WO2006016693A1 - Hemanalysis apparatus and method of hemanalysis - Google Patents

Hemanalysis apparatus and method of hemanalysis Download PDF

Info

Publication number
WO2006016693A1
WO2006016693A1 PCT/JP2005/014882 JP2005014882W WO2006016693A1 WO 2006016693 A1 WO2006016693 A1 WO 2006016693A1 JP 2005014882 W JP2005014882 W JP 2005014882W WO 2006016693 A1 WO2006016693 A1 WO 2006016693A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
blood
plasma
calibration
blood cell
Prior art date
Application number
PCT/JP2005/014882
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Horiike
Akio Oki
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to US11/659,599 priority Critical patent/US7678577B2/en
Priority to DE112005001929T priority patent/DE112005001929T5/en
Publication of WO2006016693A1 publication Critical patent/WO2006016693A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150213Venting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150221Valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150389Hollow piercing elements, e.g. canulas, needles, for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15142Devices intended for single use, i.e. disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/148Specific details about calibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/111666Utilizing a centrifuge or compartmented rotor

Definitions

  • the present invention relates to a blood analyzer constituted by an ultra-small groove channel manufactured on an insulating material substrate such as a quartz plate or a polymer resin plate.
  • a blood analyzer constituted by an ultra-small groove channel manufactured on an insulating material substrate such as a quartz plate or a polymer resin plate.
  • an insulating material substrate such as a quartz plate or a polymer resin plate.
  • the present invention relates to a flow path and a substrate structure for carrying a liquid such as an analytical sensor calibration liquid or blood by centrifugal force.
  • Patent Document 1 a small and simple blood analysis method and a blood analyzer aiming to carry out blood analysis by one's own hands in each home have been developed (for example, Patent Document 1). reference).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 00 8-2 8 8 8 6
  • FIG. 1 shows an example of a micro-module blood analysis device described in Patent Document 1.
  • Reference numeral 101 denotes a lower substrate of the blood analyzer, and a fine groove channel (micro-cavity) 10 2 formed by etching on the lower substrate is provided.
  • an upper substrate (not shown) of substantially the same size is bonded, and the groove flow channel 102 is sealed from the outside.
  • blood sampling means 103 In the flow path 102, blood sampling means 103, plasma separation means 104, analysis means 105, and moving means 106 are sequentially provided from the most upstream part to the most downstream part.
  • a hollow blood collection needle 10 3 a is attached to the blood collection means 10 3 at the forefront of the flow path, and this needle 10 3 a is inserted into the body to serve as an inlet for blood into the substrate.
  • Separating means 10 4 is a curved portion of the flow path 10 2, and is made of, for example, a U-shaped micro-cabinet. After the collected blood is guided to the U-shaped microphone mouth cavity, the substrate is subjected to acceleration in a certain direction by a centrifuge, thereby precipitating blood cell components at the bottom of the U-shaped part and plasma as the supernatant. Isolate.
  • the analysis means 10 5 is a sensor for measuring each concentration of blood such as pH value, oxygen, carbon dioxide, sodium, potassium, calcium, dulcose, and lactic acid.
  • the moving means 10 6 located at the most downstream part of the flow path is for moving blood by electroosmotic flow in the micro-chamber, and the flow path part 1 connecting between the electrodes 1 0 7 and 1 0 8. It consists of 0-9.
  • the buffer solution filled in the flow path is moved to the downstream side of the flow path by the electroosmotic flow generated by applying a voltage between the electrodes.
  • Blood is taken into the substrate from 0-3.
  • 1 1 0 is an output means for extracting information from the analysis means, and is composed of electrodes and the like.
  • 1 1 1 is a control means for controlling the above collection means, plasma separation means, analysis means, moving means, and output means as required.
  • the blood collected from the sampling means 10 3 is separated into plasma and blood cell components by the separation means 10 04, and this plasma is led to the analysis means 10 5, where the pH value, oxygen, Measure concentrations of carbon, sodium, potassium, calcium, dulcose, urea nitrogen, creatinine, and lactic acid. Movement of blood between each means is performed by moving means 106 having a pumping capacity such as those using phenomena such as electrophoresis and electroosmosis.
  • the downstream area of the flow path 102 is divided into five parts, each of which is provided with analysis means 10 5 and moving means 10 6.
  • a glass material such as quartz is often used for the substrate of such a blood analyzer, but it is more suitable for manufacturing a large amount of the device at a low cost, and in consideration of disposal when disposable. In recent years, resin materials have come to be used.
  • a moving means such as an electroosmotic pump 10 6 is required when a blood sample is introduced into the apparatus. After the introduced blood is centrifuged together with the substrate to obtain plasma, it is necessary to operate the electroosmotic pump 10 6 again to move the plasma to the analysis means 10.
  • the analysis means is a sensor configured based on an electrochemical principle
  • a moving means such as a pump is also required for transferring the calibration liquid.
  • the moving means it is conceivable to use an electroosmotic pump provided in the same substrate as shown in Fig. 1 or a negative pressure pump installed outside the substrate.
  • These moving means move blood, plasma, and calibration liquid by pumping or sucking them.
  • a liquid position sensor must be newly installed in or outside the blood analyzer, and there is a problem that the apparatus becomes expensive because of the addition of these control mechanisms and position sensors. .
  • the analysis means is a sensor constructed based on electrochemical principles
  • the sensor is calibrated with a calibration solution (standard solution) containing a known concentration of the test component, and then the calibration solution is discharged from the analysis means.
  • a calibration solution standard solution
  • the calibration liquid is discharged, some calibration liquid remains on the surface of the analysis means and the flow path means according to the wettability of the surface.
  • the size of the means constituting the apparatus such as the flow path means is the size of the blood analysis apparatus that is currently targeted in order to analyze the concentration of various chemical substances present in a minute amount of blood of several microliters. It is getting smaller.
  • the present inventors are a blood analyzer that separates plasma in a flow path by a centrifugal operation, and transports blood, plasma, and calibration fluid within the apparatus without using a pump or the like.
  • a blood analysis device has been proposed that enables high-accuracy analysis by reliably discharging the calibration liquid from the sensor portion (see, for example, Patent Document 2).
  • Patent Document 2 Japanese Patent Application 2 0 0 3— 0 4 0 4 8 1
  • FIG. 2 shows an example of a blood analyzer described in Patent Document 2 (unpublished).
  • Reference numeral 2 0 1 is an upper substrate on which a flow path is formed, and 2 0 2 is a sensor This is the lower substrate on which the electrodes 20 3 and electrode terminals 2 0 4 for taking out sensor signals to the outside are formed.
  • a blood collection needle 2 0 5 is attached to the upper substrate 2 0 1, and the collected blood is sucked into the blood reservoir 2 0 7 through the guide flow path 2 0 6 and external pump (not shown) from the pressure port 2 0 8 Move by.
  • the flow path 2 0 9 and the flow path 2 1 0 are connected to the opening holes 2 1 1 and 2 1 2 provided on the side walls of the upper substrate 2 0 1, respectively.
  • the opening holes 2 1 1 and 2 1 2 are closed by a holder (not shown) for attaching the.
  • the calibration liquid reservoir 2 1 3 contains the calibration liquid injected from the suction / pressure feeding port 2 08.
  • the blood analyzer substrate is rotated 90 degrees counterclockwise and placed on the centrifuge. That is, when the substrate is moved away from the center of the first centrifugal force central axis 2 14, blood is transported from the blood reservoir 2 07 to the sensor groove 2 17 via the guide channel 2 2 1. If centrifugal force is continuously applied in this state, the blood cell component in the blood is fractionated in the direction in which gravity is applied, that is, below the sensor groove 2 17, and the plasma component is the supernatant above the sensor groove 2 17. As isolated. Since the sensor group 20 3 is arranged in that area, a plurality of electrode terminals in which pH values in blood, oxygen, carbon dioxide, sodium, potassium, calcium, glucose, lactic acid, etc. are connected to each sensor.
  • This proposed blood analyzer is capable of centrifugal operation in two different directions, and the calibration liquid in the calibration liquid reservoir is conveyed to the sensor unit by the centrifugal operation in the first centrifugal direction, and after the sensor calibration Is designed to ensure that the calibration solution can be discharged from the sensor section by centrifuging in the second centrifugal direction. After the calibration solution is discharged, the blood in the blood reservoir can be transported to the sensor unit and separated into blood cells and plasma by centrifuging in the first centrifugal direction.
  • the measurement time with the blood analyzer chip is as short as possible.
  • the distance from the center axis of the centrifuge to the center of the chip is 5 cm, and the time required for injecting and discharging the calibration liquid is usually low centrifugal force of 300 rpm or less. But it is about 1 second.
  • a centrifugal force of at least 400 rpm is required in the blood cell separation region.
  • Fig. 12 shows the relationship between the rotation speed (rpm) and acceleration (G) at this time. Gravitational acceleration of 5 0 0 G at 3 00 rpm and 1 0 0 0 at 4 0 0 0 rpm Equivalent to applying G gravitational acceleration.
  • the output of the sensor decreased due to the centrifugal operation during blood cell / plasma separation.
  • a calibration solution containing 137 mM sodium ions
  • r p m the rotational speed
  • the sensor output shows a stable value of about 20 O mV, but at higher speeds, the sensor output shows a decreasing trend and the variance of the value increased.
  • a sensor showing a stable value of about 20 O mV up to 10 00 r pm was prepared and used for each rotation experiment. Although not specifically shown, the same tendency was also found in the measurement of force rion ions.
  • the sodium ion concentration sensor captures sodium ions.
  • An ion sensitive membrane Bis (12-crown-4) and an anion exclusion agent that serves to prevent the penetration of plasma anions (anions) into the sensitive membrane are mixed with PVC (polyvinyl chloride). This is fixed on the carbon electrode to form a sensor. At that time, a large amount of plasticizer is mixed with PVC to make it easier to incorporate sodium ions into the sensitive membrane. If the centrifugal force at 7000 rpm is estimated from the weight per sensor, the force applied to the sensor is about pico-two tons.
  • the cause of the decrease in sensor output at this high rotational speed is that the PVC film containing plasticizer containing this ion-sensitive film is deformed on the carbon electrode by a strong centrifugal force, and a part of the PVC film is carbon. It is assumed that it was peeled off from the electrode and water was infiltrated. Although it may be possible to change the composition of the film to harden the film and to fix the film to the carbon electrode, curing the film loses the characteristics of the original electrochemical sensor. Disclosure of the invention
  • the present invention has been made in view of such circumstances, and is a blood analyzer that separates plasma by a centrifugal operation, and transports plasma and calibration fluid within the apparatus without using a pump or the like.
  • the first is to provide a blood analyzer that can discharge the calibration liquid from the sensor part reliably, and can perform more accurate analysis without damaging the sensor due to centrifugal operation during plasma separation. The purpose.
  • a second object is to provide a blood analysis method that enables highly accurate analysis without damaging the sensor due to centrifugation during plasma separation.
  • a first object is to provide a blood analyzer for performing plasma separation of a whole blood sample by centrifugation and analyzing a test component in a blood liquid component: (a) A blood cell disposed on the lower end side of the substrate. A plasma separation unit, a blood cell fraction storage unit that deposits and stores a blood cell fraction when centrifugal force is applied, and a plasma fraction that is located above the blood cell storage unit and stores plasma A blood cell / plasma separation unit equipped with a storage unit;
  • the calibration liquid reservoir is located below the sensor unit and above the first centrifugal axis, and the calibration liquid waste liquid reservoir is the sensor. This is achieved by a blood analyzer characterized by being located above the section.
  • the blood analyzer of the present invention is capable of being centered around two different centrifugal shafts, and transporting calibration fluid and waste fluid is centrifuged around the first centrifugal shaft away from the sensor unit. Although the radius increases, the gravity acceleration applied to the sensor can be reduced by centrifuging at a low speed.
  • the centrifugal axis (second centrifugal axis) at this time is placed inside or close to the sensor unit so that the gravitational acceleration applied to the sensor unit is small.
  • the plasma separation part is formed by a U-shaped flow path
  • the blood cell fraction storage part is provided at the lowermost curved part
  • the upper part is used as the plasma fraction storage part.
  • the blood cell fraction storage part may be provided so as to protrude downward from the lowermost end of the u-shaped flow path, and in that case, the volume of the blood cell fraction storage portion in the whole blood sample introduced into the U-shaped flow path is provided. It is preferable to make it larger than the stroke amount.
  • the blood inlet can be provided on the side wall of the U-shaped channel above the plasma fraction container.
  • the U-shaped channel is preferably provided with an air vent channel so that the whole blood sample can be smoothly introduced to the lowermost end of the U-shaped channel.
  • the most preferable mode is to communicate with the lowermost end of the channel.
  • a plurality of sensor grooves may be provided in the sensor unit, and a plurality of sensors for analyzing different test components may be accommodated in each sensor groove.
  • the sensor grooves are arranged on the circumference and the center is the second centrifugal axis, that is, if the sensor grooves are arranged radially around the second centrifugal axis, the second centrifugal axis is the center.
  • the blood introduction port may be provided with a blood collection mechanism that stores already collected blood in the blood introduction port.
  • the second object of the present invention is a blood analysis method comprising the following steps: (1) A blood cell / plasma separation unit disposed on the lower end side of the substrate, and the blood cell fraction when centrifugal force is applied A blood cell fraction containing part for precipitating and containing the blood cell, and a plasma fraction containing part for storing plasma located above the blood cell fraction containing part.
  • a blood introduction port for introducing a whole blood sample into the blood cell / plasma separator a calibration liquid reservoir for storing a calibration liquid for calibrating the sensor; a calibration liquid waste reservoir for storing a calibration liquid after sensor calibration;
  • a blood analyzer having a calibration liquid introduction flow path that communicates between the liquid reservoir and the sensor groove; and a calibration liquid discharge flow path that communicates between the sensor groove and the calibration liquid waste liquid reservoir;
  • the blood analyzer is centrifuged around the first centrifugal axis, and the calibration solution in the sensor groove is discharged into the calibration solution reservoir;
  • the gravitational acceleration applied to the plasma separation unit is 1000 G or more, while the gravitational acceleration applied to the sensor is 500 G or less. If an air vent channel is provided in the plasma fraction storage part of the blood analyzer, outside air is pressurized from the air vent channel without performing a centrifugal operation in the plasma transfer step of step (6). It may be introduced to transport plasma to the sensor unit.
  • FIG. 1 is a conceptual diagram showing an example of a conventional micro-module blood analyzer.
  • FIG. 2 is an overall perspective view of a blood analyzer (unknown) proposed by the inventors.
  • FIG. 3 is a graph showing that the output voltage when the calibration solution (containing 137 mM sodium ion) is measured by a sodium ion sensor varies with the number of revolutions (r p m).
  • FIG. 4 is a schematic plan view of a blood analyzer according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing another example of arrangement of sensor grooves.
  • FIG. 6 is a schematic diagram showing still another example of arrangement of sensor grooves.
  • FIG. 7 is a diagram showing the state of the blood analyzer on the rotator in the calibration liquid introduction process and the calibration liquid discharge process in one embodiment of the blood analysis method of the present invention.
  • FIG. 8 is also a diagram showing the state of the blood analysis device on the rotator in the blood cell / plasma separation process.
  • FIG. 9 is also a diagram showing the state of the blood analyzer on the rotator in the plasma transfer process.
  • FIG. 10 is a diagram showing parameters for obtaining the number of rotations when the solution is discharged from the thin tube by centrifugal force.
  • Fig. 11 shows various parameters for calculating the rotational speed for introducing the calibration liquid by centrifugal force and the rotational speed for discharging the calibration liquid through the mechanical valve in the blood analyzer of the present invention. It is a figure which shows evening.
  • Figure 12 shows the relationship between the gravitational acceleration (G) and the number of rotations (rum) that occur when a rotating body with a radius of 50 nm is rotated.
  • FIG. 4 is a schematic plan view of a blood analyzer according to an embodiment of the present invention.
  • Reference numeral 10 denotes a substrate of the blood analyzer formed vertically in the figure, which is a superposition of the substrate on which the flow path is formed and the substrate on which the sensor electrode and wiring are formed. Indicates.
  • the upper and lower substrates are made of, for example, a resin such as polyethylene television (PET) or polycarbonate (PC).
  • a blood cell / plasma separation unit 12 having a U-shaped flow path is disposed on the lower end side thereof, and a blood cell reservoir 1 serving as a blood cell fraction storage unit 1 is disposed at the lowermost curved portion thereof. 4 is provided.
  • the upper part of the blood cell reservoir 14 is a plasma fraction container 16 where plasma is fractionated as a supernatant during centrifugation.
  • 1 5 is a blood cell reservoir (blood cell compartment)
  • 1 4 is a backflow stopper to prevent blood cells that have settled in 4 from flowing back when handling the substrate.
  • Fig. 4 shows the state after the blood cell / plasma separation operation, and the blackened portion in the blood cell reservoir 14 shows the fractionated blood cells.
  • the hatched portion of the plasma fraction storage part indicates the fractionated plasma.
  • the U-shaped channel 1 2 Side wall is provided with a blood inlet 18 for introducing a whole blood sample above the plasma fraction container 16 and a blood collection mechanism 20 storing the collected blood can be installed here It has become.
  • the blood collection mechanism 20 is composed of a stainless painless needle 2 2, a reinforcing stainless steel tube 24, and a primary blood reservoir 26 for storing blood after blood collection. Inserted into blood inlet 1 8. 28 is an air vent channel communicating with the lowermost end of the U-shaped channel, facilitating the introduction of a whole blood sample from the blood inlet 18.
  • the first centrifugal axis C 1 is located above the blood cell fraction storage unit 14 and below the upper end of the plasma fraction storage unit 16. The plasma fraction above the centrifugal axis C 1 is conveyed to the sensor unit 30 described later by centrifugal operation. Therefore, the position of the first centrifugal axis C 1 is determined according to the amount of plasma fraction to be conveyed.
  • the sensor unit 30 is arranged on the upper end side of the substrate 10 and has a plurality of sensor grooves 32 arranged radially around the second centrifugal axis C2.
  • Each sensor groove 3 2 contains a sensor 3 4, and the output of each sensor is It is led to each electrode terminal 38 exposed to the outside of the substrate through the wiring.
  • the sensor 34 includes, for example, an electrode such as silver / silver chloride or carbon, and a silver / silver chloride reference electrode.
  • the wiring is made of, for example, silver-containing carbon
  • the outer electrode 38 is made of, for example, silver.
  • Reference numeral 42 denotes a calibration liquid reservoir that contains a calibration liquid for calibrating the sensor, and is connected to the sensor unit 30 by a calibration liquid introduction channel 44.
  • the calibration liquid reservoir 42 is located below the sensor unit 30 and above the first centrifugal axis C1. Therefore, when the substrate 10 is centrifuged about the first distal axis C 1, the calibration liquid in the calibration liquid reservoir 42 is conveyed to the sensor unit 30.
  • a calibration solution waste liquid reservoir 46 is provided above the sensor unit 30 and communicates with the sensor unit 30 via a calibration solution discharge channel 48 (an exhaust valve described later).
  • the calibration liquid waste reservoir 46 is disposed so as to surround the sensor unit 30, but at least the volume above the sensor unit 30 is larger than the amount of calibration liquid discharged here. A large volume is sufficient.
  • Reference numerals 50 and 52 are air vent channels.
  • the sensor grooves 3 2 in the sensor section 30 are arranged radially, but as shown in FIG. 5, the sensor grooves 3 2 A are arranged side by side around the second centrifugal axis C 2. 3 OA may be formed. Further, as shown in FIG. 6, the outer wall of the sensor part 30 B may be rectangular, and the sensor grooves 32 B may be arranged radially inside the sensor part 30 B. 4, 5, and 6, the second centrifugal shaft C 2 is arranged inside the sensor units 30, 3 OA, and 30 B. This is to make the heavy acceleration applied to the sensor as small as possible. This is because it is a convenient arrangement. The second centrifugal shaft C 2 is not necessarily arranged inside the sensor unit 30, The gravitational acceleration applied to the sensor can be reduced if the position is close to the support 30.
  • the sensor is calibrated before blood analysis.
  • the substrate 10 of the blood analyzer is placed in a guide groove 62 provided in the diametrical direction on the rotator 60 and placed on the upper side. Fix so that the first center axis C 1 of the substrate 10 is aligned with the C 0 position.
  • the calibration liquid in the calibration liquid reservoir 42 is conveyed to the sensor unit 30. At that time, the air in the sensor unit 30 is exhausted from the air vent channel 52. At this time, the number of rotations of the centrifuge is set so that the calibration solution does not pass through the chiral pulp 48. Stop centrifuge and calibrate each sensor on rotator 60.
  • the calibration solution in the sensor groove 32 is discharged.
  • the position of the substrate 10 is left as it is, the rotator 60 is rotated again, the substrate 10 is centrifuged, and the calibration solution in the sensor unit 30 is discharged to the calibration solution waste reservoir 46.
  • This centrifuge operation can remove the calibration solution covering the sensor, eliminating the possibility of errors in the analytical value due to the residual calibration solution.
  • the calibration liquid discharging process the calibration liquid is passed at higher speed than the centrifuging in the calibration liquid transporting process so that the calibration liquid passes through the chiral pulp 48.
  • the acceleration of gravity is such that the sensor is not damaged by the centrifugal force, and the centrifugal force applied to the sensor unit 30 is preferably 50 G or less.
  • the blood collection mechanism 20 is inserted into the blood introduction port 18 of the substrate 10, the substrate 10 in this state is moved downward in the guide groove 62, and the second centrifugal axis C 2 is rotated by the rotator 60. Fix it so that it matches the position of axis C0 (Fig. 8).
  • the substrate 10 is centrifuged in this state, the whole blood sample is conveyed into the U-shaped channel 12 and further separated into plasma and blood cells.
  • the blood cell fraction is stored in the blood cell reservoir 14 and the plasma fraction is in the U-shaped flow path. It is fractionated as a supernatant in the upper part of 1 2 (plasma fraction accommodating part 16).
  • the centrifugal operation at this time is performed in order to completely separate blood cells, and it is preferable that a centrifugal force of 100 G or more is applied to the lowermost part of the U-shaped channel.
  • the substrate 10 is again moved upward in the guide groove 62 and fixed so that the first distal axis C 1 coincides with the rotational axis C 0 of the rotator 60 (FIG. 9). ).
  • the plasma above the centrifugal axes C 0 and C 1 shown in FIG. 9 is conveyed to the sensor unit 30 by centrifugal force.
  • the blood cell reservoir 14 is below the centrifugal axes C 0 and C 1, and the blood cells fractionated here do not move to the sensor unit 30.
  • the centrifugal operation at this time is preferably a gravitational acceleration that does not damage the sensor, and the centrifugal force applied to the sensor unit 30 is preferably 500 G or less.
  • each test component in plasma is measured by each sensor.
  • the centrifugal axis used in the calibration liquid introduction process and the centrifugal axis used in the calibration liquid discharge process are both the first centrifugal axis C 1 (FIG. 7). .
  • the calibration liquid transferred to the sensor unit 30 must not be further transferred to the calibration liquid waste liquid reservoir.
  • the relatively weak centrifugal force used in the calibration liquid introduction process, the calibration liquid introduction flow path 4 4 and the flow path diameter of the chiral pulp (calibration liquid discharge flow path) 4 8 are estimated, and the calibrated calibration liquid is further used as the calibration valve. It is necessary to estimate the relatively strong centrifugal force that is transferred to the calibration liquid waste reservoir 4 6 through 4 8.
  • the distance between the first centrifugal axis C 1 and the second centrifugal axis C 2 is 5
  • the length of the flow path (R 2 — R!) from the calibration liquid reservoir 42 through the flow path to the groove that houses the sensor (ie, the calibration liquid introduction flow path 44) is 1 cm, and the first centrifuge The distance from the axis C 1 to the sensor part 30 side end of the calibration fluid reservoir 42 is 3.5 cm.
  • the surface tension (a) of water at 25 is 72X10 " 3 [N / m], and when the polyethylene terephthalate resin is used as the substrate 10 material, the contact angle with water ⁇ is 80 degrees.
  • the density (p) is 1 Xl0 3 [kg / m 3 ] Using these values, the diameter of the calibration liquid discharge channel 44 (2) even if the minimum speed (fm) is l OO r pm. R) is approximately 3 m or more, that is, if the calibration introduction flow path is 1 cm long and the diameter is greater than 100 m, the first centrifugal axis C 1 is centered at 100 rpm. Centrifugal solution can be transferred from the calibration solution reservoir 42 to the sensor unit 30 by centrifugation.
  • the advantage of this blood analysis substrate is that the sensor is disposed at a position on the radiation about 5 mm away from the second centrifugal axis C2.
  • the distance from the first centrifugal axis C 1 is about 1/10 compared to about 5 cm.
  • the centrifuge with respect to the second centrifuge shaft C 2 receives only about 1/10 of the centrifugal force. Therefore, the centrifugal operation in the blood cell separation process shown in Fig. 8 can be performed even if the second centrifugal axis is centrifuged at 7 000 rpm. The sensor did not show any damage.
  • the blood cell reservoir 14 is located on the opposite side of the plasma guide channel 40 across the centrifugal axis C 0 (first centrifugal axis C 1), and the blood cells Only plasma could be transported to the sensor section without backflowing into the plasma guide channel 40.
  • the substrate 10 is moved from the position shown in FIG. 7 to the position shown in FIG. 9 for transferring the plasma after blood cell separation.
  • air is removed from the air vent hole 29 in the air vent flow path 28. If it is put and pressurized, the plasma can be conveyed to the plasma guide channel 40 and the sensor unit 30 (see FIG. 4).
  • the blood analyzer of the present invention is capable of being centered around two different centrifugal axes.
  • the calibration solution is carried into the sensor groove and discharged, and the blood cell is separated into the plasma sensor unit.
  • Conveying calibration solution ⁇ Waste liquid can be reduced in gravity acceleration applied to the sensor by centrifuging at a low speed around the first centrifugal axis away from the sensor unit.
  • the gravitational acceleration applied to the sensor can be reduced by centrifuging around the second centrifugal axis. Therefore, the multi-layered sensor composed of different components is not damaged by the strong centrifugal force during blood cell separation, and more accurate analysis is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Centrifugal Separators (AREA)

Abstract

A hemanalysis apparatus comprising a base plate; a hemocyte plasma separation part disposed on a lower end side of the base plate; a sensor part disposed on an upper end side of the base plate in relationship communicating with the hemocyte plasma separation part; a calibration solution reservoir disposed below the sensor part; and a waste calibration solution reservoir disposed above the sensor part. A first centrifugal axis is positioned above a hemocyte fraction accommodation portion of the hemocyte plasma separation part but below an upper end of a plasma fraction accommodation portion thereof. A second centrifugal axis is positioned inside the sensor part or at a locality proximal thereto. In the transfer/discharge of the calibration solution, the centrifugal force applied to the sensor can be reduced by carrying out low-revolution centrifugation round the first centrifugal axis remote from the sensor part. In the high-revolution centrifugal operation for hemocyte separation, the centrifugal force applied to the sensor part can be reduced by carrying out centrifugation round the second centrifugal axis. By such centrifugal operations, there can be accomplished hemocyte plasma separation and transfers of plasma and calibration solution as well as secure discharge of the calibration solution from the sensor to thereby realize high-precision analysis. Any sensor damaging attributed to strong centrifugal force at hemocyte plasma separation is avoided.

Description

血液分析装置及び血液分析方法 技術分野  Technical field of blood analyzer and blood analysis method
本発明は、 石英板や高分子樹脂板などの絶緣材基板に作製した超小型 の溝流路によって構成された血液分析装置に関する。 特に、 当該基板上 の溝流路に微量 (数 L以下) の血液を導入して遠心分離を行い、 血球 成分と血漿成分に分離した後に当該血漿成分中の種々の化学物質濃度 を測定する際に、 分析センサの較正液や血液等の液体の搬送を遠心力に より行うための流路と基板構造に関する。 背景技術  The present invention relates to a blood analyzer constituted by an ultra-small groove channel manufactured on an insulating material substrate such as a quartz plate or a polymer resin plate. In particular, when a small amount (less than a few liters) of blood is introduced into the groove channel on the substrate and centrifuged to separate blood cell components and plasma components, the concentration of various chemical substances in the plasma components is measured. In addition, the present invention relates to a flow path and a substrate structure for carrying a liquid such as an analytical sensor calibration liquid or blood by centrifugal force. Background art
従来の健康診断や疾病状態の診断は、 患者から数 C Cの多量の血液を 採取し、 その分析に大規模な自動血液分析装置で得た測定値より行われ てきた。 通常、 このような自動分析装置は、 病院などの医療機関に設置 されており、 規模が大きく、 また、 その操作は専門の資格を有するもの に限られるものであった。  Conventional health examinations and diagnosis of disease states have been carried out by collecting a large amount of blood of several C C from patients and analyzing them using measurements obtained with a large-scale automated blood analyzer. Normally, such automatic analyzers are installed in medical institutions such as hospitals, are large in scale, and their operations are limited to those with specialized qualifications.
しかし、 近年、 極度に進歩した半導体装置作製に用いられる微細加工 技術を応用し、 たかだか数匪から数 cm四方の基板上に種々のセンサな どの分析装置を配置して、 そこに被験者の血液などの体液を導き、 被験 者の健康状態を瞬時に把握することができる新しいデバイスの開発と その実用化の気運が高まってきている。 このような安価なデバイスの出 現により、 来たるべき高齢化社会において高齢者の日々の健康管理を在 宅で可能にすることなどで増加の一途を迪る健康保険給付金の圧縮を 図れる。 また救急医療の現場においては被験者の感染症 (肝炎、 後天性 免疫不全症など) の有無などを、 本デバイスを用いて迅速に判断できれ ば適切な対応ができるなど、 種々の社会的な効果が期待されるために非 常に注目されつつある技術分野である。 このように従来の自動分析装置 fc代わって、 血液分析を各家庭で自らの手で実施することを目指した小 型簡便な血液分析方法ならびに血液分析装置が開発されている (例えば、 特許文献 1参照)。 However, in recent years, by applying the microfabrication technology used for the production of semiconductor devices that have advanced extremely recently, analyzers such as various sensors are placed on a substrate that is at most several cm to several cm square, and the blood of the subject, etc. There is a growing interest in the development and practical application of new devices that can guide body fluids and instantly understand the health status of subjects. With the emergence of such low-cost devices, health insurance benefits, which are steadily increasing, can be reduced by enabling daily health management of elderly people at home in the coming aging society. Also, in the field of emergency medicine, various social effects such as the appropriate response can be made if the device can be used to quickly determine the presence or absence of infectious diseases (such as hepatitis, acquired immune deficiency). Expected to be non It is a technical field that is always drawing attention. Thus, instead of the conventional automatic analyzer fc, a small and simple blood analysis method and a blood analyzer aiming to carry out blood analysis by one's own hands in each home have been developed (for example, Patent Document 1). reference).
特許文献 1 :特開 2 0 0 1— 2 5 8 8 6 8号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2 00 8-2 8 8 8 6
図 1は、 特許文献 1に記載されたマイクロモジュール化された血液分 析装置の一例を示す。 符号 1 0 1は血液分析装置の下側基板であり、 下 側基板上にエッチングにより形成した微細な溝流路(マイクロキヤビラ リ) 1 0 2が設けられている。 この下側基板 1 0 1の上には、 略同一サ ィズの上側基板 (不図示) が張り合わされ、 溝流路 1 0 2を外部から密 閉している。  FIG. 1 shows an example of a micro-module blood analysis device described in Patent Document 1. Reference numeral 101 denotes a lower substrate of the blood analyzer, and a fine groove channel (micro-cavity) 10 2 formed by etching on the lower substrate is provided. On this lower substrate 1001, an upper substrate (not shown) of substantially the same size is bonded, and the groove flow channel 102 is sealed from the outside.
流路 1 0 2には、 最上流部から最下流部にかけて、 血液採取手段 1 0 3, 血漿分離手段 1 0 4 , 分析手段 1 0 5, 移動手段 1 0 6が順次設け られている。 流路最前部の血液採取手段 1 0 3には、 中空の採血針 1 0 3 aが取り付けられ、 この針 1 0 3 aを体内に剌して基板内への血液の 取り入れ口とする。 分離手段 1 0 4は、 流路 1 0 2の途中を湾曲させた もので例えば U字形状のマイクロキヤビラリからなる。採取した血液を この U字形状のマイク口キヤビラリに導いた後、 本基板を遠心分離器に より一定方向に加速度を加えることによって、 U字部最下部に血球成分 を沈殿させ、 上清として血漿を分離する。 分析手段 1 0 5は、 血液中の p H値、 酸素、 二酸化炭素、 ナトリウム、 カリウム、 カルシウム、 ダル コース、 乳酸などの各濃度を測定するためのセンサである。  In the flow path 102, blood sampling means 103, plasma separation means 104, analysis means 105, and moving means 106 are sequentially provided from the most upstream part to the most downstream part. A hollow blood collection needle 10 3 a is attached to the blood collection means 10 3 at the forefront of the flow path, and this needle 10 3 a is inserted into the body to serve as an inlet for blood into the substrate. Separating means 10 4 is a curved portion of the flow path 10 2, and is made of, for example, a U-shaped micro-cabinet. After the collected blood is guided to the U-shaped microphone mouth cavity, the substrate is subjected to acceleration in a certain direction by a centrifuge, thereby precipitating blood cell components at the bottom of the U-shaped part and plasma as the supernatant. Isolate. The analysis means 10 5 is a sensor for measuring each concentration of blood such as pH value, oxygen, carbon dioxide, sodium, potassium, calcium, dulcose, and lactic acid.
流路最下流部に位置する移動手段 1 0 6は、 マイクロキヤビラリ中で 血液を電気浸透流により移動させるものであり、電極 1 0 7、 1 0 8と、 その間をつなぐ流路部分 1 0 9からなる。 この電極間に電圧印加して生 じる電気浸透流により流路内に予め満たしておいた緩衝液を流路下流 側に移動させ、 生じる吸引力によって流路 1 0 2最前部の採取手段 1 0 3から基板内に血液を取り入れる。 また、 遠心分離により得られた血漿 を分析手段 1 0 5に導く。 The moving means 10 6 located at the most downstream part of the flow path is for moving blood by electroosmotic flow in the micro-chamber, and the flow path part 1 connecting between the electrodes 1 0 7 and 1 0 8. It consists of 0-9. The buffer solution filled in the flow path is moved to the downstream side of the flow path by the electroosmotic flow generated by applying a voltage between the electrodes. Blood is taken into the substrate from 0-3. In addition, plasma obtained by centrifugation To the analysis means 1 0 5.
1 1 0は分析手段から情報を取り出すための出力手段であり、 電極な どから構成される。 1 1 1は、 以上の採取手段、 血漿分離手段、 分析手 段、移動手段、出力手段を必要に応じて制御するための制御手段である。 採取手段 1 0 3より採取された血液は、 分離手段 1 0 4にて血漿と血 球成分に分離され、 この血漿を分析手段 1 0 5に導き、 そこで血漿中の p H値、 酸素、 二酸化炭素、 ナトリウム、 カリウム、 カルシウム、 ダル コース、 尿素窒素、 クレアチニン、 乳酸などの各濃度を測定する。 各手 段間の血液の移動は、 電気泳動や電気浸透などの現象を用いたものなど ポンプ能力を有する移動手段 1 0 6により行う。 なお、 図 1では流路 1 0 2の下流域は 5つに分岐し、 このそれぞれに分析手段 1 0 5, 移動手 段 1 0 6が設けられている。  1 1 0 is an output means for extracting information from the analysis means, and is composed of electrodes and the like. 1 1 1 is a control means for controlling the above collection means, plasma separation means, analysis means, moving means, and output means as required. The blood collected from the sampling means 10 3 is separated into plasma and blood cell components by the separation means 10 04, and this plasma is led to the analysis means 10 5, where the pH value, oxygen, Measure concentrations of carbon, sodium, potassium, calcium, dulcose, urea nitrogen, creatinine, and lactic acid. Movement of blood between each means is performed by moving means 106 having a pumping capacity such as those using phenomena such as electrophoresis and electroosmosis. In FIG. 1, the downstream area of the flow path 102 is divided into five parts, each of which is provided with analysis means 10 5 and moving means 10 6.
このような血液分析装置の基板には石英などのガラス材料が用いら れることが多かったが、 装置を大量にまた低コス卜で製作するのにより 適し、 また使い捨ての際の廃棄を考慮して近年樹脂素材が用いられるよ うになつてきている。  A glass material such as quartz is often used for the substrate of such a blood analyzer, but it is more suitable for manufacturing a large amount of the device at a low cost, and in consideration of disposal when disposable. In recent years, resin materials have come to be used.
図 1に示した従来の血液分析装置では、 血液試料を装置内に導入する ときに電気浸透ポンプ 1 0 6のような移動手段が必要である。 導入した 血液を基板ごと遠心分離して血漿を得た後は、 この血漿を分析手段 1 0 5に移動させるため電気浸透ポンプ 1 0 6を再度作動させることが必 要となる。 また、 分析手段が特に電気化学的原理に基づき構成されるセ ンサである場合には、 このセンサを予め較正液を用いて較正する必要が ある。 すなわち、 血漿をセンサに導く前にこのセンサを較正液に浸して センサの較正を行い、 較正後の較正液を分析手段から排出しなければな らない。 このような較正液の移送にもポンプなどの移動手段が必要とな る。  In the conventional blood analyzer shown in FIG. 1, a moving means such as an electroosmotic pump 10 6 is required when a blood sample is introduced into the apparatus. After the introduced blood is centrifuged together with the substrate to obtain plasma, it is necessary to operate the electroosmotic pump 10 6 again to move the plasma to the analysis means 10. In addition, when the analysis means is a sensor configured based on an electrochemical principle, it is necessary to calibrate the sensor using a calibration solution in advance. That is, before introducing plasma to the sensor, the sensor must be immersed in the calibration solution to calibrate the sensor, and the calibration solution after calibration must be discharged from the analysis means. A moving means such as a pump is also required for transferring the calibration liquid.
移動手段は、 図 1のように同一基板内に設けた電気浸透ポンプや、 あ るいは基板外の設置した負圧ポンプなどを用いることが考えられ、 これ らの移動手段により血液や血漿、 および較正液などを圧送または吸引し て移動させることになる。 このとき所望の液体を血液分析装置内の所望 の位置まで移動させるためには移動手段の吸引力等を的確に制御する 必要がある。 このためには、 液体の位置センサを新たに血液分析装置内 またはその外部に設置しなければならず、 これらの制御機構や位置セン サを付加するために装置が高価になるという問題があった。 As the moving means, it is conceivable to use an electroosmotic pump provided in the same substrate as shown in Fig. 1 or a negative pressure pump installed outside the substrate. These moving means move blood, plasma, and calibration liquid by pumping or sucking them. At this time, in order to move a desired liquid to a desired position in the blood analyzer, it is necessary to accurately control the suction force of the moving means. For this purpose, a liquid position sensor must be newly installed in or outside the blood analyzer, and there is a problem that the apparatus becomes expensive because of the addition of these control mechanisms and position sensors. .
分析手段が電気化学的原理に基づき構成されるセンサである場合に は、 既知濃度の被検成分を含有する較正液 (標準液) でセンサを較正し た後、 この較正液を分析手段から排出しなければならない。 しかし、 較 正液を排出しても、 分析手段ゃ流路手段の表面には、 表面の濡れ性に応 じて若干較正液が残留する。 前述したように今対象としている血液分析 装置は数マイクロリットル程度の微量血液中に存在する種々の化学物 質の濃度を分析するために、 流路手段などの装置を構成する手段のサイ ズは小さくなつている。 一般に物体の大きさが小さくなるとその表面積 ( S ) と体積 (V ) の比 S / Vは大きくなり、 これは表面の効果が顕著 に現れてくることを意味している。 従って、 流路手段や分析手段表面に 残留する較正液の量が僅かであっても、 導入される血漿量が少ない分析 装置では、 測定される化学物質濃度に変動を及ぼすという問題があった。 このためには較正後の較正液を確実に分析手段より排出してから血漿 を分析手段へと導入することが必要である。  If the analysis means is a sensor constructed based on electrochemical principles, the sensor is calibrated with a calibration solution (standard solution) containing a known concentration of the test component, and then the calibration solution is discharged from the analysis means. Must. However, even if the calibration liquid is discharged, some calibration liquid remains on the surface of the analysis means and the flow path means according to the wettability of the surface. As described above, the size of the means constituting the apparatus such as the flow path means is the size of the blood analysis apparatus that is currently targeted in order to analyze the concentration of various chemical substances present in a minute amount of blood of several microliters. It is getting smaller. In general, as the size of an object decreases, its surface area (S) to volume (V) ratio S / V increases, which means that the surface effect becomes prominent. Therefore, even if the amount of calibration liquid remaining on the flow path means or the analysis means surface is small, an analyzer that introduces a small amount of plasma has a problem that the concentration of the measured chemical substance varies. For this purpose, it is necessary to ensure that the calibrated calibration solution is discharged from the analysis means before introducing the plasma into the analysis means.
本発明者らは、 このような事情に鑑み、 遠心操作により流路内で血漿 分離を行う血液分析装置であって、 ポンプなどを用いることなく装置内 で血液、 血漿、 較正液の搬送を行うことができ、 さらに較正液をセンサ 部分から確実に排出することにより高精度の分析を可能にする血液分 析装置を提案している (例えば、 特許文献 2参照)。  In view of such circumstances, the present inventors are a blood analyzer that separates plasma in a flow path by a centrifugal operation, and transports blood, plasma, and calibration fluid within the apparatus without using a pump or the like. In addition, a blood analysis device has been proposed that enables high-accuracy analysis by reliably discharging the calibration liquid from the sensor portion (see, for example, Patent Document 2).
特許文献 2 :特願 2 0 0 3— 0 4 0 4 8 1  Patent Document 2: Japanese Patent Application 2 0 0 3— 0 4 0 4 8 1
図 2は、 特許文献 2 (未公開) に記載された血液分析装置の一例を示 す。 符号 2 0 1は流路が形成された上側基板であり、 2 0 2にはセンサ 電極 2 0 3やセンサ信号を外部に取り出す電極端子 2 0 4が形成され た下側基板である。 上側基板 2 0 1には採血針 2 0 5が取り付けられ、 採取された血液は案内流路 2 0 6を介して血液溜め 2 0 7に吸引 ·圧送 口 2 0 8から外部ポンプ (不図示) によって移動させる。 流路 2 0 9と 流路 2 1 0はこの上側基板 2 0 1の側壁の設けられた開口孔 2 1 1 , 2 1 2にそれぞれ接続されているが、 血液を吸引するときは血液分析基板 を取り付けるホルダ一 (不図示) によって開口孔 2 1 1 , 2 1 2は閉じ られる。 同様に、 較正液溜め 2 1 3は、 吸引 ·圧送口 2 0 8から注入さ れた較正液を収容する。 FIG. 2 shows an example of a blood analyzer described in Patent Document 2 (unpublished). Reference numeral 2 0 1 is an upper substrate on which a flow path is formed, and 2 0 2 is a sensor This is the lower substrate on which the electrodes 20 3 and electrode terminals 2 0 4 for taking out sensor signals to the outside are formed. A blood collection needle 2 0 5 is attached to the upper substrate 2 0 1, and the collected blood is sucked into the blood reservoir 2 0 7 through the guide flow path 2 0 6 and external pump (not shown) from the pressure port 2 0 8 Move by. The flow path 2 0 9 and the flow path 2 1 0 are connected to the opening holes 2 1 1 and 2 1 2 provided on the side walls of the upper substrate 2 0 1, respectively. The opening holes 2 1 1 and 2 1 2 are closed by a holder (not shown) for attaching the. Similarly, the calibration liquid reservoir 2 1 3 contains the calibration liquid injected from the suction / pressure feeding port 2 08.
この既提案の血液分析装置基板の動作の一例を次に述べる。 まず、 第 1の遠心力中心軸 2 1 4を中心として血液分析装置基板を遠心すると、 較正液溜め 2 1 3中の較正液は、 案内流路 2 1 5、 2 1 6を経由して、 複数のセンサ 2 0 3を収容した複数のセンサ溝 2 1 7に搬入される。 セ ンサ 2 0 3の較正後、 血液分析装置基板を時計方向に 9 0度回して遠心 機に載置する。 すなわち、 図 2上の左側に位置する第 2の遠心力中心軸 2 1 8を中心として基板を遠心すると、 センサ溝 2 1 7を満たしている 較正液は案内流路 2 1 6、 2 1 9を経由して較正液廃液溜め 2 2 0に収 容される。  An example of the operation of this proposed blood analyzer substrate will be described next. First, when the blood analyzer substrate is centrifuged around the first centrifugal force central axis 2 1 4, the calibration liquid in the calibration liquid reservoir 2 1 3 passes through the guide channels 2 1 5 and 2 1 6, It is carried into a plurality of sensor grooves 2 1 7 containing a plurality of sensors 2 0 3. After calibrating sensor 203, turn the blood analyzer substrate 90 degrees clockwise and place it on the centrifuge. That is, when the substrate is centrifuged around the second centrifugal force central axis 2 1 8 located on the left side in FIG. 2, the calibration groove fills the sensor groove 2 1 7 and the calibration liquid 2 1 6 and 2 1 9 Is stored in the calibration liquid waste reservoir 2 20.
この後、 血液分析装置基板を反時計方向に 9 0度回し戻して遠心機に 載置する。 すなわち、 第 1の遠心力中心軸 2 1 4を中心として基板を遠 心すると、 血液溜め 2 0 7から血液が案内流路 2 2 1を経由してセンサ 溝 2 1 7に搬送される。 この状態で遠心力を掛け続けると、 血液中の血 球成分は重力の印加される方向、 即ちセンサ溝 2 1 7の下方に分画され、 血漿成分はセンサ溝 2 1 7の上方に上清として分離される。 その領域に センサ群 2 0 3が配置されているので、 血液中の p H値、 酸素、 二酸化 炭素、 ナトリウム、 カリウム、 カルシウム、 グルコース、 乳酸などの各 濃度が各センサに接続した複数の電極端子 2 0 4を介して外部の計測 器によって測定される。 この既提案の血液分析装置は異なる 2方向への遠心操作を可能にし たものであり、 第 1の遠心方向への遠心操作により較正液溜め内の較正 液をセンサ部へ搬送し、 センサ較正後には、 第 2の遠心方向に遠心する ことにより、 センサ部から較正液を確実に排出できるようにしたもので ある。 較正液排出後は、 第 1の遠心方向に遠心することにより、 血液溜 め内の血液をセンサ部に搬送すると共に、 血球と血漿に分離することが できる。 Thereafter, the blood analyzer substrate is rotated 90 degrees counterclockwise and placed on the centrifuge. That is, when the substrate is moved away from the center of the first centrifugal force central axis 2 14, blood is transported from the blood reservoir 2 07 to the sensor groove 2 17 via the guide channel 2 2 1. If centrifugal force is continuously applied in this state, the blood cell component in the blood is fractionated in the direction in which gravity is applied, that is, below the sensor groove 2 17, and the plasma component is the supernatant above the sensor groove 2 17. As isolated. Since the sensor group 20 3 is arranged in that area, a plurality of electrode terminals in which pH values in blood, oxygen, carbon dioxide, sodium, potassium, calcium, glucose, lactic acid, etc. are connected to each sensor. Measured by an external measuring instrument via 2 04. This proposed blood analyzer is capable of centrifugal operation in two different directions, and the calibration liquid in the calibration liquid reservoir is conveyed to the sensor unit by the centrifugal operation in the first centrifugal direction, and after the sensor calibration Is designed to ensure that the calibration solution can be discharged from the sensor section by centrifuging in the second centrifugal direction. After the calibration solution is discharged, the blood in the blood reservoir can be transported to the sensor unit and separated into blood cells and plasma by centrifuging in the first centrifugal direction.
然るに、 これらの利点を有しながらも、 遠心力を用いる故に短時間に 血液分析を行うためには無視できない問題が判明した。  However, while having these advantages, a problem that cannot be ignored to perform blood analysis in a short time due to the use of centrifugal force.
血液分析装置チップによる測定時間は極力短いことが大切であるこ とは云うまでも無い。 この血液分析装置においては、 遠心中心軸からチ ップ中心までめ距離は 5 c mであり、 通常、 較正液の注入や排出に要す る時間は 3 0 0 0 r p m以下の低遠心力のもとでも一秒程度である。 し かし、 血液中の血球と血漿を数秒〜数分で分離するには血球分離領域に おいて少なくとも 4 0 0 0 r p m以上の遠心力を必要とする。 図 1 2は、 このときの回転数(r p m)と加速度 (G ) の関係を示したもので、 3 0 0 0 r p mでは 5 0 0 Gの重力加速度、 4 0 0 0 r p mでは 1 0 0 0 G の重力加速度を印加したことに相当する。  Needless to say, it is important that the measurement time with the blood analyzer chip is as short as possible. In this hematology analyzer, the distance from the center axis of the centrifuge to the center of the chip is 5 cm, and the time required for injecting and discharging the calibration liquid is usually low centrifugal force of 300 rpm or less. But it is about 1 second. However, in order to separate blood cells and plasma in blood in a few seconds to several minutes, a centrifugal force of at least 400 rpm is required in the blood cell separation region. Fig. 12 shows the relationship between the rotation speed (rpm) and acceleration (G) at this time. Gravitational acceleration of 5 0 0 G at 3 00 rpm and 1 0 0 0 at 4 0 0 0 rpm Equivalent to applying G gravitational acceleration.
血球 ·血漿分離時の遠心操作によって、 センサの出力が低下すること が判明した。 例えば、 較正液 (137mMナトリウムイオン含有) をナト リウムイオンセンサで測定したときの出力電圧を見ると、 図 3に示すよ うに遠心回転数 (r p m) により影響を受けていた。 回転数 3 0 0 0 r p m程度までは、 センサ出力は約 2 0 O mVの安定した値を示すが、 そ れ以上の回転数では、 センサ出力が減少傾向を示すと共に、 値の分散が 増大した。 本測定では、 1 0 0 0 r p mまでは約 2 0 O mVの安定した 値を示すセンサを各回転実験に対して用意して置き、 それを用いた。 特 に示さないが力リゥムイオン測定でも同傾向が見出された。  It was found that the output of the sensor decreased due to the centrifugal operation during blood cell / plasma separation. For example, looking at the output voltage when a calibration solution (containing 137 mM sodium ions) was measured with a sodium ion sensor, it was affected by the rotational speed (r p m) as shown in Fig. 3. Up to about 300 rpm, the sensor output shows a stable value of about 20 O mV, but at higher speeds, the sensor output shows a decreasing trend and the variance of the value increased. . In this measurement, a sensor showing a stable value of about 20 O mV up to 10 00 r pm was prepared and used for each rotation experiment. Although not specifically shown, the same tendency was also found in the measurement of force rion ions.
ナトリゥムイオン濃度測定センサでは、 ナトリゥムイオンを捕獲する イオン感応膜の Bis (12- crown- 4)と、 その感応膜中に血漿中のァニオン (陰イオン)が侵入することを防止する役目を果たすァニオン排除剤を P V C (ポリ塩化ビニル) に混ぜ、 これをカーボン電極上に固定化して センサとしている。 その際、 ナトリウムイオンを感応膜中に取り込み易 くするため、 大量の可塑剤を P V Cに混ぜる。 センサ 1個当たりの重量 から、 7000 r p m時の遠心力を見積もると、 センサにかかる力はピコ二 ユートン程度である。 しかし、 この高回転数でのセンサ出力の低下の原 因は、 このイオン感応膜などを含有した可塑剤入り P V C膜が、 強い遠 心力によってカーボン電極上で変形し、 P V C膜の一部がカーボン電極 から剥れ、 水が浸入したためではないかと推察している。 膜の組成を変 えて膜を硬化し膜のカーボン電極への固定化を強化することも考えら れるが、 膜を硬化することは本来の電気化学的センサの特性を失うこと になる。 発明の開示 The sodium ion concentration sensor captures sodium ions. An ion sensitive membrane Bis (12-crown-4) and an anion exclusion agent that serves to prevent the penetration of plasma anions (anions) into the sensitive membrane are mixed with PVC (polyvinyl chloride). This is fixed on the carbon electrode to form a sensor. At that time, a large amount of plasticizer is mixed with PVC to make it easier to incorporate sodium ions into the sensitive membrane. If the centrifugal force at 7000 rpm is estimated from the weight per sensor, the force applied to the sensor is about pico-two tons. However, the cause of the decrease in sensor output at this high rotational speed is that the PVC film containing plasticizer containing this ion-sensitive film is deformed on the carbon electrode by a strong centrifugal force, and a part of the PVC film is carbon. It is assumed that it was peeled off from the electrode and water was infiltrated. Although it may be possible to change the composition of the film to harden the film and to fix the film to the carbon electrode, curing the film loses the characteristics of the original electrochemical sensor. Disclosure of the invention
本発明は、 このような事情に鑑みなされたものであり、 遠心操作によ り血漿分離を行う血液分析装置であって、 ポンプなどを用いることなく 装置内で血漿、 較正液の搬送を行うことができ、 較正液をセンサ部分か ら確実に排出し、 さらに血漿分離時の遠心操作によってセンサが損傷を 受けることが無くより高精度の分析を可能にする血液分析装置を提供 することを第 1の目的とする。  The present invention has been made in view of such circumstances, and is a blood analyzer that separates plasma by a centrifugal operation, and transports plasma and calibration fluid within the apparatus without using a pump or the like. The first is to provide a blood analyzer that can discharge the calibration liquid from the sensor part reliably, and can perform more accurate analysis without damaging the sensor due to centrifugal operation during plasma separation. The purpose.
また本発明は、 遠心操作により血漿分離を行う血液分析装置を使用す る際に、遠心操作だけで装置内で血漿、較正液の搬送を行うことができ、 較正液をセンサ部分から確実に排出すると共に、 血漿分離時の遠心操作 によってセンサが損傷を受けることが無くより高精度の分析を可能に する血液分析方法を提供することを第 2の目的とする。  Further, according to the present invention, when a blood analyzer that separates plasma by centrifugation is used, plasma and calibration fluid can be transported in the device only by centrifugation, and the calibration fluid is reliably discharged from the sensor portion. In addition, a second object is to provide a blood analysis method that enables highly accurate analysis without damaging the sensor due to centrifugation during plasma separation.
本発明によれば、 第 1の目的は、 遠心により全血試料の血漿分離を行 い、 血液液性成分中の被検成分を分析する血液分析装置において: (a) 基板の下端側に配設された血球。血漿分離部であって、 遠心力を 作用させたときに血球分画を沈澱させて収容する血球分画収容部と、 血 球分画収容部の上方に位置して血漿を収容する血漿分画収容部とを備 えた血球 ·血漿分離部と ; According to the present invention, a first object is to provide a blood analyzer for performing plasma separation of a whole blood sample by centrifugation and analyzing a test component in a blood liquid component: (a) A blood cell disposed on the lower end side of the substrate. A plasma separation unit, a blood cell fraction storage unit that deposits and stores a blood cell fraction when centrifugal force is applied, and a plasma fraction that is located above the blood cell storage unit and stores plasma A blood cell / plasma separation unit equipped with a storage unit;
(b) 基板の上端側に配設されたセンサ部であって、 被検成分を分析す るセンサを収容したセンサ溝を有するセンサ部と;  (b) a sensor unit disposed on the upper end side of the substrate, the sensor unit having a sensor groove containing a sensor for analyzing a test component;
(c) 血球 ·血漿分離部とセンサ部とを連通する血漿案内流路と ; (c) a blood cell / plasma guide channel communicating the plasma separation part and the sensor part;
(d) 血球,血漿分離部に全血試料を導入する血液導入口と ; (d) a blood inlet for introducing a whole blood sample into the blood cell and plasma separator;
(e) センサを較正する較正液を収容する較正液溜めと ;  (e) a calibration fluid reservoir containing calibration fluid for calibrating the sensor;
(f) センサ較正後の較正液を収容する較正液廃液溜めと ;  (f) a calibration liquid waste reservoir containing calibration liquid after sensor calibration;
(g) 較正液溜めとセンサ溝とを連通する較正液導入流路と ;  (g) a calibration fluid introduction flow path communicating with the calibration fluid reservoir and the sensor groove;
(h) センサ溝と較正液廃液溜めとを連通する較正液排出流路とを備 え;  (h) a calibration fluid discharge channel that communicates the sensor groove with the calibration fluid waste reservoir;
血球分画収容部よりも上方で血漿分画収容部上端よりも下方に位置 する第 1の遠心軸を中心に遠心可能とされる一方;血球 ·血漿分離部よ りもセンサ部の内部または近接した位置にある第 2の遠心軸を中心に 遠心可能とされ;前記較正液溜めは前記センサ部の下方であって前記第 1の遠心軸の上方に位置し、 前記較正液廃液溜めは前記センサ部の上方 に位置することを特徴とする血液分析装置、 により達成される。  While it is possible to centrifuge around the first centrifugal axis located above the blood cell fraction storage unit and below the upper end of the plasma fraction storage unit; inside or close to the sensor unit than the blood cell / plasma separation unit The calibration liquid reservoir is located below the sensor unit and above the first centrifugal axis, and the calibration liquid waste liquid reservoir is the sensor. This is achieved by a blood analyzer characterized by being located above the section.
すなわち、 本発明の血液分析装置は、 異なる 2つの遠心軸を中心に遠 心可能としたものであり、 較正液の搬送 ·廃液はセンサ部から離れた第 1の遠心軸を中心にして、 遠心半径は大きくなるものの低回転で遠心す ることにより、 センサに印加される重力加速度を小さくできるようにし たものである。 一方血球分離のための大きな重力加速度を与える遠心操 作では、 センサ部に印加される重力加速度が小さくなるように、 このと きの遠心軸 (第 2の遠心軸) をセンサ部の内部または近接位置にするこ とにより、 血球 ·血漿分離部に大きな重力加速度かかかる遠心でも、 セ ンサ部には大きな重力加速度が印加されないようにした。 これによりセ ンサに過大な遠心力がかかって損傷することを防止できる。 In other words, the blood analyzer of the present invention is capable of being centered around two different centrifugal shafts, and transporting calibration fluid and waste fluid is centrifuged around the first centrifugal shaft away from the sensor unit. Although the radius increases, the gravity acceleration applied to the sensor can be reduced by centrifuging at a low speed. On the other hand, in centrifugal operation that gives a large gravitational acceleration for blood cell separation, the centrifugal axis (second centrifugal axis) at this time is placed inside or close to the sensor unit so that the gravitational acceleration applied to the sensor unit is small. By setting the position, even if centrifugal force is applied to the blood cell / plasma separation part, large gravitational acceleration is not applied to the sensor part. This It is possible to prevent the sensor from being damaged due to excessive centrifugal force.
ここで血球。血漿分離部を U字状流路で形成し、 その最下端の湾曲部 に血球分画収容部を設け、 その上部を血漿分画収容部とするのが好まし い態様である。 血球分画収容部は u字状流路最下端から下方に突出する ようにして設けてもよく、 その場合には、 その容積を U字状流路に導入 される全血試料中の血球分画量よりも大とするのが好ましい。血液導入 口は、 血漿分画収容部よりも上方で U字状流路側壁に設けることが出来 る。  Blood cell here. In a preferred embodiment, the plasma separation part is formed by a U-shaped flow path, the blood cell fraction storage part is provided at the lowermost curved part, and the upper part is used as the plasma fraction storage part. The blood cell fraction storage part may be provided so as to protrude downward from the lowermost end of the u-shaped flow path, and in that case, the volume of the blood cell fraction storage portion in the whole blood sample introduced into the U-shaped flow path is provided. It is preferable to make it larger than the stroke amount. The blood inlet can be provided on the side wall of the U-shaped channel above the plasma fraction container.
また、 U字状流路には、 U字状流路最下端までに全血試料が円滑に導 入するようにするため空気抜き流路を設けるのが好ましく、 この空気抜 き流路が U字状流路最下端と連通しているのがもっとも好ましい態様 である。  The U-shaped channel is preferably provided with an air vent channel so that the whole blood sample can be smoothly introduced to the lowermost end of the U-shaped channel. The most preferable mode is to communicate with the lowermost end of the channel.
センサ部に複数のセンサ溝を設けて、 各センサ溝に異なる被検成分を 分析するための複数のセンサを収容してもよい。 この場合、 センサ溝を 円周上に配置して、 その中心を第 2の遠心軸とすれば、 すなわち第 2の 遠心軸を中心に放射状に配列すれば、 第 2の遠心軸を中心にした遠心操 作により血球 ·血漿分離を行う際にはセンサと遠心中心との距離が最も 短くなりセンサに負荷される重力加速度を最小にすることができる。 血液導入口には、 既に採血された血液を収納した採血機構を血液導入 口に取付可能としてもよい。 血漿導入口や血球 ·血漿分離部を親水化処 理しておくことにより血液試料の導入、 血漿の搬送を円滑に行うことが できる。 同様に、 血漿案内流路、 センサ溝、 さらに較正液溜め、 較正液 廃液溜め、較正液導入流路及び較正液排出流路をそれぞれ親水化処理し ておけば、 較正液搬送、 血漿の搬送がより円滑になる。  A plurality of sensor grooves may be provided in the sensor unit, and a plurality of sensors for analyzing different test components may be accommodated in each sensor groove. In this case, if the sensor grooves are arranged on the circumference and the center is the second centrifugal axis, that is, if the sensor grooves are arranged radially around the second centrifugal axis, the second centrifugal axis is the center. When blood cells and plasma are separated by centrifugal operation, the distance between the sensor and the centrifugal center is the shortest, and the gravitational acceleration applied to the sensor can be minimized. The blood introduction port may be provided with a blood collection mechanism that stores already collected blood in the blood introduction port. By hydrophilizing the plasma inlet and blood cell / plasma separator, blood samples can be introduced and plasma can be transported smoothly. Similarly, if the plasma guide flow path, sensor groove, calibration liquid reservoir, calibration liquid waste liquid reservoir, calibration liquid introduction flow path, and calibration liquid discharge flow path are each hydrophilized, the calibration liquid transport and the plasma transport can be performed. Become smoother.
本発明の第 2の目的は、 以下のステップからなる血液分析方法: (1) 基板の下端側に配設された血球 ·血漿分離部であって、 遠心力を 作用させたときに血球分画を沈澱させて収容する血球分画収容部と、 血 球分画収容部の上方に位置して血漿を収容する血漿分画収容部とを備 えた血球》血漿分離部と;基板の上端側に配設され被検成分を分析する センサを収容したセンサ溝を有するセンサ部と;血球 血漿分離部とセ ンサ部とを連通する血漿案内流路と;血球 ·血漿分離部に全血試料を導 入する血液導入口と ;センサを較正する較正液を収容する較正液溜め と;センサ較正後の較正液を収容する較正液廃液溜めと;較正液溜めと センサ溝とを連通する較正液導入流路と;センサ溝と較正液廃液溜めと を連通する較正液排出流路とを備えた血液分析装置を用意し ; The second object of the present invention is a blood analysis method comprising the following steps: (1) A blood cell / plasma separation unit disposed on the lower end side of the substrate, and the blood cell fraction when centrifugal force is applied A blood cell fraction containing part for precipitating and containing the blood cell, and a plasma fraction containing part for storing plasma located above the blood cell fraction containing part. A blood cell> a plasma separation unit; a sensor unit having a sensor groove which is disposed on the upper end side of the substrate and analyzes a test component; and a blood plasma guide channel communicating the blood cell plasma separation unit and the sensor unit A blood introduction port for introducing a whole blood sample into the blood cell / plasma separator; a calibration liquid reservoir for storing a calibration liquid for calibrating the sensor; a calibration liquid waste reservoir for storing a calibration liquid after sensor calibration; A blood analyzer having a calibration liquid introduction flow path that communicates between the liquid reservoir and the sensor groove; and a calibration liquid discharge flow path that communicates between the sensor groove and the calibration liquid waste liquid reservoir;
(2) 血球分画収容部よりも上方にあり血漿分画収容部上端よりも下 方に位置する第 1の遠心中心軸を中心に血液分析装置を遠心して、 較正 液溜め内の較正液をセンサ溝に導入し ;  (2) Centrifuge the blood analyzer around the first centrifugal central axis located above the blood cell fraction container and below the upper end of the plasma fraction container, and remove the calibration solution in the calibration reservoir. Introduced into the sensor groove;
(3) 前記センサの較正を行い;  (3) calibrate the sensor;
(4) 前記第 1の遠心軸を中心に血液分析装置を遠心して、 センサ溝内 の較正液を較正液溜めに排出し;  (4) The blood analyzer is centrifuged around the first centrifugal axis, and the calibration solution in the sensor groove is discharged into the calibration solution reservoir;
(5) 前記血球 ·血漿分離部に全血試料を導入して、 血球 ·血漿分離部 よりもセンサ部に近い位置にある第 2の遠心軸を中心にして血液分析 装置を遠心することにより、 血球 ·血漿分離部内で血球 ·血漿分離を行 わせて血球分画を血球分画収容部に沈澱させ;  (5) By introducing a whole blood sample into the blood cell / plasma separation unit and centrifuging the blood analyzer around the second centrifugal axis located closer to the sensor unit than the blood cell / plasma separation unit, Blood cell / plasma separation is performed in the blood cell / plasma separator to precipitate the blood cell fraction in the blood cell compartment;
(6) 前記第 1の遠心中心軸を中心にして血液分析装置を遠心するこ とにより、 血漿分画収容部内で分画された血漿をセンサ溝に搬送し ; (6) centrifuge the blood analyzer around the first centrifuge central axis to convey the plasma fractionated in the plasma fraction storage unit to the sensor groove;
(7) センサ溝内の血漿中の液性成分の分析をセンサにより行う; により達成される。 (7) The analysis of the liquid component in the plasma in the sensor groove is performed by a sensor.
第 1の遠心軸を中心にする遠心を行うステップ(2)の較正液導入工程、 ステップ(4)の較正液排出工程及びステップ(6)の血漿搬送工程では、 セ ンサに印加される重力加速度が 500 G以下であることが好ましい。また、 第 1の遠心軸を中心にする遠心を行うステップ(5)  Gravity acceleration applied to the sensor in the calibration liquid introduction process in step (2), the calibration liquid discharge process in step (4), and the plasma transport process in step (6) in which centrifugation is performed around the first centrifugal axis. Is preferably 500 G or less. In addition, the step of centrifuging around the first centrifugal axis (5)
の血球 ·血漿分離工程では、血漿分離部に印加される重力加速度が 1000 G以上にする一方、 センサに印加される重力加速度を 500 G以下にする ことが好ましい。 なお、 血液分析装置の血漿分画収容部に空気抜き流路を設けてある場 合には、 ステップ(6)の血漿搬送工程では、 遠心操作を行わずに、 この 空気抜き流路から外気を加圧導入して血漿をセンサ部に搬送するよう にしてもよい。 図面の簡単な説明 In the blood cell / plasma separation step, it is preferable that the gravitational acceleration applied to the plasma separation unit is 1000 G or more, while the gravitational acceleration applied to the sensor is 500 G or less. If an air vent channel is provided in the plasma fraction storage part of the blood analyzer, outside air is pressurized from the air vent channel without performing a centrifugal operation in the plasma transfer step of step (6). It may be introduced to transport plasma to the sensor unit. Brief Description of Drawings
図 1は、 従来のマイクロモジュール化された血液分析装置の一例を示 す概念図である。  FIG. 1 is a conceptual diagram showing an example of a conventional micro-module blood analyzer.
図 2は、 発明者らが提案した血液分析装置 (未公知) の全体斜視図で ある。  FIG. 2 is an overall perspective view of a blood analyzer (unknown) proposed by the inventors.
図 3は、 較正液 (137mMナトリウムイオン含有) をナトリウムィォ ンセンサで測定したときの出力電圧が遠心回転数 (r p m) により変化 するのを示す図である。  FIG. 3 is a graph showing that the output voltage when the calibration solution (containing 137 mM sodium ion) is measured by a sodium ion sensor varies with the number of revolutions (r p m).
図 4は、 本発明の一実施態様による血液分析装置の模式平面図である。 図 5は、 センサ溝の他の配設例を示す模式図である。  FIG. 4 is a schematic plan view of a blood analyzer according to an embodiment of the present invention. FIG. 5 is a schematic diagram showing another example of arrangement of sensor grooves.
図 6は、 センサ溝のさらに他の配設例を示す模式図である。  FIG. 6 is a schematic diagram showing still another example of arrangement of sensor grooves.
図 7は、 本発明の血液分析方法の一実施態様において、 較正液導入ェ 程、 較正液排出工程における回転器上の血液分析装置の状態の示す図で ある。  FIG. 7 is a diagram showing the state of the blood analyzer on the rotator in the calibration liquid introduction process and the calibration liquid discharge process in one embodiment of the blood analysis method of the present invention.
図 8は、 同じく、 血球 ·血漿分離工程における回転器上の血液分析装 置の状態の示す図である。  FIG. 8 is also a diagram showing the state of the blood analysis device on the rotator in the blood cell / plasma separation process.
図 9は、 同じく、 血漿搬送工程における回転器上の血液分析装置の状 態の示す図である。  FIG. 9 is also a diagram showing the state of the blood analyzer on the rotator in the plasma transfer process.
図 1 0は、 細管から溶液が遠心力で吐出する時の回転数を求めるため のパラメータを示す図である。  FIG. 10 is a diagram showing parameters for obtaining the number of rotations when the solution is discharged from the thin tube by centrifugal force.
図 1 1は、 本発明の血液分析装置において、 遠心力による較正液を導 入するための回転数と、 キヤビラリバルブを介して較正液を排出するた めの回転数を算出するための諸パラメ一夕を示す図である。 図 1 2は、 半径 50nmiの回転体を回転したときに生じる重力加速度(G) と回転数(rum)との関係を示す図である。 Fig. 11 shows various parameters for calculating the rotational speed for introducing the calibration liquid by centrifugal force and the rotational speed for discharging the calibration liquid through the mechanical valve in the blood analyzer of the present invention. It is a figure which shows evening. Figure 12 shows the relationship between the gravitational acceleration (G) and the number of rotations (rum) that occur when a rotating body with a radius of 50 nm is rotated.
なお、 図中の符号はつぎのものを示す。  In addition, the code | symbol in a figure shows the following.
1 0 血液分析装置 (基板)  1 0 Blood analyzer (substrate)
1 2 U字状流路 (血球 ·血漿分離部)  1 2 U-shaped channel (blood cell / plasma separator)
1 血球溜め (血球分画収容部)  1 Blood cell reservoir (Blood cell compartment)
1 6 血漿分画収容部  1 6 Plasma fraction storage
1 8 血液導入口  1 8 Blood inlet
2 0 採血機構  2 0 Blood collection mechanism
2 8 空気抜き流路  2 8 Air vent channel
2 9 空気抜き孔  2 9 Air vent hole
3 0、 3 0 A、 3 0 B センサ部  3 0, 3 0 A, 3 0 B Sensor section
3 2、 3 2 A、 3 2 B センサ溝  3 2, 3 2 A, 3 2 B Sensor groove
3 4 センサ  3 4 Sensor
3 8 外部電極端子  3 8 External electrode terminal
4 0 血漿案内流路  4 0 Plasma guide channel
4 2 較正液溜め  4 2 Calibration solution reservoir
4 4 較正液導入流路  4 4 Calibration solution introduction flow path
4 6 較正液廃液溜め  4 6 Calibration solution waste reservoir
4 8 キヤビラリバルブ (較正液排出流路)  4 8 Capillary valve (Calibration solution discharge flow path)
5 0、 5 2 空気逃がし用流路  5 0, 5 2 Air escape passage
6 0 回転器  6 0 Rotator
6 2 基板案内溝  6 2 Board guide groove
C 0 回転器の回転中心軸  C 0 Rotator center axis
C 1 第 1の遠心軸 (遠心力中心)  C 1 First centrifugal axis (centrifugal force center)
C 2 第 2の遠心軸 (遠心力中心) 発明を実施するための最良の形態 図 4は本発明の一実施態様による血液分析装置の平面模式図である。 符号 1 0は図上縦長に形成した血液分析装置の基板であり、 流路形成さ れた基板とセンサ電極や配線を形成したに基板とを重ね合わせたもの であり、 図では内部流路構造を示す。 上下基板は例えばポリエチレンテ レフ夕レー卜 ( P E T ) やポリカーボネー卜 ( P C ) などの樹脂で作ら れる。 基板 1 0内部には、 その下端側に U字状流路からなる血球 ·血漿 分離部 1 2が配設され、 その最下端の湾曲部には、 血球分画収容部とし ての血球溜め 1 4が設けられる。血球溜め 1 4の上部は遠心時に血漿が 上清として分画される血漿分画収容部 1 6となる。 1 5は血球溜め (血 球分画収容部) 1 4内に沈澱した血球が、 基板取扱時に、 逆流するのを 防止するための逆流止めである。 図 4は血球 ·血漿分離操作後の状態を 示し、 血球溜め 1 4内の黒く塗り潰した部分は分画された血球を示す。 血漿分画収容部の斜線部は分画された血漿を示す。 C 2 Second centrifugal axis (centrifugal center) BEST MODE FOR CARRYING OUT THE INVENTION FIG. 4 is a schematic plan view of a blood analyzer according to an embodiment of the present invention. Reference numeral 10 denotes a substrate of the blood analyzer formed vertically in the figure, which is a superposition of the substrate on which the flow path is formed and the substrate on which the sensor electrode and wiring are formed. Indicates. The upper and lower substrates are made of, for example, a resin such as polyethylene television (PET) or polycarbonate (PC). Inside the substrate 10, a blood cell / plasma separation unit 12 having a U-shaped flow path is disposed on the lower end side thereof, and a blood cell reservoir 1 serving as a blood cell fraction storage unit 1 is disposed at the lowermost curved portion thereof. 4 is provided. The upper part of the blood cell reservoir 14 is a plasma fraction container 16 where plasma is fractionated as a supernatant during centrifugation. 1 5 is a blood cell reservoir (blood cell compartment) 1 4 is a backflow stopper to prevent blood cells that have settled in 4 from flowing back when handling the substrate. Fig. 4 shows the state after the blood cell / plasma separation operation, and the blackened portion in the blood cell reservoir 14 shows the fractionated blood cells. The hatched portion of the plasma fraction storage part indicates the fractionated plasma.
U字状流路 1 2側壁には血漿分画収容部 1 6より上部に全血試料を 導入する血液導入口 1 8が設けられ、 ここに採血血液を収納した採血機 構 2 0が装着可能となっている。採血機構 2 0はステンレス無痛針 2 2 と、 その補強用ステンレス管 2 4, 採血後の血液を収納する一次血液溜 め 2 6とが一体に成形され、 センサ較正作業を終えた基板 1 0の血液導 入口 1 8に挿入される。 2 8は U字状流路最下端と連通する空気抜き流 路であり、 血液導入口 1 8から全血試料が導入されるのを円滑にする。 第 1の遠心軸 C 1は、 血球分画収容部 1 4の上方であって、 血漿分画 収容部 1 6上端よりも下方に位置する。 この遠心軸 C 1より上方にある 血漿分画が遠心操作により、後述のセンサ部 3 0に搬送される。従って、 この第 1の遠心軸 C 1の位置は搬送する血漿分画量に応じて定められ る。  U-shaped channel 1 2 Side wall is provided with a blood inlet 18 for introducing a whole blood sample above the plasma fraction container 16 and a blood collection mechanism 20 storing the collected blood can be installed here It has become. The blood collection mechanism 20 is composed of a stainless painless needle 2 2, a reinforcing stainless steel tube 24, and a primary blood reservoir 26 for storing blood after blood collection. Inserted into blood inlet 1 8. 28 is an air vent channel communicating with the lowermost end of the U-shaped channel, facilitating the introduction of a whole blood sample from the blood inlet 18. The first centrifugal axis C 1 is located above the blood cell fraction storage unit 14 and below the upper end of the plasma fraction storage unit 16. The plasma fraction above the centrifugal axis C 1 is conveyed to the sensor unit 30 described later by centrifugal operation. Therefore, the position of the first centrifugal axis C 1 is determined according to the amount of plasma fraction to be conveyed.
センサ部 3 0は基板 1 0上端側に配設され、 第 2の遠心軸 C 2を中心 に放射状に配設された複数のセンサ溝 3 2を有する。 各センサ溝 3 2内 にはそれぞれセンサ 3 4が収容され、 その各センサの出力はそれぞれの 配線を介して基板外部に露出した各電極端子 3 8に導かれる。 センサ 3 4は、 例えば銀/塩化銀、 カーボンなどの電極、 および銀/塩化銀の参照 電極から構成されている。 配線は、 例えば銀含有カーボン製であり、 外 部電極 3 8は例えば銀製である。 これらの銀/塩化銀、 カーボン電極、 銀/塩化銀の参照電極、 銀含有カーボン配線、 銀電極などは例えばスク リーン印刷で形成される。 The sensor unit 30 is arranged on the upper end side of the substrate 10 and has a plurality of sensor grooves 32 arranged radially around the second centrifugal axis C2. Each sensor groove 3 2 contains a sensor 3 4, and the output of each sensor is It is led to each electrode terminal 38 exposed to the outside of the substrate through the wiring. The sensor 34 includes, for example, an electrode such as silver / silver chloride or carbon, and a silver / silver chloride reference electrode. The wiring is made of, for example, silver-containing carbon, and the outer electrode 38 is made of, for example, silver. These silver / silver chloride, carbon electrode, silver / silver chloride reference electrode, silver-containing carbon wiring, silver electrode, etc. are formed by screen printing, for example.
4 0は U字状流路 1 2の上部を集合してセンサ部 3 0に連通する血 漿案内流路であり、 血球 ·血漿分離操作後に血漿分画収容部 1 6に分画 された血漿をセンサ部 3 0に搬送する。 4 2はセンサを較正するための 較正液を収容した較正液溜めであり、 センサ部 3 0とは較正液導入流路 4 4により連通されている。 較正液溜め 4 2はセンサ部 3 0よりも下方 に位置し、 第 1の遠心軸 C 1よりも上方に位置する。 従って、 第 1の遠 心軸 C 1を中心に基板 1 0を遠心すると較正液溜め 4 2内の較正液は センサ部 3 0に搬送される。  40 is a plasma guide channel that collects the upper part of the U-shaped channel 12 and communicates with the sensor unit 30, and the plasma fractionated in the plasma fraction storage unit 16 after the blood cell / plasma separation operation To the sensor unit 30. Reference numeral 42 denotes a calibration liquid reservoir that contains a calibration liquid for calibrating the sensor, and is connected to the sensor unit 30 by a calibration liquid introduction channel 44. The calibration liquid reservoir 42 is located below the sensor unit 30 and above the first centrifugal axis C1. Therefore, when the substrate 10 is centrifuged about the first distal axis C 1, the calibration liquid in the calibration liquid reservoir 42 is conveyed to the sensor unit 30.
センサ部 3 0の上方には較正液廃液溜め 4 6が設けられ、 センサ部 3 0とは較正液排出流路 4 8 (後述するキヤビラリバルブ) を介して連通 している。 なお図 4では、 較正液廃液溜め 4 6がセンサ部 3 0を囲むよ うに配設されているが、 少なくともセンサ部 3 0よりも上方部分の容積 が、 ここに排出される較正液量よりも大きい容積であればよい。 なお、 5 0, 5 2は空気抜き流路である。  A calibration solution waste liquid reservoir 46 is provided above the sensor unit 30 and communicates with the sensor unit 30 via a calibration solution discharge channel 48 (an exhaust valve described later). In FIG. 4, the calibration liquid waste reservoir 46 is disposed so as to surround the sensor unit 30, but at least the volume above the sensor unit 30 is larger than the amount of calibration liquid discharged here. A large volume is sufficient. Reference numerals 50 and 52 are air vent channels.
本実施態様では、 センサ部 3 0内のセンサ溝 3 2を放射状に配列した が、 図 5に示すように、 第 2の遠心軸 C 2を中心にセンサ溝 3 2 Aを横 に並べてセンサ部 3 O Aを形成してもよい。 また図 6に示すようにセン サ部 3 0 Bの外壁を矩形上にして、 その内部にセンサ溝 3 2 Bを放射状 に配列してもよい。 図 4 , 5, 6では、 第 2の遠心軸 C 2をセンサ部 3 0 , 3 O A , 3 0 Bの内部に配置したが、 これはセンサに印加される重 力加速度ができるだけ小さくするのに便宜な配置であるからである。第 2の遠心軸 C 2は、 必ずしもセンサ部 3 0内部に配置しなくても、 セン サ部 3 0に近接した位置であれば、 センサに印加される重力加速度を小 さくすることができる。 In the present embodiment, the sensor grooves 3 2 in the sensor section 30 are arranged radially, but as shown in FIG. 5, the sensor grooves 3 2 A are arranged side by side around the second centrifugal axis C 2. 3 OA may be formed. Further, as shown in FIG. 6, the outer wall of the sensor part 30 B may be rectangular, and the sensor grooves 32 B may be arranged radially inside the sensor part 30 B. 4, 5, and 6, the second centrifugal shaft C 2 is arranged inside the sensor units 30, 3 OA, and 30 B. This is to make the heavy acceleration applied to the sensor as small as possible. This is because it is a convenient arrangement. The second centrifugal shaft C 2 is not necessarily arranged inside the sensor unit 30, The gravitational acceleration applied to the sensor can be reduced if the position is close to the support 30.
この血液分析装置の使用方法を図 7〜 9により説明する。 まず血液分 析の前にセンサの較正を行う。 図 7に示すように、 血液分析装置の基板 1 0を回転器 6 0の上に直径方向に設けられた案内溝 6 2の中に入れ 上方に載置して、 回転器 6 0の回転軸 C 0の位置に基板 1 0の第 1の遠 心軸 C 1がー致するように固定する。 この状態で基板 1 0を遠心すると、 較正液溜め 4 2内の較正液がセンサ部 3 0に搬送される。 その際、 セン サ部 3 0内の空気は空気抜き流路 5 2から排気される。 このときの遠心 の回転数は、 較正液がキヤビラリパルプ 4 8を通過してしまわない程度 の回転数で行う。 遠心を止めて、 回転器 6 0の上で各センサの較正が行 われる。  A method of using this blood analyzer will be described with reference to FIGS. First, the sensor is calibrated before blood analysis. As shown in FIG. 7, the substrate 10 of the blood analyzer is placed in a guide groove 62 provided in the diametrical direction on the rotator 60 and placed on the upper side. Fix so that the first center axis C 1 of the substrate 10 is aligned with the C 0 position. When the substrate 10 is centrifuged in this state, the calibration liquid in the calibration liquid reservoir 42 is conveyed to the sensor unit 30. At that time, the air in the sensor unit 30 is exhausted from the air vent channel 52. At this time, the number of rotations of the centrifuge is set so that the calibration solution does not pass through the chiral pulp 48. Stop centrifuge and calibrate each sensor on rotator 60.
センサの較正を行った後にセンサ溝 3 2の較正液を排出する。センサ 較正後、 基板 1 0の位置をそのままにして、 再度回転器 6 0を回転し基 板 1 0を遠心し、 センサ部 3 0内の較正液を較正液廃液溜め 4 6に排出 する。 この遠心操作により、 センサ上を覆っている較正液を除去するこ とができ、 残留較正液による分析値の誤差が生じることが無くなる。 な お、 この較正液排出工程では、 較正液がキヤビラリパルプ 4 8を通過す るように、 先に行った較正液搬送工程での遠心よりも高回転で行う。 但 し、 その場合でもセンサが遠心力により損傷しない程度の重力加速度と するのが好ましく、 センサ部 3 0に印加される遠心力は 5 0 0 G以下と することが好ましい。  After the sensor is calibrated, the calibration solution in the sensor groove 32 is discharged. After the sensor calibration, the position of the substrate 10 is left as it is, the rotator 60 is rotated again, the substrate 10 is centrifuged, and the calibration solution in the sensor unit 30 is discharged to the calibration solution waste reservoir 46. This centrifuge operation can remove the calibration solution covering the sensor, eliminating the possibility of errors in the analytical value due to the residual calibration solution. In this calibration liquid discharging process, the calibration liquid is passed at higher speed than the centrifuging in the calibration liquid transporting process so that the calibration liquid passes through the chiral pulp 48. However, even in such a case, it is preferable that the acceleration of gravity is such that the sensor is not damaged by the centrifugal force, and the centrifugal force applied to the sensor unit 30 is preferably 50 G or less.
次に、 全血試料の導入と血球 ·血漿分離を遠心操作により行う。 基板 1 0の血液導入口 1 8に採血機構 2 0を挿入し、 この状態の基板 1 0を 案内溝 6 2内で下方に移動し、 第 2の遠心軸 C 2が回転器 6 0の回転軸 C 0の位置に一致するように固定する (図 8 )。 この状態で基板 1 0を 遠心すると、 全血試料が U字状流路 1 2内に搬送され、 さらに血漿と血 球に分離される。 血球分画は血球溜め 1 4に、 血漿分画は、 U字状流路 1 2の上部 (血漿分画収容部 1 6 ) に上清として分画される。 このとき の遠心操作は、 血球を完全に分離するために行うためのものであり、 U 字状流路最下部に 1 0 0 0 G以上の遠心力が印加されるようにするの が好ましい。 Next, whole blood sample introduction and blood cell / plasma separation are performed by centrifugation. The blood collection mechanism 20 is inserted into the blood introduction port 18 of the substrate 10, the substrate 10 in this state is moved downward in the guide groove 62, and the second centrifugal axis C 2 is rotated by the rotator 60. Fix it so that it matches the position of axis C0 (Fig. 8). When the substrate 10 is centrifuged in this state, the whole blood sample is conveyed into the U-shaped channel 12 and further separated into plasma and blood cells. The blood cell fraction is stored in the blood cell reservoir 14 and the plasma fraction is in the U-shaped flow path. It is fractionated as a supernatant in the upper part of 1 2 (plasma fraction accommodating part 16). The centrifugal operation at this time is performed in order to completely separate blood cells, and it is preferable that a centrifugal force of 100 G or more is applied to the lowermost part of the U-shaped channel.
血球分離後、 基板 1 0を再度案内溝 6 2内の上方に移動し、 第 1の遠 心軸 C 1が回転器 6 0の回転軸 C 0の位置に一致するように固定する (図 9 )。 この状態で基板 1 0を遠心すると、 図 9に示された遠心軸 C 0, C 1より上方にある血漿は、 遠心力によりセンサ部 3 0に搬送され る。 血球溜め 1 4は遠心軸 C 0, C 1より下方にあり、 ここに分画され た血球がセンサ部 3 0に移行することはない。 このときの遠心操作は、 センサが損傷しない程度の重力加速度とするのが好ましく、 センサ部 3 0に印加される遠心力は 5 0 0 G以下とすることが好ましい。 最後に、 血漿中の各被検成分を各センサにより計測する。  After blood cell separation, the substrate 10 is again moved upward in the guide groove 62 and fixed so that the first distal axis C 1 coincides with the rotational axis C 0 of the rotator 60 (FIG. 9). ). When the substrate 10 is centrifuged in this state, the plasma above the centrifugal axes C 0 and C 1 shown in FIG. 9 is conveyed to the sensor unit 30 by centrifugal force. The blood cell reservoir 14 is below the centrifugal axes C 0 and C 1, and the blood cells fractionated here do not move to the sensor unit 30. The centrifugal operation at this time is preferably a gravitational acceleration that does not damage the sensor, and the centrifugal force applied to the sensor unit 30 is preferably 500 G or less. Finally, each test component in plasma is measured by each sensor.
本実施態様の重要な点は、 較正液の導入工程で用いる遠心軸と、 較正 液の排出工程で用い遠心軸が、 いずれも第 1の遠心軸 C 1である点であ る (図 7 )。 較正液を較正液溜め 4 2からセンサ部 3 0に導入する場合 には、 センサ部 3 0に搬送された較正液がさらに較正液廃液溜めに移行 しないようにしなければならない。 すなわち、 較正液導入工程で用いる 比較的弱い遠心力と較正液導入流路 4 4の流路径とキヤビラリパルプ (較正液排出流路) 4 8の流路径を見積り、 さらに較正後の較正液をキ ャビラリバルブ 4 8を介して較正液廃液溜め 4 6に搬送させる比較的 強い遠心力の見積もりが必要である。  The important point of this embodiment is that the centrifugal axis used in the calibration liquid introduction process and the centrifugal axis used in the calibration liquid discharge process are both the first centrifugal axis C 1 (FIG. 7). . When the calibration liquid is introduced from the calibration liquid reservoir 42 to the sensor unit 30, the calibration liquid transferred to the sensor unit 30 must not be further transferred to the calibration liquid waste liquid reservoir. In other words, the relatively weak centrifugal force used in the calibration liquid introduction process, the calibration liquid introduction flow path 4 4 and the flow path diameter of the chiral pulp (calibration liquid discharge flow path) 4 8 are estimated, and the calibrated calibration liquid is further used as the calibration valve. It is necessary to estimate the relatively strong centrifugal force that is transferred to the calibration liquid waste reservoir 4 6 through 4 8.
キヤビラリパルプに関しては、 Nam- Trung Nguyen と Steven T. Wereley の 著 作 に よ る 「 Fundamental s and Appl icat ions of Microf ludicsj (発行所: Artech House (Bos ton - London) 2002)の 315 ページに述べられている。 図 1 0に示すように、 細管に溶液が遠心中心 から半径 と半径 R 2の間に存在し、 溶液が細管から吐出する時の溶液 の細管に対する接触角を 0、 表面張力をァ、 細管の半径を R、 溶液の密 度を Pとすると、 遠心力によって溶液が細管から突出しようとする最小 の回転数 f mの間には以下の関係にある。 As regards mildew pulp, it is described on page 315 of “Fundamental and Applicat ions of Microfludicsj (Publisher: Artech House (Bos ton-London) 2002)” by Nam- Trung Nguyen and Steven T. Wereley. are. as shown in FIG. 1 0, the solution to the capillary is present between the centrifugal center of radius and radius R 2, the contact angle to a solution tubules when the solution is discharged from the capillary 0, § surface tension, The radius of the capillary is R, the density of the solution When the degree is P, the following relationship exists between the minimum number of rotations fm at which the solution tries to protrude from the capillary tube due to centrifugal force.
f m2 ≥ rcos0 /R · p · Γ2 · (R2-Rj) (R2+R2) 図 1 1に示すように、 第 1遠心軸 C 1と第 2遠心軸 C 2の距離を 5 c mとし、 較正液溜め 42から流路を経てセンサを収容する溝までの流路 (すなわち較正液導入流路 44) の流路長(R2— R!)を 1 cmとし、 第 1の遠心軸 C 1から較正液溜め 42のセンサ部 3 0側端部までの距離 を 3. 5 cmとする。 25での水の表面張力 (ァ) は 72X10"3 [N/m] であり、 基板 1 0の材料としてポリエチレンテレフタレート樹脂を用い た場合、水との接触角 Θ は 80度である。水の密度(p)は 1 Xl03[kg/m3] である。 これらの値を用いると、 最小回転数 ( fm) を l O O r pmと しても、 較正液排出流路 44の直径 (2 R) は約 3 m以上で十分であ る。 すなわち、 較正導入流路は流路長 1 cmの場合、 直径を 以上 とすれば、 第 1遠心軸 C 1を中心とする 1 00 r pmの遠心により、 較 正液溜め 42からセンサ部 30への較正液搬送が可能である。 fm 2 ≥ rcos0 / R · p · Γ 2 · (R 2 -Rj) (R 2 + R 2 ) As shown in Fig. 11, the distance between the first centrifugal axis C 1 and the second centrifugal axis C 2 is 5 The length of the flow path (R 2 — R!) from the calibration liquid reservoir 42 through the flow path to the groove that houses the sensor (ie, the calibration liquid introduction flow path 44) is 1 cm, and the first centrifuge The distance from the axis C 1 to the sensor part 30 side end of the calibration fluid reservoir 42 is 3.5 cm. The surface tension (a) of water at 25 is 72X10 " 3 [N / m], and when the polyethylene terephthalate resin is used as the substrate 10 material, the contact angle with water Θ is 80 degrees. The density (p) is 1 Xl0 3 [kg / m 3 ] Using these values, the diameter of the calibration liquid discharge channel 44 (2) even if the minimum speed (fm) is l OO r pm. R) is approximately 3 m or more, that is, if the calibration introduction flow path is 1 cm long and the diameter is greater than 100 m, the first centrifugal axis C 1 is centered at 100 rpm. Centrifugal solution can be transferred from the calibration solution reservoir 42 to the sensor unit 30 by centrifugation.
一方、 キヤビラリバルブ 48の流路長(R2— を 0. 5 cm、 直径 (2 R) を 1 00 //m程度に形成すれば、 f mが約 1 00 0 r pm以上 の時にセンサ部 (センサ溝) の較正液は廃液溜め 46に流れ込む。 ここ でセンサに印加される重力加速度は、 センサまでの遠心半径が約 5. 5 cmであるので、 図 1 2から約 6 0 Gである。 実際、 このような流路寸 法で製作した血液分析装置基板では較正液と血漿の流れが共に正常に 動作した。 On the other hand, if the flow path length of the valve 48 (R 2 — is 0.5 cm and the diameter (2 R) is about 100 // m, when the fm is about 100 00 rpm or more, the sensor section (sensor Calibration fluid in the groove) flows into the waste reservoir 46. Here, the gravitational acceleration applied to the sensor is about 60 G from Fig. 12 because the centrifugal radius to the sensor is about 5.5 cm. In the blood analyzer substrate manufactured with such a flow path dimension, both the calibration liquid and the plasma flow operated normally.
この血液分析基板の利点は、 センサが第 2遠心軸 C 2から約 5mm程 度離れて放射上の位置に配置されている点である。 第 1の遠心軸 C 1か らの距離約 5 c mに較べ 1 /10の距離である。第 1遠心軸 C 1を中心 にして遠心した場合に較べ、 第 2遠心軸 C 2を中心に遠心した場合には、 1/10程度の遠心力しか受けない。 従って、 図 8に示す血球分離工程 での遠心操作で、 第 2遠心軸を中心に 7 000 r pmで遠心しても、 セ ンサにはいかなる損傷が見られなかった。 The advantage of this blood analysis substrate is that the sensor is disposed at a position on the radiation about 5 mm away from the second centrifugal axis C2. The distance from the first centrifugal axis C 1 is about 1/10 compared to about 5 cm. Compared with the case where the centrifuge is performed with the first centrifuge shaft C 1 as the center, the centrifuge with respect to the second centrifuge shaft C 2 receives only about 1/10 of the centrifugal force. Therefore, the centrifugal operation in the blood cell separation process shown in Fig. 8 can be performed even if the second centrifugal axis is centrifuged at 7 000 rpm. The sensor did not show any damage.
また、 血漿搬送工程では、 図 9に示すように、 血球溜め 1 4は遠心軸 C 0 (第 1の遠心軸 C 1 )を挟んで血漿案内流路 4 0の反対側に位置し、 血球が血漿案内流路 4 0に逆流することなく血漿のみをセンサ部に搬 送することができた。 なお、 本実施態様では、 血球分離後の血漿搬送の ため基板 1 0を図 7の位置から図 9の位置に移動したが、 血球分離後、 空気抜き流路 2 8の空気抜き孔 2 9から空気を入れて加圧すれば、 血漿 を血漿案内流路 4 0、センサ部 3 0に搬送することができる(図 4参照)。 産業上の利用可能性  In the plasma transfer step, as shown in FIG. 9, the blood cell reservoir 14 is located on the opposite side of the plasma guide channel 40 across the centrifugal axis C 0 (first centrifugal axis C 1), and the blood cells Only plasma could be transported to the sensor section without backflowing into the plasma guide channel 40. In this embodiment, the substrate 10 is moved from the position shown in FIG. 7 to the position shown in FIG. 9 for transferring the plasma after blood cell separation. However, after blood cell separation, air is removed from the air vent hole 29 in the air vent flow path 28. If it is put and pressurized, the plasma can be conveyed to the plasma guide channel 40 and the sensor unit 30 (see FIG. 4). Industrial applicability
以上のように、 本発明の血液分析装置は異なる 2つの遠心軸を中心に遠 心可能としたものであり、 較正液のセンサ溝への搬入、 及びその排出、 血球分離と血漿のセンサ部への導入をポンプを一切使わずに遠心力で 行うことが可能である。従来のような負圧ポンプを使用する必要が無く なり、 安価 ·簡便な血液分析装置を実現できる。 較正液の搬送 ·廃液は センサ部から離れた第 1の遠心軸を中心にして低回転で遠心すること により、 センサに印加される重力加速度を小さくできる。 一方血球分離 のための大きな重力加速度を与える遠心操作では、 第 2の遠心軸を中心 に遠心することによりセンサ部に印加される重力加速度が小さくでき る。 従って、 多層で異種成分からなるセンサが、 血球分離時の強い遠心 力によって損傷を受けることがなくなり、 より高精度な分析が可能とな る。 As described above, the blood analyzer of the present invention is capable of being centered around two different centrifugal axes. The calibration solution is carried into the sensor groove and discharged, and the blood cell is separated into the plasma sensor unit. Can be introduced by centrifugal force without using any pump. There is no need to use a conventional negative pressure pump, and an inexpensive and simple blood analyzer can be realized. Conveying calibration solution · Waste liquid can be reduced in gravity acceleration applied to the sensor by centrifuging at a low speed around the first centrifugal axis away from the sensor unit. On the other hand, in centrifugal operation that gives a large gravitational acceleration for blood cell separation, the gravitational acceleration applied to the sensor can be reduced by centrifuging around the second centrifugal axis. Therefore, the multi-layered sensor composed of different components is not damaged by the strong centrifugal force during blood cell separation, and more accurate analysis is possible.

Claims

請求の範囲 The scope of the claims
1 . 遠心により全血試料の血漿分離を行い、 血液液性成分中の被検成 分を分析する血液分析装置において: 1. In a blood analyzer that separates the whole blood sample by centrifugation and analyzes the test components in the blood fluid component:
(a) 基板の下端側に配設された血球 ·血漿分離部であって、 遠心力を 作用させたときに血球分画を沈澱させて収容する血球分画収容部と、 血 球分画収容部の上方に位置して血漿を収容する血漿分画収容部とを備 えた血球 ·血漿分離部と ;  (a) A blood cell / plasma separation unit disposed on the lower end side of the substrate, the blood cell fraction containing unit for precipitating and storing a blood cell fraction when a centrifugal force is applied, and a blood cell containing fraction A blood cell / plasma separation unit provided with a plasma fraction storage unit for storing plasma located above the unit;
(b) 基板の上端側に配設されたセンサ部であって、 被検成分を分析す るセンサを収容したセンサ溝を有するセンサ部と ;  (b) a sensor unit disposed on the upper end side of the substrate, the sensor unit having a sensor groove that accommodates a sensor for analyzing a test component;
(c) 血球 ·血漿分離部とセンサ部とを連通する血漿案内流路と ; (c) a blood cell / plasma guide channel communicating the plasma separation part and the sensor part;
(d) 血球 ·血漿分離部に全血試料を導入する血液導入口と ; (d) a blood inlet for introducing a whole blood sample into the blood cell / plasma separator;
(e) センサを較正する較正液を収容する較正液溜めと ;  (e) a calibration fluid reservoir containing calibration fluid for calibrating the sensor;
(f) センサ較正後の較正液を収容する較正液廃液溜めと ;  (f) a calibration liquid waste reservoir containing calibration liquid after sensor calibration;
(g) 較正液溜めとセンサ溝とを連通する較正液導入流路と ;  (g) a calibration fluid introduction flow path communicating with the calibration fluid reservoir and the sensor groove;
(h) センサ溝と較正液廃液溜めとを連通する較正液排出流路と : を備え;  (h) a calibration liquid discharge flow path that communicates the sensor groove with the calibration liquid waste liquid reservoir;
血球分画収容部よりも上方あり、 血漿分画収容部上端よりも下方に位 置する第 1の遠心軸を中心に遠心可能とされる一方;  While being capable of being centrifuge around a first centrifuge shaft located above the blood cell fraction container and below the top of the plasma fraction container;
血球 ·血漿分離部よりもセンサ部の内部または近接した位置にある第 2の遠心軸を中心に遠心可能とされ;  It is possible to centrifuge around the second centrifugal axis located in the sensor part or closer to the blood cell / plasma separation part;
前記較正液溜めは前記センサ部の下方であって前記第 1の遠心軸の 上方に位置し、 前記較正液廃液溜めは前記センサ部の上方に位置するこ とを特徵とする血液分析装置。  The blood analyzer characterized in that the calibration solution reservoir is located below the sensor unit and above the first centrifugal axis, and the calibration solution waste solution reservoir is located above the sensor unit.
2 . 前記血球 ·血漿分離部は U字状流路で形成され、 U字状流路下端 の湾曲部に前記血球分画収容部が設けられ、 その上部が血漿分画収容部 とされていることを特徵とする請求項 1の血液分析装置。  2. The blood cell / plasma separation part is formed by a U-shaped flow path, the blood cell fraction storage part is provided at the curved part at the lower end of the U-shaped flow path, and the upper part thereof is a plasma fraction storage part. The blood analyzer according to claim 1 characterized by the above.
3 . 前記血球分画収容部は、 U字状流路最下部から下方に突出して形 成され、 その容積が u字状流路に導入される全血試料中の血球分画量よ りも大であることを特徴とする請求項 2の血液分析装置。 3. The blood cell fraction storage part protrudes downward from the bottom of the U-shaped channel. 3. The blood analyzer according to claim 2, wherein the blood analyzer has a volume larger than a blood cell fraction in the whole blood sample introduced into the u-shaped channel.
4 . 前記血液導入口が、 血漿分画収容部よりも上方で前記 U字状流路 の側壁に設けられていることを特徵とする請求項 2の血液分析装置。 4. The blood analyzer according to claim 2, wherein the blood introduction port is provided on a side wall of the U-shaped flow path above the plasma fraction storage unit.
5 . 前記 U字状流路には、 これと連通する空気抜き流路が設けられて いることを特徴とする請求項 2の血液分析装置。 5. The blood analyzer according to claim 2, wherein the U-shaped channel is provided with an air vent channel communicating with the U-shaped channel.
6 . 前記センサ部は、 それぞれ異なる被検成分を分析するセンサを収 容した複数のセンサ溝を有することを特徴とする請求項 1〜 5いずれ かの血液分析装置。  6. The blood analyzer according to any one of claims 1 to 5, wherein the sensor section has a plurality of sensor grooves in which sensors for analyzing different test components are accommodated.
7 . 前記複数のセンサ溝は、 前記第 2の遠心軸を中心にした円周上に 配置されていることを特徵とする請求項 6の血液分析装置。  7. The blood analyzer according to claim 6, wherein the plurality of sensor grooves are arranged on a circumference around the second centrifugal axis.
8 . 血漿導入口と血球 ·血漿分離部と血漿案内流路とセンサ溝とが、 それぞれ親水化処理されていることを特徵とする請求項 1 ~ 7いずれ かの血液分析装置。  8. The blood analyzer according to any one of claims 1 to 7, wherein the plasma inlet, the blood cell / plasma separator, the plasma guide channel, and the sensor groove are each subjected to a hydrophilic treatment.
9 . 較正液溜めと較正液廃液溜めと較正液導入流路と較正液排出流路 とが、 それぞれ親水化処理されていることを特徵とする請求項 8の血液 分析装置。  9. The blood analyzer according to claim 8, wherein the calibration liquid reservoir, the calibration liquid waste liquid reservoir, the calibration liquid introduction flow path, and the calibration liquid discharge flow path are each hydrophilically treated.
1 0 . 前記較正液排出流路がキヤビラリバルブであることを特徴とす る請求項 1〜 9いずれかの血液分析装置。  10. The blood analyzer according to any one of claims 1 to 9, wherein the calibration liquid discharge channel is a capillary valve.
1 1 . 前記センサは電気化学的センサであることを特徴とする請求項 1〜 1 0いずれかの血液分析装置。  11. The blood analyzer according to any one of claims 1 to 10, wherein the sensor is an electrochemical sensor.
1 2 . 前記血液導入口には、 採血された血液を収納した採血機構を取 付可能とされていることを特徵とする請求項 1〜 1 1いずれかの血液 分析装置。  12. The blood analyzer according to any one of claims 1 to 11, wherein a blood collection mechanism that stores collected blood can be attached to the blood introduction port.
1 3 . 以下のステップからなる血液分析方法:  1 3. Blood analysis method consisting of the following steps:
( 1) 基板の下端側に配設された血球,血漿分離部であって、 遠心力を 作用させたときに血球分画を沈澱させて収容する血球分画収容部と、 血 球分画収容部の上方に位置して血漿を収容する血漿分画収容部とを備 えた血球。血漿分離部と;基板の上端側に配設され被検成分を分析する センサを収容したセンサ溝を有するセンサ部と;血球 血漿分離部とセ ンサ部とを連通する血漿案内流路と;血球 ·血漿分離部に全血試料を導 入する血液導入口と ;センサを較正する較正液を収容する較正液溜め と;センサ較正後の較正液を収容する較正液廃液溜めと;較正液溜めと センサ溝とを連通する較正液導入流路と;センサ溝と較正液廃液溜めと を連通する較正液排出流路とを備えた血液分析装置を用意し; (1) A blood cell / plasma separation unit disposed on the lower end side of the substrate, and a blood cell fraction storage unit that deposits and stores a blood cell fraction when a centrifugal force is applied, and a blood cell storage unit A plasma fraction storage unit that is located above the unit and stores plasma. Hey blood cells. A plasma separation unit; a sensor unit having a sensor groove that is disposed on the upper end side of the substrate and that analyzes a test component; a blood cell, a plasma guide channel that communicates the plasma separation unit and the sensor unit; A blood inlet for introducing a whole blood sample into the plasma separation unit; a calibration liquid reservoir for storing a calibration liquid for calibrating the sensor; a calibration liquid waste reservoir for storing a calibration liquid after sensor calibration; a calibration liquid reservoir; Providing a blood analyzer having a calibration liquid introduction flow path communicating with the sensor groove; and a calibration liquid discharge flow path communicating with the sensor groove and the calibration liquid waste reservoir;
(2) 血球分画収容部よりも上方にあり血漿分画収容部上端よりも下 方に位置する第 1の遠心中心軸を中心に血液分析装置を遠心して、 較正 液溜め内の較正液をセンサ溝に導入し;  (2) Centrifuge the blood analyzer around the first centrifuge central axis located above the blood cell fraction container and below the upper end of the plasma fraction container, and remove the calibration solution in the calibration reservoir. Introduced into the sensor groove;
(3) 前記センサの較正を行い;  (3) calibrate the sensor;
(4) 前期第 1の遠心軸を中心に血液分析装置を遠心して、 センサ溝内 の較正液を較正液溜めに排出し;  (4) Centrifuge the blood analyzer around the first centrifugal axis in the previous period, and discharge the calibration solution in the sensor groove to the calibration solution reservoir;
(5) 前記血球 ·血漿分離部に全血試料を導入して、 血球 ·血漿分離部 よりもセンサ部に近い位置にある第 2の遠心軸を中心にして血液分析 装置を遠心することにより、 血球 ·血漿分離部内で血球 ·血漿分離を行 わせて血球分画を血球分画収容部に沈澱させ;  (5) By introducing a whole blood sample into the blood cell / plasma separation unit and centrifuging the blood analyzer around the second centrifugal axis located closer to the sensor unit than the blood cell / plasma separation unit, Blood cell / plasma separation is performed in the blood cell / plasma separator to precipitate the blood cell fraction in the blood cell compartment;
(6) 前記第 1の遠心軸を中心にして血液分析装置を遠心することに より、 血漿分画収容部内で分画された血漿をセンサ溝に搬送し;  (6) centrifuge the blood analyzer around the first centrifugal axis to convey the plasma fractionated in the plasma fraction storage unit to the sensor groove;
(7) センサ溝内の血漿中の液性成分の分析をセンサにより行う。 (7) The sensor analyzes the liquid component in the plasma in the sensor groove.
1 4 . ステップ(2)、 (4)、 (6)において行う遠心で前記センサに印加 される重力加速度は 500 G以下であることを特徵とする請求項 1 3の血 液分析方法。 14. The blood analysis method according to claim 13, wherein the gravitational acceleration applied to the sensor by centrifugation performed in steps (2), (4), and (6) is 500 G or less.
1 5 . ステップ(5)において行う遠心で血球 ·血漿分離部に印加され る重力加速度は 1000 G以上であり、前記センサに印加される重力加速度 は 500 G以下であることを特徵とする請求項 1 3の血液分析方法。 1 5. The gravity acceleration applied to the blood cell / plasma separator by centrifugation performed in step (5) is 1000 G or more, and the gravity acceleration applied to the sensor is 500 G or less. 1 3 blood analysis methods.
1 6 . 以下のステップからなる血液分析方法: 1 6. Blood analysis method comprising the following steps:
(1) 基板の下端側に配設された血球 ·血漿分離部であって、 遠心力を 作用させたときに血球分画を沈澱させて収容する血球分画収容部と、 血 球分画収容部の上方に位置して血漿を収容する血漿分画収容部と、 この 血漿分画収容部と連通する空気抜き流路とを備えた血球 ·血漿分離部 と;基板の上端側に配設され被検成分を分析するセンサを収容したセン サ溝を有するセンサ部と;血球 ·血漿分離部とセンサ部とを連通する血 漿案内流路と;血球 ·血漿分離部に全血試料を導入する血液導入口と; センサを較正する較正液を収容する較正液溜めと;センサ較正後の較正 液を収容する較正液廃液溜めと;較正液溜めとセンサ溝とを連通する較 正液導入流路と;センサ溝と較正液廃液溜めとを連通する較正液排出流 路とを備えた血液分析装置を用意し ; (1) A blood cell / plasma separation unit placed on the bottom side of the substrate, A blood cell fraction containing portion for precipitating and containing a blood cell fraction when acted thereon; a plasma fraction containing portion located above the blood cell fraction containing portion for containing plasma; and the plasma fraction containing portion A blood cell / plasma separation part having an air vent channel communicating with the sensor; a sensor part having a sensor groove disposed on the upper end side of the substrate and containing a sensor for analyzing a test component; and a blood cell / plasma separation part; A plasma guide channel communicating with the sensor unit; a blood introduction port for introducing a whole blood sample into the blood cell / plasma separation unit; a calibration liquid reservoir containing a calibration liquid for calibrating the sensor; a calibration liquid after sensor calibration A blood analyzer comprising: a calibration liquid waste reservoir that contains a calibration fluid; a calibration fluid introduction channel that communicates the calibration fluid reservoir and the sensor groove; and a calibration fluid discharge channel that communicates the sensor groove and the calibration fluid waste fluid reservoir Prepare;
(2) 血球分画収容部よりも上方にあり血漿分画収容部上端よりも下 方に位置する第 1の遠心中心軸を中心に血液分析装置を遠心して、 較正 液溜め内の較正液をセンサ溝に導入し;  (2) Centrifuge the blood analyzer around the first centrifuge central axis located above the blood cell fraction container and below the upper end of the plasma fraction container, and remove the calibration solution in the calibration reservoir. Introduced into the sensor groove;
(3) 前記センサの較正を行い;  (3) calibrate the sensor;
(4) 前期第 1の遠心軸を中心に血液分析装置を遠心して、 センサ溝内 の較正液を較正液溜めに排出し;  (4) Centrifuge the blood analyzer around the first centrifugal axis in the previous period, and discharge the calibration solution in the sensor groove to the calibration solution reservoir;
(5) 前記血球 ·血漿分離部に全血試料を導入して、 血球 ·血漿分離部 よりもセンサ部に近い位置にある第 2の遠心軸を中心にして血液分析 装置を遠心することにより、 血球 ·血漿分離部内で血球 ·血漿分離を行 わせて血球分画を血球分画収容部に沈澱させ;  (5) By introducing a whole blood sample into the blood cell / plasma separation unit and centrifuging the blood analyzer around the second centrifugal axis located closer to the sensor unit than the blood cell / plasma separation unit, Blood cell / plasma separation is performed in the blood cell / plasma separator to precipitate the blood cell fraction in the blood cell compartment;
(6) 前記空気抜き流路から外気を加圧導入することにより、 血漿分画 収容部内に分画された血漿をセンサ溝に搬送し ;  (6) The pressurized air is introduced from the air vent channel to convey the plasma fractionated in the plasma fraction storage unit to the sensor groove;
(7) センサ溝内の血漿中の液性成分の分析をセンサにより行う。  (7) The sensor analyzes the liquid component in the plasma in the sensor groove.
1 7 . ステップ(2)、 (4)において行う遠心で前記センサに印加される 重力加速度は 500 G以下であることを特徵とする請求項 1 6の血液分析 方法。  1 7. The blood analysis method according to claim 16, wherein the gravitational acceleration applied to the sensor by the centrifugation performed in steps (2) and (4) is 500 G or less.
PCT/JP2005/014882 2004-08-09 2005-08-09 Hemanalysis apparatus and method of hemanalysis WO2006016693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/659,599 US7678577B2 (en) 2004-08-09 2005-08-09 Blood analysis apparatus and blood analysis method
DE112005001929T DE112005001929T5 (en) 2004-08-09 2005-08-09 Apparatus for blood analysis and method for blood analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-232638 2004-08-09
JP2004232638A JP4478776B2 (en) 2004-08-09 2004-08-09 Blood analyzer and blood analysis method

Publications (1)

Publication Number Publication Date
WO2006016693A1 true WO2006016693A1 (en) 2006-02-16

Family

ID=35839447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014882 WO2006016693A1 (en) 2004-08-09 2005-08-09 Hemanalysis apparatus and method of hemanalysis

Country Status (5)

Country Link
US (1) US7678577B2 (en)
JP (1) JP4478776B2 (en)
CN (1) CN101006340A (en)
DE (1) DE112005001929T5 (en)
WO (1) WO2006016693A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158079B2 (en) 2006-06-30 2012-04-17 Panasonic Corporation Panel for analysis and analyzer using the same
JP4859769B2 (en) * 2006-06-30 2012-01-25 パナソニック株式会社 Analysis panel and analyzer using the same
JP4880419B2 (en) * 2006-10-18 2012-02-22 ローム株式会社 Chip having measuring unit and method for measuring liquid sample using the same
JP4852399B2 (en) * 2006-11-22 2012-01-11 富士フイルム株式会社 Two-component merger
CN101603896B (en) * 2008-06-10 2011-09-21 财团法人工业技术研究院 Analysis system and analysis method and flow path structure thereof
NO332016B1 (en) * 2009-12-29 2012-05-21 Stiftelsen Sintef Sample processing cartridge and method for processing and / or analyzing a sample under centrifugal force
US20130211289A1 (en) 2012-01-25 2013-08-15 Tasso, Inc. Handheld Device for Drawing, Collecting, and Analyzing Bodily Fluid
WO2014018558A1 (en) 2012-07-23 2014-01-30 Tasso, Inc. Methods, systems, and devices relating to open microfluidic channels
CN106999120B (en) * 2014-08-01 2021-05-14 塔索公司 Devices, systems, and methods for gravity-enhanced microfluidic collection, handling, and delivery of liquids
US10779757B2 (en) 2014-08-01 2020-09-22 Tasso, Inc. Devices, systems and methods for gravity-enhanced microfluidic collection, handling and transferring of fluids
CN109068979B (en) 2015-12-21 2021-08-20 塔索公司 Devices, systems, and methods for actuation and retraction in fluid collection
WO2019150606A1 (en) * 2018-01-30 2019-08-08 京セラ株式会社 Measurement apparatus
US11638918B2 (en) * 2018-08-23 2023-05-02 Truvian Sciences, Inc. Blood plasma separation device
CN111295138A (en) 2018-09-14 2020-06-16 塔索公司 Body fluid collection device and related methods
CN110624615A (en) * 2019-09-19 2019-12-31 深圳富士凯烨医疗电子科技有限公司 Micro-fluidic chip
CN116086894B (en) * 2023-04-10 2023-07-25 北京市春立正达医疗器械股份有限公司 Blood cell monitoring and guiding assembly after separation and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425058A (en) * 1987-07-01 1989-01-27 Miles Inc Method for separation, weighing, dilution and distribution of liquid, assembly therefor and system for chemical analysis
JP2002538480A (en) * 1999-03-09 2002-11-12 ビオメリオークス エス.ア. Method and apparatus for moving fluid by multiple centrifugations
JP2003083926A (en) * 2001-09-10 2003-03-19 Jun Kikuchi Apparatus and method for hemanalysis
JP2003083958A (en) * 2001-09-11 2003-03-19 Jun Kikuchi Blood analyzer and blood analyzing method
JP2004109099A (en) * 2002-09-16 2004-04-08 Jun Kikuchi Method of analyzing blood, apparatus for analyzing blood, and method of manufacturing apparatus for analyzing blood
WO2004074846A1 (en) * 2003-02-19 2004-09-02 Japan Science And Technology Agency Blood analysis device and blood analysis method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089417A (en) * 1987-07-01 1992-02-18 Miles Inc. Fluid separation and processing device
JPS6425058U (en) 1987-08-01 1989-02-10
US5589399A (en) * 1994-10-21 1996-12-31 First Medical, Inc. System and method for plasma separation and measurement
WO1999044507A1 (en) * 1998-03-06 1999-09-10 Spectrx, Inc. Integrated tissue poration, fluid harvesting and analysis device, and method therefor
JP3847053B2 (en) 2000-03-15 2006-11-15 純 菊地 Blood analyzer
JP3803078B2 (en) * 2002-09-20 2006-08-02 独立行政法人科学技術振興機構 Hematology analyzer and plasma separation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425058A (en) * 1987-07-01 1989-01-27 Miles Inc Method for separation, weighing, dilution and distribution of liquid, assembly therefor and system for chemical analysis
JP2002538480A (en) * 1999-03-09 2002-11-12 ビオメリオークス エス.ア. Method and apparatus for moving fluid by multiple centrifugations
JP2003083926A (en) * 2001-09-10 2003-03-19 Jun Kikuchi Apparatus and method for hemanalysis
JP2003083958A (en) * 2001-09-11 2003-03-19 Jun Kikuchi Blood analyzer and blood analyzing method
JP2004109099A (en) * 2002-09-16 2004-04-08 Jun Kikuchi Method of analyzing blood, apparatus for analyzing blood, and method of manufacturing apparatus for analyzing blood
WO2004074846A1 (en) * 2003-02-19 2004-09-02 Japan Science And Technology Agency Blood analysis device and blood analysis method

Also Published As

Publication number Publication date
US20080028821A1 (en) 2008-02-07
JP4478776B2 (en) 2010-06-09
JP2006052949A (en) 2006-02-23
US7678577B2 (en) 2010-03-16
CN101006340A (en) 2007-07-25
DE112005001929T5 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
WO2006016693A1 (en) Hemanalysis apparatus and method of hemanalysis
JP4480170B2 (en) Blood analyzer and blood analysis method
US20060084174A1 (en) Blood analyzer and method of separating plasma
US8512638B2 (en) Microchip and analyzer using the same
AU2003232170B2 (en) A disposable cartridge for characterizing particles suspended in a liquid
US7101472B2 (en) Microfluidic ion-selective electrode sensor system
Floris et al. A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood
US20030114785A1 (en) Blood analyzing method and apparatus
CN100570353C (en) Two-channel self calibrating multiple parameters rapid whole blood biochemistry analyzing sensor
JP2009128367A (en) Analytical system and method for analyzing analyte contained in body fluid
WO2006019182A1 (en) Hemanalysis device
JP2001258868A5 (en)
US20060013744A1 (en) Container comprising a reference gas, a set of reference fluids, a cassette comprising the reference fluids, and an apparatus comprising the reference fluids
US20170023514A1 (en) Biosensor structures for improved point of care testing and methods of manufacture thereof
JP3834357B2 (en) Compact analyzer and driving method thereof
JP4554171B2 (en) Analytical test cartridge and method
US7368083B2 (en) Blood processing apparatus and blood introducing method
JP2007333716A (en) Separating/weighing chip, and method for using the same
JP2006052950A (en) Blood analyzer and blood analyzing method
JP2003107080A (en) Blood analyzer and method therefor
CN114728216A (en) Integrated point-of-care blood detection system and method
JP2005241617A (en) Blood analyzer
JP2003083926A (en) Apparatus and method for hemanalysis
US20210247380A1 (en) Contoured sample path for fluid analyzer
JP2003102708A (en) Blood analyzer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580027117.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050019292

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005001929

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 11659599

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05770600

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11659599

Country of ref document: US