WO2006018425A2 - Membrane semi-permeable multiphase biocompatible pour biocapteurs - Google Patents
Membrane semi-permeable multiphase biocompatible pour biocapteurs Download PDFInfo
- Publication number
- WO2006018425A2 WO2006018425A2 PCT/EP2005/054000 EP2005054000W WO2006018425A2 WO 2006018425 A2 WO2006018425 A2 WO 2006018425A2 EP 2005054000 W EP2005054000 W EP 2005054000W WO 2006018425 A2 WO2006018425 A2 WO 2006018425A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- polymer
- biosensor
- preferred
- glucose
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 208
- 229920000642 polymer Polymers 0.000 claims abstract description 136
- 239000004814 polyurethane Substances 0.000 claims abstract description 99
- 229920002635 polyurethane Polymers 0.000 claims abstract description 82
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 75
- 239000008103 glucose Substances 0.000 claims abstract description 75
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 55
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims abstract description 55
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 54
- 102000004190 Enzymes Human genes 0.000 claims abstract description 21
- 108090000790 Enzymes Proteins 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000001727 in vivo Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 76
- 239000000725 suspension Substances 0.000 claims description 50
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 47
- 239000001301 oxygen Substances 0.000 claims description 47
- 229910052760 oxygen Inorganic materials 0.000 claims description 47
- 239000002904 solvent Substances 0.000 claims description 47
- 239000000758 substrate Substances 0.000 claims description 43
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 41
- -1 for example Polymers 0.000 claims description 37
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims description 36
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 25
- 230000035699 permeability Effects 0.000 claims description 24
- 229920001296 polysiloxane Polymers 0.000 claims description 22
- 229940088598 enzyme Drugs 0.000 claims description 20
- 230000004044 response Effects 0.000 claims description 20
- 239000007921 spray Substances 0.000 claims description 18
- 230000002209 hydrophobic effect Effects 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 12
- 239000004366 Glucose oxidase Substances 0.000 claims description 10
- 108010015776 Glucose oxidase Proteins 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 10
- 229940116332 glucose oxidase Drugs 0.000 claims description 10
- 235000019420 glucose oxidase Nutrition 0.000 claims description 10
- 229920001600 hydrophobic polymer Polymers 0.000 claims description 9
- 230000007774 longterm Effects 0.000 claims description 9
- 230000035945 sensitivity Effects 0.000 claims description 9
- 239000012491 analyte Substances 0.000 claims description 8
- 229920001400 block copolymer Polymers 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 229920006158 high molecular weight polymer Polymers 0.000 claims description 5
- 206010033675 panniculitis Diseases 0.000 claims description 5
- 210000004304 subcutaneous tissue Anatomy 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 239000003995 emulsifying agent Substances 0.000 claims description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 claims description 2
- 230000006641 stabilisation Effects 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- BJZYYSAMLOBSDY-QMMMGPOBSA-N (2s)-2-butoxybutan-1-ol Chemical compound CCCCO[C@@H](CC)CO BJZYYSAMLOBSDY-QMMMGPOBSA-N 0.000 claims 1
- 210000004379 membrane Anatomy 0.000 abstract description 175
- 239000002245 particle Substances 0.000 abstract description 9
- 210000004369 blood Anatomy 0.000 abstract description 6
- 239000008280 blood Substances 0.000 abstract description 6
- 238000005507 spraying Methods 0.000 abstract description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 70
- 239000000243 solution Substances 0.000 description 65
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 28
- 108090000854 Oxidoreductases Proteins 0.000 description 18
- 102000004316 Oxidoreductases Human genes 0.000 description 18
- 239000000047 product Substances 0.000 description 15
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 229940073561 hexamethyldisiloxane Drugs 0.000 description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000008279 sol Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 206010012601 diabetes mellitus Diseases 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 125000005442 diisocyanate group Chemical group 0.000 description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 5
- DSUFPYCILZXJFF-UHFFFAOYSA-N 4-[[4-[[4-(pentoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamoyloxy]butyl n-[4-[[4-(butoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamate Chemical compound C1CC(NC(=O)OCCCCC)CCC1CC1CCC(NC(=O)OCCCCOC(=O)NC2CCC(CC3CCC(CC3)NC(=O)OCCCC)CC2)CC1 DSUFPYCILZXJFF-UHFFFAOYSA-N 0.000 description 4
- 229920002284 Cellulose triacetate Polymers 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 4
- YFCGDEUVHLPRCZ-UHFFFAOYSA-N [dimethyl(trimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C YFCGDEUVHLPRCZ-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 229920000557 Nafion® Polymers 0.000 description 3
- 239000013626 chemical specie Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000010069 protein adhesion Effects 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical class OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 2
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 235000012209 glucono delta-lactone Nutrition 0.000 description 2
- 229960003681 gluconolactone Drugs 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000005059 1,4-Cyclohexyldiisocyanate Substances 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- JRQLZCFSWYQHPI-UHFFFAOYSA-N 4,5-dichloro-2-cyclohexyl-1,2-thiazol-3-one Chemical compound O=C1C(Cl)=C(Cl)SN1C1CCCCC1 JRQLZCFSWYQHPI-UHFFFAOYSA-N 0.000 description 1
- 241001507939 Cormus domestica Species 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000001047 Dixon's Q test Methods 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 101001091385 Homo sapiens Kallikrein-6 Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 102100034866 Kallikrein-6 Human genes 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- IXQBIOPGDNZYNA-UHFFFAOYSA-N N=C=O.N=C=O.CC1=CC=CC=C1C1=CC=CC=C1C Chemical compound N=C=O.N=C=O.CC1=CC=CC=C1C1=CC=CC=C1C IXQBIOPGDNZYNA-UHFFFAOYSA-N 0.000 description 1
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- OZMJXAQDMVDWBK-UHFFFAOYSA-N carbamic acid;ethyl carbamate Chemical compound NC(O)=O.CCOC(N)=O OZMJXAQDMVDWBK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- KIQKWYUGPPFMBV-UHFFFAOYSA-N diisocyanatomethane Chemical compound O=C=NCN=C=O KIQKWYUGPPFMBV-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002389 environmental scanning electron microscopy Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000012623 in vivo measurement Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002596 lactones Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920003226 polyurethane urea Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 229920006268 silicone film Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/002—Electrode membranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/411—Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/1411—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
- B01D71/701—Polydimethylsiloxane
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1486—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/54—Polyureas; Polyurethanes
Definitions
- This invention relates to a group of novel multi phase biocompatible semi- permeable materials useful for production of biosensors and more particularly of outer membranes suitable for implantable biosensors for in-vivo sensing of glu ⁇ cose. Furthermore, this invention relates to a method for preparing such mem ⁇ branes.
- diabetes mellitus In diabetes mellitus, the pancreas loses its ability to manufacture and secrete in ⁇ sulin leading to metabolic imbalance. A result of this condition is that the body looses the ability to regulate the glucose content of the blood. Historically, diabe- tes mellitus has been treated by insulin injections, diet, exercise and oral medi ⁇ cation.
- Such a device will have to include one or more biosen- sors to be implanted in the patient.
- a biosensor is an analytical device incorporating a combination of a spe ⁇ cific biological element (cells, enzymes, tissues, etc.) and a physical element that transduces the recognition event into a detectable signal (electrical, acoustic, op ⁇ tical, thermal etc). Typically, the sensor will produce a signal that is quantita- tively related to the concentration of the analyte.
- bio ⁇ sensors There are many types of bio ⁇ sensors used for a wide variety of analytes.
- Electrochemical bio-sensors typically use enzymes to convert a concentration to an electrical signal.
- Immunological biosensors rely on molecular recognition of an analyte, for example, antibodies, (cf. Principles of Chemical and Biological Sensors, Chemical Analysis vol.
- each material that constitutes the biosensor must possess certain properties to function in vivo and provide an adequate signal.
- the outermost surface of the biosensor in contact with tis ⁇ sue must be biocompatible, i.e. perform with an appropriate host response in a specific application (Williams, "A model for biocompatibility and its evaluation", J. Biomed. Eng., 185-191, 11 (1989)).
- Biocompatibility includes not causing a di ⁇ rect injury or only causing a minor or inferior injury to the living tissue, any ad ⁇ verse response, other adverse systemic effects or delayed adverse effects (Wallin, "Global biocompatibility", Med. Dev. Tech, 34-38, 6 (1995)). To be of any practical importance, it is furthermore important that the biosensor signal is stable and not adversely affected by the presence of proteins as well as electro ⁇ lytes, medications and other potentially interfering compounds. To prevent inter ⁇ ference from proteins, the outer membrane of a sensor should suppress protein adhesion. Furthermore, the sensor should employ one or more layers keeping potentially interfering compounds away from the active parts of the sensor.
- biosensors are depending on more than one chemical species to function.
- amperometric glucose sensors employing oxido-reductase enzymes which uses oxygen as a co-substrate (see Fig. 2). If more chemical species are required for the proper function of the sensor, it is vital that the species (analyte) of interest limits the output of the sensor rather than the required co-substrate.
- oxido-reductase enzymes it is thus important that excess oxygen (relative to glucose) is present in order to give valid readings. This is in the following referred to as the "oxygen deficient problem".
- the "oxygen deficient problem" can be solved by choosing a membrane material which permeability to oxygen is higher than that of glucol ⁇ .
- a successful membrane for a glucose sensor employing oxido-reductase enzymes have to be biocompatible, have to shield towards inter- fering chemical species, and have to be more permeable to oxygen than to glu ⁇ cose.
- US Patent No. 4,484,987 uses a combination membrane with discrete domains of a hydrophobic material embedded in a hydrophilic membrane. Al- though simple to describe and test in the laboratory, working membranes having stable long-term stability, sufficient permeability, as well as adequate mechanical strength have proven extremely difficult to produce due to the formation of large structures showing poor cohesion.
- US Patent Nos. 5,882, 494 and 5,777,060 describe a homogenous poly- mer composition, which is a reaction product of at least one diisocyanate, at least one hydrophilic diol or diamine, and at least one silicone material.
- the po ⁇ rous membrane in this patent incorporates two different types of bonds and components into a single polymer.
- the reaction of a diisocyanate and a diol makes the urethane linkage and the same isocyanate reacts with diamine to make a urea linkage.
- siloxane is a part of the reaction product.
- Micro porous membranes may work well during short term experiments. Due to the porosity, the electrodes and the enzyme layer of the sensor are, how ⁇ ever, exposed to body fluids containing proteins that degrade the sensor per- formance rapidly due to fouling of the electrodes and deterioration of the active enzyme.
- the experiments using PU/PEO copolymer showed additional and unexpected advantages. Due to the PEO content, the PU/PEO copolymer ab- sorbs water (swells). As the swelled polymer transports water very efficient to the inner parts of the sensor this dramatically decreases the start-up time of the system.
- An additional benefit of the swelling polymer system is that tensile stresses induced in the membrane during production is partly or fully balanced by the volume expansion, thus resulting in a membrane system which in the use situation is free of internal stresses.
- glucose biosensors can be found in "In vivo char ⁇ acteristics of Needle Type Glucose Measurements of subcutaneous glucose con- centrations in Human Volunteers", Shinchri et al, Horm. Metab. Res., Suppl Ser., 17-20, 20 (1988); "In vivo measurements of subcutaneous glucose concentra ⁇ tions with an enzymatic glucose sensor and a wick method", Bruckel et al., Klin.
- the invention is in particular suitable for transdermal sensors employ ⁇ ing one or more oxido-reductase enzymes.
- Yet another objective is to ensure high mechanical strength of the mem ⁇ brane and thus ensure mechanical integrity of the system in realistic use situa ⁇ tions.
- Yet another object of this invention is to provide a membrane having bio- compatible properties.
- Yet another objective is to enable production of multi-phase membranes containing both hydrophobic oxygen transporting domains as well as hydrophilic domains enhancing the biocompatibility of the system, for example, a membrane of this invention.
- Yet another object of the present invention is to provide a membrane having good long-term stability during in vivo use, for example, a membrane of this invention.
- a main object of this invention is accomplished by enhancing the perme- ability of oxygen of a membrane by inclusion of domains made from a polymer having high permeability towards oxygen but low permeability towards the spe ⁇ cies oxidized in the sensor into another polymer or a mixture of miscible poly ⁇ mers already permeable to oxygen and immiscible with the first polymer.
- this invention comprises a membrane system for a biosensor peculiar in that the membrane consists of a mixture of at least two immiscible polymers as defined more closely in claim 1 below.
- One of the immiscible polymers is preferably a PU/PEO or PU/polytetramethylene glycol (PTMG) copolymer and, preferably, the other immiscible polymer is enhancing oxygen permeation.
- the membrane of this invention combines several essential properties for amperometric glucose sensors, namely a high sensitivity (high signal-to-noise ratio), large linearity range, high chemical and mechanical stability necessary for in-vivo use, and biocompatibility.
- the immiscible oxygen enhancing polymer forming the dis ⁇ crete particles in the membrane is either a liquid or a solid having a molecular weight above 10 kDa.
- this invention comprises a method for application of a membrane system for a biosensor, peculiar in that the membrane is made from an isotropic compound consisting of at least two immiscible polymers, for exam- pie, a membrane of this invention.
- the membrane is made in many consecutive steps, each step consisting of application of material and subsequent evaporation of solvent. By evaporating of solvent between the application steps, precipitation of larger domains is prevented, thus resulting in a virtually isotropic membrane.
- the membrane is prepared by more than 30 consecutive application/evaporation steps, preferably more than 100 steps, even more preferred more than 500 steps.
- the other immiscible polymers are either dis ⁇ solved with the first immiscible polymer or suspended in the solution as particles or both.
- a solvent is either a pure compound as, for example, ether or a mixture of compounds like alcohol and water, characterized in that the solvent is able to dissolve at least one of the immiscible polymers and that, pref ⁇ erably, the final polymer solution has a viscosity below about 50 cSt at 25°C, more preferred below about 20 cSt at 25°C.
- the layers of the membrane might vary, for example, such that some of layers first applied to the substrate show low permeability towards glucose whereas some of the layers later or last applied to the substrate show high permeability towards glucose.
- the "amperometric oxido-reductase enzyme based biosensor" used for the tests of the product of this invention means a two-electrode electrochemical sensor (as depicted in Fig. 1) comprising a working electrode with largest cross sectional dimensions of 350 ⁇ m x 40 ⁇ m made from a paste of platinium particles, and a reference electrode with largest cross sectional dimensions of 300 ⁇ m x 40 ⁇ m made from a Ag/ AgCI polymer paste.
- the length of the electrode which is in ⁇ tended for implant into the skin is about 15 mm, whereas the uncovered working electrode is about 2.4 mm and the uncovered reference electrode is about 11 mm.
- the electrodes are made by screen-printing the pastes, which are custom made for the purpose.
- the electrodes are printed on opposite sides of a polyim- ide substrate with cross-sectional dimensions of approximate 500 ⁇ m x 180 ⁇ m.
- the working electrode is covered by an inner membrane of a mixture of cellulose triacetate and Nafion ® with a thickness of 1 to 8 ⁇ m.
- an enzyme layer of thickness 1 to 8 ⁇ m made from glucose oxidase and glutaraldehyde is deposited.
- the product described herein, and denoted an outer membrane, is applied as a complete cover over the electrodes, substrate, dielectric paste and other membranes.
- the sensor is configured as a dipole running at a constant voltage of 0.6V.
- the sensor defined above is also equivalent to an "electrochemical glucose sensor”.
- the noise is defined as the fluctuations of the current of an amperometric oxido-reductase enzyme based biosensor where a constant background has been subtracted from the average current.
- Time-varying contributions to the current of non-glucose origin such as interfer- ents (for example, ascorbic acid, acetaminophen, and uric acid) is not included in the background, but they are expected to give negligible contributions to the measured currents.
- extended linearity range for measurements of glucose means that the current response to glucose addition is linear in a range 5 mM broader, when comparing the linearity range of an amperometric oxido-reductase enzyme based biosensor having an outer membrane of the test material with the linearity range of an amperometric oxido-reductase enzyme based biosensor having an outer membrane of a material identical with the test material with the proviso that it does not contain the high oxygen permeability material.
- the term "ultimate tensile strength in wet condition" is deter ⁇ mined by an elongation of a polymer thin film having approximate dimensions of 10 mm wide x 20 mm long x ⁇ 30 ⁇ m thick at 30 mm/min until rupture using a Lloyds instruments tensile rig LR5K with a 20 Newton measuring head.
- the polymer has been immersed for at least 6 hours in PBS buffer (pH 7.4, 150 mM NaCI) prior to the tensile test, which is performed within 5 minutes after lifting the thin film from the buffer.
- a sufficient biocompatibility in vivo means that the de ⁇ vice performs with an appropriate host response in a specific application (WiI- liams, 1995) thus ensuring a stable biosensor response when implanted subcuta- neously in, for example, the arm or the abdomen.
- permeability towards oxygen or oxygen permeability means the transmission of oxygen molecules through a polymer film.
- the quantity of the permeant is typically expressed by mass, moles, or gaseous vol ⁇ ume at standard temperature (273.15K) and pressure (1.013xl0 5 Pa) (STP). The quantities given here are given in volume at STP.
- Stern and Bhide J. Appl. Polymer Sci., 2131, 38 (1989); Stern et al., J. Polym. Sci. B, 1263, 25 (1987).
- an amperometric oxido-reductase enzyme based biosensor used for the tests of the product according to this invention retains its linearity range with respect to glucose, response time, stability and other properties before and after, for example, e-beam irradiation.
- a sufficient low start up time means that an am ⁇ perometric oxido-reductase enzyme based biosensor used for the tests of the product of this invention reaches its equilibrium condition after immersion in a glucose containing fluid within 1 hour.
- stable response of a biosensor means that a glucose sensor, such as the one defined above as an am ⁇ perometric oxido-reductase enzyme based biosensor, inserted 3 days in the sub ⁇ cutaneous tissue has a detectable glucose signal, i.e.
- the insertion of the sensor in the subcutaneous tissue is performed by a needle like in ⁇ sertion device which can penetrate the skin without damaging the sensor and be removed after use.
- the subcutaneous tissue in the abdomen is typically used as measuring site, but other sites can also be utilized such as the upper arm.
- the term “long term stability” means that a sensor, as described in Fig. 1 and exemplified above in the definition of "an amperometric oxido- reductase enzyme based biosensor" and which has an outer membrane in accor ⁇ dance with this invention, has a current, when measured in-vitro in a PBS buffer (pH 7.4, 150 mM sodium chloride (NaCI)) at reduced oxygen tension (30-60 mm Hg), linear up to at least 20 mM glucose giving a sensitivity of at least 0.4 nA/mM/mm 2 at given times after production of the membranes (up to several months, for example, 6 months, or even years, for example 2 years). In addi ⁇ tion, the signal does not decrease more than 20% per day for 3 days when the sensor is measured at a given times after manufacture.
- a PBS buffer pH 7.4, 150 mM sodium chloride (NaCI)
- NaCI sodium chloride
- the signal does not decrease more than 20% per day for 3 days when the sensor
- the term "good chemical stability” means that a sensor such as the above defined amperometric oxido-reductase enzyme based biosensor with an outer membrane of this invention has both the herein defined stable response and the herein defined long term stability.
- the term "good mechanical stability” means that an outer mem ⁇ brane of this invention when applied on a sensor exemplified in the definition of an amperometric oxido-reductase enzyme based biosensor does not delaminate or does not rupture after 3 days insertion in the subcutaneous tissue.
- the inven ⁇ tion covers ranges for an outer membrane which yield strength and ultimate elongation which are, for example, measured by the procedure mentioned in Ex ⁇ ample 6.
- polyurethane refers to a polymer containing at least two urethane linkages.
- Fig. 1 illustrates an amperometric glucose sensor employing an oxido-reductase enzyme designed for subcutaneous or intravenous use.
- Fig. 2 illustrates the reactions taking place in the enzyme containing layer of the sensor, below the outer membrane.
- Fig. 3 illustrates a membrane as described by Fig. 2 of US Patent No. 4,484,987.
- Fig. 4 illustrates an enlarged scale illustration of the membrane according to this invention.
- Fig. 5a & 5b shows the in-vivo (pig) sensor signal for a pure polyurethane membrane (Thermedics HP60D-20) and with 18.6 wt % polydimethylsiloxane (DC360) dispersed therein. The addition of the polydimethylsiloxane clearly en ⁇ hances the sensor response to approx. 20 mM (Fig. 5b) from merely 10 mM (Fig. 5a).
- Fig. 6 shows ESEM image of an outer membrane on a glucose sensor
- Fig. 7a is a scanning electron microscope image of a cross section (per ⁇ pendicular to the outer surface) of a membrane of this invention spray deposited onto a flat substrate (not visible in this figure).
- the white inclusions (domains) represent the hydrophobic silicone domains (PDMS 12500 cSt) in a continuous matrix of hydrophilic polyurethane.
- Fig 7b is a close up of the membrane in Fig. 7a where the silicone do ⁇ mains have been colored dark.
- Fig. 8 ATR-FTIR measurements of a membrane (18.6 wt % DC360 in Thermedics HP60D-20) : Silicone and polyurethane identified in final processed membrane.
- Fig. 9 shows the current response of an amperometric biosensor to glu ⁇ cose in an PBS buffer having an outer membrane of this invention.
- Fig. 10 shows DSC measurement of a membrane of this invention.
- Fig. 11 shows a comparison of discrete blood glucose measurements
- Fig. 13 illustrates a peeled off membrane from polyurethane and poly ⁇ dimethylsiloxane (hereinafter designated PDMS) prepared according to the pro ⁇ cedure suggested in U.S. Patent No. 4,484,987. Note that large voids are present in the interface between the membrane and the substrate. It is believed that these voids are formed due to cohesion failure of the weak PDMS phase during evaporation of the solvent.
- PDMS poly ⁇ dimethylsiloxane
- Fig. 14 is a surface of membrane similar to the one illustrated in fig. 3 made from polyurethane and PDMS. Note that large number of visible voids and crevices. It is believed that these are formed due to cohesion failure of the weak PDMS phase during evaporation of the solvent.
- This invention relates to a membrane comprising a continuous phase of one polymer (or a mixture of miscible polymers) and discrete domains of a second high molecular weight polymer with high oxygen permeability (permeability to- wards oxygen), where the polymers in each phase are immiscible, and where the second high molecular weight polymer has a domain size in the range from about 20 ⁇ m to about 1 nm, preferably from about 10 ⁇ m to about 10 nm, more pre ⁇ ferred from about 5 ⁇ m to about 50 nm, and, when said product is used as a dense or mostly dense outer membrane of a glucose oxidase based biosensor, it results in a) a signal-to-noise ratio larger than 3, b) sensitivity larger than 0.4 nA/mM/mm 2 , c) an extended linearity range for measurements of glucose, d) good chemical stability, and e) good mechanical stability during in-vivo use for measurements of glucose using said glucose oxida
- the term immiscible herein designates that the continuous phase is not or only to a minor degree mixed with the polymer forming discrete domains.
- discrete domains of the second polymer are present in the polymer or polymer mixture forming a continuous or substantial continuous phase.
- the membrane of this invention is one wherein one of the two polymers is a hydrophilic polymer.
- the membrane of this invention is one wherein one of the two polymers is a hydrophobic polymer. In one embodiment, the membrane of this invention is one wherein the continuous phase is hydrophilic and the discrete domains are hydrophobic.
- the membrane of this invention comprises a continuous phase of one polymer (or a mixture of miscible polymers) and discrete domains of a second high molecular weight polymer, where the polymers in each phase are immiscible.
- the polymers can be immiscible through their hydropho- bic/hydrophilic character.
- the hydrophobic polymer is a polysiloxane, floro-carbon polymer or their block- copolymers.
- One way of preparing the membrane of this invention is by mixing a Nq- uid polysiloxane with a dissolved polyurethane resulting in a solution which - af ⁇ ter spray drying - can easily be applied as outer membrane to sensors. Due to the immiscible nature of polyurethane and polysiloxane, the former being hydro ⁇ philic and the latter hydrophobic, one of the materials 6 (See Fig. 4) will precipi ⁇ tate as domains in the other 7 when the solvent evaporates, thus forming the desired multiphase system (see Fig.
- the average domain size of the hy ⁇ drophobic domains 6 preferably is in the range from about 20 ⁇ m to about 1 nm, more preferred from about 10 ⁇ m to about 10 nm, even more preferred from about 5 ⁇ m to about 50 nm.
- the membrane of this invention is one wherein the molecular weight of the hydrophobic polymer is in the range from about 10 kDa to about 100 kDa, preferably from about 20 kDa to about 80 kDa, more pre ⁇ ferred from about 30 kDa to about 60 kDa, most preferred about 42 kDa. In one embodiment, the membrane of this invention is one wherein the molecular weight of the hydrophobic polymer is at least about 10 kDa, preferably at least about 20 kDa, more preferred at least about 30 kDa, most preferred about 42 kDa, and preferably not more than about 60 kDa.
- Fig. 7a shows a scanning electron microscopy image of a membrane of this invention.
- the small light domains seen in Fig. 7a are the small hydrophobic domains of polydimethylsiloxane. To highlight the hydrophobic domains (phase 2 in Fig. 7b), these domains have been colored black (dark), in order to make them visible.
- the membrane of this invention is one wherein one of the immiscible polymers is a PU/PEO or PU/polytetramethylene glycol (desig ⁇ nated PTMG) copolymer.
- the membrane system according to this invention may be made from a compound consisting of at least two immiscible polymers where at least one of the polymers is a PU/PEO or PU/PTMG copolymer and the other polymer has a high permeability towards oxygen.
- this in- vention relates to a product as described above which is prepared using a hydro ⁇ phobic polymer having a permeability towards oxygen in the range from about 7 x 10 "12 to about 7 x 10 "10 cm 3 (273.15K, 1.013 x 10 5 Pa) x cm/(cm 2 x s x Pa), preferably about 1.4 x 10 "11 to about 3.5 x 10 "10 cm 3 (273.15K, 1.013 x 10 5 Pa) x cm/(cm 2 x s x Pa), more preferred about 2.3 x 10 "11 to about 2.1x 10 ⁇ 10 cm 3 (273.15K, 1.013 x 10 5 Pa) x cm/(cm 2 x s x Pa), most preferred about 7 x 10 "11 cm 3 (273.15K, 1.013 x 10 5 Pa) x cm/(cm 2 x s x Pa).
- the novelty underlying this invention is, inter alia, a membrane wherein the siloxane is present as discrete domains in the continuous phase of polyurethane without the formation of any co-polymer.
- the permeability of glucose and oxygen can be adjusted at will and thereby the linearity region of a non-mediated electrochemical glucose sensor by simply altering the concentration of silicone in the polyurethane.
- this invention relates to a product as described above wherein the content of hydrophobic material is in the range from about 1 % to about 50 % (weight/- weight) of the total weight, preferably from about 5 % to about 25 %, more pre ⁇ ferred from about 8 % to about 20 %, most preferred about 18.6 %.
- the PU/PEO or PU/PTMG copolymer used according to this invention is in an embodiment a polymer belonging to the family of polyurethanes.
- polyurethane refers here to a polymer containing at least two urethane linkages.
- PU/PEO or PU/PTMG copolymers are readily available from commercial sources such as Thermedics, for example, under the name of Teco- philic.
- this invention relates to a product as described above wherein the hydrophilic polymer is a water-swellable polyurethane.
- the polyure- thane may comprise hydrogels such as polyvinylalcohol, poly(2-hydroxyl- methacrylate) (polyHEMA), polyvinylpyrrolidone (PVP), or polyethyleoxide (PEO).
- this invention relates to a product as described above con ⁇ taining at least one hydrophilic polymer.
- the membrane of this invention comprises one or more layers.
- the invention comprises double layer membranes, where the innermost layer, which in an amperometric biosensor (see Fig.
- the invention comprises, furthermore, a triple layer mem ⁇ brane, where the innermost layer consists of PU, PU-PEO, or PU-PTMG, the sec ⁇ ond layer of PU-PEO/PDMS, PU-PTMG/PDMS, PU/PU-PEO/PDMS, PU/PU-PTMG/- PDMS, and the third layer of PU-PEO, or PU-PTMG.
- PDMS is polydimethyl- siloxane.
- polyurethanes are formed by combining diisocyanates with al ⁇ cohols and/or amines. For example, combining isophorone diisocyanate with PEG 600 and aminopropyl polysiloxane under polymerizing conditions provides a polyurethane/polyurea composition having both urethane (carbamate) linkages and urea linkages. Diisocyanates which are useful in the preparation of biocom- patible polyurethanes are described in detail in Szycher (Seminar on advances in medical grade polyurethanes. Technomic Publishing, (1995)) including both aro ⁇ matic and aliphatic diisocyanates.
- aromatic diisocyantes in ⁇ examples include toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, and 3,3'-di- methyl-4,4'-biphenyldiisocyanate.
- Suitable aliphatic diisocyanates include, for example 1,6-hexamethylene diisocyanate (HDI), trimethylhexamethylene diiso ⁇ cyanate (TMDI), trans-l,4-cyclohexane diisocyanate (CHDI), 1,4-cyclohexane bis(methylene isocyanate) (H 6 XDI), isophorone diisocyanate (IPDI), and 4,4'- methylenebis(cyclohexylisocyanate).
- HDI 1,6-hexamethylene diisocyanate
- TMDI trimethylhexamethylene diiso ⁇ cyanate
- CHDI trans-l,4-cyclohexane diisocyanate
- H 6 XDI 1,4-cyclohexane bis(methylene isocyanate)
- IPDI isophorone diisocyanate
- 4,4'- methylenebis(cyclohexylisocyanate 4,4'-
- the PU/PEO or PU/PTMG copolymer is dissolved in a solvent.
- the other immiscible polymer is either dissolved with the first immiscible polymer, suspended in the solution as particles, or dissolved in its own solvent which allows a homogenous mixture of the total dispersion.
- a solvent is either a pure compound as , for example, ether or a mixture of compounds like alcohol and water, characterized in that the solvent is able to dissolve at least one of the immiscible polymers.
- this invention relates to a membrane as described above having an ultimate tensile strength in wet condition in the range from about 0.1 MPa to about 50 MPa, pref ⁇ erably in the range from about 1 MPa to about 40 MPa, more preferred in the range from about 2 MPa to about 30 MPa, most preferred about 8 MPa.
- the ulti- mate elongation of the polymer varies from about 150% to about 800% of its original length, preferably between about 200% and about 700%, more prefera ⁇ bly from about 250% to about 600%.
- this invention relates to a product as described above which is prepared from a hydrophobic material having a viscosity above about 5000 centistokes, preferably above about 10,000 centistokes, more preferably above about 12,000 centistokes.
- the membrane of this invention is one wherein any hydrophilic polymer is a water swellable polyurethane or compositions of block copolymers of polyurethane, for example, polyurethane/polyethylene oxide, polyurethane/polytetramethylene ether glycol, or polyurethane/polydimethyl- siloxene.
- the membrane of this invention is one wherein the polyurethane-polysiloxane block copolymer is utilized as a compatibi- lizer/emulsifier for stabilisation of polysiloxane domains.
- the membrane of this invention is one wherein the hydrophilic polymer is preferably one from the family of aliphatic, polyether based polyurethanes named Tecophilic from Thermedics Inc., more preferably Tecophilic HP60D-20 from Thermedics Inc.
- the membrane of this invention is one wherein the hydrophobic polymer is polydimethylsiloxane, preferably DC360 (viscosity 12,500 cSt, Medical grade) from Dow Corning.
- the membrane of this invention is one which is pre ⁇ pared from a hydrophilic polymer which swells from about 1% to about 50% of its dry resin weight, preferably from about 5 to about 40%, more preferred from about 10 to about 30%, most preferred about 20%.
- the membrane of this invention is one containing at least one or more hydrophilic polymers.
- the membrane of this invention is one where the polymer in suspension or solution is in the range from about 0.1% to about 10%, more preferable from about 0.25% to about 2% (weight/weight).
- the membrane of this invention is one where the solvent is either THF, dimethylformamide, an alcohol, or water or a mixture of the mentioned solvents.
- the membrane of this invention is one where the solvents and/or solvents include antioxidants (for example, butylated hydroxy- toluen (herein designated BHT)).
- the membrane of this invention is one where the content of THF is in the range from about 60% to about 100% (volume/volume), more preferably from about 70 to about 90%.
- the membrane of this invention is one where the solvent for the polydimethylsiloxane is preferably chosen from the group consist ⁇ ing of hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, or a mixture thereof. In one embodiment, the membrane of this invention is one sufficient bio- compatibility in vivo as defined herein.
- the membrane of this invention is one wherein the hydrophilic water swellable material is a polyurethane. In one embodiment, the membrane of this invention is one wherein the content of hydrophobic material is in the range from about 1 % to about 50 % (weight/weight) of the total weight, preferably from about 5 % to about 25 %, more preferred from about 8 % to about 20 %, most preferred about 18.6 %. In one embodiment, this invention relates to a two or more phase bio ⁇ compatible membrane consisting of a membrane of this invention.
- FIG. 1 shows an example of an amperometric 2-electrode electro ⁇ chemical glucose sensor employing an oxido-reductase enzyme designed for sub ⁇ cutaneous use.
- the sensor is comprised of polymer substrate 1, electrodes 2, an anti-interference membrane 3, an enzyme layer 4, and an outer membrane 5.
- the enzyme can either be deposited as a layer (as shown in Fig. 1) or be em- bedded in the anti-interference membrane.
- Fig. 2 shows the reactions taking place in the enzyme layer of an amperometric glucose sensor.
- the gluconolactone further reacts with water to hydrolyze the lactone ring and produce gluconic acid.
- one molecule of oxygen is consumed and one mole ⁇ cule of hydrogen peroxide is produced for each glucose molecule.
- the electro- chemical method detects the changes in either oxygen or hydrogen peroxide re ⁇ lating the measured signal to the concentration of glucose.
- Hydrogen peroxide H 2 O 2 reacts electrochemically on a electrode surface with an applied potential of 0.6 V as shown below
- Fig. 9 shows the current from a glucose sensor immersed in PBS buffer (pH 7.4, 150 mM NaCI) at reduced oxygen tension (30-60 mm Hg), where the outer membrane of the sensor is pro ⁇ quizzed according to this invention.
- the response to glucose addition is linear, thus showing no sign of "the oxygen deficit problem”.
- Fig. 5a and 5b shows the continuous sensor current measured in vivo (pig) and the correspond ⁇ ing blood plasma values.
- this invention relates to an implantable biosensor having an outer membrane consisting of a product as described above.
- this inven ⁇ tion also relates to an implantable biosensor for measuring the reaction of an analyte and oxygen, the working electrode of the sensor including a layer of en- zyme, characterized in that said biosensor has an outer membrane consisting of a membrane of this invention.
- this invention depends not on the configuration of the biosen ⁇ sor, but rather on the use of the two phase biocompatible membrane of this in ⁇ vention to cover the sensor elements.
- this invention relates to a membrane as described above having a thickness in the range from about 1 ⁇ m to 60 ⁇ m about, preferably from about 5 ⁇ m to about 50 ⁇ m, more preferred from about 20 ⁇ m to about 40 ⁇ m, most preferred about 35 ⁇ m.
- An example of a membrane of a spray-deposited membrane on an electrode for a biosensor is shown in Fig. 6, 7a and 7b. In Environmental Scanning Electron Micrograph (see Fig. 6), a cross section of the outer membrane is seen as the dark region on top of the image.
- this invention relates to a membrane as described above having a volume in the range from about 0.01 x 10 "10 m 3 to about 250 x 10 "10 m 3 , preferably from about 0.5 x 10 "10 m 3 to about 150 x 10 "10 m 3 , more preferred from about 10 "10 m 3 to about 50 x 10 "10 m 3 , most preferred about 5 x 10 "10 m 3 .
- this invention relates to an implantable biosensor for measuring the reaction of an analyte and oxygen, the working electrode of the sensor including a layer of enzyme, said biosensor having an outer membrane consisting of a membrane of this invention.
- this inven ⁇ tion relates to an implantable biosensor as described above wherein the analyte is glucose.
- this invention relates to an implantable bio- sensor as described above wherein the enzyme is glucose oxidase.
- this invention relates to a product as described above having a sufficient biocompatibility in vivo.
- An implanted glucose sensor with an outer membrane of this invention implanted for 3 days in the subcutane ⁇ ous tissue (stomach) in a human did not result in any adverse events (allergic response or other immune responses).
- only a single calibration set (sensitivity, background current, and a time delay between blood and subcuta ⁇ neous blood values) after day 1 was necessary for achieving a correspondence between the two set of glucose values (see Fig. 11) for day 2 and day 3.
- the absence of signal decay after a 3 day period high-lights the stability and bio- compatibility of the membrane.
- this invention relates to a product as described above which can be e-beam sterilized using a dose 2 x 25 kGy without changing the properties in an undesired way.
- this invention relates to a membrane which has a long term stability of at least 232 days after production, thus high lighting that no migration of the polysiloxane seems to happen.
- the product does not show any phase transitions in the region from 6 0 C to 45 0 C which may alter the properties of the membrane and is thus stable to temperature changes in the given interval as evidenced by the dif- ferential scanning calorimetric measurement of a thin film membrane of the de ⁇ scribed invention seen in Fig. 10.
- this invention relates to an implantable biosen ⁇ sor as described above, having a sufficient low start up time as defined herein.
- the implantable biosensor of this invention is one having a stable biosensor response for 3 days when inserted in the subcutaneous tissue.
- the implantable biosensor of this invention is one comprising a double layer membrane, where the innermost layer, which in an amperometric biosensor (see Fig. 1) will be closest to the electrode, and is made from PU/PDMS or PU and the outermost layer is made from PU-PEO, PU-PTMG, PU-PEO/PDMS, PU-PTMG/PDMS, PU/PU-PEO/PDMS, or PU/PU-PTMG/PDMS.
- the implantable biosensor of this invention is one comprising a triple layer membrane, where the innermost layer consists of PU, PU-PEO, or PU-PTMG, the second layer of PU-PEO/PDMS, PU-PTMG/PDMS, PU/PU-PEO/PDMS, PU/PU-PTMG/PDMS, and the third layer of PU-PEO, or PU- PTMG.
- the method of this invention is a method for placing a layer consisting of two immiscible polymers on a substrate, for example, for preparing a membrane ac ⁇ cording to any one of the preceding membrane claims, characterized in a) using a solvent, preparing a solution or suspension containing one or more polymers, b) applying a part of said polymer solution or suspension through a spray nozzle to said substrate in such a way that a certain amount of said sol ⁇ vent is evaporated before the polymer solution/suspension reaches the substrate, c) after the remaining part of the polymer solution or suspension has reached the substrate, allowing a substantial part of the remaining amount of sol ⁇ vent present in the polymer solution/suspension to evaporate, d) applying a part of said polymer solution or suspension through a spray nozzle to said substrate in such a way that a certain amount of said sol ⁇ vent is evaporated before the polymer solution/suspension reaches the substrate e) after the remaining part of the polymer solution or suspension has
- the method of this invention relates to a method for placing a layer consisting of at least two immiscible polymers on a substrate.
- the method of this invention covers the produc ⁇ tion of outer membranes for glucose sensors.
- the preferred substrate includes an electrode formed by screen printing technology or by thin film technology, wherein the substrate optionally is coated with other membrane layers such as enzyme layer or other polymer membranes.
- the substrate could be polyimid or polyester, whereas the electrode could include platinum.
- a solution or suspension containing one or more polymers is applied through a spray nozzle to a substrate in such a way that a certain amount of the solvent present in the polymer solution/suspension is evaporated before the polymer solution/suspension reaches the substrate. After the remaining part of the polymer solution/suspension has reached the substrate, a substantial part of the remaining amount of solvent, present in the polymer solution/suspension, is allowed to evaporate, before a new amount of the polymer solution/suspension is sprayed onto the substrate now with the previous layer of polymer.
- the time pe ⁇ riod from the point of time when one amount of polymer solution/suspension reaches the substrate to the point of time where the next amount of polymer so ⁇ lution or suspension reaches the substrate is preferably in the range from about 50 milliseconds to about 10 seconds.
- a polymer solution/suspension is repeatedly sprayed onto the substrate for a total of preferably at least about 30 steps, preferably at least about 100, and more preferred at least about 500.
- the thickness of the layer de- posited in each step is preferably below about 5 ⁇ m, preferably below about 1 ⁇ m and even more preferably below about 100 ⁇ m.
- the amount of sol ⁇ vent, which is evaporated before the polymer solution/suspension reaches the substrate is in the range from about 80 % to about 99 % (volume/volume).
- the content of solvent remaining in the polymer solution/suspension ap ⁇ plied in one step is below about 19 % (volume/volume), preferably below about 10 %, more preferred below about 1 %, before a further amount of polymer so ⁇ lution/suspension is applied in the following step.
- the method of this invention which is used for application of the polymer solution or suspension may be a particle generating process, for example a spray process, where a nozzle with an air supply is used.
- more than one spray nozzle can be used at the same time, giving the possibility to spray two or more different polymer solutions or suspensions at the same time or at substantially the same time on the same substrate. More than one spray nozzle can also be used sequentially. This could give the advantage of making a lamellar structure if each nozzle sprays different polymer solution or suspensions.
- the coating is made from a compound consisting of at least two immiscible polymers where at least one of the polymers is soluble.
- the soluble poly ⁇ mer belongs to the family of polyurethanes.
- polyure- thane refers to a polymer containing at least two urethane linkages.
- PU/PEO polyurethane and PEO is polyethyleneoxide copolymers are readily available from commercial sources such as Thermedics, for example, under the name Te- cophilic HP-60D-20.
- Polyurethane/polydimethylsiloxane copolymers are readily available from commercial sources such as The Polymer Technology Group, for example PurSil.
- the amount of polymer in the solution or suspension is in the range from about 0.1 % to about 10 % (weight/weight) and more preferred from about 0.25 % to about 2 % (weight/weight).
- the method of this invention relates to a method wherein the soluble polymers are cellulose triacetate and Nafion in combination. If one of the polymers is not soluble in the chosen solvent, this has to be suspended in the solution.
- suspension of active particles in dissolved polymers is not special (see, for example, US patent No. 6,355,058)
- the parti ⁇ cles used in the method of this invention are special in that, preferably, their size has to be smaller than about 1/10 of the thickness of the final coating, that is preferable below about 5 ⁇ m, and even more preferably below about 1 ⁇ m.
- silioxanes and fluoropolymers are preferred due to the high oxygen permeation in these materials.
- polydimethylsiloxane which is, for example, available from Dow Corn- ing under the name DC360 (Medical grade), with a viscosity of at least 600 cSt and more preferred at least about 12,500 cSt is used.
- one or more solvents can be used.
- ganic solvents such as tetrahydrofuran, hexamethyldisiloxane, oc- tamethyltrisiloxane, decamethyltetrasiloxane, dimethylformamide, hexan, and heptan alone or in combination.
- water can be used in combination with one or more organic solvents.
- the solvent is a mixture of tetrahydrofuran, hexamethyldisiloxane and water in the proportions (weight/weight) 60-100% tetrahydrofuran, 0-25% hexamethyldisiloxane, and 0-10% water and more preferred 70-90% tetrahydro- furan, 10-20% hexamethyldisiloxane, and 0-10% water.
- the method of this invention is one wherein one of the polymers is polyurethane or compositions of copolymers of polyurethane, for ex ⁇ ample, polurethane/polyethyleneoxide or polyurethane/polydimethylsiloxane. In one embodiment, the method of this invention is one wherein one of the polymers is Tecophilic HP-60D-20 from Thermedics.
- the method of this invention is one wherein one of the polymers is Pursil from The Polymer Technology Group.
- the method of this invention is one wherein one of the polymers is cellulose triacetate or a composition of cellulose triacetate and Nafion. In one embodiment, the method of this invention is one wherein the other polymer is selected from the group consisting of polydimethylsiloxane, flouropolymers, and siloxanes.
- the method of this invention is one wherein the polydimethylsiloxane has a viscosity of at least about 600 cSt, more preferred at least about 12,500 cSt.
- the method of this invention is one wherein the polydimethylsiloxane is DC360 (1250OcSt, Medical grade) from Dow Corning.
- the method of this invention is one wherein more than about 90 %, preferably more than about 95 %, more preferred more than about 99 % of one of the polymers is dissolved in the solvent.
- the method of this invention is one wherein the final layer consists of 3 or 4 different polymers.
- the method of this invention is one wherein, in one or more of the steps b), d) etc., a solution or suspension containing 3 different polymers is used.
- the method of this invention is one wherein the amount of polymer in the solution or suspension according to step a) is in the range from about 0.1 % to about 10 %, more preferred from about 0.25 % to about 2 % (weight/weight).
- the method of this invention is one wherein the sub ⁇ strate includes an electrode optionally coated with other membrane layers such as enzyme layer or other polymer membranes.
- the method of this invention is one wherein the sub- strate is a polyimid or a polyester.
- the membrane is ap ⁇ plied to an electrode formed by screen printing technology or thin film technol ⁇ ogy.
- the method of this invention is one wherein the elec- trode includes platinum.
- the method of this invention is one wherein the sol ⁇ vent is selected from the group consisting of tetrahydrofuran, hexamethyldisilox- ane, octamethyltrisiloxane, decamethyltetrasiloxane, dimethylformamide, hexan, heptan, and a mixture of two or more of these solvents.
- the method of this invention is one where the sol ⁇ vent consists of a mixture of water and two ore more organic solvents. In one embodiment, the method of this invention is one where the sol ⁇ vent used is a mixture of tetrahydrofuran, hexamethyldisiloxane, and water.
- the method of this invention is one where the con ⁇ tent of tetrahydrofuran is within the range from about 60 % to about 100 % (weight/weight), preferably from about 70 % to about 90 % (weight/weight). In one embodiment, the method of this invention is one where the con ⁇ tent of hexamethyldisiloxane is within the range from about 0 % to about 25 % (weight/weight), preferably from about 10 % to about 20 % (weight/weight).
- the method of this invention is one where the con ⁇ tent of water in the solvent is within the range from about 0 % to about 10 % (weight/weight).
- the method of this invention is one wherein the ap ⁇ plication of the polymer solution or suspension according to step b), d), etc. is performed by a particle generating process.
- the method of this invention is one wherein the ap- plication of the solution or suspension according to step b), d), etc. is performed by a spray process using a nozzle with an air supply.
- the method of this invention is one wherein an amount in the range from about 80 % to about 99 % (volume/volume) of the solvent is evaporated before the polymer solution/suspension reaches the sub- strate (i.e. evaporated in step b), d) etc.).
- the method of this invention is one wherein the time period from the start of a step allowing a substantial part of the remaining amount of solvent present in the polymer solution or suspension to evaporate to the preceding step allowing a substantial part of the remaining amount of solvent present in the polymer solution or suspension to evaporate (such as from the start of step b) to the start of step d)) is in the range from about 50 milliseconds to about 10 seconds.
- the method of this invention is one wherein the total number of steps b), c), d), e), etc. is at least about 30, preferably at least about 100, more preferred at least about 500.
- the method of this invention is one wherein the polymer solution or suspension applied in steps b), d) etc. has the same or sub ⁇ stantially the same composition.
- the method of this invention is one wherein the polymer solution or suspension applied in steps b), d) etc. does not have the same or substantially the same composition. In one embodiment, the method of this invention is one wherein the first layers applied are a primer of one polymer and the next layers are made from another polymer solution.
- the method of this invention is one wherein more than one spray nozzle is used at the same time or sequentially with the same or different polymer solutions.
- the method of this invention is one wherein the con ⁇ tent of solvent in the polymer solution or suspension applied in the last step is below about 19 % (volume/volume), preferably below about 10 %, more pre ⁇ ferred below about 1 %, before a further amount of the polymer solution or sus- pension prepared as described in step a) is applied in the following step.
- the method of this invention is one wherein the layer consists of one phase of polymer wherein a second phase of polymer is dis ⁇ persed.
- the method of this invention is one wherein the dis- persed polymer has a domain size below about 5 ⁇ m, preferably below about 1 ⁇ m .
- the method of this invention is one wherein the thickness of the layer deposited is below about 5 ⁇ m, preferably below about 1 ⁇ m, even more preferably below about 100 nm . In one embodiment, the method of this invention is one wherein the amount of polymer in the suspension or solution is in the range from about 0.1% to about 10%, more preferable from about 0.25% to about 2% (weight/weight). In one embodiment, the method of this invention is one wherein the sol ⁇ vent used is either tetrahydrofuran, dimethylformamide, an alcohol, or water or a mixture of the mentioned solvents.
- the method of this invention is one wherein the sol- vents and/or solvents used include antioxidants, for example, butylated hydroxy- toluen.
- the method of this invention is one wherein the con ⁇ tent of tetrahydrofuran in the solution used is in the range from about 60% to about 100% (volume/volume), more preferably from about 70 to about 90%.
- the method of this invention is one wherein the solvent for the polydimethylsiloxane is preferably chosen from the group consisting of hexa- methyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, or a mixture thereof.
- This example illustrates how to manufacture a membrane of this invention aimed for use in a glucose detecting biosensor by spraying a mixture of a polymer solu ⁇ tion onto a substrate resulting in a membrane.
- a commercially available polyurethane which swells 20% compared to dry resin weight, is dissolved in 9.5THF: 0.5H 2 O. To this, 18.65 weight % (of the total dry weight of polymer) of polydimethylsiloxane dissolved in hexamethyldisi- loxane was dispersed in the polyurethane solution to obtain a membrane of this invention.
- polydimethylsiloxane (DC360, 1250OcSt, purchased from Dow Corning) is added to 900 ml hexametyldisiloxane, (OSlO purchased from Dow Corning) giving 0.65 weight % polydimetylsiloxane in hexamethyldisiloxane.
- 128.41 g of 0.65 weight % polydimethylsiloxane in hexamethyldisiloxane is added to 800 ml of 0.5 weight % tecophilic in 9.5THF: 0.5H 2 O and the solution is stirred until the complete solvation of siloxane (approximately 30 min). The relation between siloxane and total amount of polymer is then calculated to be 18.65 %.
- the solution is sprayed using a 0.3 mm nozzle with a flow of material of
- This example illustrates the evaluation of a membrane-coated biosensor con- structed according to this invention.
- a two electrode system (see definition of an amperometric oxido- reductase enzyme based biosensor) where a outer membrane was spray-coated with an approximately 35 ⁇ m thick membrane with the composition described in Example 1.
- the sensor is immersed in a standard PBS buffer (pH 7.4, 15OmM NaCI) at reduced oxygen tension (30-60mm Hg) and subsequent the immersion an initial pulse given of 1.1 Volt for 360 seconds is applied.
- the sensor is kept at 0.6 V for the remaining measurements.
- This example illustrates how a membrane consisting of polyurethane and silicone can be applied on an electrode by dip coating.
- the electrode Prior to dipping in the membrane solution, the electrode is dipped in a surface enhancer to optimize the uniformity of the finished membrane. 15 wt% Triton X-100 (Sigma-Aldrich) dissolved in ethanol is used as surface enhancer.
- the membrane solution consists of 4.45 wt% Tecoflex EG-80A (Thermedics Inc.) and 0.85 wt% polydimethylsiloxane (DC360, 12500 cSt, Dow Corning) dissolved in tetrahydrofuran.
- the membrane is applied by a single vertical dip resulting in a membrane with a thickness of 10 ⁇ m.
- This example illustrates how a membrane containing two types of polyurethane and one type of silicone can be constructed.
- Tecoflex EG-80A and 1.82 g Tecophilic HP-60D-20 are solvated in 800 ml 9.75THF:0.25H 2 O. This solution is stirred for at least 60 hours. Then 128.41 g polydimetylsiloxane solution (prepared as described in example 1) is added to the solution thereby giving 18.65% siloxane of the total dry weight of polymer.
- a two-electrode system where the working electrode, pre-coated with a layer of glucose oxidase which is approximately 4 ⁇ m thick, is spray-coated with the so- lution described in this example to achieve a membrane of this invention having a thickness of approximately 20 ⁇ m.
- This example illustrates how a membrane containing two layers of two kinds of polyurethane each containing polydimethylsiloxane can be constructed.
- Tecoflex EG-80A is solvated in 800 ml THF and to this is added 128.41 g polydimethylsiloxane solution as prepared in example 1.
- a two- electrode system where the working electrode is coated with a layer of glucose oxidase is spray-coated with the solution described in the above to achieve a membrane layer, where the Tecoflex layer is in the range from 1 to 5 ⁇ m thick. Then subsequently the solution described in example 1 is sprayed on top of this membrane with a thickness in the range from 1 to 25 ⁇ m thick in order to achieve a sensitivity above 0.4 nA/mM/mm 2 .
- This example illustrates how to perform a tensile test of thin polymer films of this invention.
- the polymer thin film was cut in pieces approxi- mately 10 x 20 mm 2 in size and the thickness measured using a precision mi ⁇ crometer measuring tool with an accuracy of ⁇ 1 ⁇ m.
- the tensile test was per ⁇ formed on a LLoyds instruments tensile rig LR5K using a 20 Newton measuring head for the measurements since prior experiments have shown that the force necessary to reach the ultimate tensile strength for the used polyurethane- silicone films is in the range from 1 to 10 Newton.
- the stress was applied to the polymer film by an elongation of 30 mm/min until the film breaks.
- Fig. 12 shows the stress-strain curves obtained for a commercial polyure- thane, InspireTM 2301.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Vascular Medicine (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05775831A EP1784249A2 (fr) | 2004-08-16 | 2005-08-15 | Membrane semi-permeable multiphase biocompatible pour biocapteurs |
JP2007526455A JP2008510154A (ja) | 2004-08-16 | 2005-08-15 | バイオセンサーのための多相系生物適合型の半透過性膜 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200401234 | 2004-08-16 | ||
DKPA200401235 | 2004-08-16 | ||
DKPA200401235 | 2004-08-16 | ||
DKPA200401234 | 2004-08-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006018425A2 true WO2006018425A2 (fr) | 2006-02-23 |
WO2006018425A3 WO2006018425A3 (fr) | 2006-06-08 |
Family
ID=35276209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/054000 WO2006018425A2 (fr) | 2004-08-16 | 2005-08-15 | Membrane semi-permeable multiphase biocompatible pour biocapteurs |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1784249A2 (fr) |
JP (1) | JP2008510154A (fr) |
WO (1) | WO2006018425A2 (fr) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090240121A1 (en) * | 2008-03-21 | 2009-09-24 | Nova Biomedical Corporation | Intravascular sensor and insertion set combination |
US20090275815A1 (en) * | 2008-03-21 | 2009-11-05 | Nova Biomedical Corporation | Temperature-compensated in-vivo sensor |
US7682338B2 (en) | 2006-08-23 | 2010-03-23 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US7686787B2 (en) | 2005-05-06 | 2010-03-30 | Medtronic Minimed, Inc. | Infusion device and method with disposable portion |
US7736344B2 (en) | 2006-08-23 | 2010-06-15 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US7794434B2 (en) | 2006-08-23 | 2010-09-14 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US7811262B2 (en) | 2006-08-23 | 2010-10-12 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US7828764B2 (en) | 2006-08-23 | 2010-11-09 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
EP2257794A1 (fr) * | 2008-03-28 | 2010-12-08 | Dexcom, Inc. | Membranes polymères pour capteurs de substance à analyser continus |
US8137314B2 (en) | 2006-08-23 | 2012-03-20 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with compressible or curved reservoir or conduit |
US8187228B2 (en) | 2006-08-23 | 2012-05-29 | Medtronic Minimed, Inc. | Infusion pumps and methods and delivery devices and methods with same |
US8277415B2 (en) | 2006-08-23 | 2012-10-02 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US8303574B2 (en) | 2006-02-09 | 2012-11-06 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US8323250B2 (en) | 2007-04-30 | 2012-12-04 | Medtronic Minimed, Inc. | Adhesive patch systems and methods |
WO2013025801A2 (fr) | 2011-08-15 | 2013-02-21 | University Of Connecticut | Lutte contre l'encrassement biologique dans des biocapteurs implantables |
US8414563B2 (en) | 2007-12-31 | 2013-04-09 | Deka Products Limited Partnership | Pump assembly with switch |
EP2600761A2 (fr) * | 2010-08-06 | 2013-06-12 | Microchips, Inc. | Composition de membrane pour biocapteur, biocapteur et leurs procédés de fabrication |
US8496646B2 (en) | 2007-02-09 | 2013-07-30 | Deka Products Limited Partnership | Infusion pump assembly |
US8512288B2 (en) | 2006-08-23 | 2013-08-20 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
WO2013184416A3 (fr) * | 2012-06-08 | 2014-03-20 | Medtronic Minimed, Inc. | Application de spectroscopie à impédance électrochimique dans des systèmes de capteur, dispositifs et procédés associés |
US8840586B2 (en) | 2006-08-23 | 2014-09-23 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US9603557B2 (en) | 2004-07-13 | 2017-03-28 | Dexcom, Inc. | Transcutaneous analyte sensor |
US9632054B2 (en) | 2010-12-31 | 2017-04-25 | Cilag Gmbh International | Systems and methods for high accuracy analyte measurement |
US9668677B2 (en) | 2004-07-13 | 2017-06-06 | Dexcom, Inc. | Analyte sensor |
US9693721B2 (en) | 2008-03-28 | 2017-07-04 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9724028B2 (en) | 2006-02-22 | 2017-08-08 | Dexcom, Inc. | Analyte sensor |
US9763609B2 (en) | 2003-07-25 | 2017-09-19 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US9763608B2 (en) | 2009-07-02 | 2017-09-19 | Dexcom, Inc. | Analyte sensors and methods of manufacturing same |
US9804114B2 (en) | 2001-07-27 | 2017-10-31 | Dexcom, Inc. | Sensor head for use with implantable devices |
WO2017195035A1 (fr) | 2016-05-10 | 2017-11-16 | Interface Biologics, Inc. | Capteurs de glucose implantables à surface biostable |
US9901514B2 (en) | 2007-04-30 | 2018-02-27 | Medtronic Minimed, Inc. | Automated filling systems and methods |
US9931067B2 (en) | 1997-03-04 | 2018-04-03 | Dexcom, Inc. | Device and method for determining analyte levels |
US9993186B2 (en) | 2003-07-25 | 2018-06-12 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US10028683B2 (en) | 2008-09-19 | 2018-07-24 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US10052051B2 (en) | 2002-05-22 | 2018-08-21 | Dexcom, Inc. | Silicone based membranes for use in implantable glucose sensors |
US10300507B2 (en) | 2005-05-05 | 2019-05-28 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
US10321844B2 (en) | 2013-12-16 | 2019-06-18 | Medtronic Minimed, Inc. | In-vivo electrochemical impedance spectroscopy (EIS)-based calibration |
US10376143B2 (en) | 2003-07-25 | 2019-08-13 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10667733B2 (en) | 2009-09-30 | 2020-06-02 | Dexcom, Inc. | Transcutaneous analyte sensor |
WO2020120467A1 (fr) * | 2018-12-13 | 2020-06-18 | Hamilton Bonaduz Ag | Électrode combinée à diaphragme présentant de l'hydrogel et procédé de fabrication d'une électrode combinée |
US10791928B2 (en) | 2007-05-18 | 2020-10-06 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
CN112014448A (zh) * | 2020-09-01 | 2020-12-01 | 深圳硅基传感科技有限公司 | 生物传感器及其制备方法以及生物传感器用的聚合物膜层 |
US11364335B2 (en) | 2006-02-09 | 2022-06-21 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11395877B2 (en) | 2006-02-09 | 2022-07-26 | Deka Products Limited Partnership | Systems and methods for fluid delivery |
US11404776B2 (en) | 2007-12-31 | 2022-08-02 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US11426512B2 (en) | 2006-02-09 | 2022-08-30 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US11478623B2 (en) | 2006-02-09 | 2022-10-25 | Deka Products Limited Partnership | Infusion pump assembly |
US11497686B2 (en) | 2007-12-31 | 2022-11-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11497846B2 (en) | 2006-02-09 | 2022-11-15 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11523972B2 (en) | 2018-04-24 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11524151B2 (en) | 2012-03-07 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11534542B2 (en) | 2007-12-31 | 2022-12-27 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
CN115651525A (zh) * | 2022-12-09 | 2023-01-31 | 乐普(北京)医疗器械股份有限公司 | 一种葡萄糖扩散限制性聚合物外膜及其制备方法和应用 |
US11597541B2 (en) | 2013-07-03 | 2023-03-07 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11642283B2 (en) | 2007-12-31 | 2023-05-09 | Deka Products Limited Partnership | Method for fluid delivery |
US11723841B2 (en) | 2007-12-31 | 2023-08-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US11890448B2 (en) | 2006-02-09 | 2024-02-06 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US11964126B2 (en) | 2006-02-09 | 2024-04-23 | Deka Products Limited Partnership | Infusion pump assembly |
US12064590B2 (en) | 2006-02-09 | 2024-08-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US12070574B2 (en) | 2006-02-09 | 2024-08-27 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6001067A (en) | 1997-03-04 | 1999-12-14 | Shults; Mark C. | Device and method for determining analyte levels |
WO2008136845A2 (fr) | 2007-04-30 | 2008-11-13 | Medtronic Minimed, Inc. | Remplissage de réservoir, gestion des bulles d'air, et systèmes et procédés d'administration de milieu de perfusion associés |
US8597243B2 (en) | 2007-04-30 | 2013-12-03 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir air bubble management |
US7959715B2 (en) | 2007-04-30 | 2011-06-14 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir air bubble management |
US8434528B2 (en) | 2007-04-30 | 2013-05-07 | Medtronic Minimed, Inc. | Systems and methods for reservoir filling |
US8613725B2 (en) | 2007-04-30 | 2013-12-24 | Medtronic Minimed, Inc. | Reservoir systems and methods |
US8682408B2 (en) | 2008-03-28 | 2014-03-25 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9351677B2 (en) | 2009-07-02 | 2016-05-31 | Dexcom, Inc. | Analyte sensor with increased reference capacity |
JP6403653B2 (ja) * | 2015-11-05 | 2018-10-10 | シラグ・ゲーエムベーハー・インターナショナルCilag GMBH International | 高精度分析物測定用システム及び方法 |
CN115151190A (zh) * | 2020-02-28 | 2022-10-04 | 普和希控股公司 | 传感器及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4484987A (en) * | 1983-05-19 | 1984-11-27 | The Regents Of The University Of California | Method and membrane applicable to implantable sensor |
EP0535898A1 (fr) * | 1991-10-04 | 1993-04-07 | Eli Lilly And Company | Membranes de polyuréthane hydrophiles pour capteurs électrochimiques de glucose |
US5284140A (en) * | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5882494A (en) * | 1995-03-27 | 1999-03-16 | Minimed, Inc. | Polyurethane/polyurea compositions containing silicone for biosensor membranes |
US20030217966A1 (en) * | 2002-05-22 | 2003-11-27 | Dexcom, Inc. | Techniques to improve polyurethane membranes for implantable glucose sensors |
-
2005
- 2005-08-15 EP EP05775831A patent/EP1784249A2/fr not_active Withdrawn
- 2005-08-15 WO PCT/EP2005/054000 patent/WO2006018425A2/fr active Application Filing
- 2005-08-15 JP JP2007526455A patent/JP2008510154A/ja not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4484987A (en) * | 1983-05-19 | 1984-11-27 | The Regents Of The University Of California | Method and membrane applicable to implantable sensor |
EP0535898A1 (fr) * | 1991-10-04 | 1993-04-07 | Eli Lilly And Company | Membranes de polyuréthane hydrophiles pour capteurs électrochimiques de glucose |
US5284140A (en) * | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5882494A (en) * | 1995-03-27 | 1999-03-16 | Minimed, Inc. | Polyurethane/polyurea compositions containing silicone for biosensor membranes |
US20030217966A1 (en) * | 2002-05-22 | 2003-11-27 | Dexcom, Inc. | Techniques to improve polyurethane membranes for implantable glucose sensors |
Non-Patent Citations (1)
Title |
---|
BINDRA D S: "DESIGN AND IN VITRO STUDIES OF A NEEDLE-TYPE GLUCOSE SENSOR FOR SUBCUTANEOUS MONITORING" ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, vol. 63, no. 17, 1 September 1991 (1991-09-01), pages 1692-1696, XP000248936 ISSN: 0003-2700 cited in the application * |
Cited By (193)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9931067B2 (en) | 1997-03-04 | 2018-04-03 | Dexcom, Inc. | Device and method for determining analyte levels |
US9804114B2 (en) | 2001-07-27 | 2017-10-31 | Dexcom, Inc. | Sensor head for use with implantable devices |
US11020026B2 (en) | 2002-05-22 | 2021-06-01 | Dexcom, Inc. | Silicone based membranes for use in implantable glucose sensors |
US10052051B2 (en) | 2002-05-22 | 2018-08-21 | Dexcom, Inc. | Silicone based membranes for use in implantable glucose sensors |
US10610140B2 (en) | 2003-07-25 | 2020-04-07 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US9763609B2 (en) | 2003-07-25 | 2017-09-19 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US9993186B2 (en) | 2003-07-25 | 2018-06-12 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US10376143B2 (en) | 2003-07-25 | 2019-08-13 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US10813576B2 (en) | 2004-07-13 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US10709363B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
US10918314B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10918313B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10918315B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10827956B2 (en) | 2004-07-13 | 2020-11-10 | Dexcom, Inc. | Analyte sensor |
US9603557B2 (en) | 2004-07-13 | 2017-03-28 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10799158B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
US10799159B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
US10722152B2 (en) | 2004-07-13 | 2020-07-28 | Dexcom, Inc. | Analyte sensor |
US10709362B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
US10932700B2 (en) | 2004-07-13 | 2021-03-02 | Dexcom, Inc. | Analyte sensor |
US10980452B2 (en) | 2004-07-13 | 2021-04-20 | Dexcom, Inc. | Analyte sensor |
US10524703B2 (en) | 2004-07-13 | 2020-01-07 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10993641B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US10314525B2 (en) | 2004-07-13 | 2019-06-11 | Dexcom, Inc. | Analyte sensor |
US10993642B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US11026605B1 (en) | 2004-07-13 | 2021-06-08 | Dexcom, Inc. | Analyte sensor |
US11045120B2 (en) | 2004-07-13 | 2021-06-29 | Dexcom, Inc. | Analyte sensor |
US9814414B2 (en) | 2004-07-13 | 2017-11-14 | Dexcom, Inc. | Transcutaneous analyte sensor |
US11064917B2 (en) | 2004-07-13 | 2021-07-20 | Dexcom, Inc. | Analyte sensor |
US11883164B2 (en) | 2004-07-13 | 2024-01-30 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US9668677B2 (en) | 2004-07-13 | 2017-06-06 | Dexcom, Inc. | Analyte sensor |
US11051726B2 (en) | 2005-03-10 | 2021-07-06 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918318B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11000213B2 (en) | 2005-03-10 | 2021-05-11 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10925524B2 (en) | 2005-03-10 | 2021-02-23 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610137B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10617336B2 (en) | 2005-03-10 | 2020-04-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10709364B2 (en) | 2005-03-10 | 2020-07-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10716498B2 (en) | 2005-03-10 | 2020-07-21 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10743801B2 (en) | 2005-03-10 | 2020-08-18 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918317B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918316B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10898114B2 (en) | 2005-03-10 | 2021-01-26 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10856787B2 (en) | 2005-03-10 | 2020-12-08 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10300507B2 (en) | 2005-05-05 | 2019-05-28 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
US9233203B2 (en) | 2005-05-06 | 2016-01-12 | Medtronic Minimed, Inc. | Medical needles for damping motion |
US9180248B2 (en) | 2005-05-06 | 2015-11-10 | Medtronic Minimed, Inc. | Infusion device with base portion and durable portion |
US10220143B2 (en) | 2005-05-06 | 2019-03-05 | Medtronic Minimed, Inc. | Infusion device with base portion and durable portion |
US11141530B2 (en) | 2005-05-06 | 2021-10-12 | Medtronic Minimed, Inc. | Infusion device with base portion and durable portion |
US7935085B2 (en) | 2005-05-06 | 2011-05-03 | Medtronic Minimed, Inc. | Infusion device and method with disposable portion |
US7955305B2 (en) | 2005-05-06 | 2011-06-07 | Medtronic Minimed, Inc. | Needle inserter and method for infusion device |
US7699833B2 (en) | 2005-05-06 | 2010-04-20 | Moberg Sheldon B | Pump assembly and method for infusion device |
US7686787B2 (en) | 2005-05-06 | 2010-03-30 | Medtronic Minimed, Inc. | Infusion device and method with disposable portion |
US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US8529553B2 (en) | 2005-08-23 | 2013-09-10 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US11738139B2 (en) | 2006-02-09 | 2023-08-29 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11904134B2 (en) | 2006-02-09 | 2024-02-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11339774B2 (en) | 2006-02-09 | 2022-05-24 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11395877B2 (en) | 2006-02-09 | 2022-07-26 | Deka Products Limited Partnership | Systems and methods for fluid delivery |
US11408414B2 (en) | 2006-02-09 | 2022-08-09 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11413391B2 (en) | 2006-02-09 | 2022-08-16 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11426512B2 (en) | 2006-02-09 | 2022-08-30 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US12070574B2 (en) | 2006-02-09 | 2024-08-27 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US11478623B2 (en) | 2006-02-09 | 2022-10-25 | Deka Products Limited Partnership | Infusion pump assembly |
US11497846B2 (en) | 2006-02-09 | 2022-11-15 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11534543B2 (en) | 2006-02-09 | 2022-12-27 | Deka Products Limited Partnership | Method for making patch-sized fluid delivery systems |
US11559625B2 (en) | 2006-02-09 | 2023-01-24 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11617826B2 (en) | 2006-02-09 | 2023-04-04 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US9259531B2 (en) | 2006-02-09 | 2016-02-16 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11690952B2 (en) | 2006-02-09 | 2023-07-04 | Deka Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
US8998850B2 (en) | 2006-02-09 | 2015-04-07 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11786651B2 (en) | 2006-02-09 | 2023-10-17 | Deka Products Limited Partnership | Patch-sized fluid delivery system |
US11890448B2 (en) | 2006-02-09 | 2024-02-06 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US8414522B2 (en) | 2006-02-09 | 2013-04-09 | Deka Products Limited Partnership | Fluid delivery systems and methods |
US11364335B2 (en) | 2006-02-09 | 2022-06-21 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11964126B2 (en) | 2006-02-09 | 2024-04-23 | Deka Products Limited Partnership | Infusion pump assembly |
US11992650B2 (en) | 2006-02-09 | 2024-05-28 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US8585377B2 (en) | 2006-02-09 | 2013-11-19 | Deka Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
US8545445B2 (en) | 2006-02-09 | 2013-10-01 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US12064590B2 (en) | 2006-02-09 | 2024-08-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US8303574B2 (en) | 2006-02-09 | 2012-11-06 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US9724028B2 (en) | 2006-02-22 | 2017-08-08 | Dexcom, Inc. | Analyte sensor |
US8172804B2 (en) | 2006-08-23 | 2012-05-08 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US8226615B2 (en) | 2006-08-23 | 2012-07-24 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US8187228B2 (en) | 2006-08-23 | 2012-05-29 | Medtronic Minimed, Inc. | Infusion pumps and methods and delivery devices and methods with same |
US8512288B2 (en) | 2006-08-23 | 2013-08-20 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US8840586B2 (en) | 2006-08-23 | 2014-09-23 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US7736338B2 (en) | 2006-08-23 | 2010-06-15 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US7828764B2 (en) | 2006-08-23 | 2010-11-09 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US7811262B2 (en) | 2006-08-23 | 2010-10-12 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US8840587B2 (en) | 2006-08-23 | 2014-09-23 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US8444607B2 (en) | 2006-08-23 | 2013-05-21 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US7905868B2 (en) | 2006-08-23 | 2011-03-15 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US7794434B2 (en) | 2006-08-23 | 2010-09-14 | Medtronic Minimed, Inc. | Systems and methods allowing for reservoir filling and infusion medium delivery |
US8277415B2 (en) | 2006-08-23 | 2012-10-02 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US7744589B2 (en) | 2006-08-23 | 2010-06-29 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US7789857B2 (en) | 2006-08-23 | 2010-09-07 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US7736344B2 (en) | 2006-08-23 | 2010-06-15 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with drive device for driving plunger in reservoir |
US7682338B2 (en) | 2006-08-23 | 2010-03-23 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US8475432B2 (en) | 2006-08-23 | 2013-07-02 | Medtronic Minimed, Inc. | Infusion medium delivery system, device and method with needle inserter and needle inserter device and method |
US8202250B2 (en) | 2006-08-23 | 2012-06-19 | Medtronic Minimed, Inc. | Infusion pumps and methods and delivery devices and methods with same |
US8137314B2 (en) | 2006-08-23 | 2012-03-20 | Medtronic Minimed, Inc. | Infusion medium delivery device and method with compressible or curved reservoir or conduit |
US8496646B2 (en) | 2007-02-09 | 2013-07-30 | Deka Products Limited Partnership | Infusion pump assembly |
US9901514B2 (en) | 2007-04-30 | 2018-02-27 | Medtronic Minimed, Inc. | Automated filling systems and methods |
US9980879B2 (en) | 2007-04-30 | 2018-05-29 | Medtronic Minimed, Inc. | Automated filling systems and methods |
US10772796B2 (en) | 2007-04-30 | 2020-09-15 | Medtronic Minimed, Inc. | Automated filling systems and methods |
US8323250B2 (en) | 2007-04-30 | 2012-12-04 | Medtronic Minimed, Inc. | Adhesive patch systems and methods |
US10791928B2 (en) | 2007-05-18 | 2020-10-06 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US11701300B2 (en) | 2007-12-31 | 2023-07-18 | Deka Products Limited Partnership | Method for fluid delivery |
US8491570B2 (en) | 2007-12-31 | 2013-07-23 | Deka Products Limited Partnership | Infusion pump assembly |
US11404776B2 (en) | 2007-12-31 | 2022-08-02 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US11497686B2 (en) | 2007-12-31 | 2022-11-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US9526830B2 (en) | 2007-12-31 | 2016-12-27 | Deka Products Limited Partnership | Wearable pump assembly |
US11534542B2 (en) | 2007-12-31 | 2022-12-27 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11642283B2 (en) | 2007-12-31 | 2023-05-09 | Deka Products Limited Partnership | Method for fluid delivery |
US8414563B2 (en) | 2007-12-31 | 2013-04-09 | Deka Products Limited Partnership | Pump assembly with switch |
US11723841B2 (en) | 2007-12-31 | 2023-08-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11894609B2 (en) | 2007-12-31 | 2024-02-06 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US20090240121A1 (en) * | 2008-03-21 | 2009-09-24 | Nova Biomedical Corporation | Intravascular sensor and insertion set combination |
US20100010323A1 (en) * | 2008-03-21 | 2010-01-14 | Nova Biomedical Corporation | Temperature-compensated in-vivo sensor |
US20090275815A1 (en) * | 2008-03-21 | 2009-11-05 | Nova Biomedical Corporation | Temperature-compensated in-vivo sensor |
US9693721B2 (en) | 2008-03-28 | 2017-07-04 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
EP2257794A1 (fr) * | 2008-03-28 | 2010-12-08 | Dexcom, Inc. | Membranes polymères pour capteurs de substance à analyser continus |
EP2257794A4 (fr) * | 2008-03-28 | 2014-08-20 | Dexcom Inc | Membranes polymères pour capteurs de substance à analyser continus |
US10143410B2 (en) | 2008-03-28 | 2018-12-04 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US11147483B2 (en) | 2008-03-28 | 2021-10-19 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US10028683B2 (en) | 2008-09-19 | 2018-07-24 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US10028684B2 (en) | 2008-09-19 | 2018-07-24 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US10561352B2 (en) | 2008-09-19 | 2020-02-18 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US11918354B2 (en) | 2008-09-19 | 2024-03-05 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US9763608B2 (en) | 2009-07-02 | 2017-09-19 | Dexcom, Inc. | Analyte sensors and methods of manufacturing same |
EP2454595B1 (fr) * | 2009-07-15 | 2019-01-02 | Nova Biomedical Corporation | Capteur in vivo compensé en température |
US10835161B2 (en) | 2009-09-30 | 2020-11-17 | Dexcom, Inc. | Transcutaneous analyte sensor |
US11937927B2 (en) | 2009-09-30 | 2024-03-26 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10667733B2 (en) | 2009-09-30 | 2020-06-02 | Dexcom, Inc. | Transcutaneous analyte sensor |
EP2600761A2 (fr) * | 2010-08-06 | 2013-06-12 | Microchips, Inc. | Composition de membrane pour biocapteur, biocapteur et leurs procédés de fabrication |
US9322103B2 (en) | 2010-08-06 | 2016-04-26 | Microchips Biotech, Inc. | Biosensor membrane composition, biosensor, and methods for making same |
EP2600761A4 (fr) * | 2010-08-06 | 2014-08-13 | Microchips Inc | Composition de membrane pour biocapteur, biocapteur et leurs procédés de fabrication |
US10371663B2 (en) | 2010-12-31 | 2019-08-06 | Lifescan Ip Holdings, Llc | Systems and methods for high accuracy analyte measurement |
US9632054B2 (en) | 2010-12-31 | 2017-04-25 | Cilag Gmbh International | Systems and methods for high accuracy analyte measurement |
WO2013025801A2 (fr) | 2011-08-15 | 2013-02-21 | University Of Connecticut | Lutte contre l'encrassement biologique dans des biocapteurs implantables |
WO2013025801A3 (fr) * | 2011-08-15 | 2013-06-13 | University Of Connecticut | Lutte contre l'encrassement biologique dans des biocapteurs implantables |
US9101301B2 (en) | 2011-08-15 | 2015-08-11 | The University Of Connecticut | Control of biofouling in implantable biosensors |
US11524151B2 (en) | 2012-03-07 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US10321865B2 (en) | 2012-06-08 | 2019-06-18 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US10172544B2 (en) | 2012-06-08 | 2019-01-08 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US11234624B2 (en) | 2012-06-08 | 2022-02-01 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
EP3158935A1 (fr) * | 2012-06-08 | 2017-04-26 | Medtronic Minimed, Inc. | Application de spectroscopie d'impédance électrochimique dans des systèmes de capteurs, des dispositifs et des procédés associés |
EP3158934A1 (fr) * | 2012-06-08 | 2017-04-26 | Medtronic Minimed, Inc. | Application de spectroscopie d'impédance électrochimique dans des systèmes de capteurs, des dispositifs et des procédés associés |
US12082929B2 (en) | 2012-06-08 | 2024-09-10 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
EP3167803A1 (fr) * | 2012-06-08 | 2017-05-17 | Medtronic Minimed, Inc. | Application de spectroscopie à impédance électrochimique dans des systèmes de capteur, dispositifs et procédés associés |
US9989490B2 (en) | 2012-06-08 | 2018-06-05 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9632060B2 (en) | 2012-06-08 | 2017-04-25 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9625415B2 (en) | 2012-06-08 | 2017-04-18 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9625414B2 (en) | 2012-06-08 | 2017-04-18 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US10156543B2 (en) | 2012-06-08 | 2018-12-18 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US11160477B2 (en) | 2012-06-08 | 2021-11-02 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
EP3666186A1 (fr) * | 2012-06-08 | 2020-06-17 | Medtronic Minimed, Inc. | Application de spectroscopie d'impédance électrochimique dans des systèmes de capteurs, dispositifs et procédés associés |
EP4349249A3 (fr) * | 2012-06-08 | 2024-07-10 | Medtronic MiniMed, Inc. | Procédé d'application de spectroscopie d'impédance électrochimique dans des systèmes de capteurs |
US10660555B2 (en) | 2012-06-08 | 2020-05-26 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
WO2013184416A3 (fr) * | 2012-06-08 | 2014-03-20 | Medtronic Minimed, Inc. | Application de spectroscopie à impédance électrochimique dans des systèmes de capteur, dispositifs et procédés associés |
US9808191B2 (en) | 2012-06-08 | 2017-11-07 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9357958B2 (en) | 2012-06-08 | 2016-06-07 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US10905365B2 (en) | 2012-06-08 | 2021-02-02 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9801576B2 (en) | 2012-06-08 | 2017-10-31 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9861746B2 (en) | 2012-06-08 | 2018-01-09 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9989491B2 (en) | 2012-06-08 | 2018-06-05 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US11213231B2 (en) | 2012-06-08 | 2022-01-04 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9408567B2 (en) | 2012-06-08 | 2016-08-09 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US10335077B2 (en) | 2012-06-08 | 2019-07-02 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9213010B2 (en) | 2012-06-08 | 2015-12-15 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US10342468B2 (en) | 2012-06-08 | 2019-07-09 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9645111B2 (en) | 2012-06-08 | 2017-05-09 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US10335076B2 (en) | 2012-06-08 | 2019-07-02 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US9863911B2 (en) | 2012-06-08 | 2018-01-09 | Medtronic Minimed, Inc. | Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods |
US12012241B2 (en) | 2013-07-03 | 2024-06-18 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11597541B2 (en) | 2013-07-03 | 2023-03-07 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US10321844B2 (en) | 2013-12-16 | 2019-06-18 | Medtronic Minimed, Inc. | In-vivo electrochemical impedance spectroscopy (EIS)-based calibration |
US10945630B2 (en) | 2013-12-16 | 2021-03-16 | Medtronic Minimed, Inc. | Use of Electrochemical Impedance Spectroscopy (EIS) in gross failure analysis |
US10638947B2 (en) | 2013-12-16 | 2020-05-05 | Medtronic Minimed, Inc. | Use of electrochemical impedance spectroscopy (EIS) in intelligent diagnostics |
US11382527B2 (en) | 2013-12-16 | 2022-07-12 | Medtronic Minimed, Inc. | Use of electrochemical impedance spectroscopy (EIS) in gross failure analysis |
US11717179B2 (en) | 2013-12-16 | 2023-08-08 | Medtronic Minimed, Inc. | Use of electrochemical impedance spectroscopy (EIS) in gross failure analysis |
WO2017195035A1 (fr) | 2016-05-10 | 2017-11-16 | Interface Biologics, Inc. | Capteurs de glucose implantables à surface biostable |
US11523972B2 (en) | 2018-04-24 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
WO2020120467A1 (fr) * | 2018-12-13 | 2020-06-18 | Hamilton Bonaduz Ag | Électrode combinée à diaphragme présentant de l'hydrogel et procédé de fabrication d'une électrode combinée |
EP4137810A1 (fr) * | 2018-12-13 | 2023-02-22 | Hamilton Bonaduz AG | Chaîne de mesure à une tige avec diaphragme présentant de l'hydrogel et procédé de fabrication de la chaîne de mesure à une tige |
CN112014448B (zh) * | 2020-09-01 | 2023-02-17 | 深圳硅基传感科技有限公司 | 生物传感器及其制备方法以及生物传感器用的聚合物膜层 |
CN112014448A (zh) * | 2020-09-01 | 2020-12-01 | 深圳硅基传感科技有限公司 | 生物传感器及其制备方法以及生物传感器用的聚合物膜层 |
CN115651525B (zh) * | 2022-12-09 | 2023-03-21 | 乐普(北京)医疗器械股份有限公司 | 一种葡萄糖扩散限制性聚合物外膜及其制备方法和应用 |
CN115651525A (zh) * | 2022-12-09 | 2023-01-31 | 乐普(北京)医疗器械股份有限公司 | 一种葡萄糖扩散限制性聚合物外膜及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
WO2006018425A3 (fr) | 2006-06-08 |
JP2008510154A (ja) | 2008-04-03 |
EP1784249A2 (fr) | 2007-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1784249A2 (fr) | Membrane semi-permeable multiphase biocompatible pour biocapteurs | |
US10154807B2 (en) | Techniques to improve polyurethane membranes for implantable glucose sensors | |
US5777060A (en) | Silicon-containing biocompatible membranes | |
US6784274B2 (en) | Hydrophilic, swellable coatings for biosensors | |
CN102762740B (zh) | 包含共混膜组合物的分析物传感器及其制造和使用方法 | |
US7871456B2 (en) | Membranes with controlled permeability to polar and apolar molecules in solution and methods of making same | |
EP1669022A2 (fr) | Tête d'analyse pour dispositifs implantables | |
CA2428610A1 (fr) | Matiere polymere hydrophile pour recouvrir des biocapteurs | |
WO1992013271A1 (fr) | Dispositif implantable de mesure de liquides biologiques | |
CN104736720A (zh) | 分析物传感器及其生产方法 | |
CN101018599A (zh) | 用于生物传感器的多相生物相容性半透膜 | |
CN112088217A (zh) | 用于葡萄糖传感器的热稳定葡萄糖限制膜 | |
Sung et al. | Biocompatibility and interference eliminating property of pullulan acetate/polyethylene glycol/heparin membrane for the outer layer of an amperometric glucose sensor | |
CN211478143U (zh) | 一种生物传感器的复合过滤膜 | |
WO1998013685A1 (fr) | Membranes biocompatibles contenant des silicones | |
JP4098364B2 (ja) | 珪素含有生体適合性膜 | |
CA2238005C (fr) | Membranes biocompatibles contenant des silicones | |
WO2008018879A1 (fr) | Membranes avec une régulation de la perméabilité envers des molécules polaires et apolaires en solution et leurs procédés de fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005775831 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007526455 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580030187.9 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2005775831 Country of ref document: EP |