JPWO2006019111A1 - Gamma-aminobutyric acid release amount measurement system and reaction promoting substance used therefor - Google Patents

Gamma-aminobutyric acid release amount measurement system and reaction promoting substance used therefor Download PDF

Info

Publication number
JPWO2006019111A1
JPWO2006019111A1 JP2006531822A JP2006531822A JPWO2006019111A1 JP WO2006019111 A1 JPWO2006019111 A1 JP WO2006019111A1 JP 2006531822 A JP2006531822 A JP 2006531822A JP 2006531822 A JP2006531822 A JP 2006531822A JP WO2006019111 A1 JPWO2006019111 A1 JP WO2006019111A1
Authority
JP
Japan
Prior art keywords
gamma
aminobutyric acid
acid
reaction
released
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006531822A
Other languages
Japanese (ja)
Inventor
祥子 吉田
祥子 吉田
正和 上松
正和 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Publication of JPWO2006019111A1 publication Critical patent/JPWO2006019111A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/9406Neurotransmitters
    • G01N33/9426GABA, i.e. gamma-amino-butyrate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

副生成物によって組織を刺激することなく、バックグラウンドのノイズを低減し、放出量と放出組織を対応させて測定できるガンマアミノ酪酸放出量の測定システムおよびそれに用いる反応促進物質を提供する。
ガンマアミノ酪酸を特異的に酸化してニコチンアミドジヌクレオチドリン酸の還元を行う酵素と反応促進剤であるジカルボン酸を用いることにより、副生成物が測定結果に影響を与えないように構成した。また閉鎖系反応チャンバー20を工夫し、反応チャンバー20表面に設けた半透膜24により、脳内で放出されたガンマアミノ酪酸が直接反応チャンバー20内に浸透するように工夫し、どの部位の細胞が放出したガンマアミノ酪酸であるかを知ることができるようにした。
Provided is a gamma-aminobutyric acid release amount measurement system capable of reducing background noise and measuring the release amount and release tissue in correspondence with each other without stimulating the tissue with byproducts, and a reaction promoting substance used therefor.
By using an enzyme that specifically oxidizes gamma-aminobutyric acid to reduce nicotinamide dinucleotide phosphate and dicarboxylic acid that is a reaction promoter, it was constructed so that by-products would not affect the measurement results. In addition, the closed reaction chamber 20 is devised so that the semipermeable membrane 24 provided on the surface of the reaction chamber 20 allows the gamma-aminobutyric acid released in the brain to permeate directly into the reaction chamber 20, and the cell at any site It was made possible to know whether it was gamma aminobutyric acid released by.

Description

本発明は、神経組織から放出されるガンマアミノ酪酸(γ−aminobutyric acid)を定量して、その濃度分布を二次元画像として表現する新しい方法に関するものである。この方法は生体組織から放出されたガンマアミノ酪酸放出量を短時間に、かつこのガンマアミノ酪酸を放出した放出細胞を特定しながら測定することができる。さらにこの方法による測定では、測定時に生じる副生成物が測定結果に影響を及ぼすことがないため、再生組織における組織の状態の判定や、病理検査などに有用である。   The present invention relates to a new method for quantifying gamma-aminobutyric acid (γ-aminobutyric acid) released from nerve tissue and expressing its concentration distribution as a two-dimensional image. This method can measure the amount of released gamma-aminobutyric acid from the biological tissue in a short time while identifying the released cells that released the gamma-aminobutyric acid. Further, in the measurement by this method, the by-product generated at the time of measurement does not affect the measurement result, and therefore it is useful for determining the state of the tissue in the regenerated tissue, pathological examination, and the like.

神経組織は特定の分子を細胞外へ放出して情報伝達しており、この分子を神経伝達物質と呼ぶ。その中でもガンマアミノ酪酸は多くの高次脳組織から放出され、痴呆、アルツハイマー症の発症および脳の機能発達に深く関わる重要な指標となる物質である。   Nerve tissues release specific molecules to the outside of cells to transmit information, and these molecules are called neurotransmitters. Among them, gamma aminobutyric acid is a substance that is released from many higher brain tissues and serves as an important index deeply involved in the development of dementia, Alzheimer's disease, and functional development of the brain.

従来、ガンマアミノ酪酸放出量の測定は、組織周辺の溶液を採取して蛍光性の担体、例えばオルトーフタルジアルデヒドを付加し、高速液体クロマトグラフィで定量する方法がほとんどであった。さらに、従来のガンマアミノ酪酸放出量を酵素で測定する方法では、測定中に生理活性を持つ副生成物グルタミン酸が発生する恐れがあることが知られている。組織近傍でこの従来法を用いると、副生されるグルタミン酸によって組織が二次的に刺激される。すなわち、測定行為自身によって測定結果が信頼できないものになってしまう。   Conventionally, most of the methods for measuring the amount of released gamma-aminobutyric acid have been to collect a solution around the tissue, add a fluorescent carrier such as orthophthaldialdehyde, and quantify it by high performance liquid chromatography. Furthermore, it is known that the conventional method of measuring the amount of released gamma aminobutyric acid with an enzyme may generate a by-product glutamic acid having a physiological activity during the measurement. When this conventional method is used in the vicinity of the tissue, the tissue is secondarily stimulated by the glutamate produced as a by-product. That is, the measurement action itself makes the measurement result unreliable.

また、従来のガンマアミノ酪酸放出量の測定法では組織周辺溶液を用いるため、採取時に周辺の溶液が混入してどの細胞種が放出したガンマアミノ酪酸かを知ることができない。すなわち、採取時に周辺の溶液が混入すると、その部位の正確なガンマアミノ酪酸濃度を測定することが難しい。しかも、濃度の低いガンマアミノ酪酸を測定するためには、極めて感度が鋭敏で高価な蛍光性担体を付加する必要があるので、一回の測定が大変高価なものになっている。
なし
Further, in the conventional method for measuring the amount of released gamma aminobutyric acid, since the solution around the tissue is used, it is not possible to know which cell type was released by mixing the solution around the tissue. That is, if the surrounding solution is mixed at the time of collection, it is difficult to accurately measure the gamma aminobutyric acid concentration at that site. Moreover, in order to measure low-concentration gamma aminobutyric acid, it is necessary to add an expensive fluorescent carrier with extremely high sensitivity, so that one measurement is very expensive.
None

上記したように、従来のガンマアミノ酪酸放出量を酵素で一次元的に測定する方法では、測定中に生理活性を持つ副生成物、例えばグルタミン酸が発生する。組織近傍でこの測定方法を用いると、測定時の反応によって生成するこのような副生成物によって組織が二次的に刺激され、正確な測定を行うことができない。そのため、測定に用いる反応物質を改良し、組織を刺激しない反応系を構成する必要がある。   As described above, in the conventional method of one-dimensionally measuring the amount of released gamma-aminobutyric acid with an enzyme, a by-product having a physiological activity, such as glutamic acid, is generated during the measurement. When this measuring method is used in the vicinity of the tissue, the tissue is secondarily stimulated by such a by-product generated by the reaction at the time of measurement, and an accurate measurement cannot be performed. Therefore, it is necessary to improve the reaction substance used for the measurement and construct a reaction system that does not stimulate the tissue.

さらに、ガンマアミノ酪酸の濃度分布を二次元的に表現できれば、どの部位の細胞がガンマアミノ酪酸を放出したかが特定できることになる。二次元的にガンマアミノ酪酸放出量を測定するためには、バックグラウンドのノイズを低減し、かつガンマアミノ酪酸放出量とその放出組織とを対応させて測定できる条件を設定し、測定部位を特定できるように反応チャンバーを構成した適切なシステムを考える必要がある。   Furthermore, if the concentration distribution of gamma-aminobutyric acid can be expressed two-dimensionally, it becomes possible to specify which part of the cell released gamma-aminobutyric acid. In order to measure the release amount of gamma-aminobutyric acid two-dimensionally, the background noise is reduced, and the measurement conditions are set by specifying the conditions that enable the measurement of the release amount of gamma-aminobutyric acid and the release tissue to correspond. It is necessary to think of an appropriate system that configures the reaction chamber so that it can.

本発明は、上記状況に鑑みて、副生成物によって組織を刺激することなく、バックグラウンドのノイズを低減し、放出量と放出組織を対応させて測定できるガンマアミノ酪酸放出量の測定システムおよびそれに用いる反応促進物質を提供することを目的とする。   In view of the above situation, the present invention reduces the background noise without stimulating the tissue with by-products, and a gamma-aminobutyric acid release amount measurement system capable of measuring the release amount and the release tissue in association with each other, and It is intended to provide a reaction promoting substance to be used.

本発明は、上記目的を達成するために、
〔1〕生体組織から放出されるガンマアミノ酪酸放出量の測定システムにおいて、ガンマアミノ酪酸分解酵素を使用するガンマアミノ酪酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応では、このガンマアミノ酪酸の反応モル量と生成する還元ニコチンアミドジヌクレオチドリン酸の生成モル量の間に一対一の関係があることを利用し、この酵素反応で生成する還元型ニコチンアミドジヌクレオチドリン酸が発する蛍光を検出してガンマアミノ酪酸の放出量を測定することを特徴とする。
The present invention, in order to achieve the above object,
[1] In a measurement system for the amount of gamma-aminobutyric acid released from living tissue, the gamma-aminobutyric acid decomposing enzyme is used to oxidize gamma-aminobutyric acid to reduce nicotinamide dinucleotide phosphate. Taking advantage of the one-to-one relationship between the reaction molar amount of butyric acid and the reduced molar amount of reduced nicotinamide dinucleotide phosphate produced, fluorescence emitted by reduced nicotinamide dinucleotide phosphate produced by this enzymatic reaction is used. Is detected to measure the amount of released gamma aminobutyric acid.

〔2〕上記〔1〕記載のガンマアミノ酪酸放出量の測定システムにおいて、ガンマアミノ酪酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応を促進する物質としてジカルボン酸を反応場へ添加して行うことを特徴とする。 [2] In the measurement system of gamma aminobutyric acid release amount according to [1] above, dicarboxylic acid is added to the reaction field as a substance that promotes an enzymatic reaction of oxidizing gamma aminobutyric acid to reduce nicotinamide dinucleotide phosphate. It is characterized by performing.

〔3〕上記〔2〕記載のガンマアミノ酪酸放出量の測定システムにおいて、前記ジカルボン酸がαケトグルタル酸、αケトブチル酸、オキザロ酢酸のいずれか、もしくはこれらの混合物であることを特徴とする。 [3] The system for measuring the amount of released gamma aminobutyric acid according to [2], wherein the dicarboxylic acid is any one of α-ketoglutaric acid, α-ketobutyric acid, oxaloacetic acid, or a mixture thereof.

〔4〕上記〔1〕、〔2〕又は〔3〕記載のガンマアミノ酪酸放出量の測定システムを用いて、還元型ニコチンアミドジヌクレオチドリン酸が発する蛍光を撮像素子により検出した発光像をもって生体組織から放出されたガンマアミノ酪酸の濃度分布を二次元的に表示することを特徴とする。 [4] A living body having a luminescent image in which fluorescence emitted by reduced nicotinamide dinucleotide phosphate is detected by an image sensor using the measurement system for gamma aminobutyric acid release amount according to [1], [2] or [3] above. It is characterized in that the concentration distribution of gamma aminobutyric acid released from the tissue is displayed two-dimensionally.

〔5〕上記〔4〕記載のガンマアミノ酪酸放出量の測定システムにおいて、前記撮像素子が電荷結合素子もしくは相補型金属酸化膜半導体であることを特徴とする。 [5] In the measurement system of the amount of released gamma aminobutyric acid according to [4], the image pickup device is a charge coupled device or a complementary metal oxide film semiconductor.

〔6〕生体組織から放出されるガンマアミノ酪酸放出量の測定システムで用いる反応促進物質であって、ガンマアミノ酪酸分解酵素を使用するガンマアミノ酪酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応で、この酵素反応を促進する物質としてジカルボン酸を含むことを特徴とする。 [6] A reaction promoting substance used in a measurement system for the amount of released gamma-aminobutyric acid from biological tissue, which uses gamma-aminobutyric acid degrading enzyme to oxidize gamma-aminobutyric acid to reduce nicotinamide dinucleotide phosphate In the enzymatic reaction, a dicarboxylic acid is contained as a substance that promotes the enzymatic reaction.

〔7〕上記〔6〕記載の反応促進物質において、前記ジカルボン酸がαケトグルタル酸、αケトブチル酸、オキザロ酢酸の何れか、もしくはこれらの混合物であることを特徴とする。 [7] The reaction accelerating substance according to the above [6], wherein the dicarboxylic acid is any one of α-ketoglutaric acid, α-ketobutyric acid and oxaloacetic acid, or a mixture thereof.

このように、本発明では、生体内にもともと存在する物質によって反応系を構成するようにしている。すなわち、生体の神経組織から放出されたガンマアミノ酪酸と特異的に反応してニコチンアミドジヌクレオチドリン酸の還元を行う酵素を用いることにより、その際に生成する還元ニコチンアミドジヌクレオチドリン酸が発する蛍光量を測定してガンマアミノ酪酸放出量を定量する。ここでニコチンアミドジヌクレオチドリン酸ならびに還元型ニコチンアミドジヌクレオチドリン酸は生体内に存在するビタミンの一種であるので、生体組織を二次的に刺激することが避けられる。 As described above, in the present invention, the reaction system is constituted by the substance originally existing in the living body. That is, by using an enzyme that specifically reacts with gamma aminobutyric acid released from the nerve tissue of the living body to reduce nicotinamide dinucleotide phosphate, the reduced nicotinamide dinucleotide phosphate generated at that time is emitted. The amount of fluorescence is measured to quantify the amount of released gamma aminobutyric acid. Here, since nicotinamide dinucleotide phosphate and reduced nicotinamide dinucleotide phosphate are types of vitamins existing in the living body, secondary stimulation of living tissues can be avoided.

特定の組織近傍で測定する場合には、閉鎖系反応チャンバーを用いる。すなわち、閉鎖系反応チャンバー表面に半透膜を置き、神経伝達物質ガンマアミノ酪酸をこの半透過膜から浸透させる。励起光をUV発光素子で導入し、画像撮影を人工網膜LSIなどの撮像素子を用いて行う。 When measuring in the vicinity of a specific tissue, a closed reaction chamber is used. That is, a semipermeable membrane is placed on the surface of a closed reaction chamber, and the neurotransmitter gamma aminobutyric acid is permeated through this semipermeable membrane. Excitation light is introduced by a UV light emitting element, and image pickup is performed using an image pickup element such as an artificial retina LSI.

前記還元型ニコチンアミドジヌクレオチドリン酸の発する特定波長の蛍光を撮像素子(例えばCCDカメラ)で撮影して画像処理することにより、ガンマアミノ酪酸の二次元的な放出量を得る。すなわち、ガンマアミノ酪酸放出量の二次元測定システムを構成する。 The fluorescence of a specific wavelength emitted from the reduced nicotinamide dinucleotide phosphate is photographed by an image sensor (for example, a CCD camera) and image processing is performed to obtain a two-dimensional release amount of gamma aminobutyric acid. That is, it constitutes a two-dimensional measurement system of the amount of released gamma aminobutyric acid.

本発明の第1実施例を示す神経組織から放出されるガンマアミノ酪酸放出量を生体外で測定する測定システムの構成図である。It is a block diagram of the measurement system which measures the release amount of gamma aminobutyric acid released from the nerve tissue showing the first embodiment of the present invention in vitro. 本発明で使用する酵素反応を示した図である。It is the figure which showed the enzyme reaction used by this invention. 本発明で使用する反応促進物質を変えた場合の蛍光の発生挙動の違いを示した図である。It is a figure showing the difference in the fluorescence generation behavior when the reaction promoting substance used in the present invention is changed. 本発明の第2実施例を示す神経組織から放出されるガンマアミノ酪酸放出量を測定する測定システムの構成図である。It is a block diagram of the measurement system which measures the release amount of gamma aminobutyric acid released from the nerve tissue showing the second embodiment of the present invention. 本発明の実施例を示すプルキンエ層近傍における発光の様子を示す図である。It is a figure which shows the mode of light emission in the Purkinje layer vicinity which shows the Example of this invention. 本発明にかかるガンマアミノ酪酸濃度と光強度の関係を示す図である。It is a figure which shows the relationship between the gamma aminobutyric acid concentration and light intensity concerning this invention.

生体組織から放出されるガンマアミノ酪酸放出量の測定システムにおいて、ガンマアミノ酪酸分解酵素を使用するガンマアミノ酪酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応では、このガンマアミノ酪酸の反応モル量と生成する還元ニコチンアミドジヌクレオチドリン酸の生成モル量の間に一対一の関係があることを利用し、この酵素反応で生成する還元型ニコチンアミドジヌクレオチドリン酸が発する蛍光を検出してガンマアミノ酪酸の放出量を測定する。よって、副生成物によって組織を刺激することなく、バックグラウンドのノイズを低減し、放出量と放出組織を対応させて測定することができる。 In a measurement system for the amount of gamma aminobutyric acid released from living tissues, the reaction of gamma aminobutyric acid is used in the enzymatic reaction that uses gamma aminobutyric acid degrading enzyme to oxidize gamma aminobutyric acid to reduce nicotinamide dinucleotide phosphate. By utilizing the one-to-one relationship between the molar amount and the generated molar amount of the reduced nicotinamide dinucleotide phosphate produced, the fluorescence emitted by the reduced nicotinamide dinucleotide phosphate produced by this enzymatic reaction is detected. The amount of gamma aminobutyric acid released is measured. Therefore, it is possible to reduce the background noise and measure the release amount and the release tissue in a corresponding manner without stimulating the tissue with a by-product.

以下、本発明を実施するための最良の形態を図を参照しながら詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は本発明の第1実施例を示す神経組織から放出されるガンマアミノ酪酸放出量を生体外で測定する測定システムを示す図であり、図1(a)はその全体構成図、図1(b)はその反応チャンバーの斜視図である。 FIG. 1 is a diagram showing a measurement system for measuring the release amount of gamma aminobutyric acid released from nerve tissue in vitro according to the first embodiment of the present invention, and FIG. (B) is a perspective view of the reaction chamber.

図1において、1はガラス容器、2はチャンバーブロック、3はサンプル(ガンマアミノ酪酸を放出する神経組織片)、4は反応チャンバー(サンプル3及び酵素溶液を投入する室)、5はUV光源、6は1次フィルター及びレンズ、7は励起UV光、8は反射ミラー、9は2次フィルター、10は冷却機能付きCCDカメラ(すなわち光量検出器)、11はマイクロピペット、12はチャンバー2の上面に設けられた開口部である。 In FIG. 1, 1 is a glass container, 2 is a chamber block, 3 is a sample (a piece of nerve tissue that releases gamma-aminobutyric acid), 4 is a reaction chamber (a chamber into which the sample 3 and the enzyme solution are charged), 5 is a UV light source, 6 is a primary filter and lens, 7 is excitation UV light, 8 is a reflection mirror, 9 is a secondary filter, 10 is a CCD camera with a cooling function (that is, a light amount detector), 11 is a micropipette, and 12 is the upper surface of the chamber 2. It is an opening provided in the.

すなわち、倒立培養顕微鏡(UV光源5〜2次フィルター9)と冷却機能付きCCDカメラ10を用いて組織が放出したガンマアミノ酪酸放出量を測定するように構成されている。チャンバーブロック2は、例えばパテでガラス容器1のガラス面に接着する。チャンバーブロック2の厚みは0.5〜2cm、望ましくは0.8〜1.2cmであり、反応チャンバー4の容積は100〜600μl、望ましくは200〜400μlである。 That is, the inverted culture microscope (UV light source 5 to secondary filter 9) and the CCD camera 10 with a cooling function are used to measure the amount of gamma aminobutyric acid released by the tissue. The chamber block 2 is bonded to the glass surface of the glass container 1 with, for example, putty. The chamber block 2 has a thickness of 0.5 to 2 cm, preferably 0.8 to 1.2 cm, and the reaction chamber 4 has a volume of 100 to 600 μl, preferably 200 to 400 μl.

測定は、サンプル3を反応チャンバー4内に供給した後、放出されたガンマアミノ酪酸と特異的に反応してニコチンアミドジヌクレオチドリン酸の還元を行う酵素、すなわちガンマアミノ酪酸分解酵素(例えば、グルタミン酸デヒドロゲナーゼ)とニコチンアミドジヌクレオチドリン酸の溶液をマイクロピペット11で反応チャンバー4に供給して行う。なお、チャンバーブロック2の材料としてはテフロン(登録商標)を用いることができる。 The measurement is performed by supplying the sample 3 into the reaction chamber 4 and then specifically reacting with the released gamma aminobutyric acid to reduce nicotinamide dinucleotide phosphate, that is, gamma aminobutyric acid degrading enzyme (eg, glutamic acid). A solution of dehydrogenase) and nicotinamide dinucleotide phosphate is supplied to the reaction chamber 4 with the micropipette 11. As a material for the chamber block 2, Teflon (registered trademark) can be used.

このように、神経組織から放出されるガンマアミノ酪酸の二次元測定において、生体外で測定する場合には、本発明は、図1に示すような開放系チャンバーを用い、倒立培養顕微鏡(UV光源5〜2次フィルター9)と冷却機能付きCCDカメラ10を用いて神経組織が放出したガンマアミノ酪酸量を測定するように構成される。 As described above, in the two-dimensional measurement of gamma aminobutyric acid released from nerve tissue, when the measurement is performed in vitro, the present invention uses an open system chamber as shown in FIG. 1 and uses an inverted culture microscope (UV light source). It is configured to measure the amount of gamma-aminobutyric acid released by the nerve tissue using the 5th-secondary filter 9) and the CCD camera 10 with a cooling function.

次に、本発明で用いる酵素反応について、図2に基づいて説明する。本発明で使用する反応は酵素反応で反応チャンバー4内で起きる。ガンマアミノ酪酸分解酵素(略称、GABAase)の存在下で、ガンマアミノ酪酸(略称;GABA)とニコチンアミドジヌクレオチドリン酸(略称;NADP)が共存すると、GABAは酸化されてコハク酸に変化し、NADPは還元されて還元型ニコチンアミドジヌクレオチドリン酸(略称;NADPH)に変化する。この時GABAの反応モル量とNADPHの生成モル量との間には、一対一の関係が成り立っている。そのため、NADPHの発する蛍光強度を測定すれば、GABA濃度が明らかになる。ここで、NADPは酵素の働きを補う補酵素の一種であり、ガンマアミノ酪酸から電子を受け取ってNADPHに変化する。したがって、ガンマアミノ酪酸から電子を受け取って還元され蛍光を発するものであれば他の補酵素もしくは基質を使うこともできる。NADPHは特定波長(480nm)の蛍光を発するので、このNADPHが発する蛍光を撮像素子、例えばCCDカメラ10で検出する。励起光としては、波長340nmの紫外線(UV光)を用いることができる。 Next, the enzymatic reaction used in the present invention will be described based on FIG. The reaction used in the present invention is an enzymatic reaction and occurs in the reaction chamber 4. When gamma aminobutyric acid (abbreviation: GABA) and nicotinamide dinucleotide phosphate (abbreviation: NADP) coexist in the presence of gamma aminobutyric acid degrading enzyme (abbreviation: GABAase), GABA is oxidized to change to succinic acid, NADP is reduced to change to reduced nicotinamide dinucleotide phosphate (abbreviation: NADPH). At this time, there is a one-to-one relationship between the reaction molar amount of GABA and the generated molar amount of NADPH. Therefore, the GABA concentration becomes clear by measuring the fluorescence intensity emitted by NADPH. Here, NADP is a kind of coenzyme that supplements the function of the enzyme, and receives an electron from gamma aminobutyric acid and changes into NADPH. Therefore, other coenzymes or substrates can be used as long as they receive an electron from gamma-aminobutyric acid and are reduced to emit fluorescence. Since NADPH emits fluorescence of a specific wavelength (480 nm), the fluorescence emitted by this NADPH is detected by an image sensor, for example, the CCD camera 10. Ultraviolet light (UV light) having a wavelength of 340 nm can be used as the excitation light.

この際、ガンマアミノ酪酸分解酵素(GABAase)に反応促進物質を加えると、蛍光を検出できるまでに要する時間が10分の1以下、望ましくは100分の1以下になる。この反応促進物質としては、ジカルボン酸、特にαケトグルタル酸、αケトブチル酸、オキザロ酢酸のいずれか、もしくは混合物を用いることができる。反応促進物質を変えた場合の蛍光挙動の違い(同じ濃度のガンマアミノ酪酸溶液の反応の際に発生する蛍光強度の反応促進物質による違い)を図3に示す。この図において、図3(a)は反応促進物質がαケトグルタル酸の場合の、図3(b)は反応促進物質がαケトブチル酸の場合、図3(c)は反応促進物質がオキザロ酢酸の場合をそれぞれ示している。これらの図において、横軸は時間(秒)、縦軸は主蛍光の強度を表している。 At this time, when a reaction accelerating substance is added to gamma aminobutyric acid degrading enzyme (GABAase), the time required to detect fluorescence becomes 1/10 or less, preferably 1/100 or less. As the reaction promoting substance, a dicarboxylic acid, particularly any one of α-ketoglutaric acid, α-ketobutyric acid and oxaloacetic acid, or a mixture thereof can be used. FIG. 3 shows the difference in the fluorescence behavior when the reaction promoting substance is changed (the difference in the fluorescence intensity generated during the reaction of the gamma aminobutyric acid solution of the same concentration depending on the reaction promoting substance). In this figure, FIG. 3(a) shows that the reaction promoting substance is α-ketoglutaric acid, FIG. 3(b) shows that the reaction promoting substance is α-ketobutyric acid, and FIG. 3(c) shows that the reaction promoting substance is oxaloacetic acid. Each case is shown. In these figures, the horizontal axis represents time (seconds) and the vertical axis represents main fluorescence intensity.

次に、本発明の第2実施例を示す神経組織から放出される生体内でガンマアミノ酪酸放出量を測定する測定システムを図4に基づいて説明する。図4(a)はその正面図、図4(b)はその側面図である。 Next, a second embodiment of the present invention will be described with reference to FIG. 4, which is a measurement system for measuring the amount of released gamma aminobutyric acid in a living body released from nerve tissue. 4(a) is a front view thereof, and FIG. 4(b) is a side view thereof.

生体内でガンマアミノ酪酸放出量を測定する場合は、閉鎖系反応チャンバー20を用いる。閉鎖系反応チャンバー20の容積は、酵素反応が短時間で行われる大きさが100〜600μl、望ましくは200〜400μlである。閉鎖系反応チャンバー20表面には分子量100以下の物質に透過性を持つ半透膜24を置き、神経伝達物質であるガンマアミノ酪酸を浸透させる。 When measuring the release amount of gamma aminobutyric acid in the living body, the closed reaction chamber 20 is used. The volume of the closed reaction chamber 20 is 100 to 600 μl, preferably 200 to 400 μl, so that the enzymatic reaction is carried out in a short time. A semipermeable membrane 24 that is permeable to a substance having a molecular weight of 100 or less is placed on the surface of the closed reaction chamber 20 to allow gamma aminobutyric acid, which is a neurotransmitter, to permeate.

励起光は紫外光発光ダイオード23で導入し、画像撮影は撮像素子(人工網膜LSI)26を用いて行う。21は撮像素子26の出力ケーブル、22は電源ケーブル、25は酵素の入った反応チャンバーを示している。なお、撮像素子としては、電荷結合素子もしくは相補型金属酸化膜半導体を用いることにより、安価で、コンパクトに構成することもできる。 The excitation light is introduced by the ultraviolet light emitting diode 23, and the image pickup is performed by using the image pickup device (artificial retina LSI) 26. Reference numeral 21 is an output cable of the image pickup device 26, 22 is a power cable, and 25 is a reaction chamber containing an enzyme. By using a charge-coupled device or a complementary metal oxide film semiconductor as the image pickup device, the image pickup device can be inexpensive and compact.

(1)測定は以下の手順で行う。
閉鎖系反応チャンバー20内にニコチンアミドジヌクレオチドリン酸と反応促進物質(望ましくは、α−ケトグルタル酸)および緩衝液を封入する。
(2)分子量100以下の物質に透過性を持つ半透膜24からガンマアミノ酪酸の浸透を受ける(30秒間)。
(3)撮像素子26で反応前の光強度を測定する(この時の光強度の測定値をF0とする)。
(4)図2に示したものと同じ酵素を閉鎖系反応チャンバー20内に定量注入し反応させる(10秒間)。
(5)UV光で励起し、撮像素子26で反応後の光強度を測定する(この時の光強度の測定値をF1とする)。
(6)dF/F0(ここで、dF=F1−F0)がガンマアミノ酪酸濃度に比例するので、これを用いてガンマアミノ酪酸放出量を算出する。
(1) The measurement is performed according to the following procedure.
In the closed reaction chamber 20, nicotinamide dinucleotide phosphate, a reaction accelerating substance (desirably α-ketoglutaric acid) and a buffer solution are enclosed.
(2) Gamma-aminobutyric acid is permeated through the semipermeable membrane 24 having a molecular weight of 100 or less (30 seconds).
(3) The light intensity before the reaction is measured by the image pickup device 26 (the measured value of the light intensity at this time is F0).
(4) The same enzyme as that shown in FIG. 2 is quantitatively injected into the closed reaction chamber 20 and reacted (for 10 seconds).
(5) Excitation with UV light, and measurement of the light intensity after reaction with the image sensor 26 (the measured value of the light intensity at this time is F1).
(6) Since dF/F0 (here, dF=F1-F0) is proportional to the gamma aminobutyric acid concentration, this is used to calculate the gamma aminobutyric acid release amount.

更に、本発明の具体的な実施の形態(実験結果)について詳細に説明する。   Further, specific embodiments (experimental results) of the present invention will be described in detail.

マウスの小脳組織から放出されたガンマアミノ酪酸を、図4に示す本発明の第2実施例を示す閉鎖系反応チャンバーを用いて測定したところ、プルキンエ層近傍に特異的なガンマアミノ酪酸の放出を確認した。その際の発光の様子を図5に示す。この図において、図5(a)は、ハロゲンランプ光源で撮影したガンマアミノ酪酸を放出する部位の形状を表す反応前の写真であり、図5(b)はその部位近傍の発光(=ガンマアミノ酪酸が放出されていること)を示すもので、白い部分がUV光照射により発現したNADPHの蛍光像である。   Gamma-aminobutyric acid released from mouse cerebellar tissue was measured using the closed reaction chamber shown in FIG. 4 according to the second embodiment of the present invention, and it was confirmed that gamma-aminobutyric acid specific to the vicinity of the Purkinje layer was released. confirmed. The state of light emission at that time is shown in FIG. In this figure, FIG. 5(a) is a photograph before the reaction showing the shape of the part that releases gamma aminobutyric acid taken with a halogen lamp light source, and FIG. 5(b) is the light emission near the part (=gamma amino). Butyric acid has been released), and the white portion is the fluorescent image of NADPH expressed by UV light irradiation.

また、図6はGABA濃度と光強度の関係を示す図であり、μMは溶液1リットル中に存在するガンマアミノ酪酸のマイクロモル量を表す。この図より明らかなように、図5(b)に示す蛍光の強度とガンマアミノ酪酸の濃度には一義的な関連がある。この関係を利用することで、上述したように光強度の測定値からガンマアミノ酪酸放出量を測定することができる。   FIG. 6 is a graph showing the relationship between GABA concentration and light intensity, and μM represents the micromolar amount of gamma aminobutyric acid present in 1 liter of the solution. As is clear from this figure, there is a unique relationship between the fluorescence intensity shown in FIG. 5B and the concentration of gamma aminobutyric acid. By utilizing this relationship, the amount of released gamma aminobutyric acid can be measured from the measured value of the light intensity as described above.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 The present invention is not limited to the above-mentioned embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

本発明によれば、酵素反応と撮像素子(例えばCCDカメラ)を利用して、患者の脳組織から放出されたガンマアミノ酪酸量を測定することができる。上記のガンマアミノ酪酸放出量の測定システムにおいて、測定時に添加するニコチンアミドジヌクレオチドリン酸ならびに生成する還元型ニコチンアミドジヌクレオチドリン酸は、もともと生体内に存在する物質(ビタミンの一種)であるので、生体組織を二次的に刺激・損傷する恐れがないという特徴を有する。これにより、測定操作自体が測定に影響を与えるという弊害がなくなり、外傷や脳梗塞を発症した患者の脳内での神経活動の状態を的確に予測しながら治療に当たることが可能になる。 According to the present invention, it is possible to measure the amount of gamma aminobutyric acid released from the brain tissue of a patient by utilizing an enzyme reaction and an image pickup device (for example, CCD camera). In the above measurement system of gamma aminobutyric acid release amount, since nicotinamide dinucleotide phosphate added at the time of measurement and the reduced nicotinamide dinucleotide phosphate produced are originally substances (a kind of vitamin) existing in the living body, The feature is that there is no risk of secondarily stimulating or damaging biological tissues. This eliminates the adverse effect that the measurement operation itself influences the measurement, and enables treatment while accurately predicting the state of nerve activity in the brain of a patient who has suffered trauma or cerebral infarction.

また、脳組織から放出されるガンマアミノ酪酸は、痴呆やアルツハイマー症など現代の神経病変に中心的な働きをする神経伝達物質であり、病変の進行や脳の発達の有力な指標である。従来の方法では、ガンマアミノ酪酸放出量の分布を知ることは不可能であったが、本発明により組織中の特定の細胞からのガンマアミノ酪酸放出量を二次元的に測定し、分布を知ることができる。 Gamma-aminobutyric acid released from brain tissue is a neurotransmitter that plays a central role in modern nerve lesions such as dementia and Alzheimer's disease, and is a powerful indicator of lesion progression and brain development. With the conventional method, it was impossible to know the distribution of gamma aminobutyric acid release amount, but according to the present invention, the distribution of gamma aminobutyric acid release amount from specific cells in the tissue was two-dimensionally measured to obtain the distribution. be able to.

組織中の特定の細胞からのガンマアミノ酪酸放出量を測定することにより、病変の恐れのある脳組織から放出されるガンマアミノ酪酸量を測定して、神経回路に起因する病変か否かを判定することができる。また、再生された脳組織の機能検査を行うことなどが可能になる。 By measuring the amount of gamma-aminobutyric acid released from specific cells in the tissue, the amount of gamma-aminobutyric acid released from brain tissue that may have a lesion may be measured to determine whether the lesion is due to a neural circuit. can do. In addition, it becomes possible to perform a functional test of the regenerated brain tissue.

本発明のガンマアミノ酪酸放出量の測定システムは、神経回路性の病変か否かを判定するなどのツールとして好適である。 The gamma aminobutyric acid release amount measurement system of the present invention is suitable as a tool for determining whether or not a lesion has a neural circuit structure.

Claims (7)

生体組織から放出されるガンマアミノ酪酸の放出量の測定システムにおいて、
ガンマアミノ酪酸分解酵素を使用するガンマアミノ酪酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応では、該ガンマアミノ酪酸の反応モル量と生成する還元ニコチンアミドジヌクレオチドリン酸の生成モル量の間に一対一の関係があることを利用し、該酵素反応で生成する還元型ニコチンアミドジヌクレオチドリン酸が発する蛍光を検出してガンマアミノ酪酸の放出量を測定することを特徴とするガンマアミノ酪酸放出量の測定システム。
In the measurement system of the release amount of gamma aminobutyric acid released from biological tissue,
In the enzymatic reaction of oxidizing gamma-aminobutyric acid by using gamma-aminobutyric acid degrading enzyme to reduce nicotinamide dinucleotide phosphate, the reaction molar amount of the gamma-aminobutyric acid and the generated molar amount of reduced nicotinamide dinucleotide phosphate are generated. Gamma-aminobutyric acid release amount is measured by detecting the fluorescence emitted by reduced nicotinamide dinucleotide phosphate produced by the enzymatic reaction by utilizing the one-to-one relationship between Aminobutyric acid release measurement system.
請求項1記載のガンマアミノ酪酸放出量の測定システムにおいて、ガンマアミノ酪酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応を促進する物質としてジカルボン酸を反応場へ添加して行うことを特徴とするガンマアミノ酪酸放出量の測定システム。   The system for measuring the amount of released gamma aminobutyric acid according to claim 1, wherein dicarboxylic acid is added to the reaction field as a substance that promotes an enzymatic reaction that oxidizes gamma aminobutyric acid to reduce nicotinamide dinucleotide phosphate. Characteristic gamma-aminobutyric acid release measurement system. 請求項2記載のガンマアミノ酪酸放出量の測定システムにおいて、前記ジカルボン酸がαケトグルタル酸、αケトブチル酸、オキザロ酢酸のいずれか、もしくはこれらの混合物であることを特徴とするガンマアミノ酪酸放出量の測定システム。   The gamma aminobutyric acid release amount measuring system according to claim 2, wherein the dicarboxylic acid is any one of α-ketoglutaric acid, α-ketobutyric acid, oxaloacetic acid, or a mixture thereof. Measuring system. 請求項1、2又は3記載のガンマアミノ酪酸放出量の測定システムを用いて、還元型ニコチンアミドジヌクレオチドリン酸が発する蛍光を撮像素子により検出した発光像をもって生体組織から放出されたガンマアミノ酪酸の濃度分布を二次元的に表示することを特徴とするガンマアミノ酪酸放出量の測定システム。   Gamma-aminobutyric acid released from living tissue with a luminescence image obtained by detecting fluorescence emitted by reduced nicotinamide dinucleotide phosphate by an image sensor using the measurement system for gamma-aminobutyric acid release according to claim 1, 2 or 3. A system for measuring the amount of released gamma-aminobutyric acid, which displays the concentration distribution of the two-dimensionally. 請求項4記載のガンマアミノ酪酸放出量の測定システムにおいて、前記撮像素子が電荷結合素子もしくは相補型金属酸化膜半導体であることを特徴とするガンマアミノ酪酸放出量の測定システム。   The gamma aminobutyric acid release amount measurement system according to claim 4, wherein the image pickup device is a charge-coupled device or a complementary metal oxide film semiconductor. 生体組織から放出されるガンマアミノ酪酸放出量の測定システムで用いる反応促進物質であって、ガンマアミノ酪酸分解酵素を使用するガンマアミノ酪酸を酸化してニコチンアミドジヌクレオチドリン酸を還元する酵素反応で、該酵素反応を促進する物質としてジカルボン酸を含むことを特徴とする反応促進物質。   It is a reaction-promoting substance used in a measurement system for the amount of gamma-aminobutyric acid released from living tissues.It is an enzymatic reaction that uses gamma-aminobutyric acid degrading enzyme to oxidize gamma-aminobutyric acid and reduce nicotinamide dinucleotide phosphate. And a reaction-promoting substance containing a dicarboxylic acid as a substance for promoting the enzymatic reaction. 請求項6記載の反応促進物質において、前記ジカルボン酸がαケトグルタル酸、αケトブチル酸、オキザロ酢酸の何れかもしくはこれらの混合物である反応促進物質。   The reaction promoting substance according to claim 6, wherein the dicarboxylic acid is any one of α-ketoglutaric acid, α-ketobutyric acid, oxaloacetic acid, or a mixture thereof.
JP2006531822A 2004-08-17 2005-08-17 Gamma-aminobutyric acid release amount measurement system and reaction promoting substance used therefor Pending JPWO2006019111A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004237541 2004-08-17
JP2004237541 2004-08-17
PCT/JP2005/014998 WO2006019111A1 (en) 2004-08-17 2005-08-17 System for measuring amount of gamma-aminobutyric acid released and reaction accelerator substance for use therein

Publications (1)

Publication Number Publication Date
JPWO2006019111A1 true JPWO2006019111A1 (en) 2008-07-31

Family

ID=35907495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006531822A Pending JPWO2006019111A1 (en) 2004-08-17 2005-08-17 Gamma-aminobutyric acid release amount measurement system and reaction promoting substance used therefor

Country Status (2)

Country Link
JP (1) JPWO2006019111A1 (en)
WO (1) WO2006019111A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139280A (en) * 2006-11-09 2008-06-19 Toyohashi Univ Of Technology Method and apparatus using evanescent light for measuring concentration distribution of chemical substance
CN102033047B (en) * 2010-11-26 2012-08-29 毛清黎 Method for simply and quickly measuring gamma-aminobutyric acid in tea leaves
CN110596029B (en) * 2018-06-12 2021-10-08 中国科学院天津工业生物技术研究所 Method for detecting content of threo-type beta-hydroxy-alpha-amino acid

Also Published As

Publication number Publication date
WO2006019111A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
AU2015327665B2 (en) Imaging a target fluorophore in a biological material in the presence of autofluorescence
JP6059244B2 (en) Analytical apparatus for detecting at least one analyte in a sample
EP3132049B1 (en) Device and methods of using device for detection of aminoacidopathies
JPH05509399A (en) How to analyze antioxidant capacity
CN102028450B (en) Probe for detecting substance in body and system for detecting substance in body making use of the probe
JP2017201327A (en) Method for determining concentration of analyte
TWI325494B (en) Optical measuring system
US20110053192A1 (en) Method Of Rapid Detection Of An Analyte In Bodily Fluids Using A Fluorescent Dry Test Strip Biosensor
CN1653324A (en) Ingredient concentration measurement method and device
JPWO2006019111A1 (en) Gamma-aminobutyric acid release amount measurement system and reaction promoting substance used therefor
CN114174528A (en) Discrimination method, fluorescence measurement device, and test agent
Lai et al. A dry chemistry-based electrochemiluminescence device for point-of-care testing of alanine transaminase
JP2008228637A (en) Method for measuring amount of hydrogen peroxide by using fluorescence correlation spectrometry, and method for utilizing the same
US8759112B2 (en) Multifunctional reference system for analyte determinations by fluorescence
WO2010117320A1 (en) Method and apparatus for detecting pharmaceuticals in a sample
Liu et al. Stereospecific recognition and rapid determination of d-amino acids in human serum based on luminescent metal–organic frameworks
CN114574192A (en) Preparation of up-conversion nano fluorescence sensing probe with core-shell structure and application of up-conversion nano fluorescence sensing probe in mesna detection
JP3867081B2 (en) Fluorescence measurement of analyte with amine-N-oxide as redox indicator
CN114166808A (en) Method for visually and quantitatively detecting Vc content and portable intelligent sensing system
JP4480952B2 (en) Method for two-dimensional detection of released amino acids from nerve tissue
JP2008139280A (en) Method and apparatus using evanescent light for measuring concentration distribution of chemical substance
WO2019193784A1 (en) Weak light detection system and weak light detection method
JP2017181211A (en) Optical transcutaneous oxygen sensor and transcutaneous oxygen concentration measurement device having the same
WO2015045483A1 (en) Optical measurement device
Alpuche-Aviles Electrochemical Sensors with Inorganic Redox Mediators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129