WO2006013973A1 - Switching means driving circuit, switching means driving method, power supply device and switching circuit - Google Patents

Switching means driving circuit, switching means driving method, power supply device and switching circuit Download PDF

Info

Publication number
WO2006013973A1
WO2006013973A1 PCT/JP2005/014431 JP2005014431W WO2006013973A1 WO 2006013973 A1 WO2006013973 A1 WO 2006013973A1 JP 2005014431 W JP2005014431 W JP 2005014431W WO 2006013973 A1 WO2006013973 A1 WO 2006013973A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching means
driving
switching
input
circuit
Prior art date
Application number
PCT/JP2005/014431
Other languages
French (fr)
Japanese (ja)
Inventor
Masaji Haneda
Hidehiro Takakusa
Minoru Okada
Haruki Wada
Original Assignee
Ntt Data Ex Techno Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Ex Techno Corporation filed Critical Ntt Data Ex Techno Corporation
Publication of WO2006013973A1 publication Critical patent/WO2006013973A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04123Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit

Definitions

  • Switching means driving circuit switching means driving method, power supply device, and switching circuit
  • the present invention relates to a switching means driving circuit for driving switching means such as a transistor, a switching means driving method, a power supply device including the switching means driving circuit, and a switching circuit.
  • a transistor such as a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) is used as a switching means, and the transistor is turned on and off to drive the transistor.
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • a capacitance component called a gate input capacitance is generated between the gate and the drain and between the gate and the source. For this reason, when a control signal is input to the transistor gate, the signal current of the control signal is consumed to charge the capacitance component, and the transistor may not be driven reliably. There is also a harmful effect called the feedback effect (or mirror effect) between the drain and the gate. Therefore, it is necessary to input a sufficient signal current to the transistor gate. Therefore, in a conventional gate drive circuit, a control signal for controlling on / off of the transistor is amplified using an external power source supplied from an external circuit and then input to the gate of the transistor (for example, (See Patent Document 1.) o
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-229749
  • the gate drive circuit described in Patent Document 1 amplifies the control signal using an external power source Vcc different from the control signal and inputs it to the gate of the MOSFET in order to turn on and off the MOSFET according to the control signal. To do. Disclosure of the invention
  • a switching means driving circuit of the present invention comprises a switching means driving section for driving the switching means on and off, and a power supply section for driving the switching means driving section.
  • the power supply unit includes a charging unit that charges an input signal inputted to the switching unit driving unit to drive the switching unit on and off, and the charging unit drives the switching unit driving unit. It is characterized by supplying power.
  • the switching means is a first element having a first current path and a first control terminal for on-Z-off controlling the first current path. It may be configured.
  • the switching means driving circuit of the present invention amplifies the input signal of the switching means driving section, and applies a mark to the first control end of the switching means to turn on the switching means.
  • First driving means for driving the switching means and when the polarity of the input signal is inverted, the polarity-inverted input signal is amplified and applied to the first control terminal to drive the switching means off. It is good also as a structure which has 2 drive means
  • the switching means driving circuit of the present invention amplifies the input signal of the switching means driving section and applies the input signal to the first control end of the switching means.
  • ON has first driving means for driving ON, and third driving means for driving OFF the switching means when the input signal is not applied It is good also as a structure.
  • the switching means driving circuit of the present invention when the first driving means drives the switching means on, the first control end and the first current path end of the switching means And when the second driving means drives the switching means off, the switching means is provided between the first control end and the first current path end.
  • a configuration may be adopted in which a charge charged in an existing input capacitor is discharged and charged in a polarity opposite to the polarity of the charged charge.
  • the switching means driving circuit of the present invention when the first driving means drives the switching means on, a first control end and a first current path end of the switching means When the third drive means turns off the switching means, the input capacity existing between the first control terminal and the first current path end of the switching means is present.
  • a configuration may be adopted in which the charge charged in the input capacitor is discharged.
  • the first driving means is a second element having a second current path and a second control terminal for controlling the second current path.
  • the second driving unit or the third driving unit may be a third element having a third current path and a third control end for controlling the third current path.
  • a switching circuit of the present invention includes a switching means, a switching means driving section that drives at least the switching means on and off, and a power supply section that supplies electric power for driving the switching means driving section.
  • a switching means drive circuit including a power supply section having a connection end for connecting a charging section for charging an input signal input to the switching means drive section for driving the switching means on and off.
  • the switching means driving circuit is connected to a first control terminal of the switching means, and the switching means driving circuit and the switching means are formed on a single chip.
  • the switching means includes a first element having a first current path and a first control terminal for on-Z-off controlling the first current path. May be.
  • the switching means driving section amplifies the input signal and applies the amplified signal to a first control terminal of the switching means to drive the switching means on.
  • a second drive for amplifying the polarity-inverted input signal and applying it to the first control terminal to drive the switching means off when the polarity of the input signal is inverted It is good also as a structure which has a means.
  • the switching means driving section amplifies the input signal and applies the amplified signal to the first control terminal of the switching means to drive the switching means on. It may be configured to include first driving means and third driving means for driving the switching means off when the input signal is not applied.
  • the switching unit when the first driving unit drives the switching unit on, the switching unit includes a first control end and a first current path end. And the second driving means exists between the first control end and the first current path end of the switching means when the second driving means drives the switching means off.
  • a configuration may be adopted in which the charge charged in the input capacitor is discharged and charged in the opposite polarity to the polarity of the charged charge.
  • the switching unit when the first driving unit drives the switching unit on, the switching unit includes a first control end and a first current flow path end.
  • the third driving means turns off the switching means, the input capacity existing between them is charged, and between the first control end and the first current flow path end of the switching means.
  • a configuration may be adopted in which the electric charge charged in the existing input capacitance is discharged.
  • the first driving means is a second element having a second current path and a second control terminal for controlling the second current path
  • the second driving means or the third driving means may be a third element having a third current path and a third control terminal for controlling the third current path.
  • the power supply device of the present invention is connected to the switching means driving circuit of the present invention described above, the switching means having a first control terminal connected to the switching means driving circuit, and the switching means. Energy depending on the switching operation of the switching means And a transformer or an inductor for transmitting, storing, or discharging.
  • the switching means driving method of the present invention includes a switching means having a first control terminal, a switching means driving section for driving the switching means on and off, and a power supply section for driving the switching means driving section.
  • the switching means driving method comprises: inputting an input signal to the switching means driving section; charging the input signal input to the switching means driving section to the power supply section; and Power is supplied to drive the switching means driving section, the input signal is amplified by the switching means driving section, and the amplified input signal is applied to the first control terminal of the switching means. and the switching means is driven to be turned on.
  • the switching means driving method of the present invention includes a switching means having a first control end, a switching means driving section for driving the switching means on and off, and driving the switching means driving section.
  • the switching circuit provided with the power supply unit for switching, the input signal whose polarity is alternately inverted is input to the switching unit driving unit, and the input signal input to the switching unit driving unit, according to the switching unit driving method.
  • the power supply unit is charged, power is supplied from the power supply unit, and the first drive unit and the second drive unit included in the switching unit drive unit are driven.
  • the input signal of one polarity is amplified and applied to the first control terminal of the switching means to apply the switch signal to the switch.
  • the switching means is driven on, the second driving means amplifies the input signal of the other polarity, and the amplified input signal of the other polarity is applied to the first control terminal of the switching means.
  • the switching means is driven off.
  • the power supply section that drives the switching means driving section charges the input signal input to the switching means driving section in order to drive the switching means on and off.
  • the charging unit supplies power for driving the switching means driving unit. Therefore, use a power supply outside the circuit.
  • a low-cost drive circuit can be easily realized by a simple circuit configuration.
  • the power supply unit preferably includes a capacitor that is charged by the voltage of the input signal as the charging unit.
  • the switching means includes, for example, a transistor (first element) such as FET, IGBT, etc., and includes one current path (first current path) through which the current between the drain and source of the transistor flows, And a gate (first control end) for on-off control of the road.
  • a transistor first element
  • first current path through which the current between the drain and source of the transistor flows
  • gate first control end
  • the switching means driving circuit of the present invention when the switching means driving section includes the first driving means and the second driving means, the first driving means amplifies the input signal, The switching means is driven on by applying a force to the first control end of the switching means !, and the second drive means amplifies the input signal with the polarity inverted when the polarity of the input signal is inverted. Then, a printing force tl is applied to the first control end to drive the switching means off.
  • the input signal may be a deviation of an input signal whose polarity is alternately inverted, or an input signal having substantially only one polarity.
  • the first driving means included in the switching means driving unit amplifies the input signal and applies a printing force to the first control terminal of the switching means.
  • the third driving means provided in the switching means driving section drives the switching means off when no input signal is applied.
  • the first driving means includes, for example, an NPN bipolar transistor (second element), and a current path (second current path) through which the collector-emitter current of the NPN bipolar transistor flows. And a base (second control end) for controlling the current path.
  • the second driving means includes, for example, a PNP-type bipolar transistor (third element), a current path (third current path) through which the emitter-collector current flows, and a base (first current path) for controlling the current path. 3 control ends). Therefore, the first driving means and the second driving means amplify the input signal.
  • the third driving means includes, for example, a PNP-type bipolar transistor (third element), and a current path (third current path) through which the emitter-collector current flows, and a base for controlling the current path (third A third control end).
  • the first drive means When input signals for on-drive and off-drive amplified by the switching means drive unit force are respectively input to the first control end of the switching means, the first drive means has the switching means. Charging the input capacitance existing between the first control end and the first current path end, and when the second drive means drives off the switching means, the first means of the switching means The charge charged in the input capacitor existing between the control end and the first current path end is discharged, and charged in the opposite polarity to the polarity of the charged charge. Therefore, the effect of the input capacitance of the switching means is not compensated and minimized, the first control terminal voltage of the switching means rises and falls sharply, and the switching means reliably follows the input signal at high speed. Can be operated.
  • the first drive means When an on-drive input signal amplified by the switching means drive unit force is input to the first control end of the switching means, the first drive means is connected to the first control end of the switching means. Charge the input capacitance that exists between the end of the first current path.
  • the switching means driving unit force input signal is not applied to the first control end of the switching means, the third control means has the first control end of the switching means when the switching means is driven off. And the charge charged in the input capacitor existing between the first current path end is discharged. Therefore, the effect of the input capacitance of the switching means is compensated or minimized, and the rising and falling edges of the first control terminal voltage of the switching means are made steep so that the switching means reliably follows the input signal at high speed. It can be operated.
  • the switching means driving unit amplifies and outputs the input signal
  • the input signal input to the switching means driving circuit may be of normal strength before being input to the switching means driving circuit. It is also unnecessary to amplify the input signal in advance. Therefore, it is possible to reduce the cost including the peripheral circuit.
  • the switching means drive circuit may be of high impedance.
  • the margin of circuit layout design is also great.
  • the switching means driving circuit of the present invention includes at least a switching means driving section that drives the switching means on and off, and a power supply section that supplies electric power for driving the switching means driving section.
  • the switching means includes a power supply unit having a connection end for connecting a charging unit for charging an input signal input to the switching unit driving unit for on-Z off driving
  • the switching unit has the switching unit driving circuit.
  • the switching means driving circuit and the switching means can be formed on a single chip. Therefore, for example, a switching circuit with a control terminal that has been made into a monolithic IC can be easily realized, and there is an advantage that a small and high-performance switching circuit can be manufactured at low cost.
  • the user can incorporate and use the switching circuit of the present invention in a device such as a power supply device with the same feeling as when handling a transistor element such as a conventional FET or IGBT.
  • the power supply device of the present invention since it is not necessary to use an external power supply for driving the switching means drive circuit, a low-cost power supply device as a whole can be easily realized with a simple circuit configuration.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a gate drive circuit 1 in a first embodiment to which the present invention is applied.
  • the gate drive circuit 1 shown in FIG. 1 includes NPN transistor TR11, PNP transistor TR 12, diodes Dl l, D12, D13, and a capacitor C11, and inputs a control signal to the gate of FET1. .
  • the drain of FET1 is connected to the coil L11 on the primary side of the transformer T1, the source is grounded, and the operation is switched on and off according to the control signal input by the gate drive circuit 1.
  • FET 1 has a predetermined gate input capacitance between the gate source and between the gate and drain.
  • the sum of the gate input capacitance between the gate and source and between the gate and drain is called the capacitance C below.
  • the control pulse 10 is input to the input terminal 11. As shown in the figure, this control pulse 10 is substantially a positive voltage only.
  • a node N12 is arranged on the line connected to the input terminal 11, and the anode side terminal of the diode Dl1 is connected via the node N12.
  • One end of a capacitor C11 is connected to the power sword side terminal of the diode Dl1 via a node Nil, and the other end of the capacitor C11 is grounded. Further, the collector of the transistor TR11 is connected to the node Nil.
  • the diode D11 and the capacitor CI1 constitute a power supply unit that drives the transistor TR11.
  • the anode side terminal of the diode D12 is connected to the node N12, and the base of the transistor TR11 is connected to the force sword side terminal of the diode D12 via the node N13.
  • the emitter of transistor TR11 is connected to the gate of FET1 via node N15, and is further connected to the emitter of transistor TR12 via node N15.
  • the base of the transistor TR12 is connected to the input terminal 11 via the node N12, and the collector is grounded via the node N16.
  • the power sword side terminal of the diode D13 is connected to the line connecting the base of the transistor TR12 and the input terminal 11 via the node N14.
  • Anode of diode D 13 The side terminal is connected to node N13.
  • control pulse 10 When control pulse 10 is input to input terminal 11, when control pulse 10 is High, a forward voltage is applied to diode D12, and current flows from input terminal 11 to the base of transistor TR11 via diode D12. Flows. On the other hand, the forward voltage is also applied to the diode D11 by the control noise 10 input to the input terminal 11, and the control pulse 10 is input to the collector of the transistor TR11.
  • the transistor TR11 when the control pulse 10 is High, the base current and the collector current flow, and the transistor TR11 is turned on.
  • the base potential of the transistor TR12 is higher than that of the emitter, no current flows and the transistor TR12 is turned off.
  • the potential of the emitter of transistor TR12 rises, so that a control signal based on control pulse 10 is input to the gate of FET1. Therefore, in FET1, the capacitor C is charged by the control signal input to the gate, and FET1 is turned on.
  • the transistor TR12 since the base potential is lower than the emitter, a current flows between the emitter base and the emitter collector, and the transistor TR12 is turned on.
  • the collector of the transistor TR12 since the collector of the transistor TR12 is grounded, the potential of the gate of the FET1 is lowered and the gate driving circuit 1 is turned off. Also, the charge stored in the capacitor C of FET1 is quickly discharged from the gate of FET1 via transistor TR12 and node N16. Since the base of the transistor TR12 is connected to the input terminal 11, the capacitor C whose potential is sufficiently low is surely discharged.
  • the gate drive circuit 1 when the control pulse 10 is High, the base of the transistor TR11 is used as a current path for eliminating minority carriers accumulated between the base emitter and the base collector of the transistor TR11. Node N13, diode D13, node N14, and input terminal 11. In this path, when control pulse 10 is high, diode D13 is biased in the reverse direction, so control pulse 10 is not transmitted to the base of transistor TR11.
  • control pulse 10 When the control pulse 10 is input to the input terminal 11 and goes from low to high, as described above, a forward voltage is applied to the diode D12, and the input terminal 11 passes through the diode D12 to the base of the transistor TR11. Control pulse 10 is input.
  • the transistor TR11 since the transistor TR11 is turned on when the previous control pulse 10 is High, the charge charged in the capacitor C11 can be discharged. Due to the discharge of the capacitor C11, the collector current due to the discharge of the capacitor CI1 flows to the transistor TR11. Therefore, in the transistor TR11, the control pulse 10 input to the base is greatly amplified and input to the gate of FET1.
  • the amplified control pulse 10 for FET1 is input as a control signal, so that sufficient current is input to charge the capacitance C of FET1 at high speed, and the rise of the gate 1 applied voltage of FET1 is steep. To. As a result, FET1 turns on quickly. In other words, the rise of the drain current of FET1 becomes steep.
  • the capacitor C11 is charged by the control pulse 10, and the control pulse 10 input thereafter is amplified by the energy charged in the capacitor C11, and the FET1 Therefore, a control signal that can quickly charge the capacitor C, which is the gate input capacitor, is input to the gate of FET1. Also, the capacitor C is discharged quickly with the control pulse 10 turned off.
  • FET1 This compensates for or minimizes the effect of the gate input capacitance on FET1, and allows FET1 to be turned on and off at high speed.
  • FET1 can be turned on according to the inherent turn-on time characteristics of FET1.
  • FIG. 2 is a waveform showing the operation of the conventional gate drive circuit
  • FIG. 3 is a waveform showing the operation of the gate drive circuit 1
  • FIG. 4 is a case where an external power supply is applied to the gate drive circuit 1. It is a waveform showing the operation of.
  • Each waveform in Figures 2 to 4 shows the FET gate voltage waveform.
  • the specific capacity of the gate input capacity (capacitance C) is about several thousand picofarads. Therefore, when a control signal is input to the gate of the FET, it takes a considerable amount of time to charge the gate input capacitance of the FET, so the on-Zoff operation of the FET does not follow the control signal well.
  • the rise of the voltage is gradual, and so-called “rounding” occurs. This indicates that the control signal current has been consumed to charge the gate input capacitance of the FET.
  • FIG. 4 shows an example where an external power supply Vcc is applied instead of the capacitor CI1.
  • the waveform shown in FIG. 4 shows a sharper rise than the waveform shown in FIG. 3, but in practice, the effect of making a large difference is the same as shown in FIG.
  • the gate drive circuit 1 according to the first embodiment has the same effect as the gate drive circuit using the external power supply by the configuration without the external power supply. Very useful in terms.
  • FIGS. 5 to 7 show waveforms of the gate voltage of the FET in the switching power supply when the above gate drive circuit is mounted on the switching power supply, and FIG. 5 shows a conventional gate drive circuit.
  • FIG. 6 shows an example using the gate drive circuit 1
  • FIG. 7 shows an example using the gate drive circuit 1 with an external power supply added.
  • the rising power S of the control signal input to the FET is lost as shown in FIG. 2, so that the switching power supply device is configured using a conventional gate drive circuit. Even if it is made, the switching power supply device in which the rise of the gate voltage of the FET is dull cannot obtain high frequency characteristics and is inferior in usefulness.
  • the waveform of the gate voltage of FET1 rises satisfactorily by configuring the switching power supply device using the gate drive circuit 1 in the first embodiment. This indicates that FET1 is operating promptly according to the control signal.
  • This switching power supply device has good high-frequency characteristics and is highly useful, such as being able to reduce the size of the transformer T1. Further, as will be described later with reference to FIG. 8, since the output is increased, it has superior usability.
  • the external power supply Vcc is used instead of the capacitor C11 of the gate drive circuit 1, and the control signal input to the FET 1 is sufficiently amplified. Yes.
  • the gate voltage waveform of FET1 rises very sharply. Practically, the effect of making a large difference is the same as shown in Fig. 8 described later.
  • FIG. 8 is a chart showing the results of measuring the output of each switching power supply whose waveforms of the FET gate voltages are shown in FIGS.
  • the conventional gate drive circuit is shown.
  • the switching power supply using the circuit (Fig. 5) is called power supply A
  • the switching power supply using the gate drive circuit 1 (Fig. 6) is called power supply B
  • the gate drive circuit 1 is supplied with an external power supply.
  • This switching power supply (Fig. 7) is shown as power supply C.
  • the power supply B has a significantly higher output than the power supply A.
  • the output of power supply B is almost the same as that of power supply C.
  • the switching power supply device when configured using the gate drive circuit 1, a remarkable output improvement can be achieved without using an external power supply as in the case where the control signal to the FET is amplified using an external power supply.
  • the control noise 10 which is not supplied with power from the circuit external force is sufficiently amplified and input to the gate of the FET1. Therefore, the influence of the gate input capacitance of FET1 can be compensated or minimized, and FET1 can be operated reliably.
  • a switching power supply device is configured using the gate drive circuit 1, a power supply device that is highly useful can be provided.
  • connection state of each circuit element in the first embodiment are merely examples, and can be appropriately changed without departing from the spirit of the present invention.
  • connection state of the diode D13 is changed. It is also possible to change.
  • an example is shown as a second embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of the gate drive circuit 2 according to the second embodiment to which the present invention is applied.
  • the same components as those in the gate drive circuit 1 in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the diode D13 of the gate drive circuit 1 (FIG. 1) is omitted, and the node N13 and the node N14 are directly connected. Further, a diode D21 is provided on the line connecting the node N14 and the input terminal 11, and the anode side terminal of the diode D21 is connected to the node N14, and the force sword side terminal is connected to the input terminal 11 via the node N12. .
  • Other configurations are the same as those of the gate drive circuit 1.
  • the base of the transistor TR12 is connected via the diode D21. Connected to input terminal 11. For this reason, when the control pulse 10 input to the input terminal 11 is switched from High to Low, the potential of the base of the transistor TR12 is lowered, so that the transistor TR12 is turned on, and the capacitance C of the FET1 is changed to the transistor TR12 and the node TR12. Discharged via the N16.
  • the capacitor C11 is charged by the control pulse 10, and the control input thereafter Pulse 10 is amplified by discharging the charge stored in capacitor C11 and input to FET1, so a control signal that can quickly charge the charge stored in capacitor C, which is the gate input capacitance, to the gate of FET1. Is entered. Capacitor C is quickly discharged when control pulse 10 is low. As a result, if the effect of the gate input capacitance in FET1 is compensated or minimized, and FET1 can be operated at high speed, a special effect can be obtained.
  • each circuit element in the first and second embodiments are merely examples, and can be appropriately changed without departing from the spirit of the present invention. It is also possible to adopt a configuration in which the circuit elements are omitted. An example is shown below as the third embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of the gate drive circuit 3 in the third embodiment to which the present invention is applied. Note that in the gate drive circuit 3 shown in FIG. 10, each part configured similarly to the gate drive circuit 1 (FIG. 1) in the first embodiment is shown in the figure. The same reference numerals are given and description thereof is omitted.
  • the gate drive circuit 3 shown in FIG. 10 has a configuration in which the diodes D12 and D13 of the gate drive circuit 1 are omitted. Further, a diode D22 is provided instead of the diode D11 in the gate drive circuit 1. Similarly to the diode D11, the diode D22 has a node side terminal connected to the input terminal 11 via the node N12 and a force sword side terminal connected to the node Nil.
  • the diode D22 has a smaller voltage drop (preferably 0.2 to 0.4 volts) than a general diode, and for example, a Schottky Noria diode is suitable.
  • the control pulse 10 is input to the input terminal 11, and the voltage drop of the diode D11 causes the collector potential of the transistor TR11 to be lower than the base potential.
  • a diode D12 was provided in order to prevent current from flowing from the base to the collector of transistor TR11.
  • the potential difference between the base and collector of the transistor TR11 is determined by the voltage drop between the base and collector of the transistor TR11 and the voltage drop of the diode D22.
  • the potential difference current between the base and collector of the transistor TR11 is suppressed to a level that does not occur. For this reason, omitting the diode D12 (Figs. 1 and 9) does not cause any operational problems.
  • the gate drive circuit 3 by omitting the diode D12, the diode D13 in the gate drive circuit 1 or the diode corresponding to the diode D21 in the gate drive circuit 2 can be omitted. .
  • the gate drive circuit 1 by providing the diode D12, the base of the transistor TR11 is connected via the diode D13 as a current path for eliminating minority carriers accumulated between the base emitter and the base collector of the transistor TR11. Connected to input terminal 11.
  • the base of the transistor TR11 is connected to the input terminal 11 through the diode D21, whereby the minority key of the transistor TR11 is connected. A current path for extinguishing the rear was secured. For this reason, the gate drive circuits 1 and 2 require a unidirectional current element such as the diode D13 or the diode D21 so that current does not flow into the base of the transistor TR11 through the above path.
  • the above path is secured by connecting the base of the transistor TR11 and the base of the transistor TR12 via the node N12 by omitting the diode D12. For this reason, it is not necessary to dispose diodes corresponding to the diodes D13 and D21.
  • the gate drive circuit 3 in the third embodiment the same effects as those of the gate drive circuits 1 and 2 in the first and second embodiments can be obtained, and more There is an advantage that it can be realized by a simple circuit configuration.
  • the specific configuration of the gate drive circuits 1, 2, and 3 is not particularly limited.
  • a normal transistor can be used instead of the FET 1, or the IGBT can be used.
  • the transistors TR11 and TR12 have been described as bipolar transistors.
  • the present invention is not limited to this.
  • an FET may be used.
  • the case where the transistors TR11 and TR12 are replaced with FETs in the gate drive circuit 1 described as the first embodiment will be described as a fourth embodiment.
  • FIG. 11 is a circuit diagram showing a schematic configuration of the gate drive circuit 4 in the fourth embodiment to which the present invention is applied.
  • the gate drive circuit 4 is a circuit in which the transistors TR11 and TR12 in the gate drive circuit 1 shown in FIG. 1 are replaced with FETs 11 and 12, respectively.
  • the FET 11 is an N-channel FET.
  • the drain of the FET 11 is connected to the capacitor CI 1 through the node Nl 1 and connected to the gate of the FET 1 through the source power N15 of the FETl 1.
  • the gate of FET11 is connected to the die via node N13. It is connected to the power sword side terminal of Aether Dl 2.
  • the anode side terminal of the diode Dl 2 is connected to the input terminal 11 via the node N 12.
  • the anode side terminal of the diode D11 is connected to the input terminal 11 via the node N12, and the force sword side terminal of the diode D11 is connected to the capacitor CI1 via the node Nl1.
  • FET 12 is a P-channel FET, and the gate of FET 12 is connected to input terminal 11 via node N 14, the source is connected to the gate of FET 1 via node N 15, and the drain is connected to node N 16. Is grounded. Further, the anode side terminal of the diode D13 is connected to the node N13, and the force sword side terminal is connected to the node N14.
  • the FET 11 is turned on when the control pulse 10 input to the input terminal 11 is High, and the control pulse is based on the current generated by the discharge of the capacitor C11. While 10 is amplified, the gate potential of FET12 increases, so FET12 turns off. As a result, a voltage is applied to the gate of FET1. Also, when the control pulse 10 is low, the FET 11 is turned off and the FET 12 is turned on, and the charge accumulated in the capacitance C of the FET 1 is discharged through the FET 12 and the node N 16. Therefore, according to the gate drive circuit 4 shown in FIG. 11, the same effect as in the first embodiment can be obtained.
  • the transistor driven by the gate drive circuit (FET 1 in FIGS. 1, 9, 10, and 11) is usually a power MOSFET.
  • the FETs 11 and 12 in the gate drive circuit 4 in FIG. 11 do not need to be power MOSFETs, and those having a very small gate input capacity can be used as compared with FET1. For this reason, the influence on the operation of the gate drive circuit 4 by the gate input capacitance of the FETs 11 and 12 is negligible.
  • the control pulse 10 consisting essentially of a pulse of only the positive voltage is amplified and input to the FET 1 as a control signal, and the capacitance C of the FET 1 is increased at high speed. Input enough current to charge, steep rise of FET1 gate applied voltage.
  • the electric charge charged in the capacitor C of FETl was quickly discharged from the gate of FET1 via transistor TR12 (FET12) and node N16 with a control pulse of 10 power ow.
  • the charged capacity C of FET1 can be discharged more strongly when the control pulse 10 changes from High to Low, the fall of the FET1 gate applied voltage, in other words, the drain current of FET1 It is possible to make the fall of the steep.
  • FIG. 12 is a circuit diagram showing a configuration of the gate drive circuit 5 in the fifth embodiment to which the present invention is applied.
  • the same components as those in the gate drive circuit 1 in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the gate drive circuit 5 shown in FIG. 12 is configured by adding a diode D31 and a capacitor C31 to the gate drive circuit 1 (FIG. 1). That is, the node N31 is arranged on the line connecting the node N12 and the node N14, and the power sword side terminal of the diode D31 is connected.
  • the collector of the transistor TR12 connected to the source of the FET1 through the node N16 in the gate drive circuit 1 is connected to the anode side terminal of the diode D31 through the node N32 in the gate drive circuit 5.
  • one end of the capacitor C31 is connected to the anode side terminal of the diode D31 and the collector of the transistor TR12 via the node N32, and the other end of the capacitor C31 is grounded.
  • the diode D31 and the capacitor C31 constitute a power supply unit that drives the transistor TR12.
  • the diode D31 uses a diode having a smaller voltage drop (preferably 0.2 to 0.4 volt) than a general diode, such as a Schottky barrier diode, and the current between the base and collector of the transistor TR12 does not flow. It is preferable to do so, but it is not always necessary. Other configurations are the same as those of the gate drive circuit 1.
  • the force that the control pulse 20 is input to the input terminal 11 is different from the control pulse 10 that is input in the gate drive circuit 1, and the voltage polarity as shown in the figure. Are pulses that are alternately inverted.
  • the transistor TR12 when the control pulse 20 having a negative polarity is input to the input terminal 11, the base potential becomes lower than the emitter, so that the transistor TR12 is turned on, and the emitter of the transistor TR12 is switched from the emitter to the collector. Current flows. Furthermore, the collector potential of transistor TR12 is pulled to a negative polarity due to the negative potential of control pulse 20 and the negative potential on node N32 side of capacitor C31, which will be described later, so the gate potential of FET1 is negative. Reduced to polarity. For this reason, FET1 is turned off sharply.
  • the negative polarity control pulse 20 input to the input terminal 11 discharges the charge accumulated in the capacitor C of the FET 1 and re-sets the capacitor C to a polarity opposite to the polarity of the accumulated charge. Charge. For this reason, the current between the drain and source of FET1 is immediately cut off.
  • the charge stored in the capacitor C of FET1 has sufficient current to flow between the emitter and collector of the transistor TR12 as will be described later, it is ensured from the gate of FET1 via the transistor TR12, node N32, and capacitor C31. And it is discharged at high speed.
  • a forward voltage is applied to the diode D31 by the negative polarity control pulse 20 input to the input terminal 11, and a current flows from the capacitor C31 to the path of the diode D31 and the input terminal 11, Capacitor C31 is charged. At this time, the capacitor C31 is charged with a positive charge on the ground side and a negative charge on the node 32 side.
  • Capacitor C Looking at the potential at node N32 on node 31, the Vpn force is also a negative potential minus Vd31f.
  • the transistor TR12 Since the transistor TR12 is turned on when the polarity of the previous control pulse 20 is negative, the charge charged in the capacitor C31 can be discharged. Due to the discharge of the capacitor C31, a current flows between the emitter and the collector due to the discharge of the capacitor C31 through the transistor TR12. Therefore, in the transistor TR12, the control pulse 20 having a negative polarity input to the base is greatly amplified and input to the gate of the FET1.
  • a control pulse 20 having a negative polarity amplified with respect to FET1 is input as a control signal, so that a sufficient current flows to discharge the capacitance C of FET1 at high speed, and the gate application voltage of FET1 rises. Make the fall steep. As a result, FET1 turns off quickly. In other words, the fall of the drain current of FET1 becomes steep.
  • the transistor TR11 since the transistor TR11 is turned on when the polarity of the previous control pulse 20 is positive, the charge charged in the capacitor C11 can be discharged. Due to the discharge of the capacitor C11, a collector current due to the discharge of the capacitor C11 flows through the transistor TR11. Therefore, in the transistor TR11, the control pulse 20 having a positive polarity inputted to the base is greatly amplified and inputted to the gate of the FET1.
  • control polarity 20 having the positive polarity is input to the FET 1 as a control signal, so that a current sufficient to charge the capacitance C of the FET 1 at high speed is input, and the FET 1 Steep rising of the gate applied voltage.
  • FET1 turns on quickly. In other words, the rise of the drain current of FET1 becomes steep.
  • the capacitor C11 is charged by the control pulse 20 having the positive polarity, and the control pulse 20 having the positive polarity input thereafter is charged to the capacitor C11. Since it is amplified by energy and input to FET1, a control signal is input to the gate of FET1 that can quickly charge the capacitance C, which is the gate input capacitance. Capacitance C is quickly discharged with the control noise 20 in the negative polarity state.
  • the capacitor C31 is charged by the control pulse 20 having a negative polarity, and the control pulse 20 having a negative polarity that is input thereafter is amplified by the energy charged in the capacitor C31 to be fed to the FET 1. Therefore, a control signal that can discharge the capacitor C quickly is input to the gate of FET1. Capacitor C is discharged quickly with control pulse 20 in the negative polarity.
  • the influence of the gate input capacitance in the FET 1 can be compensated or minimized, and the FET 1 can be turned on and off at high speed.
  • the characteristics of both the turn-on time and the turn-off time that FET1 originally has a special effect that FET1 can be turned on and off is obtained.
  • the fifth embodiment configured by adding the diode D31 and the capacitor C31 to the gate drive circuit 1 in the first embodiment is also merely an example, and the gist of the present invention is as follows. Changes can be made as appropriate without departing from the scope. For example, an example in which the same change as the change in the fifth embodiment is added to the gate drive circuits 2 and 3 in the second and third embodiments is shown as the sixth and seventh embodiments. .
  • FIG. 13 is a circuit diagram showing a configuration of the gate drive circuit 6 according to the sixth embodiment to which the present invention is applied.
  • the gate drive circuit 6 shown in FIG. 13 has the same configuration as the gate drive circuit 1 (FIG. 1) in the first embodiment and the gate drive circuit 5 (FIG. 12) in the fifth embodiment.
  • symbol is attached
  • the diode D13 of the gate drive circuit 5 (FIG. 12) is omitted, and the node N13 and the node N14 are directly connected. Further, a diode D21 is provided between the node N14 and the node N31, and the anode side terminal of the diode D21 is connected to the node N14, and the force sword side terminal is connected to the input terminal 11 and the power sword of the diode D31 via the node N31. It is connected.
  • Other configurations are the same as those of the gate drive circuit 5.
  • the base of the transistor TR12 is connected via the diode D21. Connected to input terminal 11. For this reason, when the polarity of the control pulse 20 input to the input terminal 11 is reversed and the positive power is switched to negative, a forward voltage is applied to the diode D21 to make it conductive, and the potential of the base of the transistor TR12 is also made. When becomes lower than the emitter, transistor TR12 is turned on, and a current flows from the emitter of transistor TR12 to the collector. Furthermore, the collector potential of the transistor TR12 is pulled to a negative polarity due to the negative potential of the control pulse 20 and the negative potential on the node N32 side of the capacitor C31 described above. Be lowered.
  • FET1 is sharply turned off.
  • the negative polarity control pulse 20 input to the input terminal 11 discharges the charge accumulated in the capacitor C of FET1 and recharges the capacitor C to a polarity opposite to the polarity of the accumulated charge. To do. For this reason, the current between the drain and source of FET1 is immediately cut off. Further, as already described in the description of the fifth embodiment, since a sufficient current flows between the emitter and collector of the transistor TR12, the charge accumulated in the capacitor C of the FET1 flows from the gate of the FET1 to the transistor TR12. It is discharged reliably and at high speed via node N32 and capacitor C31.
  • the potential of the base of the transistor TR12 may be lower than the potential of the collector due to the voltage drop (Vd31f) of the diode D31. It can be considered that current flows through the base of the collector of transistor TR12.
  • the diode D21 is inserted between the node N31 and the base of the transistor TR12, and the voltage at the base of the transistor TR12 is increased by the forward voltage of the diode D21. The current flowing from the collector of the transistor TR12 to the base of the transistor TR12 is suppressed.
  • the node N13 and the node N14 are directly connected. Therefore, when the polarity of the control pulse 20 is positive, minority carriers accumulated between the base emitter of the transistor TR11 and between the base and collector are eliminated when the polarity of the control pulse 20 turns negative. As a current path, there is a path from the base of the transistor TR11 to the input terminal 11 via the diode D21. This is the same as the gate drive circuit 2 in the second embodiment.
  • the capacitor C11 is charged by the control pulse 20 having a positive polarity, and the control pulse 20 having a positive polarity input thereafter is connected to the capacitor CI 1 Because it is amplified by the energy charged to the FET1 and input to the FET1, a control signal that can quickly charge the capacitor C, which is the gate input capacitance, is input to the gate of the FET1. Capacitance C is discharged quickly with control pulse 20 in the negative polarity state.
  • the capacitor C31 is charged by the control pulse 20 having a negative polarity, and the control pulse 20 having a negative polarity inputted thereafter is amplified by the energy charged in the capacitor C31, and the FET1 Therefore, a control signal that can quickly discharge the capacitor C is input to the gate of FET1.
  • the capacitor C is quickly discharged while the control pulse 20 has a negative polarity, and is charged with a reverse polarity.
  • the influence of the gate input capacitance in FET1 is not compensated or minimized, and FET1 can be turned on and off at high speed.
  • FET1 can be turned on and off according to both the inherent turn-on time and turn-off time characteristics of FET1, a special effect can be obtained.
  • FIG. 14 is a circuit diagram showing a configuration of the gate drive circuit 7 in the seventh embodiment to which the present invention is applied. Note that the gate drive circuit 7 shown in FIG. 14 is configured similarly to the gate drive circuit 1 (FIG. 1) in the first embodiment and the gate drive circuit 5 (FIG. 12) in the fifth embodiment. About each part, the same code
  • the gate drive circuit 7 shown in Fig. 14 has a configuration in which the diodes D12 and D13 of the gate drive circuit 5 are omitted. Further, diodes D22 and D42 are provided in place of the diodes D11 and D31 in the gate drive circuit 5.
  • the diodes D22 and D42 are diodes having a smaller voltage drop (preferably 0.2 to 0.4 volts) than a general diode, and for example, a Schottky barrier diode is suitable.
  • the negative polarity control pulse 20 is applied to the input terminal 11.
  • the diode D21 is provided to prevent the current from flowing from the collector of the transistor TR11 to the base due to the voltage drop of the diode D21 being caused to cause the base potential of the transistor TR11 to be lower than the collector potential.
  • the potential difference between the base and collector of the transistor TR12 is determined by the voltage drop between the collector and base of the transistor TR11 and the voltage drop of the diode D42.
  • the potential difference current between the collector and base of the transistor TR12 is suppressed to a level that does not occur.
  • omitting diode D21 ( Figure 13) does not cause operational problems.
  • the gate drive circuit 7 by omitting the diode D12, the base of the transistor TR11 and the base of the transistor TR12 are connected via the node N12 and the node N31, so that the base emitter of the transistor TR11 In the meantime, a current path for eliminating minority carriers accumulated between the base and the collector is secured. Therefore, it is not necessary to provide diodes corresponding to the diodes D13 and D21 (FIGS. 12 and 13) as in the gate drive circuit 3 (FIG. 10) in the third embodiment.
  • the gate drive circuit 7 in the seventh embodiment the same effects as those of the gate drive circuits 5 and 6 in the fifth and sixth embodiments can be obtained, and more There is an advantage that it can be realized by a simple circuit configuration.
  • the transistors TR11 and TR12 have been described as bipolar transistors.
  • the present invention is not limited to this.
  • FETs may be used.
  • the case where the transistors TR11 and TR12 are replaced with FETs in the gate drive circuit 6 (FIG. 13) described as the sixth embodiment will be described as an eighth embodiment.
  • FIG. 15 is a circuit diagram showing a schematic configuration of the gate drive circuit 8 in the eighth embodiment to which the present invention is applied. As shown in FIG. 15, the gate drive circuit 8 replaces the transistors TR11 and TR12 in the gate drive circuit 6 shown in FIG. 13 with FETs 11 and 12, respectively. Circuit.
  • FET 11 is an N-channel FET, and in the gate drive circuit 8, the drain of FE Tl 1 is connected to the capacitor CI 1 via the node Nl 1, and the source of the FET 11 is connected to the FET 1 via the node N15. It is connected to the gate, and the gate of FET11 is connected to the power sword side terminal of diode D12 via node N13.
  • FET12 is a P-channel type FET.
  • the drain of FET12 is connected to capacitor C31 via node N32, the source is connected to the gate of FET1 via node N15, and the gate is connected to node N14.
  • the other configuration of the gate drive circuit 8 connected to the anode side terminal of the diode D21 is the same as that of the gate drive circuit 6.
  • the transistors TR11 and TR12 in the date drive circuit 6 (FIG. 13) of the sixth embodiment are replaced with the FETs 11 and 12, respectively. Since it has the same configuration as that of the sixth embodiment, the same effect as that of the sixth embodiment can be obtained. This is because the transistors TR11 and TR12 in the gate drive circuit 1 (FIG. 1) of the first embodiment are replaced with FETs 11 and 12, respectively, and the gate drive circuit 4 ( Since it is obvious in light of the operation description in Fig. 11), detailed description is omitted here.
  • the FETs 11 and 12 can be used instead of the transistors TR11 and TR12. In this case, the fifth and seventh embodiments are also used. It is a matter of course that the same effect as the form of can be obtained.
  • the configuration of the gate drive circuits 1 to 8 in the first to eighth embodiments can be modified so that the direction of current flow is reversed.
  • the transistor TR11 is described as an NPN bipolar transistor
  • the transistor TR12 is described as a PNP bipolar transistor. Reverse the configuration of these transistors to make transistor TR11 A PNP bipolar transistor is used, and transistor TR12 is an NPN bipolar transistor.
  • FET1 is a P-channel FET, and the drain and source are reversed.
  • diodes Dll, D12, D13, and D21 are arranged so that the anode side terminal and the force sword side terminal are all reversed.
  • the gate drive circuit configured in this way, by inputting a pulse of substantially only a negative voltage to the input terminal 11, FET1 is turned on when the negative pulse is on (Low), and the coil of the transformer T1 is turned on. A current flows through LI 1, and a current in the opposite direction to the gate drive circuits 1, 2, and 3 flows through each part of the circuit. In this case, the same effect as that of the gate drive circuits 1, 2, and 3 can be obtained only by reversing the direction of current flow.
  • FET11 is an N-channel FET
  • FET12 is a P-channel FET.
  • Type FET and FET12 is N-channel type FET.
  • FET1 is a P-channel FET and the drain and source are reversed.
  • the diodes Dll, D12, and D13 are arranged so that the anode side terminal and the force sword side terminal are all reversed.
  • the gate drive circuit configured in this way, by inputting a pulse of substantially only a negative voltage to the input terminal 11, FET1 is turned on when the negative pulse is on (Low), and the coil of the transformer T1 is turned on. A current flows through LI 1, and a current in the opposite direction to the gate drive circuit 4 flows through each part of the circuit. In this case, the same effect as that of the gate drive circuit 4 can be obtained only by reversing the direction of current flow.
  • the diodes D31 and D42 are What is necessary is just to arrange
  • FET11 is an N-channel FET and FET12 is described as a P-channel FET.
  • Type FET and FET12 is N-channel type FET.
  • FET1 is a P-channel FET.
  • the diodes Dll, D12, D21, and D31 may be arranged so that the anode side terminal and the force sword side terminal are all reversed.
  • the switching means driving circuit of the present invention includes a diode except for a charging unit (usually a capacitor such as a capacitor) in the power supply unit.
  • switching circuit on a single substrate. That is, a switching means driving circuit having a connection end for connecting a charging section of the power supply section and the switching means are integrated on the same semiconductor substrate to form, for example, a monolithic IC. Then, a capacitor equivalent to the charging part can be externally attached to the monolithic IC switching circuit. This has the advantage that a small, high-performance switching circuit can be manufactured at low cost.
  • the switching means driving circuit of the present invention is applicable to all circuits that operate various switching means such as FETs and devices equipped with such circuits.
  • a power supply circuit for example, a switching power supply circuit
  • It can utilize suitably for etc.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a gate drive circuit 1 according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a waveform showing the operation of a conventional gate drive circuit.
  • 3 is a waveform showing the operation of the gate drive circuit 1 shown in FIG.
  • FIG. 4 is a waveform chart showing the operation when an external power supply is applied to the gate drive circuit 1 shown in FIG.
  • FIG. 5 This is the waveform of the FET gate voltage in a power supply using a conventional gate drive circuit.
  • FIG. 6 is a waveform of the gate voltage of FET1 in the power supply device using the gate drive circuit 1 shown in FIG.
  • FIG. 7 is a waveform of the gate voltage of FET1 in a power supply device using a gate drive circuit configured by adding an external power supply to the gate drive circuit 1 shown in FIG.
  • FIG. 8 Fig. 5 to Fig. 7 are diagrams comparing the output of each power supply device showing the waveform of the FET gate voltage.
  • FIG. 9 is a circuit diagram showing a schematic configuration of a gate drive circuit 2 in a second embodiment to which the present invention is applied.
  • FIG. 10 is a circuit diagram showing a schematic configuration of a gate drive circuit 3 in a third embodiment to which the present invention is applied.
  • FIG. 11 is a circuit diagram showing a schematic configuration of a gate drive circuit 4 in a fourth embodiment to which the present invention is applied.
  • FIG. 12 is a circuit diagram showing a schematic configuration of a gate drive circuit 5 in a fifth embodiment to which the present invention is applied.
  • FIG. 13 is a circuit diagram showing a schematic configuration of a gate drive circuit 6 in a sixth embodiment to which the present invention is applied.
  • FIG. 14 is a circuit diagram showing a schematic configuration of a gate drive circuit 7 in a seventh embodiment to which the present invention is applied.
  • FIG. 15 is a circuit diagram showing a schematic configuration of a gate drive circuit 8 in an eighth embodiment to which the present invention is applied.

Abstract

[PROBLEMS] To provide a switching means driving circuit which does not require an external power supply and to surely on/off drive a switching means at a high speed without requiring the external power supply. [MEANS FOR SOLVING PROBLEMS] A gate driving circuit (1) is provided for inputting a control signal to a gate of an FET (1) to be driven, based on a control pulse (10) inputted from outside of the circuit. In the gate driving circuit, a capacitor (C11) is charged by the control pulse (10), and by the energy charged in the capacitor (C11), the control pulse (10) is amplified in a transistor (TR11) to be inputted to the gate of the FET (1).

Description

明 細 書  Specification
スイッチング手段駆動回路、スイッチング手段の駆動方法、電源装置、及 びスイッチング回路  Switching means driving circuit, switching means driving method, power supply device, and switching circuit
技術分野  Technical field
[0001] 本発明は、トランジスタ等のスイッチング手段を駆動するためのスイッチング手段駆 動回路、スイッチング手段の駆動方法、そのスイッチング手段駆動回路を含んで構 成される電源装置、及びスイッチング回路に関する。  TECHNICAL FIELD [0001] The present invention relates to a switching means driving circuit for driving switching means such as a transistor, a switching means driving method, a power supply device including the switching means driving circuit, and a switching circuit.
背景技術  Background art
[0002] 各種回路に含まれる電流路の導通 Z遮断状態を制御しあるいは切り換えるために 、各種のスイッチング手段を用いることはよく知られている。従来、例えば MOSFET( Metal-Oxide-Semiconductor Field Effect Transistor : MOS型電界効果トランジス タ)、 IGBT (Insulated Gate Bipolar Transistor)等のトランジスタをスイッチング手 段として用い、当該トランジスタをオン Zオフ駆動させるため、トランジスタのゲートに 制御信号を入力するゲート駆動回路が用いられていた。  [0002] It is well known to use various switching means for controlling or switching the conduction Z cutoff state of current paths included in various circuits. Conventionally, for example, a transistor such as a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) is used as a switching means, and the transistor is turned on and off to drive the transistor. A gate drive circuit that inputs a control signal to the gate was used.
[0003] ところで、 MOSFET、 IGBT等のトランジスタにおいては、ゲートとドレインの間、及 び、ゲートとソースの間にゲート入力容量と呼ばれる容量成分が生じる。このため、ト ランジスタのゲートに制御信号を入力した場合、制御信号の信号電流が上記容量成 分を充電するために費やされてしま 、、トランジスタを確実に駆動できな 、ことがある 。また、ドレインとゲートの間に帰還効果 (或いは、ミラー効果)と呼ばれる有害な作用 もある。このため、トランジスタのゲートには、十分な信号電流を入力する必要がある。 そこで、従来のゲート駆動回路では、トランジスタのオン Zオフを制御するための制 御信号を、回路外力 供給される外部電源を用いて増幅した後、トランジスタのゲー トに入力していた (例えば、特許文献 1参照。 ) o  By the way, in transistors such as MOSFET and IGBT, a capacitance component called a gate input capacitance is generated between the gate and the drain and between the gate and the source. For this reason, when a control signal is input to the transistor gate, the signal current of the control signal is consumed to charge the capacitance component, and the transistor may not be driven reliably. There is also a harmful effect called the feedback effect (or mirror effect) between the drain and the gate. Therefore, it is necessary to input a sufficient signal current to the transistor gate. Therefore, in a conventional gate drive circuit, a control signal for controlling on / off of the transistor is amplified using an external power source supplied from an external circuit and then input to the gate of the transistor (for example, (See Patent Document 1.) o
[0004] 特許文献 1:特開 2003— 229749号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-229749
[0005] 特許文献 1に記載されたゲート駆動回路は、 MOSFETを制御信号に従ってオン Zオフさせるために、制御信号とは別の外部電源 Vccを用いて制御信号を増幅し、 MOSFETのゲートに入力するものである。 発明の開示 [0005] The gate drive circuit described in Patent Document 1 amplifies the control signal using an external power source Vcc different from the control signal and inputs it to the gate of the MOSFET in order to turn on and off the MOSFET according to the control signal. To do. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] このように、従来のスイッチング手段駆動回路においては外部電源が必須であった そこで、本発明の目的は、外部電源を必要としないスイッチング手段駆動回路を提 供すること〖こある。本発明の他の目的は、外部電源を必要とせず、スイッチング手段 を確実にかつ高速にオン Zオフ駆動させるスイッチング手段の駆動方法を提供する ことにある。  [0006] Thus, in the conventional switching means driving circuit, an external power supply is indispensable. Therefore, an object of the present invention is to provide a switching means driving circuit that does not require an external power supply. Another object of the present invention is to provide a driving method of the switching means that does not require an external power supply and that reliably and at high speed drives the switching means.
課題を解決するための手段  Means for solving the problem
[0007] 上記の目的を達成するため、本発明のスイッチング手段駆動回路は、スイッチング 手段をオン Zオフ駆動するスイッチング手段駆動部と、該スイッチング手段駆動部を 駆動する電源部とを具備し、該電源部は、前記スイッチング手段をオン Zオフ駆動す るために前記スイッチング手段駆動部に入力される入力信号を充電する充電部を備 え、該充電部が前記スイッチング手段駆動部を駆動するための電力を供給すること を特徴とする。  [0007] To achieve the above object, a switching means driving circuit of the present invention comprises a switching means driving section for driving the switching means on and off, and a power supply section for driving the switching means driving section. The power supply unit includes a charging unit that charges an input signal inputted to the switching unit driving unit to drive the switching unit on and off, and the charging unit drives the switching unit driving unit. It is characterized by supplying power.
[0008] また、本発明のスイッチング手段駆動回路において、前記スイッチング手段が、第 1 の電流路及び該第 1の電流路をオン Zオフ制御する第 1の制御端を有する第 1の素 子で構成されていても良い。  [0008] Further, in the switching means driving circuit of the present invention, the switching means is a first element having a first current path and a first control terminal for on-Z-off controlling the first current path. It may be configured.
[0009] また、本発明のスイッチング手段駆動回路にぉ 、て、前記スイッチング手段駆動部 力 前記入力信号を増幅し、前記スイッチング手段が有する第 1の制御端に印カロして 前記スイッチング手段をオンに駆動する第 1の駆動手段と、前記入力信号の極性が 反転されたとき該極性反転された入力信号を増幅し、前記第 1の制御端に印加して 前記スイッチング手段をオフに駆動する第 2の駆動手段とを有する構成としても良い  [0009] In addition, the switching means driving circuit of the present invention amplifies the input signal of the switching means driving section, and applies a mark to the first control end of the switching means to turn on the switching means. First driving means for driving the switching means, and when the polarity of the input signal is inverted, the polarity-inverted input signal is amplified and applied to the first control terminal to drive the switching means off. It is good also as a structure which has 2 drive means
[0010] また、本発明のスイッチング手段駆動回路にぉ 、て、前記スイッチング手段駆動部 力 前記入力信号を増幅し、前記スイッチング手段が有する前記第 1の制御端に印 加して前記スイッチング手段をオン ONに駆動する第 1の駆動手段と、前記入力信号 が印加されないとき前記スイッチング手段をオフに駆動する第 3の駆動手段とを有す る構成としても良い。 In addition, the switching means driving circuit of the present invention amplifies the input signal of the switching means driving section and applies the input signal to the first control end of the switching means. ON has first driving means for driving ON, and third driving means for driving OFF the switching means when the input signal is not applied It is good also as a structure.
[0011] さらに、本発明のスイッチング手段駆動回路において、前記第 1の駆動手段が、前 記スイッチング手段をオン駆動するとき、前記スイッチング手段の有する第 1の制御 端と第 1の電流路端との間に存在する入力容量を充電し、前記第 2の駆動手段が、 前記スイッチング手段をオフ駆動するとき、前記スイッチング手段の有する第 1の制 御端と第 1の電流路端との間に存在する入力容量に充電された電荷を放電し、かつ 該充電された電荷の極性とは逆極性に充電する構成としても良い。  Furthermore, in the switching means driving circuit of the present invention, when the first driving means drives the switching means on, the first control end and the first current path end of the switching means And when the second driving means drives the switching means off, the switching means is provided between the first control end and the first current path end. A configuration may be adopted in which a charge charged in an existing input capacitor is discharged and charged in a polarity opposite to the polarity of the charged charge.
[0012] また、本発明のスイッチング手段駆動回路において、前記第 1の駆動手段が、前記 スイッチング手段をオン駆動するとき、前記スイッチング手段の有する第 1の制御端と 第 1の電流路端との間に存在する入力容量を充電し、前記第 3の駆動手段が、前記 スイッチング手段をオフ駆動するとき、前記スイッチング手段の有する第 1の制御端と 第 1の電流路端との間に存在する入力容量に充電された電荷を放電する構成として も良い。  [0012] Further, in the switching means driving circuit of the present invention, when the first driving means drives the switching means on, a first control end and a first current path end of the switching means When the third drive means turns off the switching means, the input capacity existing between the first control terminal and the first current path end of the switching means is present. A configuration may be adopted in which the charge charged in the input capacitor is discharged.
[0013] また、本発明のスイッチング手段駆動回路において、前記第 1の駆動手段が、第 2 の電流路及び該第 2の電流路を制御する第 2の制御端を有する第 2の素子であり、 前記第 2の駆動手段または前記第 3の駆動手段が、第 3の電流路及び該第 3の電流 路を制御する第 3の制御端を有する第 3の素子である構成としても良い。  [0013] Further, in the switching means driving circuit of the present invention, the first driving means is a second element having a second current path and a second control terminal for controlling the second current path. The second driving unit or the third driving unit may be a third element having a third current path and a third control end for controlling the third current path.
[0014] 本発明のスイッチング回路は、スイッチング手段と、少なくとも該スイッチング手段を オン Zオフ駆動するスイッチング手段駆動部と、該スイッチング手段駆動部を駆動す るための電力を供給する電源部であって、前記スイッチング手段をオン Zオフ駆動 するために前記スイッチング手段駆動部に入力される入力信号を充電する充電部を 接続するための接続端を有する電源部とを含むスイッチング手段駆動回路と、を備 え、前記スイッチング手段駆動回路は前記スイッチング手段が有する第 1の制御端に 接続され、かつ前記スイッチング手段駆動回路と前記スイッチング手段とが単一チッ プ上に形成されていることを特徴とする。  [0014] A switching circuit of the present invention includes a switching means, a switching means driving section that drives at least the switching means on and off, and a power supply section that supplies electric power for driving the switching means driving section. A switching means drive circuit including a power supply section having a connection end for connecting a charging section for charging an input signal input to the switching means drive section for driving the switching means on and off. The switching means driving circuit is connected to a first control terminal of the switching means, and the switching means driving circuit and the switching means are formed on a single chip.
[0015] また、本発明のスイッチング回路において、前記スイッチング手段が、第 1の電流路 及び該第 1の電流路をオン Zオフ制御する第 1の制御端を有する第 1の素子で構成 されていても良い。 [0016] また、本発明のスイッチング回路において、前記スイッチング手段駆動部が、前記 入力信号を増幅し、前記スイッチング手段が有する第 1の制御端に印加して前記スィ ツチング手段をオンに駆動する第 1の駆動手段と、前記入力信号の極性が反転され たとき該極性反転された入力信号を増幅し、前記第 1の制御端に印加して前記スイツ チング手段をオフに駆動する第 2の駆動手段とを有する構成としても良い。 [0015] Further, in the switching circuit of the present invention, the switching means includes a first element having a first current path and a first control terminal for on-Z-off controlling the first current path. May be. [0016] Further, in the switching circuit of the present invention, the switching means driving section amplifies the input signal and applies the amplified signal to a first control terminal of the switching means to drive the switching means on. And a second drive for amplifying the polarity-inverted input signal and applying it to the first control terminal to drive the switching means off when the polarity of the input signal is inverted It is good also as a structure which has a means.
[0017] また、本発明のスイッチング回路において、前記スイッチング手段駆動部が、前記 入力信号を増幅し、前記スイッチング手段が有する前記第 1の制御端に印加して前 記スイッチング手段をオンに駆動する第 1の駆動手段と、前記入力信号が印加され ないとき前記スイッチング手段をオフに駆動する第 3の駆動手段とを有する構成とし ても良い。  [0017] Further, in the switching circuit of the present invention, the switching means driving section amplifies the input signal and applies the amplified signal to the first control terminal of the switching means to drive the switching means on. It may be configured to include first driving means and third driving means for driving the switching means off when the input signal is not applied.
[0018] さらに、本発明のスイッチング回路において、前記第 1の駆動手段が、前記スィッチ ング手段をオン駆動するとき、前記スイッチング手段の有する第 1の制御端と第 1の 電流路端との間に存在する入力容量を充電し、前記第 2の駆動手段が、前記スイツ チング手段をオフ駆動するとき、前記スイッチング手段の有する第 1の制御端と第 1の 電流路端との間に存在する入力容量に充電された電荷を放電し、かつ該充電された 電荷の極性とは逆極性に充電する構成としても良い。  [0018] Further, in the switching circuit of the present invention, when the first driving unit drives the switching unit on, the switching unit includes a first control end and a first current path end. And the second driving means exists between the first control end and the first current path end of the switching means when the second driving means drives the switching means off. A configuration may be adopted in which the charge charged in the input capacitor is discharged and charged in the opposite polarity to the polarity of the charged charge.
[0019] また、本発明のスイッチング回路において、前記第 1の駆動手段が、前記スィッチン グ手段をオン駆動するとき、前記スイッチング手段の有する第 1の制御端と第 1の電 流路端との間に存在する入力容量を充電し、前記第 3の駆動手段が、前記スィッチ ング手段をオフ駆動するとき、前記スイッチング手段の有する第 1の制御端と第 1の電 流路端との間に存在する入力容量に充電された電荷を放電する構成としても良い。  [0019] Further, in the switching circuit of the present invention, when the first driving unit drives the switching unit on, the switching unit includes a first control end and a first current flow path end. When the third driving means turns off the switching means, the input capacity existing between them is charged, and between the first control end and the first current flow path end of the switching means. A configuration may be adopted in which the electric charge charged in the existing input capacitance is discharged.
[0020] また、本発明のスイッチング回路において、前記第 1の駆動手段が、第 2の電流路 及び該第 2の電流路を制御する第 2の制御端を有する第 2の素子であり、前記第 2の 駆動手段または前記第 3の駆動手段が、第 3の電流路及び該第 3の電流路を制御す る第 3の制御端を有する第 3の素子である構成としても良い。  [0020] Further, in the switching circuit of the present invention, the first driving means is a second element having a second current path and a second control terminal for controlling the second current path, The second driving means or the third driving means may be a third element having a third current path and a third control terminal for controlling the third current path.
[0021] 本発明の電源装置は、上記した本発明のスイッチング手段駆動回路と、該スィッチ ング手段駆動回路に接続される第 1の制御端を有するスイッチング手段と、該スイツ チング手段が接続され、該スイッチング手段のスイッチング動作に応じてエネルギー を伝達し、蓄積し、または放出するトランスまたはインダクタと、を備えることを特徴と する。 [0021] The power supply device of the present invention is connected to the switching means driving circuit of the present invention described above, the switching means having a first control terminal connected to the switching means driving circuit, and the switching means. Energy depending on the switching operation of the switching means And a transformer or an inductor for transmitting, storing, or discharging.
[0022] 本発明のスイッチング手段の駆動方法は、第 1の制御端を有するスイッチング手段 と、該スイッチング手段をオン Zオフ駆動するスイッチング手段駆動部と、該スィッチ ング手段駆動部を駆動する電源部と備えるスイッチング回路における、スイッチング 手段の駆動方法において、入力信号を前記スイッチング手段駆動部に入力し、前記 スイッチング手段駆動部に入力される前記入力信号を前記電源部に充電し、前記電 源部から電源を供給して前記スイッチング手段駆動部を駆動し、前記スイッチング手 段駆動部によって前記入力信号を増幅し、該増幅された入力信号を前記スィッチン グ手段が有する前記第 1の制御端に印力 tlして前記スイッチング手段をオン駆動する ことを特徴とする。  [0022] The switching means driving method of the present invention includes a switching means having a first control terminal, a switching means driving section for driving the switching means on and off, and a power supply section for driving the switching means driving section. In the switching circuit driving method, the switching means driving method comprises: inputting an input signal to the switching means driving section; charging the input signal input to the switching means driving section to the power supply section; and Power is supplied to drive the switching means driving section, the input signal is amplified by the switching means driving section, and the amplified input signal is applied to the first control terminal of the switching means. and the switching means is driven to be turned on.
[0023] さらに、本発明のスイッチング手段の駆動方法は、第 1の制御端を有するスィッチン グ手段と、該スイッチング手段をオン Zオフ駆動するスイッチング手段駆動部と、該ス イッチング手段駆動部を駆動する電源部と備えるスイッチング回路における、スィッチ ング手段の駆動方法にぉ 、て、極性が交互に反転する入力信号を前記スイッチング 手段駆動部に入力し、前記スイッチング手段駆動部に入力される前記入力信号を前 記電源部に充電し、前記電源部から電源を供給して前記スイッチング手段駆動部が 有する第 1の駆動手段および第 2の駆動手段を駆動し、前記第 1の駆動手段によって 一方の極性の前記入力信号を増幅し、該増幅された一方の極性の入力信号を前記 スイッチング手段が有する前記第 1の制御端に印加して前記スイッチング手段をオン 駆動し、前記第 2の駆動手段によって他方の極性の前記入力信号を増幅し、該増幅 された他方の極性の入力信号を前記スイッチング手段が有する前記第 1の制御端に 印カロして前記スイッチング手段をオフ駆動することを特徴とする。  [0023] Further, the switching means driving method of the present invention includes a switching means having a first control end, a switching means driving section for driving the switching means on and off, and driving the switching means driving section. In the switching circuit provided with the power supply unit for switching, the input signal whose polarity is alternately inverted is input to the switching unit driving unit, and the input signal input to the switching unit driving unit, according to the switching unit driving method. The power supply unit is charged, power is supplied from the power supply unit, and the first drive unit and the second drive unit included in the switching unit drive unit are driven. The input signal of one polarity is amplified and applied to the first control terminal of the switching means to apply the switch signal to the switch. The switching means is driven on, the second driving means amplifies the input signal of the other polarity, and the amplified input signal of the other polarity is applied to the first control terminal of the switching means. The switching means is driven off.
発明の効果  The invention's effect
[0024] 本発明のスイッチング手段駆動回路によれば、スイッチング手段駆動部を駆動する 電源部が、スイッチング手段をオン Zオフ駆動するためにスイッチング手段駆動部に 入力される入力信号を充電する充電部を備えることにより、当該充電部がスィッチン グ手段駆動部を駆動するための電力を供給する。従って、回路外の電源を用いるこ となぐシンプルな回路構成によって低コストの駆動回路を容易に実現できる。 [0024] According to the switching means driving circuit of the present invention, the power supply section that drives the switching means driving section charges the input signal input to the switching means driving section in order to drive the switching means on and off. The charging unit supplies power for driving the switching means driving unit. Therefore, use a power supply outside the circuit. A low-cost drive circuit can be easily realized by a simple circuit configuration.
なお、電源部は、好ましくは入力信号の電圧によって充電されるキャパシタを充電 部として備えている。  The power supply unit preferably includes a capacitor that is charged by the voltage of the input signal as the charging unit.
[0025] ここで、スイッチング手段は、例えば FET、 IGBT等のトランジスタ(第 1の素子)を含 み、トランジスタのドレイン ソース間電流が流れる一つの電流路 (第 1の電流路)と、 当該電流路をオン Zオフ制御するゲート (第 1の制御端)とを有している。トランジスタ のゲート (第 1の制御端)とソースあるいはドレイン (第 1の電流路端)との間には入力 容量が存在し、入力容量の影響によって入力信号に対するトランジスタのオン Zオフ 動作の追従性が良くな 、と 、う問題がある。  [0025] Here, the switching means includes, for example, a transistor (first element) such as FET, IGBT, etc., and includes one current path (first current path) through which the current between the drain and source of the transistor flows, And a gate (first control end) for on-off control of the road. There is an input capacitance between the gate (first control end) of the transistor and the source or drain (first current path end), and the follow-up performance of the transistor on / off operation with respect to the input signal due to the influence of the input capacitance. There is a problem of being better.
[0026] 本発明のスイッチング手段駆動回路によれば、スイッチング手段駆動部が、第 1の 駆動手段と、第 2の駆動手段とを備える場合、第 1の駆動手段は、入力信号を増幅し 、スイッチング手段が有する第 1の制御端に印力!]してスイッチング手段をオンに駆動 し、第 2の駆動手段は、入力信号の極性が反転されたとき当該極性反転された入力 信号を増幅し、第 1の制御端に印力 tlして前記スイッチング手段をオフに駆動する。 ここで、入力信号は、極性が交互に反転する入力信号、実質的に一方の極性のみ の入力信号の 、ずれを用いても良 、。  [0026] According to the switching means driving circuit of the present invention, when the switching means driving section includes the first driving means and the second driving means, the first driving means amplifies the input signal, The switching means is driven on by applying a force to the first control end of the switching means !, and the second drive means amplifies the input signal with the polarity inverted when the polarity of the input signal is inverted. Then, a printing force tl is applied to the first control end to drive the switching means off. Here, the input signal may be a deviation of an input signal whose polarity is alternately inverted, or an input signal having substantially only one polarity.
実質的に一方の極性のみの入力信号が入力される場合には、スイッチング手段駆 動部が備える第 1の駆動手段は、入力信号を増幅し、スイッチング手段が有する第 1 の制御端に印力 tlしてスイッチング手段をオンに駆動し、スイッチング手段駆動部が備 える第 3の駆動手段は、入力信号が印加されないときスイッチング手段をオフに駆動 する。  When an input signal having substantially only one polarity is input, the first driving means included in the switching means driving unit amplifies the input signal and applies a printing force to the first control terminal of the switching means. The third driving means provided in the switching means driving section drives the switching means off when no input signal is applied.
好ましい態様において、第 1の駆動手段は、例えば NPN型のバイポーラトランジス タ(第 2の素子)を含み、 NPN型のバイポーラトランジスタのコレクターェミッタ間電流 が流れる電流路 (第 2の電流路)と、当該電流路を制御するベース (第 2の制御端)と を有する。また、第 2の駆動手段は、例えば PNP型のバイポーラトランジスタ (第 3の 素子)を含み、ェミッタ コレクタ間電流が流れる電流路 (第 3の電流路)と、当該電流 路を制御するベース (第 3の制御端)とを有する。従って、第 1の駆動手段、第 2の駆 動手段は、入力信号を電流増幅する。 なお、第 3の駆動手段は、例えば PNP型のバイポーラトランジスタ(第 3の素子)を 含み、ェミッタ コレクタ間電流が流れる電流路 (第 3の電流路)と、当該電流路を制 御するベース (第 3の制御端)とを有する。 In a preferred embodiment, the first driving means includes, for example, an NPN bipolar transistor (second element), and a current path (second current path) through which the collector-emitter current of the NPN bipolar transistor flows. And a base (second control end) for controlling the current path. The second driving means includes, for example, a PNP-type bipolar transistor (third element), a current path (third current path) through which the emitter-collector current flows, and a base (first current path) for controlling the current path. 3 control ends). Therefore, the first driving means and the second driving means amplify the input signal. The third driving means includes, for example, a PNP-type bipolar transistor (third element), and a current path (third current path) through which the emitter-collector current flows, and a base for controlling the current path (third A third control end).
[0027] スイッチング手段の第 1の制御端に、スイッチング手段駆動部力 増幅されたオン 駆動用、オフ駆動用の入力信号がそれぞれ入力されると、第 1の駆動手段が、スイツ チング手段が有する第 1の制御端と第 1の電流路端との間に存在する入力容量を充 電し、第 2の駆動手段が、前記スイッチング手段をオフ駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量に充電さ れた電荷を放電し、かつ該充電された電荷の極性とは逆極性に充電する。従って、 スイッチング手段が有する入力容量の影響を補償な 、し極小化し、スイッチング手段 の第 1の制御端電圧の立ち上がり、立ち下がりを急峻にして、スイッチング手段を確 実にかつ入力信号に追随して高速に動作させることができる。  [0027] When input signals for on-drive and off-drive amplified by the switching means drive unit force are respectively input to the first control end of the switching means, the first drive means has the switching means. Charging the input capacitance existing between the first control end and the first current path end, and when the second drive means drives off the switching means, the first means of the switching means The charge charged in the input capacitor existing between the control end and the first current path end is discharged, and charged in the opposite polarity to the polarity of the charged charge. Therefore, the effect of the input capacitance of the switching means is not compensated and minimized, the first control terminal voltage of the switching means rises and falls sharply, and the switching means reliably follows the input signal at high speed. Can be operated.
[0028] スイッチング手段の第 1の制御端に、スイッチング手段駆動部力 増幅されたオン 駆動用の入力信号が入力されると、第 1の駆動手段が、スイッチング手段が有する第 1の制御端と第 1の電流路端との間に存在する入力容量を充電する。スイッチング手 段の第 1の制御端に、スイッチング手段駆動部力 入力信号が印加されないときには 、第 3の駆動手段が、前記スイッチング手段をオフ駆動するとき、前記スイッチング手 段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量に充電された 電荷を放電する。従って、スイッチング手段が有する入力容量の影響を補償ないし極 小化し、スイッチング手段の第 1の制御端電圧の立ち上がり、立ち下がりを急峻にし て、スイッチング手段を確実にかつ入力信号に追随して高速に動作させることができ る。  [0028] When an on-drive input signal amplified by the switching means drive unit force is input to the first control end of the switching means, the first drive means is connected to the first control end of the switching means. Charge the input capacitance that exists between the end of the first current path. When the switching means driving unit force input signal is not applied to the first control end of the switching means, the third control means has the first control end of the switching means when the switching means is driven off. And the charge charged in the input capacitor existing between the first current path end is discharged. Therefore, the effect of the input capacitance of the switching means is compensated or minimized, and the rising and falling edges of the first control terminal voltage of the switching means are made steep so that the switching means reliably follows the input signal at high speed. It can be operated.
[0029] また、スイッチング手段駆動部が入力信号を増幅して出力するので、スイッチング 手段駆動回路に入力する入力信号は通常の強度のものであっても良ぐスィッチン グ手段駆動回路に入力する前に入力信号を予め増幅することも不要である。従って 、周辺回路を含めた低コストィ匕を図ることが可能である。  [0029] Further, since the switching means driving unit amplifies and outputs the input signal, the input signal input to the switching means driving circuit may be of normal strength before being input to the switching means driving circuit. It is also unnecessary to amplify the input signal in advance. Therefore, it is possible to reduce the cost including the peripheral circuit.
[0030] さらに、スイッチング手段駆動部によってスイッチング手段の第 1の駆動端を強力に 駆動するので、スイッチング手段駆動回路は高インピーダンスのものであっても良ぐ 回路配置設計の裕度も大き 、と 、う利点がある。 [0030] Further, since the first drive end of the switching means is driven strongly by the switching means drive section, the switching means drive circuit may be of high impedance. The margin of circuit layout design is also great.
[0031] 本発明のスイッチング手段駆動回路は、少なくともスイッチング手段をオン Zオフ駆 動するスイッチング手段駆動部と、スイッチング手段駆動部を駆動するための電力を 供給する電源部であって、スイッチング手段をオン Zオフ駆動するためにスィッチン グ手段駆動部に入力される入力信号を充電する充電部を接続するための接続端を 有する電源部とを含む場合、当該スイッチング手段駆動回路を、スイッチング手段が 有する第 1の制御端に接続することで、当該スイッチング手段駆動回路とスイッチング 手段とを、単一チップ上に形成することができる。従って、例えばモノリシック IC化した 制御端付きスイッチング回路を容易に実現できるので、小型で高性能なスイッチング 回路を、低コストで製造できる利点がある。また、ユーザは、従来の FET、 IGBT等の トランジスタ素子を扱うのと全く同様の感覚で、本発明のスイッチング回路を電源装置 等の機器に組み込んで使用することができる。  [0031] The switching means driving circuit of the present invention includes at least a switching means driving section that drives the switching means on and off, and a power supply section that supplies electric power for driving the switching means driving section. When the switching means includes a power supply unit having a connection end for connecting a charging unit for charging an input signal input to the switching unit driving unit for on-Z off driving, the switching unit has the switching unit driving circuit. By connecting to the first control end, the switching means driving circuit and the switching means can be formed on a single chip. Therefore, for example, a switching circuit with a control terminal that has been made into a monolithic IC can be easily realized, and there is an advantage that a small and high-performance switching circuit can be manufactured at low cost. In addition, the user can incorporate and use the switching circuit of the present invention in a device such as a power supply device with the same feeling as when handling a transistor element such as a conventional FET or IGBT.
[0032] 本発明の電源装置によれば、スイッチング手段駆動回路の駆動用に外部電源を用 いる必要がないので、シンプルな回路構成により、全体として低コストの電源装置を 容易に実現できる。 [0032] According to the power supply device of the present invention, since it is not necessary to use an external power supply for driving the switching means drive circuit, a low-cost power supply device as a whole can be easily realized with a simple circuit configuration.
FET等のトランジスタをスイッチング手段として使用する従来の電源装置は、多くの 場合 100〜200KHz程度の周波数でスイッチング動作させている。本発明の電源装 置によれば、本発明のスイッチング手段駆動回路を組み込むことによって、スィッチ ング手段が有する入力容量の影響を補償な 、し極小化し、スイッチング手段の第 1の 制御端電圧の立ち上がり、立ち下がりを急峻にして、スイッチング手段を確実にかつ 入力信号に追随して高速に動作させることができるので、従来の 10倍程度、すなわ ち 1MHz程度の周波数でスイッチング動作させることも可能である。従って、スィッチ ング損失が極めて小さぐ効率の極めて高い電源装置を、低コストで容易に実現でき る。  Conventional power supply devices that use transistors such as FETs as switching means are often switched at a frequency of about 100 to 200 KHz. According to the power supply apparatus of the present invention, by incorporating the switching means driving circuit of the present invention, the influence of the input capacitance of the switching means is not compensated and minimized, and the rise of the first control terminal voltage of the switching means is achieved. Since the falling edge is steep and the switching means can operate reliably and at high speed following the input signal, it is also possible to perform switching operation at a frequency about 10 times that of the conventional system, that is, about 1 MHz. is there. Therefore, a highly efficient power supply apparatus with extremely small switching loss can be easily realized at low cost.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下、本発明の好ましい実施の形態を図面に基づき説明する。なお、以下の実施 の形態は、いずれも、ゲートを駆動端とする FETをスイッチング手段として用い、ゲー ト駆動回路を構成した例であるが、これらはあくまでも例示であって、本発明はこれら の実施の態様に限定されな 、ことは 、うまでもな!/、。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Each of the following embodiments is an example in which a gate drive circuit is configured by using an FET having a gate as a drive end as a switching means, but these are merely examples, and the present invention is not limited to these. It is not limited to the embodiment of the present invention.
[0034] [第 1の実施の形態]  [0034] [First embodiment]
図 1は、本発明を適用した第 1の実施の形態におけるゲート駆動回路 1の概略構成 を示す回路図である。  FIG. 1 is a circuit diagram showing a schematic configuration of a gate drive circuit 1 in a first embodiment to which the present invention is applied.
図 1に示すゲート駆動回路 1は、 NPN型トランジスタ TR11, PNP型トランジスタ TR 12、ダイオード Dl l, D12, D13、及びコンデンサ C11の各部を備えて構成され、 F ET1のゲートに制御信号を入力する。 FET1のドレインはトランス T1の一次側のコィ ル L11に接続され、ソースは接地されており、ゲート駆動回路 1により入力される制御 信号に従ってオン Zオフを切り換える動作を行う。  The gate drive circuit 1 shown in FIG. 1 includes NPN transistor TR11, PNP transistor TR 12, diodes Dl l, D12, D13, and a capacitor C11, and inputs a control signal to the gate of FET1. . The drain of FET1 is connected to the coil L11 on the primary side of the transformer T1, the source is grounded, and the operation is switched on and off according to the control signal input by the gate drive circuit 1.
なお、 FET1は、ゲート ソース間及びゲート ドレイン間に所定のゲート入力容量 を有する。ゲート ソース間及びゲート ドレイン間のゲート入力容量の和を、以下、 容量 Cと呼ぶ。  FET 1 has a predetermined gate input capacitance between the gate source and between the gate and drain. The sum of the gate input capacitance between the gate and source and between the gate and drain is called the capacitance C below.
[0035] ゲート駆動回路 1においては、入力端子 11に制御パルス 10が入力される。この制 御パルス 10は、図中に示すとおり実質的に正極の電圧のみのノ ルスである。入力端 子 11に接続されるライン上にはノード N12が配置され、ノード N 12を介してダイォー ド Dl 1のアノード側端子が接続される。ダイオード Dl 1の力ソード側端子にはノード Ni lを介してコンデンサ C 11の一端が接続され、コンデンサ C 11の他端は接地され ている。また、ノード Ni lにはトランジスタ TR11のコレクタが接続される。ダイオード D 11とコンデンサ CI 1とは、トランジスタ TR11を駆動する電源部を構成して 、る。  In the gate drive circuit 1, the control pulse 10 is input to the input terminal 11. As shown in the figure, this control pulse 10 is substantially a positive voltage only. A node N12 is arranged on the line connected to the input terminal 11, and the anode side terminal of the diode Dl1 is connected via the node N12. One end of a capacitor C11 is connected to the power sword side terminal of the diode Dl1 via a node Nil, and the other end of the capacitor C11 is grounded. Further, the collector of the transistor TR11 is connected to the node Nil. The diode D11 and the capacitor CI1 constitute a power supply unit that drives the transistor TR11.
[0036] また、ノード N12には、ダイオード D12のアノード側端子が接続され、ダイオード D1 2の力ソード側端子には、ノード N13を介してトランジスタ TR11のベースが接続され る。  [0036] The anode side terminal of the diode D12 is connected to the node N12, and the base of the transistor TR11 is connected to the force sword side terminal of the diode D12 via the node N13.
トランジスタ TR11のェミッタはノード N15を介して FET1のゲートに接続され、さら に、ノード N15を介してトランジスタ TR12のェミッタに接続される。  The emitter of transistor TR11 is connected to the gate of FET1 via node N15, and is further connected to the emitter of transistor TR12 via node N15.
トランジスタ TR12のベースはノード N12を介して入力端子 11に接続され、コレクタ はノード N 16を介して接地されている。  The base of the transistor TR12 is connected to the input terminal 11 via the node N12, and the collector is grounded via the node N16.
[0037] さらに、トランジスタ TR12のベースと入力端子 11とを接続するラインにはノード N1 4を介してダイオード D 13の力ソード側端子が接続される。ダイオード D 13のアノード 側端子はノード N 13に接続される。 [0037] Further, the power sword side terminal of the diode D13 is connected to the line connecting the base of the transistor TR12 and the input terminal 11 via the node N14. Anode of diode D 13 The side terminal is connected to node N13.
[0038] 以上のように構成されるゲート駆動回路 1の動作について説明する。  The operation of the gate drive circuit 1 configured as described above will be described.
入力端子 11に制御パルス 10が入力されると、制御パルス 10が Highのとき、ダイォ ード D12に順方向電圧が印加され、入力端子 11からダイオード D12を経由してトラ ンジスタ TR11のベースに電流が流れる。一方、ダイオード D11に対しても、入力端 子 11に入力される制御ノ ルス 10により順方向電圧が印加され、トランジスタ TR11の コレクタには制御パルス 10が入力される。  When control pulse 10 is input to input terminal 11, when control pulse 10 is High, a forward voltage is applied to diode D12, and current flows from input terminal 11 to the base of transistor TR11 via diode D12. Flows. On the other hand, the forward voltage is also applied to the diode D11 by the control noise 10 input to the input terminal 11, and the control pulse 10 is input to the collector of the transistor TR11.
これにより、トランジスタ TR11においては、制御パルス 10が Highのときベース電流 及びコレクタ電流が流れ、トランジスタ TR11がオンとなる。また、トランジスタ TR12は ベースの電位がェミッタより高くなるため電流が流れず、オフとなる。これにより、トラン ジスタ TR12のェミッタの電位が上がるため、 FET1のゲートに、制御パルス 10に基 づく制御信号が入力される。このため、 FET1においては、ゲートに入力される制御 信号により容量 Cが充電され、さらに FET1がオンに切り替わる。  Thereby, in the transistor TR11, when the control pulse 10 is High, the base current and the collector current flow, and the transistor TR11 is turned on. In addition, since the base potential of the transistor TR12 is higher than that of the emitter, no current flows and the transistor TR12 is turned off. As a result, the potential of the emitter of transistor TR12 rises, so that a control signal based on control pulse 10 is input to the gate of FET1. Therefore, in FET1, the capacitor C is charged by the control signal input to the gate, and FET1 is turned on.
[0039] また、入力端子 11に制御パルス 10が入力され、制御パルス 10が Highの状態のとき ダイオード D11に順方向電圧が印加されることにより、ダイオード D11からコンデンサ C11に電流が流れ、コンデンサ C11が充電される。コンデンサ C11の充電電圧 Veil は、正の制御パルス 10の電圧を Vpp、ダイオード D11の順方向電圧降下を Vdllfと すると、 Vcll =Vpp— Vdllfとなる。  [0039] When the control pulse 10 is input to the input terminal 11 and the control pulse 10 is in the high state, a forward voltage is applied to the diode D11, whereby a current flows from the diode D11 to the capacitor C11, and the capacitor C11 Is charged. The charging voltage Veil of capacitor C11 is Vcll = Vpp-Vdllf, where Vpp is the voltage of positive control pulse 10 and Vdllf is the forward voltage drop of diode D11.
[0040] なお、入力端子 11に制御ノ ルス 10が入力された場合、ダイオード D11の電圧降 下 (Vdllf)〖こより、トランジスタ TR11のコレクタの電位がベースの電位よりも低くなる ことが考えられ、トランジスタ TR11のベース力 コレクタに電流が流れることが考えら れる。しかしながら、ノード N12とトランジスタ TR11のベースとの間にダイオード D12 を挿入し、ダイオード 12の順方向電圧によりトランジスタ TR 11のベースの電圧を 降下させることによって、トランジスタ TR11のベースからトランジスタ TR11のコレクタ に流れる電流を抑制する。  [0040] Note that when the control noise 10 is input to the input terminal 11, it is considered that the collector potential of the transistor TR11 is lower than the base potential due to the voltage drop (Vdllf) of the diode D11. It is conceivable that a current flows through the base force collector of transistor TR11. However, by inserting the diode D12 between the node N12 and the base of the transistor TR11 and dropping the voltage of the base of the transistor TR11 by the forward voltage of the diode 12, the current flows from the base of the transistor TR11 to the collector of the transistor TR11. Suppresses current.
[0041] 一方、入力端子 11に制御パルス 10が入力され、制御パルス 10が Highの状態のと き、トランジスタ TR12は、ベースの電位がェミッタより高くなるので電流が流れず、ォ フ状態となる。 [0042] 続いて、入力端子 11に入力される制御パルス 10が Highから Low (0ボルト)に切り替 わると、ダイオード D12からトランジスタ TR11のベースに電流が流れなくなり、トラン ジスタ TR11はオフに切り替わる。これにより、トランジスタ TR11のェミッタにおいて F ET1のゲートに電圧が印加されなくなる。 [0041] On the other hand, when the control pulse 10 is input to the input terminal 11 and the control pulse 10 is in the high state, the transistor TR12 is in the off state because no current flows because the base potential is higher than the emitter. . [0042] Subsequently, when the control pulse 10 input to the input terminal 11 is switched from High to Low (0 volt), no current flows from the diode D12 to the base of the transistor TR11, and the transistor TR11 is switched off. As a result, no voltage is applied to the gate of FET1 in the emitter of transistor TR11.
[0043] 一方、トランジスタ TR12においては、ベースの電位がェミッタより低くなるので、エミ ッタ ベース間及びェミッタ コレクタ間に電流が流れ、トランジスタ TR12がオンさ れる。ここでトランジスタ TR12のコレクタは接地されているので、 FET1のゲートの電 位が下がり、ゲート駆動回路 1がオフされる。また、 FET1の容量 Cに蓄積される電荷 は、 FET1のゲートからトランジスタ TR12、ノード N 16を経由して速やかに放電され る。なお、トランジスタ TR12のベースは入力端子 11に接続されるため、その電位は 十分に低ぐ容量 Cは確実に放電される。  On the other hand, in the transistor TR12, since the base potential is lower than the emitter, a current flows between the emitter base and the emitter collector, and the transistor TR12 is turned on. Here, since the collector of the transistor TR12 is grounded, the potential of the gate of the FET1 is lowered and the gate driving circuit 1 is turned off. Also, the charge stored in the capacitor C of FET1 is quickly discharged from the gate of FET1 via transistor TR12 and node N16. Since the base of the transistor TR12 is connected to the input terminal 11, the capacitor C whose potential is sufficiently low is surely discharged.
[0044] なお、ゲート駆動回路 1においては、制御パルス 10が Highのときにトランジスタ TR1 1のベース ェミッタ間、ベース コレクタ間に蓄積される少数キャリアを消滅させる ための電流路として、トランジスタ TR11のベース、ノード N13、ダイオード D13、ノー ド N 14及び入力端子 11が存在する。この経路においては、制御パルス 10が Highの ときにダイオード D13は逆方向にバイアスされるため、制御パルス 10はトランジスタ T R 11のベースに伝達されな 、。  [0044] In the gate drive circuit 1, when the control pulse 10 is High, the base of the transistor TR11 is used as a current path for eliminating minority carriers accumulated between the base emitter and the base collector of the transistor TR11. Node N13, diode D13, node N14, and input terminal 11. In this path, when control pulse 10 is high, diode D13 is biased in the reverse direction, so control pulse 10 is not transmitted to the base of transistor TR11.
[0045] 入力端子 11に制御パルス 10が入力され、 Lowから Highになると、上述したように、 ダイオード D12に順方向電圧が加わって、入力端子 11からダイオード D12を経由し てトランジスタ TR11のベースに制御パルス 10が入力される。  [0045] When the control pulse 10 is input to the input terminal 11 and goes from low to high, as described above, a forward voltage is applied to the diode D12, and the input terminal 11 passes through the diode D12 to the base of the transistor TR11. Control pulse 10 is input.
ここで、先の制御パルス 10が Highのときトランジスタ TR11がオンされるため、コンデ ンサ C11に充電された電荷を放電することができる。コンデンサ C11の放電により、ト ランジスタ TR11にはコンデンサ CI 1の放電によるコレクタ電流が流れる。このため、 トランジスタ TR11においては、ベースに入力される制御パルス 10が大きく電流増幅 され、 FET1のゲートに入力される。  Here, since the transistor TR11 is turned on when the previous control pulse 10 is High, the charge charged in the capacitor C11 can be discharged. Due to the discharge of the capacitor C11, the collector current due to the discharge of the capacitor CI1 flows to the transistor TR11. Therefore, in the transistor TR11, the control pulse 10 input to the base is greatly amplified and input to the gate of FET1.
これにより、 FET1に対して増幅された制御パルス 10が制御信号として入力される ので、 FET1の容量 Cを高速に充電するのに十分な電流が入力され、 FET1のゲー ト印加電圧の立ち上がりを急峻にする。この結果、 FET1が素早くオンに切り替わる。 換言すれば、 FET1のドレイン電流の立ち上がりが急峻になる。 As a result, the amplified control pulse 10 for FET1 is input as a control signal, so that sufficient current is input to charge the capacitance C of FET1 at high speed, and the rise of the gate 1 applied voltage of FET1 is steep. To. As a result, FET1 turns on quickly. In other words, the rise of the drain current of FET1 becomes steep.
[0046] 以上のように、ゲート駆動回路 1においては、制御パルス 10によりコンデンサ C11を 充電し、その後に入力される制御パルス 10を、コンデンサ C 11に充電されたェネル ギ一により増幅して FET1に入力するので、 FET1のゲートに対しては、ゲート入力 容量である容量 Cを速やかに充電できるだけの制御信号が入力される。また、容量 C は、制御パルス 10がオフの状態で速やかに放電される。 [0046] As described above, in the gate drive circuit 1, the capacitor C11 is charged by the control pulse 10, and the control pulse 10 input thereafter is amplified by the energy charged in the capacitor C11, and the FET1 Therefore, a control signal that can quickly charge the capacitor C, which is the gate input capacitor, is input to the gate of FET1. Also, the capacitor C is discharged quickly with the control pulse 10 turned off.
これにより、 FET1におけるゲート入力容量の影響を補償ないし極小化し、 FET1を 高速にオン Zオフさせることができる。特に、 FET1が本来の有するターンオン時間 特性に従って FET1をオン動作させることができる。  This compensates for or minimizes the effect of the gate input capacitance on FET1, and allows FET1 to be turned on and off at high speed. In particular, FET1 can be turned on according to the inherent turn-on time characteristics of FET1.
[0047] 図 2は、従来のゲート駆動回路の動作を示す波形であり、図 3はゲート駆動回路 1 の動作を示す波形であり、図 4は、ゲート駆動回路 1に外部電源を加えた場合の動作 を示す波形である。図 2〜図 4の各波形は、いずれも FETのゲート電圧の波形を示 す。 FIG. 2 is a waveform showing the operation of the conventional gate drive circuit, FIG. 3 is a waveform showing the operation of the gate drive circuit 1, and FIG. 4 is a case where an external power supply is applied to the gate drive circuit 1. It is a waveform showing the operation of. Each waveform in Figures 2 to 4 shows the FET gate voltage waveform.
[0048] 例えば、パワー MOSFETの場合、ゲート入力容量 (容量 C)の具体的な容量は、 数千ピコファラッド程度である。従って、 FETのゲートに制御信号を入力した場合、 F ETのゲート入力容量を充電するために相当な時間を要するため、 FETのオン Zォ フ動作が制御信号に対して良好に追従しない。  [0048] For example, in the case of a power MOSFET, the specific capacity of the gate input capacity (capacitance C) is about several thousand picofarads. Therefore, when a control signal is input to the gate of the FET, it takes a considerable amount of time to charge the gate input capacitance of the FET, so the on-Zoff operation of the FET does not follow the control signal well.
[0049] 例えば、図 2に示す波形においては、電圧の立ち上がりがゆるやかになり、いわゆ る「なまり」が生じている。これは、制御信号の電流が FETのゲート入力容量を充電す るために消費されてしまったことを示して 、る。  For example, in the waveform shown in FIG. 2, the rise of the voltage is gradual, and so-called “rounding” occurs. This indicates that the control signal current has been consumed to charge the gate input capacitance of the FET.
[0050] 一方、本第 1の実施の形態におけるゲート駆動回路 1 (図 1)を適用した場合、図 3 に示すように、 FET1から出力される電圧の波形は極めて良好に立ち上がり、 FET1 が良好に動作することを示している。これは、コンデンサ C11の放電によって制御パ ルス 10が増幅され、 FET1のゲートに入力されたことによる。つまり、 FET1のゲート に対して十分な電流が入力されるため、制御信号の一部が容量 Cの充電に消費され たとしてもなお、 FET1を速やかにオンに切り換えることに成功している。  On the other hand, when the gate drive circuit 1 (FIG. 1) in the first embodiment is applied, as shown in FIG. 3, the waveform of the voltage output from the FET 1 rises very well, and the FET 1 is good. Shows that it works. This is because the control pulse 10 was amplified by the discharge of the capacitor C11 and input to the gate of FET1. In other words, because sufficient current is input to the gate of FET1, even if part of the control signal is consumed to charge the capacitor C, FET1 is successfully turned on quickly.
[0051] 従来は、図 2に示したような「なまり」の発生を防止するため、外部電源を用いて制 御信号を増幅して FETのゲートに入力していた。そこで、ゲート駆動回路 1における コンデンサ CI 1に代えて外部電源 Vccを与えた場合の例を図 4に示す。図 4の例で は、波形が非常に鋭く立ち上がっているが、これは外部電源によって制御信号が十 分に増幅されているためである。なお、図 4に示す波形は、図 3に示す波形よりも鋭 敏な立ち上がりを示しているが、実用上は、後述する図 8に示すように大差がなぐ効 果は同様である。 Conventionally, in order to prevent the occurrence of “margin” as shown in FIG. 2, a control signal is amplified using an external power source and input to the gate of the FET. Therefore, in the gate drive circuit 1 Figure 4 shows an example where an external power supply Vcc is applied instead of the capacitor CI1. In the example in Fig. 4, the waveform rises very sharply because the control signal is sufficiently amplified by the external power supply. The waveform shown in FIG. 4 shows a sharper rise than the waveform shown in FIG. 3, but in practice, the effect of making a large difference is the same as shown in FIG.
図 2〜図 4に示したように、本第 1の実施の形態におけるゲート駆動回路 1は、外部 電源を用いるゲート駆動回路と比較して、外部電源を省いた構成により同様の効果 が得られる点において極めて有用である。  As shown in FIGS. 2 to 4, the gate drive circuit 1 according to the first embodiment has the same effect as the gate drive circuit using the external power supply by the configuration without the external power supply. Very useful in terms.
[0052] 図 5〜図 7は、上記のゲート駆動回路をスイッチング電源装置に実装した場合の、 当該スイッチング電源装置における FETのゲート電圧の波形であり、図 5は従来のゲ ート駆動回路を用いた例を示し、図 6はゲート駆動回路 1を用いた例を示し、図 7はゲ ート駆動回路 1に外部電源を加えたものを用いた例を示す。  FIGS. 5 to 7 show waveforms of the gate voltage of the FET in the switching power supply when the above gate drive circuit is mounted on the switching power supply, and FIG. 5 shows a conventional gate drive circuit. FIG. 6 shows an example using the gate drive circuit 1, and FIG. 7 shows an example using the gate drive circuit 1 with an external power supply added.
[0053] 図 5に示す例においては、図 2に示したように FETに入力される制御信号の立ち上 力 Sりがなまってしまうため、従来のゲート駆動回路を用いてスイッチング電源装置を構 成しても、 FETのゲート電圧の立ち上がりが鈍ぐ当該スイッチング電源装置は高周 波特性が得られず、有用性に劣るものであった。  In the example shown in FIG. 5, the rising power S of the control signal input to the FET is lost as shown in FIG. 2, so that the switching power supply device is configured using a conventional gate drive circuit. Even if it is made, the switching power supply device in which the rise of the gate voltage of the FET is dull cannot obtain high frequency characteristics and is inferior in usefulness.
[0054] これに対し、図 6に示す例では、本第 1の実施の形態におけるゲート駆動回路 1を 用いてスイッチング電源装置を構成することにより、 FET1のゲート電圧の波形は良 好に立ち上がっており、 FET1が制御信号に従って速やかに動作していることを示し ている。このスイッチング電源装置は高周波特性が良好であり、トランス T1を小型化 することが可能であるなど、有用性に富むものである。また、図 8を参照して後述する ように、出力が増大しているので、より優れた有用性を有する。  On the other hand, in the example shown in FIG. 6, the waveform of the gate voltage of FET1 rises satisfactorily by configuring the switching power supply device using the gate drive circuit 1 in the first embodiment. This indicates that FET1 is operating promptly according to the control signal. This switching power supply device has good high-frequency characteristics and is highly useful, such as being able to reduce the size of the transformer T1. Further, as will be described later with reference to FIG. 8, since the output is increased, it has superior usability.
[0055] 図 7に示す例では、図 4を参照して説明したように、ゲート駆動回路 1のコンデンサ C11に代えて外部電源 Vccを用い、 FET1に入力される制御信号を十分に増幅して いる。これにより、 FET1のゲート電圧の波形も非常に鋭く立ち上がつている力 実用 上は、後述する図 8に示すように大差がなぐ効果は同様である。  In the example shown in FIG. 7, as described with reference to FIG. 4, the external power supply Vcc is used instead of the capacitor C11 of the gate drive circuit 1, and the control signal input to the FET 1 is sufficiently amplified. Yes. As a result, the gate voltage waveform of FET1 rises very sharply. Practically, the effect of making a large difference is the same as shown in Fig. 8 described later.
[0056] 図 8は、図 5〜図 7に FETのゲート電圧の波形を示した各スイッチング電源装置の 出力を測定した結果を示す図表である。なお、図 8においては、従来のゲート駆動回 路を用いたスイッチング電源装置(図 5)を電源装置 Aとし、ゲート駆動回路 1を用い たスイッチング電源装置 (図 6)を電源装置 Bとし、ゲート駆動回路 1に外部電源を付 カロして用いたスイッチング電源装置(図 7)を電源装置 Cとして示す。 [0056] FIG. 8 is a chart showing the results of measuring the output of each switching power supply whose waveforms of the FET gate voltages are shown in FIGS. In FIG. 8, the conventional gate drive circuit is shown. The switching power supply using the circuit (Fig. 5) is called power supply A, the switching power supply using the gate drive circuit 1 (Fig. 6) is called power supply B, and the gate drive circuit 1 is supplied with an external power supply. This switching power supply (Fig. 7) is shown as power supply C.
[0057] 図 8の結果においては、電源装置 Bが電源装置 Aに比べて有意に出力が高いと認 められる。電源装置 Bの出力は、電源装置 Cとほぼ同様の高い出力である。  In the results of FIG. 8, it is recognized that the power supply B has a significantly higher output than the power supply A. The output of power supply B is almost the same as that of power supply C.
すなわち、ゲート駆動回路 1を用いてスイッチング電源装置を構成した場合、外部 電源を用いて FETへの制御信号を増幅した場合のような顕著な出力向上を、外部 電源を用いることなく達成できる。  That is, when the switching power supply device is configured using the gate drive circuit 1, a remarkable output improvement can be achieved without using an external power supply as in the case where the control signal to the FET is amplified using an external power supply.
[0058] 以上のように、本第 1の実施の形態におけるゲート駆動回路 1によれば、回路外部 力も電源供給を受けることなぐ制御ノ ルス 10を十分に増幅して FET1のゲートに入 力するので、 FET1のゲート入力容量の影響を補償ないし極小化し、 FET1を確実 に動作させることができる。これにより、例えばゲート駆動回路 1を用いてスイッチング 電源装置を構成した場合には、有用性に富む電源装置を提供できる。  [0058] As described above, according to the gate drive circuit 1 in the first embodiment, the control noise 10 which is not supplied with power from the circuit external force is sufficiently amplified and input to the gate of the FET1. Therefore, the influence of the gate input capacitance of FET1 can be compensated or minimized, and FET1 can be operated reliably. Thus, for example, when a switching power supply device is configured using the gate drive circuit 1, a power supply device that is highly useful can be provided.
[0059] なお、上記第 1の実施の形態における各回路素子の構成及び接続状態はあくまで 一例であり、本発明の趣旨を損なわない範囲において適宜変更可能であり、例えば 、ダイオード D13の接続状態を変更することも可能である。以下、第 2の実施の形態 として一例を示す。  It should be noted that the configuration and connection state of each circuit element in the first embodiment are merely examples, and can be appropriately changed without departing from the spirit of the present invention. For example, the connection state of the diode D13 is changed. It is also possible to change. Hereinafter, an example is shown as a second embodiment.
[0060] [第 2の実施の形態]  [0060] [Second Embodiment]
図 9は、本発明を適用した第 2の実施の形態におけるゲート駆動回路 2の構成を示 す回路図である。なお、図 9に示すゲート駆動回路 2において、上記第 1の実施の形 態におけるゲート駆動回路 1と同様に構成される各部については、図中に同符号を 付して説明を省略する。  FIG. 9 is a circuit diagram showing a configuration of the gate drive circuit 2 according to the second embodiment to which the present invention is applied. In the gate drive circuit 2 shown in FIG. 9, the same components as those in the gate drive circuit 1 in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0061] 図 9に示すゲート駆動回路 2においては、上記ゲート駆動回路 1 (図 1)のダイオード D13が省かれ、ノード N13とノード N14とが直接接続されている。さらに、ノード N14 と入力端子 11とを接続するライン上にダイオード D21が設けられ、ダイオード D21の アノード側端子がノード N14に、力ソード側端子がノード N12を介して入力端子 11に 接続されている。その他の構成はゲート駆動回路 1と共通である。  In the gate drive circuit 2 shown in FIG. 9, the diode D13 of the gate drive circuit 1 (FIG. 1) is omitted, and the node N13 and the node N14 are directly connected. Further, a diode D21 is provided on the line connecting the node N14 and the input terminal 11, and the anode side terminal of the diode D21 is connected to the node N14, and the force sword side terminal is connected to the input terminal 11 via the node N12. . Other configurations are the same as those of the gate drive circuit 1.
[0062] ゲート駆動回路 2においては、トランジスタ TR12のベースがダイオード D21を介し て入力端子 11に接続されている。このため、入力端子 11に入力される制御パルス 1 0が Highから Lowに切り替わった場合、トランジスタ TR12のベースの電位が低下する ことにより、トランジスタ TR12がオンされ、 FET1の容量 Cがトランジスタ TR12及びノ ード N 16を経由して放電される。 [0062] In the gate drive circuit 2, the base of the transistor TR12 is connected via the diode D21. Connected to input terminal 11. For this reason, when the control pulse 10 input to the input terminal 11 is switched from High to Low, the potential of the base of the transistor TR12 is lowered, so that the transistor TR12 is turned on, and the capacitance C of the FET1 is changed to the transistor TR12 and the node TR12. Discharged via the N16.
[0063] なお、ゲート駆動回路 2においては、制御パルス 10が Highのときにトランジスタ TR1 1のベースーェミッタ間、ベース コレクタ間に蓄積された少数キャリアを、制御パル ス 10が Lowに転じたときに消滅させるための電流路として、トランジスタ TR11のべ一 スカもダイオード D21を介して入力端子 11に至る経路が存在する。制御パルス 10が Highのときにダイオード D21は逆バイアスされるので、この経路を通して制御パルス 1 0がトランジスタ TR11のベースに伝達されることはない。  [0063] In the gate drive circuit 2, minority carriers accumulated between the base emitter and the base collector of the transistor TR1 1 when the control pulse 10 is High disappear when the control pulse 10 changes to Low. As a current path for this, there is a path from the transistor TR11 to the input terminal 11 via the diode D21. Since the diode D21 is reverse-biased when the control pulse 10 is high, the control pulse 10 is not transmitted to the base of the transistor TR11 through this path.
[0064] 上記した以外のゲート駆動回路 2の動作については、上記第 1の実施の形態にお けるゲート駆動回路 1と同様である。  [0064] The operations of the gate drive circuit 2 other than those described above are the same as those of the gate drive circuit 1 in the first embodiment.
従って、本第 2の実施の形態におけるゲート駆動回路 2においては、上記第 1の実 施の形態におけるゲート駆動回路 1と同様に、制御パルス 10によりコンデンサ C11を 充電し、その後に入力される制御パルス 10を、コンデンサ C 11に充電された電荷の 放電により増幅して FET1に入力するので、 FET1のゲートに対し、ゲート入力容量 である容量 Cに蓄積される電荷を速やかに充電できるだけの制御信号が入力される 。また、容量 Cは、制御パルス 10が Lowの状態で速やかに放電される。これにより、 F ET1におけるゲート入力容量の影響を補償ないし極小化し、 FET1を高速に動作さ せることができると!/ヽぅ格別の効果が得られる。  Therefore, in the gate drive circuit 2 in the second embodiment, as in the gate drive circuit 1 in the first embodiment, the capacitor C11 is charged by the control pulse 10, and the control input thereafter Pulse 10 is amplified by discharging the charge stored in capacitor C11 and input to FET1, so a control signal that can quickly charge the charge stored in capacitor C, which is the gate input capacitance, to the gate of FET1. Is entered. Capacitor C is quickly discharged when control pulse 10 is low. As a result, if the effect of the gate input capacitance in FET1 is compensated or minimized, and FET1 can be operated at high speed, a special effect can be obtained.
[0065] なお、上記第 1及び第 2の実施の形態における各回路素子の構成及び接続状態は あくまで一例であり、本発明の趣旨を損なわない範囲において適宜変更可能であつ て、例えば、一部の回路素子を省いた構成とすることも可能である。以下、第 3の実 施の形態として一例を示す。  [0065] The configuration and connection state of each circuit element in the first and second embodiments are merely examples, and can be appropriately changed without departing from the spirit of the present invention. It is also possible to adopt a configuration in which the circuit elements are omitted. An example is shown below as the third embodiment.
[0066] [第 3の実施の形態]  [0066] [Third embodiment]
図 10は、本発明を適用した第 3の実施の形態におけるゲート駆動回路 3の構成を 示す回路図である。なお、図 10に示すゲート駆動回路 3において、上記第 1の実施 の形態におけるゲート駆動回路 1 (図 1)と同様に構成される各部については、図中に 同符号を付して説明を省略する。 FIG. 10 is a circuit diagram showing a configuration of the gate drive circuit 3 in the third embodiment to which the present invention is applied. Note that in the gate drive circuit 3 shown in FIG. 10, each part configured similarly to the gate drive circuit 1 (FIG. 1) in the first embodiment is shown in the figure. The same reference numerals are given and description thereof is omitted.
[0067] 図 10に示すゲート駆動回路 3においては、上記ゲート駆動回路 1のダイオード D12 , D13が省かれた構成となっている。また、ゲート駆動回路 1におけるダイオード D11 に代えて、ダイオード D22を備える。ダイオード D22は、ダイオード D11と同様に、ァ ノード側端子がノード N12を介して入力端子 11に接続され、力ソード側端子がノード Ni lに接続される。ダイオード D22は、一般的なダイオードに比べて電圧降下が小 さい(好ましくは 0. 2乃至 0. 4ボルト)ものであり、例えばショットキーノリアダイオード が好適である。  The gate drive circuit 3 shown in FIG. 10 has a configuration in which the diodes D12 and D13 of the gate drive circuit 1 are omitted. Further, a diode D22 is provided instead of the diode D11 in the gate drive circuit 1. Similarly to the diode D11, the diode D22 has a node side terminal connected to the input terminal 11 via the node N12 and a force sword side terminal connected to the node Nil. The diode D22 has a smaller voltage drop (preferably 0.2 to 0.4 volts) than a general diode, and for example, a Schottky Noria diode is suitable.
ゲート駆動回路 3におけるその他の構成はゲート駆動回路 1と共通である。  Other configurations in the gate driving circuit 3 are the same as those in the gate driving circuit 1.
[0068] ゲート駆動回路 1, 2 (図 1,図 9)においては、入力端子 11に制御パルス 10が入力 され、ダイオード D11の電圧降下によってトランジスタ TR11のコレクタの電位がベー スの電位よりも低くなることによるトランジスタ TR11のベースからコレクタへの電流の 回り込みを防止するため、ダイオード D12を備えていた。 [0068] In the gate drive circuits 1 and 2 (Fig. 1 and Fig. 9), the control pulse 10 is input to the input terminal 11, and the voltage drop of the diode D11 causes the collector potential of the transistor TR11 to be lower than the base potential. In order to prevent current from flowing from the base to the collector of transistor TR11, a diode D12 was provided.
ゲート駆動回路 3においては、ダイオード D22の電圧降下が小さいため、ダイォー ド D12を省略しても、上記した電流の回り込みを防止できる。  In the gate drive circuit 3, since the voltage drop of the diode D22 is small, even if the diode D12 is omitted, the above current wraparound can be prevented.
すなわち、トランジスタ TR11のベース一コレクタ間の電位差は、トランジスタ TR11 のベース コレクタ間の電圧降下、及び、ダイオード D22の電圧降下により決定され る。ゲート駆動回路 3においてはダイオード D22の電圧降下が小さいため、トランジス タ TR11のベース コレクタ間の電位差力 電流の回り込みが生じない程度に抑えら れる。このため、ダイオード D12 (図 1,図 9)を省いても動作上の問題は生じない。  That is, the potential difference between the base and collector of the transistor TR11 is determined by the voltage drop between the base and collector of the transistor TR11 and the voltage drop of the diode D22. In the gate drive circuit 3, since the voltage drop of the diode D22 is small, the potential difference current between the base and collector of the transistor TR11 is suppressed to a level that does not occur. For this reason, omitting the diode D12 (Figs. 1 and 9) does not cause any operational problems.
[0069] さらに、ゲート駆動回路 3においては、ダイオード D12を省いた構成とすることにより 、ゲート駆動回路 1におけるダイオード D13、或いはゲート駆動回路 2におけるダイォ ード D21に相当するダイオードを省くことができる。 [0069] Furthermore, in the gate drive circuit 3, by omitting the diode D12, the diode D13 in the gate drive circuit 1 or the diode corresponding to the diode D21 in the gate drive circuit 2 can be omitted. .
ゲート駆動回路 1においては、ダイオード D12を設けたことにより、トランジスタ TR1 1のベース ェミッタ間、ベース コレクタ間に蓄積される少数キャリアを消滅させる 電流路として、トランジスタ TR11のベースを、ダイオード D13を介して入力端子 11に 接続していた。また、ゲート駆動回路 2においては、トランジスタ TR11のベースをダイ オード D21を介して入力端子 11に接続することにより、トランジスタ TR11の少数キヤ リアを消滅させる電流路を確保していた。このため、ゲート駆動回路 1, 2においては 、上記経路を介してトランジスタ TR11のベースに電流が回り込まないよう、ダイォー ド D13或いはダイオード D21のように一方向性電流素子を必要としていた。 In the gate drive circuit 1, by providing the diode D12, the base of the transistor TR11 is connected via the diode D13 as a current path for eliminating minority carriers accumulated between the base emitter and the base collector of the transistor TR11. Connected to input terminal 11. In the gate driving circuit 2, the base of the transistor TR11 is connected to the input terminal 11 through the diode D21, whereby the minority key of the transistor TR11 is connected. A current path for extinguishing the rear was secured. For this reason, the gate drive circuits 1 and 2 require a unidirectional current element such as the diode D13 or the diode D21 so that current does not flow into the base of the transistor TR11 through the above path.
ゲート駆動回路 3においては、ダイオード D12を省くことによってトランジスタ TR11 のベースとトランジスタ TR12のベースとがノード N 12を介して接続されることにより、 上記の経路が確保されている。このため、ダイオード D13, D21に相当するダイォー ドを配設する必要がない。  In the gate drive circuit 3, the above path is secured by connecting the base of the transistor TR11 and the base of the transistor TR12 via the node N12 by omitting the diode D12. For this reason, it is not necessary to dispose diodes corresponding to the diodes D13 and D21.
[0070] このように、本第 3の実施の形態におけるゲート駆動回路 3によれば、上記第 1及び 第 2の実施の形態におけるゲート駆動回路 1, 2と同様の効果が得られる上、よりシン プルな回路構成により実現可能であるという利点がある。  Thus, according to the gate drive circuit 3 in the third embodiment, the same effects as those of the gate drive circuits 1 and 2 in the first and second embodiments can be obtained, and more There is an advantage that it can be realized by a simple circuit configuration.
[0071] なお、上記第 1〜第 3の実施の形態において、ゲート駆動回路 1, 2, 3の具体的構 成について特に限定はなぐ例えば FET1に代えて通常のトランジスタを用いることも 、 IGBTを用いることも可能であり、ゲート駆動回路 1, 2, 3の一部または全部を等価 回路により置換することも勿論可能であって、その他の細部構成にっ 、ても適宜変 更可能であることは勿論である。  [0071] In the first to third embodiments, the specific configuration of the gate drive circuits 1, 2, and 3 is not particularly limited. For example, a normal transistor can be used instead of the FET 1, or the IGBT can be used. It is also possible to use a part of or all of the gate drive circuits 1, 2, and 3 with an equivalent circuit, and other details can be changed as appropriate. Of course.
[0072] 例えば、上記第 1〜第 3の実施の形態において、トランジスタ TR11, TR12をバイ ポーラトランジスタとして説明した力 本発明はこれに限定されるものではなぐ例え ば、 FETを用いても良い。ここで、上記第 1の実施の形態として説明したゲート駆動 回路 1において、トランジスタ TR11, TR12を FETに置き換えた場合を、第 4の実施 の形態として説明する。  [0072] For example, in the first to third embodiments described above, the transistors TR11 and TR12 have been described as bipolar transistors. The present invention is not limited to this. For example, an FET may be used. Here, the case where the transistors TR11 and TR12 are replaced with FETs in the gate drive circuit 1 described as the first embodiment will be described as a fourth embodiment.
[0073] [第 4の実施の形態]  [0073] [Fourth embodiment]
図 11は、本発明を適用した第 4の実施の形態におけるゲート駆動回路 4の概略構 成を示す回路図である。図 11に示すように、ゲート駆動回路 4は、図 1に示すゲート 駆動回路 1におけるトランジスタ TR11, TR12を、それぞれ FET11, 12に置き換え た回路である。  FIG. 11 is a circuit diagram showing a schematic configuration of the gate drive circuit 4 in the fourth embodiment to which the present invention is applied. As shown in FIG. 11, the gate drive circuit 4 is a circuit in which the transistors TR11 and TR12 in the gate drive circuit 1 shown in FIG. 1 are replaced with FETs 11 and 12, respectively.
FET11は Nチャネル型の FETであって、ゲート駆動回路 4においては、 FET11の ドレインがノード Nl 1を介してコンデンサ CI 1に接続され、 FETl 1のソース力 ード N15を介して FET1のゲートに接続され、 FET11のゲートがノード N13を介してダイ オード Dl 2の力ソード側端子に接続されている。ダイオード Dl 2のアノード側端子は ノード N 12を介して入力端子 11に接続されている。また、ダイオード D 11のアノード 側端子がノード N12を介して入力端子 11に接続され、ダイオード D11の力ソード側 端子がノード Nl 1を介してコンデンサ CI 1に接続されて!、る。 The FET 11 is an N-channel FET. In the gate drive circuit 4, the drain of the FET 11 is connected to the capacitor CI 1 through the node Nl 1 and connected to the gate of the FET 1 through the source power N15 of the FETl 1. Connected, and the gate of FET11 is connected to the die via node N13. It is connected to the power sword side terminal of Aether Dl 2. The anode side terminal of the diode Dl 2 is connected to the input terminal 11 via the node N 12. The anode side terminal of the diode D11 is connected to the input terminal 11 via the node N12, and the force sword side terminal of the diode D11 is connected to the capacitor CI1 via the node Nl1.
また、 FET12は Pチャネル型の FETであって、 FET12のゲートはノード N14を介し て入力端子 11に接続され、ソースはノード N15を介して FET1のゲートに接続され、 ドレインはノード N 16を介して接地されている。また、ダイオード D 13のアノード側端 子がノード N13、力ソード側端子がノード N14に接続されている。  FET 12 is a P-channel FET, and the gate of FET 12 is connected to input terminal 11 via node N 14, the source is connected to the gate of FET 1 via node N 15, and the drain is connected to node N 16. Is grounded. Further, the anode side terminal of the diode D13 is connected to the node N13, and the force sword side terminal is connected to the node N14.
[0074] ゲート駆動回路 4においては、ゲート駆動回路 1と同様に、入力端子 11に入力され る制御パルス 10が Highのときに FET11がオンになり、コンデンサ C11の放電による 電流に基づいて制御パルス 10が増幅され、一方、 FET12のゲートの電位は高くなる ため、 FET12はオフになる。この結果、 FET1のゲートに電圧が印加される。また、 制御パルス 10が Lowのときに FET11がオフ、 FET12がオンとなって、 FET1の容量 Cに蓄積された電荷を、 FET12及びノード N 16を介して放電する。従って、図 11に 示すゲート駆動回路 4によれば、上記第 1の実施の形態と同様の効果が得られる。  [0074] In the gate drive circuit 4, as in the gate drive circuit 1, the FET 11 is turned on when the control pulse 10 input to the input terminal 11 is High, and the control pulse is based on the current generated by the discharge of the capacitor C11. While 10 is amplified, the gate potential of FET12 increases, so FET12 turns off. As a result, a voltage is applied to the gate of FET1. Also, when the control pulse 10 is low, the FET 11 is turned off and the FET 12 is turned on, and the charge accumulated in the capacitance C of the FET 1 is discharged through the FET 12 and the node N 16. Therefore, according to the gate drive circuit 4 shown in FIG. 11, the same effect as in the first embodiment can be obtained.
[0075] さらに、上記第 2及び第 3の実施の形態において、トランジスタ TR11, TR12に代 えて FET11, 12を用いる構成とすることも可能であり、この場合も、上記第 2及び第 3 の実施の形態と同様の効果が得られる。  [0075] Further, in the second and third embodiments, it is possible to use FETs 11 and 12 instead of the transistors TR11 and TR12. In this case as well, the second and third embodiments can be used. The same effect as that of the embodiment can be obtained.
[0076] なお、ゲート駆動回路により駆動されるトランジスタ(図 1, 9, 10, 11においては FE T1)は、通常、パワー MOSFETである。これに対し、図 11のゲート駆動回路 4にお ける FET11, 12は、いずれもパワー MOSFETである必要は無ぐ FET1に比べて 非常にゲート入力容量が小さいものを用いることができる。このため、 FET11, 12が 有するゲート入力容量によるゲート駆動回路 4の動作への影響は、無視できる程度 である。  Note that the transistor driven by the gate drive circuit (FET 1 in FIGS. 1, 9, 10, and 11) is usually a power MOSFET. On the other hand, the FETs 11 and 12 in the gate drive circuit 4 in FIG. 11 do not need to be power MOSFETs, and those having a very small gate input capacity can be used as compared with FET1. For this reason, the influence on the operation of the gate drive circuit 4 by the gate input capacitance of the FETs 11 and 12 is negligible.
[0077] 上記第 1〜第 4の実施の形態においては、実質的に正極の電圧のみのパルスから なる制御パルス 10を増幅し、 FET1に対し制御信号として入力し、 FET1の容量 Cを 高速に充電するのに十分な電流を入力して、 FET1のゲート印加電圧の立ち上がり を急峻にしている。 一方、 FETlの容量 Cに充電された電荷は、制御パルス 10力 owの状態で、 FET1 のゲートからトランジスタ TR12 (FET12)、ノード N16を経由して速やかに放電させ ていた。ここで、制御パルス 10が Highから Lowになったときに、 FET1の充電された容 量 Cをより強力に放電させることができれば、 FET1のゲート印加電圧の立ち下がり、 換言すれば FET1のドレイン電流の立ち下がりをも急峻にすることが可能である。 [0077] In the first to fourth embodiments described above, the control pulse 10 consisting essentially of a pulse of only the positive voltage is amplified and input to the FET 1 as a control signal, and the capacitance C of the FET 1 is increased at high speed. Input enough current to charge, steep rise of FET1 gate applied voltage. On the other hand, the electric charge charged in the capacitor C of FETl was quickly discharged from the gate of FET1 via transistor TR12 (FET12) and node N16 with a control pulse of 10 power ow. Here, if the charged capacity C of FET1 can be discharged more strongly when the control pulse 10 changes from High to Low, the fall of the FET1 gate applied voltage, in other words, the drain current of FET1 It is possible to make the fall of the steep.
[0078] そこで、 FET1のゲート印加電圧の立ち上がりを急峻にすることに加えて、 FET1の ゲート印加電圧の立ち下がりを急峻にし、 FET1が本来有するターンオフ時間特性 に従って FET1を高速にオフ動作させることを目的として、ゲート駆動回路を構成し た例を、以下、第 5〜第 8の実施の形態として説明する。  [0078] Therefore, in addition to making the rise of the gate application voltage of FET1 steep, the fall of the gate application voltage of FET1 is made steep and FET1 is turned off at high speed according to the inherent turn-off time characteristics of FET1. For the purpose, examples in which the gate drive circuit is configured will be described as fifth to eighth embodiments.
[0079] [第 5の実施の形態]  [0079] [Fifth embodiment]
図 12は、本発明を適用した第 5の実施の形態におけるゲート駆動回路 5の構成を 示す回路図である。なお、図 12に示すゲート駆動回路 5において、上記第 1の実施 の形態におけるゲート駆動回路 1と同様に構成される各部については、図中に同符 号を付して説明を省略する。  FIG. 12 is a circuit diagram showing a configuration of the gate drive circuit 5 in the fifth embodiment to which the present invention is applied. In the gate drive circuit 5 shown in FIG. 12, the same components as those in the gate drive circuit 1 in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0080] 図 12に示すゲート駆動回路 5においては、上記ゲート駆動回路 1 (図 1)にダイォー ド D31、及びコンデンサ C31が付加されて構成されている。すなわち、ノード N12とノ ード N 14とを接続するライン上にノード N31が配設され、ダイオード D31の力ソード 側端子が接続される。ゲート駆動回路 1においてノード N16を介して FET1のソース に接続されていたトランジスタ TR12のコレクタは、ゲート駆動回路 5においてノード N 32を介してダイオード D31のアノード側端子に接続されている。さらに、ゲート駆動 回路 5において、ダイオード D31のアノード側端子およびトランジスタ TR12のコレク タには、ノード N32を介してコンデンサ C31の一端が接続され、コンデンサ C31の他 端は接地されている。ダイオード D31とコンデンサ C31とは、トランジスタ TR12を駆 動する電源部を構成して ヽる。  The gate drive circuit 5 shown in FIG. 12 is configured by adding a diode D31 and a capacitor C31 to the gate drive circuit 1 (FIG. 1). That is, the node N31 is arranged on the line connecting the node N12 and the node N14, and the power sword side terminal of the diode D31 is connected. The collector of the transistor TR12 connected to the source of the FET1 through the node N16 in the gate drive circuit 1 is connected to the anode side terminal of the diode D31 through the node N32 in the gate drive circuit 5. Further, in the gate drive circuit 5, one end of the capacitor C31 is connected to the anode side terminal of the diode D31 and the collector of the transistor TR12 via the node N32, and the other end of the capacitor C31 is grounded. The diode D31 and the capacitor C31 constitute a power supply unit that drives the transistor TR12.
なお、ダイオード D31は、一般的なダイオードに比べて電圧降下が小さい (好ましく は 0. 2乃至 0. 4ボルト)ダイオード、例えばショットキーバリアダイオードを用い、トラン ジスタ TR12のベース コレクタ間電流が流れないようにすることが好ましいが、必ず しもそうである必要はない。 その他の構成はゲート駆動回路 1と共通である。 The diode D31 uses a diode having a smaller voltage drop (preferably 0.2 to 0.4 volt) than a general diode, such as a Schottky barrier diode, and the current between the base and collector of the transistor TR12 does not flow. It is preferable to do so, but it is not always necessary. Other configurations are the same as those of the gate drive circuit 1.
[0081] ゲート駆動回路 5においては、入力端子 11に制御パルス 20が入力される力 この 制御パルス 20は、ゲート駆動回路 1において入力される制御パルス 10と異なり、図 中に示すとおりの電圧極性が交互に反転するパルスである。  [0081] In the gate drive circuit 5, the force that the control pulse 20 is input to the input terminal 11 is different from the control pulse 10 that is input in the gate drive circuit 1, and the voltage polarity as shown in the figure. Are pulses that are alternately inverted.
[0082] 以上のように構成されるゲート駆動回路 5において、入力端子 11に極性が正の制 御パルス 20が入力されると、ダイオード D12に順方向電圧が印加され、入力端子 11 力 ダイオード D12を経由してトランジスタ TR11のベースに電流が流れる。一方、ダ ィオード Dl 1に対しても、入力端子 11に入力される極性が正の制御パルス 20により 順方向電圧が印加され、トランジスタ TR11のコレクタには制御パルス 20が入力され る。これにより、トランジスタ TR 11においては、極性が正の制御パルス 20が入力され るときにベース電流及びコレクタ電流が流れ、トランジスタ TR11がオンとなる。  [0082] In the gate drive circuit 5 configured as described above, when a control pulse 20 having a positive polarity is input to the input terminal 11, a forward voltage is applied to the diode D12, and the input terminal 11 power diode D12 Current flows to the base of the transistor TR11 via. On the other hand, a forward voltage is applied to the diode Dl 1 by a control pulse 20 having a positive polarity input to the input terminal 11, and the control pulse 20 is input to the collector of the transistor TR11. Thereby, in the transistor TR11, when the positive polarity control pulse 20 is input, the base current and the collector current flow, and the transistor TR11 is turned on.
[0083] 一方、入力端子 11に極性が正の制御パルス 20が入力されると、ダイオード D31に 逆方向電圧が印加されるため、入力端子 11からダイオード D31を経由してコンデン サに至る経路に電流が流れることはない。また、入力端子 11に極性が正の制御パル ス 20が入力されるときは、ゲート駆動回路 1における制御パルス 10が Highのときの動 作と同様に、トランジスタ TR12はベースの電位がェミッタより高くなるため電流が流 れず、オフ状態となる。  [0083] On the other hand, when a control pulse 20 having a positive polarity is input to the input terminal 11, a reverse voltage is applied to the diode D31, so that a path from the input terminal 11 to the capacitor via the diode D31 is applied. No current flows. When control pulse 20 having a positive polarity is input to input terminal 11, transistor TR12 has a base potential higher than that of the emitter, similar to the operation when control pulse 10 in gate drive circuit 1 is High. Therefore, no current flows and the device is turned off.
これにより、トランジスタ TR12のェミッタの電位が上がるため、 FET1のゲートに、制 御パルス 20に基づく極性が正の制御信号が入力される。このため、 FET1において は、ゲートに入力される極性が正の制御信号により容量 Cが充電され、さらに FET1 がオンに切り替わる。  As a result, the potential of the emitter of the transistor TR12 rises, so that a control signal having a positive polarity based on the control pulse 20 is input to the gate of the FET1. For this reason, in FET1, the capacitor C is charged by the positive polarity control signal input to the gate, and FET1 is turned on.
[0084] なお、入力端子 11に極性が正の制御パルス 20が入力され、ダイオード Dl 1に順 方向電圧が印加されることにより、ダイオード Dl 1からコンデンサ CI 1に電流が流れ 、コンデンサ C11が充電される。また、ノード N12とトランジスタ TR11のベースとの間 にダイオード D12を挿入し、ダイオード D12の順方向電圧によりトランジスタ TR11の ベースの電圧を降下させることによって、トランジスタ TR11のベースからトランジスタ TR11のコレクタに流れる電流を抑制している。これらの動作は、ゲート駆動回路 1に おける制御パルス 10が Highのときの動作と同様である。 [0085] なお、ゲート駆動回路 5においても、入力端子 11に極性が正の制御パルス 20が入 力されるときにトランジスタ TR11のベース一ェミッタ間、ベース一コレクタ間に蓄積さ れる少数キャリアを、制御パルス 20の極性が負に転じたときに消滅させるための電流 路として、トランジスタ TR11のベース、ノード N13、ダイオード D13、ノード N14及び 入力端子 11が存在する。 [0084] When a control pulse 20 having a positive polarity is input to the input terminal 11 and a forward voltage is applied to the diode Dl1, a current flows from the diode Dl1 to the capacitor CI1, and the capacitor C11 is charged. Is done. In addition, by inserting a diode D12 between the node N12 and the base of the transistor TR11 and dropping the voltage at the base of the transistor TR11 by the forward voltage of the diode D12, the current flowing from the base of the transistor TR11 to the collector of the transistor TR11 Is suppressed. These operations are the same as those when the control pulse 10 in the gate drive circuit 1 is High. Note that in the gate drive circuit 5 as well, minority carriers accumulated between the base emitter and the base collector of the transistor TR11 when the control pulse 20 having a positive polarity is input to the input terminal 11, As a current path to be extinguished when the polarity of the control pulse 20 turns negative, the base of the transistor TR11, the node N13, the diode D13, the node N14, and the input terminal 11 exist.
[0086] 続、て、入力端子 11に入力される制御パルス 20の極性が反転し極性が負の制御 パルスに切り替わると、ダイオード D12に逆方向電圧が印加され、ダイオード D12か らトランジスタ TR11のベースに電流が流れなくなり、トランジスタ TR11はオフに切り 替わる。これにより、トランジスタ TR11のェミッタにおいて FET1のゲートに電圧が印 加されなくなる。  [0086] Subsequently, when the polarity of the control pulse 20 input to the input terminal 11 is reversed and the polarity is switched to a negative control pulse, a reverse voltage is applied to the diode D12, and the base of the transistor TR11 is applied from the diode D12. No current flows to transistor TR11, which turns off. As a result, no voltage is applied to the gate of FET1 in the emitter of transistor TR11.
[0087] 一方、トランジスタ TR12においては、極性が負の制御パルス 20が入力端子 11に 入力されると、ベースの電位がェミッタより低くなるので、トランジスタ TR12がオンされ 、トランジスタ TR12のェミッタからコレクタに電流が流れる。さらに、制御パルス 20の 負極性電位と、後述するコンデンサ C31のノード N32側の負極性電位とにより、トラ ンジスタ TR12のコレクタ電位が負の極性に引き込まれるので、 FET1のゲートの電 位は負の極性まで下げられる。このため、 FET1は急峻にオフされる。また、入力端 子 11に入力される極性が負の制御パルス 20によって、 FET1の容量 Cに蓄積される 電荷を放電し、かつ、蓄積されていた電荷の極性とは逆極性に容量 Cを再充電する 。このため、 FET1のドレイン一ソース間の電流が直ちに遮断される。また、 FET1の 容量 Cに蓄積される電荷は、後述するようにトランジスタ TR12のェミッタ コレクタ間 に十分な電流が流れるため、 FET1のゲートからトランジスタ TR12、ノード N32、コン デンサ C31を経由して確実にかつ高速に放電される。  On the other hand, in the transistor TR12, when the control pulse 20 having a negative polarity is input to the input terminal 11, the base potential becomes lower than the emitter, so that the transistor TR12 is turned on, and the emitter of the transistor TR12 is switched from the emitter to the collector. Current flows. Furthermore, the collector potential of transistor TR12 is pulled to a negative polarity due to the negative potential of control pulse 20 and the negative potential on node N32 side of capacitor C31, which will be described later, so the gate potential of FET1 is negative. Reduced to polarity. For this reason, FET1 is turned off sharply. In addition, the negative polarity control pulse 20 input to the input terminal 11 discharges the charge accumulated in the capacitor C of the FET 1 and re-sets the capacitor C to a polarity opposite to the polarity of the accumulated charge. Charge. For this reason, the current between the drain and source of FET1 is immediately cut off. In addition, as the charge stored in the capacitor C of FET1 has sufficient current to flow between the emitter and collector of the transistor TR12 as will be described later, it is ensured from the gate of FET1 via the transistor TR12, node N32, and capacitor C31. And it is discharged at high speed.
[0088] ダイオード D31に対しては、入力端子 11に入力される極性が負の制御パルス 20に より順方向電圧が印加され、コンデンサ C31からダイオード D31、入力端子 11の経 路に電流が流れ、コンデンサ C31が充電される。このときコンデンサ C31には、接地 側を正、ノード 32側を負とする電荷が充電される。コンデンサ C31の充電電圧 Vc31 は、極性が負の制御パルス 20の電圧を Vpn、ダイオード D31の順方向電圧降下を V d31fとすると、 Vc31 = - (|Vpn| -Vd31f)となり、接地電位を基準としてコンデンサ C 31のノード N32側の電位をみると、 Vpn力も Vd31fを減じた負電位である。 [0088] A forward voltage is applied to the diode D31 by the negative polarity control pulse 20 input to the input terminal 11, and a current flows from the capacitor C31 to the path of the diode D31 and the input terminal 11, Capacitor C31 is charged. At this time, the capacitor C31 is charged with a positive charge on the ground side and a negative charge on the node 32 side. The charging voltage Vc31 of capacitor C31 is Vc31 =-(| Vpn | -Vd31f), where Vpn is the voltage of control pulse 20 with negative polarity and V d31f is the forward voltage drop of diode D31. Capacitor C Looking at the potential at node N32 on node 31, the Vpn force is also a negative potential minus Vd31f.
[0089] 先の制御パルス 20の極性が負のときトランジスタ TR12がオンされるため、コンデン サ C31に充電された電荷を放電することができる。コンデンサ C31の放電により、トラ ンジスタ TR12にはコンデンサ C31の放電によるェミッタ一コレクタ間の電流が流れる 。このため、トランジスタ TR12においては、ベースに入力される極性が負の制御パル ス 20が大きく電流増幅され、 FET1のゲートに入力される。 Since the transistor TR12 is turned on when the polarity of the previous control pulse 20 is negative, the charge charged in the capacitor C31 can be discharged. Due to the discharge of the capacitor C31, a current flows between the emitter and the collector due to the discharge of the capacitor C31 through the transistor TR12. Therefore, in the transistor TR12, the control pulse 20 having a negative polarity input to the base is greatly amplified and input to the gate of the FET1.
これにより、 FET1に対して増幅された極性が負の制御パルス 20が制御信号として 入力されるので、 FET1の容量 Cを高速に放電するのに十分な電流が流れ、 FET1 のゲート印加電圧の立ち下がりを急峻にする。この結果、 FET1が素早くオフに切り 替わる。換言すれば、 FET1のドレイン電流の立ち下がりが急峻になる。  As a result, a control pulse 20 having a negative polarity amplified with respect to FET1 is input as a control signal, so that a sufficient current flows to discharge the capacitance C of FET1 at high speed, and the gate application voltage of FET1 rises. Make the fall steep. As a result, FET1 turns off quickly. In other words, the fall of the drain current of FET1 becomes steep.
[0090] さらに、入力端子 11に入力される制御パルス 20の極性が反転し負力 正にすると 、上述したように、ダイオード D12に順方向電圧が加わって、入力端子 11からダイォ ード D12を経由してトランジスタ TR11のベースに、極性が正の制御パルス 20が入力 される。 [0090] Further, when the polarity of the control pulse 20 input to the input terminal 11 is reversed and the negative force is positive, as described above, a forward voltage is applied to the diode D12, and the diode D12 is changed from the input terminal 11 to the diode D12. Then, the control pulse 20 having a positive polarity is input to the base of the transistor TR11.
ここで、先の制御パルス 20の極性が正のときトランジスタ TR11がオンされるため、 コンデンサ C11に充電された電荷を放電することができる。コンデンサ C11の放電に より、トランジスタ TR11にはコンデンサ C11の放電によるコレクタ電流が流れる。この ため、トランジスタ TR11においては、ベースに入力される極性が正の制御パルス 20 が大きく電流増幅され、 FET1のゲートに入力される。  Here, since the transistor TR11 is turned on when the polarity of the previous control pulse 20 is positive, the charge charged in the capacitor C11 can be discharged. Due to the discharge of the capacitor C11, a collector current due to the discharge of the capacitor C11 flows through the transistor TR11. Therefore, in the transistor TR11, the control pulse 20 having a positive polarity inputted to the base is greatly amplified and inputted to the gate of the FET1.
これにより、 FET1に対して、増幅された極性が正の制御ノ ルス 20が制御信号とし て入力されるので、 FET1の容量 Cを高速に充電するのに十分な電流が入力され、 F ET1のゲート印加電圧の立ち上がりを急峻にする。この結果、 FET1が素早くオンに 切り替わる。換言すれば、 FET1のドレイン電流の立ち上がりが急峻になる。  As a result, the control polarity 20 having the positive polarity is input to the FET 1 as a control signal, so that a current sufficient to charge the capacitance C of the FET 1 at high speed is input, and the FET 1 Steep rising of the gate applied voltage. As a result, FET1 turns on quickly. In other words, the rise of the drain current of FET1 becomes steep.
[0091] 以上のように、ゲート駆動回路 5においては、極性が正の制御パルス 20によりコン デンサ C11を充電し、その後に入力される極性が正の制御パルス 20を、コンデンサ C11に充電されたエネルギーにより増幅して FET1に入力するので、 FET1のゲート に対しては、ゲート入力容量である容量 Cを速やかに充電できるだけの制御信号が 入力される。また、容量 Cは、制御ノ ルス 20が負の極性の状態で速やかに放電され る。さらに、ゲート駆動回路 5においては、極性が負の制御パルス 20によりコンデンサ C31を充電し、その後に入力される極性が負の制御パルス 20を、コンデンサ C31に 充電されたエネルギーにより増幅して FET1に入力するので、 FET1のゲートに対し ては、容量 Cを速やかに放電できるだけの制御信号が入力される。また、容量 Cは、 制御パルス 20が負の極性の状態で速やかに放電される。 [0091] As described above, in the gate drive circuit 5, the capacitor C11 is charged by the control pulse 20 having the positive polarity, and the control pulse 20 having the positive polarity input thereafter is charged to the capacitor C11. Since it is amplified by energy and input to FET1, a control signal is input to the gate of FET1 that can quickly charge the capacitance C, which is the gate input capacitance. Capacitance C is quickly discharged with the control noise 20 in the negative polarity state. The Further, in the gate drive circuit 5, the capacitor C31 is charged by the control pulse 20 having a negative polarity, and the control pulse 20 having a negative polarity that is input thereafter is amplified by the energy charged in the capacitor C31 to be fed to the FET 1. Therefore, a control signal that can discharge the capacitor C quickly is input to the gate of FET1. Capacitor C is discharged quickly with control pulse 20 in the negative polarity.
従って、本第 5の実施の形態におけるゲート駆動回路 5においては、 FET1におけ るゲート入力容量の影響を補償ないし極小化し、 FET1を高速にオン Zオフさせるこ とができる。特に、 FET1が本来有するターンオン時間およびターンオフ時間の両方 の特性に従って、 FET1をオン Zオフ動作させることができるという格別の効果が得ら れる。  Therefore, in the gate drive circuit 5 in the fifth embodiment, the influence of the gate input capacitance in the FET 1 can be compensated or minimized, and the FET 1 can be turned on and off at high speed. In particular, according to the characteristics of both the turn-on time and the turn-off time that FET1 originally has, a special effect that FET1 can be turned on and off is obtained.
[0092] 第 1の実施の形態におけるゲート駆動回路 1に、ダイオード D31、及びコンデンサ C 31を付加して構成した上記第 5の実施の形態もまた、あくまで一例であって、本発明 の趣旨を損なわない範囲において適宜変更可能である。例えば、上記第 5の実施の 形態における変更と同様の変更を、第 2、第 3の実施の形態におけるゲート駆動回路 2, 3に加えた例を、第 6、第 7の実施の形態として示す。  The fifth embodiment configured by adding the diode D31 and the capacitor C31 to the gate drive circuit 1 in the first embodiment is also merely an example, and the gist of the present invention is as follows. Changes can be made as appropriate without departing from the scope. For example, an example in which the same change as the change in the fifth embodiment is added to the gate drive circuits 2 and 3 in the second and third embodiments is shown as the sixth and seventh embodiments. .
[0093] [第 6の実施の形態]  [0093] [Sixth embodiment]
図 13は、本発明を適用した第 6の実施の形態におけるゲート駆動回路 6の構成を 示す回路図である。なお、図 13に示すゲート駆動回路 6において、上記第 1の実施 の形態におけるゲート駆動回路 1 (図 1)、第 5の実施の形態におけるゲート駆動回路 5 (図 12)と同様に構成される各部については、図中に同符号を付して説明を省略す る。  FIG. 13 is a circuit diagram showing a configuration of the gate drive circuit 6 according to the sixth embodiment to which the present invention is applied. The gate drive circuit 6 shown in FIG. 13 has the same configuration as the gate drive circuit 1 (FIG. 1) in the first embodiment and the gate drive circuit 5 (FIG. 12) in the fifth embodiment. About each part, the same code | symbol is attached | subjected in a figure, and description is abbreviate | omitted.
[0094] 図 13に示すゲート駆動回路 6においては、上記ゲート駆動回路 5 (図 12)のダイォ ード D13が省かれ、ノード N13とノード N14とが直接接続されている。さらに、ノード N 14とノード N31との間にダイオード D21が設けられ、ダイオード D21のアノード側 端子がノード N14に、力ソード側端子がノード N31を介して入力端子 11およびダイ オード D31の力ソードに接続されている。その他の構成はゲート駆動回路 5と共通で ある。  In the gate drive circuit 6 shown in FIG. 13, the diode D13 of the gate drive circuit 5 (FIG. 12) is omitted, and the node N13 and the node N14 are directly connected. Further, a diode D21 is provided between the node N14 and the node N31, and the anode side terminal of the diode D21 is connected to the node N14, and the force sword side terminal is connected to the input terminal 11 and the power sword of the diode D31 via the node N31. It is connected. Other configurations are the same as those of the gate drive circuit 5.
[0095] ゲート駆動回路 6においては、トランジスタ TR12のベースがダイオード D21を介し て入力端子 11に接続されている。このため、入力端子 11に入力される制御パルス 2 0の極性が反転し正力も負に切り替わった場合、ダイオード D21に順方向電圧が印 加され導通状態とされるとともに、トランジスタ TR12のベースの電位がェミッタより低く なることにより、トランジスタ TR12がオンされ、トランジスタ TR12のェミッタからコレク タに電流が流れる。さらに、制御パルス 20の負極性電位と、前述のコンデンサ C31の ノード N32側の負極性電位とにより、トランジスタ TR12のコレクタ電位が負の極性に 引き込まれるので、 FET1のゲートの電位は負の極性まで下げられる。このため、 FE T1は急峻にオフされる。また、入力端子 11に入力される極性が負の制御パルス 20 によって、 FET1の容量 Cに蓄積される電荷を放電し、かつ、蓄積されていた電荷の 極性とは逆極性に容量 Cを再充電する。このため、 FET1のドレイン ソース間の電 流が直ちに遮断される。また、既に第 5の実施の形態の説明において述べたように、 FET1の容量 Cに蓄積される電荷は、トランジスタ TR12のェミッタ一コレクタ間に十 分な電流が流れるため、 FET1のゲートからトランジスタ TR12、ノード N32、コンデン サ C31を経由して確実にかつ高速に放電される。 [0095] In the gate drive circuit 6, the base of the transistor TR12 is connected via the diode D21. Connected to input terminal 11. For this reason, when the polarity of the control pulse 20 input to the input terminal 11 is reversed and the positive power is switched to negative, a forward voltage is applied to the diode D21 to make it conductive, and the potential of the base of the transistor TR12 is also made. When becomes lower than the emitter, transistor TR12 is turned on, and a current flows from the emitter of transistor TR12 to the collector. Furthermore, the collector potential of the transistor TR12 is pulled to a negative polarity due to the negative potential of the control pulse 20 and the negative potential on the node N32 side of the capacitor C31 described above. Be lowered. For this reason, FET1 is sharply turned off. In addition, the negative polarity control pulse 20 input to the input terminal 11 discharges the charge accumulated in the capacitor C of FET1 and recharges the capacitor C to a polarity opposite to the polarity of the accumulated charge. To do. For this reason, the current between the drain and source of FET1 is immediately cut off. Further, as already described in the description of the fifth embodiment, since a sufficient current flows between the emitter and collector of the transistor TR12, the charge accumulated in the capacitor C of the FET1 flows from the gate of the FET1 to the transistor TR12. It is discharged reliably and at high speed via node N32 and capacitor C31.
[0096] 入力端子 11に極性が負の制御パルス 20が入力された場合、ダイオード D31の電 圧降下(Vd31f)により、トランジスタ TR12のベースの電位がコレクタの電位よりも低く なることが考えられ、トランジスタ TR12のコレクタカゝらベースに電流が流れることが考 えられる。し力しながら、ゲート駆動回路 6においては、ノード N31とトランジスタ TR1 2のベースとの間にダイオード D21を挿入し、ダイオード D21の順方向電圧によりトラ ンジスタ TR12のベースの電圧を上昇させることによって、トランジスタ TR 12のコレク タからトランジスタ TR12のベースに流れる電流を抑制している。  [0096] When a control pulse 20 having a negative polarity is input to the input terminal 11, the potential of the base of the transistor TR12 may be lower than the potential of the collector due to the voltage drop (Vd31f) of the diode D31. It can be considered that current flows through the base of the collector of transistor TR12. However, in the gate drive circuit 6, the diode D21 is inserted between the node N31 and the base of the transistor TR12, and the voltage at the base of the transistor TR12 is increased by the forward voltage of the diode D21. The current flowing from the collector of the transistor TR12 to the base of the transistor TR12 is suppressed.
[0097] ゲート駆動回路 6においては、ノード N13とノード N14とが直接接続されている。従 つて、制御パルス 20の極性が正のときにトランジスタ TR11のベース一ェミッタ間、ベ ース一コレクタ間に蓄積された少数キャリアを、制御パルス 20の極性が負に転じたと きに消滅させるための電流路として、トランジスタ TR11のベースからダイオード D21 を介して入力端子 11に至る経路が存在する。この点は、第 2の実施の形態における ゲート駆動回路 2と同様である。  In the gate drive circuit 6, the node N13 and the node N14 are directly connected. Therefore, when the polarity of the control pulse 20 is positive, minority carriers accumulated between the base emitter of the transistor TR11 and between the base and collector are eliminated when the polarity of the control pulse 20 turns negative. As a current path, there is a path from the base of the transistor TR11 to the input terminal 11 via the diode D21. This is the same as the gate drive circuit 2 in the second embodiment.
[0098] 上記した以外のゲート駆動回路 6の動作については、上記第 5の実施の形態にお けるゲート駆動回路 5と同様である。 [0098] The operations of the gate drive circuit 6 other than those described above are described in the fifth embodiment. This is the same as the gate drive circuit 5 in FIG.
従って、本第 6の実施の形態におけるゲート駆動回路 6においては、極性が正の制 御パルス 20によりコンデンサ C11を充電し、その後に入力される極性が正の制御パ ルス 20を、コンデンサ CI 1に充電されたエネルギーにより増幅して FET1に入力する ので、 FET1のゲートに対しては、ゲート入力容量である容量 Cを速やかに充電でき るだけの制御信号が入力される。また、容量 Cは、制御パルス 20が負の極性の状態 で速やかに放電される。さらに、ゲート駆動回路 6においては、極性が負の制御パル ス 20によりコンデンサ C31を充電し、その後に入力される極性が負の制御パルス 20 を、コンデンサ C31に充電されたエネルギーにより増幅して FET1に入力するので、 FET1のゲートに対しては、容量 Cを速やかに放電できるだけの制御信号が入力さ れる。また、容量 Cは、制御パルス 20が負の極性の状態で速やかに放電され、かつ、 逆極性に充電される。これにより、 FET1におけるゲート入力容量の影響を補償ない し極小化し、 FET1を高速にオン Zオフさせることができる。特に、 FET1が本来有す るターンオン時間およびターンオフ時間の両方の特性に従って、 FET1をオン Zオフ 動作させることができると 、う格別の効果が得られる。  Therefore, in the gate drive circuit 6 in the sixth embodiment, the capacitor C11 is charged by the control pulse 20 having a positive polarity, and the control pulse 20 having a positive polarity input thereafter is connected to the capacitor CI 1 Because it is amplified by the energy charged to the FET1 and input to the FET1, a control signal that can quickly charge the capacitor C, which is the gate input capacitance, is input to the gate of the FET1. Capacitance C is discharged quickly with control pulse 20 in the negative polarity state. Further, in the gate drive circuit 6, the capacitor C31 is charged by the control pulse 20 having a negative polarity, and the control pulse 20 having a negative polarity inputted thereafter is amplified by the energy charged in the capacitor C31, and the FET1 Therefore, a control signal that can quickly discharge the capacitor C is input to the gate of FET1. In addition, the capacitor C is quickly discharged while the control pulse 20 has a negative polarity, and is charged with a reverse polarity. As a result, the influence of the gate input capacitance in FET1 is not compensated or minimized, and FET1 can be turned on and off at high speed. In particular, if FET1 can be turned on and off according to both the inherent turn-on time and turn-off time characteristics of FET1, a special effect can be obtained.
[0099] [第 7の実施の形態] [0099] [Seventh embodiment]
図 14は、本発明を適用した第 7の実施の形態におけるゲート駆動回路 7の構成を 示す回路図である。なお、図 14に示すゲート駆動回路 7において、上記第 1の実施 の形態におけるゲート駆動回路 1 (図 1)、第 5の実施の形態におけるゲート駆動回路 5 (図 12)と同様に構成される各部については、図中に同符号を付して説明を省略す る。  FIG. 14 is a circuit diagram showing a configuration of the gate drive circuit 7 in the seventh embodiment to which the present invention is applied. Note that the gate drive circuit 7 shown in FIG. 14 is configured similarly to the gate drive circuit 1 (FIG. 1) in the first embodiment and the gate drive circuit 5 (FIG. 12) in the fifth embodiment. About each part, the same code | symbol is attached | subjected in a figure, and description is abbreviate | omitted.
[0100] 図 14に示すゲート駆動回路 7においては、上記ゲート駆動回路 5のダイオード D12 , D13が省かれた構成となっている。また、ゲート駆動回路 5におけるダイオード D11 , D31に代えて、ダイオード D22, D42を備える。ダイオード D22, D42は、一般的 なダイオードに比べて電圧降下が小さい(好ましくは 0. 2乃至 0. 4ボルト)ダイオード であり、例えばショットキーバリアダイオードが好適である。  [0100] The gate drive circuit 7 shown in Fig. 14 has a configuration in which the diodes D12 and D13 of the gate drive circuit 5 are omitted. Further, diodes D22 and D42 are provided in place of the diodes D11 and D31 in the gate drive circuit 5. The diodes D22 and D42 are diodes having a smaller voltage drop (preferably 0.2 to 0.4 volts) than a general diode, and for example, a Schottky barrier diode is suitable.
ゲート駆動回路 7におけるその他の構成はゲート駆動回路 5と共通である。  Other configurations in the gate drive circuit 7 are the same as those in the gate drive circuit 5.
[0101] ゲート駆動回路 6 (図 13)においては、入力端子 11に極性の負の制御パルス 20が 入力され、ダイオード D21の電圧降下によってトランジスタ TR11のベースの電位が コレクタの電位よりも低くなることによるトランジスタ TR11のコレクタからベースへの電 流の回り込みを防止するため、ダイオード D21を備えていた。 [0101] In the gate drive circuit 6 (Fig. 13), the negative polarity control pulse 20 is applied to the input terminal 11. The diode D21 is provided to prevent the current from flowing from the collector of the transistor TR11 to the base due to the voltage drop of the diode D21 being caused to cause the base potential of the transistor TR11 to be lower than the collector potential.
ゲート駆動回路 7においては、ダイオード D42の電圧降下が小さいため、ダイォー ド D21を省略しても、上記した電流の回り込みを防止できる。  In the gate drive circuit 7, since the voltage drop of the diode D42 is small, even if the diode D21 is omitted, the above current wraparound can be prevented.
すなわち、トランジスタ TR12のベース一コレクタ間の電位差は、トランジスタ TR11 のコレクターベース間の電圧降下、及び、ダイオード D42の電圧降下により決定され る。ゲート駆動回路 7においてはダイオード D42の電圧降下が小さいため、トランジス タ TR12のコレクターベース間の電位差力 電流の回り込みが生じない程度に抑えら れる。このため、ダイオード D21 (図 13)を省いても動作上の問題は生じない。  That is, the potential difference between the base and collector of the transistor TR12 is determined by the voltage drop between the collector and base of the transistor TR11 and the voltage drop of the diode D42. In the gate drive circuit 7, since the voltage drop of the diode D42 is small, the potential difference current between the collector and base of the transistor TR12 is suppressed to a level that does not occur. Thus, omitting diode D21 (Figure 13) does not cause operational problems.
[0102] なお、ゲート駆動回路 7においては、ダイオード D12を省くことによってトランジスタ TR11のベースとトランジスタ TR12のベースとがノード N12、ノード N31を介して接 続されることにより、トランジスタ TR11のベース一ェミッタ間、ベース一コレクタ間に蓄 積される少数キャリアを消滅させる電流路が確保されている。このため、第 3の実施の 形態におけるゲート駆動回路 3 (図 10)と同様に、ダイオード D13, D21 (図 12、図 1 3)に相当するダイオードを設ける必要がない。  [0102] In the gate drive circuit 7, by omitting the diode D12, the base of the transistor TR11 and the base of the transistor TR12 are connected via the node N12 and the node N31, so that the base emitter of the transistor TR11 In the meantime, a current path for eliminating minority carriers accumulated between the base and the collector is secured. Therefore, it is not necessary to provide diodes corresponding to the diodes D13 and D21 (FIGS. 12 and 13) as in the gate drive circuit 3 (FIG. 10) in the third embodiment.
[0103] このように、本第 7の実施の形態におけるゲート駆動回路 7によれば、上記第 5及び 第 6の実施の形態におけるゲート駆動回路 5, 6と同様の効果が得られる上、よりシン プルな回路構成により実現可能であるという利点がある。  As described above, according to the gate drive circuit 7 in the seventh embodiment, the same effects as those of the gate drive circuits 5 and 6 in the fifth and sixth embodiments can be obtained, and more There is an advantage that it can be realized by a simple circuit configuration.
[0104] 上記第 5〜第 7の実施の形態において、トランジスタ TR11, TR12をバイポーラトラ ンジスタとして説明したが、本発明はこれに限定されるものではなぐ例えば、 FETを 用いても良い。ここで、上記第 6の実施の形態として説明したゲート駆動回路 6 (図 13 )において、トランジスタ TR11, TR12を FETに置き換えた場合を、第 8の実施の形 態として説明する。  In the fifth to seventh embodiments, the transistors TR11 and TR12 have been described as bipolar transistors. However, the present invention is not limited to this. For example, FETs may be used. Here, the case where the transistors TR11 and TR12 are replaced with FETs in the gate drive circuit 6 (FIG. 13) described as the sixth embodiment will be described as an eighth embodiment.
[0105] [第 8の実施の形態]  [Eighth embodiment]
図 15は、本発明を適用した第 8の実施の形態におけるゲート駆動回路 8の概略構 成を示す回路図である。図 15に示すように、ゲート駆動回路 8は、図 13に示すゲート 駆動回路 6におけるトランジスタ TR11, TR12を、それぞれ FET11, 12に置き換え た回路である。 FIG. 15 is a circuit diagram showing a schematic configuration of the gate drive circuit 8 in the eighth embodiment to which the present invention is applied. As shown in FIG. 15, the gate drive circuit 8 replaces the transistors TR11 and TR12 in the gate drive circuit 6 shown in FIG. 13 with FETs 11 and 12, respectively. Circuit.
なお、 FET11は Nチャネル型の FETであって、ゲート駆動回路 8においては、 FE Tl 1のドレインがノード Nl 1を介してコンデンサ CI 1に接続され、 FET11のソースが ノード N15を介して FET1のゲートに接続され、 FET11のゲートがノード N13を介し てダイオード D 12の力ソード側端子に接続されている。  Note that FET 11 is an N-channel FET, and in the gate drive circuit 8, the drain of FE Tl 1 is connected to the capacitor CI 1 via the node Nl 1, and the source of the FET 11 is connected to the FET 1 via the node N15. It is connected to the gate, and the gate of FET11 is connected to the power sword side terminal of diode D12 via node N13.
また、 FET12は Pチャネル型の FETであって、 FET12のドレインはノード N32を介 してコンデンサ C31に接続され、ソースはノード N15を介して FET1のゲートに接続 され、ゲートはノード N14を介してダイオード D21のアノード側端子に接続されている ゲート駆動回路 8における他の構成はゲート駆動回路 6と共通である。  In addition, FET12 is a P-channel type FET. The drain of FET12 is connected to capacitor C31 via node N32, the source is connected to the gate of FET1 via node N15, and the gate is connected to node N14. The other configuration of the gate drive circuit 8 connected to the anode side terminal of the diode D21 is the same as that of the gate drive circuit 6.
なお、図 15のゲート駆動回路 8における FET11, 12は、いずれもパワー MOSFE Note that the FETs 11 and 12 in the gate drive circuit 8 of FIG.
Tである必要は無ぐ FET1に比べて非常にゲート入力容量が小さ!/、ものを用いるこ とがでさる。 There is no need to be T. The gate input capacity is very small compared to FET1!
[0106] 図 15に示すゲート駆動回路 8によれば、上記第 6の実施の形態のデート駆動回路 6 (図 13)におけるトランジスタ TR11, TR12を、それぞれ FET11, 12に置き換えた 点を除き、上記第 6の実施の形態と共通の構成を有するものであるので、当該第 6の 実施の形態と同様の効果が得られる。このことは、上記第 1の実施の形態のゲート駆 動回路 1 (図 1)におけるトランジスタ TR11, TR12を、それぞれ FET11, 12に置き 換えた、上記第 4の実施の形態のゲート駆動回路 4 (図 11)の動作説明に照らして自 明であるので、ここでの詳しい説明を省略する。  [0106] According to the gate drive circuit 8 shown in FIG. 15, the transistors TR11 and TR12 in the date drive circuit 6 (FIG. 13) of the sixth embodiment are replaced with the FETs 11 and 12, respectively. Since it has the same configuration as that of the sixth embodiment, the same effect as that of the sixth embodiment can be obtained. This is because the transistors TR11 and TR12 in the gate drive circuit 1 (FIG. 1) of the first embodiment are replaced with FETs 11 and 12, respectively, and the gate drive circuit 4 ( Since it is obvious in light of the operation description in Fig. 11), detailed description is omitted here.
[0107] また、上記第 5及び第 7の実施の形態において、トランジスタ TR11, TR12に代え て FET11, 12を用いる構成とすることも可能であり、この場合も、上記第 5及び第 7の 実施の形態と同様の効果が得られることは 、うまでもな 、。  In the fifth and seventh embodiments, the FETs 11 and 12 can be used instead of the transistors TR11 and TR12. In this case, the fifth and seventh embodiments are also used. It is a matter of course that the same effect as the form of can be obtained.
[0108] 上記第 1〜第 8の実施の形態におけるゲート駆動回路 1〜8の構成を、電流の流れ る向きが逆向きになるように変形することも可能である。  The configuration of the gate drive circuits 1 to 8 in the first to eighth embodiments can be modified so that the direction of current flow is reversed.
[0109] 例えば、ゲート駆動回路 1, 2, 3 (図1、図 9、図 10)においては、トランジスタ TR11 を NPN型のバイポーラトランジスタとし、トランジスタ TR12を PNP型のバイポーラトラ ンジスタとして説明したが、これらトランジスタの構成を逆にして、トランジスタ TR11を PNP型のバイポーラトランジスタとし、トランジスタ TR12を NPN型のバイポーラトラン ジスタとする。さらに、 FET1を Pチャネル型の FETとし、かつドレインとソースが逆に なるように配設する。また、ダイオード Dl l, D12, D13, D21を、アノード側端子と力 ソード側端子が全て逆になるよう配設する。 For example, in the gate drive circuits 1, 2, and 3 (FIGS. 1, 9, and 10), the transistor TR11 is described as an NPN bipolar transistor, and the transistor TR12 is described as a PNP bipolar transistor. Reverse the configuration of these transistors to make transistor TR11 A PNP bipolar transistor is used, and transistor TR12 is an NPN bipolar transistor. In addition, FET1 is a P-channel FET, and the drain and source are reversed. In addition, diodes Dll, D12, D13, and D21 are arranged so that the anode side terminal and the force sword side terminal are all reversed.
このように構成したゲート駆動回路においては、入力端子 11に実質的に負の電圧 のみのパルスを入力することにより、負パルスがオン(Low)のときに FET1がオンにな つてトランス T1のコイル LI 1に電流が流れ、回路の各部にぉ 、てゲート駆動回路 1, 2, 3とは逆向きの電流が流れることになる。この場合、電流の流れる向きが逆である だけで、ゲート駆動回路 1, 2, 3と同様の効果を得ることができる。  In the gate drive circuit configured in this way, by inputting a pulse of substantially only a negative voltage to the input terminal 11, FET1 is turned on when the negative pulse is on (Low), and the coil of the transformer T1 is turned on. A current flows through LI 1, and a current in the opposite direction to the gate drive circuits 1, 2, and 3 flows through each part of the circuit. In this case, the same effect as that of the gate drive circuits 1, 2, and 3 can be obtained only by reversing the direction of current flow.
[0110] また、例えばゲート駆動回路 4 (図 11)においては、 FET11を Nチャネル型の FET とし、 FET12を Pチャネル型の FETとして説明した力 これら FETの構成を逆にして 、 FET11を Pチャネル型の FETとし、 FET12を Nチャネル型の FETとする。さらに、 FET1を Pチャネル型の FETとし、かつドレインとソースが逆になるように配設する。ま た、ダイオード Dl l, D12, D13を、アノード側端子と力ソード側端子が全て逆になる よう配設する。 [0110] For example, in the gate drive circuit 4 (Fig. 11), FET11 is an N-channel FET, and FET12 is a P-channel FET. Type FET, and FET12 is N-channel type FET. In addition, FET1 is a P-channel FET and the drain and source are reversed. In addition, the diodes Dll, D12, and D13 are arranged so that the anode side terminal and the force sword side terminal are all reversed.
このように構成したゲート駆動回路においては、入力端子 11に実質的に負の電圧 のみのパルスを入力することにより、負パルスがオン(Low)のときに FET1がオンにな つてトランス T1のコイル LI 1に電流が流れ、回路の各部にぉ 、てゲート駆動回路 4と は逆向きの電流が流れることになる。この場合、電流の流れる向きが逆であるだけで 、ゲート駆動回路 4と同様の効果を得ることができる。  In the gate drive circuit configured in this way, by inputting a pulse of substantially only a negative voltage to the input terminal 11, FET1 is turned on when the negative pulse is on (Low), and the coil of the transformer T1 is turned on. A current flows through LI 1, and a current in the opposite direction to the gate drive circuit 4 flows through each part of the circuit. In this case, the same effect as that of the gate drive circuit 4 can be obtained only by reversing the direction of current flow.
[0111] 一方、例えば、ゲート駆動回路 5, 6, 7 (図 12、図 13、図 14)においては、上記した ゲート駆動回路 1, 2, 3の変更に加えて、ダイオード D31, D42を、アノード側端子と 力ソード側端子が逆になるよう配設すればよい。  On the other hand, for example, in the gate drive circuits 5, 6, and 7 (FIGS. 12, 13, and 14), in addition to the change of the gate drive circuits 1, 2, and 3, the diodes D31 and D42 are What is necessary is just to arrange | position so that an anode side terminal and a force sword side terminal may be reversed.
[0112] また、例えばゲート駆動回路 8 (図 15)においては、 FET11を Nチャネル型の FET とし、 FET12を Pチャネル型の FETとして説明した力 これら FETの構成を逆にして 、 FET11を Pチャネル型の FETとし、 FET12を Nチャネル型の FETとする。さらに、 FET1を Pチャネル型の FETとする。また、ダイオード Dl l, D12, D21, D31を、ァ ノード側端子と力ソード側端子が全て逆になるよう配設すればよい。 [0113] 上述した第 1〜第 8の実施の形態の説明から明らかなように、本発明のスイッチング 手段駆動回路は、電源部のうちの充電部(通常はコンデンサ等のキャパシタ)を除き 、ダイオード (pn接合ダイオード、ショットキーバリアダイオード)、トランジスタ(FET、 ノイポーラトランジスタ)等の半導体素子で構成することができるため、スイッチング手 段駆動回路により駆動されるスイッチング手段 (通常はパワー MOSFET)と組合せた スイッチング回路として、単一の基板上に形成することも可能である。すなわち、電源 部のうちの充電部を接続するための接続端を有するスイッチング手段駆動回路と、ス イッチング手段とを、同一半導体基板上に集積して、例えばモノリシック IC化する。そ して、モノリシック IC化したスイッチング回路に、充電部に相当するコンデンサを外付 けすれば良い。これにより、小型で高性能なスイッチング回路を、低コストで製造でき る利点がある。 [0112] For example, in the gate drive circuit 8 (Fig. 15), FET11 is an N-channel FET and FET12 is described as a P-channel FET. Type FET, and FET12 is N-channel type FET. In addition, FET1 is a P-channel FET. The diodes Dll, D12, D21, and D31 may be arranged so that the anode side terminal and the force sword side terminal are all reversed. As is clear from the description of the first to eighth embodiments described above, the switching means driving circuit of the present invention includes a diode except for a charging unit (usually a capacitor such as a capacitor) in the power supply unit. (pn junction diodes, Schottky barrier diodes), and transistors (FETs, neuropolar transistors) and other semiconductor elements, so combined with switching means (usually power MOSFETs) driven by a switching stage drive circuit It is also possible to form the switching circuit on a single substrate. That is, a switching means driving circuit having a connection end for connecting a charging section of the power supply section and the switching means are integrated on the same semiconductor substrate to form, for example, a monolithic IC. Then, a capacitor equivalent to the charging part can be externally attached to the monolithic IC switching circuit. This has the advantage that a small, high-performance switching circuit can be manufactured at low cost.
なお、上記したスイッチング回路では、モノリシック IC化したスイッチング回路に充電 部を外付けする例を説明したが、これはあくまで一例であって、本発明はこれに限定 されるものではなぐ当該充電部を含むスイッチング手段駆動回路全体と、スィッチン グ手段とを、同一半導体基板上に集積して、スイッチング回路を構成しても良いのは 勿論である。  In the above switching circuit, an example in which a charging unit is externally attached to a monolithic IC switching circuit has been described. However, this is merely an example, and the present invention is not limited thereto. Of course, the entire switching means driving circuit including the switching means and the switching means may be integrated on the same semiconductor substrate to constitute the switching circuit.
[0114] 以上のように、上述した第 1〜第 8の実施の形態は、あくまで本発明を適用した場合 の一例を示すものであって、本発明の趣旨を逸脱しない範囲において種々の変更を 施すことは勿論可能であり、上記第 1〜第 8の実施の形態についての記載は本発明 の範囲を限定するものではな 、。  [0114] As described above, the first to eighth embodiments described above show only examples when the present invention is applied, and various modifications can be made without departing from the spirit of the present invention. Needless to say, the description of the first to eighth embodiments does not limit the scope of the present invention.
産業上の利用可能性  Industrial applicability
[0115] 本発明のスイッチング手段駆動回路は、 FET等の各種のスイッチング手段を動作さ せる全ての回路及び当該回路を搭載する機器に適用可能であり、例えば、電源回路 (例えば、スイッチング電源回路)等に好適に利用できる。 [0115] The switching means driving circuit of the present invention is applicable to all circuits that operate various switching means such as FETs and devices equipped with such circuits. For example, a power supply circuit (for example, a switching power supply circuit) It can utilize suitably for etc.
図面の簡単な説明  Brief Description of Drawings
[0116] [図 1]本発明を適用した第 1の実施の形態におけるゲート駆動回路 1の概略構成を示 す回路図である。  FIG. 1 is a circuit diagram showing a schematic configuration of a gate drive circuit 1 according to a first embodiment to which the present invention is applied.
[図 2]従来のゲート駆動回路の動作を示す波形である。 [図 3]図 1に示すゲート駆動回路 1の動作を示す波形である。 FIG. 2 is a waveform showing the operation of a conventional gate drive circuit. 3 is a waveform showing the operation of the gate drive circuit 1 shown in FIG.
[図 4]図 1に示すゲート駆動回路 1に外部電源を加えた場合の動作を示す波形図表 である。  4 is a waveform chart showing the operation when an external power supply is applied to the gate drive circuit 1 shown in FIG.
[図 5]従来のゲート駆動回路を用いた電源装置における FETのゲート電圧の波形で ある。  [Fig. 5] This is the waveform of the FET gate voltage in a power supply using a conventional gate drive circuit.
[図 6]図 1に示すゲート駆動回路 1を用いた電源装置における FET1のゲート電圧の 波形である。  6 is a waveform of the gate voltage of FET1 in the power supply device using the gate drive circuit 1 shown in FIG.
[図 7]図 1に示すゲート駆動回路 1に外部電源を加えて構成されるゲート駆動回路を 用いた電源装置における、 FET1のゲート電圧の波形である。  7 is a waveform of the gate voltage of FET1 in a power supply device using a gate drive circuit configured by adding an external power supply to the gate drive circuit 1 shown in FIG.
[図 8]図 5〜図 7に FETのゲート電圧の波形を示した各電源装置の出力を比較して示 す図表である。  [Fig. 8] Fig. 5 to Fig. 7 are diagrams comparing the output of each power supply device showing the waveform of the FET gate voltage.
[図 9]本発明を適用した第 2の実施の形態におけるゲート駆動回路 2の概略構成を示 す回路図である。  FIG. 9 is a circuit diagram showing a schematic configuration of a gate drive circuit 2 in a second embodiment to which the present invention is applied.
[図 10]本発明を適用した第 3の実施の形態におけるゲート駆動回路 3の概略構成を 示す回路図である。  FIG. 10 is a circuit diagram showing a schematic configuration of a gate drive circuit 3 in a third embodiment to which the present invention is applied.
[図 11]本発明を適用した第 4の実施の形態におけるゲート駆動回路 4の概略構成を 示す回路図である。  FIG. 11 is a circuit diagram showing a schematic configuration of a gate drive circuit 4 in a fourth embodiment to which the present invention is applied.
[図 12]本発明を適用した第 5の実施の形態におけるゲート駆動回路 5の概略構成を 示す回路図である。  FIG. 12 is a circuit diagram showing a schematic configuration of a gate drive circuit 5 in a fifth embodiment to which the present invention is applied.
[図 13]本発明を適用した第 6の実施の形態におけるゲート駆動回路 6の概略構成を 示す回路図である。  FIG. 13 is a circuit diagram showing a schematic configuration of a gate drive circuit 6 in a sixth embodiment to which the present invention is applied.
[図 14]本発明を適用した第 7の実施の形態におけるゲート駆動回路 7の概略構成を 示す回路図である。  FIG. 14 is a circuit diagram showing a schematic configuration of a gate drive circuit 7 in a seventh embodiment to which the present invention is applied.
[図 15]本発明を適用した第 8の実施の形態におけるゲート駆動回路 8の概略構成を 示す回路図である。  FIG. 15 is a circuit diagram showing a schematic configuration of a gate drive circuit 8 in an eighth embodiment to which the present invention is applied.
符号の説明 Explanation of symbols
1, 2, 3, 4, 5, 6, 7, 8 ゲート駆動回路  1, 2, 3, 4, 5, 6, 7, 8 Gate drive circuit
10, 20 制御パルス 入力端子 10, 20 Control pulse Input terminal

Claims

請求の範囲 The scope of the claims
[1] スイッチング手段をオン Zオフ駆動するスイッチング手段駆動部と、  [1] a switching means driving section for turning on and off the switching means;
該スイッチング手段駆動部を駆動する電源部と、  A power supply unit for driving the switching means driving unit;
を具備し、  Comprising
該電源部は、前記スイッチング手段をオン Zオフ駆動するために前記スイッチング 手段駆動部に入力される入力信号を充電する充電部を備え、該充電部が前記スイツ チング手段駆動部を駆動するための電力を供給すること、  The power supply unit includes a charging unit that charges an input signal input to the switching unit driving unit to drive the switching unit on and off, and the charging unit drives the switching unit driving unit. Supplying power,
を特徴とするスイッチング手段駆動回路。  A switching means driving circuit.
[2] 前記スイッチング手段は、第 1の電流路及び該第 1の電流路をオン Zオフ制御する 第 1の制御端を有する第 1の素子であることを特徴とする請求項 1に記載のスィッチン グ手段駆動回路。  [2] The switching device according to [1], wherein the switching unit is a first element having a first current path and a first control terminal that performs on-Zoff control on the first current path. Switching means drive circuit.
[3] 前記スイッチング手段駆動部は、  [3] The switching means driving unit comprises:
前記入力信号を増幅し、前記スイッチング手段が有する第 1の制御端に印力 tlして前 記スイッチング手段をオンに駆動する第 1の駆動手段と、  A first driving means for amplifying the input signal and driving the switching means on by applying a printing force tl to a first control end of the switching means;
前記入力信号の極性が反転されたとき該極性反転された入力信号を増幅し、前記 第 1の制御端に印力 tlして前記スイッチング手段をオフに駆動する第 2の駆動手段と、 を有することを特徴とする請求項 1または 2に記載のスイッチング手段駆動回路。  A second driving means for amplifying the input signal whose polarity has been reversed when the polarity of the input signal is reversed, and driving the switching means off by applying a printing force tl to the first control terminal; The switching means driving circuit according to claim 1 or 2, wherein:
[4] 前記スイッチング手段駆動部は、 [4] The switching means driving unit includes:
前記入力信号を増幅し、前記スイッチング手段が有する第 1の制御端に印力 tlして前 記スイッチング手段をオンに駆動する第 1の駆動手段と、  A first driving means for amplifying the input signal and driving the switching means on by applying a printing force tl to a first control end of the switching means;
前記入力信号が印加されないとき前記スイッチング手段をオフに駆動する第 3の駆 動手段と、  Third driving means for driving the switching means off when the input signal is not applied;
を有することを特徴とする請求項 1または 2に記載のスイッチング手段駆動回路。  The switching means driving circuit according to claim 1 or 2, characterized by comprising:
[5] 前記第 1の駆動手段は、前記スイッチング手段をオン駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量を充電し 、前記第 2の駆動手段は、前記スイッチング手段をオフ駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量に充電さ れた電荷を放電し、かつ該充電された電荷の極性とは逆極性に充電することを特徴 とする請求項 3に記載のスイッチング手段駆動回路。 [5] The first driving means, when turning on the switching means, charges the input capacitance existing between the first control end and the first current path end of the switching means, The second driving means, when driving the switching means off, charges stored in the input capacitance existing between the first control end and the first current path end of the switching means. Discharging and charging with a polarity opposite to the polarity of the charged charge The switching means driving circuit according to claim 3.
[6] 前記第 1の駆動手段は、前記スイッチング手段をオン駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量を充電し 、前記第 3の駆動手段は、前記スイッチング手段をオフ駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量に充電さ れた電荷を放電することを特徴とする請求項 4に記載のスイッチング手段駆動回路。  [6] The first driving means charges the input capacitance existing between the first control end and the first current path end of the switching means when the switching means is turned on. The third drive means, when driving the switching means off, charges stored in the input capacitance existing between the first control end and the first current path end of the switching means. 5. The switching means driving circuit according to claim 4, wherein the switching means driving circuit is discharged.
[7] 前記第 1の駆動手段は、第 2の電流路及び該第 2の電流路を制御する第 2の制御 端を有する第 2の素子であり、前記第 2の駆動手段または前記第 3の駆動手段は、第 3の電流路及び該第 3の電流路を制御する第 3の制御端を有する第 3の素子であるこ とを特徴とする請求項 3から 6のいずれかに記載のスイッチング手段駆動回路。  [7] The first driving means is a second element having a second current path and a second control end for controlling the second current path, and the second driving means or the third driving means. 7. The switching according to claim 3, wherein the driving means is a third element having a third current path and a third control terminal for controlling the third current path. Means driving circuit.
[8] スイッチング手段と、  [8] switching means;
少なくとも該スイッチング手段をオン Zオフ駆動するスイッチング手段駆動部と、該 スイッチング手段駆動部を駆動するための電力を供給する電源部であって、前記ス イッチング手段をオン Zオフ駆動するために前記スイッチング手段駆動部に入力さ れる入力信号を充電する充電部を接続するための接続端を有する電源部とを含むス イッチング手段駆動回路と、  A switching means driving section for driving at least the switching means on and off, and a power supply section for supplying electric power for driving the switching means driving section, the switching means for driving on and off the switching means. A switching means driving circuit including a power supply section having a connection end for connecting a charging section for charging an input signal input to the means driving section;
を備え、  With
前記スイッチング手段駆動回路は前記スイッチング手段が有する第 1の制御端に 接続され、かつ前記スイッチング手段駆動回路と前記スイッチング手段とが単一チッ プ上に形成されていること、  The switching means driving circuit is connected to a first control end of the switching means, and the switching means driving circuit and the switching means are formed on a single chip;
を特徴とするスイッチング回路。  A switching circuit characterized by
[9] 前記スイッチング手段は、第 1の電流路及び該第 1の電流路をオン Zオフ制御する 第 1の制御端を有する第 1の素子であることを特徴とする請求項 8に記載のスィッチン グ回路。 9. The switching device according to claim 8, wherein the switching means is a first element having a first current path and a first control terminal that performs on-Zoff control of the first current path. Switching circuit.
[10] 前記スイッチング手段駆動部は、  [10] The switching means driving unit includes:
前記入力信号を増幅し、前記スイッチング手段が有する第 1の制御端に印力 tlして前 記スイッチング手段をオンに駆動する第 1の駆動手段と、  A first driving means for amplifying the input signal and driving the switching means on by applying a printing force tl to a first control end of the switching means;
前記入力信号の極性が反転されたとき該極性反転された入力信号を増幅し、前記 第 1の制御端に印力 tlして前記スイッチング手段をオフに駆動する第 2の駆動手段と、 を有することを特徴とする請求項 8または 9に記載のスイッチング回路。 When the polarity of the input signal is inverted, the input signal with the polarity inverted is amplified, 10. The switching circuit according to claim 8, further comprising: a second driving unit that drives the switching unit off by applying a printing force tl to the first control end.
[11] 前記スイッチング手段駆動部は、 [11] The switching means driving unit includes:
前記入力信号を増幅し、前記スイッチング手段が有する第 1の制御端に印力 tlして前 記スイッチング手段をオンに駆動する第 1の駆動手段と、  A first driving means for amplifying the input signal and driving the switching means on by applying a printing force tl to a first control end of the switching means;
前記入力信号が印加されないとき前記スイッチング手段をオフに駆動する第 3の駆 動手段と、  Third driving means for driving the switching means off when the input signal is not applied;
を有することを特徴とする請求項 8または 9に記載のスイッチング回路。  The switching circuit according to claim 8 or 9, characterized by comprising:
[12] 前記第 1の駆動手段は、前記スイッチング手段をオン駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量を充電し 、前記第 2の駆動手段は、前記スイッチング手段をオフ駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量に充電さ れた電荷を放電し、かつ該充電された電荷の極性とは逆極性に充電することを特徴 とする請求項 10に記載のスイッチング回路。  [12] The first driving means charges the input capacitance existing between the first control end and the first current path end of the switching means when the switching means is turned on. The second driving means, when driving the switching means off, charges stored in the input capacitance existing between the first control end and the first current path end of the switching means. 11. The switching circuit according to claim 10, wherein the switching circuit is discharged and charged with a polarity opposite to a polarity of the charged electric charge.
[13] 前記第 1の駆動手段は、前記スイッチング手段をオン駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量を充電し 、前記第 3の駆動手段は、前記スイッチング手段をオフ駆動するとき、前記スィッチン グ手段の有する第 1の制御端と第 1の電流路端との間に存在する入力容量に充電さ れた電荷を放電することを特徴とする請求項 11に記載のスイッチング回路。  [13] The first driving means charges the input capacitance existing between the first control end and the first current path end of the switching means when the switching means is turned on. The third drive means, when driving the switching means off, charges stored in the input capacitance existing between the first control end and the first current path end of the switching means. 12. The switching circuit according to claim 11, wherein the switching circuit is discharged.
[14] 前記第 1の駆動手段は、第 2の電流路及び該第 2の電流路を制御する第 2の制御 端を有する第 2の素子であり、前記第 2の駆動手段または前記第 3の駆動手段は、第 3の電流路及び該第 3の電流路を制御する第 3の制御端を有する第 3の素子であるこ とを特徴とする請求項 10から 13のいずれかに記載のスイッチング回路。  [14] The first driving means is a second element having a second current path and a second control end for controlling the second current path, and the second driving means or the third driving means. The switching means according to any one of claims 10 to 13, wherein the driving means is a third element having a third current path and a third control terminal for controlling the third current path. circuit.
[15] 請求項 1から 7のいずれかに記載のスイッチング手段駆動回路と、  [15] The switching means driving circuit according to any one of claims 1 to 7,
該スイッチング手段駆動回路に接続される第 1の制御端を有するスイッチング手段 と、  Switching means having a first control end connected to the switching means drive circuit;
該スイッチング手段が接続され、該スイッチング手段のスイッチング動作に応じてェ ネルギーを伝達し、蓄積し、または放出するトランスまたはインダクタと、 を備えることを特徴とする電源装置。 A transformer or an inductor connected to the switching means for transmitting, storing or discharging energy according to a switching operation of the switching means; A power supply apparatus comprising:
[16] 第 1の制御端を有するスイッチング手段と、該スイッチング手段をオン Zオフ駆動す るスイッチング手段駆動部と、該スイッチング手段駆動部を駆動する電源部と備える スイッチング回路における、スイッチング手段の駆動方法において、  [16] Driving the switching means in a switching circuit comprising a switching means having a first control end, a switching means driving section for driving the switching means on and off, and a power supply section for driving the switching means driving section. In the method
入力信号を前記スイッチング手段駆動部に入力し、  An input signal is input to the switching means driver,
前記スイッチング手段駆動部に入力される前記入力信号を前記電源部に充電し、 前記電源部力 電源を供給して前記スイッチング手段駆動部を駆動し、 前記スイッチング手段駆動部によって前記入力信号を増幅し、該増幅された入力 信号を前記スイッチング手段が有する前記第 1の制御端に印加して前記スイッチング 手段をオン駆動すること、  The power supply unit is charged with the input signal input to the switching unit driving unit, the power source unit supplies power to drive the switching unit driving unit, and the switching unit driving unit amplifies the input signal. Applying the amplified input signal to the first control terminal of the switching means to drive the switching means on;
を特徴とするスイッチング手段の駆動方法。  A driving method of the switching means characterized by the above.
[17] 第 1の制御端を有するスイッチング手段と、該スイッチング手段をオン Zオフ駆動す るスイッチング手段駆動部と、該スイッチング手段駆動部を駆動する電源部と備える スイッチング回路における、スイッチング手段の駆動方法において、 [17] Driving of the switching means in the switching circuit comprising a switching means having a first control end, a switching means driving section for driving the switching means on and off, and a power supply section for driving the switching means driving section In the method
極性が交互に反転する入力信号を前記スイッチング手段駆動部に入力し、 前記スイッチング手段駆動部に入力される前記入力信号を前記電源部に充電し、 前記電源部力 電源を供給して前記スイッチング手段駆動部が有する第 1の駆動 手段および第 2の駆動手段を駆動し、  An input signal whose polarity is alternately inverted is input to the switching means driving section, the input signal input to the switching means driving section is charged to the power supply section, and the power supply section power is supplied to the switching means. Driving the first drive means and the second drive means of the drive unit;
前記第 1の駆動手段によって一方の極性の前記入力信号を増幅し、該増幅された 一方の極性の入力信号を前記スイッチング手段が有する前記第 1の制御端に印加し て前記スイッチング手段をオン駆動し、  The first driving means amplifies the input signal of one polarity, and applies the amplified input signal of one polarity to the first control terminal of the switching means to drive the switching means on. And
前記第 2の駆動手段によって他方の極性の前記入力信号を増幅し、該増幅された 他方の極性の入力信号を前記スイッチング手段が有する前記第 1の制御端に印加し て前記スイッチング手段をオフ駆動すること、  The input signal of the other polarity is amplified by the second driving means, and the amplified input signal of the other polarity is applied to the first control terminal of the switching means to drive the switching means off. To do,
を特徴とするスイッチング手段の駆動方法。  A driving method of the switching means characterized by the above.
PCT/JP2005/014431 2004-08-06 2005-08-05 Switching means driving circuit, switching means driving method, power supply device and switching circuit WO2006013973A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004231197 2004-08-06
JP2004-231197 2004-08-06
JP2005-226728 2005-08-04
JP2005226728A JP4253318B2 (en) 2004-08-06 2005-08-04 Switching means driving circuit, switching means driving method, power supply device, and switching circuit

Publications (1)

Publication Number Publication Date
WO2006013973A1 true WO2006013973A1 (en) 2006-02-09

Family

ID=35787251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014431 WO2006013973A1 (en) 2004-08-06 2005-08-05 Switching means driving circuit, switching means driving method, power supply device and switching circuit

Country Status (2)

Country Link
JP (1) JP4253318B2 (en)
WO (1) WO2006013973A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457587A (en) * 2012-05-28 2013-12-18 三菱电机株式会社 Semiconductor driving circuit and semiconductor device
CN107947539A (en) * 2017-12-15 2018-04-20 杰华特微电子(杭州)有限公司 Switching Power Supply drives power supply circuit and Switching Power Supply
WO2019054078A1 (en) * 2017-09-15 2019-03-21 富士電機株式会社 Power module, reverse-conducting igbt, and drive circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449668B2 (en) * 2005-11-14 2008-11-11 General Electric Company Optically powered drive circuit and method for controlling a semiconductor switch
FR2947973B1 (en) * 2009-07-07 2011-06-17 Schneider Toshiba Inverter DEVICE FOR CONTROLLING A POWER TRANSISTOR

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138928U (en) * 1989-04-26 1990-11-20
JPH05243950A (en) * 1992-02-26 1993-09-21 Honda Motor Co Ltd Drive circuit of switching element
JPH06216733A (en) * 1992-09-23 1994-08-05 Sgs Thomson Microelettronica Spa Driver circuit of electronic switch
JP2001284589A (en) * 2000-03-30 2001-10-12 Hitachi Ltd Control circuit built-in insulated gate semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138928U (en) * 1989-04-26 1990-11-20
JPH05243950A (en) * 1992-02-26 1993-09-21 Honda Motor Co Ltd Drive circuit of switching element
JPH06216733A (en) * 1992-09-23 1994-08-05 Sgs Thomson Microelettronica Spa Driver circuit of electronic switch
JP2001284589A (en) * 2000-03-30 2001-10-12 Hitachi Ltd Control circuit built-in insulated gate semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457587A (en) * 2012-05-28 2013-12-18 三菱电机株式会社 Semiconductor driving circuit and semiconductor device
WO2019054078A1 (en) * 2017-09-15 2019-03-21 富士電機株式会社 Power module, reverse-conducting igbt, and drive circuit
US10715134B2 (en) 2017-09-15 2020-07-14 Fuji Electric Co., Ltd. Power module, reverse-conducting IGBT, and drive circuit
CN107947539A (en) * 2017-12-15 2018-04-20 杰华特微电子(杭州)有限公司 Switching Power Supply drives power supply circuit and Switching Power Supply
CN107947539B (en) * 2017-12-15 2024-04-19 杰华特微电子股份有限公司 Switching power supply driving power supply circuit and switching power supply

Also Published As

Publication number Publication date
JP4253318B2 (en) 2009-04-08
JP2006074991A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
EP2015453B1 (en) Drive circuit for voltage driven switching element
US7750720B2 (en) Circuit arrangement and a method for galvanically separate triggering of a semiconductor switch
US6741099B1 (en) Transistor driver circuit
EP0649579B1 (en) Circuit for driving a half-bridge
US7692474B2 (en) Control circuit for a high-side semiconductor switch for switching a supply voltage
US7405609B2 (en) Circuit arrangement for driving an electrical circuit breaker at high voltage potential
WO2006101139A1 (en) Level shift circuit and power supply device
US7705638B2 (en) Switching control circuit with reduced dead time
US8624655B2 (en) Level shifter circuit and gate driver circuit including the same
WO2006013973A1 (en) Switching means driving circuit, switching means driving method, power supply device and switching circuit
JP2007501544A (en) High frequency control of semiconductor switches
US9013903B2 (en) High side driver circuitry
KR20080077217A (en) Circuit arrangement and method for driving an electronic component with an output signal from a microprocessor
Nagao et al. Capacitor-based three-level gate driver for GaN HEMT only with a single voltage supply
JP3608472B2 (en) Output circuit
US6683777B2 (en) Semiconductor protective control unit for controlling output transistors connected to inductive load
US10483977B1 (en) Level shifter
US7075356B2 (en) Charge pump circuit
US7265603B2 (en) MOSFET gate driver with a negative gate bias voltage
EP2434644B1 (en) High voltage floating gate driver topology for very high switching frequencies
US6801065B2 (en) Transistor output circuit, semiconductor device including transistor output circuit, and switching electric power unit having transistor output circuit
US8294506B2 (en) Driving system for switching power supply to reduce switch noise and switching loss
US5166544A (en) Pseudo Darlington driver acts as Darlington during output slew, but has only 1 VBE drop when fully turned on
JPH11308875A (en) Piezoelectric body driven device
JP3702631B2 (en) Inductive load drive

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase