WO2006011831A1 - Dispositif de codade sur des ondes acoustiques de surface pour transpondeur passif - Google Patents

Dispositif de codade sur des ondes acoustiques de surface pour transpondeur passif Download PDF

Info

Publication number
WO2006011831A1
WO2006011831A1 PCT/RU2005/000390 RU2005000390W WO2006011831A1 WO 2006011831 A1 WO2006011831 A1 WO 2006011831A1 RU 2005000390 W RU2005000390 W RU 2005000390W WO 2006011831 A1 WO2006011831 A1 WO 2006011831A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
idt
input
idts
substrate
Prior art date
Application number
PCT/RU2005/000390
Other languages
English (en)
Russian (ru)
Inventor
Sergei Aleksandrovich Zabuzov
Sergei Mikhailovich Larionov
Vladimir Grigoryevich Mikheev
Sergei Anatolievich GOLOVIN
Andrei Evgenyevich Tyulin
Vasily Nikolaevich Tikmenov
Nikolai Yakovlevich Markov
Original Assignee
Sergei Aleksandrovich Zabuzov
Sergei Mikhailovich Larionov
Vladimir Grigoryevich Mikheev
Golovin Sergei Anatolyevich
Andrei Evgenyevich Tyulin
Vasily Nikolaevich Tikmenov
Nikolai Yakovlevich Markov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sergei Aleksandrovich Zabuzov, Sergei Mikhailovich Larionov, Vladimir Grigoryevich Mikheev, Golovin Sergei Anatolyevich, Andrei Evgenyevich Tyulin, Vasily Nikolaevich Tikmenov, Nikolai Yakovlevich Markov filed Critical Sergei Aleksandrovich Zabuzov
Publication of WO2006011831A1 publication Critical patent/WO2006011831A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • G01S13/753Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal using frequency selective elements, e.g. resonator

Definitions

  • the proposed technical solution relates to radar technology, in particular, to transponders for radio-frequency identification systems of moving and stationary objects.
  • Radio frequency identification and registration systems became widespread in the early 90s.
  • the object is identified by a unique digital code emitted by a transponder tag attached to the object.
  • the transponder is polled automatically using a transceiver (reader).
  • a transceiver reader
  • both active, powered by a built-in battery, and passive transponders are used.
  • the energy necessary for the formation of the response signal the passive transponder receives from the energy of the request signal of the reader.
  • the reader can interrogate a transponder due to ultrasonic, light or other energy.
  • the existing RFID systems of various manufacturers differ in the radius of action, the carrier frequency of the signals used, the type of modulation, the radio protocol and the amount of information returned by the transponder tag.
  • SUBSTITUTE SHEET (RULE 26) distances large enough to 15 meters and moving at speeds of up to 200 km / h.
  • SAW surface acoustic wave
  • the marker device for the RFID system contains a board and a receiving and emitting antenna placed on it, as well as a device for surface acoustic waves made in the form of a substrate of piezoelectric material, on which the input and output interdigital transducers (VPS) are located.
  • the output IDT is a pair of electrodes connected to the summing buses in accordance with a pre-selected code.
  • the maximum number of code combinations for this device is 2 N , where N is the number of pairs of output electrodes. With the actually acceptable dimensions of the device for surfactants for markers, the number of N characters varies from 16 to 32.
  • a further increase in the number N leads to unacceptably large sizes of the substrate of the device.
  • the maximum number of output electrodes is limited by the attenuation of the surfactant propagating through the sound duct.
  • the closest analogue to the claimed technical solution is a device for surfactants with parallel acoustic wave propagation paths described in US patent J64620191, IPC GOlS 013/80, published on 10/28/86.
  • the known surface acoustic wave (SAW) coding device for a passive transponder used in object identification systems comprises a piezoelectric substrate and N pairs of interdigital
  • each pair of IDTs consists of one input IDT and one output IDT and is tuned to a specific operating frequency.
  • the input IDTs to which the request signal arrives are located across the width of the substrate in one plane, one below the other. While the output IDTs can be arranged stepwise across the width of the substrate, or in different parts of the substrate. Electrically input and output IDTs can be interconnected both in series and in parallel.
  • phase coding of the response signal is performed by the so-called phase pads, i.e. metallization sites of sections of the sound duct in front of the electrodes of the output transducers, on which the SAW propagation speed is lower than on the free surface of the sound duct due to shorting the tangential component of the electric field.
  • the disadvantages of the above device is the complexity of the topological execution of the output Converter and the inability to obtain a large number of code combinations on the limited working area of the substrate of the device for surfactants.
  • the accuracy of performing phase pads for frequencies of about 1 GHz should be at least 0.01 ⁇ m, which is very difficult for the modern development of the technical level of precision lithography.
  • the number of code variations in a line of such a device, not exceeding four characters in a horizontal line is 2, that is, 16. It is difficult to imagine the implementation of such a device at a frequency of 2.45 GHz, since there are currently no technical manufacturing tools for its implementation.
  • SUBSTITUTE SHEET (RULE 26)
  • the maximum possible number of code combinations for this device does not exceed 120.
  • the objective of the present invention is to provide such a SAW encoding device for a transponder in which a significant increase in the number of possible code combinations is achieved without increasing the overall crystal size of the piezoelectric substrate.
  • a coding device for surface acoustic waves (SAW) for a passive transponder used in object identification systems containing a piezoelectric substrate and N pairs of interdigital transducers (IDT) located on the surface of the piezoelectric substrate in parallel rows along its width and each pair of IDTs consists of one input IDT and one output
  • N input IDTs to which the request signal arrives are located across the width of the substrate in one plane one below the other and are connected electrically in parallel with each other
  • N output IDTs, from which the response signal is taken are located stepwise along the width of the substrate at the base positions relative to the corresponding input IDTs, moreover, the output IDTs are located in adjacent rows either to the left of the output IDT in the previous row, or to the right of it, and are also electrically connected in parallel with each other,
  • SUBSTITUTE SHEET (RULE 26) it is proposed that at least two IDT pairs have different operating frequencies selected from M different values, the alternation of IDT pairs having different operating frequencies would be individual for each SAW device and correspond to a pre-selected code combination.
  • Each of the N output IDTs can be set along the length of the substrate with a shift relative to the base position in one of the fixed positions, individual for each SAW device and the corresponding pre-selected code combination.
  • the maximum number of code combinations for this device will be - (MxL) N , where M is the number of operating frequencies of the device, L is the number of fixed positions of the output IDT, including the base, N is the number of IDT pairs.
  • An additional feature of the encoding device is that one of the IDT pairs in which the output IDT is located at a fixed distance from the input ID at a minimum distance is made in the form of a reference one, which sets the initial delay of operation of the output IDTs.
  • the distance between the input and output reference converters determines the initial, reference delay of the device (Tnach).
  • SAW device for a passive transponder M is chosen to be two and L is three, which corresponds to the most optimal ratio between the number of code combinations of the device and the cost of its manufacture.
  • L is three
  • FIG. 1 shows the general case of the implementation of a coding device for SAWs, where 1 piezoelectric substrate, 2 input reference IDT, 3 output reference IDT, 4 input IDT, 5 output IDF frequency (spatial period) of reference IDT,
  • N is the number of input and output IDTs. Its maximum value is determined by the ratio of the maximum possible width of the substrate to the minimum possible aperture of the IDT constituting the row.
  • M is the number of frequencies (spatial periods) of the device.
  • the maximum value is determined by the quotient of the division of the allowed working band and the IDT band.
  • the maximum number L is determined by the maximum length of the sound duct and the number of partial output IDTs (the maximum possible number of lines).
  • N can reach 10-12
  • M can be 5-7
  • L can be 3-4.
  • Figure 2 shows an example implementation of the inventive device with four operating frequencies, to graphically simplify IDTs are shown in the form of rectangles.
  • Fig.3 shows the amplitude-frequency characteristic (module gain) for an example implementation of the device shown in figure 2.
  • Figure 4 shows the spatial frequency-coded pulse train of the transponder responses for an example implementation of the device shown in figure 2 (impulse response of the device).
  • Each line consisting of an input and output partial IDT, has its own frequency channel ⁇ fi, ⁇ f ⁇ , ⁇ f ⁇ , and ⁇ £ t.
  • each frequency channel has its own central frequency: f ⁇ , fg, fz and £ ". Since the input and output partial IDTs in each of its group are electrically connected in parallel, the general view of the frequency response of the device has a comb structure, shown in Fig. 4
  • the order of change of these frequencies in the vertical line of the input IDT is the frequency encoding of the device.
  • the frequency code will look like this: f2-fz-fi- £ t (if you assign a binary code to each frequency, then this frequency sequence can be expressed in a digital binary code).
  • each output IDT in its row can occupy one of the fixed positions, relative to the basic ones. These are: 0, + ⁇ t, - ⁇ t, +2 ⁇ t, -2 ⁇ t.
  • the output IDTs can occupy in their line either the basic - zero position, indicated in figures 1 and 2 by the number 0, or one of the additional positions,
  • SUBSTITUTE SHEET close to the base and shifted from it by any discrete value - plus / minus (s ⁇ t), where s is an integer (Fig. 2).
  • the encoding is the spatial arrangement of the output IDTs in rows in accordance with a pre-selected code combination.
  • the minimum spatial shift of the output IDT, corresponding to the minimum discrete value ⁇ t, can be half the wavelength of the surfactant corresponding to the frequency of this series of devices.
  • the phase shift of the output signal will be 180 degrees relative to the input signal, i.e. phase manipulation of the output signal will be carried out.
  • the response When interrogating a transponder with such an encoding device with a short radio pulse coming from the reader, a pulse with a wide spectrum that covers the entire operating band - ⁇ F of the device, the response will be the spatial frequency-coded sequence shown in Fig. 4.
  • the first from the origin, i.e. reference radio pulse, and the first in time of arrival is a pulse with a frequency f 2 .
  • the next in the sequence will be a radio pulse with a frequency fz.
  • a signal with a frequency ft will follow, with fi ⁇ fg ⁇ fz.
  • the frequency alternation will be different, for example, fz, U, fg and fi, and the temporal position of the sequence pulses may also change.
  • the second pulse can be shifted relative to its reference position along the direction of surfactant propagation by +2 ⁇ t, and the third pulse by - ⁇ t.
  • a unique code is implemented that is unique to it, and the number of searches of such codes is determined from the expression - (M ⁇ L) N.
  • a device similar to that described can be manufactured on high-precision photo-typing equipment with an accuracy of positioning elements of 0.02-0.03 ⁇ m,
  • SUBSTITUTE SHEET (RULE 26) with minimum element sizes of 0.35 - 0.40 microns, which corresponds to operating frequencies of a surfactant of about 2.5 GHz.
  • the technical and economic effect of the proposed technical solution consists in the fact that, while maintaining the technical requirements for the accuracy of technological equipment and the fixed geometric dimensions of the sound duct of a SAW device, it is possible to increase by more than two orders of the information capacity of a transponder for a SAW while maintaining its geometric dimensions. So, for example, over 4.5 billion code options can be achieved on sound ducts measuring 10xl0x0.5mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

La présente invention relève du domaine des techniques radar et peut être utilisée pour enregistrer une combinaison codée individuelle dans des transpondeurs passifs de systèmes d'identification radiofréquence d'objets mobiles et fixes. Cette invention vise à accroître le nombre de combinaisons codées admissibles sans augmenter les dimensions globales du cristal d'un substrat piézoélectrique, ce qui augmente la capacité d'information d'un transpondeur. Le dispositif de codage sur des ondes acoustiques de surface de cette invention comprend un substrat piézoélectrique et N paires de transpondeurs à contacts opposés disposés sur le substrat. Chaque paire de transpondeurs à contacts opposés comprend un transpondeur à contacts opposés d'entrée et un transpondeur à contacts opposés de sortie et est réglée sur une fréquence de fonctionnement déterminée. Les N transpondeurs à contacts opposés d'entrée auxquels le signal d'interrogation est envoyé sont disposés sur la largeur du substrat sur le même plan les uns sous les autres et sont connectés électriquement les uns aux autres en parallèle. Les N transpondeurs à contacts opposés de sortie à partir desquels le signal de réponse est envoyé sont disposés en escalier sur la largeur du substrat dans des positions correspondantes par rapport aux transpondeurs à contacts opposés d'entrée. Les N transpondeurs à contacts opposés de sortie sont disposés dans des rangées adjacentes soit à gauche du transpondeur à contacts opposés de sortie disposé dans la rangée précédente, soit à droite de celui-ci, et sont également connectés électriquement les uns aux autres en parallèle.
PCT/RU2005/000390 2004-07-20 2005-07-19 Dispositif de codade sur des ondes acoustiques de surface pour transpondeur passif WO2006011831A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2004122615 2004-07-20
RU2004122615/09A RU2270517C1 (ru) 2004-07-20 2004-07-20 Устройство кодирования на поверхностных акустических волнах для пассивного транспондера

Publications (1)

Publication Number Publication Date
WO2006011831A1 true WO2006011831A1 (fr) 2006-02-02

Family

ID=35786487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2005/000390 WO2006011831A1 (fr) 2004-07-20 2005-07-19 Dispositif de codade sur des ondes acoustiques de surface pour transpondeur passif

Country Status (2)

Country Link
RU (1) RU2270517C1 (fr)
WO (1) WO2006011831A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486665C1 (ru) * 2012-05-05 2013-06-27 Открытое акционерное общество "Научно-производственное предприятие "Радар ммс" Радиочастотное устройство идентификации на поверхностных акустических волнах

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669203C1 (ru) * 2017-08-14 2018-10-09 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Энергонезависимый транспондер

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620191A (en) * 1983-06-30 1986-10-28 Halvor Skeie Surface acoustic wave passive transponder having parallel acoustic wave paths
US4625208A (en) * 1983-06-30 1986-11-25 X-Cyte Inc. Surface acoustic wave passive transponder having acoustic wave reflectors
RU2105993C1 (ru) * 1992-01-03 1998-02-27 Сименс АГ Опрашиваемый по радио пассивный датчик на поверхностных акустических волнах
RU2126980C1 (ru) * 1997-07-02 1999-02-27 Научно-исследовательский институт измерительных систем Способ обнаружения и идентификации объекта
RU2133482C1 (ru) * 1997-07-01 1999-07-20 Научно-исследовательский институт измерительных систем Транспондер
US6633226B1 (en) * 1997-08-18 2003-10-14 X-Cyte, Inc. Frequency hopping spread spectrum passive acoustic wave identification device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620191A (en) * 1983-06-30 1986-10-28 Halvor Skeie Surface acoustic wave passive transponder having parallel acoustic wave paths
US4625208A (en) * 1983-06-30 1986-11-25 X-Cyte Inc. Surface acoustic wave passive transponder having acoustic wave reflectors
RU2105993C1 (ru) * 1992-01-03 1998-02-27 Сименс АГ Опрашиваемый по радио пассивный датчик на поверхностных акустических волнах
RU2133482C1 (ru) * 1997-07-01 1999-07-20 Научно-исследовательский институт измерительных систем Транспондер
RU2126980C1 (ru) * 1997-07-02 1999-02-27 Научно-исследовательский институт измерительных систем Способ обнаружения и идентификации объекта
US6633226B1 (en) * 1997-08-18 2003-10-14 X-Cyte, Inc. Frequency hopping spread spectrum passive acoustic wave identification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486665C1 (ru) * 2012-05-05 2013-06-27 Открытое акционерное общество "Научно-производственное предприятие "Радар ммс" Радиочастотное устройство идентификации на поверхностных акустических волнах

Also Published As

Publication number Publication date
RU2270517C1 (ru) 2006-02-20

Similar Documents

Publication Publication Date Title
US4625208A (en) Surface acoustic wave passive transponder having acoustic wave reflectors
US7961105B2 (en) Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors
Seifert et al. Mechanical sensors based on surface acoustic waves
US6259991B1 (en) Environmental location system
KR940704031A (ko) 수동 표면파 센서 장치(passive surface wave sensor which can be wirelessly interrogated)
RU2158936C2 (ru) Идентификационная метка, работающая с поверхностными акустическими волнами
US7791249B2 (en) Frequency coded sensors incorporating tapers
RU94038221A (ru) Опрашиваемый по радио пассивный датчик на поверхностных акустических волнах
RU2253149C2 (ru) Опрашиваемый по радио элемент на поверхностных акустических волнах с оптимальным объемом кода
US4620191A (en) Surface acoustic wave passive transponder having parallel acoustic wave paths
US6827281B2 (en) Encoded SAW RFID tags and sensors for multi-user detection using IDT finger phase modulation
RU2001120341A (ru) Опрашиваемый по радио элемент на поверхностных акустических волнах с оптимальным объемом кода
US8168424B2 (en) Differentiation and identification of analogous chemical and biological substances with biosensors
US20020140598A1 (en) Process for carrying out a non-contact remote interrogation
CA1228911A (fr) Repeteur passif a ondes acoustiques de surface equipe de reflecteurs acoustiques
CN107329142B (zh) 基于多频相位差的saw rfid标签测距方法
US4604623A (en) Surface acoustic wave passive transponder having non-reflective transducers and pads
GB2165423A (en) System for interrogating a passive transponder carrying phase-encoded information
CA1228912A (fr) Repeteur passif a ondes acoustiques de surface equipe de pastilles de modification d'amplitude et de phase
RU2344437C2 (ru) Система радиочастотной идентификации на поверхностных акустических волнах
WO2006011831A1 (fr) Dispositif de codade sur des ondes acoustiques de surface pour transpondeur passif
US9435768B2 (en) Method of interrogating a sensor of surface acoustic wave type
US20220296099A1 (en) Physiological information monitoring and identification method, characterization information monitoring and identification method, and physiological information monitoring radar
RU2665496C1 (ru) Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием
RU135451U1 (ru) Пассивная радиочастотная идентификационная метка на поверхностных акустических волнах

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase