WO2006004179A1 - Exposure head and exposure equipment - Google Patents

Exposure head and exposure equipment Download PDF

Info

Publication number
WO2006004179A1
WO2006004179A1 PCT/JP2005/012531 JP2005012531W WO2006004179A1 WO 2006004179 A1 WO2006004179 A1 WO 2006004179A1 JP 2005012531 W JP2005012531 W JP 2005012531W WO 2006004179 A1 WO2006004179 A1 WO 2006004179A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
line
light emitting
shaped light
Prior art date
Application number
PCT/JP2005/012531
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Seto
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Publication of WO2006004179A1 publication Critical patent/WO2006004179A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/50Picture reproducers
    • H04N1/504Reproducing the colour component signals line-sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means

Definitions

  • the present invention relates to an exposure head using a plurality of types of line-shaped light emitting element arrays that emit light of different colors.
  • the present invention also relates to an exposure apparatus for exposing a color photosensitive material using the exposure head as described above. '
  • each has different wavelength regions such as red, green and blue.
  • An apparatus that exposes a color photosensitive material using an exposure head composed of a plurality of line-shaped light emitting element arrays that emit light of the same color is known.
  • the above-described line-shaped light emitting element array is formed by arranging a plurality of light emitting elements such as organic EL (electric aperture luminescence) light emitting elements that emit light of the same color in a line.
  • a plurality of line-shaped light emitting element arrays emitting light of different colors are arranged side by side in a direction substantially perpendicular to the direction in which the light emitting elements are arranged, and the light emitted from each array is emitted.
  • An equal-magnification lens array for condensing light is provided on the color photosensitive material.
  • the exposure apparatus using such an exposure head holds a color photosensitive material at a position where light emitted from the exposure head is irradiated, and a plurality of the color photosensitive material and the exposure head are arranged.
  • sub-scanning means for relatively moving in the arrangement direction of the line-shaped light-emitting element arrays. It is configured.
  • a plurality of gradient index lenses that collect light emitted from the line-shaped light-emitting element array are substantially parallel to the longitudinal direction of the line-shaped light-emitting element array (light-emitting element arrangement direction).
  • the force that is often used in the state of being assembled in a line is used.
  • This type of lens array is quite expensive.
  • the exposure head disclosed in Japanese Patent Laid-Open No. 5-9 2 6 2 2 is provided with a total of three such 1 ⁇ lens arrays, one for each of the three color line-shaped light emitting element arrays. Is expensive.
  • the width of the exposure head is usually increased because of the plurality of same-size lens arrays that are wider than the line-shaped light-emitting element arrays. This becomes an obstacle to downsizing the exposure apparatus.
  • the above-described equal-magnification lens array is usually composed of a plurality of lens rows in which a plurality of lenses such as a gradient index lens are arranged in parallel in one direction and in a direction perpendicular to the lens arrangement direction.
  • the adjacent lens rows are arranged so that the lens of another lens row enters the space between the lenses of one lens row. In other words, when you look at the whole, each lens is in a staggered arrangement It has become.
  • the amount of exposure light that has passed through the long axis of the equal-magnification lens array (the central position of the lens array in the lens alignment direction)
  • the lens arrangement pitch changes along the (extended axis).
  • the staggered array is arranged on both sides of the long axis.
  • the variation in the amount of light is canceled out by the lens being used, so the variation in the amount of exposure is not so serious, but in the case of a line-shaped light-emitting element array arranged farther from the major axis, Since the effect of such cancellation becomes low, fluctuations in exposure become serious. If the amount of exposure fluctuates in this manner, naturally density unevenness occurs in an image exposed to a color photosensitive material.
  • this object is to provide a color exposure head and an exposure apparatus that do not cause large density unevenness due to fluctuations in the amount of exposure light that has passed through the 1 ⁇ lens array. To do. Disclosure of the invention
  • the exposure head according to the present invention makes it difficult to visually recognize density unevenness caused by fluctuations in the amount of exposure light by setting the arrangement state of the plurality of line-shaped light emitting element arrays to a special state.
  • a plurality of line-shaped light-emitting elements that emit light of different colors, in which the light-emitting elements are arranged in a row, and are arranged in a direction substantially perpendicular to the direction of the light-emitting elements.
  • a plurality of lenses for condensing light emitted from these line-shaped light emitting element arrays are gathered in a zigzag array so as to be arranged in parallel with the arrangement direction of the light emitting elements.
  • the line-shaped light-emitting element array that emits light that sensitizes the coloring layer is the highest in the long axis of the equal-magnification lens array. It is characterized by being arranged in a close state.
  • the line-shaped light-emitting element array that emits the light that sensitizes the color-developing layer is the second most highly color-sensitive material, and the color-emitting layer that has the highest specific visual sensitivity.
  • the line-shaped light emitting element array that emits light to be exposed is the second most highly color-sensitive material, and the color-emitting layer that has the highest specific visual sensitivity.
  • the two adjacent linear light emitting element array forces S and the long axis of the equal-magnification lens array are placed between the two linear light emitting element arrays. It is desirable to arrange them separately.
  • the highest specific visibility and the second highest specific sensitivity are kk 2 respectively
  • a line-shaped light-emitting element array that emits light that sensitizes the coloring layer having the highest relative visibility, and secondly, the high luminous efficiency and coloring layer. It is desirable that the ratio of the distance of the line-shaped light emitting element array that emits light from the long axis of the 1 ⁇ lens array is approximately: (l / k 2 ).
  • a plurality of linear light emitting element arrays that emit light of different colors emit light in the red, green, and blue wavelength regions
  • the line-shaped light-emitting element array emitting light in the green wavelength region is disposed in the state closest to the long axis of the 1 ⁇ lens array among the three line-shaped light-emitting element arrays. Further, in the exposure head of the present invention, as the plurality of line-shaped light emitting element arrays that emit light of different colors, those composed of organic EL light emitting elements can be suitably used. On the other hand, an exposure apparatus according to the present invention provides:
  • a color photosensitive material is held at a position irradiated with light emitted from the exposure head, and the color photosensitive material and the exposure head are relatively moved in the arrangement direction of the plurality of line-shaped light emitting element arrays. It is characterized by comprising scanning means.
  • the power-sensitive material is provided with a plurality of color layers, but the higher the relative visibility among these color layers, the more conspicuous the density unevenness caused by the fluctuation in the amount of exposure light. ing.
  • the light amount fluctuation is more as the light emitted from the line-shaped light emitting element array arranged near the long axis of the equal magnification lens array reaches the color photosensitive material. The smaller the light emitted from the line-shaped light emitting element array arranged farther from the major axis and reaching the color photosensitive material, the greater the variation in the amount of light.
  • the line-shaped light-emitting element array that emits light that sensitizes a high-quality color layer (that is, the color layer that is most conspicuous in density unevenness) is placed in the state closest to the long axis of the 1x lens array. It is possible to suppress the occurrence of density unevenness in the color developing layer with less. Since the other line-shaped light emitting element arrays are arranged farther from the long axis of the 1 ⁇ lens array, the light emitted from these line-shaped light emitting element arrays and reaching the color photosensitive material is more subject to fluctuations in the amount of light. However, since the color-developing layer that is sensitive to such light has a lower relative visibility, density unevenness due to exposure amount fluctuations in the color-developing layer is difficult to visually recognize.
  • a line that emits light that sensitizes the second colorimetric layer of the color light-sensitive material having the highest visual sensitivity is arranged next to a line light emitting element array that emits light that sensitizes the coloring layer with the highest relative visibility, and is adjacent to the lens light emitting element array when viewed from a direction parallel to the optical axis of the lens.
  • the second color-developing layer that is, the second Occurrence of density unevenness in the coloring layer where density unevenness is conspicuous is also reduced.
  • the highest specific luminous sensitivity and the second highest specific luminous sensitivity are respectively set to k 2
  • the highest specific luminous sensitivity is obtained when viewed from a direction parallel to the optical axis of the lens!
  • a line-shaped light-emitting element array that emits light that sensitizes the color-developing layer, and a line-shaped light-emitting element array that emits light that sensitizes the color-forming layer, which has the second highest relative visibility, from the long axis of the 1X lens array In an exposure head with a ratio of the sorting distances of approximately (1 1 ⁇ ): (l Z k 2 ), the coloring layer with the highest relative visibility and the second high-viscosity coloring layer with the highest relative visibility are used.
  • the degree of visibility of density unevenness can be suppressed to approximately the same level. Further, since the exposure apparatus of the present invention uses the exposure head having the above-described effects, it is possible to expose a high-quality image in which the occurrence of density unevenness due to fluctuations in the amount of exposure light is suppressed. -Brief description of the drawings
  • FIG. 1 is a partially cutaway front view of an exposure apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a partially broken side view of the exposure apparatus.
  • FIG. 3 is a partial plan view showing the line-shaped light-emitting element array and the equal-magnification lens array in the exposure apparatus.
  • Figure 4 is a graph showing the standard relative luminous sensitivity characteristics of CIE (International Commission on Illumination).
  • FIG. 5 is a graph showing the relationship between the position of the line-shaped light emitting element array and the exposure amount deviation characteristic in the exposure apparatus.
  • FIG. 6 is a partial plan view showing the line-shaped optical element array and the equal-magnification lens array in the exposure apparatus according to the second embodiment of the present invention. .
  • FIG. 7 is a drawing showing the relationship between the position of the line-shaped light-emitting element array and the exposure deviation characteristic in the exposure apparatus according to the second embodiment.
  • FIG. 8 is a partial plan view showing a line-shaped light-emitting element array and an equal-magnification lens array in the exposure apparatus according to the third embodiment of the present invention.
  • FIG. 9 is a graph showing the relationship between the position of the line-shaped light emitting element array and the exposure amount deviation characteristic in the exposure apparatus according to the third embodiment.
  • FIG. 1 shows a partially broken front shape of the exposure apparatus according to the first embodiment of the present invention
  • FIG. 2 shows a partially broken side shape of the exposure apparatus.
  • this exposure apparatus is configured to align the exposure head 1 and the color photosensitive material 3 held at the position where the exposure light 2 emitted from the exposure head 1 is irradiated in the direction indicated by the arrow Y in FIG.
  • Sub-scanning means 4 composed of, for example, a nip roller is provided.
  • the exposure head 1 is arranged at a position to receive the organic EL panel 6 and the exposure light 2 emitted from the organic EL panel 6, and images the exposure light 2 on the color photosensitive material 3 at the same magnification.
  • a holding means 8 (not shown in FIG. 2) for holding the lens array 7 and the organic EL panel 6.
  • the gradient index lens array 7 that is an equal magnification lens array has a minute gradient index lens 7 a that collects the exposure light 2 in the sub-scanning direction Y.
  • a total of two lens rows are arranged in parallel in the main scanning direction (arrow X direction) perpendicular to.
  • the gradient index lenses 7a are arranged in a staggered manner. That is, the plurality of gradient index lenses 7 a constituting one lens row are arranged so as to be positioned between the plurality of gradient index lenses 7 a constituting the other lens row.
  • the exposure apparatus for example, exposes a color image to a color photosensitive material 3 that is a full-color positive type silver salt copying material, and the organic EL panel 6 constituting the exposure head 1
  • a red line light emitting element array 6 R, a green line light emitting element array 6 G, and a blue line light emitting element array 6 B arranged side by side in the running direction Y are provided.
  • Each of these line-shaped light emitting element arrays 6 R, 6 G and 6 B is composed of a large number of red organic EL light emitting elements, green organic EL light emitting elements and blue organic EL light emitting elements arranged in parallel in the main scanning direction X. It is.
  • each organic EL light-emitting element 20 is formed by sequentially depositing a transparent anode 21, an organic compound layer 22 including a light-emitting layer, and a metal cathode 23 on a transparent substrate 10 made of glass or the like. It will be. Then, red light emitting elements, green light emitting elements, and blue light emitting elements are respectively used as the light emitting layers, thereby forming red organic EL light emitting elements, green organic EL light emitting elements, and blue organic EL light emitting elements, respectively.
  • the line-shaped light emitting element arrays 6 R, 6 G, and 6 B are driven by a drive circuit 30 shown in FIG. That is, the drive circuit 30 is based on image data D indicating a full-color image of a cathode driver that sequentially sets the metal cathode 23 serving as a scanning electrode to an ON state at a predetermined cycle and a transparent anode 21 serving as a signal electrode. An anode driver that is set to an ON state is provided, and the line-shaped light emitting element arrays 6 R, 6 G, and 6 B are driven by a so-called passive matrix line sequential selection driving method. The operation of the drive circuit 30 is controlled by the control unit 31 that outputs the image data D.
  • each organic EL light emitting element 20 is arranged in a sealing member 25 made of, for example, a stainless steel can. That is, the edge of the sealing member 25 and the transparent substrate 10 are attached, and the organic EL light emitting element 20 is sealed in the sealing member 25 filled with dry nitrogen gas.
  • the organic EL light emitting device 20 having the above configuration, when a predetermined voltage is applied between the metal cathode 23 and the transparent anode 21 extending across the metal cathode 23, the intersection of both electrodes to which H is applied Every minute, a current flows through the organic compound layer 22 and the light emitting layer contained therein emits light. This emitted light passes through the transparent anode 21 and the transparent substrate 10 and is emitted as exposure light 2 to the outside of the device.
  • the transparent anode 21 has a light transmittance of at least 50% or more, preferably 70% or more in the visible light wavelength region of 400 nm to 700 nm.
  • Transparent sun As a material for the electrode 21, tin oxide, indium tin oxide (ITO), indium zinc oxide, etc., known compounds as transparent electrode materials are suitable: the ability to be able to contain M, and other high work functions such as gold and platinum A thin film made of metal may be used.
  • organic compounds such as polyaniline, polythiophene, polypyrrole, or derivatives thereof can also be used.
  • Yutaka Sawada “New Development of Transparent Conductive Film” published by CMC Co., Ltd. (1 9 9 9) has a detailed description of transparent conductive film, and what is shown there is applied to the present invention. It is also possible.
  • the transparent anode 21 can be formed on the transparent substrate 10 by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • the organic compound layer 22 may have a single-layer structure composed of only a light emitting layer, or other layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer in addition to the light emitting layer. It may be a laminated structure having as appropriate.
  • Specific layer configurations of the organic compound layer 22 and the electrode include an anode Z hole injection layer / hole transport layer / light emitting layer Z electron transport layer / cathode, and an anode / light emitting layer Z electron transport layer, cathode. Examples include an anode / hole transport layer, a Z light-emitting layer, a Z electron transport layer / a cathode, and the like.
  • the light emitting layer, the hole transport layer, the hole injection layer, and the electron injection layer may each be provided with tVit number.
  • the metal cathodes 2 and 3 are made of low work functions such as alkali metals such as Li and K, an alkaline earth metals such as Mg and Ca, and alloys and mixtures of these metals with Ag and A1. Preferably formed from a metal material. In order to achieve both the storage stability and the electron 3 ⁇ 4 ⁇ property at the P electrode, the electrode made of the above material is further coated with Ag, Al, Au, etc. that have a high work function and high conductivity. Also good.
  • the metal cathode 23 can also be formed by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method, like the transparent anode 21.
  • the number of pixels in the main scanning direction of the line-shaped light emitting element arrays 6 R, 6 G and 6 B, that is, the transparent anodes 21 are arranged in parallel. Let n be the number.
  • the color photosensitive material 3 is conveyed by the sub-scanning means 4 at a constant speed in the direction of arrow ⁇ .
  • one of the three metal cathodes 23 is sequentially turned on by the cathode driver of the driving circuit 30 described above.
  • the anode driver of the drive circuit 30 is the first and second anodes within the period in which the first metal cathode 23, that is, the metal cathode 23 constituting the red line light emitting element array 6R is selected.
  • N 2 transparent anodes 2 1 are connected to a constant current source for the time corresponding to the image data indicating the red density of the nth pixel on the 1st main scanning line 1, 2, 3 To do.
  • a current having a pulse width corresponding to the image data flows through the organic compound layer 2 2 (see FIG. 1) between the transparent anode 21 and the metal cathode 2 3, and red light is emitted from the organic compound layer 22. Be emitted.
  • the exposure light 2 that is red light emitted from the red line-shaped light emitting element array 6 R is condensed on the color photosensitive material 3 by the lens array 7, and thereby the first main scanning on the color photosensitive material 3.
  • the first, second, and third lines that make up the line are exposed to red light and develop red.
  • the anode driver of the drive circuit 30 is the first, second, 3 ⁇ ⁇ ⁇ n
  • Each transparent anode 21 is connected to a constant current source for a time corresponding to the image data indicating the green density of the nth pixel of the first main scan line, 1, 2, 3. .
  • a current with a Norse width corresponding to the image data flows through the organic compound layer 22 between the transparent anode 21 and the metal cathode 23, and green light is emitted from the organic compound layer 22.
  • the exposure light 2 which is green light emitted from the green line-shaped light emitting element array 6 G is condensed on the color photosensitive material 3 by the lens array 7, so that the first main scanning is performed on the color photosensitive material 3.
  • the anode driver of the drive circuit 30 is the first, second, 3 ⁇ n transparent anodes 2 1 are connected to a constant current source for the time corresponding to the image data indicating the blue density of the nth pixel of the first main runner line To do.
  • a current having a pulse width corresponding to the image data flows through the organic compound layer 22 between the transparent anode 21 and the metal cathode 23, and blue light is emitted from the organic compound layer 22.
  • the exposure light 2 which is the blue light emitted from the blue line-shaped light emitting element array 6 B force is condensed on the color photosensitive material 3 by the lens array 7, and thereby the first main light on the color photosensitive material 3.
  • the first, second, and third lines that make up the scan line are exposed to blue light and develop blue. Since the color photosensitive material 3 is transported at a constant speed as described above, the blue light is irradiated onto the portion of the color photosensitive material 3 that has already been exposed to red light and green light. Through the above steps, the first full-color main scanning line is exposed and recorded on the color photosensitive material 3.
  • the line-sequential selection of the metal cathodes returns to the first metal cathode 23, and the first metal cathode 23, that is, the metal cathode 23 constituting the red line light emitting element array 6R is selected.
  • the anode driver of the driving circuit 30 supplies each of the first, second, and third transparent anodes 21 to the first, second, and third nth pixels of the second main scanning line. Connect to a constant current source for a time corresponding to the image data indicating the red density of the.
  • a current having a pulse width corresponding to the image data flows through the organic compound layer 22 between the transparent anode 21 and the metal cathode 23, and red light is emitted from the organic compound layer 22.
  • the exposure light 2 which is red light emitted from the red line-shaped light emitting element array 6 R is condensed on the color photosensitive material 3 by the lens array 7, so that the second main scanning is performed on the color photosensitive material 3.
  • the 1st, 2nd, 3rd, 3rd, and nth pixels that make up the line are exposed to red light, and develop a red color.
  • each color exposure light is subjected to pulse width modulation, and the amount of emitted light is controlled corresponding to the image data, thereby exposing a single gradation image.
  • each gradient index lens 7 a of the gradient index lens array 7 is 2 95 m.
  • the green line-shaped light emitting element array 6G is the long axis L of this gradient index lens array 7 (the axis extending from the center position of the two lens rows in the direction in which the lenses 7a are arranged)
  • Red line-shaped light emitting element array 6 R and blue line-shaped light emitting element array 6 B are arranged at intervals of ⁇ ⁇ ⁇ ⁇ m in the sub-scanning direction Y, respectively. .
  • human relative luminous sensitivity for the three primary colors R, G, and B is defined as 6 10 nm, 5 nm for each wavelength, as indicated by the CIE (International Commission on Illumination) standard relative luminous sensitivity. When it is 60 nm and 470 nm, it is about 3: 6: 1.
  • Figure 4 shows the CIE standard relative luminous sensitivity characteristics. In this figure, the density unevenness that occurs in the full-color image formed on the color photosensitive material 3 is caused by moving the power photosensitive material 3 in the sub-scanning direction in this example, and thus extends in the sub-scanning direction. Appears as an irregular muscle. The visibility of the stripe unevenness is proportional to the specific visual sensitivity.
  • the arrangement pitch of the lens 7a changes with the period.
  • the periodic deviation of the exposure light 2 changes in accordance with the distance from the long axis L of the linear fluorescent element array 6R, 6G, or 6B, as shown in the curve of the actual measurement result in FIG.
  • the above distance is a distance when viewed from a direction parallel to the optical axis of the lens 7a (hereinafter the same), and is referred to as an “optical axis offset”.
  • the optical axis offsets of the line-shaped light emitting element arrays 6 R, 6 G, and 6 B are shown in FIG. As shown.
  • the optical axis offset of the green line-shaped light emitting element array 6G is 0 (zero)
  • the red line light emitting element array 6R and the blue line light emitting element array 6B The optical axis offset is 1100 ⁇ m and + 100 / zm, respectively.
  • a value of 0.52% of the light amount period deviation of the G-color exposure light 2 is a preferable value in general that density unevenness is not visually recognized.
  • the visibility of the density unevenness of the G color is minimized, while the line-shaped light emitting element arrays 6 R and 6
  • the visibility and performance of the density unevenness of the R and B colors can be kept very low.
  • the exposure apparatus of the second embodiment differs from the exposure apparatus of the first embodiment in the relative positional relationship between the linear light emitting element arrays 6 R, 6 G, and 6 B and the gradient index lens array 7. Other points are basically the same.
  • FIG. 6 is a plan view showing the relative positional relationship between the linear light-emitting element arrays 6 R, 6 G and 6 B and the gradient index lens array 7 in the exposure apparatus of the third embodiment.
  • the order of the line-shaped light-emitting element arrays 6R, 6G, and 6B is the same as that of the first embodiment
  • the central green-line light-emitting element array 6G is Similar to the first embodiment, it is arranged at a position aligned with the long axis L of the gradient index lens array 7, but in the sub-scanning direction Y of the three linear light emitting element arrays 6R, 6G and 6B.
  • the self-placement interval is 1 6 0 // m.
  • the diameter of each gradient index lens 7a of the gradient index lens array 7 is 2 9 5 // m.
  • FIG. 7 shows the light amount period deviation characteristic of the exposure light 2 similar to that shown in FIG. 5 together with the optical axis offsets of the line-shaped light emitting element arrays 6 R, 6 G, and 6 B in the present embodiment.
  • the optical axis offset is the value of this embodiment
  • the light amount period deviation of the G-color exposure light 2 is normally suppressed to 0.52%, which is preferable from the viewpoint that density unevenness is not visually recognized.
  • the green line-shaped light emitting element array 6 G that emits the exposure light 2 that develops the G color that is most conspicuous in density unevenness is aligned with the long axis L of the gradient index lens array 7. As a result, the visibility of G density unevenness is very low.
  • the above condition of up to 6 times is satisfied, but the condition of up to twice the light intensity deviation of the G color is not satisfied for the R color.
  • This problem can be solved by a third embodiment described below.
  • the exposure apparatus of the third embodiment differs from the exposure apparatus of the second embodiment in the relative positional relationship between the line-shaped light emitting element arrays 6R, 6G, and 6B and the gradient index lens array 7.
  • the other points are basically formed in the same manner.
  • FIG. 8 is a plan view showing the relative positional relationship between the line-shaped light emitting element arrays 6 R, 6 G and 6 B and the gradient index lens array 7 in the exposure apparatus of the third embodiment.
  • the order of the line-shaped light-emitting element arrays 6 R, 6 G, and 6 B is the same as that of the second embodiment, and the three line-shaped light-emitting element arrays 6 R, 6 G are arranged.
  • the arrangement interval in the sub-scanning direction Y of B is also 1600 ⁇ m, but the central green line-shaped light emitting element array 6 G is not directly above the long axis L of the gradient index lens array 7 From there, it is placed at + 60 ⁇ ⁇ .
  • the refractive index distribution lens 7a of the gradient index lens array 7 has a diameter of 29 5 im.
  • FIG. 9 shows the periodic deviation characteristics of the exposure light 2 similar to that shown in FIG. 5 together with the optical axis offsets of the line-shaped light emitting element arrays 6 R, 6 G, and 6 B in the present embodiment.
  • the green line-shaped light emitting element array 6 G that emits the exposure light 2 that develops the G color that is most conspicuous in density unevenness is positioned closest to the long axis of the gradient index lens array 7 and positioned.
  • the red line-shaped light emitting element array 6R that emits the exposure light 2 that emits the R color which is the second most conspicuous in density unevenness, is arranged at a distance of 60 ⁇ m, the length of the refractive index distribution lens array 7 By arranging the axis L force at a position 100 tm away, the visibility of density unevenness of G and R colors can be kept low, while the blue line-shaped light emitting element array 6 B is By arranging it at the position, the visibility of density unevenness of B color is also kept low.
  • the relationship between the optical axis offset of the linear light emitting element arrays 6 R, 6 G, and 6 B with respect to the long axis L of the gradient index lens array 7 and the light amount period deviation of the exposure light 2 is It is assumed that it is known in advance. However, when the characteristics of the same-size lens array used and the intervals between multiple line-shaped light-emitting element arrays differ for each type of exposure apparatus, the relationship between the optical axis offset and the light amount period deviation for each model Measuring this requires a lot of effort and is not realistic.
  • the increase in the light amount deviation is linear in the range from the major axis L of the gradient index lens array 7 to the same distance as the diameter of the lens 7a.
  • the distance to the element array 6 G may be set to 53 ⁇ ⁇ , and the distance from the long axis L to the red line light emitting element array 6 R may be set to 10.
  • the density unevenness of the G and R colors in this case is determined by measuring the relationship between the optical axis offset of the line-shaped light emitting element arrays 6R and 6G and the exposure light quantity deviation, and On the basis of this, the density unevenness when the optical axis offset of the line-shaped light emitting element arrays 6 R and 6 G is determined is only slightly different.
  • an exposure apparatus that generates light of three colors, red light, green light, and blue light, from the exposure head, and sensitizes the red color development layer, the green color development layer, and the blue color development layer of the color photosensitive material 3 with these lights, respectively.
  • the present invention can also be applied to an exposure apparatus that targets a power-sensitive material having a color-developing layer that emits other colors. There is an effect.
  • the gradient index lens array 7 in which the gradient index lens 7 a has a diameter of 29 5 ⁇ m is used, but the diameter of the equal magnification lens array is set to that value.
  • the arrangement interval between the plurality of line-shaped light-emitting elements and the line-shaped light-emitting element array that emits light that sensitizes the coloring layer having the highest relative visibility of the color light-sensitive material The distance from the long axis of the 1 ⁇ lens array is not limited to the value in each of the embodiments described above.
  • an organic EL light emitting element is used as a light emitting element constituting the line-shaped light element array.
  • the present invention configures a line-shaped light emitting element array from other light emitting elements such as a light emitting diode.
  • it is not limited to self-luminous light emitting elements such as organic EL light emitting elements, but is a combination of a light control element such as a liquid crystal or PLZT and a light source.
  • the present invention can also be applied to the case where a line-shaped light emitting element array is configured by using a combination of elements. In this case, the same effect can be obtained.
  • the exposure apparatus of the above embodiment is for exposing the image to the color photosensitive material 3 which is a full-color positive type silver salt photographic photosensitive material, but the exposure apparatus of the present invention is for exposing the image to other color photosensitive materials. It is also possible to form as.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

An exposure head is provided with a plurality of linear light emitting element arrays (6R, 6G, 6B). In each of the arrays, light emitting elements are arranged in parallel in one line, and the arrays are arranged in parallel in a direction substantially vertical to the direction wherein the light emitting elements are arranged, so as to emit beams of colors different from each other. The exposure head is also provided with one equal magnification lens array (7), which is composed of a plurality of lenses (7a), which collect the light emitted from the linear light emitting element arrays (6R, 6G, 6B) and are assembled in stagger arrangement substantially parallel to an arrangement direction of the light emitting elements, so as to collect the light of each color on a color photosensitive material. Among the plurality of linear light emitting element arrays (6R, 6G, 6B), the linear light emitting element array (6G) which emits light that exposes a coloring layer of the color photosensitive material having the highest relative luminosity is arranged closest to a long axis (L) of the equal magnification lens array (7). Thus, the color exposure head which does not generate much concentration nonuniformity due to light quantity fluctuation of exposure beams passed through the equal magnification lens array is provided.

Description

露光へッドおよび露光装置  Exposure head and exposure apparatus
技術分野 本発明は、 互いに異なる色の光を発する複数種類のライン状発光素子アレイを用いた 露光へッドに関するものである。 明 TECHNICAL FIELD The present invention relates to an exposure head using a plurality of types of line-shaped light emitting element arrays that emit light of different colors. Light
糸 1  Thread 1
また本発明は、 上述のような露光へッドを用いてカラー感光材料を露光させる露光装 置に関するものである。'  The present invention also relates to an exposure apparatus for exposing a color photosensitive material using the exposure head as described above. '
背景技術 従来、 例えば特開平 5— 9 2 6 2 2号公報ゃ特開 2 0 0 0— 1 3 5 7 1号公報に示さ れるように、 それぞれが赤、 緑および青等の互いに異なる波長領域の光を発する複数の ライン状発光素子アレイからなる露光へッドを用いて、 カラー感光材料を露光する装置 が公^]となっている。 上記のライン状発光素子アレイは、 同じ色の光を発する複数の有機 E L (エレク ト口 ルミネッセンス) 発光素子等の発光素子が 1列に並設されてなるものである。 そして上 記露光へッドは、 互いに異なる色の光を発する複数のライン状発光素子アレイが互いに 発光素子の並び方向と略直角な方向に並設されるとともに、 各ァレイから発せられた光 をカラー感光材料上に集光させる等倍レンズァレイが設けられてなるものである。 そしてこのような露光へッドを用いる上記露光装置は、 露光へッドから発せられた光 が照射される位置にカラー感光材料を保持し、 このカラー感光材料と露光へッドとを、 複数のライン状発光素子ァレイの並び方向に相対移動させる副走査手段をさらに設けて 構成されている。 Background Art Conventionally, as shown in, for example, Japanese Patent Laid-Open No. 5-9 2 6 2 2 and Japanese Patent Laid-Open No. 2 0 0 0-1 3 5 7 1, each has different wavelength regions such as red, green and blue. An apparatus that exposes a color photosensitive material using an exposure head composed of a plurality of line-shaped light emitting element arrays that emit light of the same color is known. The above-described line-shaped light emitting element array is formed by arranging a plurality of light emitting elements such as organic EL (electric aperture luminescence) light emitting elements that emit light of the same color in a line. In the exposure head, a plurality of line-shaped light emitting element arrays emitting light of different colors are arranged side by side in a direction substantially perpendicular to the direction in which the light emitting elements are arranged, and the light emitted from each array is emitted. An equal-magnification lens array for condensing light is provided on the color photosensitive material. The exposure apparatus using such an exposure head holds a color photosensitive material at a position where light emitted from the exposure head is irradiated, and a plurality of the color photosensitive material and the exposure head are arranged. There is further provided sub-scanning means for relatively moving in the arrangement direction of the line-shaped light-emitting element arrays. It is configured.
上述した等倍レンズアレイとしては、 ラィン状発光素子ァレイから発せられた光を集 光する複数の屈折率分布型レンズが、 ライン状発光素子アレイの長手方向 (発光素子の 並び方向) と略平行に並ぶ状態に集合されてなるものが多く用いられている力 この種 のレンズアレイはかなり高価なものとなっている。 特開平 5— 9 2 6 2 2号公報に示さ れた露光へッドは、 このような等倍レンズァレイを 3色のライン状発光素子ァレイ毎に 1つずつ合計 3個設けているので、 コストが高いものとなっている。 また、 このように 等倍レンズァレイを複数のライン状発光素子ァレイの数だけ設けると、 通常はライン状 発光素子アレイよりも幅広であるそれら複数の等倍レンズアレイのために露光へッドの 幅が大きくなり、 それが露光装置を小型化する上で障害になる。  In the above-mentioned equal-magnification lens array, a plurality of gradient index lenses that collect light emitted from the line-shaped light-emitting element array are substantially parallel to the longitudinal direction of the line-shaped light-emitting element array (light-emitting element arrangement direction). The force that is often used in the state of being assembled in a line is used. This type of lens array is quite expensive. The exposure head disclosed in Japanese Patent Laid-Open No. 5-9 2 6 2 2 is provided with a total of three such 1 × lens arrays, one for each of the three color line-shaped light emitting element arrays. Is expensive. In addition, when the same-size lens arrays are provided as many as the plurality of line-shaped light-emitting element arrays in this way, the width of the exposure head is usually increased because of the plurality of same-size lens arrays that are wider than the line-shaped light-emitting element arrays. This becomes an obstacle to downsizing the exposure apparatus.
他方、 特開 2 0 0 0— 1 3 5 7 1号公報には、 複数のラィン状発光素子ァレイのそれ ぞれから発せられた光をダイクロイックミラーにより合波して、 共通の 1つの等倍レン ズアレイに入射させるようにした露光へッドが示されている。 しかしそのような露光へ ッドは、 使用する等倍レンズアレイは 1つで済むものの、 その他の光学部品が多く必要 になるため、 コストおよび小型化の点で依然改良の余地が残されている。  On the other hand, in Japanese Patent Application Laid-Open No. 2 00 0-1 3 5 7 1, light emitted from each of a plurality of line-shaped light emitting element arrays is combined by a dichroic mirror, and one common magnification is obtained. An exposure head designed to be incident on the lens array is shown. However, such an exposure head requires only one equal-magnification lens array, but requires many other optical components, so there is still room for improvement in terms of cost and miniaturization. .
そこで、 上述のような合波は行わないで、 3色のライン状発光素子アレイに共通の 1 つの等倍レンズァレイを直接組み合わせて用いることも考えられる。 しかしその場合に は、 等倍レンズアレイを通過した露光光の光量が、 該レンズアレイの長手方向に沿って 大きく変動するという問題が生じる。 以下、 この点について詳しく説明する。  Therefore, it is also conceivable to directly combine one single-magnification lens array common to the three-color line-shaped light-emitting element array without performing the above-described multiplexing. However, in this case, there arises a problem that the amount of exposure light that has passed through the 1 × lens array varies greatly along the longitudinal direction of the lens array. This point will be described in detail below.
上記の等倍レンズアレイは、 通常、 屈折率分布型レンズ等の複数のレンズが一方向に 並設されたレンズ列が複数、 レンズ並び方向と直角な方向に並設されてなる。 そして隣' 接するレンズ列どうしは、 1つのレンズ列のレンズ間のスペースに別のレンズ列のレン ズが入り込む状態に配置される。 つまり全体で見ると、 各レンズが千鳥配列した状態に なっている。 ラィン状発光素子ァレイから発せられた光をそのような等倍レンズァレイ に通すと、 通過した露光光の光量は、 等倍レンズアレイの長軸 (上記レンズ列の並び方 向中央位置をレンズ並び方向に延びる軸) に沿って、 レンズ配置ピッチを周期として変 動するようになる。 The above-described equal-magnification lens array is usually composed of a plurality of lens rows in which a plurality of lenses such as a gradient index lens are arranged in parallel in one direction and in a direction perpendicular to the lens arrangement direction. The adjacent lens rows are arranged so that the lens of another lens row enters the space between the lenses of one lens row. In other words, when you look at the whole, each lens is in a staggered arrangement It has become. When the light emitted from the line-shaped light-emitting element array is passed through such an equal-magnification lens array, the amount of exposure light that has passed through the long axis of the equal-magnification lens array (the central position of the lens array in the lens alignment direction) The lens arrangement pitch changes along the (extended axis).
等倍レンズアレイの長軸と整合する状態に、 つまり各発光素子の光軸がこの長軸と交 わる状態に配されたライン状発光素子ァレイに関しては、 該長軸の両側の互いに千鳥配 列しているレンズによって光量変動が相殺されるため、 露光量の変動はさほど深刻なも のとはならな ヽが、 該長軸からより遠くに離れて配置されたライン状発光素子ァレイほ ど、 そのような相殺の効果が低くなるので、 露光量の変動が深刻なものとなる。 このよ うにして露光量が変動すれば、 当然、 カラー感光材料に露光された画像において濃度ム ラが発生する。 前述したように、 カラ一感光材料と露光へッドとを、 複数のラィン状発 光素子アレイの並び方向に相対移動させて副走査を行う露光装置において、 このような 濃度ムラが すると、 それによつて副走査方向に延びる筋ムラ力 S発生し、 露光画像の 品質が大きく損なわれることになる。  For a line-shaped light-emitting element array that is aligned with the long axis of the equal-magnification lens array, that is, in a state where the optical axis of each light-emitting element intersects the long axis, the staggered array is arranged on both sides of the long axis. The variation in the amount of light is canceled out by the lens being used, so the variation in the amount of exposure is not so serious, but in the case of a line-shaped light-emitting element array arranged farther from the major axis, Since the effect of such cancellation becomes low, fluctuations in exposure become serious. If the amount of exposure fluctuates in this manner, naturally density unevenness occurs in an image exposed to a color photosensitive material. As described above, in an exposure apparatus that performs sub-scanning by relatively moving the color photosensitive material and the exposure head in the direction in which the plurality of line-shaped light emitting element arrays are arranged, if such density unevenness occurs, Therefore, streak unevenness S extending in the sub-scanning direction is generated, and the quality of the exposed image is greatly impaired.
以上、 有機 E L発光素子のァレイを用いた露光へッドにおける問題について説明した 力 有機 E L発光素子以外の自己発光型の発光素子や、 さらには、 液晶や P L Z T等の 調光素子と光源との組み合わせからなる素子のアレイを用いた露光へッドにおいても、 当然、 同様の問題が発生し得る。 なお本明細書においては、 上述の調光素子と光源との 組み合わせからなる素子も、 露光光を発する素子という意味で 「発光素子」 と称するこ ととする。  The above describes the problems associated with the exposure head using an array of organic EL light-emitting elements. Self-luminous light-emitting elements other than organic EL light-emitting elements, and dimming elements such as liquid crystal and PLZT and light sources Of course, a similar problem can occur in an exposure head that uses an array of combined elements. In the present specification, an element composed of a combination of the above-described light control element and light source is also referred to as a “light emitting element” in the sense of an element that emits exposure light.
本宪明は上記の事情に鑑みて、 等倍レンズァレイを通過した露光光の光量変動によつ て大きな濃度ムラを発生させることのないカラーの露光へッドおよび露光装置を ることを目的とする。 発明の開示 In view of the above circumstances, this object is to provide a color exposure head and an exposure apparatus that do not cause large density unevenness due to fluctuations in the amount of exposure light that has passed through the 1 × lens array. To do. Disclosure of the invention
本発明による露光へッドは、 複数のライン状発光素子アレイの配置状態を特別な状態 に設定することにより、 露光光の光量変動に起因する濃度ムラを視認し難くしたもので あり、 より具体的には、  The exposure head according to the present invention makes it difficult to visually recognize density unevenness caused by fluctuations in the amount of exposure light by setting the arrangement state of the plurality of line-shaped light emitting element arrays to a special state. In terms of
前述したようにそれぞれ発光素子が 1列に並設されてなり、 互いが前記発光素子の並 び方向と略直角な方向に並設された、 相異なる色の光を発する複数のラィン状発光素子 アレイと、  As described above, a plurality of line-shaped light-emitting elements that emit light of different colors, in which the light-emitting elements are arranged in a row, and are arranged in a direction substantially perpendicular to the direction of the light-emitting elements. An array,
これらのライン状発光素子ァレイから発せられた光を集光する複数のレンズが、 千鳥 配列しつつ前記発光素子の並び方向と略平行に並ぶ状態に集合されてなり、 前記各色の 光を前記カラー感光材料上に集光させる 1つの等倍レンズァレイとを備えた露光へッド において、  A plurality of lenses for condensing light emitted from these line-shaped light emitting element arrays are gathered in a zigzag array so as to be arranged in parallel with the arrangement direction of the light emitting elements. In an exposure head equipped with a 1x lens array that focuses light on the photosensitive material,
前記複数のラィン状発光素子ァレイのうち、 前記力ラ一感光材料の最も比視感度の高 レ、発色層を感光させる光を発するライン状発光素子ァレイが、 前記等倍レンズァレイの 長軸に最も近い状態に配置されていることを特徴とするものである。  Among the plurality of line-shaped light-emitting element arrays, the line-shaped light-emitting element array that emits light that sensitizes the coloring layer is the highest in the long axis of the equal-magnification lens array. It is characterized by being arranged in a close state.
なお、 上記構成を有する本発明の露光へッドにおいては、  In the exposure head of the present invention having the above configuration,
複数のラィン状発光素子ァレイのうち、 カラ一感光材料の 2番目に比視感度の高レ、発 色層を感光させる光を発するライン状発光素子ァレイが、 最も比視感度の高い発色層を 感光させる光を発するライン状発光素子ァレイと隣合わせに配置され、  Of the multiple line-shaped light-emitting element arrays, the line-shaped light-emitting element array that emits the light that sensitizes the color-developing layer is the second most highly color-sensitive material, and the color-emitting layer that has the highest specific visual sensitivity. Located next to the line-shaped light emitting element array that emits light to be exposed,
前記レンズの光軸と平行な方向から見た状態で、 前記隣合う 2つのライン状発光素子 アレイ力 S、 該 2つのライン状発光素子アレイの間に等倍レンズアレイの長軸を置いて振 り分け配置されていることが望ましい。  When viewed from a direction parallel to the optical axis of the lens, the two adjacent linear light emitting element array forces S and the long axis of the equal-magnification lens array are placed between the two linear light emitting element arrays. It is desirable to arrange them separately.
また、 本発明の露光へッドにおいては、  In the exposure head of the present invention,
最も高い比視感度、 2番目に高い比視感度をそれぞれ k k2としたとき、 前記レンズの光軸と平行な方向から見た状態で、 最も比視感度の高い発色層を感光さ せる光を発するライン状発光素子ァレイと、 2番目に比視感度の高レ、発色層を感光させ る.光を発するラィン状発光素子ァレイの、 等倍レンズァレイ長軸からの振り分け距離の 比が略 : ( l / k2) となっていることが望ましい。 When the highest specific visibility and the second highest specific sensitivity are kk 2 respectively, When viewed from a direction parallel to the optical axis of the lens, a line-shaped light-emitting element array that emits light that sensitizes the coloring layer having the highest relative visibility, and secondly, the high luminous efficiency and coloring layer. It is desirable that the ratio of the distance of the line-shaped light emitting element array that emits light from the long axis of the 1 × lens array is approximately: (l / k 2 ).
また、 本発明の露光へッドにおいては、  In the exposure head of the present invention,
相異なる色の光を発する複数のライン状発光素子アレイが、 それぞれ赤、 緑および青 の波長領域の光を発するものであり、  A plurality of linear light emitting element arrays that emit light of different colors emit light in the red, green, and blue wavelength regions,
緑の波長領域の光を発するライン状発光素子ァレイが、 3つのライン状発光素子ァレ ィの中で、 等倍レンズアレイの長軸に最も近い状態に配置されていることが望ましい。 さらに、 本発明の露光へッドにおいて、 相異なる色の光を発する複数のライン状発光 素子アレイとしては、 有機 E L発光素子からなるものを好適に用いることができる。 一方、 本発明による露光装置は、  It is desirable that the line-shaped light-emitting element array emitting light in the green wavelength region is disposed in the state closest to the long axis of the 1 × lens array among the three line-shaped light-emitting element arrays. Further, in the exposure head of the present invention, as the plurality of line-shaped light emitting element arrays that emit light of different colors, those composed of organic EL light emitting elements can be suitably used. On the other hand, an exposure apparatus according to the present invention provides:
上述した本発明による露光へッドと、  An exposure head according to the invention as described above;
この露光へッドから発せられた光が照射される位置にカラー感光材料を保持し、 該カ ラー感光材料と前記露光ヘッドとを、 複数のライン状発光素子アレイの並び方向に相対 移動させる副走査手段とからなることを特徴とするものである。  A color photosensitive material is held at a position irradiated with light emitted from the exposure head, and the color photosensitive material and the exposure head are relatively moved in the arrangement direction of the plurality of line-shaped light emitting element arrays. It is characterized by comprising scanning means.
力ラ一感光材料は複数の発色層を備えてなるものであるが、 それらの発色層の中でよ り比視感度が高いものほど、 露光光の光量変動に起因する濃度ムラが目立ちやすくなつ ている。 また、 前述した等倍レンズアレイの光量変動相殺の作用から、 この等倍レンズ ァレイの長軸に近く配置されたライン状発光素子ァレイから発せられてカラ一感光材料 に到達する光ほど光量変動は小さく、 該長軸から遠くに配置されたライン状発光素子ァ レイから発せられてカラー感光材料に到達する光ほど光量変動が大きくなる。  The power-sensitive material is provided with a plurality of color layers, but the higher the relative visibility among these color layers, the more conspicuous the density unevenness caused by the fluctuation in the amount of exposure light. ing. In addition, due to the effect of canceling the light amount fluctuation of the equal magnification lens array described above, the light amount fluctuation is more as the light emitted from the line-shaped light emitting element array arranged near the long axis of the equal magnification lens array reaches the color photosensitive material. The smaller the light emitted from the line-shaped light emitting element array arranged farther from the major axis and reaching the color photosensitive material, the greater the variation in the amount of light.
本発明の露光ヘッドにおいては、 以上の点に着目して、 カラー感光材料の最も比視感 度の高い発色層 (つまり最も濃度ムラが目立ちやすい発色層) を感光させる光を発する ライン状発光素子ァレイを、 等倍レンズァレイの長軸に最も近い状態に配置したので、 露光量の変動をより少なく抑えて、 この発色層における濃度ムラの発生をより少なく抑 えることが可能となる。 その他のライン状発光素子アレイは、 等倍レンズアレイの長軸 カ らより離れて配置されるので、 それらのライン状発光素子アレイから発せられてカラ 一感光材料に到達する光は光量変動がより大きくなるが、 これらの光に感光する発色層 はより比視感度が低いものであるから、 該発色層における露光量変動による濃度ムラは 視認し難いものとなる。 In the exposure head of the present invention, paying attention to the above points, the most specific visual sensitivity of the color photosensitive material. The line-shaped light-emitting element array that emits light that sensitizes a high-quality color layer (that is, the color layer that is most conspicuous in density unevenness) is placed in the state closest to the long axis of the 1x lens array. It is possible to suppress the occurrence of density unevenness in the color developing layer with less. Since the other line-shaped light emitting element arrays are arranged farther from the long axis of the 1 × lens array, the light emitted from these line-shaped light emitting element arrays and reaching the color photosensitive material is more subject to fluctuations in the amount of light. However, since the color-developing layer that is sensitive to such light has a lower relative visibility, density unevenness due to exposure amount fluctuations in the color-developing layer is difficult to visually recognize.
なお、 本発明の露光ヘッドのうち特に、 前述したように複数のライン状発光素子ァレ ィのうち、 カラー感光材料の 2番目に比視感度の高い発色層を感光させる光を発するラ ィン状発光素子ァレイが、 最も比視感度の高 、発色層を感光させる光を発するラィン状 発光素子アレイと隣合わせに配置され、 前記レンズの光軸と平行な方向から見た状態で、 上記隣合う 2つのライン状発光素子アレイが、 間に等倍レンズアレイの長軸を置いて振 り分け配置された露光へッドにおいては、 2番目に比視感度の高い発色層 (つまり 2番 目に濃度ムラが目立ちやすい発色層) における濃度ムラの発生もより少なく抑えられる ようになる。  Of the exposure heads of the present invention, in particular, as described above, among the plurality of line-shaped light-emitting element arrays, a line that emits light that sensitizes the second colorimetric layer of the color light-sensitive material having the highest visual sensitivity. The light emitting element array is arranged next to a line light emitting element array that emits light that sensitizes the coloring layer with the highest relative visibility, and is adjacent to the lens light emitting element array when viewed from a direction parallel to the optical axis of the lens. In an exposure head in which two linear light-emitting element arrays are arranged with the long axis of an equal-magnification lens array in between, the second color-developing layer (that is, the second) Occurrence of density unevenness in the coloring layer) where density unevenness is conspicuous is also reduced.
また、 上記最も高い比視感度、 2番目に高い比視感度をそれぞれ : k2としたとき、 前記レンズの光軸と平行な方向から見た状態で、 最も比視感度の高!/ヽ発色層を感光させ る光を発するラィン状発光素子ァレイと、 2番目に比視感度の高 、発色層を感光させる 光を発するライン状発光素子アレイの、 等倍レンズアレイ長軸からの振り分け距離の比 が略 (1 1^) : ( l Z k2) となっている露光ヘッドにおいては、 最も比視感度の高 い発色層と、 2番目に比視感度の高レヽ発色層における濃度ムラの視認の程度が、 互いに ほぼ同じ程度に抑えられるようになる。 また本発明の露光装置は、 上述のような効果を有する露光へッドを用いるものである ので、 露光光の光量変動による濃度ムラの発生が抑えられた高画質の画像を露光可能と なる。 - 図面の簡単な説明 In addition, when the highest specific luminous sensitivity and the second highest specific luminous sensitivity are respectively set to k 2 , the highest specific luminous sensitivity is obtained when viewed from a direction parallel to the optical axis of the lens! A line-shaped light-emitting element array that emits light that sensitizes the color-developing layer, and a line-shaped light-emitting element array that emits light that sensitizes the color-forming layer, which has the second highest relative visibility, from the long axis of the 1X lens array In an exposure head with a ratio of the sorting distances of approximately (1 1 ^): (l Z k 2 ), the coloring layer with the highest relative visibility and the second high-viscosity coloring layer with the highest relative visibility are used. The degree of visibility of density unevenness can be suppressed to approximately the same level. Further, since the exposure apparatus of the present invention uses the exposure head having the above-described effects, it is possible to expose a high-quality image in which the occurrence of density unevenness due to fluctuations in the amount of exposure light is suppressed. -Brief description of the drawings
図 1は本発明の第 1の実施形態による露光装置の一部破断正面図である。  FIG. 1 is a partially cutaway front view of an exposure apparatus according to the first embodiment of the present invention.
図 2は上記露光装置の一部破断側面図である。  FIG. 2 is a partially broken side view of the exposure apparatus.
図 3は上記露光装置におけるライン状発光素子ァレイおよび等倍レンズアレイを示す 部分平面図である。  FIG. 3 is a partial plan view showing the line-shaped light-emitting element array and the equal-magnification lens array in the exposure apparatus.
図 4は C I E (国際照明委員会) の標準比視感度特性を示すグラフである。  Figure 4 is a graph showing the standard relative luminous sensitivity characteristics of CIE (International Commission on Illumination).
図 5は上記露光装置におけるライン状発光素子アレイの位置と露光量偏差特性との関 係を示すグラフである。  FIG. 5 is a graph showing the relationship between the position of the line-shaped light emitting element array and the exposure amount deviation characteristic in the exposure apparatus.
図 6は本発明の第 2の実施形態による露光装置におけるライン状努光素子ァレイおよ び等倍レンズァレイを示す部分平面図である。 .  FIG. 6 is a partial plan view showing the line-shaped optical element array and the equal-magnification lens array in the exposure apparatus according to the second embodiment of the present invention. .
図 7は上記第 2の実施形態による露光装置におけるライン状発光素子ァレイの位置と 露光量偏差特性との関係を示すダラフである。  FIG. 7 is a drawing showing the relationship between the position of the line-shaped light-emitting element array and the exposure deviation characteristic in the exposure apparatus according to the second embodiment.
図 8は本発明の第 3の実施形態による露光装置におけるライン状発光素子ァレイおよ び等倍レンズァレイを示す部分平面図である。  FIG. 8 is a partial plan view showing a line-shaped light-emitting element array and an equal-magnification lens array in the exposure apparatus according to the third embodiment of the present invention.
図 9は上記第 3の実施形態による露光装置におけるライン状発光素子ァレイの位置と 露光量偏差特性との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 9 is a graph showing the relationship between the position of the line-shaped light emitting element array and the exposure amount deviation characteristic in the exposure apparatus according to the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態を説明する 図 1は、 本発明の第 1の実施形態による露光装置の一部破断正面形状を示すものであ り、 また図 2は、 この露光装置の一部破断側面形状を示している。 図示の通りこの露光 装置は、 .露光へッド 1と、 この露光へッド 1から出射した露光光 2の照射を受ける位置 に保持したカラー感光材料 3を、 図 2の矢印 Y方向に定速で搬送する、 例えばニップロ ーラ等からなる副走査手段 4とを備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a partially broken front shape of the exposure apparatus according to the first embodiment of the present invention, and FIG. 2 shows a partially broken side shape of the exposure apparatus. As shown in the figure, this exposure apparatus is configured to align the exposure head 1 and the color photosensitive material 3 held at the position where the exposure light 2 emitted from the exposure head 1 is irradiated in the direction indicated by the arrow Y in FIG. Sub-scanning means 4 composed of, for example, a nip roller is provided.
上記露光ヘッド 1は、 有機 E Lパネノレ 6と、 該有機 E Lパネル 6から出射した露光光 2を受ける位置に配されて、 この露光光 2による像をカラー感光材料 3の上に等倍で結 像させる屈折率分布型レンズアレイ 7と、 このレンズァレイ 7および有機 E Lパネル 6 を保持する保持手段 8 (図 2では省略) とを備えている。  The exposure head 1 is arranged at a position to receive the organic EL panel 6 and the exposure light 2 emitted from the organic EL panel 6, and images the exposure light 2 on the color photosensitive material 3 at the same magnification. And a holding means 8 (not shown in FIG. 2) for holding the lens array 7 and the organic EL panel 6.
等倍レンズアレイである屈折率分布型レンズアレイ 7は、 その平面図である図 3にも 詳しく示される通り、 露光光 2を集光する微小な屈折率分布型レンズ 7 aを副走査方向 Yと直交する主走査方向 (矢印 X方向) に多数並設してなるレンズ列が、 合計 2列配設 されてなるものである。 この屈折率分布型レンズアレイ 7においては、 屈折率分布型レ ンズ 7 aが千鳥配列されている。 つまり、 一方のレンズ列を構成する複数の屈折率分布 型レンズ 7 aは、 他方のレンズ列を構成する複数の屈折率分布型レンズ 7 aの間に位置 するように配されている。  As shown in detail in the plan view of FIG. 3, the gradient index lens array 7 that is an equal magnification lens array has a minute gradient index lens 7 a that collects the exposure light 2 in the sub-scanning direction Y. A total of two lens rows are arranged in parallel in the main scanning direction (arrow X direction) perpendicular to. In the gradient index lens array 7, the gradient index lenses 7a are arranged in a staggered manner. That is, the plurality of gradient index lenses 7 a constituting one lens row are arranged so as to be positioned between the plurality of gradient index lenses 7 a constituting the other lens row.
本実施形態の露光装置は、 一例としてフルカラーポジ型銀塩写麵光材料であるカラ 一感光材料 3にカラー画像を露光するもので、 露光へッド 1を構成する有機 E Lパネル 6は、 副走查方向 Yに並べて配設された赤色ライン状発光素子アレイ 6 R、 緑色ライン 状発光素子アレイ 6 Gおよび青色ライン状発光素子アレイ 6 Bを備えている。 これらの ラィン状発光素子ァレイ 6 R、 6 Gおよび 6 Bはそれぞれ、 主走査方向 Xに多数の赤色 有機 E L発光素子、 緑色有機 E L発光素子および青色有機 E L発光素子が並設されてな るものである。 なお図 1および図 2では、 上記努光素子の 1つを代表的に有機 E L発光素子 2 0とし て示してある。 各有機 E L発光素子 2 0は、 ガラス等からなる透明基板 1 0の上に、 透 明陽極 2 1、 発光層を含む有機化合物層 2 2、 および金属陰極 2 3が順次蒸着により積 層されてなるものである。 そして、 上記発光層として各々赤色光、 緑色光および青色光 を発するものが適用されることにより、 それぞれ赤色有機 E L発光素子、 緑色有機 E L 発光素子および青色有機 E L発光素子が形成されている。 The exposure apparatus according to the present embodiment, for example, exposes a color image to a color photosensitive material 3 that is a full-color positive type silver salt copying material, and the organic EL panel 6 constituting the exposure head 1 A red line light emitting element array 6 R, a green line light emitting element array 6 G, and a blue line light emitting element array 6 B arranged side by side in the running direction Y are provided. Each of these line-shaped light emitting element arrays 6 R, 6 G and 6 B is composed of a large number of red organic EL light emitting elements, green organic EL light emitting elements and blue organic EL light emitting elements arranged in parallel in the main scanning direction X. It is. In FIG. 1 and FIG. 2, one of the above-described light-emitting elements is typically shown as an organic EL light-emitting element 20. Each organic EL light-emitting element 20 is formed by sequentially depositing a transparent anode 21, an organic compound layer 22 including a light-emitting layer, and a metal cathode 23 on a transparent substrate 10 made of glass or the like. It will be. Then, red light emitting elements, green light emitting elements, and blue light emitting elements are respectively used as the light emitting layers, thereby forming red organic EL light emitting elements, green organic EL light emitting elements, and blue organic EL light emitting elements, respectively.
ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bは、 図 1に示す駆動回路 3 0によって 駆動される。 すなわち駆動回路 3 0は、 走査電極となる金属陰極 2 3を所定の周期で順 次 ON状態に設定する陰極ドライバと、 信号電極となる透明陽極 2 1をフルカラー画像 を示す画像データ Dに基づいて ON状態に設定する陽極ドライバとを備えてなるもので あり、 ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bをいわゆるパッシブマトリクス線 順次選択駆動方式により駆動する。 この駆動回路 3 0の動作は、 上記画像データ Dを出 力する制御部 3 1によって制御される。  The line-shaped light emitting element arrays 6 R, 6 G, and 6 B are driven by a drive circuit 30 shown in FIG. That is, the drive circuit 30 is based on image data D indicating a full-color image of a cathode driver that sequentially sets the metal cathode 23 serving as a scanning electrode to an ON state at a predetermined cycle and a transparent anode 21 serving as a signal electrode. An anode driver that is set to an ON state is provided, and the line-shaped light emitting element arrays 6 R, 6 G, and 6 B are driven by a so-called passive matrix line sequential selection driving method. The operation of the drive circuit 30 is controlled by the control unit 31 that outputs the image data D.
各有機 E L発光素子 2 0を構成する要素は、 例えばステンレス製の缶等からなる封止 部材 2 5内に配置されている。 つまり、 この封止部材 2 5の縁部と透明基板 1 0とが接 着され、 乾燥窒素ガスが充填された封止部材 2 5内に有機 E L発光素子 2 0が封止され ている。  Elements constituting each organic EL light emitting element 20 are arranged in a sealing member 25 made of, for example, a stainless steel can. That is, the edge of the sealing member 25 and the transparent substrate 10 are attached, and the organic EL light emitting element 20 is sealed in the sealing member 25 filled with dry nitrogen gas.
上記構成の有機 E L発光素子 2 0において、 金属陰極 2 3と、 それを横切るように延 ぴる透明陽極 2 1との間に所定電圧が印加されると、 Hが印加された両電極の交差部 分毎に有機化合物層 2 2に電流が流れ、 そこに含まれる発光層が発光する。 この発光光 は透明陽極 2 1および透明基板 1 0を透過して、 露光光 2として素子外に出射する。 ここで透明陽極 2 1は、 4 0 0 n m~ 7 0 0 n mの可視光の波長領域において、 少な くとも 5 0 %以上、 好ましくは 7 0 %以上の光透過率を有するものが好ましい。 透明陽 極 2 1の材料としては、 酸化錫、 酸化錫インジウム (I T O) 、 酸化亜鉛インジウム等、 透明電極材料として従 知の化合物を適: Mいることができる力 その他、 金や白金 など仕事関数が大きい金属からなる薄膜を用いてもよい。 また、 ポリア二リン、 ポリチ ォフェン、 ポリピロールまたはこれらの誘導体などの有機化合物を用いることもできる。 なお、 沢田豊監修 「透明導電膜の新展開」 シーエムシー社刊 (1 9 9 9年) には、 透明 導電膜について詳細な記載があり、 そこに示されているものを本発明に適用することも 可能である。 また透明陽極 2 1は、 真空蒸着法、 スパッタリング法、 イオンプレーティ ング法などによって透明基板 1 0上に形成することができる。 In the organic EL light emitting device 20 having the above configuration, when a predetermined voltage is applied between the metal cathode 23 and the transparent anode 21 extending across the metal cathode 23, the intersection of both electrodes to which H is applied Every minute, a current flows through the organic compound layer 22 and the light emitting layer contained therein emits light. This emitted light passes through the transparent anode 21 and the transparent substrate 10 and is emitted as exposure light 2 to the outside of the device. Here, it is preferable that the transparent anode 21 has a light transmittance of at least 50% or more, preferably 70% or more in the visible light wavelength region of 400 nm to 700 nm. Transparent sun As a material for the electrode 21, tin oxide, indium tin oxide (ITO), indium zinc oxide, etc., known compounds as transparent electrode materials are suitable: the ability to be able to contain M, and other high work functions such as gold and platinum A thin film made of metal may be used. In addition, organic compounds such as polyaniline, polythiophene, polypyrrole, or derivatives thereof can also be used. Supervised by Yutaka Sawada “New Development of Transparent Conductive Film” published by CMC Co., Ltd. (1 9 9 9) has a detailed description of transparent conductive film, and what is shown there is applied to the present invention. It is also possible. The transparent anode 21 can be formed on the transparent substrate 10 by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
一方、 有機化合物層 2 2は、 発光層のみからなる単層構造であってもよいし、 発光層 の他に、 ホール注入層、 ホール輸送層、 電子注入層、 電子輸送層等のその他の層を適宜 有する積層構造であってもよい。 有機化合物層 2 2および電極の具体的な層構成として は、 陽極 Zホール注入層/ホール輸送層/発光層 Z電子輸送層/陰極とする構成や、 陽 極/発光層 Z電子輸送層,陰極、 陽極/ホール輸送層 Z発光層 Z電子輸送層/陰極とす る構成等が挙げられる。 また、 発光層、 ホール輸送層、 ホール注入層、 電子注入層は、 それぞ tVit数設けられてもよい。  On the other hand, the organic compound layer 22 may have a single-layer structure composed of only a light emitting layer, or other layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer in addition to the light emitting layer. It may be a laminated structure having as appropriate. Specific layer configurations of the organic compound layer 22 and the electrode include an anode Z hole injection layer / hole transport layer / light emitting layer Z electron transport layer / cathode, and an anode / light emitting layer Z electron transport layer, cathode. Examples include an anode / hole transport layer, a Z light-emitting layer, a Z electron transport layer / a cathode, and the like. In addition, the light emitting layer, the hole transport layer, the hole injection layer, and the electron injection layer may each be provided with tVit number.
金属陰極 2 3は、 仕事関数の低い L i、 Kなどのアルカリ金属、 M g、 C aなどのァ ノレカリ土類金属、 およびこれらの金属と A gや A 1などとの合金や混合物等の金属材料 から形成されるのが好ま Ι ヽ。 P衾極における保存安定性と電子 ¾Λ性とを両立させるた めに、 上記材料で形成した電極を、 仕事関数が大きく導電性の高い A g、 A l、 A uな どで更に被覆してもよい。 なお、 金属陰極 2 3も透明陽極 2 1と同様に、 真空蒸着法、 スパッタ法、 イオンプレーティング法などの公知の方法で形成することができる。  The metal cathodes 2 and 3 are made of low work functions such as alkali metals such as Li and K, an alkaline earth metals such as Mg and Ca, and alloys and mixtures of these metals with Ag and A1. Preferably formed from a metal material. In order to achieve both the storage stability and the electron ¾Λ property at the P electrode, the electrode made of the above material is further coated with Ag, Al, Au, etc. that have a high work function and high conductivity. Also good. The metal cathode 23 can also be formed by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method, like the transparent anode 21.
以下、 上記構成を有する露光装置の作動について説明する。 なおここでは、 ライン状 発光素子アレイ 6 R、 6 Gおよび 6 Bの主走査方向画素数、 つまり透明陽極 2 1の並設 数を nとする。 カラー感光材料 3に画像露光する際、 このカラー感光材料 3は副走査手 段 4によって矢印 Υ方向に定速で搬送される。 またこのカラー感光材料 3の搬送と同期 させて、 前述した駆動回路 3 0の陰極ドライバにより、 3本の金属陰極 2 3の中の 1つ が順次 ON状態に選択される。 The operation of the exposure apparatus having the above configuration will be described below. Here, the number of pixels in the main scanning direction of the line-shaped light emitting element arrays 6 R, 6 G and 6 B, that is, the transparent anodes 21 are arranged in parallel. Let n be the number. When the color photosensitive material 3 is subjected to image exposure, the color photosensitive material 3 is conveyed by the sub-scanning means 4 at a constant speed in the direction of arrow Υ. In synchronism with the conveyance of the color photosensitive material 3, one of the three metal cathodes 23 is sequentially turned on by the cathode driver of the driving circuit 30 described above.
このようにして第 1番目の金属陰極 2 3、 つまり赤色ライン状発光素子アレイ 6 Rを 構成する金属陰極 2 3が選択されている期間内に、 駆動回路 3 0の陽極ドライバは第 1, 2 , 3 · · ■ nの各透明陽極 2 1を、 第 1主走査ラインの第 1, 2 , 3 ■ · ' n番目の 画素の赤色濃度を示す画像データに対応した時間、 定電流源に接続する。 それにより該 透明陽極 2 1と金属陰極 2 3との間の有機化合物層 2 2 (図 1参照) に、 画像データに 対応したパルス幅の電流が流れ、 該有機化合物層 2 2から赤色光が発せられる。  In this manner, the anode driver of the drive circuit 30 is the first and second anodes within the period in which the first metal cathode 23, that is, the metal cathode 23 constituting the red line light emitting element array 6R is selected. N 2 transparent anodes 2 1 are connected to a constant current source for the time corresponding to the image data indicating the red density of the nth pixel on the 1st main scanning line 1, 2, 3 To do. As a result, a current having a pulse width corresponding to the image data flows through the organic compound layer 2 2 (see FIG. 1) between the transparent anode 21 and the metal cathode 2 3, and red light is emitted from the organic compound layer 22. Be emitted.
こうして赤色ライン状発光素子アレイ 6 Rから発せられた赤色光である露光光 2は、 レンズァレイ 7によってカラ一感光材料 3上に集光され、 それにより、 カラ一感光材料 3上において第 1主走査ラインを構成する第 1, 2, 3 ■ ■ ■ n番目の画素が赤色光で 露光され、 赤色に発色する。  Thus, the exposure light 2 that is red light emitted from the red line-shaped light emitting element array 6 R is condensed on the color photosensitive material 3 by the lens array 7, and thereby the first main scanning on the color photosensitive material 3. The first, second, and third lines that make up the line are exposed to red light and develop red.
次に第 2番目の金属陰極 2 3、 つまり緑色ライン状発光素子アレイ 6 Gを構成する金 属陰極 2 3が選択されている期間内に、 駆動回路 3 0の陽極ドライバは第 1, 2, 3 ■ ■ ■ nの各透明陽極 2 1を、 第 1主走査ラインの第 1, 2, 3 . · ■ n番目の画素 の緑色濃度を示す画像データに対応した時間、 定電流源に接続する。 それにより該透明 陽極 2 1と金属陰極 2 3との間の有機化合物層 2 2に、 画像データに対応したノルス幅 の電流が流れ、 該有機化合物層 2 2から緑色光が発せられる。  Next, within the period when the second metal cathode 23, that is, the metal cathode 23 constituting the green line-shaped light emitting element array 6G is selected, the anode driver of the drive circuit 30 is the first, second, 3 ■ ■ ■ n Each transparent anode 21 is connected to a constant current source for a time corresponding to the image data indicating the green density of the nth pixel of the first main scan line, 1, 2, 3. . As a result, a current with a Norse width corresponding to the image data flows through the organic compound layer 22 between the transparent anode 21 and the metal cathode 23, and green light is emitted from the organic compound layer 22.
こうして緑色ライン状発光素子アレイ 6 Gから発せられた緑色光である露光光 2は、 レンズァレイ 7によってカラ一感光材料 3上に集光され、 それにより、 カラ一感光材料 3上において第 1主走査ラインを構成する第 1, 2, 3 · ■ ■ n番目の画素が緑色光で 露光され、 緑色に発色する。 なお、 カラー感光材料 3が前述のように定速搬送されてい るので、 上記緑色光は、 該カラー感光材料 3の既に赤色光で露光されている部分の上に 照射される。 . . · Thus, the exposure light 2 which is green light emitted from the green line-shaped light emitting element array 6 G is condensed on the color photosensitive material 3 by the lens array 7, so that the first main scanning is performed on the color photosensitive material 3. The first, second, and third lines that make up the line When exposed, it turns green. Since the color photosensitive material 3 is conveyed at a constant speed as described above, the green light is irradiated onto a portion of the color photosensitive material 3 that has already been exposed to red light. ..
次に第 3番目の金属陰極 2 3、 つまり青色ライン状発光素子ァレイ 6 Bを構成する金 属陰極 2 3が選択されている期間内に、 駆動回路 3 0の陽極ドライバは第 1, 2 , 3 · · · nの各透明陽極 2 1を、 第 1主走查ラインの第 1, 2, 3 ■ · ■ n番目の画素 の青色濃度を示す画像データに対応した時間、 定電流源に接続する。 それにより該透明 陽極 2 1と金属陰極 2 3との間の有機化合物層 2 2に、 画像データに対応したパルス幅 の電流が流れ、 該有機化合物層 2 2から青色光が発せられる。  Next, within the period when the third metal cathode 23, that is, the metal cathode 23 constituting the blue line-shaped light emitting element array 6B is selected, the anode driver of the drive circuit 30 is the first, second, 3 ··· n transparent anodes 2 1 are connected to a constant current source for the time corresponding to the image data indicating the blue density of the nth pixel of the first main runner line To do. As a result, a current having a pulse width corresponding to the image data flows through the organic compound layer 22 between the transparent anode 21 and the metal cathode 23, and blue light is emitted from the organic compound layer 22.
こうして青色ラィン状発光素子ァレイ 6 B力 ら発せられた青色光である露光光 2は、 レンズァレイ 7によってカラ一感光材料 3上に集光され、 それにより、 カラ一感光材料 3上において第 1主走査ラインを構成する第 1, 2, 3 ■ ■ ■ n番目の画素が青色光で 露光され、 青色に発色する。 なお、 カラー感光材料 3が前述のように定速搬送されてい るので、 上記青色光は、 該カラ一感光材料 3の既に赤色光および緑色光で露光されてい る部分の上に照射される。 以上の工程により、 カラー感光材料 3の上には、 第 1番目の フルカラーの主走査ラインが露光、 記録される。  In this way, the exposure light 2 which is the blue light emitted from the blue line-shaped light emitting element array 6 B force is condensed on the color photosensitive material 3 by the lens array 7, and thereby the first main light on the color photosensitive material 3. The first, second, and third lines that make up the scan line are exposed to blue light and develop blue. Since the color photosensitive material 3 is transported at a constant speed as described above, the blue light is irradiated onto the portion of the color photosensitive material 3 that has already been exposed to red light and green light. Through the above steps, the first full-color main scanning line is exposed and recorded on the color photosensitive material 3.
次いで金属陰極の線順次選択は第 1番目の金属陰極 2 3に戻り、 該第 1番目の金属陰 極 2 3、 つまり赤色ライン状発光素子ァレイ 6 Rを構成する金属陰極 2 3が選択されて いる期間内に、 駆動回路 3 0の陽極ドライバは第 1, 2, 3 ■ · ■ nの各透明陽極 2 1 を、 第 2主走査ラインの第 1, 2 , 3 ■ . · n番目の画素の赤色濃度を示す画像データ に対応した時間、 定電流源に接続する。 それにより該透明陽極 2 1と金属陰極 2 3との 間の有機化合物層 2 2に、 画像データに対応したパルス幅の電流が流れ、 該有機化合物 層 2 2から赤色光が発せられる。 こうして赤色ライン状発光素子ァレイ 6 Rから発せられた赤色光である露光光 2は、 レンズァレイ 7によってカラ一感光材料 3上に集光され、 それにより、 カラ一感光材料 3上において第 2主走査ラインを構成する第 1, 2, 3 · · · n番目の画素が赤色光で 露光され、 赤色に発色する。 Next, the line-sequential selection of the metal cathodes returns to the first metal cathode 23, and the first metal cathode 23, that is, the metal cathode 23 constituting the red line light emitting element array 6R is selected. Within a certain period, the anode driver of the driving circuit 30 supplies each of the first, second, and third transparent anodes 21 to the first, second, and third nth pixels of the second main scanning line. Connect to a constant current source for a time corresponding to the image data indicating the red density of the. As a result, a current having a pulse width corresponding to the image data flows through the organic compound layer 22 between the transparent anode 21 and the metal cathode 23, and red light is emitted from the organic compound layer 22. Thus, the exposure light 2 which is red light emitted from the red line-shaped light emitting element array 6 R is condensed on the color photosensitive material 3 by the lens array 7, so that the second main scanning is performed on the color photosensitive material 3. The 1st, 2nd, 3rd, 3rd, and nth pixels that make up the line are exposed to red light, and develop a red color.
以下は同様の操作が繰り返されて第 2番目のフルカラ一の主走査ラインが露光され、 さらにそのようなカラー主走査ラインが副走査方向 Yに次々と並べて露光され、 カラー 感光材料 3上に多数の主走査ラインからなる 2次元カラー画像が露光される。 なお本実 施形態では、 上述した通り各色露光光がパルス幅変調されて、 それらの発光量が画像デ ータに対応して制御され、 それによりカラ一の階調画像が露光される。  In the following, the same operation is repeated to expose the second full-color main scanning line, and then such color main scanning lines are exposed side by side in the sub-scanning direction Y one after another. A two-dimensional color image consisting of the main scan lines is exposed. In this embodiment, as described above, each color exposure light is subjected to pulse width modulation, and the amount of emitted light is controlled corresponding to the image data, thereby exposing a single gradation image.
次に、 前述した露光光の光量変動による濃度ムラ発生を防止するための構成について 詳しく説明する。 本実施形態において、 屈折率分布型レンズアレイ 7の各屈折率分布型 レンズ 7 aの直径は 2 9 5 mである。 そして図 3に示される通り、 ,緑色ライン状発光 素子アレイ 6 Gはこの屈折率分布型レンズアレイ 7の長軸 L ( 2つのレンズ列の中央位 置をレンズ 7 aの並び方向に延びる軸) の真上に位置するように配され、 それと副走査 方向 Yに各々 Ι Ο Ο μ mの間隔で赤色ライン状宪光素子アレイ 6 Rおよび青色ライン状 発光素子ァレイ 6 Bが配設されている。  Next, a configuration for preventing the occurrence of density unevenness due to the above-described fluctuation in the amount of exposure light will be described in detail. In the present embodiment, the diameter of each gradient index lens 7 a of the gradient index lens array 7 is 2 95 m. As shown in FIG. 3, the green line-shaped light emitting element array 6G is the long axis L of this gradient index lens array 7 (the axis extending from the center position of the two lens rows in the direction in which the lenses 7a are arranged) Red line-shaped light emitting element array 6 R and blue line-shaped light emitting element array 6 B are arranged at intervals of Ι Ο Ο μm in the sub-scanning direction Y, respectively. .
一般的に、 3原色である R、 Gおよび B色に対する人間の比視感度は、 C I E (国際 照明委員会) の標準比視感度特性で示されるように、 各波長を 6 1 0 n m、 5 6 0 n m、 4 7 0 n mとすると約 3 : 6 : 1である。 なお図 4に、 この C I E標準比視感度特性を 示す。 同図において、 カラー感光材料 3上に形成されるフルカラーの画像に発生する濃 度ムラは、 本例では力ラ一感光材料 3を副走査移動してレ、ることから、 副走査方向に延 ぴる筋ムラとなつて表れる。 この筋ムラの視認性は上記比視感度に比例する。 具体的に は、 B色に関しては多少の濃度差があっても視認され難いが、 G色に関しては、 小さな 濃度差でもムラとして視認され易くなつている。 つまり R、 G、 B各色の光量偏差の許 容値の比は、 上記比視感度の逆数の比となり、 G色の光量偏差の許容値を 1とすれば、 R: G: Β=·2 : 1 : 6となる。 そこで、 G色の光量偏差が許容値内に収まっている場 合には、 R色および Β色に関しては G色の光量偏差のそれぞれ 2倍、 6倍まで光量偏差 が許容されることになる。 In general, human relative luminous sensitivity for the three primary colors R, G, and B is defined as 6 10 nm, 5 nm for each wavelength, as indicated by the CIE (International Commission on Illumination) standard relative luminous sensitivity. When it is 60 nm and 470 nm, it is about 3: 6: 1. Figure 4 shows the CIE standard relative luminous sensitivity characteristics. In this figure, the density unevenness that occurs in the full-color image formed on the color photosensitive material 3 is caused by moving the power photosensitive material 3 in the sub-scanning direction in this example, and thus extends in the sub-scanning direction. Appears as an irregular muscle. The visibility of the stripe unevenness is proportional to the specific visual sensitivity. Specifically, B color is difficult to see even if there is a slight density difference, but G color is small. Even density differences are becoming more visible as unevenness. In other words, the ratio of the permissible values of the light intensity deviation for each of R, G, and B is the ratio of the reciprocal of the above-mentioned specific luminous sensitivity. If the permissible value of the G light intensity deviation is 1, R: G: Β = · 2 : 1: 6 Therefore, when the G light intensity deviation is within the allowable value, the light intensity deviation of R and dark blue is allowed to be twice and 6 times the light intensity deviation of G color, respectively.
ここで、 先に述べた通り、 ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bから発せら れた露光光 2を屈折率分布型レンズアレイ 7に通すと、 通過した露光光 2の光量は、 屈 折率分布型レンズァレイ 7の長軸 Lに沿つて、 レンズ 7 aの配置ピツチを周期として変 動するようになる。 このような光量変動は、 上述の濃度ムラを発生させる原因となる。 そしてこの露光光 2の周期偏差は、 図 5に実測結果の曲線を示す通り、 ライン状宪光素 子アレイ 6R、 6 Gあるいは 6 Bの上記長軸 Lからの距離に応じて変化する。 なお上記 距離は、 レンズ 7 aの光軸と平行な方向から見た場合の距離であり (以下、 同様) 、 こ れを 「光軸オフセット」 と称する。  Here, as described above, when the exposure light 2 emitted from the line-shaped light emitting element arrays 6 R, 6 G, and 6 B is passed through the gradient index lens array 7, the amount of the exposure light 2 that has passed is Then, along the major axis L of the refractive index distribution type lens array 7, the arrangement pitch of the lens 7a changes with the period. Such fluctuations in the amount of light cause the above-described density unevenness. The periodic deviation of the exposure light 2 changes in accordance with the distance from the long axis L of the linear fluorescent element array 6R, 6G, or 6B, as shown in the curve of the actual measurement result in FIG. The above distance is a distance when viewed from a direction parallel to the optical axis of the lens 7a (hereinafter the same), and is referred to as an “optical axis offset”.
この光軸オフセットの向きについて、 図 3において長軸 Lから下方向を +、 上方向を 一として定義すると、 ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bの光軸オフセット はそれぞれ図 5に示す通りとなる。 つまり上の説明から明らかなように、 緑色ライン状 発光素子アレイ 6 Gの光軸オフセットは 0 (ゼロ) であり、 赤色ライン状努光素子ァレ ィ 6R、 青色ライン状発光素子アレイ 6 Bの光軸オフセットはそれぞれ一 100^m、 + 100/zmである。 光軸オフセットがこのような値のとき、 R、 Gおよび Bの各色露 光光 2の光量周期偏差は、 R=0. 94%、 G=0. 52%、 B = 0. 94%となる。 G色露光光 2の光量周期偏差 0. 52%という値は、 通常は濃度ムラを視認させること がないとして好適な値である。 また、 これらの光量周期偏差の比を求めると R: G: B =1. 8 : 1 : 1. 8となり、 R色おょぴ B色の露光光 2の光量周期偏差は、 G色の光 量偏差のそれぞれ 2倍、 6倍までという前述の条件を満足している。 With regard to the direction of this optical axis offset, if the downward direction from the major axis L is defined as + and the upward direction is defined as one in FIG. 3, the optical axis offsets of the line-shaped light emitting element arrays 6 R, 6 G, and 6 B are shown in FIG. As shown. In other words, as is clear from the above explanation, the optical axis offset of the green line-shaped light emitting element array 6G is 0 (zero), and the red line light emitting element array 6R and the blue line light emitting element array 6B The optical axis offset is 1100 ^ m and + 100 / zm, respectively. When the optical axis offset is such a value, the light intensity period deviation of each color exposure light of R, G, and B is R = 0.94%, G = 0.52%, B = 0.94% . A value of 0.52% of the light amount period deviation of the G-color exposure light 2 is a preferable value in general that density unevenness is not visually recognized. The ratio of these light intensity period deviations is R: G: B = 1.8: 1: 1.1.8, and the light intensity period deviation of the R light and B exposure light 2 is G light. The above-mentioned conditions of 2 times and 6 times the quantity deviation are satisfied.
以上の通り本実施形態においては、 最も濃度ムラが目立ち易い G色を発色させる露光 光 2を発する緑色ライン状発光素子アレイ 6 Gを、 光量周期偏差が最小となる光軸オフ セット = 0の位置、 つまり屈折率分布型レンズァレイ 7の長軸 Lと整合する位置に配し たことにより、 G色の濃度ムラの視認性は最小に抑えられ、 その一方、 ライン状発光素 子アレイ 6 Rおよび 6 Bを上記位置に配したことにより、 R色および B色の濃度ムラの 視認、性も非常に低く抑えられることになる。  As described above, in the present embodiment, the green line-shaped light emitting element array 6 G that emits the exposure light 2 that develops the G color that is most conspicuous in density unevenness is positioned at the optical axis offset = 0 where the light amount period deviation is minimized. In other words, by arranging it at a position that aligns with the long axis L of the gradient index lens array 7, the visibility of the density unevenness of the G color is minimized, while the line-shaped light emitting element arrays 6 R and 6 By arranging B at the above position, the visibility and performance of the density unevenness of the R and B colors can be kept very low.
次に、 本発明の第 2の実施形態による露光装置について説明する。 この第 2実施形態 の露光装置は、 第 1の実施形態の露光装置と比べると、 ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bと屈折率分布型レンズァレイ 7との相対位置関係が異なり、 その他の点 は基本的に同様に形成されたものである。  Next, an exposure apparatus according to the second embodiment of the present invention will be described. The exposure apparatus of the second embodiment differs from the exposure apparatus of the first embodiment in the relative positional relationship between the linear light emitting element arrays 6 R, 6 G, and 6 B and the gradient index lens array 7. Other points are basically the same.
図 6は、 この第 3実施形態の露光装置におけるライン状発光素子ァレイ 6 R、 6 Gお よび 6 Bと屈折率分布型レンズアレイ 7との相対位置関係を示す平面図である。 ここに 示される通り本実施形態において、 ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bの並 ぶ順は第 1の実施形態と同様であり、 また中央の緑色ライン状発光素子ァレイ 6 Gは第 1の実施形態と同様に屈折率分布型レンズァレイ 7の長軸 Lと整合する位置に配されて いるが、 3つのライン状発光素子アレイ 6 R、 6 Gおよび 6 Bの副走査方向 Yの酉己置間 隔は第 1の実施形態と異なって 1 6 0 // mとされている。 なお、 屈折率分布型レンズァ レイ 7の各屈折率分布型レンズ 7 aの直径は 2 9 5 // mである。  FIG. 6 is a plan view showing the relative positional relationship between the linear light-emitting element arrays 6 R, 6 G and 6 B and the gradient index lens array 7 in the exposure apparatus of the third embodiment. As shown here, in this embodiment, the order of the line-shaped light-emitting element arrays 6R, 6G, and 6B is the same as that of the first embodiment, and the central green-line light-emitting element array 6G is Similar to the first embodiment, it is arranged at a position aligned with the long axis L of the gradient index lens array 7, but in the sub-scanning direction Y of the three linear light emitting element arrays 6R, 6G and 6B. Unlike the first embodiment, the self-placement interval is 1 6 0 // m. The diameter of each gradient index lens 7a of the gradient index lens array 7 is 2 9 5 // m.
図 7は、 図 5に示したものと同様の露光光 2の光量周期偏差特性に、 本実施形態にお けるライン状発光素子アレイ 6 R、 6 Gおよび 6 Bの光軸オフセットを併せて示すもの である。 光軸オフセットが本実施形態の値のとき、 R、 Gおよび Bの各色露光光 2の光 量周期偏差は、 R = l . 8 7 %、 G = 0 . 5 2 %、 B = l . 8 7 %となる。 ここでも、 G色露光光 2の光量周期偏差は、 通常は濃度ムラを視認させることがないという点から 好適な 0 . 5 2 %に抑えられている。 このように本実施形態でも、 最も濃度ムラが目立 ち易い G色を発色させる露光光 2を発する緑色ライン状発光素子アレイ 6 Gを、 屈折率 分布型レンズァレイ 7の長軸 Lと整合する位置に配したことにより、 G色の濃度ムラの 視認性は非常に低く抑えられている。 FIG. 7 shows the light amount period deviation characteristic of the exposure light 2 similar to that shown in FIG. 5 together with the optical axis offsets of the line-shaped light emitting element arrays 6 R, 6 G, and 6 B in the present embodiment. Is. When the optical axis offset is the value of this embodiment, the light amount period deviation of each of the R, G, and B color exposure lights 2 is R = l. 87%, G = 0.5 2%, B = l. 8 7%. even here, The light amount period deviation of the G-color exposure light 2 is normally suppressed to 0.52%, which is preferable from the viewpoint that density unevenness is not visually recognized. As described above, even in this embodiment, the green line-shaped light emitting element array 6 G that emits the exposure light 2 that develops the G color that is most conspicuous in density unevenness is aligned with the long axis L of the gradient index lens array 7. As a result, the visibility of G density unevenness is very low.
し力 し、 R、 Gおよび Bの各色露光光 2の光量周期偏差の比を求めると R: G: B = 3 . 6 : 1 : 3 . 6となり、 B色については G色の光量偏差の 6倍までという前述の条 件を満足しているが、 R色については G色の光量偏差の 2倍までという条件を満足して いない。 この点の不具合は、 次に説明する第 3の実施形態により解消可能となっている。 以下、 そのように構成した本発明の第 3の実施形態による露光装置について説明する。 この第 3実施形態の露光装置は第 2の実施形態の露光装置と比べると、 ライン状発光素 子アレイ 6 R、 6 Gおよび 6 Bと屈折率分布型レンズァレイ 7との相対位置関係が異な り、 その他の点は基本的に同様に形成されたものである。  If the ratio of the light intensity period deviations of R, G, and B exposure light 2 is calculated, R: G: B = 3.6: 1: 3.6 is obtained. The above condition of up to 6 times is satisfied, but the condition of up to twice the light intensity deviation of the G color is not satisfied for the R color. This problem can be solved by a third embodiment described below. Hereinafter, an exposure apparatus according to the third embodiment of the present invention configured as described above will be described. The exposure apparatus of the third embodiment differs from the exposure apparatus of the second embodiment in the relative positional relationship between the line-shaped light emitting element arrays 6R, 6G, and 6B and the gradient index lens array 7. The other points are basically formed in the same manner.
図 8は、 この第 3実施形態の露光装置におけるライン状発光素子ァレイ 6 R、 6 Gお ょぴ 6 Bと屈折率分布型レンズアレイ 7との相対位置関係を示す平面図である。 ここに 示される通り本実施形態において、 ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bの並 ぶ順は第 2の実施形態と同様であり、 3つのライン状発光素子ァレイ 6 R、 6 Gおよび 6 Bの副走査方向 Yの配置間隔も同様に 1 6 0 μ mであるが、 中央の緑色ライン状発光 素子ァレイ 6 Gは屈折率分布型レンズアレイ 7の長軸 Lの真上ではなく、 そこから + 6 0 μ πιの位置に配されている。 なお、 屈折率分布型レンズアレイ 7の各屈折率分布型レ ンズ 7 aの直径は 2 9 5 i mである。  FIG. 8 is a plan view showing the relative positional relationship between the line-shaped light emitting element arrays 6 R, 6 G and 6 B and the gradient index lens array 7 in the exposure apparatus of the third embodiment. As shown here, in this embodiment, the order of the line-shaped light-emitting element arrays 6 R, 6 G, and 6 B is the same as that of the second embodiment, and the three line-shaped light-emitting element arrays 6 R, 6 G are arranged. Similarly, the arrangement interval in the sub-scanning direction Y of B is also 1600 μm, but the central green line-shaped light emitting element array 6 G is not directly above the long axis L of the gradient index lens array 7 From there, it is placed at + 60 μ πι. The refractive index distribution lens 7a of the gradient index lens array 7 has a diameter of 29 5 im.
図 9は、 図 5に示したものと同様の露光光 2の周期偏差特性に、 本実施形態における ライン状発光素子アレイ 6 R、 6 Gおよび 6 Bの光軸オフセットを併せて示すものであ る。 光軸オフセットが本実施形態の値のとき、 R、 Gおよび Bの各色露光光 2の光量周 期偏差は、 R=0. 94%、 G=0. 68%、 B=3. 20%となる。 これらの比を求 めると R : G.: B=1. 4 : 1 : 4. 7となり、 R色および B色の露光光 2の光量周期 偏差は、 G色の光量偏差のそれぞれ 2倍、 6倍までという前述の条件を満足している。 以上の通り本実施形態では、 最も濃度ムラが目立ち易い G色を発色させる露光光 2を 発する緑色ライン状発光素子アレイ 6 Gを、 屈折率分布型レンズアレイ 7の長軸しから 最も近 、位置、 つまり 60 μ mだけ離れた位置に配し、 また 2番目に濃度ムラが目立ち 易い R色を発色させる露光光 2を発する赤色ライン状発光素子アレイ 6Rを、 屈折率分 布型レンズァレイ 7の長軸 L力、ら 100 t m離れた位置に配したことにより、 G色およ び R色の濃度ムラの視認性は共に低く抑えられ、 その一方、 青色ライン状発光素子ァレ ィ 6 Bを上記位置に配したことにより、 B色の濃度ムラの視認性も低く抑えられている。 以上説明した各実施形態は、 屈折率分布型レンズアレイ 7の長軸 Lに対するライン状 発光素子アレイ 6 R、 6 Gおよび 6 Bの光軸オフセットと、 露光光 2の光量周期偏差と の関係が予め分かっていることを前提とするものである。 し力 し、 露光装置の機種毎に、 使用する等倍レンズァレイの特性や、 複数のライン状発光素子ァレイの間隔が異なる場 合において、 各機種毎に上記光軸オフセットと光量周期偏差との関係を測定するのは多 大な労力を必要とし、 現実的ではない。 FIG. 9 shows the periodic deviation characteristics of the exposure light 2 similar to that shown in FIG. 5 together with the optical axis offsets of the line-shaped light emitting element arrays 6 R, 6 G, and 6 B in the present embodiment. The When the optical axis offset is the value of this embodiment, the light quantity period deviations of the R, G, and B color exposure lights 2 are R = 0.94%, G = 0.68%, B = 3.20%. Become. When these ratios are calculated, R: G.: B = 1.4: 1: 4.7, and the light intensity period deviation of R and B exposure light 2 is twice the light intensity deviation of G color each. The above-mentioned condition of up to 6 times is satisfied. As described above, in the present embodiment, the green line-shaped light emitting element array 6 G that emits the exposure light 2 that develops the G color that is most conspicuous in density unevenness is positioned closest to the long axis of the gradient index lens array 7 and positioned. In other words, the red line-shaped light emitting element array 6R that emits the exposure light 2 that emits the R color, which is the second most conspicuous in density unevenness, is arranged at a distance of 60 μm, the length of the refractive index distribution lens array 7 By arranging the axis L force at a position 100 tm away, the visibility of density unevenness of G and R colors can be kept low, while the blue line-shaped light emitting element array 6 B is By arranging it at the position, the visibility of density unevenness of B color is also kept low. In each of the embodiments described above, the relationship between the optical axis offset of the linear light emitting element arrays 6 R, 6 G, and 6 B with respect to the long axis L of the gradient index lens array 7 and the light amount period deviation of the exposure light 2 is It is assumed that it is known in advance. However, when the characteristics of the same-size lens array used and the intervals between multiple line-shaped light-emitting element arrays differ for each type of exposure apparatus, the relationship between the optical axis offset and the light amount period deviation for each model Measuring this requires a lot of effort and is not realistic.
そこで、 屈折率分布型レンズァレイ 7の長軸 Lからレンズ 7 aの直径と同じ距離まで の範囲において光量偏差の増加は直線的であると仮定し、 上記長軸 Lから緑色ライン状 発光素子ァレイ 6 Gおよび赤色ライン状発光素子ァレイ 6 Rまでの各距離を、 G色およ ぴ R色の比視感度に反比例する値に設定することにより、 G色および R色双方の濃度ム ラを少なく抑えることができる。  Therefore, it is assumed that the increase in the light amount deviation is linear in the range from the major axis L of the gradient index lens array 7 to the same distance as the diameter of the lens 7a. By setting each distance to the G and red line light-emitting element array 6 R to a value that is inversely proportional to the relative visibility of the G and R colors, the density unevenness of both the G and R colors can be reduced. be able to.
より具体的に説明すると、 G色の比視感度を k1 R色の比視感度を k2としたとき、 それらの比は : k 2= 6 : 3であり、 その逆数の比は 1 : 2となる。 そこで、 緑色ラ ィン状発光素子ァレイ 6 Gと赤色ライン状発光素子ァレイ 6 Rとの間隔が 1 6 0 μ mの 場合は、 屈折率分布型レンズアレイ 7の長軸 Lから緑色ライン状発光素子アレイ 6 Gま での距離を 5 3 μ ΐηに、 上記長軸 Lから赤色ライン状発光素子アレイ 6 Rまでの距離を 1 0 に設定すればよい。 このようにした場合の G色および R色の濃度ムラは、 ラ ィン状発光素子ァレイ 6 R、 6 Gの光軸オフセットと露光光の光量偏差との関係を測定 した上で、 その関係に基づいてライン状発光素子アレイ 6 R、 6 Gの光軸オフセットを 決定した場合の濃度ムラと、 僅かに異なるだけである。 More specifically, when the specific luminous sensitivity of G color is k 1 and the specific luminous sensitivity of R color is k 2 , These ratios are: k 2 = 6: 3 and the ratio of the reciprocal 1: 2. Therefore, when the distance between the green line-shaped light emitting element array 6 G and the red line-shaped light emitting element array 6 R is 160 μm, the green line-shaped light is emitted from the long axis L of the gradient index lens array 7. The distance to the element array 6 G may be set to 53 μ μη, and the distance from the long axis L to the red line light emitting element array 6 R may be set to 10. The density unevenness of the G and R colors in this case is determined by measuring the relationship between the optical axis offset of the line-shaped light emitting element arrays 6R and 6G and the exposure light quantity deviation, and On the basis of this, the density unevenness when the optical axis offset of the line-shaped light emitting element arrays 6 R and 6 G is determined is only slightly different.
以上、 露光ヘッドから赤色光、 緑色光および青色光の 3色の光を発生させ、 それらの 光により各々、 カラー感光材料 3の赤色発色層、 緑色発色層および青色発色層を感光さ せる露光装置に適用された実施形態について説明したが、 本発明は、 その他の色で発色 する発色層を有する力ラ一感光材料を対象とする露光装置にも適用可能であり、 その場 合にも同様の効果を奏するものである。  As described above, an exposure apparatus that generates light of three colors, red light, green light, and blue light, from the exposure head, and sensitizes the red color development layer, the green color development layer, and the blue color development layer of the color photosensitive material 3 with these lights, respectively. However, the present invention can also be applied to an exposure apparatus that targets a power-sensitive material having a color-developing layer that emits other colors. There is an effect.
また以上説明した各実施形態においては、 屈折率分布型レンズ 7 aの直径が 2 9 5 μ mである屈折率分布型レンズアレイ 7を用いているが、 等倍レンズアレイの直径はその 値に限られるものではなレヽことは勿論であり、 また複数のラィン状発光素子どうしの配 置間隔や、 カラー感光材料の最も比視感度の高い発色層を感光させる光を発するライン 状発光素子アレイと等倍レンズアレイの長軸との距離も、 以上説明した各実施形態にお ける値に限定されるものではない。  In each of the embodiments described above, the gradient index lens array 7 in which the gradient index lens 7 a has a diameter of 29 5 μm is used, but the diameter of the equal magnification lens array is set to that value. Of course, it is not limited, and the arrangement interval between the plurality of line-shaped light-emitting elements and the line-shaped light-emitting element array that emits light that sensitizes the coloring layer having the highest relative visibility of the color light-sensitive material The distance from the long axis of the 1 × lens array is not limited to the value in each of the embodiments described above.
また上記実施形態は、 ライン状 光素子アレイを構成する発光素子として有機 E L発 光素子を用いるものであるが、 本発明はその他の例えば発光ダイォード等の発光素子か らライン状発光素子アレイを構成する場合にも適用可能であり、 さらには、 有機 E L発 光素子等の自己発光型の発光素子に限らず、 液晶や P L Z T等の調光素子と光源との組 み合わせからなる素子を用いてライン状発光素子アレイを構成する場合にも適用可能で あり、 その場合にも同様の効果を奏するものである。 In the above embodiment, an organic EL light emitting element is used as a light emitting element constituting the line-shaped light element array. However, the present invention configures a line-shaped light emitting element array from other light emitting elements such as a light emitting diode. In addition, it is not limited to self-luminous light emitting elements such as organic EL light emitting elements, but is a combination of a light control element such as a liquid crystal or PLZT and a light source. The present invention can also be applied to the case where a line-shaped light emitting element array is configured by using a combination of elements. In this case, the same effect can be obtained.
さらに上記実施形態の露光装置は、 フルカラーポジ型銀塩写真感光材料であるカラー 感光材料 3に画像露光するものであるが、 本発明の露光装置は、 それ以外のカラー感光 材料に画像露光するものとして形成することも可能である。  Further, the exposure apparatus of the above embodiment is for exposing the image to the color photosensitive material 3 which is a full-color positive type silver salt photographic photosensitive material, but the exposure apparatus of the present invention is for exposing the image to other color photosensitive materials. It is also possible to form as.

Claims

請求の範囲 The scope of the claims
1 . それぞ 光素子が 1列に並設されてなり、 互いが前記発光素子の並び方向と 略直角な方向に並設された、 相異なる色の光を発する複数のラィン状発光素子ァレイと、 これらのライン状発光素子ァレイから発せられた光を集光する複数のレンズが、 千鳥 配列しつつ前記発光素子の並び方向と略平行に並ぶ状態に集合されてなり、 前記各色の 光をカラー感光材料上に集光させる 1つの等倍レンズアレイとを備えた露光へッドにお いて、  1. A plurality of line-shaped light-emitting element arrays each emitting light of different colors, each having light elements arranged side by side in a line, and arranged side by side in a direction substantially perpendicular to the direction of the light-emitting elements. A plurality of lenses for condensing light emitted from these line-shaped light emitting element arrays are gathered in a staggered arrangement so as to be arranged substantially in parallel with the arrangement direction of the light emitting elements. In an exposure head equipped with a 1 × lens array focused on a photosensitive material,
前記複数のライン状発光素子ァレイのうち、 前記力ラー感光材料の最も比視感度の高 い発色層を感光させる光を発するライン状発光素子ァレイが、 前記等倍レンズァレイの 長軸に最も近い状態に配置されていることを特徴とする露光へッド。  Among the plurality of line-shaped light-emitting element arrays, the line-shaped light-emitting element array that emits light for sensitizing the color-developing layer having the highest relative visibility of the power-sensitive material is in a state closest to the long axis of the 1 × lens array An exposure head characterized by being arranged in
2. 前記複数のラィン状発光素子ァレイのうち、 前記力ラ一感光材料の 2番目に比 視感度の高い発色層を感光させる光を発するライン状発光素子ァレイが、 前記最も比視 感度の高い発色層を感光させる光を発するライン状発光素子ァレイと隣合わせに配置さ れ、  2. Of the plurality of line-shaped light-emitting element arrays, the line-shaped light-emitting element array that emits light that sensitizes the coloring layer having the second highest visual sensitivity of the light-sensitive material is the highest in the relative visual sensitivity. It is placed next to the line-shaped light-emitting element array that emits light to sensitize the coloring layer,
前記レンズの光軸と平行な方向から見た状態で、 前記隣合う 2つのライン状発光素子 アレイが、 該 2つのライン状発光素子ァレイの間に前記等倍レンズァレイの長軸を置 ヽ て振り分け配置されていることを特徴とする請求項 1記載の露光へッド。  When viewed from a direction parallel to the optical axis of the lens, the two adjacent linear light emitting element arrays are arranged with the long axis of the equal-magnification lens array placed between the two linear light emitting element arrays. The exposure head according to claim 1, wherein the exposure head is arranged.
3 . 前記最も高い比視感度、 2番目に高い比視感度をそれぞれ 、 k2としたとき、 前記レンズの光軸と平行な方向から見た状態で、 前記最も比視感度の高!/、発色層を感 光させる光を発するライン状発光素子アレイと、 前記 2番目に比視感度の高い発色層を 感光させる光を発するラィン状発光素子ァレイの、 等倍レンズァレイ長軸からの振り分 け距離の比が略 (1 Ζ ) : ( l / k2) となっていることを特徴とする請求項 2記載 の露光へッド。 3. When the highest specific luminous sensitivity and the second highest specific luminous sensitivity are k 2 , respectively, when viewed from a direction parallel to the optical axis of the lens, the highest specific luminous sensitivity! / A line-shaped light-emitting element array that emits light that sensitizes the coloring layer and a line-shaped light-emitting element array that emits light that sensitizes the second colorimetric layer with the highest visual sensitivity are swung from the long-axis lens array long axis. 3. The exposure head according to claim 2, wherein the ratio of the dividing distance is approximately (11): (l / k 2 ).
4. 前記相異なる色の光を発する複数のライン状発光素子ァレイが、 それぞれ赤、 緑および青の波長領域の光を発するものであり、 4. The plurality of line-shaped light emitting element arrays emitting light of different colors emit light in the red, green and blue wavelength regions, respectively.
緑の波長領域の光を発するライン状発光素子ァレイが、 3つのライン状発光素子ァレ■ ィの中で、 前記等倍レンズアレイの長軸に最も近い状態に配置されていることを特徴と する請求項 1から 3いずれか 1項記載の露光へッド。  A line-shaped light-emitting element array that emits light in the green wavelength region is arranged in a state closest to the long axis of the equal-magnification lens array among the three line-shaped light-emitting element arrays. The exposure head according to any one of claims 1 to 3.
5. 前記相異なる色の光を発する複数のライン状発光素子ァレイが、 有機 E L発光 素子からなるものであることを特徴とする請求項 1力 ら 4レヽずれか 1項記載の露光へッ ド、。  5. The exposure head according to claim 1, wherein the plurality of line-shaped light-emitting element arrays emitting light of different colors are composed of organic EL light-emitting elements. ,.
6 . 請求項 1力 ら 4レ、ずれか 1項記載の露光へッドと、  6. The exposure head according to claim 1, wherein the power of the first claim is 4 times, and the deviation is 1;
この露光へッドから発せられた光が照射される位置にカラー感光材料を保持し、 該カ ラー感光材料と前記露光へッドとを、 前記複数のライン状発光素子アレイの並び方向に 相対移動させる副走査手段と力ゝらなる露光装置。  A color photosensitive material is held at a position where light emitted from the exposure head is irradiated, and the color photosensitive material and the exposure head are relative to each other in the arrangement direction of the plurality of line-shaped light emitting element arrays. An exposure apparatus comprising sub-scanning means to be moved and power.
PCT/JP2005/012531 2004-07-02 2005-06-30 Exposure head and exposure equipment WO2006004179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-196731 2004-07-02
JP2004196731A JP2006015641A (en) 2004-07-02 2004-07-02 Exposure head and exposure system

Publications (1)

Publication Number Publication Date
WO2006004179A1 true WO2006004179A1 (en) 2006-01-12

Family

ID=35782979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012531 WO2006004179A1 (en) 2004-07-02 2005-06-30 Exposure head and exposure equipment

Country Status (2)

Country Link
JP (1) JP2006015641A (en)
WO (1) WO2006004179A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149024A (en) * 2016-02-24 2017-08-31 双葉電子工業株式会社 Optical writing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104367A (en) * 1980-01-23 1981-08-20 Ricoh Co Ltd Image recorder
JPH02227268A (en) * 1989-02-28 1990-09-10 Sony Corp Printer
JPH05165108A (en) * 1991-12-12 1993-06-29 Seiko Epson Corp Color printer and fluorescent writing device
JPH08220502A (en) * 1995-02-10 1996-08-30 Citizen Watch Co Ltd Image formation device
JP2001347701A (en) * 2000-06-09 2001-12-18 Fuji Photo Film Co Ltd Exposing unit
JP2002046301A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Image exposing head and image exposing device
JP2003094729A (en) * 2001-07-02 2003-04-03 Rohm Co Ltd Organic el print head and imaging apparatus
JP2003202516A (en) * 2001-12-28 2003-07-18 Nippon Sheet Glass Co Ltd Image forming apparatus
JP2004066758A (en) * 2002-08-09 2004-03-04 Seiko Epson Corp Exposure head and imaging apparatus employing it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104367A (en) * 1980-01-23 1981-08-20 Ricoh Co Ltd Image recorder
JPH02227268A (en) * 1989-02-28 1990-09-10 Sony Corp Printer
JPH05165108A (en) * 1991-12-12 1993-06-29 Seiko Epson Corp Color printer and fluorescent writing device
JPH08220502A (en) * 1995-02-10 1996-08-30 Citizen Watch Co Ltd Image formation device
JP2001347701A (en) * 2000-06-09 2001-12-18 Fuji Photo Film Co Ltd Exposing unit
JP2002046301A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Image exposing head and image exposing device
JP2003094729A (en) * 2001-07-02 2003-04-03 Rohm Co Ltd Organic el print head and imaging apparatus
JP2003202516A (en) * 2001-12-28 2003-07-18 Nippon Sheet Glass Co Ltd Image forming apparatus
JP2004066758A (en) * 2002-08-09 2004-03-04 Seiko Epson Corp Exposure head and imaging apparatus employing it

Also Published As

Publication number Publication date
JP2006015641A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US6731322B2 (en) Exposing apparatus
TWI278254B (en) Light-emitting device, electronic equipment, projection-type display device, line head, and image forming apparatus
US7199769B2 (en) Exposure apparatus
US20050007441A1 (en) Exposure head and exposure apparatus
US6836076B2 (en) Exposure device
US20050146597A1 (en) Image recording apparatus and light-quantity correcting method
US20060017800A1 (en) Exposure system
WO2006004179A1 (en) Exposure head and exposure equipment
JP2000103114A (en) Organic el print head
JP2001167874A (en) Organic electroluminescent element and method of manufacturing the same
JP3687393B2 (en) Organic EL print head
JP4662796B2 (en) Exposure head light quantity correction method and exposure apparatus
JP2006218746A (en) Exposure head, method for correcting quantity of light thereof, and exposure device
JP2006001122A (en) Exposure head and exposure system
JP2006015673A (en) Exposure system
JP2005181529A (en) Exposure device
JP2006001121A (en) Exposure head and exposure system
US6781617B2 (en) Exposure apparatus
US7394478B2 (en) Exposure system
US7142229B2 (en) Exposure apparatus
JP2001260416A (en) Organic el printing head
WO2005114622A1 (en) Color light-emitting element array and exposure apparatus
JP2000353590A (en) Organic el light-emitting device
JP2000238325A (en) Organic el print head
JP2000238318A (en) Organic el print head

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase