WO2006006474A1 - Exposure system - Google Patents

Exposure system Download PDF

Info

Publication number
WO2006006474A1
WO2006006474A1 PCT/JP2005/012529 JP2005012529W WO2006006474A1 WO 2006006474 A1 WO2006006474 A1 WO 2006006474A1 JP 2005012529 W JP2005012529 W JP 2005012529W WO 2006006474 A1 WO2006006474 A1 WO 2006006474A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
light emitter
lens array
efficiency
Prior art date
Application number
PCT/JP2005/012529
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunobu Ohkubo
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Publication of WO2006006474A1 publication Critical patent/WO2006006474A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/50Picture reproducers
    • H04N1/504Reproducing the colour component signals line-sequentially

Definitions

  • the present invention relates to an exposure apparatus, and more particularly to an exposure apparatus that exposes a photosensitive material family by passing each light emitted from a large number of light emitters arranged in a light emitting head through a lens array section.
  • the photosensitive material for hard copy used in such an apparatus is a color photographic paper, a color silver salt film or the like, and the exposure part for exposing the photosensitive material is each color of red, green, and blue. It is known that it is composed of a number of light emitters that emit each of the light beams and an imaging optical system that forms an erecting equal-magnification image of the light emitted from the light emitters on a photosensitive material. ing.
  • an imaging optical system using a lens array in which a large number of gradient index lenses are arranged Japanese Patent Laid-Open Nos. 7-2 2 6 49 and 2 0 0 1). — See 1 6 7 8 7 4).
  • the power supply voltage of each drive circuit for driving the light emitter The photosensitive material can be colored at the maximum density by setting it to a voltage higher than a predetermined voltage at which the material can be colored at the maximum density. Further, the driving voltage of each light emitter that emits the light of each color required to develop the color of the photosensitive material at the maximum density is different for each color. Therefore, the power supply voltage is determined according to the highest voltage among the drive voltages required for each light emitter that emits light of each color and capable of developing the photosensitive material at the maximum density.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exposure apparatus that can suppress the power supply voltage of a drive circuit that drives a light emitter, thereby reducing the apparatus cost.
  • the exposure apparatus of the present invention has a plurality of light emitter rows in which a large number of light emitters that emit light of the same color are arranged in one row, and each light emitter row emits light of a different color. And imaging each light emitted from the light emitter on a photosensitive material,
  • An exposure apparatus having a lens array unit composed of a large number of lenses arranged in one direction, and a light emitting head that emits light of a color with high coloring efficiency when the photosensitive material is exposed to color.
  • the light emitter array that emits light with a color generation efficiency lower than that of the light of this color is positioned closer to the center of the lens array in the width direction than the array. It is a feature.
  • positioning the illuminant row closer to the center in the width direction of the lens array portion J means that the central axis of the luminous flux of the light emitted from the illuminant constituting the illuminant row is the other illuminant row. This means that the light emitter row is positioned so as to pass closer to the center of the lens array portion in the width direction than the central axis of the luminous flux of the light emitted from the light emitter that constitutes .
  • the light emitting head includes: a light emitter row that emits light of a color with the lowest coloring efficiency among the plurality of light emitter rows; and another light emitter row that is different from the light emitter row.
  • a light emitter row that emits light of a color with low color development efficiency compared to light of this color than a light emitter row that emits light of a color with high color development efficiency. Can be positioned closer to the center of the lens array portion in the width direction.
  • the light emitting head has a light of this color as compared with the light emitter row that emits light having a high coloration efficiency for any two light emitter rows selected from the plurality of light emitter rows.
  • the light emitter array that emits light having a color development efficiency lower than that of the lens array can be positioned closer to the center in the width direction of the lens array section. That is, the plurality of light emitter rows can be positioned closer to the center in the width direction of the lens array portion in the order of poor coloring efficiency.
  • the different colors may be red, green, and blue.
  • Each lens constituting the lens array unit can be a gradient index lens.
  • the lens array part may be a microlens array.
  • the microphone mouth lens array is one in which a large number of microphone mouth lenses are arranged on one substrate, and this substrate and a number of microphone mouth lenses are formed in a body.
  • the light emitter may be composed of an organic EL element, an inorganic EL element, or an LED element.
  • the present inventor has said that the coloring efficiency is different for each of the colors,
  • the light utilization efficiency (light utilization efficiency will be described later) differs depending on the location of the light emitted from the light emitter array through the lens array, and the above photosensitive material is colored at the maximum density.
  • the drive voltage of each light emitter row is different for each color, and the power supply voltage is determined according to the highest voltage among the drive voltages determined for each color (that is, the drive circuit of each light emitter row).
  • Each power source voltage can be kept low while enabling each light emitter row to be driven so as to obtain the amount of light of each color that develops the photosensitive material at the maximum density. This is the finding of the arrangement of the light emitter rows.
  • the light utilization efficiency is the ratio of the light amount before passing through the lens array portion of the light to the light amount after passing through the lens array portion.
  • the color of the light emitting efficiency is lower than that of the light emitter array that emits light of a color with high color development efficiency when the photosensitive material is exposed to color. Since the light emitter array that emits light is positioned closer to the center of the lens array in the width direction, the power supply voltage for driving the light emitter can be kept low, thereby reducing the equipment cost. Can be reduced. The reason will be described below.
  • two illuminant rows that emit light of different colors in the illuminant row (here, the illuminant row that emits light of a color with low coloring efficiency is referred to as a low-efficiency illuminant row, and Let us consider a light emitter array that emits light of a color with a higher coloring efficiency than the color of light emitted by the low efficiency light emitter array.
  • the driving voltage of the illuminant for coloring the photosensitive material at a coloration rate of 100% without passing light through the lens array section is high-efficiency
  • the low-efficiency luminous body row is higher than the body row.
  • the amount of exposure light when exposing the photosensitive material by passing the same color and the same amount of light emitted from the illuminant array through the lens array section passes this light through the optical path with high light utilization efficiency in the lens array section.
  • the range of the light beam that is incident on the lens array unit and kicked by the lens array unit when passing through the lens array unit is Since the optical axis of the light beam passing through the zoom section decreases as the distance from the center in the width direction of the lens array section decreases, the light passing through the optical path closer to the center in the width direction of the lens array section is more in comparison to this optical path.
  • the driving voltage of the light emitter array required for coloring the photosensitive material by 100% depends on the center in the width direction of the lens array portion where the loss of light amount is small. It can be lowered by passing it closer.
  • the power supply voltage is set according to the highest voltage among the drive voltages (each maximum drive voltage) of each light emitter row for causing the lens array part to emit light with a color development rate of 100%. Determined.
  • light emitted from a low-efficiency illuminant array having a higher driving voltage for coloring the photosensitive material at a coloring rate of 100% is used to cause the photosensitive material to develop a color at a coloring rate of 100%.
  • the light emitted from the light emitters of the low-efficiency light emitter row is made to pass through the light-sensitive material with a color development rate of 10 0, rather than passing through an optical path that is further away from the center of the lens array portion in the width direction.
  • Driving the optical path closer to the width direction from the center of the lens array part where the driving voltage for color development at 0% is lower is the above for driving both the high efficiency light emitter array and the low efficiency light emitter array.
  • the power supply voltage can be kept low.
  • two light emitter rows that emit light of different colors have been considered.
  • a light emitter row that emits light of a color with the lowest coloring efficiency among a plurality of light emitter rows and The above consideration is applied to any one of the plurality of light emitter rows different from the light emitter row, or two light emitters selectable from the plurality of light emitter rows.
  • FIG. 1 is a perspective view showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention.
  • Fig. 2 is a side view of the exposure device as seen from the direction of arrow X in Fig. 1.
  • Fig. 3 A and B are views of the emitter array and lens array as seen from above.
  • Fig. 4 is a diagram for explaining the coloring efficiency when the lens array portion is removed from the exposure apparatus.
  • Fig. 5 A and B are diagrams showing various examples of the phosphors included in the light emitting head. Showing the schematic configuration of the exposure apparatus of
  • FIG. 7A and 7B are diagrams showing an example of the arrangement of the light emitter rows with respect to the lens array portion in the exposure apparatus of the present invention.
  • FIGS. 8A and B are diagrams showing an example of the arrangement of the light emitter rows with respect to the lens array portion in the exposure apparatus of the present invention
  • Figure 9A shows the spectral sensitivity of the photosensitive material
  • Figure 9B shows the normalized power spectrum
  • Figure 9C shows the relative luminous sensitivity
  • FIG. 10 is a diagram showing the relationship between the driving voltage of a light emitter and the luminance of light emitted from this light emitter.
  • FIG. 1 is a perspective view showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention
  • FIG. 2 is a side view of the exposure apparatus seen from the direction of arrow X in FIG. 1
  • FIG. Fig. 3B is a top view of the lens array
  • Fig. 3B shows the position of the light passing through the lens array on the horizontal axis and the position in the Y direction shown in Fig. 1 on the vertical axis.
  • Fig. 4 is a diagram illustrating the relationship with the utilization efficiency
  • Fig. 4 is a diagram for explaining the color development efficiency
  • Figs. 5A and 5B are diagrams of the illuminant constituting the light emitting head. It is a figure which shows various aspects.
  • the illustrated exposure apparatus 10 1 of the present invention has a light emitter row 1 1 R in which a large number of light emitters Q r that emit red light of the same color are arranged in one row, and green that is light of the same color.
  • the light emitter array 1 1 G which has a large number of light emitters Q g that emit light of the same color, and the same color light
  • a light emitting head 10 having a light emitter row 1 1 B (collectively referred to as a light emitter row 1 1) in which a large number of light emitters Q b emitting blue light are arranged in one row, each light emission Body rows 1 1 R, 1 1 G, 1 1 B are different colors, emitting heads emitting red, green, and blue light 1 0 and the above emitters Q r, Q g, Q b (Collectively also referred to as the illuminant Q).
  • Each lens emitted from the lens is formed on a color paper 1 that is a photosensitive material. It has.
  • the exposure apparatus 1 0 1 further includes drive circuits 30 R, 3 0 G, 3 0 B (collectively referred to as drive circuits 3 0) that drive each of the light emitter rows 1 1, and One drive power source 35 for the drive circuit 30 is provided.
  • the color paper 1 is linearly exposed in the main scanning direction (arrow X direction in the figure), which is the direction in which each light emitter row extends by the above exposure apparatus, while in the sub-scanning direction (arrow Y direction in the figure). It is transported and exposed in two dimensions.
  • Each of the light emitters Q can be composed of an organic EL element, an inorganic EL element, an LED element, or the like.
  • the lens array unit 20 may be a microlens array, or each lens L of the lens array unit 20 may be a gradient index lens.
  • the lens array unit 20 forms an erecting equal-magnification image of the illuminant Q, that is, an erecting equal-magnification image of light emitted from the illuminant Q on the color paper 1. .
  • the light-emitting head 10 has a color development efficiency lower than that of the light emitter array that emits light having a high color development efficiency when the color paper 1 is exposed to color.
  • the light emitter array that emits light is positioned closer to the center of the lens array section 20 in the width direction.
  • the emitter array 1 1 R that emits red light with a lower coloring efficiency than the light emitter array G that emits green light with a higher coloring efficiency is used in the lens array section.
  • the light emitter row R which is positioned closer to the center in the width direction of 20 and emits red light with high color development efficiency
  • blue light with lower color development efficiency than this red light is emitted.
  • the emitted light emitter row 11 B is positioned closer to the center of the lens array portion 20 in the width direction.
  • the color having the highest color development efficiency is green, and the color development efficiency decreases in the order of red and blue. That is, the green color development efficiency E g> the red color development efficiency E r> the blue color development efficiency E b.
  • each light emitter row 1 1 R, 1 1 G, 1 1 B arranged in the light emitting head 10 is arranged in parallel to the incident surface 20 N of the lens array section 20, and the lens A light emitter array 11 B that emits blue light is arranged at the center C in the width direction of the array section 20 (in the arrow Y direction in the figure).
  • the emitter row 1 1 R that emits red light which has higher coloring efficiency than the blue color
  • the emitter row 1 1 G that emits green light are blue.
  • the light emitter row 1 1 B that emits light is arranged on both sides, and the light emitter row 1 1 R is arranged closer to the center C than the light emitter row 1 1 G in the width direction.
  • the body row 11 B is disposed closer to the center C in the width direction than the light emitter row 11 R.
  • the light emitter row 1 1 R is arranged at a position K 2 away from the center C in the width direction by a distance L 2
  • each light emitter row 1 1 R, 1 1 G, 1 IB was driven with the same voltage and emitted from each light emitter row 1 1 R, 1 1 G, 1 1 B.
  • the color development rate is green light.
  • the color developed by exposure is highest, and decreases in the order of red and blue. That is, under the above conditions, the green color development rate H g> the red color development rate H r> the blue color development rate H b.
  • the lens array unit 20 is configured so that the specific axis of the light beam passing through the lens array unit 20 passes this center C in the width direction of the lens array unit 20.
  • the light utilization efficiency ⁇ relating to the light of the light is the highest (that is, the attenuation of the amount of light passing through the lens array 20 is the smallest), and the central axis of the light beam of the specific light is from the center C to the width direction. As the distance increases, the light utilization efficiency ⁇ for this specific light decreases (the attenuation of the amount of light passing through the lens array section 20 increases).
  • this exposure apparatus 1 0 1 is such that the drive power supply 3 5 supplies a voltage of 10 V, and each drive circuit 3 0 R, 3 0 G, 3 0 B When the light emitter row 1 1 R, 1 1 G, 1 1 B is driven at the same drive voltage of 10 V and color paper 1 is exposed, the color development rate of each color on this color paper 1 is Each is set to 1 (1 0 0%).
  • the light utilization efficiency ⁇ when the blue light emitted from the light emitter array 1 1 B passes through the center C in the width direction of the lens array section 20 is 0.9 (9 0%)
  • Light emitter array 1 1 Red light emitted from R passes through position ⁇ 2 away from center C in the width direction of lens array section 20
  • Light utilization efficiency 5 is 0.8 (8 0%)
  • the green light emitted from the light emitter array 1 1 G passes through a position ⁇ 3 further away from the center C in the width direction of the lens array section 20 compared to ⁇ 2 above.
  • the utilization efficiency ⁇ is 0.7 (70%).
  • the red, green, and blue light emitted from each of the light emitter rows 1 1 R, 1 1 G, and 1 1 B is irradiated onto the color paper 1 without passing through the lens array section 20.
  • the color development rate per unit voltage (IV) when the color paper 1 is exposed and colored is the highest color development rate H g when exposed to green light (0.1 4 3) 1 4. 3 %, Color development rate H r when exposed to red light is the next highest (0.1 2 5) 1 2.5%, color development rate H b when exposed to blue light is the lowest (0.1) 1 1) 1 1. 1% (Fig. 4 See).
  • the light emitter rows 1 1 R, 1 1 G, and 1 1 B are driven with the same drive voltage 10 (V) to obtain a color page.
  • V drive voltage
  • the coloring rate at this time is 1 (1 0 0%).
  • the light emitter row 1 1 B is driven at a driving voltage of 10 (V)
  • the light amount per unit area emitted from the light emitter Q b of the light emitter row 1 1 B is 9 0 (1 m ⁇ s)
  • light with this light intensity is imaged on color paper 1 and the power paper is exposed and colored.
  • the coloring rate at this time is 1 (1 0 0%) as described above.
  • the light emitter array 1 1 G is driven at a driving voltage of 10 (V)
  • the coloring rate at this time is 1 (1 0 0%) as described above.
  • the amount of light that exposes the color paper 1 is that of red light 6 4 (1 m ⁇ s), blue light is 8 1 (1 m ⁇ s), green light is 49 (1 m ⁇ s), and the color development rate of color paper 1 exposed with the light of each color H r, H b Hg is 1 (1 0 0%).
  • the light emitter Q of the light emitting head 10 is a light emitting element 15 that emits red, green, and blue light, respectively, or as shown in FIG. 5B.
  • a light emitting element 16 that emits white light, and a color filter 17 for each color that emits red, green, and blue light through the light emitted from the light emitting element 16. can do.
  • the exposure apparatus 101 has a color development efficiency lower than that of the light emitter array that emits light having a high color development efficiency when the photosensitive material is exposed to color.
  • the light emitter array that emits the light is positioned closer to the center of the lens array portion in the width direction, but a conventional exposure apparatus that is not set in this way, more specifically, the light emitter array A conventional exposure apparatus having a light emitting head in which the position where 1 1 B is disposed and the position where light emitter row 1 1 G is disposed will be described.
  • FIG. 6 is a view showing the schematic arrangement of a conventional exposure apparatus.
  • the conventional exposure apparatus 201 has the same arrangement as that of the exposure apparatus 1001, except that the arrangement of the light emitter rows in the exposure apparatus 101 of the present invention is changed. Components having the same functions as the device 1 0 1 have the same reference numerals. The description is omitted.
  • the central axis of the light beam emitted from the light emitter Q g constituting the light emitter row 1 1 G passes through the center C in the width direction of the lens array portion 20, and the light emitter row 1 1 Luminous body constituting R.
  • the central axis of the light beam emitted from the body Q b passes through the position K 3 further away from the center C of the lens array portion 20 in the width direction.
  • the light emitter row 1 1 R is disposed at a position K 2 away from the center by a distance L 2 in the width direction, and the light emitter row 1 1 B is separated from the center C by a distance L 3 in the width direction.
  • the distance L 3> distance L 2> distance L 1 is set at the position indicated by the position K 3.
  • the respective light emitter rows 11 R, 11 G, and 1 IB arranged as described above are driven with the same drive voltage 10 (V).
  • the light emitter array 1 1 G is driven at a driving voltage of 10 (V)
  • the light intensity per unit area of the light emitted from the light emitter Q g of the light emitter array 1 1 G is the same as above. 0 (1 m-s)
  • the amount of light when the central axis of the luminous flux of this light passes through the center C of the lens array section 20 and is emitted from the lens array section 20 is 7 0 X 0.9.
  • (Utilization efficiency of light) 6 3 (1 m ⁇ s).
  • the color development rate is a calculated value, and it does not mean that color paper 1 is actually colored at a color development rate of 100% or more.
  • the light emitter row 1 1 B is driven at a driving voltage of 10 (V)
  • the light amount per unit area of the light emitted from the light emitter Q b of the light emitter row 1 1 B is the same as the above. 0 (1 m ⁇ s)
  • the color development rate when light having this light intensity is imaged on the color paper 1 and the color paper 1 is exposed and colored is 0.7.7 7 (7 7. 7%).
  • the amount of light required to develop color with a blue light at a coloring rate of 100% is 8 1 (1 m ⁇ s) (see Fig. 2).
  • each light emitter array 11 When each light emitter array 11 is driven with the same driving voltage 10 (V) as described above, the amount of light that exposes the color paper 1 is 6 4 (1 m ⁇ s) for red light and green light. Is 6 3 (1 m ⁇ s), blue light is 63 (1 m ⁇ s), and the color paper 1 color development ratio H r by exposure with red light is 1 (1 0 0%), green The color development rate Hg by exposure with light is 1.27 (1 27%), and the color development rate Hb by exposure with blue light is 0.77 7 (77.7%).
  • the voltage for driving the light emitter row 1 1 B is set to 1 0 (in order to cause the color paper to develop with a color development rate of 100% by emitting blue light from the light emitter row 1 1 B.
  • V the amount of light required to develop color paper 1 with blue light at a coloration rate of 100% is 8 1 (1 m ⁇ s).
  • the exposure apparatus 10 1 of the present invention described above is different from the conventional exposure apparatus 10 2 in that the coloring efficiency is obtained for any two light emitter rows selected from a plurality of light emitter rows.
  • the emitter array that emits light of a color with a lower coloring efficiency than the light emitter array that emits light of a higher color. Equipped with a light emitting head that is located close to each other, so that each light emitter can be driven so that the amount of light that can be generated at the maximum density of the color balance can be obtained, while keeping the power supply voltage low. be able to.
  • FIG. 7A is a view showing an example of the arrangement of the light emitter rows with respect to the lens array portion in the exposure apparatus of the present invention
  • FIG. 7B is a coordinate on the horizontal axis indicating the Y-direction position and the vertical axis indicating the light use efficiency.
  • FIG. 8A is a diagram showing the relationship between the position of light passing through the lens array section and the light use efficiency
  • FIG. 8A is a diagram showing an example of the arrangement of the light emitter rows with respect to the lens array section in the exposure apparatus of the present invention
  • FIG. 4 is a diagram showing the relationship between the position of light passing through the lens array part and the light utilization efficiency on the coordinates indicating the Y-direction position on the horizontal axis and the light utilization efficiency on the vertical axis. Note that various examples of the arrangement of the light emitter rows with respect to the lens array section are obtained by changing the arrangement of the light emitter rows in the exposure apparatus 1001, and other specifications are the same as those of the exposure apparatus 1001. Therefore, constituent elements having a common function are denoted by the same reference numerals and description thereof is omitted.
  • the light emitter array 11 B that emits blue light is arranged at the center C in the width direction of the lens array section 20, and the center C is on both sides of the center C and the center C is the above. At positions 1 1 K and 1 2 mm away from each other by the same distance in the width direction, Each of the light body row 1 1 R and the light body row 1 1 G is arranged.
  • the light emitter row 1 1 B that emits light of a color with low color development efficiency is positioned closer to the center C in the width direction of the lens array portion 20, that is, among the plurality of light emitter rows.
  • the light emitter array that emits light with a color development efficiency lower than that of the light emitter array that emits light of the color is positioned closer to the center of the lens array in the width direction.
  • blue color development efficiency E g red color development efficiency E r ⁇ In the case of the green color development efficiency Eb, at positions 2 1 K and 2 2 that are near both sides of the center C in the width direction of the lens array section 20 and are separated from the center C by the same distance in the width direction.
  • Each of the light emitter row 1 1 ⁇ and the light emitter row 1 1 R is disposed, and the light emitter is located at a position 2 3 ⁇ ⁇ away from the center C in the width direction as compared with the positions 2 1 ⁇ and 2 2 ⁇ ⁇ . Row 1 Place 1 G.
  • This arrangement allows light with a color development efficiency lower than that of the light emitter array 1 1 G, which emits light with a high color development efficiency when color paper 1 is exposed to color.
  • a light emitter array that emits light with a color development efficiency lower than that of light of this color is closer to the center in the width direction of the lens array than a light emitter array that emits light of high color.
  • Fig. 9A is a diagram showing the spectral sensitivity of photosensitive material on the coordinate with wavelength on the horizontal axis and sensitivity on the vertical axis
  • Fig. 9B is normalized for each color on the coordinate with wavelength on the horizontal axis and power on the vertical axis
  • Fig. 9C is a diagram showing the power spectrum
  • Fig. 9C is a diagram showing the relative visibility on the coordinate with the wavelength on the horizontal axis and the sensitivity on the vertical axis
  • Fig. 10 is the driving voltage of the light emitter and the light emitted from this light emitter. It is a figure which shows the relationship with the brightness
  • the colors of the three light-emitting elements are red, green, and blue, and the power spectrum of each color is denoted as ⁇ ⁇ ( ⁇ ), P c (e), and ⁇ ⁇ ( ⁇ ).
  • ⁇ ⁇ ( ⁇ ) the power spectrum of each color
  • P c (e) the power spectrum of each color
  • ⁇ ⁇ ( ⁇ ) the power spectrum of each color
  • Fig. 9A shows the spectral sensitivity F (E) of the photosensitive material.
  • E R , E G , and E B represent exposure energy contributing to exposure in each color.
  • the power spectrum shows the actual energy, but the spectrum measurement generally only looks at the distribution, and the absolute value is often omitted. Therefore, P
  • P When the normalized power spectrum with a peak value of 1 is P ( ⁇ ), the following relationship is shown.
  • Figure 9 (b) shows the standardized spectrum of ⁇ (e).
  • ⁇ ⁇ ( ⁇ ) a B 'PB ( ⁇ ) (6)
  • equations (1) to (3) are as follows.
  • Fig. 9C shows the relative visibility V (E).
  • L luminance
  • V ( ⁇ ) represents specific luminous efficiency characteristics
  • V B > V R > V G as shown in Fig. 10 the blue element with the highest voltage is placed in the center of the secondary running direction, and the green element with the lowest voltage is It is arranged at the peripheral part in the sub-scanning direction of the central part.
  • V R and V B are relatively value is close, when there is a tendency that apart relative to VG, across the center of the lens array portion as the arrangement shown in FIG. 8 It is desirable to arrange red and blue and green farthest from the lens center.
  • the voltage of the blue element is slightly higher than that of the red element, it is desirable to arrange the blue element closer to the center of the lens array portion than the red dye. In this way, the color luminance ratio is calculated from the power spectrum of each color and the sensitive material spectral sensitivity in the actual exposure printing system, and the voltage of each color is calculated from the voltage-luminance characteristics of each color element. You can ask for the placement.
  • the luminance ratio can be obtained from equation (16).
  • the brightness in this case is not the brightness of the light source itself, but the transmission brightness when a filter is attached to a monochromatic light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

An exposure system, which controls the power supply voltage of a circuit for driving a light emitting element to a low level to thereby reduce a system cost, uses a light emitting head (10) that positions a light emitting element row (11R), for emitting a light of a higher-coloring-efficiency color when color paper (1) is exposed and colored, farther from the center (C) in the width direction of a lens array unit (20) than a light emitting element row (11B) for emitting a light of a color lower in coloring efficiency than the first light of color and positions a light emitting element row (11G), for emitting a light of a higher-coloring-efficiency color when color paper (1) is exposed and colored, farther from the center (C) in the width direction of a lens array unit (20) than a light emitting element row (11R) for emitting a light of a color lower in coloring efficiency than the first light of color, and images, on the color paper (1), lights emitted from light emitting elements (Q) constituting respective light emitting element rows (11) via the lens array unit (20) consisting of the above many lenses (L) to expose the color paper (1) to light.

Description

明細書 露光装置 技術分野  Description Exposure Equipment Technical Field
本発明は露光装置に関し、 詳しくは、 発光ヘッ ドに配置された多数の発光体か ら射出された各光をレンズァレイ部に通して感光材科を露光する露光装置に関す るものである。 背景技術  The present invention relates to an exposure apparatus, and more particularly to an exposure apparatus that exposes a photosensitive material family by passing each light emitted from a large number of light emitters arranged in a light emitting head through a lens array section. Background art
従来より、 カラー画像のハードコピーを作成する露光装置が知られている。 こ のような装置に使用される上記ハードコピー用の感光材料はカラー印画紙、 カラ 一銀塩フィルム等であり、 上記感光材料を露光するための露光部としては、 赤色、 緑色、 青色の各色の光のそれぞれを射出する多数の発光体と、 上記発光体から射 出された光の正立等倍像を感光材料上に結像させる結像光学系とで構成されたも のが知られている。 また、 上記結像光学系には多数の屈折率分布型レンズを並べ てなるレンズアレイを用いたものが知られている (特開平 7— 2 2 6 4 9号公報 および特開 2 0 0 1 — 1 6 7 8 7 4号公報参照) 。  Conventionally, exposure apparatuses that create hard copies of color images are known. The photosensitive material for hard copy used in such an apparatus is a color photographic paper, a color silver salt film or the like, and the exposure part for exposing the photosensitive material is each color of red, green, and blue. It is known that it is composed of a number of light emitters that emit each of the light beams and an imaging optical system that forms an erecting equal-magnification image of the light emitted from the light emitters on a photosensitive material. ing. In addition, there is known an imaging optical system using a lens array in which a large number of gradient index lenses are arranged (Japanese Patent Laid-Open Nos. 7-2 2 6 49 and 2 0 0 1). — See 1 6 7 8 7 4).
上記露光装置は、 発光体から射出される光の光量をこの発光体を駆動する駆動 電圧に応じて増大させることができるので、 各発光体を駆動する各駆動回路の電 源電圧を、 上記感光材料を最大濃度で発色させることが可能となる所定電圧以上 に設定することにより、 この感光材料を最大濃度で発色させることができる。 ま た、 上記感光材料を最大濃度で発色させるために要求される上記各色の光を射出 する各発光体の駆動電圧は各色毎に異なる。 したがって、 上記電源電圧は、 各色 の光を射出する各発光体毎に要求される、 上記感光材料を最大濃度で発色させる ことを可能とする駆動電圧のうちの最も高い電圧に応じて定められる。  Since the exposure apparatus can increase the amount of light emitted from the light emitter in accordance with the drive voltage for driving the light emitter, the power supply voltage of each drive circuit for driving the light emitter The photosensitive material can be colored at the maximum density by setting it to a voltage higher than a predetermined voltage at which the material can be colored at the maximum density. Further, the driving voltage of each light emitter that emits the light of each color required to develop the color of the photosensitive material at the maximum density is different for each color. Therefore, the power supply voltage is determined according to the highest voltage among the drive voltages required for each light emitter that emits light of each color and capable of developing the photosensitive material at the maximum density.
ところで、 上記露光装置に対して装置コス トの低減が求められており、 上記発 光体を駆動する駆動回路の電源電圧の低下が装置コストの低減に結びつくので、 上記感光材科を最大濃度で発色させる各色の光の光量が得られるように各発光体 の駆動を可能にしつつ、 上記電源電圧を低く抑えたいという要請がある。 Incidentally, there is a demand for a reduction in apparatus cost for the above-described exposure apparatus. Lowering the power supply voltage of the drive circuit that drives the light body leads to a reduction in apparatus cost, so that each light emitter can be driven so that the amount of light of each color that causes the photosensitive material family to develop color at the maximum density can be obtained. There is a demand to keep the power supply voltage low.
本発明は、 上記事情に鑑みてなされたものであり、 発光体を駆動する駆動回路 の電源電圧を低く抑え、 これにより装置コス トを低減することができる露光装置 を提供することを目的とするものである。 発明の開示  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exposure apparatus that can suppress the power supply voltage of a drive circuit that drives a light emitter, thereby reducing the apparatus cost. Is. Disclosure of the invention
本発明の露光装置は、 同一色の光を射出する多数の発光体を 1列に並べた発光 体列を複数有するとともに、 各発光体列は互いに異なる色の光を射出するもので ある発光へッ ドと、 前記発光体から射出された各光を感光材料上に結像させる、 The exposure apparatus of the present invention has a plurality of light emitter rows in which a large number of light emitters that emit light of the same color are arranged in one row, and each light emitter row emits light of a different color. And imaging each light emitted from the light emitter on a photosensitive material,
1方向に並べられた多数のレンズからなるレンズァレイ部とを備えた露光装置で あって、 発光ヘッ ドが、 感光材料を露光して発色させる際の発色効率の高い色の 光を射出する発光体列よりも、 この色の光に比して発色効率の低い色の光を射出 する発光体列の方を、 レンズアレイ部の幅方向における中心のより近くに位置さ せたものであることを特徴とするものである。 An exposure apparatus having a lens array unit composed of a large number of lenses arranged in one direction, and a light emitting head that emits light of a color with high coloring efficiency when the photosensitive material is exposed to color. The light emitter array that emits light with a color generation efficiency lower than that of the light of this color is positioned closer to the center of the lens array in the width direction than the array. It is a feature.
前記発色効率とは、 所定の駆動電圧を与えて駆動した発光体から射出された光 をレンズアレイ部を通すことなく感光材料に照射し露光して、 この感光材料を発 色させたときの発色率 (発色率に関しては後述する) を上記所定の駆動電圧で除 して得られる値であり、 発光体から射出された光をレンズアレイ部を通すことな く感光材料に照射し露光して、 この感光材料を発色させたときの単位電圧当りの 発色率を意味するものである。 すなわち、 「発色効率 =発色率/駆動電圧」 であ る。  The color development efficiency refers to the color produced when light emitted from a light emitter driven by applying a predetermined driving voltage is irradiated and exposed to a photosensitive material without passing through the lens array portion, and the photosensitive material is colored. Is a value obtained by dividing the rate (coloring rate will be described later) by the above-mentioned predetermined drive voltage. Light emitted from the light emitter is irradiated to the photosensitive material without passing through the lens array portion, and is exposed. This means the color development rate per unit voltage when the photosensitive material is colored. That is, “coloring efficiency = coloring rate / driving voltage”.
上記発色率は、 感光材料を発色させたときに得られる最大の濃度レベルに対す る、 実際に感光材料を発色させたときに得られた濃度レベルの比率を意味するも のである。 すなわち、 「発色率 =実際に感光材料を発色させたときに得られる濃 度レベル/感光材料を発色させたときに得られる最大の濃度レベル」 である。 前記 「発光体列をレンズァレイ部の幅方向における中心のより近くに位置させ る J とは、 この発光体列を構成する発光体から射出された光の光束の中心軸を、 他の発光体列を構成する発光体から射出された光の光束の中心軸に比して、 上記 レンズァレイ部の幅方向における中心のより近くへ通すように、 この発光体列を 位置させることを意味するものである。 The color development ratio means the ratio of the density level obtained when the light-sensitive material is actually colored to the maximum density level obtained when the light-sensitive material is colored. That is, “color development rate = density level obtained when the photosensitive material is actually developed / maximum density level obtained when the photosensitive material is developed”. The above-mentioned “positioning the illuminant row closer to the center in the width direction of the lens array portion J means that the central axis of the luminous flux of the light emitted from the illuminant constituting the illuminant row is the other illuminant row. This means that the light emitter row is positioned so as to pass closer to the center of the lens array portion in the width direction than the central axis of the luminous flux of the light emitted from the light emitter that constitutes .
前記発光へッ ドは、 前記複数の発光体列のうちの最も発色効率が低い色の光を 射出する発光体列と、 この発光体列とは異なる前記複数の発光体列のうちの他の いずれか 1つの発光体列とに関し、 前記発色効率の高い色の光を射出する発光体 列よりも、 この色の光に比して前記発色効率の低い色の光を射出する発光体列の 方を、 前記レンズアレイ部の幅方向における中心のより近くに位置させたものと することができる。  The light emitting head includes: a light emitter row that emits light of a color with the lowest coloring efficiency among the plurality of light emitter rows; and another light emitter row that is different from the light emitter row. In relation to any one of the light emitter rows, a light emitter row that emits light of a color with low color development efficiency compared to light of this color than a light emitter row that emits light of a color with high color development efficiency. Can be positioned closer to the center of the lens array portion in the width direction.
前記発光ヘッ ドは、 前記複数の発光体列のうちから選択された、 どの 2つの発 光体列に関しても、 前記発色効率の高い色の光を射出する発光体列よりも、 この 色の光に比して前記発色効率の低い色の光を射出する発光体列の方を、 前記レン ズアレイ部の幅方向における中心のより近くに位置させたものとすることができ る。 すなわち、 複数の発光体列を発色効率の悪い順番にレンズアレイ部の幅方向 における中心のより近くに位置させたものとすることができる。  The light emitting head has a light of this color as compared with the light emitter row that emits light having a high coloration efficiency for any two light emitter rows selected from the plurality of light emitter rows. The light emitter array that emits light having a color development efficiency lower than that of the lens array can be positioned closer to the center in the width direction of the lens array section. That is, the plurality of light emitter rows can be positioned closer to the center in the width direction of the lens array portion in the order of poor coloring efficiency.
前記互いに異なる色は、 赤色、 緑色、 および青色とすることができる。  The different colors may be red, green, and blue.
前記レンズァレイ部を構成する各レンズは、 屈折率分布型レンズとすることが できる。  Each lens constituting the lens array unit can be a gradient index lens.
前記レンズァレイ部は、 マイクロレンズアレイとすることができる。  The lens array part may be a microlens array.
前記マイク口レンズァレイとは、 1つの基板上に多数のマイク口レンズが並べ られたものであって、 この基板と多数のマイク口レンズとがー体的に形成されて なるものである。  The microphone mouth lens array is one in which a large number of microphone mouth lenses are arranged on one substrate, and this substrate and a number of microphone mouth lenses are formed in a body.
前記発光体は、 有機 E L素子、 無機 E L素子、 あるいは L E D素子からなるも のとすることができる。  The light emitter may be composed of an organic EL element, an inorganic EL element, or an LED element.
本発明者は、 上記課題に対して、 上記発色効率が上記各色毎に異なること、 上 記発光体列から射出された光のレンズァレイ部中を通る場所によってこの光の利 用効率 (光の利用効率については後述する) が異なること、 および、 上記感光材 料を最大濃度で発色させるための各発光体列の駆動電圧は上記各色毎に異なり、 上記各色毎に定められた駆動電圧のうちの最も高い電圧に応じて上記電源電圧が 定められる (すなわち、 各発光体列の駆動回路の電源は共通である) ことを考慮 して、 感光材料を最大濃度で発色させる各色の光の光量が得られるように各発光 体列の駆動を可能にしつつ、 電源電圧を低く抑えることができる各発光体列の配 置を見出したものである。 The present inventor has said that the coloring efficiency is different for each of the colors, The light utilization efficiency (light utilization efficiency will be described later) differs depending on the location of the light emitted from the light emitter array through the lens array, and the above photosensitive material is colored at the maximum density. The drive voltage of each light emitter row is different for each color, and the power supply voltage is determined according to the highest voltage among the drive voltages determined for each color (that is, the drive circuit of each light emitter row). Each power source voltage can be kept low while enabling each light emitter row to be driven so as to obtain the amount of light of each color that develops the photosensitive material at the maximum density. This is the finding of the arrangement of the light emitter rows.
なお、 上記光の利用効率は、 レンズアレイ部を通った後の光の光量に対する、 上記光のレンズァレイ部を通る前の光量の比率である。  The light utilization efficiency is the ratio of the light amount before passing through the lens array portion of the light to the light amount after passing through the lens array portion.
本発明の露光装置によれば、 感光材料を露光して発色させる際の発色効率の高 い色の光を射出する発光体列よりも、 この色の光に比して発色効率の低い色の光 を射出する発光体列の方を、 レンズァレイ部の幅方向における中心のより近くに 位置させたので、 発光体を駆動するための電源電圧を低く抑えることができ、 こ れにより装置コス トを低減することができる。 以下にその理由を説明する。 例えば、 発光体列のうちの互いに異なる色の光を射出する 2つの発光体列 (こ こでは、 発色効率が低い色の光を射出する発光体列を低効率発光体列と言い、 上 記低効率発光体列が射出する光の色より発色効率が高い色の光を射出する発光体 列を高効率発光体列という) について考察する。  According to the exposure apparatus of the present invention, the color of the light emitting efficiency is lower than that of the light emitter array that emits light of a color with high color development efficiency when the photosensitive material is exposed to color. Since the light emitter array that emits light is positioned closer to the center of the lens array in the width direction, the power supply voltage for driving the light emitter can be kept low, thereby reducing the equipment cost. Can be reduced. The reason will be described below. For example, two illuminant rows that emit light of different colors in the illuminant row (here, the illuminant row that emits light of a color with low coloring efficiency is referred to as a low-efficiency illuminant row, and Let us consider a light emitter array that emits light of a color with a higher coloring efficiency than the color of light emitted by the low efficiency light emitter array.
上記高効率発光体列と低効率発光体列とに関し、 レンズアレイ部に光を通すこ となく感光材料を発色率 1 0 0 %で発色させるための発光体の駆動電圧は、 高効 率発光体列より低効率発光体列の方が高い。  With respect to the above-described high-efficiency illuminant array and low-efficiency illuminant array, the driving voltage of the illuminant for coloring the photosensitive material at a coloration rate of 100% without passing light through the lens array section is high-efficiency The low-efficiency luminous body row is higher than the body row.
一方、 発光体列から射出された同一色で同一光量の光をレンズァレイ部に通し て感光材料を露光するときの露光光量は、 この光をレンズァレイ部中の光の利用 効率が高い光路を通した方が、 上記光路より光の利用効率が低い光路を通した場 合より多くなる。 すなわち、 レンズアレイ部に入射した光束が、 このレンズァレ ィ部を通るときに上記レンズァレイ部で蹴られる上記光束中の範囲は、 このレン ズァレイ部を通る光束の光軸が上記レンズァレイ部の幅方向における中心から離 れるにしたがって少なくなるので、 レンズアレイ部の幅方向における中心により 近い光路に光を通した方が、 この光路に比して上記中心から幅方向により離れた 光路に光を通すより光量の損失が少ない。 したがって、 上記感光材料を 1 0 0 % 発色させるために要求される発光体列の駆動電圧は、 この発光体列から射出され た光を、 上記光量の損失が少ないレンズァレイ部の幅方向における中心により近 い光路へ通すことにより低くすることができる。 On the other hand, the amount of exposure light when exposing the photosensitive material by passing the same color and the same amount of light emitted from the illuminant array through the lens array section, passes this light through the optical path with high light utilization efficiency in the lens array section. However, it is more than the case where the light passes through an optical path having lower light use efficiency than the above optical path. That is, the range of the light beam that is incident on the lens array unit and kicked by the lens array unit when passing through the lens array unit is Since the optical axis of the light beam passing through the zoom section decreases as the distance from the center in the width direction of the lens array section decreases, the light passing through the optical path closer to the center in the width direction of the lens array section is more in comparison to this optical path. Therefore, there is less light loss than passing light through an optical path farther away from the center in the width direction. Therefore, the driving voltage of the light emitter array required for coloring the photosensitive material by 100% depends on the center in the width direction of the lens array portion where the loss of light amount is small. It can be lowered by passing it closer.
さらに、 レンズァレイ部に光を通して感光材料を発色率 1 0 0 %で発色させる ための、 各発光体列の各駆動電圧 (各最大駆動電圧) のう ちの最も高い電圧に応 じて上記電源電圧が定められる。  Furthermore, the power supply voltage is set according to the highest voltage among the drive voltages (each maximum drive voltage) of each light emitter row for causing the lens array part to emit light with a color development rate of 100%. Determined.
上記のことにより、 感光材料を発色率 1 0 0 %で発色させるための駆動電圧が より高い低効率発光体列から射出された光を、 上記感光材料を発色率 1 0 0 %で 発色させるための駆動電圧がより高い上記レンズアレイ部の中心から幅方向によ り離れた光路に通すよりも、 上記低効率発光体列の発光体から射出された光を、 上記感光材料を発色率 1 0 0 %で発色させるための駆動電圧がより低い上記レン ズァレイ部の中心から幅方向により近い光路に通す方が、 上記高効率発光体列と 低効率発光体列との両方を駆動するための上記電源電圧を低く抑えることができ る。  As a result of the above, light emitted from a low-efficiency illuminant array having a higher driving voltage for coloring the photosensitive material at a coloring rate of 100% is used to cause the photosensitive material to develop a color at a coloring rate of 100%. The light emitted from the light emitters of the low-efficiency light emitter row is made to pass through the light-sensitive material with a color development rate of 10 0, rather than passing through an optical path that is further away from the center of the lens array portion in the width direction. Driving the optical path closer to the width direction from the center of the lens array part where the driving voltage for color development at 0% is lower is the above for driving both the high efficiency light emitter array and the low efficiency light emitter array. The power supply voltage can be kept low.
上記説明においては、 互いに異なる色の光を射出する 2つの発光体列に関して 考察したが、 例えば、 複数の発光体列のうちの最も発色効率が低い色の光を射出 する発光体列と、 この発光体列とは異なる前記複数の発光体列のうちの他のいず れか 1つの発光体列とに関し上記考察を適用したり、 あるいは、 複数の発光体列 から選択可能な 2つの発光体列の全ての組み合わせに関して上記考察を適用する ことにより、 互いに異なる色の光を射出する 3つ以上の発光体列についての考察 も可能となる。 図面の簡単な説明 In the above description, two light emitter rows that emit light of different colors have been considered. For example, a light emitter row that emits light of a color with the lowest coloring efficiency among a plurality of light emitter rows, and The above consideration is applied to any one of the plurality of light emitter rows different from the light emitter row, or two light emitters selectable from the plurality of light emitter rows By applying the above considerations for all combinations of columns, it is possible to consider more than two emitter columns that emit light of different colors. Brief Description of Drawings
図 1は、 本発明の実施の形態による露光装置の概略構成を示す斜視図  FIG. 1 is a perspective view showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention.
図 2は、 露光装置を図 1中の矢印 X方向から見た側面図  Fig. 2 is a side view of the exposure device as seen from the direction of arrow X in Fig. 1.
図 3 Aおよび Bは、 発光体列およびレンズァレイ部を上方から見た図  Fig. 3 A and B are views of the emitter array and lens array as seen from above.
図 4は、 露光装置からレンズアレイ部を除いた発色効率を説明するための図 図 5 Aおよび Bは、 発光へッ ドが有する癸光体の種々の構成例を示す図 図 6は、 従来の露光装置の概略構成を示す図  Fig. 4 is a diagram for explaining the coloring efficiency when the lens array portion is removed from the exposure apparatus. Fig. 5 A and B are diagrams showing various examples of the phosphors included in the light emitting head. Showing the schematic configuration of the exposure apparatus of
図 7 Aおよび Bは、 本発明の露光装置におけるレンズァレイ部に対する発光 体列の配置の 1例を示す図  7A and 7B are diagrams showing an example of the arrangement of the light emitter rows with respect to the lens array portion in the exposure apparatus of the present invention.
図 8 Aおよび Bは、 本発明の露光装置におけるレンズアレイ部に対する発光 体列の配置の 1例を示す図  FIGS. 8A and B are diagrams showing an example of the arrangement of the light emitter rows with respect to the lens array portion in the exposure apparatus of the present invention
図 9 Aは、 感光材料の分光感度を示す図、 図 9 Bは規格化パワースペク トル を示す図、 図 9 Cは比視感度を示す図  Figure 9A shows the spectral sensitivity of the photosensitive material, Figure 9B shows the normalized power spectrum, and Figure 9C shows the relative luminous sensitivity
図 1 0は、 発光体の駆動電圧とこの発光体から射出される光の輝度との関係 を示す図 発明を実施するための最良の形態  FIG. 10 is a diagram showing the relationship between the driving voltage of a light emitter and the luminance of light emitted from this light emitter. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明する。 図 1は本発明の実施の形態によ る露光装置の概略構成を示す斜視図、 図 2は上記露光装置を図 1中の矢印 X方向 から見た側面図、 図 3 Aは発光体列およびレンズアレイ部を上方から見た図、 図 3 Bは横軸に図 1中に示す Y方向の位置を縦軸に光の利用効率を示す座標上にレ ンズァレイ部を通る光の位置と光の利用効率との関係を示す図、 図 4は発色効率 を説明するための図であり上記露光装置からレンズアレイ部を除いた図、 図 5 A、 Bは発光へッ ドを構成する発光体の種々の態様を示す図である。  Hereinafter, embodiments of the present invention will be described. FIG. 1 is a perspective view showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention, FIG. 2 is a side view of the exposure apparatus seen from the direction of arrow X in FIG. 1, and FIG. Fig. 3B is a top view of the lens array, and Fig. 3B shows the position of the light passing through the lens array on the horizontal axis and the position in the Y direction shown in Fig. 1 on the vertical axis. Fig. 4 is a diagram illustrating the relationship with the utilization efficiency, Fig. 4 is a diagram for explaining the color development efficiency, and is a diagram in which the lens array unit is removed from the above exposure apparatus, and Figs. 5A and 5B are diagrams of the illuminant constituting the light emitting head. It is a figure which shows various aspects.
図示の本発明の露光装置 1 0 1は、 同一色の光である赤色の光を射出する多数 の発光体 Q rを 1列に並べた発光体列 1 1 R、 同一色の光である緑色の光を射出 する多数の発光体 Q gを 1列に並べた発光体列 1 1 G、 および同一色の光である 青色の光を射出する多数の発光体 Q bを 1列に並べた発光体列 1 1 B (まとめて 、 発光体列 1 1 ともいう) を有する発光へッ ド 1 0であって、 各発光体列 1 1 R 、 1 1 G、 1 1 Bは互いに異なる色である、 赤色、 緑色、 青色の光を射出する発 光へッ ド 1 0と、 上記発光体 Q r、 Q g、 Q b (まとめて発光体 Qともいう) か ら射出された各光を感光材料であるカラーぺーパ 1上に結像させる、 1方向に並 ベられた多数のレンズ Lからなるレンズアレイ部 2 0とを備えている。 The illustrated exposure apparatus 10 1 of the present invention has a light emitter row 1 1 R in which a large number of light emitters Q r that emit red light of the same color are arranged in one row, and green that is light of the same color. The light emitter array 1 1 G, which has a large number of light emitters Q g that emit light of the same color, and the same color light A light emitting head 10 having a light emitter row 1 1 B (collectively referred to as a light emitter row 1 1) in which a large number of light emitters Q b emitting blue light are arranged in one row, each light emission Body rows 1 1 R, 1 1 G, 1 1 B are different colors, emitting heads emitting red, green, and blue light 1 0 and the above emitters Q r, Q g, Q b (Collectively also referred to as the illuminant Q). Each lens emitted from the lens is formed on a color paper 1 that is a photosensitive material. It has.
上記露光装置 1 0 1は、 さらに、 各発光体列 1 1のそれぞれを駆動する各駆動 回路 3 0 R、 3 0 G、 3 0 B (まとめて、 各駆動回路 3 0ともいう) と、 各駆動 回路 3 0用の 1つの駆動電源 3 5とを備えている。  The exposure apparatus 1 0 1 further includes drive circuits 30 R, 3 0 G, 3 0 B (collectively referred to as drive circuits 3 0) that drive each of the light emitter rows 1 1, and One drive power source 35 for the drive circuit 30 is provided.
なお、 カラーぺーパ 1は、 上記露光装置により各発光体列が延びる方向である 主走査方向 (図中矢印 X方向) に線状に露光されながら、 副走査方向 (図中矢印 Y方向) に搬送されて 2次元状に露光される。  The color paper 1 is linearly exposed in the main scanning direction (arrow X direction in the figure), which is the direction in which each light emitter row extends by the above exposure apparatus, while in the sub-scanning direction (arrow Y direction in the figure). It is transported and exposed in two dimensions.
上記各発光体 Qは、 有機 E L素子、 無機 E L素子、 あるいは L E D素子等から なるものとすることができる。  Each of the light emitters Q can be composed of an organic EL element, an inorganic EL element, an LED element, or the like.
また、 上記レンズアレイ部 2 0をマイクロレンズァレイ と したり、 あるいはレ ンズァレイ部 2 0の各レンズ Lを屈折率分布型レンズとしたり してもよい。 なお 、 レンズアレイ部 2 0は、 上記発光体 Qの正立等倍像、 すなわち、 発光体 Qのか ら射出された光の正立等倍像をカラーぺーパ 1上に結像させるものである。 発光へッ ド 1 0は、 カラーぺーパ 1を露光して発色させる際の発色効率の高い 色の光を射出する発光体列よりも、 この色の光に比して発色効率の低い色の光を 射出する発光体列の方を、 レンズアレイ部 2 0の幅方向における中心のより近く に位置させたものである。 したがって、 発色効率の高い緑色の光を射出する発光 体列 Gよりも、 この緑色の光に比して発色効率の低い赤色の光を射出する発光体 列 1 1 Rの方を、 レンズアレイ部 2 0の幅方向における中心のより近くに位置さ せ、 かつ、 発色効率の高い赤色の光を射出する発光体列 Rよりも、 この赤色の光 に比して発色効率の低い青色の光を射出する発光体列 1 1 Bの方を、 レンズァレ ィ部 2 0の幅方向における中心のより近くに位置させている。 上記露光装置 1 0 1 とカラーぺーパ 1 との組み合わせにおいては、 発色効率が 最も高い色が緑色であり、 赤色、 青色の順に発色効率が低くなる。 すなわち、 緑 色の発色効率 E g >赤色の発色効率 E r >青色の発色効率 E bである。 The lens array unit 20 may be a microlens array, or each lens L of the lens array unit 20 may be a gradient index lens. The lens array unit 20 forms an erecting equal-magnification image of the illuminant Q, that is, an erecting equal-magnification image of light emitted from the illuminant Q on the color paper 1. . The light-emitting head 10 has a color development efficiency lower than that of the light emitter array that emits light having a high color development efficiency when the color paper 1 is exposed to color. The light emitter array that emits light is positioned closer to the center of the lens array section 20 in the width direction. Therefore, the emitter array 1 1 R that emits red light with a lower coloring efficiency than the light emitter array G that emits green light with a higher coloring efficiency is used in the lens array section. Compared to the light emitter row R, which is positioned closer to the center in the width direction of 20 and emits red light with high color development efficiency, blue light with lower color development efficiency than this red light is emitted. The emitted light emitter row 11 B is positioned closer to the center of the lens array portion 20 in the width direction. In the combination of the exposure apparatus 10 1 and the color paper 1, the color having the highest color development efficiency is green, and the color development efficiency decreases in the order of red and blue. That is, the green color development efficiency E g> the red color development efficiency E r> the blue color development efficiency E b.
また、 発光ヘッ ド 1 0に配置された各発光体列 1 1 R、 1 1 G、 1 1 Bは、 レ ンズアレイ部 2 0の入射面 2 0 Nに対して平行に並べられており、 レンズアレイ 部 2 0の幅方向 (図中矢印 Y方向) における中心 Cに青色の光を射出する発光体 列 1 1 Bが配置されている。 図 2およぴ図 3 Aに示すように、 上記青色より発色 効率の高い、 赤色の光を射出する発光体列 1 1 Rおよび緑色の光を射出する発光 体列 1 1 Gが、 青色の光を射出する発光体列 1 1 Bの両側に配置されており、 発 光体列 1 1 Rは、 発光体列 1 1 Gよりも中心 Cに対して幅方向により近い位置に 配置され、 発光体列 1 1 Bは、 発光体列 1 1 Rよりも上記中心 Cに対して幅方向 により近い位置に配置されている。  Further, each light emitter row 1 1 R, 1 1 G, 1 1 B arranged in the light emitting head 10 is arranged in parallel to the incident surface 20 N of the lens array section 20, and the lens A light emitter array 11 B that emits blue light is arranged at the center C in the width direction of the array section 20 (in the arrow Y direction in the figure). As shown in Fig. 2 and Fig. 3A, the emitter row 1 1 R that emits red light, which has higher coloring efficiency than the blue color, and the emitter row 1 1 G that emits green light are blue. The light emitter row 1 1 B that emits light is arranged on both sides, and the light emitter row 1 1 R is arranged closer to the center C than the light emitter row 1 1 G in the width direction. The body row 11 B is disposed closer to the center C in the width direction than the light emitter row 11 R.
より具体的には、 発光体列 1 1 Bは、 レンズアレイ部 2 0の幅方向の中心じに 位置し、 つまり、 中心 Cから上記幅方向に距離 L 1 = 0だけ離れた位置に配置さ れ、 発光体列 1 1 Rは、 中心 Cから幅方向に距離 L 2だけ離れた位置 K 2に配置 され、 発光体列 1 1 Gは、 中心 Cから幅方向に距離 L 3だけ離れた位置 K 3に配 置されて、 距離し 3〉距離 L 2 >距離 L 1 となっている。 なお、 距離 1 = 0な ので、 図 2および図 3 A中における距離 L 1の図示は省略している。  More specifically, the light emitter row 1 1 B is located at the center of the lens array unit 20 in the width direction, that is, at a position separated from the center C by the distance L 1 = 0 in the width direction. The light emitter row 1 1 R is arranged at a position K 2 away from the center C in the width direction by a distance L 2, and the light emitter row 1 1 G is located away from the center C in the width direction by a distance L 3 Located at K3, the distance is 3> distance L2> distance L1. Since the distance 1 = 0, the illustration of the distance L 1 in FIG. 2 and FIG. 3A is omitted.
すなわち、 露光装置 1 0 1においては、 緑色の発色効率 E g >赤色の発色効率 E r >青色の発色効率 E bであり、 かつ、 レンズアレイ部 2 0に対する各発光体 列 1 1の位置が、 距離し 1 <距離 L 2 <距離 L 3 となるように設定されている。 なお、 図 4に示すように、 各発光体列 1 1 R、 1 1 G、 1 I Bを同一の電圧で 駆動して各発光体列 1 1 R、 1 1 G、 1 1 Bから射出された赤色、 緑色、 青色の 各光を、 レンズアレイ部 2 0を通すことなくカラーぺーパ 1上に照射してこの力 ラーぺーパ 1を露光し発色させたときの発色率は、 緑色の光で露光し発色させた ものが最も高く、 赤色、 青色の順に低くなる。 すなわち、 上記条件において、 緑 色の発色率 H g >赤色の発色率 H r >青色の発色率 H bである。 図 3 Bに示すように、 レンズアレイ部 2 0は、 このレンズアレイ部 2 0を通る 特定の光の光束の中心軸が上記レンズァレイ部 2 0の幅方向における中心 Cを通 るときにこの特定の光に関する光の利用効率 δが最も高くなり (すなわち、 レン ズアレイ部 2 0を通る光の光量の減衰が最も少なくなり) 、 上記特定の光の光束 の中心軸がこの中心 Cから上記幅方向に離れるに従ってこの特定の光に関する光 の利用効率 δが低下する (レンズァレイ部 2 0を通る光の光量の減衰が大きくな る) 。 That is, in the exposure apparatus 10 0 1, the green color development efficiency E g> the red color development efficiency E r> the blue color development efficiency E b, and the position of each light emitter row 1 1 with respect to the lens array unit 20 is The distance is set so that 1 <distance L 2 <distance L 3. As shown in FIG. 4, each light emitter row 1 1 R, 1 1 G, 1 IB was driven with the same voltage and emitted from each light emitter row 1 1 R, 1 1 G, 1 1 B. When the color paper 1 is irradiated with red, green, and blue light on the color paper 1 without passing through the lens array 20 and the color paper 1 is exposed and developed, the color development rate is green light. The color developed by exposure is highest, and decreases in the order of red and blue. That is, under the above conditions, the green color development rate H g> the red color development rate H r> the blue color development rate H b. As shown in FIG. 3B, the lens array unit 20 is configured so that the specific axis of the light beam passing through the lens array unit 20 passes this center C in the width direction of the lens array unit 20. The light utilization efficiency δ relating to the light of the light is the highest (that is, the attenuation of the amount of light passing through the lens array 20 is the smallest), and the central axis of the light beam of the specific light is from the center C to the width direction. As the distance increases, the light utilization efficiency δ for this specific light decreases (the attenuation of the amount of light passing through the lens array section 20 increases).
次に、 上記駆動電源 3 5の電圧と、 上記各色毎の発色効率と、 レンズァレイ部 2 0に対する各発光体列 1 1の配置との関係について詳しく説明する。  Next, the relationship among the voltage of the drive power supply 35, the color development efficiency for each color, and the arrangement of the light emitter rows 11 with respect to the lens array section 20 will be described in detail.
上記図 2に示すように、 この露光装置 1 0 1は、 駆動電源 3 5が 1 0 Vの電圧 を供給するものであり、 各駆動回路 3 0 R、 3 0 G、 3 0 Bで、 各発光体列 1 1 R、 1 1 G、 1 1 Bを同一の駆動電圧 1 0 Vで駆動してカラーぺーパ 1を露光し たときに、 このカラーぺーパ 1上での各色の発色率がそれぞれ 1 ( 1 0 0 %) と なるように設定されている。  As shown in FIG. 2 above, this exposure apparatus 1 0 1 is such that the drive power supply 3 5 supplies a voltage of 10 V, and each drive circuit 3 0 R, 3 0 G, 3 0 B When the light emitter row 1 1 R, 1 1 G, 1 1 B is driven at the same drive voltage of 10 V and color paper 1 is exposed, the color development rate of each color on this color paper 1 is Each is set to 1 (1 0 0%).
ここで、 発光体列 1 1 Bから射出された青色の光が、 レンズアレイ部 2 0の幅 方向における中心 Cを通るときの光の利用効率 δは 0. 9 ( 9 0 %) であり、 発 光体列 1 1 Rから射出された赤色の光が、 レンズァレイ部 2 0の幅方向における 中心 Cから離れた位置 Κ 2を通るときの光の利用効率 5は 0. 8 ( 8 0 %) であ り発光体列 1 1 Gから射出された緑色の光が、 上記 Κ 2に比レて、 レンズアレイ 部 2 0の幅方向における中心 Cからさらに離れた位置 Κ 3を通るときの光の利用 効率 δは 0. 7 ( 7 0 %) である。  Here, the light utilization efficiency δ when the blue light emitted from the light emitter array 1 1 B passes through the center C in the width direction of the lens array section 20 is 0.9 (9 0%), Light emitter array 1 1 Red light emitted from R passes through position Κ 2 away from center C in the width direction of lens array section 20 Light utilization efficiency 5 is 0.8 (8 0%) The green light emitted from the light emitter array 1 1 G passes through a position Κ 3 further away from the center C in the width direction of the lens array section 20 compared to Κ 2 above. The utilization efficiency δ is 0.7 (70%).
また、 各発光体列 1 1 R、 1 1 G、 1 1 Bから射出された赤色、 緑色、 青色の 各光を、 レンズアレイ部 2 0を通すことなくカラーぺーパ 1上に照射してこの力 ラーぺーパ 1を露光し発色させたときの単位電圧 ( I V) 当りの発色率は、 緑色 の光で露光したときの発色率 H gが最も高く (0. 1 4 3 ) 1 4. 3 %、 赤色の 光で露光したときの発色率 H rが次に高く (0. 1 2 5 ) 1 2. 5 %、 青色の光 で露光したときの発色率 H bが最も低く (0. 1 1 1 ) 1 1. 1 %である (図 4 参照) 。 In addition, the red, green, and blue light emitted from each of the light emitter rows 1 1 R, 1 1 G, and 1 1 B is irradiated onto the color paper 1 without passing through the lens array section 20. The color development rate per unit voltage (IV) when the color paper 1 is exposed and colored is the highest color development rate H g when exposed to green light (0.1 4 3) 1 4. 3 %, Color development rate H r when exposed to red light is the next highest (0.1 2 5) 1 2.5%, color development rate H b when exposed to blue light is the lowest (0.1) 1 1) 1 1. 1% (Fig. 4 See).
なお、 上記発色率は、 各発光体列 1 1 R、 1 1 G、 1 I Bのそれぞれを駆動し て各発光体列 1 1 R、 1 1 G、 1 1 Bから射出された赤色、 緑色、 青色の各光を 、 レンズアレイ部 2 0を通すことなくカラーぺーパ 1上に照射してこのカラーぺ ーパ 1を露光し発色させたときの単位電圧 ( I V) 当りの値であるので、 この値 は各色の発色効率と一致する。 すなわち、 上記装置構成において、 緑色の発色効 率 E g = 0. 1 4 3 >赤色の発色効率 E r = 0. 1 2 5 >青色の発色効率 E b = 0. 1 1 1である。  Note that the above color development rates are the red, green, and red light emitted from each light emitter row 1 1 R, 1 1 G, 1 1 B by driving each light emitter row 1 1 R, 1 1 G, 1 IB. Since each blue light is irradiated on the color paper 1 without passing through the lens array section 20 and this color paper 1 is exposed and colored, it is a value per unit voltage (IV). This value matches the color development efficiency of each color. That is, in the above-described apparatus configuration, the green color development efficiency E g = 0.1 4 3> red color development efficiency E r = 0.1 2 5> blue color development efficiency E b = 0.1 1 1 1
上記のように仕様が定められた本発明の露光装置 1 0 1において上記各発光体 列 1 1 R、 1 1 G、 1 1 Bを同一の駆動電圧 1 0 ( V ) で駆動してカラーぺーパ 1を露光する場合について図 3を参照して説明する。  In the exposure apparatus 10 0 1 of the present invention whose specifications are determined as described above, the light emitter rows 1 1 R, 1 1 G, and 1 1 B are driven with the same drive voltage 10 (V) to obtain a color page. The case of exposing part 1 will be described with reference to FIG.
発光体列 1 1 Rを駆動電圧 1 0 (V) で駆動したときに、 発光体列 1 1 Rの発 光体 Q rから射出される単位面積当りの光の光量は 8 0 ( 1 m · s ) であり、 こ の光の光束の中心軸がレンズアレイ部 2 0の上記位置 K 2を通ってこのレンズァ レイ部 2 0から射出されるときの光量は、 8 0 X 0. 8 (光の利用効率) = 6 4 ( 1 m · s ) となり、 この光量を持つ光がカラーぺーパ 1上に結像されてこの力 ラーぺーパ 1を露光し発色させる。 そして、 このときの発色率が 1 ( 1 0 0 %) となる。  When the illuminant string 1 1 R is driven at a drive voltage of 10 (V), the light intensity per unit area emitted from the illuminant Q r of the illuminant string 1 1 R is 8 0 (1 m s), and the amount of light when the central axis of the light beam of the light passes through the position K 2 of the lens array unit 20 and is emitted from the lens array unit 20 is 8 0 X 0.8 (light Utilization efficiency) = 6 4 (1 m · s), and light with this light intensity is imaged on the color paper 1, and this power paper 1 is exposed and colored. The coloring rate at this time is 1 (1 0 0%).
また、 発光体列 1 1 Bを駆動電圧 1 0 (V) で駆動したときに、 発光体列 1 1 Bの発光体 Q bから射出される単位面積当りの光の光量は 9 0 ( 1 m ■ s ) であ り、 この光の光束の中心軸がレンズアレイ部 2 0の上記位置 Cを通ってこのレン ズアレイ部 2 0から射出されるときの光量は、 9 0 X 0. 9 (光の利用効率) = 8 1 ( 1 m · s ) となり、 この光量を持つ光がカラーぺーパ 1上に結像されて力 ラーぺーパを露光し発色させる。 そして、 このときの発色率が上記のように 1 ( 1 0 0 %) となる。  In addition, when the light emitter row 1 1 B is driven at a driving voltage of 10 (V), the light amount per unit area emitted from the light emitter Q b of the light emitter row 1 1 B is 9 0 (1 m ■ s), and the amount of light when the central axis of the light beam of this light passes through the position C of the lens array unit 20 and is emitted from the lens array unit 20 is 9 0 X 0.9 (light Utilization efficiency) = 8 1 (1 m · s), and light with this light intensity is imaged on color paper 1 and the power paper is exposed and colored. The coloring rate at this time is 1 (1 0 0%) as described above.
また、 発光体列 1 1 Gを駆動電圧 1 0 (V) で駆動したときに、 発光体列 1 1 Gの発光体 Q gから射出される単位面積当りの光の光量は 7 0 ( 1 m · s ) であ り、 この光の光束の中心軸がレンズァレイ部 2 0の上記位置 K 3を通ってこのレ ンズアレイ部 2 0から射出されるときの光量は、 9 0 X 0. 7 (光の利用効率) = 4 9 ( 1 m · s ) となり、 この光量を持つ光がカラーぺーパ 1上に結像されて カラーぺーパを露光し発色させる。 そして、 このときの発色率が上記のように 1 ( 1 0 0 %) となる。 In addition, when the light emitter array 1 1 G is driven at a driving voltage of 10 (V), the light intensity per unit area emitted from the light emitter Q g of the light emitter array 1 1 G is 7 0 (1 m · S) Therefore, the amount of light when the central axis of the luminous flux of this light passes through the position K 3 of the lens array section 20 and is emitted from the lens array section 20 is 9 0 X 0.7 (light utilization efficiency) = 4 9 (1 m · s), and light with this light intensity is imaged on color paper 1 and the color paper is exposed and colored. The coloring rate at this time is 1 (1 0 0%) as described above.
このように各発光体列 1 1 R、 1 1 B、 1 1 Gを同一の駆動電圧 1 0 (V) で 駆動すると、 カラーぺーパ 1を露光する光量は、 赤色光が光量 6 4 ( 1 m · s ) 、 青色光が 8 1 ( 1 m · s ) 、 緑色光が 4 9 ( 1 m · s ) となり、 上記各色の光 で露光されたカラーぺーパ 1の発色率 H r, H b、 H gはともに 1 ( 1 0 0 %) となる。  When the light emitter rows 1 1 R, 1 1 B, and 1 1 G are driven at the same drive voltage 1 0 (V) in this way, the amount of light that exposes the color paper 1 is that of red light 6 4 (1 m · s), blue light is 8 1 (1 m · s), green light is 49 (1 m · s), and the color development rate of color paper 1 exposed with the light of each color H r, H b Hg is 1 (1 0 0%).
なお、 図 5 Aに示すように、 上記発光ヘッ ド 1 0の発光体 Qは、 赤色、 緑色、 青色の光のそれぞれを射出する発光素子 1 5としたり、 あるいは、 図 5 Bに示す ように、 白色光を射出する発光素子 1 6と、 この発光素子 1 6から射出された光 を通し赤色、 緑色、 青色の光のそれぞれを射出す各色用のカラーフィルタ 1 7と で構成されたものとすることができる。  As shown in FIG. 5A, the light emitter Q of the light emitting head 10 is a light emitting element 15 that emits red, green, and blue light, respectively, or as shown in FIG. 5B. A light emitting element 16 that emits white light, and a color filter 17 for each color that emits red, green, and blue light through the light emitted from the light emitting element 16. can do.
上記本発明の露光装置 1 0 1は、 感光材料を露光して発色させる際の発色効率 の高い色の光を射出する発光体列よりも、 この色の光に比して発色効率の低い色 の光を射出する発光体列の方を、 レンズァレイ部の幅方向における中心のより近 くに位置させたものであるが、 このように設定しない従来の露光装置、 より具体 的には、 発光体列 1 1 Bが配されている位置と発光体列 1 1 Gが配されている位 置とが入れ替えられた発光へッ ドを有する従来の露光装置について説明する。 図 6は従来の露光装置の概略構成を示す図である。  The exposure apparatus 101 according to the present invention has a color development efficiency lower than that of the light emitter array that emits light having a high color development efficiency when the photosensitive material is exposed to color. The light emitter array that emits the light is positioned closer to the center of the lens array portion in the width direction, but a conventional exposure apparatus that is not set in this way, more specifically, the light emitter array A conventional exposure apparatus having a light emitting head in which the position where 1 1 B is disposed and the position where light emitter row 1 1 G is disposed will be described. FIG. 6 is a view showing the schematic arrangement of a conventional exposure apparatus.
以下、 上記従来の露光装置 2 0 1について、 駆動電源の電圧と、 各色毎の発色 効率と、 レンズァレイ部に対する各発光体列の配置との関係について説明する。 なお、 この従来の露光装置 2 0 1は、 上記本発明の露光装置 1 0 1における発光 体列の配置を入れ替えたものであり、 その他は上記露光装置 1 0 1 と同様である ので、 この露光装置 1 0 1 と共通の機能を有する構成要素については同じ符号を 使用しその説明を省略する。 Hereinafter, regarding the conventional exposure apparatus 201, the relationship among the voltage of the drive power supply, the color development efficiency for each color, and the arrangement of each light emitter row with respect to the lens array section will be described. The conventional exposure apparatus 201 has the same arrangement as that of the exposure apparatus 1001, except that the arrangement of the light emitter rows in the exposure apparatus 101 of the present invention is changed. Components having the same functions as the device 1 0 1 have the same reference numerals. The description is omitted.
上記露光装置 2 0 1は、 発光体列 1 1 Gを構成する発光体 Q gから射出された 光の光束の中心軸がレンズァレイ部 2 0の幅方向における中心 Cを通り、 発光体 列 1 1 Rを構成する発光体 Q rから射出された光の光束の中心軸がレンズアレイ 部 2 0の中心 Cから上記幅方向に離れた位置 K 2を通り、 発光体列 1 1 Bを構成 する発光体 Q bから射出された光の光束の中心軸がレンズァレイ部 2 0の中心 C から上記幅方向にさらに離れた位置 K 3を通る。 より具体的には、 発光体列 1 1 Gは、 レンズアレイ部 2 0の幅方向の中心 Cに位置し、 つまり、 中心 Cから上記 幅方向に距離 L 1 = 0だけ離れた位置に配置され、 発光体列 1 1 Rは、 中心 か ら幅方向に距離 L 2だけ離れた位置 K 2で示す位置に配置され、 発光体列 1 1 B は、 中心 Cから幅方向に距離 L 3だけ離れた位置 K 3で示す位置に配置されて、 距離 L 3 >距離 L 2 >距離 L 1となっている。  In the above exposure apparatus 20 0 1, the central axis of the light beam emitted from the light emitter Q g constituting the light emitter row 1 1 G passes through the center C in the width direction of the lens array portion 20, and the light emitter row 1 1 Luminous body constituting R. Luminescent light constituting the illuminating element array 11 B through the center axis of the light beam emitted from the r passing through the position K 2 away from the center C of the lens array section 20 in the width direction. The central axis of the light beam emitted from the body Q b passes through the position K 3 further away from the center C of the lens array portion 20 in the width direction. More specifically, the light emitter row 1 1 G is located at the center C in the width direction of the lens array unit 20, that is, at a position away from the center C by the distance L 1 = 0 in the width direction. The light emitter row 1 1 R is disposed at a position K 2 away from the center by a distance L 2 in the width direction, and the light emitter row 1 1 B is separated from the center C by a distance L 3 in the width direction. The distance L 3> distance L 2> distance L 1 is set at the position indicated by the position K 3.
上記のように配置された各発光体列 1 1 R、 1 1 G、 1 I Bを同一の駆動電圧 1 0 (V) で駆動する。  The respective light emitter rows 11 R, 11 G, and 1 IB arranged as described above are driven with the same drive voltage 10 (V).
発光体列 1 1 Rを駆動電圧 1 0 (V) で駆動したときに、 発光体列 1 1 Rの発 光体 Q rから射出される光の単位面積当りの光量は上記と同様の 8 0 ( 1 m · s ) であり、 この光の光束の中心軸がレンズアレイ部 2 0の上記位置 K 2を通って このレンズアレイ部 2 0から射出されるときの光量も上記と同様に、 9 0 X 0. 8 (光の利用効率) = 6 4 ( 1 m · s ) である。 この光量を持つ光がカラーべ一 パ 1上に結像されてカラーぺーパ 1を露光し発色させたときの発色率は上記と同 様に 1 ( 1 0 0 %) となる。  When the light emitter array 1 1 R is driven at a driving voltage of 10 (V), the light intensity per unit area of the light emitted from the light emitter Q r of the light emitter array 1 1 R is the same as above. (1 m · s), and the amount of light when the central axis of the light beam of this light passes through the position K 2 of the lens array unit 20 and exits from the lens array unit 20 is the same as above. 0 X 0.8 (light utilization efficiency) = 6 4 (1 m · s). When the light having this amount of light is imaged on the color paper 1 and the color paper 1 is exposed and colored, the coloration rate is 1 (100%) as described above.
また、 発光体列 1 1 Gを駆動電圧 1 0 (V) で駆動したときに、 発光体列 1 1 Gの発光体 Q gから射出される光の単位面積当りの光量は上記と同様の 7 0 ( 1 m - s ) であり、 この光の光束の中心軸がレンズアレイ部 2 0の中心 Cを通って このレンズアレイ部 2 0から射出されるときの光量は、 7 0 X 0. 9 (光の利用 効率) = 6 3 ( 1 m · s ) となる。 この光量を持つ光がカラーぺーパ 1上に結像 されてカラーぺーパ 1を露光し発色させたときの発色率は、 上記本発明の露光装 置の場合とは異なり 1 . 2 8 ( 1 2 8 %) となる。 すなわち、 緑色の光でカラー ぺーパ 1を発色率 1 0 0 %で発色させるための光量が 4 9 ( 1 m · s ) なので ( 図 2参照) 、 上記光量 6 3 ( 1 m · s ) はカラーぺーパ 1を 1 0 0 %以上の発色 率で発色させる光量となる ( 1 . 2 8 = 6 3 ( 1 m · s ) / 9 ( 1 m · s ) ) 。 なお、 上記発色率は計算上の値であり、 実際にカラーぺーパ 1が発色率 1 0 0 %以上で発色するということではない。 In addition, when the light emitter array 1 1 G is driven at a driving voltage of 10 (V), the light intensity per unit area of the light emitted from the light emitter Q g of the light emitter array 1 1 G is the same as above. 0 (1 m-s), and the amount of light when the central axis of the luminous flux of this light passes through the center C of the lens array section 20 and is emitted from the lens array section 20 is 7 0 X 0.9. (Utilization efficiency of light) = 6 3 (1 m · s). When the light having this amount of light is imaged on the color paper 1 and the color paper 1 is exposed and colored, the color development rate of the exposure apparatus of the present invention is as follows. Unlike the case of the case, it becomes 1.28 (1 2 8%). In other words, the amount of light required to develop color paper 1 with green light at a coloration rate of 100% is 4 9 (1 m · s) (see Fig. 2), so the above light amount 6 3 (1 m · s) is The amount of light that causes color paper 1 to develop at a coloration rate of 100% or more (1.28 = 6 3 (1 m · s) / 9 (1 m · s)). The color development rate is a calculated value, and it does not mean that color paper 1 is actually colored at a color development rate of 100% or more.
また、 発光体列 1 1 Bを駆動電圧 1 0 (V) で駆動したときに、 発光体列 1 1 Bの発光体 Q bから射出される光の単位面積当りの光量は上記と同様の 9 0 ( 1 m · s ) であり、 この光の光束の中心軸がレンズアレイ部 2 0の上記位置 K 3を 通ってこのレンズアレイ部 2 0から射出されるときの光量は、 9 0 X 0. 7 (光 の利用効率) = 6 3 ( 1 m · s ) となる。 この光量を持つ光がカラーぺーパ 1上 に結像されてカラーぺーパ 1 を露光し発色させたときの発色率は、 上記本発明の 露光装置とは異なり 0. 7 7 7 ( 7 7. 7 %) となる。 すなわち、 青色の光で力 ラーぺーパ 1を発色率 1 0 0 %で発色させるための光量が 8 1 ( 1 m · s ) なの で (図 2参照) 、 上記光量 6 3 ( 1 m · s ) ではカラーぺーパ 1を発色率 1 0 0 %で発色させることはできない (0. 7 7 7 = 6 3 ( 1 m · s ) / 8 2 ( 1 m · s ) )  In addition, when the light emitter row 1 1 B is driven at a driving voltage of 10 (V), the light amount per unit area of the light emitted from the light emitter Q b of the light emitter row 1 1 B is the same as the above. 0 (1 m · s), and the amount of light when the central axis of the light beam of the light passes through the position K 3 of the lens array unit 20 and is emitted from the lens array unit 20 is 9 0 X 0 7 (Light utilization efficiency) = 6 3 (1 m · s). Unlike the exposure apparatus of the present invention, the color development rate when light having this light intensity is imaged on the color paper 1 and the color paper 1 is exposed and colored is 0.7.7 7 (7 7. 7%). In other words, the amount of light required to develop color with a blue light at a coloring rate of 100% is 8 1 (1 m · s) (see Fig. 2). ) Color paper 1 cannot be developed with a coloration rate of 100% (0.77 7 = 6 3 (1 m · s) / 8 2 (1 m · s))
上記のように各発光体列 1 1を同一の駆動電圧 1 0 (V) で駆動すると、 カラ 一ぺーパ 1を露光する光量は、 赤色光が光量 6 4 ( 1 m · s ) 、 緑色光が光量 6 3 ( 1 m · s ) 、 青色光が光量 6 3 ( 1 m · s ) となり、 赤色光での露光による カラーぺーパ 1の発色率 H rは 1 ( 1 0 0 %) 、 緑色光での露光による発色率 H gは 1 . 2 7 ( 1 2 7 %) 、 青色光での露光による発色率 H bは 0. 7 7 7 ( 7 7. 7 %) となる。  When each light emitter array 11 is driven with the same driving voltage 10 (V) as described above, the amount of light that exposes the color paper 1 is 6 4 (1 m · s) for red light and green light. Is 6 3 (1 m · s), blue light is 63 (1 m · s), and the color paper 1 color development ratio H r by exposure with red light is 1 (1 0 0%), green The color development rate Hg by exposure with light is 1.27 (1 27%), and the color development rate Hb by exposure with blue light is 0.77 7 (77.7%).
このような場合には、 発光体列 1 1 Bからの青色光の射出によりカラーぺーパ を発色率 1 0 0 %で発色させるために、 発光体列 1 1 Bを駆動する電圧を 1 0 ( V) 以上にする必要がある。 より具体的には、 青色の光でカラーぺーパ 1を発色 率 1 0 0 %で発色させるために要求される光量は 8 1 ( 1 m · s ) なので、 要求 される駆動電圧は、 1 2 . 9 V = 1 0 ( V ) X ( 8 1 ( 1 m · s ) / 6 3 ( 1 m • s ) ) となる。 したがって、 従来の露光装置 2 0 1では、 駆動電源 3 5の電圧 を、 上記本発明の露光装置 1 0 1の駆動電源の電圧 ( 1 0 V ) より高い電圧 ( 1 2 . 9 V以上) に設定する必要がある。 In such a case, the voltage for driving the light emitter row 1 1 B is set to 1 0 (in order to cause the color paper to develop with a color development rate of 100% by emitting blue light from the light emitter row 1 1 B. V) Must be at least. More specifically, the amount of light required to develop color paper 1 with blue light at a coloration rate of 100% is 8 1 (1 m · s). The drive voltage is 1 2.9 V = 10 (V) X (81 (1 m · s) / 6 3 (1 m • s)). Therefore, in the conventional exposure apparatus 20 0 1, the voltage of the drive power supply 35 is set to a voltage (12.9 V or higher) higher than the voltage (1 0 V) of the drive power supply of the exposure apparatus 10 1 of the present invention. Must be set.
このよ うに、 上述した本発明の露光装置 1 0 1は、 従来の露光装置 1 0 2とは 異なり、 複数の発光体列のうちから選択された、 どの 2つの発光体列に関しても 、 発色効率の高い色の光を射出する発光体列よりも、 この色の光に比して発色効 率の低い色の光を射出する発光体列の方を、 レンズァレイ部の幅方向における中 心のより近くに位置させるようにした発光へッドを備えているので、 カラーべ一 パを最大濃度で発色させる光の光量が得られるように各発光体の駆動を可能にし つつ、 電源電圧を低く抑えることができる。  As described above, the exposure apparatus 10 1 of the present invention described above is different from the conventional exposure apparatus 10 2 in that the coloring efficiency is obtained for any two light emitter rows selected from a plurality of light emitter rows. Compared to the center of the lens array section in the width direction, the emitter array that emits light of a color with a lower coloring efficiency than the light emitter array that emits light of a higher color. Equipped with a light emitting head that is located close to each other, so that each light emitter can be driven so that the amount of light that can be generated at the maximum density of the color balance can be obtained, while keeping the power supply voltage low. be able to.
以下に、 本発明の露光装置における、 レンズアレイ部に対する各発光体列の配 置の種々の例について説明する。 図 7 Aは本発明の露光装置におけるレンズァレ ィ部に対する発光体列の配置の 1例を示す図、 図 7 Bは横軸に上記 Y方向の位置 を縦軸に光の利用効率を示す座標上にレンズァレイ部を通る光の位置と光の利用 効率との関係を示す図、 図 8 Aは本発明の露光装置におけるレンズァレイ部に対 する発光体列の配置の 1例を示す図、 図 8 Bは横軸に上記 Y方向の位置を縦軸に 光の利用効率を示す座標上にレンズァレイ部を通る光の位置と光の利用効率との 関係を示す図である。 なお、 上記レンズアレイ部に対する各発光体列の配置の種 々の例は、 上記露光装置 1 0 1における発光体列の配置を変更したものであり、 その他の仕様はこの露光装置 1 0 1同様であるので、 共通の機能を有する構成要 素については同じ符号を使用しその説明を省略する。  Hereinafter, various examples of the arrangement of the respective light emitter rows with respect to the lens array portion in the exposure apparatus of the present invention will be described. FIG. 7A is a view showing an example of the arrangement of the light emitter rows with respect to the lens array portion in the exposure apparatus of the present invention, and FIG. 7B is a coordinate on the horizontal axis indicating the Y-direction position and the vertical axis indicating the light use efficiency. FIG. 8A is a diagram showing the relationship between the position of light passing through the lens array section and the light use efficiency, FIG. 8A is a diagram showing an example of the arrangement of the light emitter rows with respect to the lens array section in the exposure apparatus of the present invention, and FIG. FIG. 4 is a diagram showing the relationship between the position of light passing through the lens array part and the light utilization efficiency on the coordinates indicating the Y-direction position on the horizontal axis and the light utilization efficiency on the vertical axis. Note that various examples of the arrangement of the light emitter rows with respect to the lens array section are obtained by changing the arrangement of the light emitter rows in the exposure apparatus 1001, and other specifications are the same as those of the exposure apparatus 1001. Therefore, constituent elements having a common function are denoted by the same reference numerals and description thereof is omitted.
図 7に示すように、 緑色と赤色の発色効率が等しく、 上記緑色および赤色の発 色効率より青色の発色効率が低い場合、 すなわち、 緑色の発色効率 E g =赤色の 発色効率 E r >青色の発色効率 E bの場合には、 レンズアレイ部 2 0の幅方向の 中心 Cに青色の光を射出する発光体列 1 1 Bを配置し、 上記中心 Cの両側であつ て中心 Cから上記幅方向において同じ距離だけ離れた位置 1 1 K、 1 2 Κに、 発 光体列 1 1 Rおよび発光体列 1 1 Gのそれぞれを配置する。 この配置は、 カラー ぺーパ 1を露光して発色させる際の発色効率の高い色の光を射出する発光体列 1 1 Rおよび発光体列 1 1 Gよりも、 この色の光に比して発色効率の低い色の光を 射出する発光体列 1 1 Bの方を、 レンズァレイ部 2 0の幅方向における中心 Cの より近くに位置させだものであり、 すなわち、 複数の発光体列のうちの最も発色 効率が低い色の光を射出する発光体列と、 この発光体列とは異なる前記複数の発 光体列のうちの他のいずれか 1つの発光体列とに関し、 発色効率の高い色の光を 射出する発光体列よりも、 この色の光に比して発色効率の低い色の光を射出する 発光体列の方を、 レンズアレイ部の幅方向における中心のより近くに位置させた ものであり、 上記と同様に、 カラーぺーパ 1を最大濃度で発色させる光の光量が 得られるように各発光体の駆動を可能にしつつ、 電源電圧を低く抑える効果を得 ることができる。 As shown in Fig. 7, when the color development efficiency of green and red is equal, and the color development efficiency of blue is lower than the green and red color development efficiency, that is, green color development efficiency E g = color development efficiency of red E r> blue In the case of the color development efficiency E b, the light emitter array 11 B that emits blue light is arranged at the center C in the width direction of the lens array section 20, and the center C is on both sides of the center C and the center C is the above. At positions 1 1 K and 1 2 mm away from each other by the same distance in the width direction, Each of the light body row 1 1 R and the light body row 1 1 G is arranged. This arrangement is higher than that of the light emitter row 1 1 R and the light emitter row 1 1 G, which emits light of a color with high coloration efficiency when the color paper 1 is exposed and colored. The light emitter row 1 1 B that emits light of a color with low color development efficiency is positioned closer to the center C in the width direction of the lens array portion 20, that is, among the plurality of light emitter rows. A light emitter row that emits light of a color with the lowest color development efficiency, and any one of the plurality of light emitter rows that are different from the light emitter row. The light emitter array that emits light with a color development efficiency lower than that of the light emitter array that emits light of the color is positioned closer to the center of the lens array in the width direction. As described above, the amount of light that causes color paper 1 to develop color at the maximum density Thus, it is possible to obtain an effect of suppressing the power supply voltage while enabling driving of each light emitter.
また、 図 8に示すように、 青色と赤色の発色効率が等しく、 上記青色および赤 色の発色効率より緑色の発色効率が高い場合、 すなわち、 青色の発色効率 E g = 赤色の発色効率 E r <緑色の発色効率 E bの場合には、 レンズアレイ部 2 0の幅 方向の中心 Cの両側近傍であって中心 Cから上記幅方向において同じ距離だけ離 れた位置 2 1 K、 2 2 に、 発光体列 1 1 Βおよび発光体列 1 1 Rのそれぞれを 配置し、 上記位置 2 1 Κ、 2 2 Κに比して上記中心 Cから幅方向により離れた位 置 2 3 Κに発光体列 1 1 Gを配置する。 この配置は、 カラーぺーパ 1を露光して 発色させる際の発色効率の高い色の光を射出する発光体列 1 1 Gよりも、 この色 の光に比して発色効率の低い色の光を射出する発光体列 1 1 Rおよび発光体列 1 1 Bの方を、 レンズアレイ部 2 0の幅方向における中心 Cのより近くに位置させ たものであり、 すなわち、 複数の発光体列のうちの最も発色効率が低い色の光を 射出する発光体列と、 この発光体列とは異なる前記複数の発光体列のうちの他の いずれか.1つの発光体列とに関し、 発色効率の高い色の光を射出する発光体列よ りも、 この色の光に比して発色効率の低い色の光を射出する発光体列の方を、 レ ンズァレイ部の幅方向における中心のより近くに位置させたものであり、 上記と 同様に、 カラーぺーパ 1を最大濃度で発色させる光の光量が得られるように各発 光体の駆動を可能にしつつ、 電源電圧を低く抑える効果を得ることができる。 なお、 上記実施の形態においては、 赤色光、 緑色光、 青色光のそれぞれ射出す る 3つの発光体列を用いた露光装置の例を示したが、 このような場合に限らず、 本発明は、 赤色光、 緑色光、 および青色光以外の光を射出する発光体列を有する 発光へッ ドを備えた露光装置や、 互いに異なる 2種類の色の光をそれぞれ射出す る複数の発光体列を有する発光へッ ドを備えた露光装置や、 互いに異なる 4種類 以上の色の光をそれぞれ射出する複数の発光体列を有する発光へッ ドを備えた露 光装置にも適用することも可能である。 Also, as shown in Fig. 8, when the blue and red color development efficiency is equal and the green color development efficiency is higher than the blue and red color development efficiency, that is, blue color development efficiency E g = red color development efficiency E r <In the case of the green color development efficiency Eb, at positions 2 1 K and 2 2 that are near both sides of the center C in the width direction of the lens array section 20 and are separated from the center C by the same distance in the width direction. Each of the light emitter row 1 1 Β and the light emitter row 1 1 R is disposed, and the light emitter is located at a position 2 3 離 れ away from the center C in the width direction as compared with the positions 2 1 Κ and 2 2 上 記. Row 1 Place 1 G. This arrangement allows light with a color development efficiency lower than that of the light emitter array 1 1 G, which emits light with a high color development efficiency when color paper 1 is exposed to color. Are arranged closer to the center C in the width direction of the lens array portion 20, that is, the plurality of light emitter rows of the light emitter row 1 1 R and the light emitter row 1 1 B are emitted. A light emitter row that emits light of a color with the lowest color development efficiency, and any one of the plurality of light emitter rows different from the light emitter row. A light emitter array that emits light with a color development efficiency lower than that of light of this color is closer to the center in the width direction of the lens array than a light emitter array that emits light of high color. And the above and Similarly, it is possible to obtain the effect of suppressing the power supply voltage while enabling the respective light emitters to be driven so that the amount of light that causes the color paper 1 to develop color at the maximum density can be obtained. In the above-described embodiment, an example of an exposure apparatus using three light emitter arrays that emit red light, green light, and blue light has been described. , An exposure apparatus having a light emitting head that emits light other than red light, green light, and blue light, and a plurality of light emitter arrays that emit light of two different colors, respectively. It is also possible to apply to an exposure apparatus equipped with a light emitting head having a light emitting head, and an exposure apparatus equipped with a light emitting head having a plurality of light emitter rows each emitting light of four or more different colors. It is.
次に、 感光材料上に各色を同じ濃度で発色させるための露光エネルギー (露光 光量) が各色で一致するようにカラーパランスを考慮した場合について説明する。 図 9 Aは横軸に波長を縦軸に感度を示す座標上に感光材料の分光感度を示す図、 図 9 Bは横軸に波長を縦軸にパワーを示す座標上に各色毎の規格化パワースぺク トルを示す図、 図 9 Cは横軸に波長を縦軸に感度を示す座標上に比視感度を示す 図、 図 1 0は発光体の駆動電圧とこの発光体から射出される光の輝度との関係を 示す図である。  Next, the case where the color balance is taken into consideration so that the exposure energy (exposure light amount) for developing each color with the same density on the photosensitive material is the same for each color will be described. Fig. 9A is a diagram showing the spectral sensitivity of photosensitive material on the coordinate with wavelength on the horizontal axis and sensitivity on the vertical axis, and Fig. 9B is normalized for each color on the coordinate with wavelength on the horizontal axis and power on the vertical axis Fig. 9C is a diagram showing the power spectrum, Fig. 9C is a diagram showing the relative visibility on the coordinate with the wavelength on the horizontal axis and the sensitivity on the vertical axis, and Fig. 10 is the driving voltage of the light emitter and the light emitted from this light emitter. It is a figure which shows the relationship with the brightness | luminance of light.
3 色の発光素子の色が赤、 緑、 青であり、 その各色のパワースぺク トルをおの おの Ρ κ ( λ)、 P c (え)、 Ρ Β ( λ )とする。 また、 露光プリ ン トを行う感光材料 (以後、 省略して感材ともいう) の分光感度特性をそれぞれ F R ( λ)、 F G ( X ) , F B ( i )とした場合、 以下の関係がある。 図 9 Aに感光材料の分光感度 F (え)を 示す。 The colors of the three light-emitting elements are red, green, and blue, and the power spectrum of each color is denoted as κ κ (λ), P c (e), and Ρ Β (λ). In addition, when the spectral sensitivity characteristics of the photosensitive material (hereinafter also referred to as photosensitive material) to be exposed are set to F R (λ), F G (X), and F B (i), the following There is a relationship. Fig. 9A shows the spectral sensitivity F (E) of the photosensitive material.
ER= ί F R (え) · PR ) d λ (1) E R = ί F R (E) · P R ) d λ (1)
E G= J F G (λ ) · P G (X) d λ (2) E G = JF G (λ) P G (X) d λ (2)
E B = i F B (X ) - P B (X ) d (3) E B = i F B (X)-P B (X) d (3)
ここで、 ER、 E G、 EBは各色で露光に寄与する露光エネルギーを表している。 パワースぺク トルは実際のエネルギーを示しているが、 スぺク トルの測定は一 般的に分布のみを見ており、 絶対値は割愛されている場合が多い。 よって、 ピー ク値を 1 とした規格化パワースぺク トルを P (λ )とした場合、 以下の関係が示さ れる。 図 9 Βに規格化パヮ一スペク トルを ρ (え)を示す。 Here, E R , E G , and E B represent exposure energy contributing to exposure in each color. The power spectrum shows the actual energy, but the spectrum measurement generally only looks at the distribution, and the absolute value is often omitted. Therefore, P When the normalized power spectrum with a peak value of 1 is P (λ), the following relationship is shown. Figure 9 (b) shows the standardized spectrum of ρ (e).
Ρ κ ( λ ) = a R · p R (X ) (4) Ρ κ (λ) = a R · p R (X) (4)
P G ( 1 ) = a G · p G (X ) (5) P G (1) = a G pG (X) (5)
Ρ Β ( λ ) = a B ' P B ( ^ ) (6) Ρ Β (λ) = a B 'PB (^) (6)
よって、 (1)〜(3)式は以下のようになる。  Therefore, equations (1) to (3) are as follows.
E R = a R J F R ( λ ) · p R ( X ) d λ (7) E R = a RJF R (λ ) · p R (X) d λ (7)
E G = a G j F G ( A ) - p G ( A ) d l (8) E G = a G j F G (A)-p G (A) dl (8)
E B = a B ί F B ( λ ) · p B ( λ ) d λ (9) E B = a B ί F B (λ) pB (λ) d λ (9)
露光プリントのカラーバランスを考えた場合、 露光エネルギーが各色で一致す る必要があるので、  When considering the color balance of exposure prints, the exposure energy must match for each color.
E R = E G = Ε Β (10) E R = E G = Ε Β (10)
の条件が満たされる必要がある。 (7)〜(9)式と(10)式から、 These conditions need to be met. From equations (7) to (9) and (10),
R : Q a B R: Q a B
= 1/ J F R ( ) · p R ( ) d λ : 1/ J F G (λ ) · p G (λ ) d λ = 1 / JF R () · p R () d λ: 1 / JF G (λ) · p G (λ) d λ
: 1/ ί F B ( λ ) · p B (λ ) d λ (11) : 1 / ί F B (λ) · p B (λ) d λ (11)
の関係が導かれる。 The relationship is guided.
一般的に有機 E Lなどの発光素子は輝度を測定して光量を推し量るが、 輝度 はパワースぺク トルと比視感度をかけた値として、 以下のような関係を有する。 図 9 Cに比視感度 V (え)を示す。 In general, light emitting elements such as organic EL measure the luminance by measuring the luminance, but the luminance has the following relationship as a value obtained by multiplying the power spectrum and the relative visibility. Fig. 9C shows the relative visibility V (E).
Figure imgf000019_0001
Figure imgf000019_0001
L G∞ a G J V ( ) - p G ( X ) d l (13) L G ∞ a G JV ()-p G (X) dl (13)
L Ba B J V ( l ) - p B (X ) d Z (14) L Ba B JV (l)-p B (X) d Z (14)
Lは輝度、 V ( λ )は比視感度特性を示す。 (12)〜(14)式により、  L represents luminance, and V (λ) represents specific luminous efficiency characteristics. (12) to (14)
L R G · Β  L R G
= a R ί V ( λ ) - ρ R ( λ ) d λ : a G ί V ( λ ) · p G ( λ ) d λ = a R ί V (λ)-ρ R (λ) d λ: a G ί V (λ) · p G (λ) d λ
: a B I V (λ) · p B (λ) d λ (15) の関係が成り立ち、 (11)式と合わせると、 : A BIV (λ) · p B (λ) d λ (15) When the relationship of (11) is combined,
L R . L G . L B L R. L G. L B
= ί V (λ) · p R(X) d X/ i FR(l) - ρ R (λ) d λ = ί V (λ) p R (X) d X / i F R (l)-ρ R (λ) d λ
: ί V (λ) - p e(;t) d A/ j F ;L) ' ρ G(X) d λ : Ί V (λ)-p e (; t) d A / j F; L) 'ρ G (X) d λ
: ί ν(λ) - p B(X) d X/ j FB ( ) - ρΒ(λ) ά λ (1 6) となり、 各色で同じ露光エネルギーを与える各色の輝度の関係が示される。 : Ί ν (λ)-p B (X) d X / j F B ()-ρ Β (λ) ά λ (1 6) This shows the relationship between the brightness of each color giving the same exposure energy for each color.
ここで、 各発光素子の電圧一輝度特性が図 1 0のようになった場合での、 配列 の決定方法を説明する。 (1 6)式で実際に露光プリントを実施する系の各色の ρ (λ)、 F (λ)を(1 6)式に入れて、 LR : LG : LBを求めた結果が図 1 0の縦軸 に示した比率になっていたと仮定する。 図 1 0の電圧一輝度特性から各色輝度に 対応する電圧値(VR、 VG, VB)が決まる。 〔(1 6)式で求められるのは輝度の 相対比であり、 絶対値は求められない。 輝度の絶対値は実際にプリントを行う時 の露光条件に合う輝度を基準とし、 その値から電圧値を求めるのが望ましい。 〕 この結果が、 図 1 0のように VB > VR > VGであった場合、 最も電圧の高い青 色素子を副走查方向の中央部に配置し、 最も電圧の低い緑色素子を上記中央部の 副走査方向における周辺部に配置する。 図 1 0のように、 VRと VBは比較的値 が近く、 VGに対して離れている傾向にある場合、 上記図 8に示した配置のよう にレンズアレイ部の中心をはさんで赤、 青を配置し、 緑を最もレンズ中心から離 す配列が望ましい。 また、 青色素子の電圧が若干赤色素子より高いので、 赤色素 子より青色素子をレンズアレイ部の中心に近い配置にする方が望ましい。 このよ うに実際に露光プリントを行う系での各色のパワースぺク トルと感材分光感度か ら、 各色輝度比を求め、 各色素子の電圧一輝度特性から各色の電圧を算出して、 その大小から配置を求める事ができる。 Here, a method for determining the arrangement when the voltage-luminance characteristics of the respective light emitting elements are as shown in FIG. 10 will be described. The result of calculating L R : L G : L B by putting ρ (λ) and F (λ) of each color of the system that actually performs exposure printing in Eq. (16) into Eq. (16) is shown in the figure. Assume that the ratio is shown on the vertical axis of 10. The voltage values (V R , V G , V B ) corresponding to the luminance of each color are determined from the voltage-luminance characteristics in Fig. 10. [(16) is the relative ratio of luminance, and the absolute value cannot be obtained. It is desirable to obtain the voltage value from the absolute value of the brightness, based on the brightness that matches the exposure conditions when actually printing. ] If this result is V B > V R > V G as shown in Fig. 10, the blue element with the highest voltage is placed in the center of the secondary running direction, and the green element with the lowest voltage is It is arranged at the peripheral part in the sub-scanning direction of the central part. As shown in FIG. 1 0, V R and V B are relatively value is close, when there is a tendency that apart relative to VG, across the center of the lens array portion as the arrangement shown in FIG. 8 It is desirable to arrange red and blue and green farthest from the lens center. Further, since the voltage of the blue element is slightly higher than that of the red element, it is desirable to arrange the blue element closer to the center of the lens array portion than the red dye. In this way, the color luminance ratio is calculated from the power spectrum of each color and the sensitive material spectral sensitivity in the actual exposure printing system, and the voltage of each color is calculated from the voltage-luminance characteristics of each color element. You can ask for the placement.
これまで各色が独立した発光を行う素子で説明を行って来たが、 白色光を発す る発光素子の前に RGB各色の光のみを透過するフィルターを配置してプリント を行う場合にも適用できる。 F (λ)を各色フィルターの分光透過率、 ΡΜ(λ)を 各光源のパワースぺク トルとした場合、 各色のパワースぺク トルは、 P RU) = F RU) · ΡΜ(λ) ( 1 7 ) Up to now, the explanation has been made with the element that emits light independently for each color, but it can also be applied to the case where a filter that transmits only light of each RGB color is placed in front of the light emitting element that emits white light. . When F (λ) is the spectral transmittance of each color filter and Ρ Μ (λ) is the power spectrum of each light source, the power spectrum of each color is P R U) = F R U) · Μ (λ) (1 7)
P G (1) = FG ( ) · ΡΜ(λ) ( 1 8 ) P G (1) = F G () · Ρ Μ (λ) (1 8)
P B ( = F BU) · ΡΜ(λ) ( 1 9 ) P B (= F B U) · Μ λ (λ) (1 9)
となる。 上式の各パワースぺク トルを規格化して規格化パワースぺク トルを求め れば、 式( 1 6 )より輝度比を求めることができる。 この場合の輝度は光源自体の 輝度ではなく、 単色光源にフィルターをつけた場合の透過輝度を使用する。 It becomes. If each power spectrum in the above equation is normalized and the normalized power spectrum is obtained, the luminance ratio can be obtained from equation (16). The brightness in this case is not the brightness of the light source itself, but the transmission brightness when a filter is attached to a monochromatic light source.

Claims

請求の Billed
1 . 同一色の光を射出する多数の発光体を 1列に並べた発光体列を複数有 するとともに、 各発光体列は互いに異なる色の光を射出するものである発光へッ ド、と、 1. There are a plurality of light emitter rows in which a large number of light emitters emitting the same color of light are arranged in a row, and each light emitter row emits light of a different color. ,
前記発光体から射出された各光を感光材料上に結像させる、 1方向に並べられ た多数のレンズからなるレンズァレイ部とを備えた露光装置であって、  An exposure apparatus comprising: a lens array unit composed of a plurality of lenses arranged in one direction, which images each light emitted from the light emitter on a photosensitive material,
前記発光へッ ドが、 前記感光材料を露光して発色させる際の発色効率の高い色 の光を射出する発光体列よりも、 この色の光に比して前記発色効率の低い色の光 を射出する発光体列の方を、 前記レンズアレイ部の幅方向における中心のより近 くに位置させたものであることを特徴とする露光装置。  The light emitting head emits light having a color development efficiency lower than that of the light emitter array that emits light having a high color development efficiency when the photosensitive material is exposed to color. An exposure apparatus characterized in that the light emitter array that emits light is positioned closer to the center in the width direction of the lens array section.
2 . 前記互いに異なる色が、 赤色、 緑色、 および青色であることを特徴と する請求項 1記載の露光装置。  2. The exposure apparatus according to claim 1, wherein the different colors are red, green, and blue.
3 . 前記レンズアレイ部を構成する各レンズが、 屈折率分布型レンズであ ることを特徴とする請求項 1または 2記載の露光装置。  3. The exposure apparatus according to claim 1, wherein each lens constituting the lens array unit is a gradient index lens.
4 . 前記レンズァレイ部が、 マイクロレンズアレイであることを特徴とす る請求項 1または 2記載の露光装置。  4. The exposure apparatus according to claim 1 or 2, wherein the lens array section is a microlens array.
5 . 前記発光体が、 有機 E L素子、 無機 E L素子、 あるいは L E D素子か らなるものであることを特徴とする請求項 1から 4のいずれか 1項記載の露光装 置。  5. The exposure apparatus according to any one of claims 1 to 4, wherein the light emitter is composed of an organic EL element, an inorganic EL element, or an LED element.
PCT/JP2005/012529 2004-07-13 2005-06-30 Exposure system WO2006006474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-205498 2004-07-13
JP2004205498A JP2006026954A (en) 2004-07-13 2004-07-13 Exposure equipment

Publications (1)

Publication Number Publication Date
WO2006006474A1 true WO2006006474A1 (en) 2006-01-19

Family

ID=35783818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012529 WO2006006474A1 (en) 2004-07-13 2005-06-30 Exposure system

Country Status (2)

Country Link
JP (1) JP2006026954A (en)
WO (1) WO2006006474A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070839B2 (en) * 2006-12-28 2012-11-14 セイコーエプソン株式会社 Line head and image forming apparatus using the line head

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104367A (en) * 1980-01-23 1981-08-20 Ricoh Co Ltd Image recorder
JPH02227268A (en) * 1989-02-28 1990-09-10 Sony Corp Printer
JPH05165108A (en) * 1991-12-12 1993-06-29 Seiko Epson Corp Color printer and fluorescent writing device
JPH08220502A (en) * 1995-02-10 1996-08-30 Citizen Watch Co Ltd Image formation device
JP2001347701A (en) * 2000-06-09 2001-12-18 Fuji Photo Film Co Ltd Exposing unit
JP2001356422A (en) * 2000-06-14 2001-12-26 Fuji Photo Film Co Ltd Exposure device
JP2002046301A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Image exposing head and image exposing device
JP2003094729A (en) * 2001-07-02 2003-04-03 Rohm Co Ltd Organic el print head and imaging apparatus
JP2003202516A (en) * 2001-12-28 2003-07-18 Nippon Sheet Glass Co Ltd Image forming apparatus
JP2004066758A (en) * 2002-08-09 2004-03-04 Seiko Epson Corp Exposure head and imaging apparatus employing it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104367A (en) * 1980-01-23 1981-08-20 Ricoh Co Ltd Image recorder
JPH02227268A (en) * 1989-02-28 1990-09-10 Sony Corp Printer
JPH05165108A (en) * 1991-12-12 1993-06-29 Seiko Epson Corp Color printer and fluorescent writing device
JPH08220502A (en) * 1995-02-10 1996-08-30 Citizen Watch Co Ltd Image formation device
JP2001347701A (en) * 2000-06-09 2001-12-18 Fuji Photo Film Co Ltd Exposing unit
JP2001356422A (en) * 2000-06-14 2001-12-26 Fuji Photo Film Co Ltd Exposure device
JP2002046301A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Image exposing head and image exposing device
JP2003094729A (en) * 2001-07-02 2003-04-03 Rohm Co Ltd Organic el print head and imaging apparatus
JP2003202516A (en) * 2001-12-28 2003-07-18 Nippon Sheet Glass Co Ltd Image forming apparatus
JP2004066758A (en) * 2002-08-09 2004-03-04 Seiko Epson Corp Exposure head and imaging apparatus employing it

Also Published As

Publication number Publication date
JP2006026954A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP2009065710A (en) Scanner, method of calibrating spectrum of the same, and method for scanning image using the scanner
CN1854923A (en) Method for adjusting non-uniform brightness and non-uniform brightness adjustment set using same
EP1190863B1 (en) Optical printing head of side-printing device for printing data on photosensitive material
JP2005116266A (en) Illumination device, display device, and projector
WO2006006474A1 (en) Exposure system
JP2008072398A (en) Original illuminator, image reader, color original reader and image forming apparatus
CN111201425B (en) Color correction viewer and color correction set using the same
JP2004151651A (en) Lighting device, projector, and optical apparatus
CN214311268U (en) Illumination system and projection apparatus
JPH05165108A (en) Color printer and fluorescent writing device
JP3802273B2 (en) Image recording device
JP2003215734A (en) Image reader
JP3687393B2 (en) Organic EL print head
US20050117181A1 (en) Film image scanning system and light source unit for scanning a film
JP2011023117A (en) Lighting device, and projection display apparatus
JP2000343752A (en) Organic el print head
JP2004151657A (en) Projector and optical apparatus
JPS6099672A (en) Printer using light emitting diode
JP2000071518A (en) Optical recording apparatus
JP3432935B2 (en) Color adjustable photographic equipment
JP2000353590A (en) Organic el light-emitting device
JP2001005110A (en) Photographic printing device and photographic processor equipped with the same
JP2001260416A (en) Organic el printing head
JP2000296635A (en) Optical print head
JP2001235800A (en) Method for printing of image, exposure head and device for printing of image

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase