WO2006013699A1 - 無線通信装置、無線通信システム及び無線通信方法 - Google Patents

無線通信装置、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2006013699A1
WO2006013699A1 PCT/JP2005/012679 JP2005012679W WO2006013699A1 WO 2006013699 A1 WO2006013699 A1 WO 2006013699A1 JP 2005012679 W JP2005012679 W JP 2005012679W WO 2006013699 A1 WO2006013699 A1 WO 2006013699A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
mimo
channel correlation
unit
value
Prior art date
Application number
PCT/JP2005/012679
Other languages
English (en)
French (fr)
Inventor
Tomohiro Imai
Yasuaki Yuda
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/573,057 priority Critical patent/US20080069251A1/en
Priority to EP05758317A priority patent/EP1775875A1/en
Priority to BRPI0513074-3A priority patent/BRPI0513074A/pt
Priority to JP2006531343A priority patent/JPWO2006013699A1/ja
Publication of WO2006013699A1 publication Critical patent/WO2006013699A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0875Generation of secret information including derivation or calculation of cryptographic keys or passwords based on channel impulse response [CIR]

Definitions

  • Wireless communication apparatus Wireless communication system, and wireless communication method
  • the present invention relates to a radio communication system using MIMO (Multiple Input Multiple Output) technology for performing radio communication by receiving radio signals transmitted from a plurality of antenna elements using a plurality of antenna elements, and to this system. It relates to a wireless communication device and a wireless communication method used.
  • MIMO Multiple Input Multiple Output
  • Non-Patent Document 1 shows that the propagation path characteristics in a mobile radio communication system vary irregularly over time, and the propagation path correlation before and after the slight fluctuation of the transmission / reception position is abrupt. Taking advantage of the decrease and generally the reversibility of the electric wave, the wireless communication devices on the transmitting side and the receiving side individually measure the propagation path characteristics. The information obtained from the measurement result is secretly shared to generate the same secret key, thereby realizing encrypted communication between these wireless communication devices.
  • FIG. 1 shows an overview of the technique described in Non-Patent Document 1.
  • the base station and the mobile station respectively transmit and receive pilot signals alternately in a time division duplex (TDD) system in a short period of time, and the propagation path characteristics, that is, the received pilot signals.
  • Propagation path characteristic information is shared by measuring the amplitude and phase of each channel individually.
  • the base station and the mobile station quantize the shared channel characteristics information to quantize the binary data of 0 and 1. Is generated. Then, the generated quantized data is selected by a predetermined method, combined, repeated, or error-corrected as necessary to generate a secret key.
  • Non-Patent Document 1 Motoaki Horiike, Shuichi Kajioka, “Secret Key Sharing Method Based on Irregular Fluctuations in Land Mobile Communication Channels”, IEICE Technical Report, RCS2002-173
  • Non-Patent Document 1 a secret key used for encrypted communication is generated based on propagation path characteristic information. Therefore, when a pilot signal is intercepted by a third party whose propagation path characteristics are close to that of a mobile station, the pilot signal power intercepted by the third party also generates a secret key by itself to generate a base station. There is a problem that it becomes possible to eavesdrop on the encrypted communication between the mobile station and the mobile station.
  • FIG. 2 shows a state in which the encrypted communication between the base station and the mobile station in FIG. 1 is wiretapped by an eavesdropper.
  • an eavesdropper is positioned where the propagation path characteristics approximate that of a mobile station, and this eavesdropper intercepts the pilot signal transmitted from the base station.
  • the channel estimation value calculated from the pilot signal intercepted by this eavesdropper necessarily has a high correlation with the channel estimation value calculated by the mobile station. For this reason, this eavesdropper can also independently generate the noil signal power obtained by secretly intercepting the secret key used for encrypted communication between the base station and the mobile station. As a result, it is possible to eavesdrop on encryption communication between the base station and the mobile station.
  • An object of the present invention is to provide a wireless communication apparatus, a wireless communication method, and the like that can prevent eavesdropping of encrypted communication even if a wireless signal is intercepted by a third party in a wireless communication system using MIMO technology. That is. Means for solving the problem
  • a wireless communication apparatus includes a plurality of antennas that receive a radio signal of a MIMO channel, channel estimation means that calculates a channel estimation value of a reception signal by the antenna, and a calculated channel estimation value. Based on the channel correlation calculation means for calculating the channel correlation value between channels in the MIMO channel, and channel selection for selecting one of the channels in the MIMO channel based on the calculated channel correlation value! And a key generation means for generating a channel estimation value secret key of the selected channel.
  • FIG. 1 is a diagram showing a generation mode of a secret key for encryption communication in a conventional wireless communication system
  • FIG. 2 is a diagram showing a mode in which an eavesdropper generates a secret key for encryption communication in a conventional wireless communication system.
  • FIG. 3 is a block diagram showing a configuration of a base station provided with a radio communication apparatus according to Embodiment 1.
  • FIG. 4 is a block diagram showing a detailed configuration of a part of the radio communication apparatus according to Embodiment 1.
  • FIG. 5 is a block diagram showing a configuration of a mobile station provided with the wireless communication apparatus according to Embodiment 1.
  • FIG. 6 is a diagram for explaining the operation of the wireless communication system according to Embodiment 1.
  • FIG. 7 A diagram showing how the secret key is updated in the wireless communication system according to the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of a base station including a radio communication apparatus according to Embodiment 2
  • FIG. 9 is a diagram for explaining the operation of the wireless communication system according to the second embodiment.
  • FIG. 10 is a diagram for explaining the outline of the operation of the wireless communication system according to the third embodiment.
  • FIG. 11 is a block diagram showing a configuration of a base station provided with a radio communication apparatus according to Embodiment 3.
  • FIG. 12 is a block diagram showing a configuration of a mobile station provided with a radio communication apparatus according to Embodiment 3. The figure explaining the operation
  • FIG. 3 is a block diagram showing a configuration of a base station provided with radio communication apparatus 100 according to Embodiment 1 of the present invention.
  • the wireless communication device 100 includes two antenna elements 101-1, 101-2, two pilot receivers 102-1, 102-2, a channel estimation unit 103, an interchannel correlation calculation unit 104, a channel selection unit 105, and a secret key. It has a generation unit 106, an inter-channel correlation monitoring unit 110, a pilot transmission control unit 121, and two pilot transmission units 122-1, 122-2.
  • Each of the antenna elements 101-1, 101-2 captures a MIMO channel radio signal transmitted from two antenna elements of a mobile station described later.
  • Each of the no-lot receivers 102-1, 102-2 has a band-pass filter, an analog Z digital converter, a low noise amplifier, and the like.
  • the pilot signals are received from the antenna elements 101-1, 101-2.
  • the signal is extracted, the received pilot signal processing is performed on the extracted pilot signal, and the processed pilot signal is input to channel estimation section 103.
  • Channel estimation section 103 calculates channel estimation values for all four channels in the MIMO channel based on the pilot signals input from pilot receiving sections 102-1, 102-2, and calculates the calculated four The channel estimation values are input to the inter-channel correlation calculation unit 104 and the channel selection unit 105, respectively.
  • Interchannel correlation calculation section 104 calculates channel correlation values between two channels in the MIMO channel based on the four channel estimation values input from channel estimation section 103, and calculates all the calculated six channels. The correlation value is input to channel selection section 105. The calculation of the channel correlation value between two channels in the MIMO channel will be described in detail later. [0017] Channel selection section 105 selects the smallest channel correlation value among the six channel correlation values input from inter-channel correlation calculation section 104, and 2 corresponding to the selected channel correlation value. In addition to notifying the inter-channel correlation monitoring unit 110 of the two channels, the channel estimation values of the two channels are input to the secret key generation unit 106.
  • Secret key generating section 106 generates quantized data by quantizing the two channel estimation values input from channel selecting section 105, and selects or combines the generated quantized data by a predetermined method.
  • a secret key is generated by repeating, repeating, or performing error correction as necessary, and the generated secret key is input to a control unit or the like, not shown.
  • the inter-channel correlation monitoring unit 110 for the two channels notified from the channel selection unit 105, the control unit is not shown in the figure, the channel correlation value between the two channels (pilot)
  • the channel estimation value (measured based on the data signal received until the signal is received again) is calculated and monitored.
  • inter-channel correlation monitoring section 110 inputs a pilot control signal that instructs pilot transmission control section 121 to transmit a pilot signal.
  • pilot transmission control unit 121 When a pilot control signal is input from the inter-channel correlation monitoring unit 110, the pilot transmission control unit 121 immediately generates a pilot signal, and the generated pilot signal is transmitted to the pilot transmission unit 122-1, Enter each of 122-2.
  • Each of the pilot transmitters 122-1, 122-2 has a bandpass filter, a digital / analog converter, a low noise amplifier, and the like, and the pilot signal input from the pilot transmission controller 121 is provided. Is subjected to predetermined transmission signal processing. The processed pilot signal is wirelessly transmitted to the mobile station via the antenna elements 101-1 and 101-2 via the MIMO channel.
  • FIG. 4 is a block diagram showing a more detailed configuration of the inter-channel correlation monitoring unit 110.
  • the inter-channel correlation monitoring unit 110 includes a monitoring channel extraction unit 111, a monitoring channel correlation calculation unit 112, and a monitoring channel correlation threshold determination unit 113.
  • the monitoring channel extraction unit 111 does not show channel estimation values of all four channels in the MIMO channel at the time of data transmission. Only the channel estimation values of the two channels notified from the selection unit 105 are continuously input to the monitoring channel correlation calculation unit 112. In wireless communication apparatus 100, channel estimation is continuously performed for all channels in the MIMO channel in order to separate the data signal from the received signal power during data transmission after the start of encrypted communication.
  • the monitoring channel correlation calculation unit 112 calculates a channel correlation value from the two channel estimation values input from the monitoring channel extraction unit 111 by a method described later, and uses the calculated channel correlation value as a monitoring channel correlation threshold value. Input to the determination unit 113.
  • the inter-monitor channel correlation threshold value determination unit 113 monitors the channel correlation value input from the inter-monitor channel correlation calculation unit 112. When the channel correlation value becomes equal to or greater than a predetermined threshold value, the pilot signal is immediately detected. A pilot control signal for instructing to generate and transmit to the mobile station is input to pilot transmission control section 121.
  • FIG. 5 is a block diagram showing a configuration of a mobile station provided with radio communication apparatus 300 according to the present embodiment.
  • the wireless communication apparatus 300 includes two antenna elements 301-1, 301-2, two pilot receiving units 302-1, 302-2, a channel estimation unit 303, an inter-channel correlation calculation unit 304, a channel selection unit 305, and a secret. It has a key generation unit 306, a pilot transmission control unit 321, and two pilot transmission units 322-1 and 322-2.
  • the antenna elements 301-1 and 301-2 respectively capture MIMO channel radio signals transmitted from the two antenna elements 101-1 and 101-2 of the base station.
  • Each of the noil reception units 302-1, 302-2 has a bandpass filter, an analog Z digital converter, a low noise amplifier, and the like, and pilot signals are received from the signals received by the antenna elements 301-1, 301-2.
  • the signal is extracted, and the received signal processing is performed on the extracted pilot signal.
  • the processed pilot signal is powered by a channel estimation unit 303 and a pilot transmission control unit 321.
  • Channel estimation section 303 calculates channel estimation values for all four channels in the MIMO channel based on the pilot signals input from pilot reception sections 302-1, 302-2, and calculates the calculated four The channel estimation values are input to the inter-channel correlation calculation unit 304 and the channel selection unit 305, respectively.
  • the inter-channel correlation calculation unit 304 has four channels input from the channel estimation unit 303.
  • the channel correlation value between the two channels is calculated based on the channel estimation value, and all the calculated six channel correlation values are input to the channel selection unit 305.
  • Channel selection section 305 selects the smallest channel correlation value from among the six channel correlation values input from inter-channel correlation calculation section 304, and corresponds to the selected channel correlation value 2
  • the channel estimation values of one channel are input to the secret key generation unit 306.
  • Secret key generation section 306 quantizes the two channel estimation values input from channel selection section 305 to generate quantized data, and selects or combines the generated quantized data by a predetermined method.
  • a secret key is generated by repeating, repeating, and correcting errors as necessary. The generated secret key is not shown in FIG.
  • pilot transmission control section 321 When a pilot signal is input from pilot receiving section 302, pilot transmission control section 321 immediately generates a pilot signal and inputs the generated pilot signal to pilot transmitting sections 322 1 and 322-2, respectively. .
  • the pilot transmission units 322-1 and 322-2 each have a bandpass filter, a digital / analog converter, a low noise amplifier, and the like, and the pilot signals input from the pilot transmission control unit 321. Is subjected to predetermined transmission signal processing.
  • the processed pilot signal is wirelessly transmitted to the base station via the antenna elements 301-1 and 301-2 via the MIMO channel.
  • FIG. 6 shows a mode in which a base station and a mobile station are performing cipher communication in a wireless communication system using MIMO technology, and a third party intercepts a wireless signal in the vicinity thereof.
  • a channel formed between antenna element 101-1 of the base station and antenna element 30 1 1 of the mobile station is denoted as C.
  • a channel formed between the element 101-2 and the antenna element 301-1 of the mobile station is denoted as C. Also, the antenna element 101-1 of the base station and the antenna of the mobile station
  • the channel formed between the tenor elements 301-2 is denoted as C.
  • the channel formed between the antenna element 101-2 to be operated and the antenna element 301-2 of the mobile station is denoted as C. [0037]
  • the mobile station since the mobile station returns the pilot signal as soon as it receives the pilot signal of the base station power, the channel estimation of channel C calculated by the base station and the mobile station respectively.
  • the values can be considered almost identical. Similarly, the channel estimation values of channels C, C, and C calculated by the base station and the mobile station can be regarded as substantially the same. Therefore
  • the channel estimation values of channel C at the base station and mobile station are both h and
  • the channel estimate for channel C is denoted as h.
  • the inter-channel correlation calculation unit 104 of the base station or the inter-channel correlation calculation unit 304 of the mobile station combines two of the four channel estimation values h 1, h 2, h and h in a brute force manner.
  • Channel correlation values related to all six combinations are calculated, and all the calculated six channel correlation values are input to the channel selection unit 105 or the channel selection unit 305.
  • Equation 2 the channel correlation value p for any combination of two channel estimates h, h (h ⁇ h) is It is expressed by “Expression 2”.
  • “m” in the channel matrix H represents the total number of antenna elements 101 in the base station
  • the channel selection unit 105 or the channel selection unit 305 has the six channels inputted.
  • the smallest channel correlation value is selected from among the channel correlation values, and the channel estimation values of the two channels corresponding to the selected channel correlation values are input to the secret key generation unit 106 or the secret key generation unit 306.
  • the combination of channel estimate h and channel estimate h is the combination of channel estimate h and channel estimate h
  • the channel selector 105 Since the channel correlation value / 0 is minimum, the channel selector 105 or
  • the channel selection unit 305 receives the channel estimation value h and the channel estimation value h from the secret key generation unit 10.
  • channel selection section 105 or channel selection section 305 has the same meaning as selecting a channel, selecting a channel estimation value, and selecting antenna elements 101 and 301. is there.
  • Secret key generation section 106 or secret key generation section 306 receives input channel estimation value h and
  • a secret key with a predetermined data length is generated by selecting, combining, and repeating data in a predetermined manner, or by correcting errors as necessary.
  • the channel estimate of channel C calculated by a third party is the channel estimate of a and channel C.
  • a third party In order to select two channel estimates h and h with the smallest channel correlation value p, that is, the difference in channel fluctuation is the largest, a third party temporarily uses the same method as the base station or mobile station.
  • this third party is likely to select a channel that is completely different from the channel selected by the base station or mobile station. Therefore, in the wireless communication system according to the present embodiment, even if a third party intercepts the pilot signal of the MIMO channel from the base station and the mobile station located in a place where the propagation path characteristics approximate to that of the mobile station. It is extremely difficult to generate the same secret key as that generated by this base station or mobile station. It is difficult to eavesdrop on encryption communication.
  • FIG. 7 shows, in chronological order, the manner in which the secret key used in the encrypted communication is updated between the base station and the mobile station.
  • the base station and the mobile station share the secret key secretly by sending and receiving pilot signals
  • encrypted communication is started immediately.
  • the inter-channel correlation monitoring unit 110 of the base station continuously monitors the channel correlation value between the two channels selected at the time of generating the secret key, and the monitored channel correlation value.
  • a pilot control signal that instructs the mobile station to transmit a pilot signal is input to the pilot transmission control unit 121.
  • the base station and the mobile station retransmit / receive pilot signals to each other to recalculate all four channel estimation values in the MIMO channel, and the channel correlation value p is minimized based on the recalculated channel estimation values.
  • the secret key is generated or updated again.
  • channel selection section 105 of the base station or channel selection section 305 of the mobile station selects two channels in the MIMO channel, and channel estimation of the selected channel is performed. Since the secret key generator 106 or secret key generator 306 generates a secret key, it is unknown to the third party which channel is selected even if the third party intercepts the radio signal. As a result, it is possible to prevent eavesdropping on encryption communication by a third party.
  • the channel correlation value between the two channels selected when the secret key is generated by the inter-channel correlation monitoring unit 110 is continuously monitored, and the channel correlation being monitored is monitored. Since the secret key is updated when the value exceeds the predetermined threshold, wiretapping by a third party can be prevented more reliably.
  • channel selection section 105 or channel selection section 305 selects two channels with the smallest channel correlation value, a third party who intercepts the radio signal encrypts it. It is possible to further reduce the probability of generating a private key used for communication.
  • the base station has the inter-channel correlation monitoring unit 110 and determines the necessity of updating the secret key.
  • the present invention is limited to this case.
  • the mobile station may be provided with the wireless communication apparatus 100 shown in FIG. 3, while the base station may be provided with the wireless communication apparatus 300 shown in FIG.
  • channel selection section 105 of the base station or channel selection section 305 of the mobile station selects x two channel estimation values h and h that have the lowest channel correlation value p.
  • the present invention is not limited to this case.
  • the channel selection unit 105 or the channel selection unit 305 selects the signal to noise ratio (SNR) in descending order of the channel power. You can do it! ,.
  • SNR signal to noise ratio
  • channel selection section 105 or channel selection section 305 selects two channels in the MIMO channel is not limited to this case.
  • the number of channels to be selected may be increased or decreased.
  • each of the base station and the mobile station periodically updates the secret key to maintain the confidentiality of the secret key.
  • the base station and the mobile station periodically updates the secret key to maintain the confidentiality of the secret key.
  • FIG. 8 is a block diagram showing a configuration of a base station having radio communication apparatus 600 according to the present embodiment.
  • Radio communication apparatus 600 is the same as radio communication apparatus 100 in the first embodiment, but further includes timer unit 631.
  • Timer unit 631 inputs a pilot control signal instructing to generate a pilot signal and transmit it to the mobile station to pilot transmission control unit 121 at a predetermined period.
  • FIG. 9 shows channel estimation values h selected by channel selection section 105 or channel selection section 305 in time series. As shown in Fig. 9, at the beginning of encrypted communication between the base station and mobile station, channel estimates h and h are selected, and channel estimates h and h
  • a secret key is also generated. Subsequently, after At elapses, a pilot control signal is input from the timer unit 631 to the pilot transmission control unit 121, and the channel estimation values h and h are selected by transmitting and receiving the pilot signal between the base station and the mobile station. The secret key is updated. That
  • a pilot control signal is input from the timer unit 631 to the pilot transmission control unit 121, and the base station and the mobile station transmit and receive the pilot signal to update the secret key. It is.
  • the pilot control signal is input from the timer unit 631 to the pilot transmission control unit 121 with the predetermined period At, so that the base station and the mobile station have a secret. Since the key is updated, even if the same secret key is accidentally generated by a third party during the use of the secret key, the confidentiality of the encryption communication can be recovered.
  • the power described in the case where a pilot control signal is input to pilot transmission control unit 121 in parallel from timer unit 631 and inter-channel correlation monitoring unit 110 is the present invention.
  • the inter-channel correlation monitoring unit 110 is removed, and the pilot control signal is input to the pilot transmission control unit 121 only from the timer unit 631.
  • a base station having four antenna elements and a mobile station having three antenna elements can switch the antenna elements of the antennas, and increase the diversity of channel estimation values. After that, a secret key is generated and encrypted communication is performed.
  • a secret key is generated and encrypted communication is performed.
  • FIG. 10 shows an outline of the operation of the radio communication system according to the present embodiment.
  • the four antenna elements 101-1 to 101-4 of the base station are a first set of antenna elements 101 1, 101-2 and a second set of antenna elements 101-3, 101-4. It is divided into and.
  • the three antenna elements 301-1 to 301-3 of the mobile station are also the first thread of the antenna elements 301-1, 301-2 and the second thread of the antenna elements 301-2, 301-3. And is divided into
  • each time the base station and the mobile station each need to update the secret key, the first set of antenna elements and the second set of antenna elements Are used alternately.
  • FIG. 11 is a block diagram showing a configuration of radio communication apparatus 900 provided in the base station in FIG.
  • the wireless communication device 900 includes four antenna elements 101-1 to 101-4, four pilot receiving units 102-1 to 102-4, a channel estimating unit 103, a secret key generating unit 106, and a pilot transmission control.
  • the antenna control unit 951 generates an antenna switching request signal when a control unit equal force (not shown) receives a pilot control signal, and wirelessly transmits the generated antenna switching request signal to the mobile station via the antenna element 101. Send. Subsequently, the antenna control unit 951 receives a confirmation signal that is a response of the mobile station to the antenna switching request signal via the antenna element 101, and then transmits and receives a pilot signal to the switching units 952 and 953. An antenna control signal instructing to switch the set of antenna elements 101 is input.
  • the switching units 952 and 953 switch the currently used antenna element group to the other group, respectively.
  • FIG. 12 is a block diagram showing a configuration of radio communication apparatus 1000 included in the mobile station in FIG.
  • components that perform the same functions as the components in radio communication apparatus 300 according to Embodiment 1 are given the same reference numerals as those in radio communication apparatus 300. The description is omitted.
  • the wireless communication apparatus 1000 includes three antenna elements 301-1 to 301-3, three pilot receivers 302-1 to 302-3, a channel estimator 303, a secret key generator 306, and a pilot transmission control.
  • Unit 321 three pilot transmission units 322-1 to 322-3, antenna control unit 1051, and two switching units 1052 and 1053.
  • the antenna control unit 1051 is an antenna that transmits and receives a noise signal to the switching units 1052 and 1053 when receiving the antenna switching request signal wirelessly transmitted from the wireless communication device 900 via the antenna element 301.
  • An antenna control signal is input to instruct to switch the set of elements 301. Then, the antenna control unit 1051 wirelessly transmits a confirmation signal indicating that the switching of the pair of antenna elements 301 in the switching units 1052 and 1053 is completed to the wireless communication apparatus 900 via the antenna element 301.
  • FIG. 13 shows, in a time series, modes in which the base station and the mobile station switch the antenna element pair used for encryption / decommissioning in the wireless communication system according to the present embodiment.
  • an antenna switching request is generated by interrupting encryption communication. Then, the base station transmits this antenna switching request signal to the mobile station. Upon receiving the antenna switching request signal, the mobile station switches the currently used antenna element group to another group, and wirelessly transmits a confirmation signal notifying that the switching has been completed to the base station.
  • the antenna element that receives the pilot signal is switched when the secret key is updated, the channel estimation value calculated before and after the update changes completely. Even if a private key used by encrypted communication by a third party can be generated accidentally, the confidentiality of the encrypted communication can be restored by updating the private key.
  • the number of antenna elements that are subject to channel estimation is constant even if each of the base station and the mobile station has three or more antenna elements.
  • the amount of computation in channel estimation and the overhead of pilot signals can be reduced.
  • the switching units 952, 953, 1052, and 1053 may select antenna elements in accordance with instructions from the antenna control units 951 and 1051 or randomly. Furthermore, for example, the switching units 952, 953, 1052, and 1053 may each appropriately adjust the number of antenna elements to be selected. In this way, the variance of channel estimation values can be increased and the diversity of secret keys can be improved.
  • Each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, it is sometimes called IC, system LSI, super LSI, or ultra LSI, depending on the difference in power integration.
  • circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • reconfigurable 'processor that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
  • a first aspect of the present invention is based on a plurality of antennas that receive a radio signal of a MIMO channel, channel estimation means that calculates a channel estimation value of a reception signal by the antenna, and the calculated channel estimation value
  • a channel correlation calculation means for calculating channel correlation values between channels in the MIMO channel, and a channel selection means for selecting V / MI channels in the MIMO channel based on the calculated channel correlation values.
  • a key generation means for generating a secret key from the channel estimation value of the selected channel.
  • any channel in the MIMO channel is selected, and the secret key used for encryption communication is generated from the channel estimation value of the selected channel. Even if a radio signal is intercepted, since it is unknown to a third party whether to select a channel estimation value of a misaligned channel, it is possible to prevent the third party from eavesdropping on encryption communication.
  • the wireless communication apparatus further includes an inter-channel correlation monitoring unit for selecting one of the channels again.
  • the channel correlation value between the selected channels is monitored, and when the channel correlation value being monitored is equal to or greater than the predetermined threshold value, the MIMO channel Since one of the channels is selected again and the secret key is updated, wiretapping by a third party can be prevented more reliably.
  • any channel in the MIMO channel is periodically transmitted to the channel selection unit based on the channel correlation value calculated by the inter-channel correlation calculation unit.
  • the wireless communication apparatus further comprises timer means for selecting again.
  • the channel selection unit selects any channel in the MIMO channel having the lowest channel correlation value calculated by the inter-channel correlation calculation unit.
  • a wireless communication device
  • a fifth aspect of the present invention is the wireless communication apparatus according to the present invention, wherein the channel selecting means selects a channel different from any one of the previously selected MIMO channels.
  • a sixth aspect of the present invention is a wireless communication system including a plurality of wireless communication apparatuses according to the present invention.
  • any channel in the MIMO channel is selected, and the secret key used for encryption communication is generated from the channel estimation value of the selected channel. Even if a radio signal is intercepted, since it is unknown to a third party whether to select a channel estimation value of a misaligned channel, it is possible to prevent the third party from eavesdropping on encryption communication.
  • a reception step of receiving a radio signal of a MIMO channel with a plurality of antennas, a channel estimation step of calculating a channel estimation value of a reception signal by the antenna, and a calculated channel estimation A channel correlation calculation step for calculating a channel correlation value between channels in the MIMO channel based on the value, and a channel selection step for selecting any channel in the MIMO channel based on the calculated channel correlation value; And a key generation step of generating a secret key from the channel estimation value of the selected channel.
  • any channel in the MIMO channel is selected, and the secret key used for the encryption communication is generated from the channel estimation value of the selected channel. Even if a radio signal is intercepted, since it is unknown to a third party whether to select a channel estimation value of a misaligned channel, it is possible to prevent the third party from eavesdropping on encryption communication.
  • the wireless communication apparatus and wireless communication method according to the present invention have the effect of preventing eavesdropping on encrypted communication even if a wireless signal is intercepted by a third party, and wireless using MIMO technology. It is useful as a communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 MIMO技術を利用する無線通信システムにおいて、第三者に無線信号を傍受されても暗号化通信の盗聴を防止できる無線通信装置を開示する。この装置では、チャネル間相関計算部(104)は、チャネル推定部(103)から入力されてくる4つのチャネル推定値に基づいてMIMOチャネルにおける2つのチャネル間のチャネル相関値を算出し、算出した全6つのチャネル相関値をチャネル選択部(105)に入力する。チャネル選択部(105)は、チャネル間相関計算部(104)から入力されてくる6つのチャネル相関値の中から最小のチャネル相関値を選択し、選択したチャネル相関値に対応する2つのチャネルをチャネル間相関監視部(110)に通知すると伴に、その2つのチャネルのチャネル推定値を秘密鍵生成部(106)に入力する。

Description

明 細 書
無線通信装置、無線通信システム及び無線通信方法
技術分野
[0001] 本発明は、複数のアンテナ素子から送信された無線信号を複数のアンテナ素子で 受信して無線通信を行う MIMO (Multiple Input Multiple Output)技術を利用した無 線通信システム、並びにこのシステムにお!/、て使用される無線通信装置及び無線通 信方法に関する。
背景技術
[0002] 近年の情報化社会の発展に伴!、、移動体無線通信技術がその利便性から急速に 普及している。移動体無線通信では、第三者による無線信号の傍受が比較的容易 であるため、移動体無線通信にお!、て個人情報や企業の機密情報を送受信する場 合には、無線信号の盗聴対策が必要不可欠である。
[0003] 移動体無線通信における盗聴対策としては、暗号ィ匕技術の利用が一般的である。
具体的には、移動体無線通信システムにおける伝搬路特性を利用して送信側と受信 側との無線通信装置がそれぞれ個別に秘密鍵を生成する暗号ィ匕技術が知られてい る (例えば非特許文献 1参照)。非特許文献 1に記載された暗号化技術は、移動体無 線通信システムにおける伝搬路特性が不規則に時間変動すること、送受信位置の僅 力な変動でもその前後における伝搬路の相関が急激に低下すること及び一般に電 波の可逆性が成り立つことを利用して、送信側と受信側との無線通信装置がそれぞ れ個別に伝搬路特性を測定する。そして、この測定結果から得られる情報を秘密裏 に共有して同一の秘密鍵を生成することにより、これら無線通信装置間で暗号化通 信を実現するものである。
[0004] 図 1に、非特許文献 1に記載された技術の概要を示す。図 1では、基地局と移動局 とがそれぞれ、パイロット信号を時分割複信(TDD : Time Division Duplex)方式で交 互に、かつ、短期間で送受信して、伝搬路特性即ち受信したパイロット信号の振幅や 位相等を個別に測定することにより、伝搬路特性情報を共有する。また、基地局と移 動局とは、共有した伝搬路特性情報を量子化して 0と 1との 2値力 なる量子化データ を生成する。そして、生成した量子化データを所定の方式で選択したり、組み合わせ たり、繰り返したりさらに必要に応じて誤り訂正することによって秘密鍵を生成する。さ らに、基地局又は移動局の一方が、生成した秘密鍵に不可逆的な信号処理、例え ばハッシュ化処理を施して、そのハッシュ化情報等を相手局に送信する。相手局は、 受信したハッシュ化情報と自局で生成したハッシュ化情報等とを比較することにより、 基地局と移動局とで個別に生成された秘密鍵が同一であることを秘密裏に確認し、 その確認結果を返信する。このような一連の秘密鍵生成ステップを経た後に、基地局 と移動局とは、それぞれが個別に生成した秘密鍵を用いて暗号ィ匕通信を開始する。 非特許文献 1 :堀池元榭、笹岡秀一, 「陸上移動通信路の不規則変動に基づく秘密 鍵共有方式」,信学技報, RCS2002- 173
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、非特許文献 1に記載された技術では、暗号化通信に使用される秘密 鍵が伝搬路特性情報に基づいて生成される。このため、伝搬路特性が移動局と近似 する場所に位置する第三者によってパイロット信号が傍受された場合には、この第三 者が傍受したパイロット信号力も独自に秘密鍵を生成して基地局と移動局との間の 暗号ィ匕通信を盗聴できるようになる問題がある。
[0006] 図 2に、図 1における基地局と移動局との間の暗号ィ匕通信が盗聴者によって盗聴さ れている態様を示す。図 2では、伝搬路特性が移動局と近似する場所に盗聴者が位 置しており、この盗聴者が基地局から送信されたパイロット信号を秘密裏に傍受して いる。この盗聴者が傍受したパイロット信号カゝら算出されるチャネル推定値は、移動 局の算出するチャネル推定値との相関が必然的に高くなる。そのため、この盗聴者 は、基地局と移動局との間の暗号化通信に使用される秘密鍵を、秘密裏に傍受した ノ ィロット信号力も独自に生成することができる。その結果、基地局と移動局との間の 暗号ィ匕通信を盗聴することができる。
[0007] 本発明の目的は、 MIMO技術を利用する無線通信システムにおいて、第三者に 無線信号を傍受されても暗号化通信の盗聴を防止できる無線通信装置及び無線通 信方法等を提供することである。 課題を解決するための手段
[0008] 本発明に係る無線通信装置は、 MIMOチャネルの無線信号を受信する複数のァ ンテナと、前記アンテナによる受信信号のチャネル推定値を算出するチャネル推定 手段と、算出されたチャネル推定値に基づ 、て MIMOチャネルにおけるチャネル間 のチャネル相関値を算出するチャネル間相関計算手段と、算出されたチャネル相関 値に基づ 、て MIMOチャネルにおける!/、ずれかのチャネルを選択するチャネル選 択手段と、選択されたチャネルのチャネル推定値力 秘密鍵を生成する鍵生成手段 と、を具備する構成を採る。
発明の効果
[0009] 本発明によれば、 MIMOチャネルにおける!/、ずれかのチャネルが選択され、選択 されたチャネルのチャネル推定値から暗号ィ匕通信に使用される秘密鍵が生成される ため、第三者に無線信号を傍受されても 、ずれのチャネルのチャネル推定値を選択 するかは第三者にとって不明であることから、第三者による暗号ィ匕通信の盗聴を防止 することができる。
図面の簡単な説明
[0010] [図 1]従来の無線通信システムにおける暗号ィ匕通信用の秘密鍵の生成態様を示す 図
[図 2]従来の無線通信システムにおいて暗号ィ匕通信用の秘密鍵が盗聴者によって生 成される態様を示す図
[図 3]実施の形態 1に係る無線通信装置を備える基地局の構成を示すブロック図 [図 4]実施の形態 1に係る無線通信装置の一部の構成を詳細に示すブロック図
[図 5]実施の形態 1に係る無線通信装置を備える移動局の構成を示すブロック図 [図 6]実施の形態 1に係る無線通信システムの動作を説明する図
[図 7]実施の形態 1に係る無線通信システムにお 、て秘密鍵が更新される様子を示 す図
[図 8]実施の形態 2に係る無線通信装置を備える基地局の構成を示すブロック図
[図 9]実施の形態 2に係る無線通信システムの動作を説明する図
[図 10]実施の形態 3に係る無線通信システムの動作の概要を説明する図 [図 11]実施の形態 3に係る無線通信装置を備える基地局の構成を示すブロック図 [図 12]実施の形態 3に係る無線通信装置を備える移動局の構成を示すブロック図 [図 13]実施の形態 3に係る無線通信システムの動作を説明する図
発明を実施するための最良の形態
[0011] 以下、本発明の実施の形態について、図を適宜参照しつつ詳細に説明する。なお 、以下の各実施の形態では、 MIMO技術を利用する TDD方式の移動体無線通信 システムにおいて、基地局と移動局とが暗号ィ匕通信を行う場合を例に説明する。
[0012] (実施の形態 1)
図 3は、本発明の実施の形態 1に係る無線通信装置 100を備える基地局の構成を 示すブロック図である。無線通信装置 100は、 2つのアンテナ素子 101— 1、 101 - 2 、 2つのパイロット受信部 102— 1、 102- 2、チャネル推定部 103、チャネル間相関 計算部 104、チャネル選択部 105、秘密鍵生成部 106、チャネル間相関監視部 110 、 ノ ィロット送信制御部 121及び 2つのパイロット送信部 122— 1、 122— 2を有する。
[0013] アンテナ素子 101— 1、 101— 2はそれぞれ、後述する移動局の 2つのアンテナ素 子から送信された MIMOチャネルの無線信号を捕捉する。
[0014] ノ ィロット受信部 102— 1、 102— 2はそれぞれ、バンドパスフィルタ、アナログ Zデ イジタル変換器及び低雑音アンプ等を有し、アンテナ素子 101— 1、 101— 2による 受信信号からパイロット信号を抽出し、抽出したパイロット信号に所定の受信信号処 理を施し、その処理後のパイロット信号をチャネル推定部 103に入力する。
[0015] チャネル推定部 103は、パイロット受信部 102— 1、 102— 2から入力されてくるノ ィ ロット信号に基づいて MIMOチャネルにおける全 4つのチャネルのチャネル推定値 を算出し、算出した 4つのチャネル推定値をチャネル間相関計算部 104及びチヤネ ル選択部 105にそれぞれ入力する。
[0016] チャネル間相関計算部 104は、チャネル推定部 103から入力されてくる 4つのチヤ ネル推定値に基づいて MIMOチャネルにおける 2つのチャネル間のチャネル相関 値を算出し、算出した全 6つのチャネル相関値をチャネル選択部 105に入力する。な お、 MIMOチャネルにおける 2つのチャネル間のチャネル相関値を算出する様子に ついては、後に詳述する。 [0017] チャネル選択部 105は、チャネル間相関計算部 104から入力されてくる 6つのチヤ ネル相関値の中カゝら最小のチャネル相関値を選択し、選択したチャネル相関値に対 応する 2つのチャネルをチャネル間相関監視部 110に通知すると伴に、その 2つのチ ャネルのチャネル推定値を秘密鍵生成部 106に入力する。
[0018] 秘密鍵生成部 106は、チャネル選択部 105から入力されてくる 2つのチャネル推定 値を量子化して量子化データを生成し、生成した量子化データを既定の方式で選択 したり、組み合わせたり、繰り返したり、さらに必要に応じて誤り訂正を行うことによって 秘密鍵を生成し、生成した秘密鍵を図示しな 、制御部等に入力する。
[0019] チャネル間相関監視部 110は、チャネル選択部 105から通知される 2つのチャネル について、その 2つのチャネル間のチャネル相関値を図示しない制御部等力 入力 されてくるデータ伝送時の (パイロット信号を再度受信するまでの間に受信するデー タ信号に基づいて測定された)チャネル推定値カゝら算出して監視する。監視中のチヤ ネル推定値が所定の閾値以上となったときには、チャネル間相関監視部 110は、ノ ィロット送信制御部 121に対してパイロット信号の送信を指示するパイロット制御信号 を入力する。
[0020] ノ ィロット送信制御部 121は、チャネル間相関監視部 110からパイロット制御信号 が入力されてくると、直ちにパイロット信号を生成し、生成したパイロット信号をパイ口 ット送信部 122— 1、 122— 2にそれぞれ入力する。
[0021] ノ ィロット送信部 122— 1、 122— 2はそれぞれ、バンドパスフィルタ、ディジタル/ アナログ変換器及び低雑音アンプ等を有しており、パイロット送信制御部 121から入 力されてくるパイロット信号に所定の送信信号処理を施す。処理後のパイロット信号 はアンテナ素子 101— 1、 101— 2を介して移動局に MIMOチャネルで無線送信さ れる。
[0022] 図 4は、チャネル間相関監視部 110のより詳細な構成を示すブロック図である。チヤ ネル間相関監視部 110は、監視チャネル抽出部 111、監視チャネル間相関計算部 1 12及び監視チャネル間相関閾値判定部 113を有する。
[0023] 監視チャネル抽出部 111は、データ伝送時の MIMOチャネルにおける全 4つのチ ャネルのチャネル推定値を図示しな 、制御部等力も入力され、その中のチャネル選 択部 105から通知された 2つのチャネルのチャネル推定値だけを監視チャネル間相 関計算部 112に継続的に入力する。なお、無線通信装置 100では、暗号化通信開 始後のデータ伝送時にぉ 、て受信信号力もデータ信号を分離するために、 MIMO チャネルにおける全チャネルについてチャネル推定が継続的に行われる。
[0024] 監視チャネル間相関計算部 112は、監視チャネル抽出部 111から入力されてくる 2 つのチャネル推定値から後述の方式でチャネル相関値を算出し、算出したチャネル 相関値を監視チャネル間相関閾値判定部 113に入力する。
[0025] 監視チャネル間相関閾値判定部 113は、監視チャネル間相関計算部 112から入 力されてくるチャネル相関値を監視し、そのチャネル相関値が所定の閾値以上となつ たときには、直ちにパイロット信号を生成して移動局に送信するように指示するパイ口 ット制御信号をパイロット送信制御部 121に入力する。
[0026] 図 5は、本実施の形態に係る無線通信装置 300を備える移動局の構成を示すプロ ック図である。無線通信装置 300は、 2つのアンテナ素子 301— 1、 301— 2、 2つの パイロット受信部 302— 1、 302— 2、チャネル推定部 303、チャネル間相関計算部 3 04、チャネル選択部 305、秘密鍵生成部 306、パイロット送信制御部 321及び 2つの パイロット送信部 322— 1、 322— 2を有する。
[0027] アンテナ素子 301— 1、 301— 2はそれぞれ、基地局の 2つのアンテナ素子 101— 1、 101— 2から送信された MIMOチャネルの無線信号を捕捉する。
[0028] ノ ィロット受信部 302— 1、 302— 2はそれぞれ、バンドパスフィルタ、アナログ Zデ イジタル変換器及び低雑音アンプ等を有し、アンテナ素子 301— 1、 301— 2による 受信信号からパイロット信号を抽出し、抽出したパイロット信号に所定の受信信号処 理を施す。処理後のパイロット信号はチャネル推定部 303及びパイロット送信制御部 321〖こ人力される。
[0029] チャネル推定部 303は、パイロット受信部 302— 1、 302— 2から入力されてくるノ ィ ロット信号に基づいて MIMOチャネルにおける全 4つのチャネルのチャネル推定値 を算出し、算出した 4つのチャネル推定値をチャネル間相関計算部 304及びチヤネ ル選択部 305にそれぞれ入力する。
[0030] チャネル間相関計算部 304は、チャネル推定部 303から入力されてくる 4つのチヤ ネル推定値に基づ 、て 2つのチャネル間のチャネル相関値を算出し、算出した全 6 つのチャネル相関値をチャネル選択部 305に入力する。
[0031] チャネル選択部 305は、チャネル間相関計算部 304から入力されてくる 6つのチヤ ネル相関値の中カゝら最小のチャネル相関値を選択し、選択したチャネル相関値に対 応する 2つのチャネルのチャネル推定値を秘密鍵生成部 306に入力する。
[0032] 秘密鍵生成部 306は、チャネル選択部 305から入力されてくる 2つのチャネル推定 値を量子化して量子化データを生成し、生成した量子化データを既定の方式で選択 したり、組み合わせたり、繰り返したり、さらに必要に応じて誤り訂正を行うことによって 秘密鍵を生成する。生成した秘密鍵は図示しな!、制御部等に入力される。
[0033] ノ ィロット送信制御部 321は、パイロット受信部 302からパイロット信号が入力されて くると、直ちにパイロット信号を生成し、生成したパイロット信号をパイロット送信部 322 1、 322— 2にそれぞれ入力する。
[0034] ノ ィロット送信部 322— 1、 322— 2はそれぞれ、バンドパスフィルタ、ディジタル/ アナログ変換器及び低雑音アンプ等を有しており、パイロット送信制御部 321から入 力されてくるパイロット信号に所定の送信信号処理を施す。処理後のパイロット信号 はアンテナ素子 301 - 1, 301 - 2を介して基地局に MIMOチャネルで無線送信さ れる。
[0035] 次 、で、本発明に係る MIMO技術を利用した無線通信システムの動作にっ 、て、 図 6及び図 7を用いて説明する。
[0036] 図 6に、 MIMO技術を利用した無線通信システムにおいて、基地局と移動局とが暗 号ィ匕通信を行っており、その近傍で第三者が無線信号を傍受している態様を示す。 図 6では、基地局の有するアンテナ素子 101— 1と移動局の有するアンテナ素子 30 1 1との間に形成されるチャネルを C と表記する。また、基地局の有するアンテナ
11
素子 101—2と移動局の有するアンテナ素子 301— 1との間に形成されるチャネルを C と表記する。また、基地局の有するアンテナ素子 101— 1と移動局の有するアン
21
テナ素子 301— 2との間に形成されるチャネルを C と表記する。また、基地局の有
12
するアンテナ素子 101— 2と移動局の有するアンテナ素子 301— 2との間に形成され るチャネルを C と表記する。 [0037] ここで、移動局は、基地局力ものパイロット信号を受信すると直ちにパイロット信号を 返信するため、基地局と移動局とがそれぞれ算出するチャネル C のチャネル推定
11
値はほぼ同一とみなすことができる。同様に、基地局と移動局とがそれぞれ算出する チャネル C 、 C 及び C のチャネル推定値もほぼ同一とみなすことができる。そこで
21 12 22
、図 6では、基地局と移動局とにおけるチャネル C のチャネル推定値を共に h と、
11 11 チャネル C のチャネル推定値を h と、チャネル C のチャネル推定値を h と、チヤ
21 21 12 12 ネル C のチャネル推定値を h と、表記する。
22 22
[0038] 基地局のチャネル間相関計算部 104又は移動局のチャネル間相関計算部 304は 、 4つのチャネル推定値 h 、 h 、 h 及び h の中の 2つを総当りで組み合わせて、
11 21 12 22
全 6つの組み合わせに係るチャネル相関値を計算し、算出した 6つのチャネル相関 値を全てチャネル選択部 105又はチャネル選択部 305に入力する。
[0039] ここで、チャネル間相関計算部 104又はチャネル間相関計算部 304にお 、て、 4つ のチャネル推定値カゝら 6つのチャネル相関値が算出される様子を説明する。 m行 X n 列の MIMOチャネルのチャネル行列 Hを下記「式 1」で表すとすると、任意の 2つの チャネル推定値 h、 h (h≠h )の組み合わせに係るチャネル相関値 p は、下 xy リ xy リ, xy 記「式 2」で表される。なお、チャネル行列 Hにおける「m」は基地局のアンテナ素子 1 01の総数を、また同「n」は移動局のアンテナ素子 301の総数を表すため、本実施の 形態では m=n= 2となる。また、式 2における E[ ]はアンサンブル平均を表す。
[数 1]
Figure imgf000010_0001
[数 2] 式 2
Figure imgf000010_0002
[0040] そして、チャネル選択部 105又はチャネル選択部 305は、入力されてくる 6つのチヤ ネル相関値の中カゝら最小のチャネル相関値を選択し、選択したチャネル相関値に対 応する 2つのチャネルのチャネル推定値を秘密鍵生成部 106又は秘密鍵生成部 30 6に入力する。図 6では、チャネル推定値 h とチャネル推定値 h との組み合わせに
21 22
係るチャネル相関値 /0 が最小となっていることから、チャネル選択部 105又はチ
21, 22
ャネル選択部 305は、チャネル推定値 h とチャネル推定値 h とを秘密鍵生成部 10
21 22
6又は秘密鍵生成部 306に入力することになる。なお、チャネル相関値 pが最小であ るとは、対応する 2つのチャネル間のチャネル変動の違いが最大であることを意味す る。また、本実施の形態において、チャネル選択部 105又はチャネル選択部 305が、 チャネルを選択することと、チャネル推定値を選択することと、アンテナ素子 101、 30 1を選択することとは互いに同義である。
[0041] 秘密鍵生成部 106又は秘密鍵生成部 306は、入力されてくるチャネル推定値 h と
21 チャネル推定値 h とをそれぞれ量子化して量子化データを生成し、生成した量子化
22
データを既定の方式で選択したり、組み合わせたり、繰り返したり、必要に応じて誤り 訂正することによって所定のデータ長の秘密鍵を生成する。
[0042] 一方で、伝搬路特性が移動局と近似する場所に位置する第三者によって基地局及 び移動局の無線送信したパイロット信号が傍受された場合、この第三者によって算出 されるチャネル推定値が移動局によって算出されるチャネル推定値と MIMOチヤネ ルにおける全チャネルについて同一になることは稀有である。換言すれば、図 6では 、第三者の算出するチャネル C のチャネル推定値を a とチャネル C のチャネル推
21 21 22
定値 a と表記しているところ、チャネル推定値 h と a とが一致し、かつ、同時にチヤ
22 21 21
ネル推定値 h と a とが一致する確率は極めて低い。さらに、基地局と移動局とはチ
22 22
ャネル相関値 pが最低となる即ちチャネル変動の違いが最大である 2つのチャネル 推定値 h と h とを選択するため、仮に第三者が基地局や移動局と同一の方式で 2
21 22
つのチャネル推定値 aを選択するとしても、この第三者は、基地局や移動局の選択し たチャネルとは全く異なるチャネルを選択する可能性が高い。従って、本実施の形態 に係る無線通信システムにおいて、第三者は、伝搬路特性が移動局と近似する場所 に位置して基地局及び移動局からの MIMOチャネルのパイロット信号を傍受したとし ても、この基地局や移動局の生成する秘密鍵と同一の秘密鍵を生成することは極め て困難であり、暗号ィ匕通信を盗聴することは不可能であると言える。
[0043] 図 7に、基地局と移動局とにおいて、暗号ィ匕通信で使用される秘密鍵が更新される 態様を時系列で示す。基地局と移動局とがパイロット信号の送受信によって秘密鍵 を秘密裏に共有すると、直ちに暗号化通信が開始される。そして、暗号化通信中は、 基地局のチャネル間相関監視部 110が、秘密鍵の生成時に選択された 2つのチヤネ ル間のチャネル相関値を継続的に監視し、その監視対象のチャネル相関値が所定 の閾値以上となったときに、移動局にパイロット信号を送信するように指示するパイ口 ット制御信号をパイロット送信制御部 121に入力する。そして、基地局と移動局とが、 相互にパイロット信号を再度送受信して MIMOチャネルにおける全 4つのチャネル 推定値を再度算出し、再度算出したチャネル推定値に基づいてチャネル相関値 p の最小となる 2つのチャネルを再度選択することにより、秘密鍵を改めて生成即ち更 新する。
[0044] このように、本実施の形態によれば、基地局のチャネル選択部 105又は移動局の チャネル選択部 305が MIMOチャネルにおける 2つのチャネルを選択し、この選択さ れたチャネルのチャネル推定値カゝら秘密鍵生成部 106又は秘密鍵生成部 306が秘 密鍵を生成するため、第三者に無線信号を傍受されてもいずれのチャネルが選択さ れるかは第三者にとって不明であることから、第三者による暗号ィ匕通信の盗聴を防止 することができる。
[0045] また、本実施の形態によれば、チャネル間相関監視部 110によって秘密鍵の生成 の際に選択された 2つのチャネル間のチャネル相関値が継続的に監視され、監視中 のチャネル相関値が所定の閾値以上となったときに、秘密鍵が更新されるため、第 三者による盗聴をより確実に防止することができる。
[0046] また、本実施の形態によれば、チャネル選択部 105又はチャネル選択部 305が、 チャネル相関値の最小となる 2つのチャネルを選択するため、無線信号を傍受した第 三者が暗号化通信で使用される秘密鍵を独自に生成してしまう確率を一層低下させ ることがでさる。
[0047] なお、本実施の形態では、基地局がチャネル間相関監視部 110を有して秘密鍵を 更新する必要性を判定する場合について説明したが、本発明はこの場合に限定され るものではなぐ例えば移動局が図 3に示す無線通信装置 100を備え、一方で基地 局が図 5に示す無線通信装置 300を備える構成であってもよい。
[0048] また、本実施の形態では、基地局のチャネル選択部 105又は移動局のチャネル選 択部 305が、チャネル相関値 pの最低となる 2つのチャネル推定値 hと h とを選択 x する場合について説明したが、本発明はこの場合に限定されるものではなぐ例えば チャネル選択部 105又はチャネル選択部 305が、信号対雑音比(Signal to Noise Ra tio: SNR)の高 、チャネル力 順に選択するようにしてもよ!、。
[0049] また、本実施の形態では、チャネル選択部 105又はチャネル選択部 305が MIMO チャネルにおける 2つのチャネルを選択する場合について説明した力 本発明はこの 場合に限定されるものではなぐ例えばチャネル選択部 105又はチャネル選択部 30
5がチャネルを選択し直す毎に選択するチャネルの数を増減してもよい。
[0050] (実施の形態 2)
本発明の実施の形態 2では、基地局と移動局とがそれぞれ、秘密鍵を周期的に更 新して秘密鍵の秘匿性を保持する。以下、本実施の形態について、重複を避けるた め、実施の形態 1と相違する点についてのみ説明する。
[0051] 図 8は、本実施の形態に係る無線通信装置 600を有する基地局の構成を示すプロ ック図である。無線通信装置 600は、上記実施の形態 1における無線通信装置 100 において、さらにタイマ部 631を有するものである。
[0052] タイマ部 631は、パイロット信号を生成して移動局に送信するように指示するパイ口 ット制御信号を、既定の周期でパイロット送信制御部 121に入力する。
[0053] 図 9に、チャネル選択部 105又はチャネル選択部 305によって選択されるチャネル 推定値 hを時系列で示す。図 9に示すように、基地局と移動局とにおいて、暗号化通 信の開始当初は、チャネル推定値 h と h とが選択され、チャネル推定値 h と h と
22 21 22 21 力も秘密鍵が生成される。続いて、 A t経過後にタイマ部 631からパイロット送信制御 部 121にパイロット制御信号が入力され、基地局と移動局とがパイロット信号を送受 信することにより、チャネル推定値 h と h とが選択されて秘密鍵が更新される。その
21 11
後、既定の周期 A t毎に、タイマ部 631からパイロット送信制御部 121にパイロット制 御信号が入力され、基地局と移動局とがパイロット信号を送受信して秘密鍵が更新さ れる。
[0054] このように、本実施の形態によれば、タイマ部 631からパイロット送信制御部 121に パイロット制御信号が既定の周期 A tで入力されることにより、基地局及び移動局に おいて秘密鍵が更新されるため、秘密鍵の使用中に第三者によって偶発的に同一 の秘密鍵が生成されてしまっても、暗号ィ匕通信の秘匿性を回復することができる。
[0055] なお、本実施の形態では、タイマ部 631とチャネル間相関監視部 110とから並行し てノ ィロット送信制御部 121にパイロット制御信号が入力される場合について説明し た力 本発明はこの場合に限定されるものではなぐ例えば無線通信装置 600にお いてチャネル間相関監視部 110を除去して、タイマ部 631からのみパイロット送信制 御部 121にパイロット制御信号が入力されるようにしてもよ!/、。
[0056] (実施の形態 3)
本発明の実施の形態 3では、 4つのアンテナ素子を有する基地局と 3つのアンテナ 素子を有する移動局とが、それぞれの有するアンテナ素子を切り替えて使用すること により、チャネル推定値の多様性を増大させた上で秘密鍵を生成し暗号ィ匕通信を行 う。以下、本実施の形態について、重複を避けるため、実施の形態 1と相違する点に ついてのみ説明する。
[0057] 図 10に、本実施の形態に係る無線通信システムの動作の概要を示す。図 10にお いて、基地局の有する 4つのアンテナ素子 101— 1〜101—4は、アンテナ素子 101 1、 101— 2の第一組と、アンテナ素子 101— 3、 101— 4の第二組と、に区分され ている。また、移動局の有する 3つのアンテナ素子 301— 1〜301— 3も、アンテナ素 子 301— 1、 301— 2の第一糸且と、アンテナ素子 301— 2、 301— 3の第二糸且と、に区 分されている。そして、本実施の形態では、図 10に示すように、基地局と移動局とが それぞれ、秘密鍵の更新が必要になる毎に、第一組のアンテナ素子と第二組のアン テナ素子とを切り替えて交互に使用する。
[0058] 図 11は、図 10における基地局の備える無線通信装置 900の構成を示すブロック図 である。なお、図 11において、前記実施の形態 1に係る無線通信装置 100における 構成部と同様の機能を発揮する構成部については、無線通信装置 100における構 成部と同一の参照符号を付して、その説明を省略する。 [0059] 無線通信装置 900は、 4つのアンテナ素子 101— 1〜101— 4、 4つのパイロット受 信部 102— 1〜102— 4、チャネル推定部 103、秘密鍵生成部 106、 ノ ィロット送信 制御部 121、 4つのパイロット送信部 122— 1〜121— 4、アンテナ制御部 951及び 2 つの切替部 952、 953を具備する。
[0060] アンテナ制御部 951は、図示しない制御部等力もパイロット制御信号を入力された ときに、アンテナ切替要求信号を生成し、生成したアンテナ切替要求信号をアンテナ 素子 101を介して移動局に無線送信する。続いて、アンテナ制御部 951は、このアン テナ切替要求信号に対する移動局の応答である確認信号をアンテナ素子 101を介 して受信した後に、切替部 952、 953に対して、パイロット信号を送受信するアンテナ 素子 101の組を切り替えるように指示するアンテナ制御信号を入力する。
[0061] 切替部 952、 953はそれぞれ、アンテナ制御部 951からアンテナ制御信号が入力 されてきたときに、現在使用しているアンテナ素子の組を他方の組に切り替える。
[0062] 図 12は、図 10における移動局の備える無線通信装置 1000の構成を示すブロック 図である。なお、図 12において、前記実施の形態 1に係る無線通信装置 300におけ る構成部と同様の機能を発揮する構成部については、無線通信装置 300における 構成部と同一の参照符号を付して、その説明を省略する。
[0063] 無線通信装置 1000は、 3つのアンテナ素子 301— 1〜301— 3、 3つのパイロット 受信部 302— 1〜302— 3、チャネル推定部 303、秘密鍵生成部 306、 ノ ィロット送 信制御部 321、 3つのパイロット送信部 322— 1〜322— 3、アンテナ制御部 1051及 び 2つの切替部 1052、 1053を具備する。
[0064] アンテナ制御部 1051は、無線通信装置 900から無線送信されてくるアンテナ切替 要求信号をアンテナ素子 301を介して受信したときに、切替部 1052、 1053に対して 、 ノィロット信号を送受信するアンテナ素子 301の組を切り替えるように指示するアン テナ制御信号を入力する。そして、アンテナ制御部 1051は、切替部 1052、 1053に おけるアンテナ素子 301の組の切り替えが完了したことを示す確認信号を、アンテナ 素子 301を介して無線通信装置 900に無線送信する。
[0065] 切替部 1052、 1053はそれぞれ、アンテナ制御部 1051からアンテナ制御信号が 入力されてきたときに、現在使用しているアンテナ素子の組を他方の組に切り替える [0066] 図 13に、本実施の形態に係る無線通信システムにおいて、基地局と移動局とが暗 号ィ匕通信で使用するアンテナ素子の組を切り替える態様を時系列で示す。
[0067] 図 13に示すように、アンテナ素子の組を再度選択する必要が生じたときには、先ず 基地局において、アンテナ切替要求が暗号ィ匕通信に割り込んで発生する。そして、 基地局は、このアンテナ切替要求信号を移動局に送信する。移動局は、アンテナ切 替要求信号を受信すると、現在使用しているアンテナ素子の組を他の組に切り替え 、その切り替えが完了したことを通知する確認信号を基地局に無線送信する。
[0068] このように、本実施の形態によれば、秘密鍵を更新する際にパイロット信号を受信 するアンテナ素子が切り替えられるため、その更新の前後で算出されるチャネル推定 値が一変することから、第三者が暗号化通信で使用中の秘密鍵を偶発的に生成でき たとしても、秘密鍵の更新によって暗号ィ匕通信の秘匿性を回復することができる。
[0069] また、本実施の形態によれば、秘密鍵を更新する際にパイロット信号を受信するァ ンテナ素子を機械的に切り替えるだけでよいため、基地局及び移動局における信号 処理の負荷を軽減することができる。
[0070] また、本実施の形態によれば、基地局や移動局がそれぞれ 3つ以上のアンテナ素 子を有していても、チャネル推定の対象となるアンテナ素子の数は一定であるため、 チャネル推定における演算量やパイロット信号のオーバーヘッドを削減することがで きる。
[0071] なお、本実施の形態では、基地局の切替部 952、 953及び移動局の切替部 1052 、 1053において、アンテナ素子の組が予め定められている場合について説明したが 、本発明はこの場合に限定されるものではなぐ例えば切替部 952、 953、 1052、 1 053がそれぞれ、アンテナ制御部 951、 1051の指示に従って又はランダムに、アン テナ素子を選択するようにしてもよい。さらに、例えば切替部 952、 953、 1052、 105 3がそれぞれ、選択するアンテナ素子の数を適宜調節するようにしてもよい。このよう にすれば、チャネル推定値の分散を増大させることができ、秘密鍵の多様性を向上さ せることができる。
[0072] 上記各実施の形態では、本発明をノヽードウエアで構成する場合を例にとって説明 したが、本発明はソフトウェアで実現することも可能である。
[0073] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されてもよいし、一部または全 てを含むように 1チップィ匕されてもよい。ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ウルトラ LSIと呼称されることもある。
[0074] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Progra mmable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフ ィギユラブル'プロセッサーを利用してもよい。
[0075] さらには、半導体技術の進歩または派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って もよい。バイオ技術の適応等が可能性としてありえる。
[0076] 本発明の第 1の態様は、 MIMOチャネルの無線信号を受信する複数のアンテナと 、前記アンテナによる受信信号のチャネル推定値を算出するチャネル推定手段と、 算出されたチャネル推定値に基づいて MIMOチャネルにおけるチャネル間のチヤネ ル相関値を算出するチャネル間相関計算手段と、算出されたチャネル相関値に基づ V、て MIMOチャネルにおける!/、ずれかのチャネルを選択するチャネル選択手段と、 選択されたチャネルのチャネル推定値カゝら秘密鍵を生成する鍵生成手段と、を具備 する無線通信装置である。
[0077] この構成によれば、 MIMOチャネルにおけるいずれかのチャネルが選択され、選 択されたチャネルのチャネル推定値から暗号ィ匕通信に使用される秘密鍵が生成され るため、第三者に無線信号を傍受されても 、ずれのチャネルのチャネル推定値を選 択するかは第三者にとって不明であることから、第三者による暗号ィ匕通信の盗聴を防 止することができる。
[0078] 本発明の第 2の態様は、前記発明において、前記チャネル選択手段によって選択 されたチャネル間のチャネル相関値を監視し、監視中のチャネル相関値が所定の閾 値以上となったときに、前記チャネル選択手段に対して、前記チャネル間相関計算 手段によって算出されたチャネル相関値に基づいて MIMOチャネルにおけるいず れかのチャネルを改めて選択させるチャネル間相関監視手段と、をさらに具備する無 線通信装置である。
[0079] この構成によれば、前記発明による効果に加えて、選択されたチャネル間のチヤネ ル相関値が監視され、監視中のチャネル相関値が所定の閾値以上となったときに、 MIMOチャネルにおけるいずれかのチャネルが改めて選択されて秘密鍵が更新さ れるため、第三者による盗聴をより確実に防止することができる。
[0080] 本発明の第 3の態様は、前記発明において、前記チャネル選択手段に対して、前 記チャネル間相関計算手段によって算出されたチャネル相関値に基づいて MIMO チャネルにおけるいずれかのチャネルを周期的に改めて選択させるタイマ手段をさら に具備する無線通信装置である。
[0081] この構成によれば、前記発明による効果に加えて、 MIMOチャネルにおけるいず れかのチャネルのチャネル推定値が周期的に選択されて秘密鍵が更新されるため、 秘密鍵の使用中に第三者によって偶発的に同一の秘密鍵が生成されてしまっても、 暗号ィ匕通信の秘匿性を回復することができる。
[0082] 本発明の第 4の態様は、前記発明において、前記チャネル選択手段は、前記チヤ ネル間相関計算手段によって算出されたチャネル相関値が最低となる MIMOチヤネ ルにおけるいずれかのチャネルを選択する無線通信装置である。
[0083] この構成によれば、前記発明による効果に加えて、チャネル相関値が最低となる M IMOチャネルにおける!/、ずれかのチャネルのチャネル推定値が選択されるため、無 線信号を傍受した第三者が暗号化通信で使用される秘密鍵を独自に生成してしまう 確率を一層低下させることができる。
[0084] 本発明の第 5の態様は、前記発明において、前記チャネル選択手段は、前回選択 した MIMOチャネルにおけるいずれかのチャネルと異なるチャネルを選択する無線 通信装置である。
[0085] この構成によれば、前記発明による効果に加えて、前回選択された MIMOチヤネ ルにおける 、ずれかのチャネルと異なるチャネルが選択されるため、第三者が暗号 化通信で使用される秘密鍵を偶発的に生成したとしても秘密鍵の更新によって暗号 化通信の秘匿性を回復することができる。 [0086] 本発明の第 6の態様は、前記発明に係る無線通信装置を複数具備する無線通信 システムである。
[0087] この構成によれば、 MIMOチャネルにおけるいずれかのチャネルが選択され、選 択されたチャネルのチャネル推定値から暗号ィ匕通信に使用される秘密鍵が生成され るため、第三者に無線信号を傍受されても 、ずれのチャネルのチャネル推定値を選 択するかは第三者にとって不明であることから、第三者による暗号ィ匕通信の盗聴を防 止することができる。
[0088] 本発明の第 7の態様は、複数のアンテナで MIMOチャネルの無線信号を受信する 受信ステップと、前記アンテナによる受信信号のチャネル推定値を算出するチャネル 推定ステップと、算出されたチャネル推定値に基づ 、て MIMOチャネルにおけるチ ャネル間のチャネル相関値を算出するチャネル間相関計算ステップと、算出された チャネル相関値に基づいて MIMOチャネルにおけるいずれかのチャネルを選択す るチャネル選択ステップと、選択されたチャネルのチャネル推定値カゝら秘密鍵を生成 する鍵生成ステップと、を具備する無線通信方法である。
[0089] この方法によれば、 MIMOチャネルにおけるいずれかのチャネルが選択され、選 択されたチャネルのチャネル推定値から暗号ィ匕通信に使用される秘密鍵が生成され るため、第三者に無線信号を傍受されても 、ずれのチャネルのチャネル推定値を選 択するかは第三者にとって不明であることから、第三者による暗号ィ匕通信の盗聴を防 止することができる。
[0090] 本明細書は、 2004年 8月 4日出願の特願 2004— 228659に基づくものである。こ の内容は全てここに含めておく。
産業上の利用可能性
[0091] 本発明に係る無線通信装置及び無線通信方法は、第三者に無線信号を傍受され ても暗号ィ匕通信の盗聴を防止できると 、う効果を有し、 MIMO技術を利用した無線 通信システム等として有用である。

Claims

請求の範囲
[1] MIMOチャネルの無線信号を受信する複数のアンテナと、
前記アンテナによる受信信号のチャネル推定値を算出するチャネル推定手段と、 算出されたチャネル推定値に基づいて MIMOチャネルにおけるチャネル間のチヤ ネル相関値を算出するチャネル間相関計算手段と、
算出されたチャネル相関値に基づいて MIMOチャネルにおけるいずれかのチヤネ ルを選択するチャネル選択手段と、
選択されたチャネルのチャネル推定値力 秘密鍵を生成する鍵生成手段と、を具 備する無線通信装置。
[2] 前記チャネル選択手段によって選択されたチャネル間のチャネル相関値を監視し 、監視中のチャネル相関値が所定の閾値以上となったときに、前記チャネル選択手 段に対して、前記チャネル間相関計算手段によって算出されたチャネル相関値に基 づ!、て MIMOチャネルにおける!/、ずれかのチャネルを改めて選択させるチャネル間 相関監視手段と、をさらに具備する請求項 1記載の無線通信装置。
[3] 前記チャネル選択手段に対して、前記チャネル間相関計算手段によって算出され たチャネル相関値に基づいて MIMOチャネルにおけるいずれかのチャネルを周期 的に改めて選択させるタイマ手段をさらに具備する、請求項 2記載の無線通信装置。
[4] 前記チャネル選択手段は、前記チャネル間相関計算手段によって算出されたチヤ ネル相関値が最低となる MIMOチャネルにおけるいずれかのチャネルを選択する、 請求項 1記載の無線通信装置。
[5] 前記チャネル選択手段は、前回選択した MIMOチャネルにおけるいずれかのチヤ ネルと異なるチャネルを選択する、請求項 1記載の無線通信装置。
[6] 請求項 1記載の無線通信装置を複数具備する無線通信システム。
[7] 複数のアンテナで MIMOチャネルの無線信号を受信する受信ステップと、
前記アンテナによる受信信号のチャネル推定値を算出するチャネル推定ステップと 算出されたチャネル推定値に基づいて MIMOチャネルにおけるチャネル間のチヤ ネル相関値を算出するチャネル間相関計算ステップと、 算出されたチャネル相関値に基づいて MIMOチャネルにおけるいずれかのチヤネ ルを選択するチャネル選択ステップと、
選択されたチャネルのチャネル推定値カゝら秘密鍵を生成する鍵生成ステップと、を 具備する無線通信方法。
PCT/JP2005/012679 2004-08-04 2005-07-08 無線通信装置、無線通信システム及び無線通信方法 WO2006013699A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/573,057 US20080069251A1 (en) 2004-08-04 2005-07-08 Radio Communication Device, Radio Communication System, and Radio Communication Method
EP05758317A EP1775875A1 (en) 2004-08-04 2005-07-08 Radio communication device, radio communication system, and radio communication method
BRPI0513074-3A BRPI0513074A (pt) 2004-08-04 2005-07-08 dispositivo de comunicação via rádio, sistema de comunicação via rádio e método de comunicação via rádio
JP2006531343A JPWO2006013699A1 (ja) 2004-08-04 2005-07-08 無線通信装置、無線通信システム及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-228659 2004-08-04
JP2004228659 2004-08-04

Publications (1)

Publication Number Publication Date
WO2006013699A1 true WO2006013699A1 (ja) 2006-02-09

Family

ID=35786994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012679 WO2006013699A1 (ja) 2004-08-04 2005-07-08 無線通信装置、無線通信システム及び無線通信方法

Country Status (7)

Country Link
US (1) US20080069251A1 (ja)
EP (1) EP1775875A1 (ja)
JP (1) JPWO2006013699A1 (ja)
CN (1) CN1993924A (ja)
BR (1) BRPI0513074A (ja)
RU (1) RU2007104173A (ja)
WO (1) WO2006013699A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529413A (ja) * 2005-01-27 2008-07-31 インターデイジタル テクノロジー コーポレーション 他と共有されないジョイント乱数性(jrnso)を用いて暗号鍵を導出する方法とシステム
US8098750B2 (en) 2008-07-10 2012-01-17 Infineon Technologies Ag Method and device for transmitting a plurality of data symbols
US8238551B2 (en) 2005-01-27 2012-08-07 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
US8280046B2 (en) 2005-09-12 2012-10-02 Interdigital Technology Corporation Method and system for deriving an encryption key using joint randomness not shared by others
JP2012209652A (ja) * 2011-03-29 2012-10-25 Advanced Telecommunication Research Institute International 無線通信システム、通信装置、情報機器、及び無線通信方法
JP2015023578A (ja) * 2013-07-17 2015-02-02 韓國電子通信研究院Electronics and Telecommunications Research Institute 無線通信システムにおける保安データ伝送装置および方法
EP3101011A1 (fr) 2008-05-26 2016-12-07 Arkema France Procédé de préparation de lactames comprenant une étape de photonitrosation suivie d'une étape de transposition de beckmann

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178597B2 (en) * 2008-01-28 2015-11-03 Broadcom Corporation Method of updating transmission channel information based on eaves-dropping of beamformed signals
US8270602B1 (en) 2009-08-13 2012-09-18 Sandia Corporation Communication systems, transceivers, and methods for generating data based on channel characteristics
JP5505178B2 (ja) * 2009-11-02 2014-05-28 日本電気株式会社 無線通信装置、無線通信装置の受信レベル判別方法及びプログラム
US8401193B2 (en) * 2010-10-29 2013-03-19 Futurewei Technologies, Inc. System and method for securing wireless communications
US8744082B2 (en) * 2010-11-03 2014-06-03 Futurewei Technologies, Inc. System and method for securing wireless communications
WO2012102558A2 (ko) * 2011-01-26 2012-08-02 엘지전자 주식회사 채널상태정보 전송방법 및 사용자기기와, 채널상태정보 수신방법 및 기지국
KR101269502B1 (ko) * 2011-12-14 2013-05-30 한국전자통신연구원 무선 통신 네트워크에서 무선 채널 변화를 이용한 비밀키 생성을 위한 장치 및 방법
KR101977593B1 (ko) 2012-06-25 2019-08-28 삼성전자주식회사 복수의 안테나들을 이용한 mimo 다중화에 기반하여 전송단에서 시크릿 정보를 전송하는 방법 및 수신단에서 시크릿 정보를 수신하는 방법
US9467214B2 (en) * 2012-09-11 2016-10-11 Ntt Docomo, Inc. Method and apparatus for efficient channel state information dissemination for MU-MIMO transmission schemes based on outdated channel state information
CN109417469B (zh) * 2015-10-16 2021-09-07 华为技术有限公司 Mimo系统安全配对方法
CN106788867B (zh) * 2016-11-22 2019-03-15 西安电子科技大学 一种利用能量站提升物理层安全性能的通信系统和方法
CN108270559A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种提取信道特征的方法及网络设备
WO2021013317A1 (en) * 2019-07-19 2021-01-28 Nokia Technologies Oy Apparatus, method and computer program for wireless key generation
CN112188491A (zh) * 2020-09-24 2021-01-05 江苏恒宝智能系统技术有限公司 一种基于mimo的数据安全传输基站、移动终端和方法
WO2023056165A1 (en) * 2021-10-01 2023-04-06 Qualcomm Incorporated Channel for eavesdropping-mitigation and secret key generation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613542A (ja) * 1984-06-15 1986-01-09 Sony Corp 送受信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406261B2 (en) * 1999-11-02 2008-07-29 Lot 41 Acquisition Foundation, Llc Unified multi-carrier framework for multiple-access technologies
WO2006130725A2 (en) * 2005-05-31 2006-12-07 Interdigital Technology Corporation Authentication and encryption methods using shared secret randomness in a joint channel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613542A (ja) * 1984-06-15 1986-01-09 Sony Corp 送受信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERSHEY JOHN E ET AL: "Unconventional Cryptographic Keying Variable Management.", IEEE TRANSACTIONS ON COMMUNICATIONS., vol. 43, no. 1, January 1995 (1995-01-01), pages 3 - 6, XP000487370 *
OGAWA YOSHIHIRO ET AL: "MIMO-OFDM System ni okeru Sokan Gyoretsu no Koyuchi Hendo ni Motozuku Himitsu Kagi Kyoyu Hoshiki no Kento.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU K NKYU HOKOKU RCS2004-236 TO 258., vol. 104, no. 597, 19 January 2005 (2005-01-19), pages 127 - 132 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529413A (ja) * 2005-01-27 2008-07-31 インターデイジタル テクノロジー コーポレーション 他と共有されないジョイント乱数性(jrnso)を用いて暗号鍵を導出する方法とシステム
JP4734344B2 (ja) * 2005-01-27 2011-07-27 インターデイジタル テクノロジー コーポレーション 他と共有されないジョイント乱数性(jrnso)を用いて暗号鍵を導出する方法とシステム
US8238551B2 (en) 2005-01-27 2012-08-07 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
US9130693B2 (en) 2005-01-27 2015-09-08 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
US8280046B2 (en) 2005-09-12 2012-10-02 Interdigital Technology Corporation Method and system for deriving an encryption key using joint randomness not shared by others
EP3101011A1 (fr) 2008-05-26 2016-12-07 Arkema France Procédé de préparation de lactames comprenant une étape de photonitrosation suivie d'une étape de transposition de beckmann
US8098750B2 (en) 2008-07-10 2012-01-17 Infineon Technologies Ag Method and device for transmitting a plurality of data symbols
JP2012209652A (ja) * 2011-03-29 2012-10-25 Advanced Telecommunication Research Institute International 無線通信システム、通信装置、情報機器、及び無線通信方法
JP2015023578A (ja) * 2013-07-17 2015-02-02 韓國電子通信研究院Electronics and Telecommunications Research Institute 無線通信システムにおける保安データ伝送装置および方法

Also Published As

Publication number Publication date
US20080069251A1 (en) 2008-03-20
EP1775875A1 (en) 2007-04-18
CN1993924A (zh) 2007-07-04
RU2007104173A (ru) 2008-08-10
BRPI0513074A (pt) 2008-04-22
JPWO2006013699A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2006013699A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
JPWO2006013798A1 (ja) 無線通信方法、無線通信システム及び無線通信装置
Tope et al. Unconditionally secure communications over fading channels
Shimizu et al. Physical-layer secret key agreement in two-way wireless relaying systems
EP2314016B1 (en) Cryptographic secret key distribution
KR20070046824A (ko) 무선 통신 장치 및 무선 통신 방법
Zhang et al. Verification of key generation from individual ofdm subcarrier's channel response
US20070036353A1 (en) Authentication and encryption methods using shared secret randomness in a joint channel
KR102282835B1 (ko) 셀룰러 통신들에 대한 이동성 향상들
Zhang et al. Secure key generation from OFDM subcarriers' channel responses
KR20090130209A (ko) Fdd, tdd 및 mimo 통신에서 jrnso를 수행하는 방법 및 장치
US11516655B2 (en) Physical layer key generation
CN103167495A (zh) 使用无线信道中的改变来生成私钥的设备和方法
JP2014509094A (ja) 無線通信を安全にするシステム及び方法
EP2833558A1 (en) Method for detecting eavesdroppers in a wireless communication system
KR100934832B1 (ko) 이동체 통신 시스템, 이동체 통신 시스템에 있어서의 이동단말, 그 제어 프로그램 및 이동체 통신 시스템에 있어서의동기 확립 판정 방법
WO2022057777A1 (zh) 信号传输方法、装置、接入节点、处理单元、系统及介质
CN103840866A (zh) 一种分布式波束成形方法和系统
EP3629515A1 (en) Secure communication in a wireless network
Qiao et al. Channel spoofer: Defeating channel variability and unpredictability
Barsocchi et al. SHAKE: Single HAsh key establishment for resource constrained devices
KR20070032040A (ko) 무선 통신 장치, 무선 통신 시스템 및 무선 통신 방법
US20150036516A1 (en) Method for detecting eavesdroppers in a wireless communication system
Caparra et al. 14 Wireless Physical-Layer Authentication for the Internet of Things
Lu et al. RIS-assisted physical layer key generation by exploiting randomness from channel coefficients of reflecting elements and OFDM subcarriers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531343

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11573057

Country of ref document: US

Ref document number: 2005758317

Country of ref document: EP

Ref document number: 1020077002622

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007104173

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200580026609.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020077002622

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005758317

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11573057

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005758317

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0513074

Country of ref document: BR