WO2006019111A1 - System for measuring amount of gamma-aminobutyric acid released and reaction accelerator substance for use therein - Google Patents

System for measuring amount of gamma-aminobutyric acid released and reaction accelerator substance for use therein Download PDF

Info

Publication number
WO2006019111A1
WO2006019111A1 PCT/JP2005/014998 JP2005014998W WO2006019111A1 WO 2006019111 A1 WO2006019111 A1 WO 2006019111A1 JP 2005014998 W JP2005014998 W JP 2005014998W WO 2006019111 A1 WO2006019111 A1 WO 2006019111A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
released
gammaaminobutyric
amount
reaction
Prior art date
Application number
PCT/JP2005/014998
Other languages
French (fr)
Japanese (ja)
Inventor
Sachiko Yoshida
Masakazu Uematsu
Original Assignee
National University Corporation Toyohashi University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Toyohashi University Of Technology filed Critical National University Corporation Toyohashi University Of Technology
Priority to JP2006531822A priority Critical patent/JPWO2006019111A1/en
Publication of WO2006019111A1 publication Critical patent/WO2006019111A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/9406Neurotransmitters
    • G01N33/9426GABA, i.e. gamma-amino-butyrate

Definitions

  • the present invention relates to a new method and method for quantifying gamma-aminobutyric acid, which also releases nerve tissue force, and expressing the concentration distribution as a two-dimensional image.
  • This method can measure the amount of released gammaaminobutyric acid released from the body tissue force in a short time and identifying the released cells that have released this gammaaminobutyric acid.
  • the by-products generated during the measurement do not affect the measurement results, which is useful for determining the state of tissues in regenerated tissues and for pathological examinations.
  • gammaaminobutyric acid is released by many higher brain tissue forces and is an important index that is deeply involved in the development of dementia, Alzheimer's disease and brain functional development.
  • the measurement of the amount of gammaaminobutyric acid released has mostly been a method in which a solution around the tissue is collected and attached with a fluorescent carrier such as ortho-phthaldialdehyde and quantified by high performance liquid chromatography. there were. Furthermore, it is known that the conventional method of measuring the amount of gammaaminobutyric acid released with an enzyme may generate a by-product glutamic acid having physiological activity during the measurement. When this conventional method is used in the vicinity of a tissue, the tissue is secondarily stimulated by glutamate produced as a by-product. In other words, the measurement result itself makes the measurement result unreliable.
  • Patent Document 1 None
  • the concentration distribution of gammaaminobutyric acid can be expressed two-dimensionally, it is possible to identify which part of the cell has released gammaaminobutyric acid.
  • the concentration distribution of gammaaminobutyric acid can be expressed two-dimensionally, it is possible to identify which part of the cell has released gammaaminobutyric acid.
  • reduce the noise of the knock ground set the conditions for measuring the amount of gamma amino butyric acid released and its release tissue, and specify the measurement site. It is necessary to consider an appropriate system in which the reaction chamber is configured so that it can be determined.
  • the present invention reduces the noise of knock ground that does not stimulate tissue by a by-product, and reduces the amount of released gamma aminobutyric acid that can be measured in correspondence with the amount of released tissue.
  • the purpose is to provide a measurement system and a reaction promoting substance used therefor.
  • the present invention provides
  • an enzyme reaction that reduces gammaaminobutyric acid using gammaaminobutyric acid-degrading enzyme to reduce nicotinamide dinucleotide is used for this gammaaminobutyric acid.
  • the fluorescence emitted by reduced nicotinamide dinucleotide phosphate produced by this enzymatic reaction is emitted. Detecting and measuring the release amount of gammaaminobutyric acid.
  • [0011] [4] Light emission in which fluorescence emitted from reduced nicotinamide dinucleotide phosphate is detected by an imaging device using the gammaaminobutyric acid release amount measurement system according to [1], [2] or [3] It is characterized by two-dimensionally displaying the concentration distribution of gammaaminobutyric acid released from the body tissue force with an image.
  • a reaction promoting substance used in a system for measuring the amount of gammaaminobutyric acid released that also releases biological tissue force, and nicotinamide dinucleotide phosphate by acidifying gammaaminobutyric acid using gammaaminobutyric acid degrading enzyme It is characterized by containing a dicarboxylic acid as a substance that promotes this enzymatic reaction.
  • the reaction system is constituted by substances originally present in the living body. That is, by using an enzyme that specifically reacts with gammaaminobutyric acid released by the nerve tissue in the living body to reduce nicotinamide dinucleotide phosphate, the reduced nicotinamide dinucleotide phosphate produced at that time is emitted. Measure the amount of fluorescence and quantify the amount of gammaaminobutyric acid released.
  • nicotinamide dinucleotide phosphate and reduced nicotinamide dinucleotide phosphate are a kind of vitamins present in the living body, secondary stimulation of living tissues can be avoided.
  • a closed reaction chamber When measurement is performed in the vicinity of a specific tissue, a closed reaction chamber is used. That is, a semipermeable membrane is placed on the surface of a closed reaction chamber, and the neurotransmitter gammaaminobutyric acid is permeated from the semipermeable membrane. Excitation light is introduced with a UV light-emitting element, and images are captured using an image sensor such as an artificial retina LSI.
  • Fluorescence having a specific wavelength emitted by the reduced nicotinamide dinucleotide phosphate is used as an imaging device.
  • a two-dimensional release amount of gammaaminobutyric acid is obtained by taking an image with a CCD camera (for example, a CCD camera) and processing the image. That is, it constitutes a two-dimensional measurement system for gammaaminobutyric acid release.
  • FIG. 1 is a configuration diagram of a measurement system for measuring the amount of gammaaminobutyric acid released from a nerve tissue according to a first embodiment of the present invention in vitro.
  • FIG. 2 is a diagram showing an enzyme reaction used in the present invention.
  • FIG. 3 is a diagram showing the difference in fluorescence generation behavior when the reaction promoting substance used in the present invention is changed.
  • FIG. 4 is a configuration diagram of a measurement system for measuring the amount of gammaaminobutyric acid released from the nerve tissue according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a state of light emission in the vicinity of Purkinje layer showing an example of the present invention.
  • FIG. 6 is a diagram showing the relationship between the gammaaminobutyric acid concentration and the light intensity according to the present invention.
  • the gammaaminobutyric acid release enzyme uses gammaaminobutyric acid-degrading enzyme to oxidize gammaaminobutyric acid to reduce nicotinamide dinucleotidolinic acid. Using the fact that there is a one-to-one relationship between the molar amount and the molar amount of reduced nicotinamide dinucleotide phosphate produced, the fluorescence emitted by reduced nicotinamide dinucleotide phosphate produced by this enzymatic reaction is detected. To measure the amount of gammaaminobutyric acid released. Therefore, it is possible to reduce the noise of the knock ground that does not stimulate the tissue by the by-product, and to measure the released amount and the released tissue in correspondence.
  • FIG. 1 is a diagram showing a measurement system for measuring the amount of gammaaminobutyric acid released from the nerve tissue according to the first embodiment of the present invention in vitro, and FIG. 1 (a) shows its overall configuration.
  • Fig. 1 (b) is a perspective view of the reaction chamber.
  • FIG. 1 is a diagram showing a measurement system for measuring the amount of gammaaminobutyric acid released from the nerve tissue according to the first embodiment of the present invention in vitro
  • FIG. 1 (a) shows its overall configuration.
  • Fig. 1 (b) is a perspective view of the reaction chamber.
  • 1, 1 is a glass container, 2 is a chamber block, 3 is a sample (a nerve tissue piece that releases gamma aminobutyric acid), 4 is a reaction chamber (a chamber into which sample 3 and an enzyme solution are charged) ), 5 UV light source, 6 primary filter and lens, 7 excitation UV light, 8 reflecting mirror, 9 secondary filter, 10 CCD camera with cooling function (ie light detector), 11 micropipette , 12 is an opening provided on the upper surface of the chamber 12.
  • the gammaaminobutyric acid release amount released by the tissue is measured using an inverted culture microscope (UV light source 5 to secondary filter 9) and a CCD camera 10 with a cooling function.
  • the chamber block 2 is adhered to the glass surface of the glass container 1 with a putty, for example.
  • the thickness of the chamber block 2 is 0.5 to 2 cm, preferably 0.8 to 1.2 cm, and the volume of the reaction chamber 14 is 100 to 600 ⁇ 1, preferably 200 to 400 ⁇ 1.
  • the measurement is performed by supplying the sample 3 into the reaction chamber 4 and then reacting with the released gammaaminobutyric acid specifically to reduce nicotinamide dinucleotide phosphate, that is, a gammaaminobutyric acid degrading enzyme (for example, , Glutamic acid dehydrogenase) and nicotinamide dinucleotide phosphate solution are supplied to the reaction chamber 14 with a micropipette 11. Teflon (registered trademark) can be used as the material for the chamber block 2.
  • a gammaaminobutyric acid degrading enzyme for example, Glutamic acid dehydrogenase
  • Teflon registered trademark
  • the present invention uses an open system chamber as shown in FIG. It is configured to measure the amount of gammaaminobutyric acid released by the nerve tissue using a (UV light source 5 to 2nd filter 9) and a CCD camera 10 with a cooling function.
  • the reaction used in the present invention takes place in the reaction chamber 14 as an enzymatic reaction.
  • GABAase gammaaminobutyric acid degrading enzyme
  • GABA gammaaminobutyric acid
  • NADP nicotinamide dinucleoside acid
  • GABA is converted to succinic acid.
  • NADP is reduced to reduced nicotinamide dinucleotide phosphate (abbreviation; NADPH).
  • a reaction promoting substance is added to gammaaminobutyric acid degrading enzyme (GABAase)
  • GABAase gammaaminobutyric acid degrading enzyme
  • the time required to detect fluorescence is reduced to 1/10 or less, preferably 1/100 or less.
  • this reaction accelerator dicarboxylic acid, particularly ⁇ -ketoglutaric acid, ⁇ -ketobutyric acid, oxaloacetic acid, or a mixture thereof can be used.
  • Figure 3 shows the difference in fluorescence behavior when the reaction accelerator is changed (difference in fluorescence intensity generated by the reaction of a gammaaminobutyric acid solution with the same concentration). In this figure, Fig.
  • FIG. 3 (a) shows the case where the reaction accelerator is OC ketoglutaric acid
  • Fig. 3 (b) shows the case where the reaction accelerator is OC ketobutyric acid
  • Fig. 3 (c) shows that the reaction accelerator is Oxaguchi.
  • the case of acetic acid is shown respectively.
  • the horizontal axis represents time (seconds), and the vertical axis represents the intensity of main fluorescence.
  • FIG. Fig. 4 (a) is a front view and Fig. 4 (b) is a side view.
  • a closed reaction chamber 20 When measuring the amount of gammaaminobutyric acid released in vivo, a closed reaction chamber 20 is used.
  • the volume of the closed reaction chamber 20 is 100 to 600 1, preferably 200 to 400 1, so that the enzyme reaction can be performed in a short time.
  • a semi-permeable membrane 24 that is permeable to a substance with a molecular weight of 100 or less is placed on the surface of a closed reaction chamber 20 and permeated with gamma aminobutyric acid, a neurotransmitter.
  • Excitation light is introduced by an ultraviolet light emitting diode 23, and image capturing is performed using an image sensor (artificial retina LSI) 26.
  • 21 is an output cable of the image sensor 26, 22 is a power cable, and 25 is a reaction chamber containing an enzyme.
  • the image pickup device can be configured inexpensively and compactly by using a charge coupled device or a complementary metal oxide film semiconductor.
  • Nicotinamide dinucleotide phosphate and reaction accelerator (20) in a closed reaction chamber Desirably encapsulate (hyketoglutarate) and buffer.
  • FIG. 5 shows the light emission at that time.
  • Fig. 5 (a) is a pre-reaction photograph showing the shape of the site releasing gammaaminobutyric acid taken with a halogen lamp light source
  • the white area is the fluorescence image of NADPH that was expressed by UV light irradiation.
  • FIG. 6 is a graph showing the relationship between GABA concentration and light intensity, and M represents the micromolar amount of gammaaminobutyric acid present in 1 liter of solution.
  • M represents the micromolar amount of gammaaminobutyric acid present in 1 liter of solution.
  • the fluorescence intensity and the concentration of gammaaminobutyric acid shown in FIG. 5 (b) are uniquely related. By utilizing this relationship, it is possible to measure the measured value of the light intensity gammaaminobutyric acid released as described above.
  • the amount of gammaaminobutyric acid released by the brain tissue force of a patient can be measured using an enzyme reaction and an imaging device (for example, a CCD camera).
  • an imaging device for example, a CCD camera.
  • gamma amino dairy In the system for measuring acid release, nicotinamide dinucleotide phosphate added during measurement and reduced nicotinamide dinucleotide phosphate produced are substances (a kind of vitamin) that exist in the living body. It has the characteristic that there is no fear of damaging secondary damage. As a result, the adverse effect that the measurement operation itself affects the measurement is eliminated, and it becomes possible to perform treatment while accurately predicting the state of nerve activity in the brain of a patient who has developed trauma or cerebral infarction.
  • Gammaaminobutyric acid released by brain tissue is a neurotransmitter that plays a central role in modern neurological lesions such as dementia and Alzheimer's disease, and is a promising indicator of lesion progression and brain development. .
  • the present invention can measure the gammaaminobutyric acid release from specific cells in the tissue two-dimensionally to know the distribution. it can.
  • the measurement system for gammaaminobutyric acid release amount of the present invention is suitable as a tool for determining whether or not a neural circuit has a lesion power.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

A system for measuring the amount of gamma-aminobutyric acid released, in which without any stimulation of tissues by by-products, the amount of release can be measured in correlation to the release composition while reducing any background noise; and a reaction accelerator substance for use therein. The system has been so constructed that any influence of by-products upon measurement results is avoided by the use of not only an enzyme capable of specific oxidation of gamma-aminobutyric acid to thereby effect reduction of nicotinamide dinucleotide phosphate but also a dicarboxylic acid as a reaction accelerator agent. Closed-system reaction chamber (20) has been devised so as to work out such an arrangement that by means of semipermeable membrane (24) provided at a surface of the reaction chamber (20), gamma-aminobutyric acid having been released in the brain directly permeate into the reaction chamber (20). Thus, it has become feasible to find the locality of cells having released a particular gamma-aminobutyric acid.

Description

明 細 書  Specification
ガンマァミノ酪酸放出量の測定システムおよびそれに用いる反応促進物 質  Gammaaminobutyric acid release measurement system and reaction accelerator used for it
技術分野  Technical field
[0001] 本発明は、神経組織力も放出されるガンマァミノ酪酸(γ— aminobutyric acid) を定量して、その濃度分布を二次元画像として表現する新 U、方法に関するもので ある。この方法は生体組織力も放出されたガンマァミノ酪酸放出量を短時間に、かつ このガンマァミノ酪酸を放出した放出細胞を特定しながら測定することができる。さら にこの方法による測定では、測定時に生じる副生成物が測定結果に影響を及ぼすこ とがないため、再生組織における組織の状態の判定や、病理検査などに有用である 背景技術  [0001] The present invention relates to a new method and method for quantifying gamma-aminobutyric acid, which also releases nerve tissue force, and expressing the concentration distribution as a two-dimensional image. This method can measure the amount of released gammaaminobutyric acid released from the body tissue force in a short time and identifying the released cells that have released this gammaaminobutyric acid. In addition, in this method, the by-products generated during the measurement do not affect the measurement results, which is useful for determining the state of tissues in regenerated tissues and for pathological examinations.
[0002] 神経組織は特定の分子を細胞外へ放出して情報伝達しており、この分子を神経伝 達物質と呼ぶ。その中でもガンマァミノ酪酸は多くの高次脳組織力 放出され、痴呆 、アルツハイマー症の発症および脳の機能発達に深く関わる重要な指標となる物質 である。  [0002] Neural tissue transmits information by releasing a specific molecule outside the cell, and this molecule is called a nerve transmitter. Among them, gammaaminobutyric acid is released by many higher brain tissue forces and is an important index that is deeply involved in the development of dementia, Alzheimer's disease and brain functional development.
[0003] 従来、ガンマァミノ酪酸放出量の測定は、組織周辺の溶液を採取して蛍光性の担 体、例えばオルト一フタルジアルデヒドを付カ卩し、高速液体クロマトグラフィで定量す る方法がほとんどであった。さらに、従来のガンマァミノ酪酸放出量を酵素で測定す る方法では、測定中に生理活性を持つ副生成物グルタミン酸が発生する恐れがある ことが知られている。組織近傍でこの従来法を用いると、副生されるグルタミン酸によ つて組織が二次的に刺激される。すなわち、測定行為自身によって測定結果が信頼 できないものになってしまう。  [0003] Conventionally, the measurement of the amount of gammaaminobutyric acid released has mostly been a method in which a solution around the tissue is collected and attached with a fluorescent carrier such as ortho-phthaldialdehyde and quantified by high performance liquid chromatography. there were. Furthermore, it is known that the conventional method of measuring the amount of gammaaminobutyric acid released with an enzyme may generate a by-product glutamic acid having physiological activity during the measurement. When this conventional method is used in the vicinity of a tissue, the tissue is secondarily stimulated by glutamate produced as a by-product. In other words, the measurement result itself makes the measurement result unreliable.
[0004] また、従来のガンマァミノ酪酸放出量の測定法では組織周辺溶液を用いるため、採 取時に周辺の溶液が混入してどの細胞種が放出したガンマァミノ酪酸かを知ることが できない。すなわち、採取時に周辺の溶液が混入すると、その部位の正確なガンマ ァミノ酪酸濃度を測定することが難しい。し力も、濃度の低いガンマァミノ酪酸を測定 するためには、極めて感度が鋭敏で高価な蛍光性担体を付加する必要があるので、 一回の測定が大変高価なものになっている。 [0004] In addition, since the conventional method for measuring the amount of gammaaminobutyric acid released uses a tissue peripheral solution, it is not possible to know which cell type is released due to the surrounding solution being mixed during collection. That is, if surrounding solutions are mixed during collection, it is difficult to measure the exact gamma aminobutyric acid concentration at that site. Measures gamma aminobutyric acid with low concentration In order to do so, it is necessary to add an extremely sensitive and expensive fluorescent carrier, so that one measurement is very expensive.
特許文献 1 :なし  Patent Document 1: None
発明の開示  Disclosure of the invention
[0005] 上記したように、従来のガンマァミノ酪酸放出量を酵素で一次元的に測定する方法 では、測定中に生理活性を持つ副生成物、例えばグルタミン酸が発生する。組織近 傍でこの測定方法を用いると、測定時の反応によって生成するこのような副生成物に よって組織が二次的に刺激され、正確な測定を行うことができない。そのため、測定 に用いる反応物質を改良し、組織を刺激しな ヽ反応系を構成する必要がある。  [0005] As described above, in the conventional method of measuring the amount of released gammaaminobutyric acid one-dimensionally with an enzyme, a by-product having physiological activity, such as glutamic acid, is generated during the measurement. If this measurement method is used in the vicinity of the tissue, the tissue is secondarily stimulated by such by-products generated by the reaction at the time of measurement, and accurate measurement cannot be performed. Therefore, it is necessary to improve the reaction materials used for measurement and to construct a reaction system that does not stimulate tissues.
[0006] さらに、ガンマァミノ酪酸の濃度分布を二次元的に表現できれば、どの部位の細胞 がガンマァミノ酪酸を放出したかが特定できることになる。二次元的にガンマアミノ酪 酸放出量を測定するためには、ノ ックグラウンドのノイズを低減し、かつガンマァミノ 酪酸放出量とその放出組織とを対応させて測定できる条件を設定し、測定部位を特 定できるように反応チャンバ一を構成した適切なシステムを考える必要がある。  [0006] Furthermore, if the concentration distribution of gammaaminobutyric acid can be expressed two-dimensionally, it is possible to identify which part of the cell has released gammaaminobutyric acid. In order to measure the amount of gamma aminobutyric acid released in two dimensions, reduce the noise of the knock ground, set the conditions for measuring the amount of gamma amino butyric acid released and its release tissue, and specify the measurement site. It is necessary to consider an appropriate system in which the reaction chamber is configured so that it can be determined.
[0007] 本発明は、上記状況に鑑みて、副生成物によって組織を刺激することなぐノ ックグ ラウンドのノイズを低減し、放出量と放出組織を対応させて測定できるガンマアミノ酪 酸放出量の測定システムおよびそれに用いる反応促進物質を提供することを目的と する。  [0007] In view of the above situation, the present invention reduces the noise of knock ground that does not stimulate tissue by a by-product, and reduces the amount of released gamma aminobutyric acid that can be measured in correspondence with the amount of released tissue. The purpose is to provide a measurement system and a reaction promoting substance used therefor.
[0008] 本発明は、上記目的を達成するために、  In order to achieve the above object, the present invention provides
〔1〕生体組織力も放出されるガンマァミノ酪酸放出量の測定システムにおいて、ガ ンマァミノ酪酸分解酵素を使用するガンマァミノ酪酸を酸ィ匕してニコチンアミドジヌク レオチドリン酸を還元する酵素反応では、このガンマァミノ酪酸の反応モル量と生成 する還元ニコチンアミドジヌクレオチドリン酸の生成モル量の間に一対一の関係があ ることを利用し、この酵素反応で生成する還元型ニコチンアミドジヌクレオチドリン酸 が発する蛍光を検出してガンマァミノ酪酸の放出量を測定することを特徴とする。  [1] In a system for measuring the amount of gammaaminobutyric acid released that also releases tissue power, an enzyme reaction that reduces gammaaminobutyric acid using gammaaminobutyric acid-degrading enzyme to reduce nicotinamide dinucleotide is used for this gammaaminobutyric acid. Using the fact that there is a one-to-one relationship between the molar amount of reaction and the molar amount of reduced nicotinamide dinucleotide phosphate produced, the fluorescence emitted by reduced nicotinamide dinucleotide phosphate produced by this enzymatic reaction is emitted. Detecting and measuring the release amount of gammaaminobutyric acid.
[0009] 〔2〕上記〔1〕記載のガンマァミノ酪酸放出量の測定システムにおいて、ガンマアミノ酪 酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応を促進する物質 としてジカルボン酸を反応場へ添加して行うことを特徴とする。 [0010] 〔3〕上記〔2〕記載のガンマァミノ酪酸放出量の測定システムにお 、て、前記ジカルボ ン酸が aケトグルタル酸、 aケトブチル酸、ォキザ口酢酸の!/ヽずれか、もしくはこれら の混合物であることを特徴とする。 [2] The system for measuring the amount of gammaaminobutyric acid released according to [1] above, wherein dicarboxylic acid is used as a reaction field as a substance that promotes an enzymatic reaction that oxidizes gamma aminobutyric acid to reduce nicotinamide dinucleotide phosphate. It is characterized by being added to. [3] In the system for measuring the amount of gammaaminobutyric acid released according to the above [2], the dicarboxylic acid is a ketoglutaric acid, a ketobutyric acid, or oxalic acetic acid! It is a mixture.
[0011] 〔4〕上記〔1〕、〔2〕又は〔3〕記載のガンマァミノ酪酸放出量の測定システムを用いて、 還元型ニコチンアミドジヌクレオチドリン酸が発する蛍光を撮像素子により検出した発 光像をもって生体組織力 放出されたガンマァミノ酪酸の濃度分布を二次元的に表 示することを特徴とする。  [0011] [4] Light emission in which fluorescence emitted from reduced nicotinamide dinucleotide phosphate is detected by an imaging device using the gammaaminobutyric acid release amount measurement system according to [1], [2] or [3] It is characterized by two-dimensionally displaying the concentration distribution of gammaaminobutyric acid released from the body tissue force with an image.
[0012] 〔5〕上記〔4〕記載のガンマァミノ酪酸放出量の測定システムにおいて、前記撮像素 子が電荷結合素子もしくは相補型金属酸化膜半導体であることを特徴とする。 [5] The system for measuring the amount of gammaaminobutyric acid released according to [4] above, wherein the imaging element is a charge coupled device or a complementary metal oxide semiconductor.
[0013] 〔6〕生体組織力も放出されるガンマァミノ酪酸放出量の測定システムで用いる反応促 進物質であって、ガンマァミノ酪酸分解酵素を使用するガンマァミノ酪酸を酸ィ匕して ニコチンアミドジヌクレオチドリン酸を還元する酵素反応で、この酵素反応を促進する 物質としてジカルボン酸を含むことを特徴とする。 [6] A reaction promoting substance used in a system for measuring the amount of gammaaminobutyric acid released that also releases biological tissue force, and nicotinamide dinucleotide phosphate by acidifying gammaaminobutyric acid using gammaaminobutyric acid degrading enzyme It is characterized by containing a dicarboxylic acid as a substance that promotes this enzymatic reaction.
[0014] 〔7〕上記〔6〕記載の反応促進物質にお!、て、前記ジカルボン酸が aケトグルタル酸、 αケトブチル酸、ォキザ口酢酸の何れか、もしくはこれらの混合物であることを特徴と する。 [7] The reaction promoting substance according to [6] above, wherein the dicarboxylic acid is any one of a ketoglutaric acid, α-ketobutyric acid, oxalic acetic acid, or a mixture thereof. To do.
[0015] このように、本発明では、生体内にもともと存在する物質によって反応系を構成するよ うにしている。すなわち、生体の神経組織力 放出されたガンマァミノ酪酸と特異的に 反応してニコチンアミドジヌクレオチドリン酸の還元を行う酵素を用いることにより、そ の際に生成する還元ニコチンアミドジヌクレオチドリン酸が発する蛍光量を測定して ガンマァミノ酪酸放出量を定量する。ここでニコチンアミドジヌクレオチドリン酸ならび に還元型ニコチンアミドジヌクレオチドリン酸は生体内に存在するビタミンの一種であ るので、生体組織を二次的に刺激することが避けられる。  [0015] Thus, in the present invention, the reaction system is constituted by substances originally present in the living body. That is, by using an enzyme that specifically reacts with gammaaminobutyric acid released by the nerve tissue in the living body to reduce nicotinamide dinucleotide phosphate, the reduced nicotinamide dinucleotide phosphate produced at that time is emitted. Measure the amount of fluorescence and quantify the amount of gammaaminobutyric acid released. Here, since nicotinamide dinucleotide phosphate and reduced nicotinamide dinucleotide phosphate are a kind of vitamins present in the living body, secondary stimulation of living tissues can be avoided.
[0016] 特定の組織近傍で測定する場合には、閉鎖系反応チャンバ一を用いる。すなわち、 閉鎖系反応チャンバ一表面に半透膜を置き、神経伝達物質ガンマァミノ酪酸をこの 半透過膜から浸透させる。励起光を UV発光素子で導入し、画像撮影を人工網膜 L SIなどの撮像素子を用いて行う。  [0016] When measurement is performed in the vicinity of a specific tissue, a closed reaction chamber is used. That is, a semipermeable membrane is placed on the surface of a closed reaction chamber, and the neurotransmitter gammaaminobutyric acid is permeated from the semipermeable membrane. Excitation light is introduced with a UV light-emitting element, and images are captured using an image sensor such as an artificial retina LSI.
[0017] 前記還元型ニコチンアミドジヌクレオチドリン酸の発する特定波長の蛍光を撮像素子 (例えば CCDカメラ)で撮影して画像処理することにより、ガンマァミノ酪酸の二次元 的な放出量を得る。すなわち、ガンマァミノ酪酸放出量の二次元測定システムを構成 する。 [0017] Fluorescence having a specific wavelength emitted by the reduced nicotinamide dinucleotide phosphate is used as an imaging device. A two-dimensional release amount of gammaaminobutyric acid is obtained by taking an image with a CCD camera (for example, a CCD camera) and processing the image. That is, it constitutes a two-dimensional measurement system for gammaaminobutyric acid release.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の第 1実施例を示す神経組織カゝら放出されるガンマァミノ酪酸放出量を 生体外で測定する測定システムの構成図である。  [0018] FIG. 1 is a configuration diagram of a measurement system for measuring the amount of gammaaminobutyric acid released from a nerve tissue according to a first embodiment of the present invention in vitro.
[図 2]本発明で使用する酵素反応を示した図である。  FIG. 2 is a diagram showing an enzyme reaction used in the present invention.
[図 3]本発明で使用する反応促進物質を変えた場合の蛍光の発生挙動の違いを示 した図である。  FIG. 3 is a diagram showing the difference in fluorescence generation behavior when the reaction promoting substance used in the present invention is changed.
[図 4]本発明の第 2実施例を示す神経組織カゝら放出されるガンマァミノ酪酸放出量を 測定する測定システムの構成図である。  FIG. 4 is a configuration diagram of a measurement system for measuring the amount of gammaaminobutyric acid released from the nerve tissue according to the second embodiment of the present invention.
[図 5]本発明の実施例を示すプルキンェ層近傍における発光の様子を示す図である  FIG. 5 is a diagram showing a state of light emission in the vicinity of Purkinje layer showing an example of the present invention.
[図 6]本発明にかかるガンマァミノ酪酸濃度と光強度の関係を示す図である。 FIG. 6 is a diagram showing the relationship between the gammaaminobutyric acid concentration and the light intensity according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 生体組織力 放出されるガンマァミノ酪酸放出量の測定システムにおいて、ガンマァ ミノ酪酸分解酵素を使用するガンマァミノ酪酸を酸化してニコチンアミドジヌクレオチ ドリン酸を還元する酵素反応では、このガンマァミノ酪酸の反応モル量と生成する還 元ニコチンアミドジヌクレオチドリン酸の生成モル量の間に一対一の関係があることを 利用し、この酵素反応で生成する還元型ニコチンアミドジヌクレオチドリン酸が発する 蛍光を検出してガンマァミノ酪酸の放出量を測定する。よって、副生成物によって組 織を刺激することなぐノ ックグラウンドのノイズを低減し、放出量と放出組織を対応さ せて測定することができる。 [0019] In the system for measuring the amount of gammaaminobutyric acid released, the gammaaminobutyric acid release enzyme uses gammaaminobutyric acid-degrading enzyme to oxidize gammaaminobutyric acid to reduce nicotinamide dinucleotidolinic acid. Using the fact that there is a one-to-one relationship between the molar amount and the molar amount of reduced nicotinamide dinucleotide phosphate produced, the fluorescence emitted by reduced nicotinamide dinucleotide phosphate produced by this enzymatic reaction is detected. To measure the amount of gammaaminobutyric acid released. Therefore, it is possible to reduce the noise of the knock ground that does not stimulate the tissue by the by-product, and to measure the released amount and the released tissue in correspondence.
実施例  Example
[0020] 以下、本発明を実施するための最良の形態を図を参照しながら詳細に説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
[0021] 図 1は本発明の第 1実施例を示す神経組織カゝら放出されるガンマァミノ酪酸放出量 を生体外で測定する測定システムを示す図であり、図 1 (a)はその全体構成図、図 1 ( b)はその反応チャンバ一の斜視図である。 [0022] 図 1において、 1はガラス容器、 2はチャンバ一ブロック、 3はサンプル (ガンマアミノ酪 酸を放出する神経組織片)、 4は反応チャンバ一(サンプル 3及び酵素溶液を投入す る室)、 5は UV光源、 6は 1次フィルター及びレンズ、 7は励起 UV光、 8は反射ミラー 、 9は 2次フィルター、 10は冷却機能付き CCDカメラ (すなわち光量検出器)、 11は マイクロピペット、 12はチャンバ一 2の上面に設けられた開口部である。 FIG. 1 is a diagram showing a measurement system for measuring the amount of gammaaminobutyric acid released from the nerve tissue according to the first embodiment of the present invention in vitro, and FIG. 1 (a) shows its overall configuration. Fig. 1 (b) is a perspective view of the reaction chamber. In FIG. 1, 1 is a glass container, 2 is a chamber block, 3 is a sample (a nerve tissue piece that releases gamma aminobutyric acid), 4 is a reaction chamber (a chamber into which sample 3 and an enzyme solution are charged) ), 5 UV light source, 6 primary filter and lens, 7 excitation UV light, 8 reflecting mirror, 9 secondary filter, 10 CCD camera with cooling function (ie light detector), 11 micropipette , 12 is an opening provided on the upper surface of the chamber 12.
[0023] すなわち、倒立培養顕微鏡 (UV光源 5〜2次フィルター 9)と冷却機能付き CCDカメ ラ 10を用いて組織が放出したガンマァミノ酪酸放出量を測定するように構成されてい る。チャンバ一ブロック 2は、例えばパテでガラス容器 1のガラス面に接着する。チャン バーブロック 2の厚みは 0. 5〜2cm、望ましくは 0. 8〜1. 2cmであり、反応チャンバ 一 4の容積は 100〜600 μ 1、望ましくは 200〜400 μ 1である。  That is, the gammaaminobutyric acid release amount released by the tissue is measured using an inverted culture microscope (UV light source 5 to secondary filter 9) and a CCD camera 10 with a cooling function. The chamber block 2 is adhered to the glass surface of the glass container 1 with a putty, for example. The thickness of the chamber block 2 is 0.5 to 2 cm, preferably 0.8 to 1.2 cm, and the volume of the reaction chamber 14 is 100 to 600 μ1, preferably 200 to 400 μ1.
[0024] 測定は、サンプル 3を反応チャンバ一 4内に供給した後、放出されたガンマァミノ酪酸 と特異的に反応してニコチンアミドジヌクレオチドリン酸の還元を行う酵素、すなわち ガンマァミノ酪酸分解酵素(例えば、グルタミン酸デヒドロゲナーゼ)とニコチンアミドジ ヌクレオチドリン酸の溶液をマイクロピペット 11で反応チャンバ一 4に供給して行う。な お、チャンバ一ブロック 2の材料としてはテフロン (登録商標)を用いることができる。  [0024] The measurement is performed by supplying the sample 3 into the reaction chamber 4 and then reacting with the released gammaaminobutyric acid specifically to reduce nicotinamide dinucleotide phosphate, that is, a gammaaminobutyric acid degrading enzyme (for example, , Glutamic acid dehydrogenase) and nicotinamide dinucleotide phosphate solution are supplied to the reaction chamber 14 with a micropipette 11. Teflon (registered trademark) can be used as the material for the chamber block 2.
[0025] このように、神経組織力 放出されるガンマァミノ酪酸の二次元測定において、生体 外で測定する場合には、本発明は、図 1に示すような開放系チャンバ一を用い、倒立 培養顕微鏡 (UV光源 5〜2次フィルター 9)と冷却機能付き CCDカメラ 10を用いて神 経組織が放出したガンマァミノ酪酸量を測定するように構成される。  [0025] As described above, in the two-dimensional measurement of gammaaminobutyric acid released by nerve tissue force, when measuring in vitro, the present invention uses an open system chamber as shown in FIG. It is configured to measure the amount of gammaaminobutyric acid released by the nerve tissue using a (UV light source 5 to 2nd filter 9) and a CCD camera 10 with a cooling function.
[0026] 次に、本発明で用いる酵素反応について、図 2に基づいて説明する。本発明で使用 する反応は酵素反応で反応チャンバ一 4内で起きる。ガンマァミノ酪酸分解酵素(略 称、 GABAase)の存在下で、ガンマァミノ酪酸(略称; GABA)とニコチンアミドジヌク レオチドリン酸(略称; NADP)が共存すると、 GABAは酸ィ匕されてコハク酸に変化し 、 NADPは還元されて還元型ニコチンアミドジヌクレオチドリン酸(略称; NADPH)に 変化する。この時 GABAの反応モル量と NADPHの生成モル量との間には、一対一 の関係が成り立つている。そのため、 NADPHの発する蛍光強度を測定すれば、 GA BA濃度が明らかになる。ここで、 NADPは酵素の働きを補う補酵素の一種であり、ガ ンマァミノ酪酸力も電子を受け取って NADPHに変化する。したがって、ガンマァミノ 酪酸力 電子を受け取って還元され蛍光を発するものであれば他の補酵素もしくは 基質を使うこともできる。 NADPHは特定波長(480nm)の蛍光を発するので、この N ADPHが発する蛍光を撮像素子、例えば CCDカメラ 10で検出する。励起光としては 、波長 340nmの紫外線 (UV光)を用いることができる。 Next, the enzyme reaction used in the present invention will be described with reference to FIG. The reaction used in the present invention takes place in the reaction chamber 14 as an enzymatic reaction. In the presence of gammaaminobutyric acid degrading enzyme (abbreviation: GABAase), when gammaaminobutyric acid (abbreviation: GABA) and nicotinamide dinucleoside acid (abbreviation: NADP) coexist, GABA is converted to succinic acid. NADP is reduced to reduced nicotinamide dinucleotide phosphate (abbreviation; NADPH). At this time, there is a one-to-one relationship between the reaction molar amount of GABA and the molar amount of NADPH produced. Therefore, the GABA concentration becomes clear by measuring the fluorescence intensity emitted by NADPH. Here, NADP is a type of coenzyme that supplements the function of the enzyme. Gammaaminobutyric acid also receives electrons and changes to NADPH. Therefore, gamma amino Butyric acid Other coenzymes or substrates can be used as long as they receive electrons and are reduced to emit fluorescence. Since NADPH emits fluorescence of a specific wavelength (480 nm), the fluorescence emitted by this NADPH is detected by an image sensor, for example, a CCD camera 10. As the excitation light, ultraviolet light (UV light) having a wavelength of 340 nm can be used.
[0027] この際、ガンマァミノ酪酸分解酵素(GABAase)に反応促進物質を加えると、蛍光を 検出できるまでに要する時間が 10分の 1以下、望ましくは 100分の 1以下になる。こ の反応促進物質としては、ジカルボン酸、特に αケトグルタル酸、 αケトブチル酸、ォ キザロ酢酸のいずれか、もしくは混合物を用いることができる。反応促進物質を変え た場合の蛍光挙動の違い(同じ濃度のガンマァミノ酪酸溶液の反応の際に発生する 蛍光強度の反応促進物質による違い)を図 3に示す。この図において、図 3 (a)は反 応促進物質が OCケトグルタル酸の場合の、図 3 (b)は反応促進物質が OCケトブチル 酸の場合、図 3 (c)は反応促進物質がォキザ口酢酸の場合をそれぞれ示している。こ れらの図において、横軸は時間(秒)、縦軸は主蛍光の強度を表している。  [0027] At this time, if a reaction promoting substance is added to gammaaminobutyric acid degrading enzyme (GABAase), the time required to detect fluorescence is reduced to 1/10 or less, preferably 1/100 or less. As this reaction accelerator, dicarboxylic acid, particularly α-ketoglutaric acid, α-ketobutyric acid, oxaloacetic acid, or a mixture thereof can be used. Figure 3 shows the difference in fluorescence behavior when the reaction accelerator is changed (difference in fluorescence intensity generated by the reaction of a gammaaminobutyric acid solution with the same concentration). In this figure, Fig. 3 (a) shows the case where the reaction accelerator is OC ketoglutaric acid, Fig. 3 (b) shows the case where the reaction accelerator is OC ketobutyric acid, and Fig. 3 (c) shows that the reaction accelerator is Oxaguchi. The case of acetic acid is shown respectively. In these figures, the horizontal axis represents time (seconds), and the vertical axis represents the intensity of main fluorescence.
[0028] 次に、本発明の第 2実施例を示す神経組織カゝら放出される生体内でガンマアミノ酪 酸放出量を測定する測定システムを図 4に基づいて説明する。図 4 (a)はその正面図 、図 4 (b)はその側面図である。  [0028] Next, a measurement system for measuring the amount of gamma aminobutyric acid released in vivo released from the nerve tissue according to the second embodiment of the present invention will be described with reference to FIG. Fig. 4 (a) is a front view and Fig. 4 (b) is a side view.
[0029] 生体内でガンマァミノ酪酸放出量を測定する場合は、閉鎖系反応チャンバ一 20を用 いる。閉鎖系反応チャンバ一 20の容積は、酵素反応が短時間で行われる大きさが 1 00〜600 1、望ましくは 200〜400 1である。閉鎖系反応チャンバ一 20表面には 分子量 100以下の物質に透過性を持つ半透膜 24を置き、神経伝達物質であるガン マァミノ酪酸を浸透させる。  [0029] When measuring the amount of gammaaminobutyric acid released in vivo, a closed reaction chamber 20 is used. The volume of the closed reaction chamber 20 is 100 to 600 1, preferably 200 to 400 1, so that the enzyme reaction can be performed in a short time. A semi-permeable membrane 24 that is permeable to a substance with a molecular weight of 100 or less is placed on the surface of a closed reaction chamber 20 and permeated with gamma aminobutyric acid, a neurotransmitter.
[0030] 励起光は紫外光発光ダイオード 23で導入し、画像撮影は撮像素子 (人工網膜 LSI) 26を用いて行う。 21は撮像素子 26の出力ケーブル、 22は電源ケーブル、 25は酵 素の入った反応チャンバ一を示している。なお、撮像素子としては、電荷結合素子も しくは相補型金属酸ィ匕膜半導体を用いることにより、安価で、コンパクトに構成するこ とちでさる。  Excitation light is introduced by an ultraviolet light emitting diode 23, and image capturing is performed using an image sensor (artificial retina LSI) 26. 21 is an output cable of the image sensor 26, 22 is a power cable, and 25 is a reaction chamber containing an enzyme. It should be noted that the image pickup device can be configured inexpensively and compactly by using a charge coupled device or a complementary metal oxide film semiconductor.
[0031] (1)測定は以下の手順で行う。  [0031] (1) The measurement is performed according to the following procedure.
閉鎖系反応チャンバ一 20内にニコチンアミドジヌクレオチドリン酸と反応促進物質( 望ましくは、ひ—ケトグルタル酸)および緩衝液を封入する。 Nicotinamide dinucleotide phosphate and reaction accelerator (20) in a closed reaction chamber Desirably encapsulate (hyketoglutarate) and buffer.
(2)分子量 100以下の物質に透過性を持つ半透膜 24からガンマァミノ酪酸の浸透を 受ける(30秒間)。  (2) Gammaaminobutyric acid permeates through a semipermeable membrane 24 that is permeable to substances with a molecular weight of 100 or less (30 seconds).
(3)撮像素子 26で反応前の光強度を測定する(この時の光強度の測定値を F0とす る)。  (3) Measure the light intensity before reaction with the image sensor 26 (the measured value of the light intensity at this time is F0).
(4)図 2に示したものと同じ酵素を閉鎖系反応チャンバ一 20内に定量注入し反応さ せる(10秒間)。  (4) The same enzyme as shown in Fig. 2 is quantitatively injected into the closed reaction chamber 20 and allowed to react (10 seconds).
(5) UV光で励起し、撮像素子 26で反応後の光強度を測定する(この時の光強度の 測定値を F1とする)。  (5) Excitation with UV light, and measure the light intensity after reaction with the image sensor 26 (the measured value of the light intensity at this time is F1).
(6) dFZF0 (ここで、 dF = Fl—F0)がガンマァミノ酪酸濃度に比例するので、これを 用いてガンマァミノ酪酸放出量を算出する。  (6) Since dFZF0 (where dF = Fl-F0) is proportional to the gammaaminobutyric acid concentration, the amount of gammaaminobutyric acid released is calculated.
[0032] 更に、本発明の具体的な実施の形態 (実験結果)について詳細に説明する。  Furthermore, specific embodiments (experimental results) of the present invention will be described in detail.
[0033] マウスの小脳組織力も放出されたガンマァミノ酪酸を、図 4に示す本発明の第 2実 施例を示す閉鎖系反応チャンバ一を用いて測定したところ、プルキンェ層近傍に特 異的なガンマァミノ酪酸の放出を確認した。その際の発光の様子を図 5に示す。この 図において、図 5 (a)は、ハロゲンランプ光源で撮影したガンマァミノ酪酸を放出する 部位の形状を表す反応前の写真であり、図 5 (b)はその部位近傍の発光(=ガンマ ァミノ酪酸が放出されていること)を示すもので、白い部分が UV光照射により発現し た NADPHの蛍光像である。 [0033] Gammaaminobutyric acid, which was also released from mouse cerebellar tissue, was measured using the closed reaction chamber shown in Fig. 4 according to the second embodiment of the present invention. The release of butyric acid was confirmed. Figure 5 shows the light emission at that time. In this figure, Fig. 5 (a) is a pre-reaction photograph showing the shape of the site releasing gammaaminobutyric acid taken with a halogen lamp light source, and Fig. 5 (b) shows the luminescence in the vicinity of the site (= gamma aminobutyric acid). The white area is the fluorescence image of NADPH that was expressed by UV light irradiation.
[0034] また、図 6は GABA濃度と光強度の関係を示す図であり、 Mは溶液 1リットル中に 存在するガンマァミノ酪酸のマイクロモル量を表す。この図より明らかなように、図 5 (b )に示す蛍光の強度とガンマァミノ酪酸の濃度には一義的な関連がある。この関係を 利用することで、上述したように光強度の測定値力 ガンマァミノ酪酸放出量を測定 することができる。 FIG. 6 is a graph showing the relationship between GABA concentration and light intensity, and M represents the micromolar amount of gammaaminobutyric acid present in 1 liter of solution. As is clear from this figure, the fluorescence intensity and the concentration of gammaaminobutyric acid shown in FIG. 5 (b) are uniquely related. By utilizing this relationship, it is possible to measure the measured value of the light intensity gammaaminobutyric acid released as described above.
[0035] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種々 の変形が可能であり、これらを本発明の範囲から排除するものではない。  Note that the present invention is not limited to the above-described embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0036] 本発明によれば、酵素反応と撮像素子 (例えば CCDカメラ)を利用して、患者の脳組 織力 放出されたガンマァミノ酪酸量を測定することができる。上記のガンマアミノ酪 酸放出量の測定システムにおいて、測定時に添加するニコチンアミドジヌクレオチドリ ン酸ならびに生成する還元型ニコチンアミドジヌクレオチドリン酸は、もともと生体内に 存在する物質 (ビタミンの一種)であるので、生体組織を二次的に刺激'損傷する恐 れがないという特徴を有する。これにより、測定操作自体が測定に影響を与えるという 弊害がなくなり、外傷や脳梗塞を発症した患者の脳内での神経活動の状態を的確に 予測しながら治療に当たることが可能になる。 [0036] According to the present invention, the amount of gammaaminobutyric acid released by the brain tissue force of a patient can be measured using an enzyme reaction and an imaging device (for example, a CCD camera). Above gamma amino dairy In the system for measuring acid release, nicotinamide dinucleotide phosphate added during measurement and reduced nicotinamide dinucleotide phosphate produced are substances (a kind of vitamin) that exist in the living body. It has the characteristic that there is no fear of damaging secondary damage. As a result, the adverse effect that the measurement operation itself affects the measurement is eliminated, and it becomes possible to perform treatment while accurately predicting the state of nerve activity in the brain of a patient who has developed trauma or cerebral infarction.
[0037] また、脳組織力 放出されるガンマァミノ酪酸は、痴呆やアルツハイマー症など現代 の神経病変に中心的な働きをする神経伝達物質であり、病変の進行や脳の発達の 有力な指標である。従来の方法では、ガンマァミノ酪酸放出量の分布を知ることは不 可能であつたが、本発明により組織中の特定の細胞からのガンマァミノ酪酸放出量を 二次元的に測定し、分布を知ることができる。  [0037] Gammaaminobutyric acid released by brain tissue is a neurotransmitter that plays a central role in modern neurological lesions such as dementia and Alzheimer's disease, and is a promising indicator of lesion progression and brain development. . Although it was impossible to know the distribution of gammaaminobutyric acid release by the conventional method, the present invention can measure the gammaaminobutyric acid release from specific cells in the tissue two-dimensionally to know the distribution. it can.
[0038] 糸且織中の特定の細胞からのガンマァミノ酪酸放出量を測定することにより、病変の恐 れのある脳組織力 放出されるガンマァミノ酪酸量を測定して、神経回路に起因する 病変か否かを判定することができる。また、再生された脳組織の機能検査を行うことな どが可會 になる。  [0038] By measuring the amount of gammaaminobutyric acid released from specific cells in the yarn and weave, it is possible to measure the amount of gammaaminobutyric acid released by the brain tissue force with potential lesions. It can be determined whether or not. It is also possible to conduct functional tests on the regenerated brain tissue.
産業上の利用可能性  Industrial applicability
[0039] 本発明のガンマァミノ酪酸放出量の測定システムは、神経回路性の病変力否かを判 定するなどのツールとして好適である。 [0039] The measurement system for gammaaminobutyric acid release amount of the present invention is suitable as a tool for determining whether or not a neural circuit has a lesion power.

Claims

請求の範囲 The scope of the claims
[1] 生体組織力 放出されるガンマァミノ酪酸の放出量の測定システムにおいて、 ガンマァミノ酪酸分解酵素を使用するガンマァミノ酪酸を酸ィ匕してニコチンアミドジ ヌクレオチドリン酸を還元する酵素反応では、該ガンマァミノ酪酸の反応モル量と生 成する還元ニコチンアミドジヌクレオチドリン酸の生成モル量の間に一対一の関係が あることを利用し、該酵素反応で生成する還元型ニコチンアミドジヌクレオチドリン酸 が発する蛍光を検出してガンマァミノ酪酸の放出量を測定することを特徴とするガン マァミノ酪酸放出量の測定システム。  [1] Biological tissue force In a system for measuring the amount of released gammaaminobutyric acid released, in an enzymatic reaction that uses gammaaminobutyric acid degrading enzyme to reduce nicotinamide dinucleotide phosphate by acidifying gammaaminobutyric acid, the gammaaminobutyric acid is used. Using the fact that there is a one-to-one relationship between the reaction molar amount of the produced nicotinamide dinucleotide phosphate and the reduced nicotinamide dinucleotide phosphoric acid produced, the fluorescence generated by the reduced nicotinamide dinucleotide phosphate produced by the enzyme reaction A system for measuring the amount of gammaaminobutyric acid released by detecting the amount of gammaaminobutyric acid released.
[2] 請求項 1記載のガンマァミノ酪酸放出量の測定システムにおいて、ガンマアミノ酪 酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応を促進する物質 としてジカルボン酸を反応場へ添加して行うことを特徴とするガンマァミノ酪酸放出量 の測定システム。  [2] In the system for measuring the amount of gammaaminobutyric acid released according to claim 1, dicarboxylic acid is added to the reaction field as a substance that promotes an enzymatic reaction that oxidizes gamma aminobutyric acid to reduce nicotinamide dinucleotide phosphate. A system for measuring the amount of gammaaminobutyric acid released.
[3] 請求項 2記載のガンマァミノ酪酸放出量の測定システムにおいて、前記ジカルボン 酸が aケトグルタル酸、 aケトブチル酸、ォキザ口酢酸のいずれか、もしくはこれらの 混合物であることを特徴とするガンマァミノ酪酸放出量の測定システム。  [3] The gamma amino butyric acid release amount measuring system according to claim 2, wherein the dicarboxylic acid is a ketoglutaric acid, a ketobutyric acid, oxacin acetic acid, or a mixture thereof. Quantity measuring system.
[4] 請求項 1、 2又は 3記載のガンマァミノ酪酸放出量の測定システムを用いて、還元型 ニコチンアミドジヌクレオチドリン酸が発する蛍光を撮像素子により検出した発光像を もって生体組織力 放出されたガンマァミノ酪酸の濃度分布を二次元的に表示する ことを特徴とするガンマァミノ酪酸放出量の測定システム。  [4] Using the gamma aminobutyric acid release amount measuring system according to claim 1, 2 or 3, biological tissue force was released with a luminescence image obtained by detecting fluorescence emitted by reduced nicotinamide dinucleotide phosphate with an imaging device. A system for measuring the amount of gammaaminobutyric acid released, which displays the concentration distribution of gammaaminobutyric acid in two dimensions.
[5] 請求項 4記載のガンマァミノ酪酸放出量の測定システムにお 、て、前記撮像素子 が電荷結合素子もしくは相補型金属酸ィ匕膜半導体であることを特徴とするガンマアミ ノ酪酸放出量の測定システム。 [5] The gamma aminobutyric acid release amount measurement system according to claim 4, wherein the imaging device is a charge coupled device or a complementary metal oxide film semiconductor. system.
[6] 生体組織力 放出されるガンマァミノ酪酸放出量の測定システムで用いる反応促進 物質であって、ガンマァミノ酪酸分解酵素を使用するガンマァミノ酪酸を酸ィ匕してニコ チンアミドジヌクレオチドリン酸を還元する酵素反応で、該酵素反応を促進する物質 としてジカルボン酸を含むことを特徴とする反応促進物質。 [6] Biological tissue force A reaction accelerator used in a system for measuring the amount of released gammaaminobutyric acid released, which reduces gammaaminobutyric acid using gammaaminobutyric acid-degrading enzyme to reduce nicotinamide dinucleotide phosphate A reaction promoting substance comprising a dicarboxylic acid as a substance that promotes the enzymatic reaction in an enzymatic reaction.
[7] 請求項 6記載の反応促進物質にお 、て、前記ジカルボン酸が aケトグルタル酸、 a ケトブチル酸、ォキザ口酢酸の何れかもしくはこれらの混合物である反応促進物質。 [7] The reaction accelerator according to claim 6, wherein the dicarboxylic acid is a ketoglutaric acid, a ketobutyric acid, or oxalic acetic acid, or a mixture thereof.
PCT/JP2005/014998 2004-08-17 2005-08-17 System for measuring amount of gamma-aminobutyric acid released and reaction accelerator substance for use therein WO2006019111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531822A JPWO2006019111A1 (en) 2004-08-17 2005-08-17 Gamma-aminobutyric acid release amount measurement system and reaction promoting substance used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-237541 2004-08-17
JP2004237541 2004-08-17

Publications (1)

Publication Number Publication Date
WO2006019111A1 true WO2006019111A1 (en) 2006-02-23

Family

ID=35907495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014998 WO2006019111A1 (en) 2004-08-17 2005-08-17 System for measuring amount of gamma-aminobutyric acid released and reaction accelerator substance for use therein

Country Status (2)

Country Link
JP (1) JPWO2006019111A1 (en)
WO (1) WO2006019111A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139280A (en) * 2006-11-09 2008-06-19 Toyohashi Univ Of Technology Method and apparatus using evanescent light for measuring concentration distribution of chemical substance
CN102033047A (en) * 2010-11-26 2011-04-27 毛清黎 Method for simply and quickly measuring gamma-aminobutyric acid in tea leaves
CN110596029A (en) * 2018-06-12 2019-12-20 中国科学院天津工业生物技术研究所 Method for detecting content of threo-type beta-hydroxy-alpha-amino acid

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HORIE H. ET AL: "Enzymatic flow injection determination of gamma-aminobutyric acid.", ANALYTICAL LETTERS, vol. 28, no. 2, 1995, pages 259 - 266, XP003005635 *
HORIE H. ET AL: "GABARON-chachu no gamma-amino Rakusan no flow injection Bunseki.", JOURNAL OF THE JAPANESE SOCIETY FOR FOOD SCIENCE AND TECHNOLOGY., vol. 46, no. 7, 1999, pages 494 - 496, XP003005636 *
ISRAEL M. ET AL: "A Bioluminescent gamma-Aminobutyrate Assay for Monitoring Its Release from Inhibitory Nerve Endings.", J NEUROCHEM., vol. 67, no. 6, 1996, pages 2624 - 2627, XP000921308 *
UEMATSU M. ET AL: "The observation of spatiotemporal GABA release patterns in cerebella culture.", BULLETIN OF THE JAPANESE SOCIETY OF NEUROCHEMISTRY., vol. 43, no. 2/3, 10 August 2004 (2004-08-10), pages 404, XP003005637 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139280A (en) * 2006-11-09 2008-06-19 Toyohashi Univ Of Technology Method and apparatus using evanescent light for measuring concentration distribution of chemical substance
CN102033047A (en) * 2010-11-26 2011-04-27 毛清黎 Method for simply and quickly measuring gamma-aminobutyric acid in tea leaves
CN110596029A (en) * 2018-06-12 2019-12-20 中国科学院天津工业生物技术研究所 Method for detecting content of threo-type beta-hydroxy-alpha-amino acid
CN110596029B (en) * 2018-06-12 2021-10-08 中国科学院天津工业生物技术研究所 Method for detecting content of threo-type beta-hydroxy-alpha-amino acid

Also Published As

Publication number Publication date
JPWO2006019111A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
AU2015327665B2 (en) Imaging a target fluorophore in a biological material in the presence of autofluorescence
JP4280629B2 (en) Optical sensor containing particles for INSITU measurement of analyte
JP5547061B2 (en) Sensors for the detection of diols and carbohydrates using boronic acid chelators for glucose
Tang et al. Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity
JP6059244B2 (en) Analytical apparatus for detecting at least one analyte in a sample
JP2010531436A5 (en)
Sordillo et al. Optical spectral fingerprints of tissues from patients with different breast cancer histologies using a novel fluorescence spectroscopic device
US20120136054A1 (en) Materials and methods for measuring nitric oxide levels in biological fluids
CN108865110A (en) Long-persistence nano material of silane amination modification and preparation method thereof, Lp-PLA2 detection reagent and preparation method thereof
JP6868774B2 (en) Biosensor system using UV-LED light source
Zhang et al. Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe
JP2017513487A (en) Device for detection of abnormal amino acid metabolism and method of using the device
EP4057900A1 (en) Identification of degradative species
WO2006019111A1 (en) System for measuring amount of gamma-aminobutyric acid released and reaction accelerator substance for use therein
CN107083241B (en) The method of water soluble hydroxy apatite fluorescent nano-particle and its preparation and activity and inhibition for testing and analyzing PKA
CN105181422B (en) Optimum disease damage investigation and malignant change detection kit and the detection method thereof of a kind of oral mucosa
US8759112B2 (en) Multifunctional reference system for analyte determinations by fluorescence
CN113416540B (en) Carbon spot applied to detection of drug-induced deafness reagent and preparation method thereof
Korzeniowska et al. Development of organically modified silica nanoparticles for monitoring the intracellular level of oxygen using a frequency-domain FLIM platform
CN113621366A (en) Red fluorescent carbon dot and preparation method and application thereof
Liu et al. Stereospecific recognition and rapid determination of d-amino acids in human serum based on luminescent metal–organic frameworks
JP4480952B2 (en) Method for two-dimensional detection of released amino acids from nerve tissue
CN114574192A (en) Preparation of up-conversion nano fluorescence sensing probe with core-shell structure and application of up-conversion nano fluorescence sensing probe in mesna detection
JP2008139280A (en) Method and apparatus using evanescent light for measuring concentration distribution of chemical substance
WO2019193784A1 (en) Weak light detection system and weak light detection method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006531822

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase