RU2665496C1 - Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием - Google Patents

Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием Download PDF

Info

Publication number
RU2665496C1
RU2665496C1 RU2017140388A RU2017140388A RU2665496C1 RU 2665496 C1 RU2665496 C1 RU 2665496C1 RU 2017140388 A RU2017140388 A RU 2017140388A RU 2017140388 A RU2017140388 A RU 2017140388A RU 2665496 C1 RU2665496 C1 RU 2665496C1
Authority
RU
Russia
Prior art keywords
frequency
acoustic waves
collision
time
passive
Prior art date
Application number
RU2017140388A
Other languages
English (en)
Inventor
Александр Васильевич Сорокин
Александр Павлович Шепета
Гисбертх Мауритс Ваттимена
Original Assignee
Александр Васильевич Сорокин
Александр Павлович Шепета
Гисбертх Мауритс Ваттимена
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Васильевич Сорокин, Александр Павлович Шепета, Гисбертх Мауритс Ваттимена filed Critical Александр Васильевич Сорокин
Priority to RU2017140388A priority Critical patent/RU2665496C1/ru
Application granted granted Critical
Publication of RU2665496C1 publication Critical patent/RU2665496C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к области радиотехники и может быть использовано для измерения температуры в мультисенсорных системах мониторинга. Достигаемый технический результат заключается в разделении сигналов от нескольких датчиков температуры в частотной и временной области, в случае, если при одновременном опросе множества пассивных датчиков считывающим устройством, ответные сигналы датчиков наложились друг на друга во времени, что тем самым решает проблему коллизии в мультисенсорных системах мониторинга. Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием, отличающийся тем, что содержит топологию, содержащую отражающие структуры, коэффициент отражения которых определен соответствующей частотой ƒ, а изменение положения рефлекторов в случае изменения температуры окружающей среды влечет изменения фазы последних трех импульсов ответного сигнала, что делает возможным разделение, идентификацию по двум информационным признакам - времени и частоте, а также измерение температуры множества пассивных датчиков температуры в зоне чтения считывателя, тем самым решив коллизию, возникшую между пассивными датчиками температуры на поверхностных акустических волнах.

Description

Изобретение относится к области радиотехники и может быть использовано для измерения температуры в мультисенсорных системах мониторинга.
Известен пассивный датчик температуры на поверхностных акустических волнах (патент РФ №2585487, H01L 41/08, G01K 11/24), содержащий герметичный корпус, в котором находится пьезоэлектрический звукопровод с большим температурным коэффициентом задержки (ТКЗ) порядка 10-4 1/градус, на рабочей поверхности которого расположены встречно-штыревые преобразователи (ВШП) с одинаковой центральной частотой ƒ0, один из которых нагружен на приемопередающую антенну, а другой встречно-штыревой преобразователь (ВШП) является отражательным и один пьезоэлектрический звукопровод с малым ТКЗ, в 50-100 раз меньшим по сравнению с ТКЗ порядка 10-4 1/градус, на котором расположены также два ВШП с той же центральной частотой ƒ0, один из которых соединен электрически с приемопередающей антенной параллельно с ВШП, расположенным на звукопроводе с большим ТКЗ, а другой ВШП - отражательный.
Недостатком такого датчика является конструктивная избыточность и большие потери при распространении акустических импульсов по двум звукопроводам, что уменьшает возможное расстояние для считывания информации о температуре.
Известен способ устранения коллизии в наборе датчиков и устройство для его реализации (патент РФ №2585911), в котором формируют набор из N датчиков на линиях задержки на поверхностных акустических волнах, рефлекторы датчиков располагают на пьезоэлектрических подложках в следующем порядке: первый рефлектор первого датчика, первый рефлектор второго датчика, первый рефлектор N-го датчика, затем второй рефлектор первого датчика, второй рефлектор второго датчика, второй рефлектор N-го датчика, третий рефлектор первого датчика, третий рефлектор второго датчика, третий рефлектор N-го датчика, проводят опрос датчиков, принимают сигналы откликов датчиков и проводят их обработку, при этом последовательно для каждого датчика определяют время задержки сигнала между первым и третьим рефлекторами, определяют разность фаз для виртуального времени задержки, разность фаз для времени задержки между первым и вторым рефлекторами и разность фаз между первым и третьим рефлекторами, по которым определяют значение контролируемой физической величины, полученные значения передают на устройство сбора данных.
Недостатком изобретения является отсутствие дополнительного информационного признака, позволяющего увеличить количество одновременно опрашиваемых пассивных датчиков на поверхностных акустических волнах.
Наиболее близким к заявляемому техническому решению является решение, применяющее взвешенные решетки отражателей для ортогонально-частотно-кодированных поверхностных акустических волнах, меток и датчиков (Патент US №7961105 В2), располагаемых на поверхности пьезоэлектрической подложки датчика температуры, который содержит широкополосный входной преобразователь и отражательные решетки с множеством взвешенных отражателей. Устройство принимает ортогональный сигнал опроса и в ответ передает ортогональный частотно-кодированный сигнал, который позволяет получить информацию о температуре.
Недостатком такого решения является возможность применения только ортогонально-частотного кодирования, что ограничивает количество одновременно опрашиваемых меток в условиях коллизии.
Техническая задача и технический результат
Основной задачей, на решение которой направлено изобретение пассивного антиколлизионного датчика температуры на поверхностных акустических волнах с частотно-временным кодовым отличием, является разделение ответных откликов от датчиков, содержащих информацию о температуре в условиях коллизии множества меток, то есть наложении ответных сигналов друг на друга во времени, препятствующему обработке информации при одновременном опросе считывающим устройством.
Технический результат заключается в разделении сигналов от нескольких датчиков в частотной и временной области, при одновременном опросе считывающим устройством, в случае, если ответные импульсы сигналов от нескольких пассивных датчиков наложились во времени друг на друга, препятствуя обработке информации для определения температуры окружающей среды. Таким образом, решается проблема коллизий нескольких пассивных датчиков. Результат достигается благодаря наличию в топологии датчика широкополосного встречно-штыревого преобразователя, последовательно расположенных ортогонально-частотно-кодированных структур во временных слотах, позволяющих получить идентификационный код каждого датчика в условиях коллизии и последовательно расположенных рефлекторов, позволяющих получить информацию о температуре.
Технический результат достигается тем, что в каждом из 4 слотов расположена только одна ортогонально-частотно-кодированная отражающая структура, которая имеет коэффициент отражения для акустических импульсов, зависящий от определенной частоты. При совпадении этой частоты с несущей частотой k-го импульса ƒk, акустические импульсы отражаются обратно в ВШП, а остальные импульсы продолжают свое распространение до тех пор, пока не встретят структуру, коэффициент отражения которой определен частотой, совпадающей с несущей частотой импульса. Последний акустический импульс, имеющий частоту ƒc, пройдя через все отражающие структуры, встречает на своем пути неоднородность в виде группы из трех рефлекторов. Часть импульса отражается, а часть проходит к следующему рефлектору, где также часть отражается, а часть проходит к последнему рефлектору [1-3]. Таким образом, ответный сигнал представляет собой последовательность задержанных во времени 7 импульсов, где первые четыре импульса имеют неповторяющиеся несущие частоты, а последние три - одинаковую несущую частоту. Несущие частоты первых четырех импульсов и временные задержки между ними определяют идентификационный код датчика температуры, а временная задержка между последними тремя импульсами определяет температуру окружающей среды.
Сущность изобретения поясняется чертежами:
На Фиг. 1. - Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием, где введены следующие обозначения.
1. Антенна
2. Широкополосный встречно-штыревой преобразователь
3. Отражающие структуры
4. Слоты
5. Пьезоэлектрическая подложка
6. Рефлекторы
На Фиг 2. Ответный сигнал датчика температуры.
Предлагаемое изобретение функционирует следующим образом. Считывающее устройство излучает сигнал вида:
Figure 00000001
где Т1’ и Т2’- начальное и конечное время опросного сигнала соответственно, А - амплитуда сигнала, wk - частота k-го импульса, ϕk - фаза k-го импульса, N - количество импульсов за период длительности опросного сигнала, ƒc - несущая частота последнего импульса в составе опросного сигнала, ϕ0 - начальная фаза частоты ƒc для последнего импульса.
Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым различием, представленный на фиг. 1, состоит из пьезоэлектрической подложки 5, на поверхности которой последовательно расположены однонаправленный широкополосный встречно-штыревой преобразователь 2 с антенной 1, четыре ортогонально-частотно-кодированные отражающие структуры 3, расположенные в условных временных слотах 4, положение в которых определяет идентификационный код датчика температуры, три рефлектора 6.
Слоты 4, расположенные на определенном расстоянии R, разделены на n частей. Количество слотов на всей метке М. В каждом слоте расположена только одна ортогонально-частотно-кодированная структура 3. Коэффициенты отражения структур 3 определены различными не повторяющимися для последующих структур частотами. Рефлекторы 6 расположены на расстоянии X между собой.
Приходящий опросный электромагнитный сигнал преобразуется с помощью ВШП в сигнал в виде поверхностных акустических волн, полностью повторяющий по форме опросный сигнал. Акустические импульсы распространяются по поверхности пьезоэлектрической подложки. В случае, если несущая частота k-го импульса совпадает с частотой, которая определяет коэффициент отражения k-й отражающей структуры - этот импульс отражается обратно в ВШП. Остальные импульсы продолжают свое распространение до тех пор, пока не достигнут отражающих структур, у которых частота, определяющая коэффициент отражения совпадает с несущей частотой акустического импульса. Отраженные импульсы приходят обратно в ВШП, и таким образом формируется ответный отклик идентификационной метки в виде последовательных импульсов.
Импульс с несущей частотой ƒc, не совпадающей ни с одной из ортогонально кодированных структур 3 продолжает распространение до тех пор, пока не встретит неоднородность на своем пути в виде рефлекторов. Часть акустической волны отражается обратно в ВШП 2, а часть продолжает распространяться до следующего рефлектора 6, где также часть волны отражается, а часть проходит к последнему рефлектору, отражаясь от него.
Ответный сигнал от антиколлизионного пассивного датчика температуры на поверхностных акустических волнах может быть представлен как:
Figure 00000002
где T’1k и T’2k - начальное и конечное время каждого импульса, отраженного от ортогонально-частотно-кодированной структуры (ОЧКС), Ak - амплитуда отраженного k-го импульса ОЧКС, wk - частота k-го импульса ОЧКС, ϕk - фаза k-го отраженного импульса от ОЧКС, M - количество ответных импульсов от поверхностных акустических волнах метки, x(t) сигнал, отраженный от рефлекторов 5.
Значение частот для отражающих структур 3 выбирается от wk до wk=M. Таким образом, с ВШП в устройство считывателя излучается сигнал в виде последовательности задержанных во времени импульсов, причем каждый - со своей частотой. Последние три ответные импульса, отраженные от рефлекторов 6, содержат одинаковую несущую частоту.
Импульсы, приходящие от отражающих структур 3, задержаны относительно друг друга во времени, пропорциональному расстоянию определяемому топологией метки. Таким образом, топология описанной пассивной метки на поверхностных акустических волнах позволяет получить временной и частотный информационный признак для дальнейшего частотно-временного кодирования каждой метки и ее идентификации в случае коллизии нескольких меток.
Сигнал, отраженный от рефлекторов, может быть выражен как:
Figure 00000003
где Ai - коэффициент затухания амплитуды за счет потерь при распространении акустических волн, τc и τri - задержка распространения электромагнитной волны и акустической волны в свободном пространстве соответственно, θri - фазовый сдвиг центральной частоты, связанный характеристиками отражения от i-го рефлектора, ƒc - несущая частота, ϕ0 - начальная фаза несущей частоты, h(t) - огибающая функция.
Задержка распространения акустической волны τi и фазовая задержка ϕi для i-го рефлектора может быть представлена как:
Figure 00000004
Figure 00000005
При различной температуре окружающей среды задержка распространения акустической волны τi будет изменяться из-за изменения расстояния между рефлекторами. Температура окружающей среды Т определяется с помощью рефлекторов 6 как:
Figure 00000006
где Δφij - разница фаз, определяемая как: 2πƒсji), TCD - температурный коэффициент задержки, φij - разность фазовых задержек между отраженными от i-го и j-го рефлектора импульсов, соответсвующих i-у и j-у рефлектору, φij,0 - расчетное значение при температуре окружающей среды, T0 - опорная температура [4-7].
Источники информации
1. Harma S., Plessky V.P. Surface Acoustic Wave RFID Tags [Development and Implementation of RFID Technology], no 1(1), 145-158 (2009).
2. Plessky V.P., Reindl L.M. Review on SAW RFID tags, Proc. IEEE Trans Ultrason Ferroelectr Freq Control. 57(3), 654-68 (2010). Harma S., Arthur W.G., Hartmann C.S., Maev R.G., Plessky V.P., Inline SAW RFID Tag Using Time Position and Phase Encoding, Proc. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55(8), 145-158 (2008).
3. S. Harma, V. Plessky, C. Hartmann, W. Steichen. Z- path SAW RFID tag, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 55, no. 1, pp. 208-213, Jan. 2008.
4. Malocha D.C., M. Gallagher, B. Fisher, J. Humphries, D. Gallagher, N. Kozlovski. Passive Wireless Multi-Sensor SAW Technology Device and System Perspective, Sensors 2013 13(1), 1-27 (2013).
5. Malocha D.C.; Puccio D.; Gallagher D. Orthogonal Frequency Coding for SAW Device Applications. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, Canada, 24-27 August 2004; pp. 1082-1085.
6. Malocha D.C.; Gallagher D.; Hines J. SAW Sensors Using Orthogonal Frequency Coding. In Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, Montreal, Canada, 24-27 August 2004; pp. 307-310.
7. Морган Д. Устройства обработки сигналов на поверхностных акустических волнах. Пер. с англ. - М.: Радио и связь, 1990 - 416 с.

Claims (1)

  1. Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием, содержащий на поверхности пьезоэлектрической подложки широкополосный входной преобразователь с антенной и последовательно расположенные отражательные структуры, содержащие множество взвешенных отражателей, отличающийся тем, что на пьезоэлектрической подложке последовательно расположены антенна, соединенная с однонаправленным широкополосным встречно-штыревым преобразователем, четыре временные слота, в каждом из которых располагается только по одной ортогонально частотно-кодированной отражающей структуре, которая может находиться в одном из n возможных положений в слоте, при этом слоты расположены на расстоянии R между собой, а каждая отражающая структура имеет коэффициент отражения для акустической волны, зависящий от частоты
    Figure 00000007
    , который равен единице для акустических импульсов с несущей частотой, совпадающей с частотой
    Figure 00000007
    , при этом для импульсов, имеющих отличные от
    Figure 00000007
    несущие частоты, коэффициент отражения близок к нулю, три последовательных рефлектора, расстояние между которыми определяет задержку отраженных акустических импульсов в зависимости от температуры окружающей среды.
RU2017140388A 2017-11-20 2017-11-20 Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием RU2665496C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017140388A RU2665496C1 (ru) 2017-11-20 2017-11-20 Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017140388A RU2665496C1 (ru) 2017-11-20 2017-11-20 Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием

Publications (1)

Publication Number Publication Date
RU2665496C1 true RU2665496C1 (ru) 2018-08-30

Family

ID=63459808

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017140388A RU2665496C1 (ru) 2017-11-20 2017-11-20 Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием

Country Status (1)

Country Link
RU (1) RU2665496C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU204272U1 (ru) * 2020-07-03 2021-05-18 Открытое акционерное общество "Авангард" Беспроводной датчик измерения температуры шин электрических шкафов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU775637A1 (ru) * 1979-01-22 1980-10-30 Омский политехнический институт Устройство дл измерени температуры
US7961105B2 (en) * 2005-08-25 2011-06-14 University Of Central Florida Research Foundation, Inc. Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors
RU123180U1 (ru) * 2012-06-07 2012-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Датчик на поверхностных акустических волнах с проволочной антенной
RU2585487C1 (ru) * 2015-01-19 2016-05-27 Федеральное Государственное Унитарное Предприятие Ордена Трудового Красного Знамени Научно-Исследовательский Институт Радио (Фгуп Ниир) Пассивный датчик температуры на поверхностных акустических волнах
RU2585911C1 (ru) * 2015-03-31 2016-06-10 Открытое акционерное общество "Авангард" Способ устранения коллизии в наборе датчиков и устройство для его реализации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU775637A1 (ru) * 1979-01-22 1980-10-30 Омский политехнический институт Устройство дл измерени температуры
US7961105B2 (en) * 2005-08-25 2011-06-14 University Of Central Florida Research Foundation, Inc. Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors
RU123180U1 (ru) * 2012-06-07 2012-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Датчик на поверхностных акустических волнах с проволочной антенной
RU2585487C1 (ru) * 2015-01-19 2016-05-27 Федеральное Государственное Унитарное Предприятие Ордена Трудового Красного Знамени Научно-Исследовательский Институт Радио (Фгуп Ниир) Пассивный датчик температуры на поверхностных акустических волнах
RU2585911C1 (ru) * 2015-03-31 2016-06-10 Открытое акционерное общество "Авангард" Способ устранения коллизии в наборе датчиков и устройство для его реализации

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU204272U1 (ru) * 2020-07-03 2021-05-18 Открытое акционерное общество "Авангард" Беспроводной датчик измерения температуры шин электрических шкафов

Similar Documents

Publication Publication Date Title
US7961105B2 (en) Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors
US3706094A (en) Electronic surveillance system
US20200334423A1 (en) Low loss acoustic wave sensors and tags and high efficiency antennas and methods for remote activation thereof
US20070296305A1 (en) Frequency coded sensors incorporating tapers
CN107329142B (zh) 基于多频相位差的saw rfid标签测距方法
Puccio et al. SAW sensors using orthogonal frequency coding
RU2585911C1 (ru) Способ устранения коллизии в наборе датчиков и устройство для его реализации
Sorokin et al. Comparative characteristics of anti-collision processing of radio signal from identification tags on surface acoustic waves
RU2344437C2 (ru) Система радиочастотной идентификации на поверхностных акустических волнах
RU2665496C1 (ru) Пассивный антиколлизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием
RU179933U1 (ru) Пассивный антиколизионный датчик температуры на поверхностных акустических волнах с частотно-временным кодовым отличием
Zhao et al. Computational design of optimal waveforms for MIMO radar via multi-dimensional iterative spectral approximation
RU2585487C1 (ru) Пассивный датчик температуры на поверхностных акустических волнах
Sorokin et al. Time-frequency approach to anti-collision signal processing for RFID SAW tags
US9435768B2 (en) Method of interrogating a sensor of surface acoustic wave type
CN105136334B (zh) 一种具有防碰撞功能的声表面波延迟线型无线传感器系统
Gulyaev et al. SAW radio-frequency identification tag for the 6-GHz band
RU168220U1 (ru) Антиколлизионная радиочастотная идентификационная метка на поверхностных акустических волнах
Sorokin et al. Encoding of passive anticollision radio frequency identification surface acoustic waves tags
RU2410716C2 (ru) Радиочастотное устройство идентификации на поверхностных акустических волнах
Härmä et al. SAW RFID tag with reduced size
KR102250621B1 (ko) Fmcw 레이더의 파라미터 검출 장치 및 방법
Brandl et al. A new anti-collision method for SAW tags using linear block codes
Pavlina et al. SAW RFID spread spectrum OFC and TDM technology
RU135451U1 (ru) Пассивная радиочастотная идентификационная метка на поверхностных акустических волнах

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191121