WO2006019845A1 - Resistance variable memory device and method of fabrication - Google Patents
Resistance variable memory device and method of fabrication Download PDFInfo
- Publication number
- WO2006019845A1 WO2006019845A1 PCT/US2005/024899 US2005024899W WO2006019845A1 WO 2006019845 A1 WO2006019845 A1 WO 2006019845A1 US 2005024899 W US2005024899 W US 2005024899W WO 2006019845 A1 WO2006019845 A1 WO 2006019845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- chalcogenide
- memory device
- tin
- electrode
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 5
- 239000005387 chalcogenide glass Substances 0.000 claims abstract description 130
- 238000000034 method Methods 0.000 claims abstract description 65
- 229910052709 silver Inorganic materials 0.000 claims description 45
- 239000004332 silver Substances 0.000 claims description 44
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 239000002184 metal Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 34
- 239000000758 substrate Substances 0.000 claims description 30
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 22
- 229910052721 tungsten Inorganic materials 0.000 claims description 22
- 239000010937 tungsten Substances 0.000 claims description 22
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 20
- 239000011669 selenium Substances 0.000 claims description 19
- QIHHYQWNYKOHEV-UHFFFAOYSA-N 4-tert-butyl-3-nitrobenzoic acid Chemical compound CC(C)(C)C1=CC=C(C(O)=O)C=C1[N+]([O-])=O QIHHYQWNYKOHEV-UHFFFAOYSA-N 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 229910052711 selenium Inorganic materials 0.000 claims description 13
- 229910052718 tin Inorganic materials 0.000 claims description 13
- 230000037361 pathway Effects 0.000 claims description 12
- MFIWAIVSOUGHLI-UHFFFAOYSA-N selenium;tin Chemical compound [Sn]=[Se] MFIWAIVSOUGHLI-UHFFFAOYSA-N 0.000 claims description 12
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 11
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 7
- 229910001887 tin oxide Inorganic materials 0.000 claims description 7
- 230000003750 conditioning effect Effects 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims 1
- 238000005054 agglomeration Methods 0.000 abstract description 5
- 230000002776 aggregation Effects 0.000 abstract description 5
- 230000002265 prevention Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 203
- 150000004770 chalcogenides Chemical class 0.000 description 20
- 239000011521 glass Substances 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- KDSXXMBJKHQCAA-UHFFFAOYSA-N disilver;selenium(2-) Chemical compound [Se-2].[Ag+].[Ag+] KDSXXMBJKHQCAA-UHFFFAOYSA-N 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- -1 silver ions Chemical class 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052798 chalcogen Inorganic materials 0.000 description 2
- 150000001787 chalcogens Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052986 germanium hydride Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052699 polonium Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 150000003378 silver Chemical class 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- GNWCVDGUVZRYLC-UHFFFAOYSA-N [Se].[Ag].[Ag] Chemical compound [Se].[Ag].[Ag] GNWCVDGUVZRYLC-UHFFFAOYSA-N 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- UQMCSSLUTFUDSN-UHFFFAOYSA-N sulfanylidenegermane Chemical compound [GeH2]=S UQMCSSLUTFUDSN-UHFFFAOYSA-N 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0011—RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/063—Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8825—Selenides, e.g. GeSe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/90—Bulk effect device making
Definitions
- the invention relates to the field of random access memory
- RAM random access memory
- Resistance variable memory elements which include
- PCRAM Programmable Conductive Random Access Memory
- a conductive material such as
- chalcogenide glass can be programmed to stable higher resistance and lower
- An unprogrammed PCRAM device is normally in a higher
- a write operation programs the PCRAM device to a lower
- the PCRAM device may then be read by
- the resistance across the memory device is then sensed as higher or lower to
- the programmed lower resistance state of a PCRAM device can be any type of PCRAM device.
- the PCRAM device can be returned to its higher resistance state by
- variable resistance memory having at least two resistance states, which can
- One exemplary PCRAM device uses a germanium selenide (i.e.,
- GexSeioo-x GexSeioo-x chalcogenide glass as a backbone.
- a silver-chalcogenide material as a layer of silver selenide or silver sulfide in combination with a silver-metal layer and a
- Tin (Sn) has a reduced thermal mobility in
- GexSeioo-x compared to silver and the tin-chalcogenides are less toxic than the
- an Sn-rich material e.g., a dendrite
- the invention provides a resistance variable memory device
- the invention provides a
- tin-chalcogenide e.g., tin-chalcogenide
- the stack of layers comprising a first chalcogenide glass layer and
- a tin-chalcogenide layer is formed between two conductive layers or
- memory device stacks may contain more than one chalcogenide glass layer
- the invention provides structures for PCRAM
- FIGs. 1-10 are illustrations of exemplary embodiments of
- FIGs. 11-14 illustrate exemplary sequential stages of processing
- FIG. 15 shows an exemplary processor-based system
- FIGs. 16a, 16b, 17a, and 17b are graphs showing exemplary
- substrate used in the following description may
- a semiconductor substrate that has an exposed substrate surface.
- semiconductor substrate should be understood to include silicon-on-insulator
- the substrate need not be semiconductor-
- circuit including, but not limited to, metals, alloys, glasses, polymers,
- silver alloy is conductive, and as long as the physical and electrical properties
- tin is intended to include not only elemental tin, but
- alloys, compounds, and mixtures of tin and chalcogens e.g., sulfur (S)
- tin selenide a species which have a slight excess or deficit of tin.
- tin selenide a species which have a slight excess or deficit of tin.
- devices of the present invention typically comprise an
- chalcogenide glass is intended to include glasses
- Group VIA elements e.g., O, S, Se, Te, and Po are also present.
- chalcogens referred to as chalcogens.
- FIG. 1 shows an exemplary embodiment of a
- the device 100 constructed in accordance with the invention.
- the device is constructed in accordance with the invention.
- the conductive address line 12 can be
- a first electrode 16 which is defined
- electrode 16 can be any conductive material that will not migrate into
- the insulating layer 14 is preferably tungsten (W).
- silicon nitride Si3N4
- low dielectric constant material Si3N4
- insulating material such as silicon nitride (Si3N4), a low dielectric constant material, an insulating
- a memory element i.e., the portion of the memory device 100
- germanium selenide (GexSeioo-x), is provided over the first electrode 16.
- germanium selenide is preferably within a stoichiometric range of about
- Ge ⁇ oSe ⁇ o to about Ge43Ses7, most preferably about Ge ⁇ Se ⁇ o.
- chalcogenide glass 18 is preferably between about 100 A and about 1000 A
- Layer 18 need not be a single layer
- chalcogenide glass layer 18 Over the chalcogenide glass layer 18 is a layer of tin-
- chalcogenide 20 preferably tin selenide (Sm+/-xSe, where x is between about 1
- chalcogenide layer 20 is preferably about 500 A thick; however, its thickness
- underlying chalcogenide glass layer 18 should be between about 5:1 and
- a metal layer 22 is provided over the tin-
- metal layer 22 should be about 500 A thick. This silver (or other metal) layer
- the second electrode 24 can be made of the same
- the second electrode 24 is preferably
- the device(s) may be isolated by an insulating layer 26.
- tin selenide layer e.g., layer 20
- chalcogenide glass layer e.g., layer 18
- the tin-chalcogenide layer 20 provides a
- the conditioning step comprises applying a potential across the memory
- chalcogenide layer 20 is incorporated into the chalcogenide glass layer 18, thereby forming a conducting channel through the chalcogenide glass layer
- chalcogenide layer in accordance with the invention are able to withstand
- FIG. 2 shows another exemplary embodiment of a memory
- Memory device 101 constructed in accordance with the invention. Memory device 101
- FIG. 1 The primary difference between device 100 and device 101 is the
- the optional second chalcogenide glass layer 18a is formed over
- the tin-chalcogenide layer 20 is preferably Ge ⁇ Se ⁇ o, and is preferably about
- layer 22 which is preferably silver (Ag) and is preferably about 500 A thick.
- third chalcogenide glass layer 18b provides an adhesion layer for subsequent
- layers 18a and 18b are not
- the optional second and third chalcogenide layers 18a and 18b are necessarily a single layer, but may be comprised of multiple sub-layers. Additionally, the optional second and third chalcogenide layers 18a and 18b
- the chalcogenide glass may be a different chalcogenide glass from the first chalcogenide glass layer
- germanium sulfide GeS
- germanium sulfide GeS
- germanium Ge
- silver Ag
- selenium Se
- electrode 24 which may be any conductive material, except those that will
- electrode 24 is tungsten (W).
- FIG. 3 shows an exemplary embodiment (where like
- memory device 102 does not incorporate a first electrode 16 separate from an
- the memory device 102 utilizes a combined address line and
- the address line and electrode structure 12/16 may be the
- FIG.4 shows a memory device 103 defined, predominantly, by
- the chalcogenide glass layer 18 the tin-chalcogenide layer 20
- electrode 16 separate from an underlying address line 12 may be used, as with
- the second electrode 24 defines the location of the memory
- FIG. 5 shows an exemplary embodiment (where like reference
- chalcogenide glass layer 18 chalcogenide glass layer 18, tin-chalcogenide layer 20, and metal layer 22, as
- the second electrode 24 are conformally deposited over the insulating layer 14 and substrate 10 and within the via 28 over the address line and
- Electrode structure 12/16 The layers 18, 20, 22, and 24 are patterned to define
- a first electrode 16 may be used which is separate from the
- This separate electrode 16 may also, as another
- FIG. 6 shows another exemplary embodiment of a memory
- Memory device 105 constructed in accordance with the invention. Memory device 105
- FIG. 1 Device 105 is supported by a substrate 10 and is over an address line
- the device 105 has a first electrode 16, a chalcogenide glass layer 18 over
- the second electrode 24 is
- tin-chalcogenide layer 20 positioned over the tin-chalcogenide layer 20 and contains a metal, such as
- FIG. 7 shows another exemplary embodiment of a memory
- Memory device 106 constructed in accordance with the invention. Memory device 106
- FIGs. 1 and 2 Device 106 of FIG. 7 is supported by a
- Device 106 has a first
- chalcogenide layer 20 over the chalcogenide glass layer 18.
- a metal layer 22
- tin-chalcogenide layer 20 is positioned over the tin-chalcogenide layer 20.
- metal layer 22 is positioned a second chalcogenide glass layer 18a, which may
- chalcogenide glass layer 18a is a second electrode 24.
- FIG. 8 shows another exemplary embodiment of a memory
- Memory device 107 constructed in accordance with the invention. Memory device 107
- FIG. 1 Device 107 of FIG. 8 is supported by a substrate 10 and is positioned
- Device 107 has a first electrode 16, a chalcogenide glass layer 18 over the first electrode, and a tin-chalcogenide layer 20 over the
- chalcogenide glass layer 18 Over the tin-chalcogenide layer 20 is an alloy-
- control layer 21 which is preferably selenium (Se) or tin oxide (SnO).
- alloy-control layer 21 can be about 100 A to about 300 A thick, preferably
- alloy-control layer 21 Over the metal layer 22 is a second electrode 24.
- a PCRAM stack may be formed with an alloy-control layer 21 of
- chalcogenide layer 20 of preferred SnSe in direct contact with the
- the chalcogenide glass layer 18 structure and creates a conductive pathway
- Improvements include data retention and possibly cycling, as
- the read disturb is the
- FIG. 9 shows another exemplary embodiment of a memory
- Memory device 108 constructed in accordance with the invention. Memory device 108
- FIG. 9 is supported by a substrate 10 and is positioned over an address line
- Device 108 has a first electrode 16, a chalcogenide glass layer 18 over the
- first electrode and a tin-chalcogenide layer 20 over the chalcogenide glass layer 18.
- An alloy-control layer 21 is provided over the tin-chalcogenide layer
- a metal layer 22, preferably silver, is positioned over the second
- chalcogenide glass layer 18a Over the metal layer 22, is a third chalcogenide
- FIG. 10 shows another exemplary embodiment of a memory
- Memory device 109 constructed in accordance with the invention. Memory device 109
- Device 109 of FIG. 10 is supported by a substrate 10 and is
- Device 108 has a first electrode 16 and a
- a metal layer 22 preferably
- chalcogenide glass layer 18b which may be the same
- chalcogenide glass layer 18b is a second electrode 24.
- FIGs. 11-14 illustrate a cross-sectional view of a wafer during the
- processing steps shown in FIGs. 11-14 most specifically refer to memory
- a substrate 10 is provided. As indicated by FIG. 11, a substrate 10 is provided. As indicated
- the substrate 10 can be semiconductor-based or another material useful
- insulating layer (not shown) may be formed over the substrate 10; the
- optional insulating layer may be silicon nitride or other insulating materials
- a conductive address line 12 is formed by depositing a conductive material
- the conductive material maybe deposited by any technique known in the art,
- This layer 14 can be silicon nitride, a low dielectric
- silver ion migration and may be deposited by any method known in the art.
- An opening 14a in the insulating layer is made, for instance by
- FIG. 12 shows the cross-section of the wafer of FIG. 11 at a
- a chalcogenide glass layer 18 is formed to a preferred thickness of about 3O ⁇ A over the first
- the chalcogenide glass layer 18 is
- this chalcogenide glass layer 18 may be
- germanium tetrahydride GeH4
- a tin-chalcogenide layer 20 is formed
- the tin-chalcogenide layer 20 is
- tin selenide Sm+/- ⁇ Se, x being between about 1 and 0.
- tin-chalcogenide layer 20 may be formed adjacent to the tin-chalcogenide layer 20, on either side
- a metal layer 22 is formed over the tin-
- the metal layer 22 is preferably silver (Ag), or at least
- metal layer 22 may be deposited by any technique known in the art.
- material may be any material suitable for a conductive electrode, but is
- tungsten preferably tungsten; however other materials may be used such as titanium
- top electrode 24 layer over the top electrode 24 layer, masked and patterned to define the stacks for
- the memory device 100 which is but one of a plurality of like memory devices
- An etching step is used to remove portions of layers 18,
- substantially complete memory device 100 as shown by FIG. 14.
- An insulating layer 26 may be formed over the device 100 to achieve a structure
- This isolation step can be followed by the forming of
- a conditioning step is performed by applying a voltage pulse of
- PCRAM resistance variable memory
- FIG. 15 illustrates a typical processor system 400 which includes
- a memory circuit 448 e.g., a PCRAM device, which employs resistance
- variable memory devices e.g., device 100-109 fabricated in accordance with
- a processor system such as a computer system, generally
- CPU central processing unit
- microprocessor a microprocessor
- I/O input/output
- memory circuit 448 communicates with the CPU 444 over bus 452 typically
- the processor system may
- peripheral devices such as a floppy disk drive 454 and a compact disc
- Memory circuit 448 is preferably constructed as an integrated circuit
- the memory circuit 448 may be combined with the processor,
- CPU 444 for example CPU 444, in a single integrated circuit.
- FIGs. 16a-17b are graphs relating to experimental results
- the devices tested have a tungsten bottom electrode (e.g., layer 16), a first 300 A layer of
- Ge ⁇ Se ⁇ o e.g., layer 18
- 500 A layer of SnSe e.g., SnSe
- a second 15 ⁇ A layer of (e.g., layer 20) over the Ge-toSe ⁇ o layer, a second 15 ⁇ A layer of (e.g., layer
- Ge4oSe6o e.g., layer 18b
- a first probe was placed at the top electrode (e.g., layer 24) and a
- the array exhibited at least a 90% yield in operational memory
- FIG. 16a is a DC switching I-V (current vs. voltage) trace, which shows that the devices tested switched from a less
- FIG. 16b shows a DC switching I-V trace, which shows that
- the devices erased, or switched from a higher conductive state to a lower
- the graph of FIG. 17a is a continuous wave device response
- FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
- 17b is a graph relating the voltage across the memory device to the input
- the "threshold voltage" in this example is about 0.4 V to
- Patent of the United States is:
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
- Glass Compositions (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE602005017899T DE602005017899D1 (en) | 2004-07-19 | 2005-07-14 | RESISTANT VARIABLE MEMORY COMPONENT AND MANUFACTURING METHOD |
EP05772169A EP1769507B1 (en) | 2004-07-19 | 2005-07-14 | Resistance variable memory device and method of fabrication |
JP2007522567A JP5107037B2 (en) | 2004-07-19 | 2005-07-14 | Variable resistance memory device and manufacturing method |
AT05772169T ATE450042T1 (en) | 2004-07-19 | 2005-07-14 | VARIABLE RESISTANCE MEMORY COMPONENT AND PRODUCTION METHOD |
KR1020077003843A KR100917095B1 (en) | 2004-07-19 | 2005-07-14 | Resistance variable memory device and method of fabrication |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/893,299 | 2004-07-19 | ||
US10/893,299 US7190048B2 (en) | 2004-07-19 | 2004-07-19 | Resistance variable memory device and method of fabrication |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006019845A1 true WO2006019845A1 (en) | 2006-02-23 |
Family
ID=35285580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/024899 WO2006019845A1 (en) | 2004-07-19 | 2005-07-14 | Resistance variable memory device and method of fabrication |
Country Status (9)
Country | Link |
---|---|
US (4) | US7190048B2 (en) |
EP (1) | EP1769507B1 (en) |
JP (2) | JP5107037B2 (en) |
KR (1) | KR100917095B1 (en) |
CN (1) | CN100530432C (en) |
AT (1) | ATE450042T1 (en) |
DE (1) | DE602005017899D1 (en) |
TW (1) | TWI293509B (en) |
WO (1) | WO2006019845A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006091480A1 (en) * | 2005-02-23 | 2006-08-31 | Micron Technology, Inc. | Snse-based limited reprogrammable cell |
US7749853B2 (en) | 2004-07-19 | 2010-07-06 | Microntechnology, Inc. | Method of forming a variable resistance memory device comprising tin selenide |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190048B2 (en) * | 2004-07-19 | 2007-03-13 | Micron Technology, Inc. | Resistance variable memory device and method of fabrication |
DE102004054558A1 (en) * | 2004-11-11 | 2006-05-24 | Infineon Technologies Ag | Phase change random access memory cell manufacturing method, involves back etching portion of structured hard mask by isotropic etching and back etching upper electrode layer and switching active layer by dry etching |
US7274034B2 (en) * | 2005-08-01 | 2007-09-25 | Micron Technology, Inc. | Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication |
US7332735B2 (en) * | 2005-08-02 | 2008-02-19 | Micron Technology, Inc. | Phase change memory cell and method of formation |
US7767992B2 (en) * | 2005-08-09 | 2010-08-03 | Ovonyx, Inc. | Multi-layer chalcogenide devices |
US7381982B2 (en) * | 2005-08-26 | 2008-06-03 | Macronix International Co., Ltd. | Method for fabricating chalcogenide-applied memory |
US20070045606A1 (en) * | 2005-08-30 | 2007-03-01 | Michele Magistretti | Shaping a phase change layer in a phase change memory cell |
US8188454B2 (en) * | 2005-10-28 | 2012-05-29 | Ovonyx, Inc. | Forming a phase change memory with an ovonic threshold switch |
US7692272B2 (en) * | 2006-01-19 | 2010-04-06 | Elpida Memory, Inc. | Electrically rewritable non-volatile memory element and method of manufacturing the same |
US8038850B2 (en) * | 2006-06-23 | 2011-10-18 | Qimonda Ag | Sputter deposition method for forming integrated circuit |
US20080073751A1 (en) * | 2006-09-21 | 2008-03-27 | Rainer Bruchhaus | Memory cell and method of manufacturing thereof |
US7924608B2 (en) * | 2006-10-19 | 2011-04-12 | Boise State University | Forced ion migration for chalcogenide phase change memory device |
US7786463B2 (en) * | 2008-05-20 | 2010-08-31 | Seagate Technology Llc | Non-volatile multi-bit memory with programmable capacitance |
US7977722B2 (en) * | 2008-05-20 | 2011-07-12 | Seagate Technology Llc | Non-volatile memory with programmable capacitance |
KR100983175B1 (en) * | 2008-07-03 | 2010-09-20 | 광주과학기술원 | Resistance RAM having oxide layer and solid electrolyte layer, and method for operating the same |
KR100990215B1 (en) * | 2008-07-17 | 2010-10-29 | 한국전자통신연구원 | Phase Change Type Memory and Method for Fabricating the Same |
US8238146B2 (en) * | 2008-08-01 | 2012-08-07 | Boise State University | Variable integrated analog resistor |
US8467236B2 (en) | 2008-08-01 | 2013-06-18 | Boise State University | Continuously variable resistor |
US7825479B2 (en) * | 2008-08-06 | 2010-11-02 | International Business Machines Corporation | Electrical antifuse having a multi-thickness dielectric layer |
US8809829B2 (en) * | 2009-06-15 | 2014-08-19 | Macronix International Co., Ltd. | Phase change memory having stabilized microstructure and manufacturing method |
US20110079709A1 (en) * | 2009-10-07 | 2011-04-07 | Campbell Kristy A | Wide band sensor |
US8284590B2 (en) | 2010-05-06 | 2012-10-09 | Boise State University | Integratable programmable capacitive device |
US8227785B2 (en) * | 2010-11-11 | 2012-07-24 | Micron Technology, Inc. | Chalcogenide containing semiconductors with chalcogenide gradient |
CN102832338B (en) * | 2012-09-06 | 2015-10-07 | 中国科学院上海微系统与信息技术研究所 | A kind of limiting structure phase transition storage and preparation method thereof |
WO2014137943A2 (en) * | 2013-03-03 | 2014-09-12 | Adesto Technologies Corporation | Programmable impedance memory elements and corresponding methods |
KR101431656B1 (en) * | 2013-04-05 | 2014-08-21 | 한국과학기술연구원 | Chacogenide switching device using germanium and selenium and manufacture method thereof |
WO2016158429A1 (en) * | 2015-03-31 | 2016-10-06 | ソニーセミコンダクタソリューションズ株式会社 | Switch element and storage device |
EP3289658B1 (en) | 2015-04-30 | 2023-01-25 | Eton Solutions Limited | Power supply control |
US9583703B2 (en) | 2015-06-01 | 2017-02-28 | Boise State University | Tunable variable resistance memory device |
US9583699B2 (en) | 2015-06-01 | 2017-02-28 | Boise State University | Tunable variable resistance memory device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0479325A2 (en) * | 1990-10-05 | 1992-04-08 | Energy Conversion Devices, Inc. | Vertically interconnected parallel distributed processor |
US6348365B1 (en) * | 2001-03-02 | 2002-02-19 | Micron Technology, Inc. | PCRAM cell manufacturing |
US20040027849A1 (en) * | 2000-10-31 | 2004-02-12 | Yang Yang | Organic bistable device and organic memory cells |
US20040042265A1 (en) * | 2002-08-29 | 2004-03-04 | Moore John T. | Method and apparatus for controlling metal doping of a chalcogenide memory element |
Family Cites Families (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3271591A (en) | 1963-09-20 | 1966-09-06 | Energy Conversion Devices Inc | Symmetrical current controlling device |
US3622319A (en) | 1966-10-20 | 1971-11-23 | Western Electric Co | Nonreflecting photomasks and methods of making same |
US3868651A (en) | 1970-08-13 | 1975-02-25 | Energy Conversion Devices Inc | Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure |
US3743847A (en) | 1971-06-01 | 1973-07-03 | Motorola Inc | Amorphous silicon film as a uv filter |
US4267261A (en) | 1971-07-15 | 1981-05-12 | Energy Conversion Devices, Inc. | Method for full format imaging |
US3980505A (en) * | 1973-09-12 | 1976-09-14 | Buckley William D | Process of making a filament-type memory semiconductor device |
US3961314A (en) | 1974-03-05 | 1976-06-01 | Energy Conversion Devices, Inc. | Structure and method for producing an image |
US3966317A (en) | 1974-04-08 | 1976-06-29 | Energy Conversion Devices, Inc. | Dry process production of archival microform records from hard copy |
US4177474A (en) | 1977-05-18 | 1979-12-04 | Energy Conversion Devices, Inc. | High temperature amorphous semiconductor member and method of making the same |
JPS5565365A (en) | 1978-11-07 | 1980-05-16 | Nippon Telegr & Teleph Corp <Ntt> | Pattern forming method |
DE2901303C2 (en) | 1979-01-15 | 1984-04-19 | Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen | Solid ionic conductor material, its use and process for its manufacture |
US4312938A (en) | 1979-07-06 | 1982-01-26 | Drexler Technology Corporation | Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer |
US4269935A (en) | 1979-07-13 | 1981-05-26 | Ionomet Company, Inc. | Process of doping silver image in chalcogenide layer |
US4316946A (en) | 1979-12-03 | 1982-02-23 | Ionomet Company, Inc. | Surface sensitized chalcogenide product and process for making and using the same |
US4499557A (en) | 1980-10-28 | 1985-02-12 | Energy Conversion Devices, Inc. | Programmable cell for use in programmable electronic arrays |
US4405710A (en) | 1981-06-22 | 1983-09-20 | Cornell Research Foundation, Inc. | Ion beam exposure of (g-Gex -Se1-x) inorganic resists |
US4737379A (en) | 1982-09-24 | 1988-04-12 | Energy Conversion Devices, Inc. | Plasma deposited coatings, and low temperature plasma method of making same |
US4545111A (en) | 1983-01-18 | 1985-10-08 | Energy Conversion Devices, Inc. | Method for making, parallel preprogramming or field programming of electronic matrix arrays |
US4608296A (en) | 1983-12-06 | 1986-08-26 | Energy Conversion Devices, Inc. | Superconducting films and devices exhibiting AC to DC conversion |
US4795657A (en) | 1984-04-13 | 1989-01-03 | Energy Conversion Devices, Inc. | Method of fabricating a programmable array |
US4668968A (en) | 1984-05-14 | 1987-05-26 | Energy Conversion Devices, Inc. | Integrated circuit compatible thin film field effect transistor and method of making same |
US4843443A (en) | 1984-05-14 | 1989-06-27 | Energy Conversion Devices, Inc. | Thin film field effect transistor and method of making same |
US4769338A (en) | 1984-05-14 | 1988-09-06 | Energy Conversion Devices, Inc. | Thin film field effect transistor and method of making same |
US4670763A (en) | 1984-05-14 | 1987-06-02 | Energy Conversion Devices, Inc. | Thin film field effect transistor |
US4673957A (en) | 1984-05-14 | 1987-06-16 | Energy Conversion Devices, Inc. | Integrated circuit compatible thin film field effect transistor and method of making same |
US4678679A (en) | 1984-06-25 | 1987-07-07 | Energy Conversion Devices, Inc. | Continuous deposition of activated process gases |
US4646266A (en) | 1984-09-28 | 1987-02-24 | Energy Conversion Devices, Inc. | Programmable semiconductor structures and methods for using the same |
US4664939A (en) | 1985-04-01 | 1987-05-12 | Energy Conversion Devices, Inc. | Vertical semiconductor processor |
US4637895A (en) | 1985-04-01 | 1987-01-20 | Energy Conversion Devices, Inc. | Gas mixtures for the vapor deposition of semiconductor material |
US4710899A (en) | 1985-06-10 | 1987-12-01 | Energy Conversion Devices, Inc. | Data storage medium incorporating a transition metal for increased switching speed |
US4671618A (en) | 1986-05-22 | 1987-06-09 | Wu Bao Gang | Liquid crystalline-plastic material having submillisecond switch times and extended memory |
US4766471A (en) | 1986-01-23 | 1988-08-23 | Energy Conversion Devices, Inc. | Thin film electro-optical devices |
US4818717A (en) | 1986-06-27 | 1989-04-04 | Energy Conversion Devices, Inc. | Method for making electronic matrix arrays |
US4728406A (en) | 1986-08-18 | 1988-03-01 | Energy Conversion Devices, Inc. | Method for plasma - coating a semiconductor body |
US4845533A (en) | 1986-08-22 | 1989-07-04 | Energy Conversion Devices, Inc. | Thin film electrical devices with amorphous carbon electrodes and method of making same |
US4809044A (en) | 1986-08-22 | 1989-02-28 | Energy Conversion Devices, Inc. | Thin film overvoltage protection devices |
US4788594A (en) | 1986-10-15 | 1988-11-29 | Energy Conversion Devices, Inc. | Solid state electronic camera including thin film matrix of photosensors |
US4853785A (en) | 1986-10-15 | 1989-08-01 | Energy Conversion Devices, Inc. | Electronic camera including electronic signal storage cartridge |
US4847674A (en) | 1987-03-10 | 1989-07-11 | Advanced Micro Devices, Inc. | High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism |
US4800526A (en) | 1987-05-08 | 1989-01-24 | Gaf Corporation | Memory element for information storage and retrieval system and associated process |
US4891330A (en) | 1987-07-27 | 1990-01-02 | Energy Conversion Devices, Inc. | Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements |
US4775425A (en) | 1987-07-27 | 1988-10-04 | Energy Conversion Devices, Inc. | P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same |
US5272359A (en) | 1988-04-07 | 1993-12-21 | California Institute Of Technology | Reversible non-volatile switch based on a TCNQ charge transfer complex |
GB8910854D0 (en) | 1989-05-11 | 1989-06-28 | British Petroleum Co Plc | Semiconductor device |
US5314772A (en) | 1990-10-09 | 1994-05-24 | Arizona Board Of Regents | High resolution, multi-layer resist for microlithography and method therefor |
JPH0770731B2 (en) | 1990-11-22 | 1995-07-31 | 松下電器産業株式会社 | Electroplastic element |
US5341328A (en) | 1991-01-18 | 1994-08-23 | Energy Conversion Devices, Inc. | Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life |
US5406509A (en) | 1991-01-18 | 1995-04-11 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5166758A (en) | 1991-01-18 | 1992-11-24 | Energy Conversion Devices, Inc. | Electrically erasable phase change memory |
US5296716A (en) | 1991-01-18 | 1994-03-22 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5536947A (en) | 1991-01-18 | 1996-07-16 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom |
US5335219A (en) | 1991-01-18 | 1994-08-02 | Ovshinsky Stanford R | Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements |
US5534711A (en) | 1991-01-18 | 1996-07-09 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5414271A (en) | 1991-01-18 | 1995-05-09 | Energy Conversion Devices, Inc. | Electrically erasable memory elements having improved set resistance stability |
US5534712A (en) | 1991-01-18 | 1996-07-09 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
US5596522A (en) | 1991-01-18 | 1997-01-21 | Energy Conversion Devices, Inc. | Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements |
US5128099A (en) | 1991-02-15 | 1992-07-07 | Energy Conversion Devices, Inc. | Congruent state changeable optical memory material and device |
US5219788A (en) | 1991-02-25 | 1993-06-15 | Ibm Corporation | Bilayer metallization cap for photolithography |
JP2794348B2 (en) * | 1991-06-21 | 1998-09-03 | キヤノン株式会社 | Recording medium, manufacturing method thereof, and information processing apparatus |
US5177567A (en) | 1991-07-19 | 1993-01-05 | Energy Conversion Devices, Inc. | Thin-film structure for chalcogenide electrical switching devices and process therefor |
US5359205A (en) | 1991-11-07 | 1994-10-25 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
US5238862A (en) | 1992-03-18 | 1993-08-24 | Micron Technology, Inc. | Method of forming a stacked capacitor with striated electrode |
KR940004732A (en) | 1992-08-07 | 1994-03-15 | 가나이 쯔또무 | Pattern formation method and thin film formation method used for pattern formation |
US5350484A (en) | 1992-09-08 | 1994-09-27 | Intel Corporation | Method for the anisotropic etching of metal films in the fabrication of interconnects |
DE4318825C1 (en) * | 1993-06-07 | 1994-06-09 | Continental Ag | Tyre construction for commercial vehicles - has aramid carcass with ends wrapped round aramid bead cores and these plus belt are made of synthetic fibre-reinforced rubber |
US5818749A (en) | 1993-08-20 | 1998-10-06 | Micron Technology, Inc. | Integrated circuit memory device |
BE1007902A3 (en) | 1993-12-23 | 1995-11-14 | Philips Electronics Nv | Switching element with memory with schottky barrier tunnel. |
US5505719A (en) * | 1994-06-30 | 1996-04-09 | Mcneil-Ppc, Inc. | Multilayered absorbent structures |
US5500532A (en) | 1994-08-18 | 1996-03-19 | Arizona Board Of Regents | Personal electronic dosimeter |
JP2643870B2 (en) | 1994-11-29 | 1997-08-20 | 日本電気株式会社 | Method for manufacturing semiconductor memory device |
US6676900B1 (en) * | 1994-12-09 | 2004-01-13 | Therox, Inc. | Method for the preparation and delivery of gas-enriched fluids |
US5543737A (en) | 1995-02-10 | 1996-08-06 | Energy Conversion Devices, Inc. | Logical operation circuit employing two-terminal chalcogenide switches |
US5789758A (en) | 1995-06-07 | 1998-08-04 | Micron Technology, Inc. | Chalcogenide memory cell with a plurality of chalcogenide electrodes |
US5751012A (en) | 1995-06-07 | 1998-05-12 | Micron Technology, Inc. | Polysilicon pillar diode for use in a non-volatile memory cell |
US5879955A (en) * | 1995-06-07 | 1999-03-09 | Micron Technology, Inc. | Method for fabricating an array of ultra-small pores for chalcogenide memory cells |
KR100253029B1 (en) | 1995-06-07 | 2000-04-15 | 로데릭 더블류 루이스 | A stack/trench diode for use with a multi-state material in a non-volatile memory cell |
US5869843A (en) | 1995-06-07 | 1999-02-09 | Micron Technology, Inc. | Memory array having a multi-state element and method for forming such array or cells thereof |
US6420725B1 (en) | 1995-06-07 | 2002-07-16 | Micron Technology, Inc. | Method and apparatus for forming an integrated circuit electrode having a reduced contact area |
US5714768A (en) | 1995-10-24 | 1998-02-03 | Energy Conversion Devices, Inc. | Second-layer phase change memory array on top of a logic device |
US5694054A (en) | 1995-11-28 | 1997-12-02 | Energy Conversion Devices, Inc. | Integrated drivers for flat panel displays employing chalcogenide logic elements |
US5591501A (en) | 1995-12-20 | 1997-01-07 | Energy Conversion Devices, Inc. | Optical recording medium having a plurality of discrete phase change data recording points |
US6653733B1 (en) * | 1996-02-23 | 2003-11-25 | Micron Technology, Inc. | Conductors in semiconductor devices |
US5687112A (en) | 1996-04-19 | 1997-11-11 | Energy Conversion Devices, Inc. | Multibit single cell memory element having tapered contact |
US5851882A (en) | 1996-05-06 | 1998-12-22 | Micron Technology, Inc. | ZPROM manufacture and design and methods for forming thin structures using spacers as an etching mask |
US5761115A (en) | 1996-05-30 | 1998-06-02 | Axon Technologies Corporation | Programmable metallization cell structure and method of making same |
US5814527A (en) | 1996-07-22 | 1998-09-29 | Micron Technology, Inc. | Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories |
US5789277A (en) | 1996-07-22 | 1998-08-04 | Micron Technology, Inc. | Method of making chalogenide memory device |
US5998244A (en) * | 1996-08-22 | 1999-12-07 | Micron Technology, Inc. | Memory cell incorporating a chalcogenide element and method of making same |
US5825046A (en) | 1996-10-28 | 1998-10-20 | Energy Conversion Devices, Inc. | Composite memory material comprising a mixture of phase-change memory material and dielectric material |
US6087674A (en) | 1996-10-28 | 2000-07-11 | Energy Conversion Devices, Inc. | Memory element with memory material comprising phase-change material and dielectric material |
US5846889A (en) | 1997-03-14 | 1998-12-08 | The United States Of America As Represented By The Secretary Of The Navy | Infrared transparent selenide glasses |
US5998066A (en) | 1997-05-16 | 1999-12-07 | Aerial Imaging Corporation | Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass |
US6031287A (en) | 1997-06-18 | 2000-02-29 | Micron Technology, Inc. | Contact structure and memory element incorporating the same |
US5933365A (en) | 1997-06-19 | 1999-08-03 | Energy Conversion Devices, Inc. | Memory element with energy control mechanism |
US6011757A (en) | 1998-01-27 | 2000-01-04 | Ovshinsky; Stanford R. | Optical recording media having increased erasability |
US5912839A (en) | 1998-06-23 | 1999-06-15 | Energy Conversion Devices, Inc. | Universal memory element and method of programming same |
US6141241A (en) | 1998-06-23 | 2000-10-31 | Energy Conversion Devices, Inc. | Universal memory element with systems employing same and apparatus and method for reading, writing and programming same |
US6388324B2 (en) * | 1998-08-31 | 2002-05-14 | Arizona Board Of Regents | Self-repairing interconnections for electrical circuits |
US6635914B2 (en) * | 2000-09-08 | 2003-10-21 | Axon Technologies Corp. | Microelectronic programmable device and methods of forming and programming the same |
US6487106B1 (en) * | 1999-01-12 | 2002-11-26 | Arizona Board Of Regents | Programmable microelectronic devices and method of forming and programming same |
US6825489B2 (en) * | 2001-04-06 | 2004-11-30 | Axon Technologies Corporation | Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same |
US6177338B1 (en) * | 1999-02-08 | 2001-01-23 | Taiwan Semiconductor Manufacturing Company | Two step barrier process |
US6072716A (en) | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
US6143604A (en) | 1999-06-04 | 2000-11-07 | Taiwan Semiconductor Manufacturing Company | Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM) |
US6350679B1 (en) * | 1999-08-03 | 2002-02-26 | Micron Technology, Inc. | Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry |
US6914802B2 (en) * | 2000-02-11 | 2005-07-05 | Axon Technologies Corporation | Microelectronic photonic structure and device and method of forming the same |
US6339544B1 (en) * | 2000-09-29 | 2002-01-15 | Intel Corporation | Method to enhance performance of thermal resistor device |
US6555860B2 (en) * | 2000-09-29 | 2003-04-29 | Intel Corporation | Compositionally modified resistive electrode |
US6563164B2 (en) * | 2000-09-29 | 2003-05-13 | Ovonyx, Inc. | Compositionally modified resistive electrode |
US6567293B1 (en) * | 2000-09-29 | 2003-05-20 | Ovonyx, Inc. | Single level metal memory cell using chalcogenide cladding |
JP4025527B2 (en) * | 2000-10-27 | 2007-12-19 | 松下電器産業株式会社 | Memory, writing device, reading device and method thereof |
US6653193B2 (en) * | 2000-12-08 | 2003-11-25 | Micron Technology, Inc. | Resistance variable device |
US6696355B2 (en) * | 2000-12-14 | 2004-02-24 | Ovonyx, Inc. | Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory |
US6569705B2 (en) * | 2000-12-21 | 2003-05-27 | Intel Corporation | Metal structure for a phase-change memory device |
US6534781B2 (en) * | 2000-12-26 | 2003-03-18 | Ovonyx, Inc. | Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact |
US6531373B2 (en) * | 2000-12-27 | 2003-03-11 | Ovonyx, Inc. | Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements |
US6687427B2 (en) * | 2000-12-29 | 2004-02-03 | Intel Corporation | Optic switch |
US6727192B2 (en) * | 2001-03-01 | 2004-04-27 | Micron Technology, Inc. | Methods of metal doping a chalcogenide material |
US6734455B2 (en) * | 2001-03-15 | 2004-05-11 | Micron Technology, Inc. | Agglomeration elimination for metal sputter deposition of chalcogenides |
US6570784B2 (en) * | 2001-06-29 | 2003-05-27 | Ovonyx, Inc. | Programming a phase-change material memory |
US6514805B2 (en) * | 2001-06-30 | 2003-02-04 | Intel Corporation | Trench sidewall profile for device isolation |
US6673700B2 (en) * | 2001-06-30 | 2004-01-06 | Ovonyx, Inc. | Reduced area intersection between electrode and programming element |
US6511862B2 (en) * | 2001-06-30 | 2003-01-28 | Ovonyx, Inc. | Modified contact for programmable devices |
US6511867B2 (en) * | 2001-06-30 | 2003-01-28 | Ovonyx, Inc. | Utilizing atomic layer deposition for programmable device |
US6951805B2 (en) * | 2001-08-01 | 2005-10-04 | Micron Technology, Inc. | Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry |
US6590807B2 (en) * | 2001-08-02 | 2003-07-08 | Intel Corporation | Method for reading a structural phase-change memory |
US6737312B2 (en) * | 2001-08-27 | 2004-05-18 | Micron Technology, Inc. | Method of fabricating dual PCRAM cells sharing a common electrode |
US6955940B2 (en) * | 2001-08-29 | 2005-10-18 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices |
US6784018B2 (en) * | 2001-08-29 | 2004-08-31 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry |
US6881623B2 (en) * | 2001-08-29 | 2005-04-19 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device |
US6709958B2 (en) * | 2001-08-30 | 2004-03-23 | Micron Technology, Inc. | Integrated circuit device and fabrication using metal-doped chalcogenide materials |
US20030047765A1 (en) * | 2001-08-30 | 2003-03-13 | Campbell Kristy A. | Stoichiometry for chalcogenide glasses useful for memory devices and method of formation |
US6646902B2 (en) * | 2001-08-30 | 2003-11-11 | Micron Technology, Inc. | Method of retaining memory state in a programmable conductor RAM |
US6507061B1 (en) * | 2001-08-31 | 2003-01-14 | Intel Corporation | Multiple layer phase-change memory |
EP2112659A1 (en) * | 2001-09-01 | 2009-10-28 | Energy Convertion Devices, Inc. | Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses |
US6545287B2 (en) * | 2001-09-07 | 2003-04-08 | Intel Corporation | Using selective deposition to form phase-change memory cells |
US6690026B2 (en) * | 2001-09-28 | 2004-02-10 | Intel Corporation | Method of fabricating a three-dimensional array of active media |
US6566700B2 (en) * | 2001-10-11 | 2003-05-20 | Ovonyx, Inc. | Carbon-containing interfacial layer for phase-change memory |
US6545907B1 (en) * | 2001-10-30 | 2003-04-08 | Ovonyx, Inc. | Technique and apparatus for performing write operations to a phase change material memory device |
US6576921B2 (en) * | 2001-11-08 | 2003-06-10 | Intel Corporation | Isolating phase change material memory cells |
US6815818B2 (en) * | 2001-11-19 | 2004-11-09 | Micron Technology, Inc. | Electrode structure for use in an integrated circuit |
US6791859B2 (en) * | 2001-11-20 | 2004-09-14 | Micron Technology, Inc. | Complementary bit PCRAM sense amplifier and method of operation |
US6512241B1 (en) * | 2001-12-31 | 2003-01-28 | Intel Corporation | Phase change material memory device |
US7151273B2 (en) * | 2002-02-20 | 2006-12-19 | Micron Technology, Inc. | Silver-selenide/chalcogenide glass stack for resistance variable memory |
US6809362B2 (en) | 2002-02-20 | 2004-10-26 | Micron Technology, Inc. | Multiple data state memory cell |
US6849868B2 (en) * | 2002-03-14 | 2005-02-01 | Micron Technology, Inc. | Methods and apparatus for resistance variable material cells |
TWI224403B (en) * | 2002-03-15 | 2004-11-21 | Axon Technologies Corp | Programmable structure, an array including the structure, and methods of forming the same |
US6671710B2 (en) * | 2002-05-10 | 2003-12-30 | Energy Conversion Devices, Inc. | Methods of computing with digital multistate phase change materials |
US7015494B2 (en) * | 2002-07-10 | 2006-03-21 | Micron Technology, Inc. | Assemblies displaying differential negative resistance |
US6918382B2 (en) * | 2002-08-26 | 2005-07-19 | Energy Conversion Devices, Inc. | Hydrogen powered scooter |
US6864521B2 (en) * | 2002-08-29 | 2005-03-08 | Micron Technology, Inc. | Method to control silver concentration in a resistance variable memory element |
US6867996B2 (en) | 2002-08-29 | 2005-03-15 | Micron Technology, Inc. | Single-polarity programmable resistance-variable memory element |
US6856002B2 (en) * | 2002-08-29 | 2005-02-15 | Micron Technology, Inc. | Graded GexSe100-x concentration in PCRAM |
WO2004025640A1 (en) * | 2002-09-13 | 2004-03-25 | Matsushita Electric Industrial Co., Ltd. | Information recording medium and method for manufacturing same |
US6795338B2 (en) * | 2002-12-13 | 2004-09-21 | Intel Corporation | Memory having access devices using phase change material such as chalcogenide |
US6813178B2 (en) * | 2003-03-12 | 2004-11-02 | Micron Technology, Inc. | Chalcogenide glass constant current device, and its method of fabrication and operation |
JP4254293B2 (en) * | 2003-03-25 | 2009-04-15 | 株式会社日立製作所 | Storage device |
US7326950B2 (en) * | 2004-07-19 | 2008-02-05 | Micron Technology, Inc. | Memory device with switching glass layer |
US7190048B2 (en) * | 2004-07-19 | 2007-03-13 | Micron Technology, Inc. | Resistance variable memory device and method of fabrication |
US7317200B2 (en) * | 2005-02-23 | 2008-01-08 | Micron Technology, Inc. | SnSe-based limited reprogrammable cell |
-
2004
- 2004-07-19 US US10/893,299 patent/US7190048B2/en not_active Expired - Lifetime
-
2005
- 2005-07-14 WO PCT/US2005/024899 patent/WO2006019845A1/en active Application Filing
- 2005-07-14 AT AT05772169T patent/ATE450042T1/en not_active IP Right Cessation
- 2005-07-14 CN CNB2005800308295A patent/CN100530432C/en active Active
- 2005-07-14 KR KR1020077003843A patent/KR100917095B1/en active IP Right Grant
- 2005-07-14 EP EP05772169A patent/EP1769507B1/en active Active
- 2005-07-14 DE DE602005017899T patent/DE602005017899D1/en active Active
- 2005-07-14 JP JP2007522567A patent/JP5107037B2/en active Active
- 2005-07-19 TW TW094124377A patent/TWI293509B/en active
-
2006
- 2006-08-29 US US11/511,312 patent/US7348209B2/en not_active Expired - Lifetime
-
2007
- 2007-02-01 US US11/700,912 patent/US7282783B2/en not_active Expired - Lifetime
-
2008
- 2008-02-01 US US12/068,108 patent/US7868310B2/en active Active
-
2011
- 2011-08-11 JP JP2011175686A patent/JP5364762B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0479325A2 (en) * | 1990-10-05 | 1992-04-08 | Energy Conversion Devices, Inc. | Vertically interconnected parallel distributed processor |
US20040027849A1 (en) * | 2000-10-31 | 2004-02-12 | Yang Yang | Organic bistable device and organic memory cells |
US6348365B1 (en) * | 2001-03-02 | 2002-02-19 | Micron Technology, Inc. | PCRAM cell manufacturing |
US20040042265A1 (en) * | 2002-08-29 | 2004-03-04 | Moore John T. | Method and apparatus for controlling metal doping of a chalcogenide memory element |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7749853B2 (en) | 2004-07-19 | 2010-07-06 | Microntechnology, Inc. | Method of forming a variable resistance memory device comprising tin selenide |
US7759665B2 (en) | 2004-07-19 | 2010-07-20 | Micron Technology, Inc. | PCRAM device with switching glass layer |
WO2006091480A1 (en) * | 2005-02-23 | 2006-08-31 | Micron Technology, Inc. | Snse-based limited reprogrammable cell |
KR100918168B1 (en) | 2005-02-23 | 2009-09-17 | 마이크론 테크놀로지, 인크 | Snse-based limited reprogrammable cell |
Also Published As
Publication number | Publication date |
---|---|
US20060289851A1 (en) | 2006-12-28 |
EP1769507B1 (en) | 2009-11-25 |
CN100530432C (en) | 2009-08-19 |
US7282783B2 (en) | 2007-10-16 |
US7348209B2 (en) | 2008-03-25 |
JP2008507151A (en) | 2008-03-06 |
JP5364762B2 (en) | 2013-12-11 |
EP1769507A1 (en) | 2007-04-04 |
TWI293509B (en) | 2008-02-11 |
KR20070034116A (en) | 2007-03-27 |
JP2011258971A (en) | 2011-12-22 |
US7868310B2 (en) | 2011-01-11 |
KR100917095B1 (en) | 2009-09-15 |
CN101019191A (en) | 2007-08-15 |
DE602005017899D1 (en) | 2010-01-07 |
TW200620649A (en) | 2006-06-16 |
JP5107037B2 (en) | 2012-12-26 |
US20060012008A1 (en) | 2006-01-19 |
US20080164456A1 (en) | 2008-07-10 |
US7190048B2 (en) | 2007-03-13 |
ATE450042T1 (en) | 2009-12-15 |
US20070138598A1 (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1769507B1 (en) | Resistance variable memory device and method of fabrication | |
US7317200B2 (en) | SnSe-based limited reprogrammable cell | |
US7365411B2 (en) | Resistance variable memory with temperature tolerant materials | |
US7274034B2 (en) | Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication | |
US7723713B2 (en) | Layered resistance variable memory device and method of fabrication | |
US7289349B2 (en) | Resistance variable memory element with threshold device and method of forming the same | |
US20040192006A1 (en) | Layered resistance variable memory device and method of fabrication | |
US7304368B2 (en) | Chalcogenide-based electrokinetic memory element and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007522567 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005772169 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077003843 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580030829.5 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020077003843 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005772169 Country of ref document: EP |