant en source de courant dont la valeur est utilisée pour piloter l'élément de puissance.

Claims

REVENDICATIONS
1. Circuit (30) de détection d'une surcharge dans une charge alimentée par une alimentation à découpage, comprenant : un premier comparateur (25) d'une première tension fonction de la tension d' alimentation de la charge par rapport à un premier seuil (VFB) , fournissant un signal (CT) de régulation à un générateur (6) d'impulsions de commande de l'alimentation à découpage ; un deuxième comparateur (31) d'une deuxième tension par rapport à un deuxième seuil (VQVL) ' fournissant un signal (OVL) indicateur de la présence d'une surcharge, caractérisé en ce qu' il comporte : des moyens (C33, 34, 35, M35) pour asservir ladite deu¬ xième tension sur un troisième seuil (VINI) inférieur au deuxième et supérieur au premier, et pour désactiver le deuxième comparateur tant que cet asservissement est maintenu.
2. Circuit selon la revendication 1, dans lequel lesdits moyens comportent un troisième comparateur (35) de ladite deuxième tension par rapport au troisième seuil (VJNJ) , fournis¬ sant un signal de commande à un élément (M35) court-circuitant une source (34) de courant constant de charge d'un condensateur (C33) relié à la masse (24) et aux bornes duquel est mesurée ladite deuxième tension.
3. Circuit selon la revendication 2, comportant en outre des moyens (Kl) pour précharger ledit condensateur (C33) audit troisième seuil (VINI) à la mise sous tension du circuit.
4. Circuit selon la revendications 1, dans lequel lesdites deuxième et première tensions sont prélevées aux bornes (32, 20) d'un dipôle se comportant en source de courant dont la valeur est fonction de la tension aux bornes de la charge.
5. Circuit selon la revendication 4, dans lequel ledit dipôle est un transistor bipolaire (PT) .
6. Circuit selon la revendication 5, dans lequel ledit transistor (PT) est un transistor de type NPN dont l'émetteur est relié à la masse (24) par un circuit passif au moins résistif (R) .
7. Circuit selon la revendication 6, dans lequel la valeur du circuit passif (R) est choisie pour débiter un cou- rant, lorsque le transistor (PT) est à l'état passant, qui soit inférieur au courant constant fourni par la source de courant (34) .
8. Circuit selon la revendication 6, comportant en outre des moyens (K2) pour forcer la première tension audit troisième seuil (VINj) à la mise sous tension du circuit, ledit circuit passif étant un circuit résistif et capacitif.
9. Circuit selon la revendication 6, dans lequel le transistor est un phototransistor (PT) d'un optocoupleur (11) .
10. Circuit selon la revendication 1, dans lequel le deuxième comparateur (25) commande un élément (M) de fourniture d'un courant de commande (CT) à destination d'un circuit de génération d'impulsions.
PCT/FR2005/050646 2004-08-06 2005-08-04 Regulation d'une alimentation a decoupage WO2006021726A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05797771A EP1800390A2 (fr) 2004-08-06 2005-08-04 Regulation d'une alimentation a decoupage
US11/703,530 US7825645B2 (en) 2004-08-06 2007-02-06 Switched-mode power supply regulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0451806 2004-08-06
FR0451806A FR2874138A1 (fr) 2004-08-06 2004-08-06 Regulation d'une alimentation a decoupage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/703,530 Continuation-In-Part US7825645B2 (en) 2004-08-06 2007-02-06 Switched-mode power supply regulation

Publications (2)

Publication Number Publication Date
WO2006021726A2 true WO2006021726A2 (fr) 2006-03-02
WO2006021726A3 WO2006021726A3 (fr) 2007-10-04

Family

ID=34947317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050646 WO2006021726A2 (fr) 2004-08-06 2005-08-04 Regulation d'une alimentation a decoupage

Country Status (5)

Country Link
US (1) US7825645B2 (fr)
EP (1) EP1800390A2 (fr)
CN (1) CN101167240A (fr)
FR (1) FR2874138A1 (fr)
WO (1) WO2006021726A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680884B2 (en) * 2010-03-25 2014-03-25 Cree, Inc. Fault detection circuits for switched mode power supplies and related methods of operation
CN102368663B (zh) * 2011-06-22 2014-06-25 广州金升阳科技有限公司 一种带可控电流尖峰抑制保护的电源变换器
CN102983553B (zh) * 2012-11-19 2015-11-18 Tcl王牌电器(惠州)有限公司 开关电源过载保护方法及装置
FR3068836B1 (fr) * 2017-07-07 2019-08-23 Stmicroelectronics (Rousset) Sas Circuit de protection d'un commutateur de puissance
US10996266B2 (en) * 2019-08-09 2021-05-04 Stmicroelectronics International N.V. System and method for testing voltage monitors
FR3107621B1 (fr) * 2020-02-25 2022-03-04 St Microelectronics Grenoble 2 Interface d'alimentation USB-PD
CN113500972B (zh) * 2021-03-17 2023-03-28 联合汽车电子有限公司 自锁电路和车身控制器
CN117081366B (zh) * 2023-10-13 2024-02-23 深圳莱福德科技股份有限公司 一种照明驱动开机延时电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576702A1 (fr) * 1992-06-30 1994-01-05 Siemens Aktiengesellschaft Convertisseur à découpage avec limitation de courant
US6282110B1 (en) * 2000-09-29 2001-08-28 Asian Power Devices, Inc. Switched mode power supply
JP2003299351A (ja) * 2002-03-29 2003-10-17 Sanken Electric Co Ltd スイッチング電源装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716510A (en) * 1986-05-05 1987-12-29 Motorola, Inc. Automatic restart circuit for a switching power supply
AR244030A1 (es) * 1990-04-26 1993-09-30 Siemens Ag Conversor de corriente continua pulsado con limitador de corriente
US5335162A (en) * 1993-01-15 1994-08-02 Toko America, Inc. Primary side controller for regulated power converters
US5757214A (en) * 1995-07-19 1998-05-26 Stoddard; Robert J. PWM driver for an inductive load with detector of a not regulating PWM condition
DE19702602C1 (de) * 1997-01-24 1998-08-20 Sgs Thomson Microelectronics Treiber- und Überlastungsschutzschaltung
JP3101998B2 (ja) * 1997-06-26 2000-10-23 富士電機株式会社 過電流検出回路
US6429709B1 (en) * 1998-12-14 2002-08-06 Semiconductor Components Industries Llc Power converter circuit and method for controlling
US6100678A (en) * 1999-08-26 2000-08-08 Linear Technology Corporation Single package pin providing soft-start and short-circuit timer functions in a voltage regulator controller
US6570748B2 (en) * 2000-07-13 2003-05-27 Sipex Corporation Method and apparatus for indicating an over-current condition
DE60009892T2 (de) * 2000-07-31 2005-04-21 St Microelectronics Srl Stromversorgungsgerät mit Fehlfunktionserkennung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576702A1 (fr) * 1992-06-30 1994-01-05 Siemens Aktiengesellschaft Convertisseur à découpage avec limitation de courant
US6282110B1 (en) * 2000-09-29 2001-08-28 Asian Power Devices, Inc. Switched mode power supply
JP2003299351A (ja) * 2002-03-29 2003-10-17 Sanken Electric Co Ltd スイッチング電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12, 5 décembre 2003 (2003-12-05) & JP 2003 299351 A (SANKEN ELECTRIC CO LTD), 17 octobre 2003 (2003-10-17) *

Also Published As

Publication number Publication date
WO2006021726A3 (fr) 2007-10-04
US20070200610A1 (en) 2007-08-30
US7825645B2 (en) 2010-11-02
EP1800390A2 (fr) 2007-06-27
CN101167240A (zh) 2008-04-23
FR2874138A1 (fr) 2006-02-10

Similar Documents

Publication Publication Date Title
EP1800390A2 (fr) Regulation d'une alimentation a decoupage
EP1914871B1 (fr) Système d'alimentation électrique à découpage et variateur de vitesse comportant un tel système
EP0680245B1 (fr) Ensemble comprenant un convertisseur statique à interrupteur commandé et un circuit de commande
EP2926443B1 (fr) Convertisseur de tension continu-continu à haute tension avec transistor jfet
EP1148405A1 (fr) Régulateur linéaire à faible surtension en régime transitoire
FR2742013A1 (fr) Procede et dispositif de limitation d'appel de courant d'un condensateur associe a un redresseur
EP0240434B1 (fr) Circuit de protection d'alimentation à découpage
EP1626493A1 (fr) Circuit d'alimentation capacitive
EP1334551A1 (fr) Convertisseur de tension a circuit de commande autooscillant
FR2535870A1 (fr) Circuit d'alimentation en courant electrique d'un micro-ordinateur
FR2663175A1 (fr) Commutateur statique.
FR2932031A1 (fr) Dispositif de precharge d'un convertisseur a decoupage, ensemble et aeronef le comportant.
FR2568715A1 (fr) Dispositif de commande d'une bobine d'electroaimant et appareil electrique de commutation equipe d'un tel dispositif
FR2812476A1 (fr) Convertisseur alternatif-continu
FR2485825A1 (fr) Circuit de protection des transistors de puissance de sortie d'une source d'alimentation a commutation et source d'alimentation utilisant ce circuit
EP0820141A2 (fr) Commande d'un pont mixte au zéro de tension
EP1704634A1 (fr) Gestion du court-circuit dans une inductance d un convertiss eur elevateur de tension
EP1376843A2 (fr) Commande d'un thyristor d'un pont redresseur
EP1320919B1 (fr) Limitation du mode continu d'un convertisseur de puissance
EP1014551A1 (fr) Convertisseur d'une haute tension alternative en une basse tension continue
EP3389072B1 (fr) Procédé de commande d'un appareil de coupure de courant électrique, actionneur électromagnétique comprenant un circuit de mise en oeuvre de ce procédé et appareil électrique de coupure comprenant un tel actionneur
FR2861917A1 (fr) Circuit formant source d'alimentation a courant continu et interrupteur a circuit de detection de defaut de masse utilisant le circuit formant source d'alimentation a courant continu
FR2969864A1 (fr) Circuit d'alimentation a faibles pertes en mode veille
WO2000008743A1 (fr) Convertisseur de tension continu-continu, susceptible d'une protection contre les courts-circuits
EP0055661B1 (fr) Dispositif de commande des moyens de régulation dans un convertisseur électrique alternatif continu, de forte puissance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 11703530

Country of ref document: US

Ref document number: 200580026682.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005797771

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005797771

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11703530

Country of ref document: US