WO2006004161A1 - Novel polyphenylacetylene derivatives - Google Patents

Novel polyphenylacetylene derivatives Download PDF

Info

Publication number
WO2006004161A1
WO2006004161A1 PCT/JP2005/012508 JP2005012508W WO2006004161A1 WO 2006004161 A1 WO2006004161 A1 WO 2006004161A1 JP 2005012508 W JP2005012508 W JP 2005012508W WO 2006004161 A1 WO2006004161 A1 WO 2006004161A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivative
group
chemical
polyphenylacetylene
polyacetylene
Prior art date
Application number
PCT/JP2005/012508
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Masuda
Masashi Shiotsuki
Toshiki Kono
Yuichi Shida
Saeed Irfan
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2006528946A priority Critical patent/JPWO2006004161A1/en
Publication of WO2006004161A1 publication Critical patent/WO2006004161A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F38/00Homopolymers and copolymers of compounds having one or more carbon-to-carbon triple bonds
    • C08F38/02Acetylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes

Definitions

  • the present invention relates to a novel polyacetylene derivative, and more particularly to a polyacetylene derivative having a hydroxyl group, an amino group, two esters, two carboxylic acids or imides on a phenyl group. .
  • Substituted acetylene can be polymerized with a suitable transition metal catalyst to give a high molecular weight polymer.
  • the resulting polymer has a conjugated double bond in the main chain, and various properties such as deep coloration, photoconductivity, nonlinear optical properties, and material permeability based on conjugation of the main chain are normal bull polymers. Can not be expected.
  • substituted polyacetylene is a conjugated polymer having alternating double bonds in the main chain
  • the properties based on the conjugation of the main chain greatly depend not only on the substituents on the side chain but also on the degree of conjugation of the main chain.
  • the polymer having the widest conjugation is polyacetylene having no substituent, and exhibits high conductivity equivalent to that of metal by appropriate doping.
  • polyacetylene is insoluble and infusible, has poor moldability and is unstable in air, making it very difficult to apply as a functional material.
  • substituted polyacetylene having an appropriate substituent exhibits high solubility and stability, and provides a strong self-supporting film. Therefore, the potential application as a functional material is very large.
  • membrane separation is a resource-saving and energy-saving eco-friendly eco-technology and is expected to be used in many fields.
  • Membrane separation mainly used for water purification such as MF, UF, and RO, has advanced considerably in technology, and seawater desalination is actually widely used.
  • gas separation and pervaporation separation are currently put to practical use only in limited fields. Therefore, it is necessary to develop a high-performance separation membrane that satisfies these conditions.
  • Substituted polyacetylene is characterized by having high material permeability, and the above-mentioned high performance It may be used for separation membranes.
  • polyacetylene having a polar group examples include polyacetylene monoester having an ester at the para position of phenylacetylene (see Non-Patent Documents 1 to 4), and polyphenyl having an amide at the para position of phenylacetylene.
  • -Ruacetylene monoamide see Non-Patent Documents 5 and 6) has been reported.
  • Non-Patent Document 1 Y. Kishimoto, M. Ito, T. Miyatake, T. Ikariya, and R. Noyori, Macromolecules, 28, 6662 (1995)
  • Non-Patent Document 2 B. Z. Tang, X. Kong, X. Wan, and X. D. Feng, Macromolecules, 3
  • Non-Patent Document 3 X. Kong, J. W. Y. Lam, and B. Z. Tang, Macromolecules, 32, 172 2 (1999)
  • Non-Patent Document 6 E. Yashima, S. Hung, T. Matsushima, and Y. Okamoto, Macromole cules, 28, 4184 (1995)
  • Non-Patent Document 7 Tabata, M., Lindgren, M., Lee, H., Yokota, K., Yang, W. Polymer, 32 (8), 1531-1534, 1991.
  • Non-Patent Document 8 Yashima, E., Maeda, Y., Matsushima, T., Okamoto, Y. Chirality, 9, 593-600, 1997.
  • polyacetylene derivatives having monoesters or monoamides on the phenyl group have already been reported.
  • Polyethylene derivatives having diesters, dicarboxylic acids or imides on the phenyl group have been reported in the past. Reported to,,,.
  • polyacetylene derivatives having a hydroxyl group have been reported in the past.
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is a hydroxyl group, an amino group, two esters, and two carbos on a phenol group that has not been reported or confirmed so far.
  • the object is to provide a polyphenylacetylene derivative having an acid or an imide.
  • the present inventors synthesized a phenylacetylene compound having a diester, dicarboxylic acid or imide on a phenol group, and superposed these monomers. Polyphenylacetylene derivatives having diesters, dicarboxylic acids or imides were successfully synthesized. Furthermore, the present inventors polymerized a phenylacetylene monomer having a structure in which a hydroxyl group or an amino group is protected by a substituent, and deprotected the resulting polymer to obtain a polyphenol having a hydroxyl group or an amino group. Ruacetylene induction The body was successfully synthesized and the present invention was completed.
  • polyacetylacetylene derivative according to the present invention is characterized by having a structure represented by the following general formula (I), ( ⁇ ) or ( ⁇ )! /
  • R 1 is hydrogen or an alkyl group
  • R 2 is an alkyl group
  • R 3 is a hydroxyl group or an amino group
  • n is an integer of 10 or more.
  • R 1 in the above formula (I) is preferably a linear alkyl group having 10 or less carbon atoms, more preferably a methyl group, an ethyl group, an n-butyl group or an n-hexyl group.
  • R 2 is preferably a linear alkyl group having 15 or less carbon atoms, more preferably an n-dodecyl group.
  • R 3 is preferably in the para position or the meta position.
  • polyacetylene derivative according to the present invention is characterized by having a structure represented by the following general formula (IV).
  • n is an integer of 10 or more.
  • R 4 is preferably in the para position or the meta position.
  • the polyphenylacetylene derivative according to the present invention preferably has a weight average molecular weight of 10,000 or more.
  • the conductive resin composition according to the present invention contains the polyacetylene derivative according to the present invention, and further includes a compound serving as an electron donor or acceptor as a dopant. It is characterized by that.
  • the phenylacetylene compound according to the present invention is such that one hydrogen atom of acetylene is benzene.
  • Each of the above-mentioned phenylacetylene compounds is a novel substance that has not been reported so far, and the above-mentioned polyacetylene derivative according to the present invention can be obtained by polymerizing these compounds as raw materials.
  • the method for producing a polyphenylacetylene derivative according to the present invention comprises deprotecting a polyphenylacetylene derivative having a structure in which a hydroxyl group or an amino group bonded to a phenyl group is protected with a substituent, and the following general formula: (III)
  • the method for producing a polyacetylene derivative according to the present invention includes the following general formula (IV):
  • n is an integer of 10 or more.
  • R 3 is a hydroxyl group or an amino group, and n is an integer of 10 or more.
  • It may include a step of producing a polyacetylene derivative represented by
  • the method for producing a polyacetylene derivative according to the present invention preferably includes a step of producing a polyacetylacetylene derivative having a structure represented by the above general formula (IV).
  • the method includes a step of forming a film of a polyacetylacetylene derivative having a structure represented by (IV).
  • a rhodium catalyst may be used when producing a polyacetylacetylene derivative having a structure represented by the general formula (II).
  • [Rh (nbd) Cl] as the main catalyst
  • K as the cocatalyst
  • N (SiMe) is preferably used.
  • the polyphenylacetylene derivative according to the present invention has a structure represented by the above formula (I), and R 1 may be hydrogen or an alkyl group.
  • R 1 alkyl group is especially Although not limited, a linear alkyl group having 10 or less carbon atoms is preferable. More preferably, it is a linear alkyl group having 1 to 6 carbon atoms.
  • a linear alkyl group having 10 or less carbon atoms imparts sufficient solubility to the polymer, and its raw materials are readily available. Examples of the linear alkyl group having 10 or less carbon atoms include a methyl group, an ethyl group, an n-butyl group, and an n-hexyl group.
  • the polyacetylene derivative according to the present invention has a structure represented by the above formula (R), and R 2 may be an alkyl group.
  • the alkyl group for R 2 is not particularly limited, but a linear alkyl group having 15 or less carbon atoms is preferable. More preferably, it is a linear alkyl group having 1 to 12 carbon atoms. A linear alkyl group having 15 or less carbon atoms imparts sufficient solubility to the polymer, and its raw materials are readily available. Examples of the linear alkyl group having 15 or less carbon atoms include n-dodecyl group.
  • the polyphenylacetylene derivative according to the present invention may have a polymerization degree n of 10 or more.
  • it is selected within the range of 100 to 10 7 .
  • the molecular weight of the polyacetylene derivative according to the present invention is not particularly limited, but the weight average molecular weight is preferably 10,000 or more, more preferably 50,000 or more. It is particularly preferred to be over 100,000. V, most preferably over 500,000. If the weight average molecular weight is less than 10,000, sufficient mechanical strength can be secured!
  • the polyacetylacetylene derivative having the structure represented by the above formula (I) or (II) can be produced, for example, as follows. That is, it can be produced by polymerizing a phenylacetylene compound (raw material monomer) which is a repeating unit in a dry inert gas atmosphere in an appropriate solvent in the presence of a catalyst.
  • the concentration of the raw material monomer in the solution is 0.1 M to 2 M, preferably 0.5 M to 1 M.
  • the reaction temperature is 0 ° C ⁇ 80. C, preferably in the range of 30 ° C to 60 ° C, and in the range of 60 minutes to 48 hours reaction time.
  • Examples of the inert gas include nitrogen and argon.
  • the solvent various solvents can be used depending on the type of the monomer and the catalyst.
  • hydrocarbon aliphatic hydrocarbon, aromatic hydrocarbon, etc.
  • halogenated hydrocarbon Alcohols, nitrogen compounds, ethers, ketones, fatty acids, esters and the like can be mentioned.
  • THF tetrahydrofuran
  • toluene toluene
  • chloroform etc.
  • the solvent may be a mixed solvent in which two or more types are mixed.
  • a transition metal catalyst is preferred.
  • the phenylacetylene compound as the raw material monomer may have any structure represented by the following general formula (VII) or (VIII). Further, the compound is not limited to a novel compound, and may be a known compound.
  • R 1 is hydrogen or an alkyl group, and R 2 is an alkyl group.
  • the polyacetylacetylene derivative having the structure represented by the above formula (I) or formula (II) can be suitably used for a gas separation membrane or a liquid separation membrane.
  • a gas separation membrane is an oxygen-enriched membrane.
  • liquid separation membranes include ethanol separation membranes synthesized using biomass.
  • diester diester Since it has a carboxylic acid or an imide, it can be expected to be used in a wider range than conventional substituted polyacetylene, which has a very high polarity.
  • the polyacetylene derivative according to the present invention is a conductive resin compound containing the polyphenylacetylene derivative and further containing a compound serving as an electron donor or acceptor as a dopant.
  • a conductive resin compound containing the polyphenylacetylene derivative and further containing a compound serving as an electron donor or acceptor as a dopant.
  • the conductive resin compound is not limited as long as it contains at least the primer phenylacetylene derivative according to the present invention and the above-mentioned dopant, for example, other polymers such as V are included. Okay, that's ugly.
  • Examples of the dopant include proton acids such as HC1, HBr, HI, perchloric acid and sulfuric acid, halogens such as chlorine, bromine and iodine, antimony pentafluoride, phosphorus pentafluoride, arsenic pentafluoride, Examples thereof include Lewis acids such as boron fluoride and ferric chloride, and electron acceptors such as tetracyanethylene.
  • the phenylacetylene compound according to the present invention has a structure represented by the above formulas (V) and (VI). It is what you have. These phenylacetylene compounds shown in (V) and (VI) are novel compounds that have not been reported so far.
  • (V) is di-n-butyl 4-ethynylphthalate, which is polymerized to produce poly (4-n-butyl phthalate) (in formula (I) above, R 1 is a polyacetylene derivative which is an n-butyl group). Further, (VI) is N-dodecyl-4-ethynyl-phthalimide, and by polymerizing this, poly (N-dodecyl-4-ethur-phthalimide) according to the present invention (in the above formula ( ⁇ ), R 2 Is a n-dodecyl group).
  • the di-n-butyl 4-ethyl phthalate of (V) above can be produced, for example, by mixing commercially available 4-ethyl phthalic anhydride and n-butanol, adding sulfuric acid and stirring with heating. .
  • N-dodecyl-4-ethyl-phthalimide of (VI) above is prepared by, for example, dissolving commercially available 4-ethyl phthalic anhydride and n-dodecylamine in toluene, and using a Dean-Stark trap. It can be produced by heating to reflux.
  • the polyphenylacetylene derivative according to the present invention has a structure represented by the above formula (III), and R 3 may be a hydroxyl group or an amino group. R 3 is preferably in the para or meta position.
  • the following formula (IX) is a polyacetylacetylene derivative having a hydroxyl group at the para position
  • the following formula (X) is a polyphenylacetylene derivative having a hydroxyl group at the meta position
  • the following formula (XI) is a para position
  • the following formula (XII) is a polyphenylene acetylene derivative having an amino group at the meta position.
  • the polyacetylene derivative according to the present invention has a structure represented by the above formula (IV), and R 4 is
  • OSiMe t-Bu (Hereafter referred to as “OSiMe t-Bu”.)
  • R 4 is preferably in the para or meta position.
  • the following formula ( ⁇ ) is a polyacetylene derivative having OSiMe t-Bu in the para position
  • the following formula (XIV) is a polyacetylene derivative having OSiMe-t-Bu in the force meta position.
  • the polyphenylacetylene derivative according to the present invention may have a polymerization degree n of 10 or more. Preferably, it is selected within the range of 100 to 10 7 .
  • the molecular weight of the polyacetylene derivative according to the present invention is not particularly limited, but the weight average molecular weight is preferably 10,000 or more, more preferably 50,000 or more. It is particularly preferred to be over 100,000. V, most preferably over 500,000. If the weight average molecular weight is less than 10,000, sufficient mechanical strength can be secured!
  • Polyphenylacetylene derivatives having the structure represented by the above formula (III) can be suitably used for high-performance separation membranes such as gas separation membranes and liquid separation membranes.
  • An example of the gas separation membrane is an oxygen-enriched membrane.
  • the oxygen-enriched film can be applied to, for example, an air conditioner having an oxygen-enriching function.
  • Examples of liquid separation membranes include ethanol separation membranes synthesized using biomass.
  • the method for producing polyphenylacetylene according to the present invention comprises a polyphenyl having a structure in which a hydroxyl group or amino group bonded to a phenyl group is protected by a substituent. Any method may be used as long as it includes a step of producing the polyacetylacetylene derivative represented by the above general formula (III) by deprotecting the acetylene derivative.
  • the substituent for protecting the hydroxyl group or amino group (hereinafter, also referred to as "protecting group”) is not particularly limited. However, the substituent is bulky and sufficiently protects the polar group. Don't react! Substituents with / ⁇ and ⁇ ⁇ characteristics are preferred ⁇ . Specific examples include t-butyldimethylsilyl group, t-butoxycarbonyl group, and trityl group.
  • the polyacetylene derivative having a structure in which the hydroxyl group or amino group bonded to the phenyl group is protected with a substituent is not particularly limited, and the polyacetylene derivative derivative having the protecting group shown in the above example is not particularly limited. If so! More specifically, a polyacetylene derivative having a structure represented by the above formulas (XIII) to (XVI) can be mentioned.
  • the method for deprotecting the substituent protecting the hydroxyl group or amino group is not particularly limited, and a known method may be appropriately selected and used.
  • a t-butyldimethylsilyl group for example, the above formulas (XIII) and (XIV)
  • a t-butoxycarbonyl group for example, the above formulas (XV) and (XVI)
  • a polyacetylene derivative having a structure represented by the above general formula (IV) for example, the above formula (XIII) to It is preferable to include a step of producing a polyacetylene derivative having a structure represented by (XVI).
  • the polyacetylene derivative having the structure represented by the general formula (IV) is obtained by polymerizing a phenylacetylene compound (monomer) having the structure represented by the following general formula (XVII). It can be manufactured from Tsujiko.
  • the production method of the monomer represented by the general formula (XVII) is not particularly limited, and a known method may be appropriately selected and produced. For example, it can be produced by the method described in Examples described later.
  • the method for polymerizing the monomer is not particularly limited, and may be produced by appropriately selecting a known polymerization method. For example, it can be produced as follows.
  • the monomer can be produced by polymerizing the monomer in a suitable solvent in the presence of a catalyst in a dry inert gas atmosphere.
  • concentration of the monomer in the solution is adjusted to be in the range of 0.1 ⁇ 2 ⁇ , preferably 0.5M ⁇ l ⁇ .
  • the reaction temperature is selected in the range of 0 ° C to 80 ° C, preferably 30 ° C to 60 ° C, and the reaction time is selected in the range of 60 minutes to 48 hours.
  • Examples of the inert gas include nitrogen and argon.
  • solvents can be used as the solvent depending on the kind of the monomer and the catalyst.
  • hydrocarbons aliphatic hydrocarbons, aromatic hydrocarbons, etc.
  • halogenated hydrocarbons alcohols, nitrogen compounds, ethers. , Ketones, fatty acids, esters and the like.
  • THF tetrahydrofuran
  • toluene toluene
  • chloroform etc.
  • the solvent may be a mixed solvent in which two or more types are mixed.
  • a rhodium catalyst is particularly preferable among transition metal catalysts.
  • rhodium catalysts examples include [Rh (nbd) Cl], Rh + (nbd) [h 6 -CHB "(CH)] and the like.
  • the present invention is not limited to this.
  • a polyacetylene derivative having a structure represented by the above general formula (IV) (for example, the above formula
  • the method includes a step of forming a film of a polyacetylene derivative having a structure represented by (XIII) to (XVI).
  • the method of film formation is not particularly limited, and a known method may be appropriately selected and used.
  • a casting method using a polymer solution can be suitably used.
  • the mixture was heated and stirred at ° C for 20 hours (see the following scheme (4)). After completion of the reaction, the solvent was distilled off under reduced pressure and extracted with ethyl acetate. The mixture was washed with an aqueous sodium hydrogen carbonate solution and water, and anhydrous sodium sulfate was added to the solvent of the organic layer and left for half a day for dehydration. Anhydrous sodium sulfate was removed by filtration, and the solvent of the organic layer was distilled off under reduced pressure to obtain a crude product as a yellow liquid.
  • Table 1 shows the yield, weight average molecular weight (Mw), and weight average content of each polymer (poly (l) to poly (5)) obtained by polymerization of each monomer (phenylacetylene compound, compounds 1 to 5). The ratio of molecular weight to number average molecular weight (MwZMn) is shown. The molecular weight of the polymer was measured by GPC (PSt conversion).
  • poly (l) As a typical example of the polymerization reaction, a polymerization method of poly (4-ethyl phthalate) (poly (l)) will be described.
  • Poly (4-ethyl phthalate di n-butyl) (poly (3)) was identified by 1 H-NMR and 13 C-NMR. The results are shown below.
  • Poly (4-n-hexylphthalate) (poly (4)) was identified by 1 H-NMR and 13 C-NMR. The results are shown below.
  • Poly (N-dodecyl-4-ethyl-phthalimide) (poly (5)) was identified by 1 H-NMR and 13 C-N MR. The results are shown below.
  • Monoma ⁇ is a paper by Yashima et al. (Yashima, E.; Huang, S.; Matsusita, T.; Okamoto, Y Macromolecules 1995, 28, 4184.) In the above paper, only the method for synthesizing para-monomers is described.
  • [Cocat] / [Cat] 10. That is, a polymerization method in which a toluene solution of a monomer is mixed with a toluene solution of a catalyst and a cocatalyst. [0100] When Rh + (nbd) [h 6 -CHB "(CH)] is used as the main catalyst, the cocatalyst is not used.
  • the polymerization solvent used was purified by distillation.
  • the polymer was dropped into a large amount of methanol, and the methanol-insoluble part was recovered with a glass filter.
  • Table 3 shows the results of the meta form. Similar to the result of the para-body, the molecular weight was greatly increased in the combination of the main catalyst [Rh (nbd) C1] of run5 and the cocatalyst KN (SiMe).
  • a free-standing membrane was prepared by casting a toluene solution of the polymer on a petri dish.
  • the obtained meta polymer film (a polymer synthesized under the conditions of run 2 in Table 3) was a transparent and uniform film.
  • the desilylation reaction was performed by immersing the polymer film in a mixed solution of trifluoroacetic acid and water or an organic solvent for 24 hours.
  • Monomers were synthesized by refluxing 3-ethulurin (meta) or 4-etulurin (para) and tert-butyl pyrocarbonate in tetrahydrofuran (THF).
  • IR (KBr, cm '' 1 ): 3340, 3310, 2952, 1698, 1605, 1530, 1479, 1454, 1367, 1242, 1154, 888, 870, 787, 685, 658.
  • IR (KBr, cm '' 1 ): 3390, 3295, 2957, 1705, 1609, 1584, 1559, 1512, 1408, 1316, 1231, 1156, 1056, 902, 837, 774, 761.
  • the rhodium catalyst was used alone without using a cocatalyst.
  • Table 5 shows the results of the meta form.
  • Table 6 shows the results of the para body. A high molecular weight polymer was obtained in a high yield (80% to 95%) when any rhodium catalyst was used. Among them, in the combination of the main catalyst [Rh (nbd) Cl] of run5 in Table 5 and the cocatalyst KN (SiMe),
  • a very high molecular weight (310,000) polymer was obtained. Both the meta polymer and para polymer were yellow, soluble in organic solvents such as black mouth form, THF, acetone, and methanol, and immediately insoluble in hexane and toluene.
  • IR (KBr, cm '' 1 ): 3370, 2980, 1685, 1559, 1540, 1457, 1368, 1313, 1231, 1160, 1052, 836, 768.
  • a free-standing membrane was prepared by casting a THF solution of the polymer synthesized under the conditions of run 5 in Table 5 onto a petri dish.
  • Deprotection was performed by immersing the polymer membrane in a mixed solution of trifluoroacetic acid and an organic solvent such as hexane for 24 hours.
  • the polyacetylacetylene derivative according to the present invention has a hydroxyl group, an amino group, a diester, a dicarboxylic acid, or an imide in its repeating unit, and is therefore a very high molecular weight molecule. Therefore, if a membrane is formed using the polyacetylene derivative, a high-performance separation membrane having an unprecedented function can be realized, and the usable range is wide.
  • the polyacetylacetylene derivative according to the present invention can be used as a gas separation membrane such as an oxygen-enriched membrane or a liquid separation membrane such as a water purification membrane.
  • the oxygen-enriched film can be applied to air conditioners with an oxygen-enriching function. Application to batteries is also expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Polyphenylacetylene derivatives in which each phenyl group has a hydroxy, amino, diester, dicarboxylic acid, or imido group. The polyphenylacetylene derivatives have a structure represented by the following formula (I), (II), or (III). (In the formulae, R1 is hydrogen or alkyl; R2 is alkyl; R3 is hydroxy or amino; and n is an integer of 10 or larger.)

Description

明 細 書  Specification
新規ポリフエニルアセチレン誘導体  Novel polyphenylacetylene derivatives
技術分野  Technical field
[0001] 本発明は、新規ポリフエ-ルアセチレン誘導体に関するものであり、特にフエニル基 上に水酸基、アミノ基、 2つのエステル、 2つのカルボン酸またはイミドを有するポリフ ェ-ルアセチレン誘導体に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a novel polyacetylene derivative, and more particularly to a polyacetylene derivative having a hydroxyl group, an amino group, two esters, two carboxylic acids or imides on a phenyl group. .
背景技術  Background art
[0002] 置換アセチレンは適当な遷移金属触媒よつて重合し、高分子量のポリマーを与える ことができる。生成ポリマーは主鎖に共役二重結合を有しており、主鎖の共役に基づ く深い着色、光導電性や非線形光学特性、あるいは物質透過性などの諸性質は、通 常のビュルポリマーには期待できないものである。  [0002] Substituted acetylene can be polymerized with a suitable transition metal catalyst to give a high molecular weight polymer. The resulting polymer has a conjugated double bond in the main chain, and various properties such as deep coloration, photoconductivity, nonlinear optical properties, and material permeability based on conjugation of the main chain are normal bull polymers. Can not be expected.
[0003] 置換ポリアセチレンは主鎖に交互二重結合を有する共役ポリマーであるので、主鎖 の共役に基づく特性は側鎖の置換基のみならず、主鎖の共役の程度にも大きく依存 する。最も広い共役を有するポリマーは、置換基を持たないポリアセチレンであり、適 当なドーピングによって金属並みの高い導電性を示す。し力しながら、ポリアセチレン は不溶不融であり、成形性は乏しぐまた空気中で不安定なため機能性材料としての 応用は非常に困難である。  [0003] Since substituted polyacetylene is a conjugated polymer having alternating double bonds in the main chain, the properties based on the conjugation of the main chain greatly depend not only on the substituents on the side chain but also on the degree of conjugation of the main chain. The polymer having the widest conjugation is polyacetylene having no substituent, and exhibits high conductivity equivalent to that of metal by appropriate doping. However, polyacetylene is insoluble and infusible, has poor moldability and is unstable in air, making it very difficult to apply as a functional material.
[0004] これに対し、適当な置換基を有する置換ポリアセチレンは高い溶解性と安定性を示 し、丈夫な自立膜を与えることから、機能性材料としての応用の可能性は非常に大き い。  [0004] On the other hand, substituted polyacetylene having an appropriate substituent exhibits high solubility and stability, and provides a strong self-supporting film. Therefore, the potential application as a functional material is very large.
[0005] 一方、膜分離は、省資源'省エネルギー的な環境調和型のェコテクノロジーであり、 多くの分野での利用が期待されている。 MF、 UF、 ROなど主に水精製に用いられる 膜分離は、技術的にかなり進歩しており、海水淡水化などは実際に広く利用されてい る。これに対して、気体分離や浸透気化分離は、現状ではまだ限られた分野でしか 実用化されていない。したがって、その条件を満たすための高性能分離膜の開発が 必要である。  On the other hand, membrane separation is a resource-saving and energy-saving eco-friendly eco-technology and is expected to be used in many fields. Membrane separation, mainly used for water purification such as MF, UF, and RO, has advanced considerably in technology, and seawater desalination is actually widely used. On the other hand, gas separation and pervaporation separation are currently put to practical use only in limited fields. Therefore, it is necessary to develop a high-performance separation membrane that satisfies these conditions.
[0006] 置換ポリアセチレンは、高い物質透過性を有することを特徴としており、上記高性能 分離膜に利用できる可能性がある。 [0006] Substituted polyacetylene is characterized by having high material permeability, and the above-mentioned high performance It may be used for separation membranes.
[0007] その置換基として極性基を有するポリアセチレンは興味深 ヽ透過選択性を示すこと が期待されるが、重合触媒の活性、高分子量ィ匕などの問題カゝら合成は困難であり、こ れらの報告例は非常に少な 、。  [0007] Polyacetylene having a polar group as its substituent is expected to exhibit interesting permeation selectivity, but it is difficult to synthesize due to problems such as polymerization catalyst activity and high molecular weight. There are very few examples of these reports.
[0008] 極性基を有するポリアセチレンとしては、フエニルアセチレンのパラ位にエステルを 有するポリフエ-ルアセチレンモノエステル(非特許文献 1〜4参照)や、フエ-ルァセ チレンのパラ位にアミドを有するポリフエ-ルアセチレンモノアミド (非特許文献 5、 6参 照)が報告されている。  [0008] Examples of polyacetylene having a polar group include polyacetylene monoester having an ester at the para position of phenylacetylene (see Non-Patent Documents 1 to 4), and polyphenyl having an amide at the para position of phenylacetylene. -Ruacetylene monoamide (see Non-Patent Documents 5 and 6) has been reported.
[0009] また、アミノ基を有するポリフエニルアセチレン誘導体の重合については以下の報 告がある。  [0009] In addition, the following reports have been reported on the polymerization of polyphenylacetylene derivatives having amino groups.
[0010] Tabataらは、ロジウム触媒を用いて 4- (N,N- dimethylamino)phenylacetyleneの重合 について最初に報告している(非特許文献 7参照)。しかし、高分子量のポリマーを高 収量で得ることは困難であり、得られたポリマーのほとんどはオリゴマーであった。  [0010] Tabata et al. First reported the polymerization of 4- (N, N-dimethylamino) phenylacetylene using a rhodium catalyst (see Non-Patent Document 7). However, it was difficult to obtain a high molecular weight polymer in a high yield, and most of the obtained polymers were oligomers.
[0011] また、 Yashimaらは、ロジウム触媒を用いて 3—ェチュルァ-リンおよび 4—ェチュル ァ-リンの重合を報告している(非特許文献 8参照)。しかし、これらのモノマーを高収 量で重合することは困難であり、形成されたポリマーは通常の有機溶媒に不溶であつ た。  [0011] In addition, Yashima et al. Reported the polymerization of 3-ethulurin and 4-etulurin using a rhodium catalyst (see Non-Patent Document 8). However, it was difficult to polymerize these monomers with a high yield, and the formed polymer was insoluble in ordinary organic solvents.
[0012] 水酸基を有するポリフエ-ルアセチレン誘導体の重合については、現在までに成功 例は報告されていない。  [0012] To date, no successful example has been reported for the polymerization of a polyacetylene derivative having a hydroxyl group.
[0013] 〔非特許文献 1〕Y. Kishimoto, M. Ito, T. Miyatake, T. Ikariya, and R. Noyori, Mac romolecules, 28, 6662 (1995) [0013] [Non-Patent Document 1] Y. Kishimoto, M. Ito, T. Miyatake, T. Ikariya, and R. Noyori, Macromolecules, 28, 6662 (1995)
〔非特許文献 2〕 B. Z. Tang, X. Kong, X. Wan, and X. D. Feng, Macromolecules, 3 [Non-Patent Document 2] B. Z. Tang, X. Kong, X. Wan, and X. D. Feng, Macromolecules, 3
0, 5620 (1998) 0, 5620 (1998)
〔非特許文献 3〕 X. Kong, J. W. Y. Lam, and B. Z. Tang, Macromolecules, 32, 172 2 (1999)  [Non-Patent Document 3] X. Kong, J. W. Y. Lam, and B. Z. Tang, Macromolecules, 32, 172 2 (1999)
〔非特許文献 4〕 T. Aoki, M. Kokai, K. Shinohara, and E. Oikawa, Chem. Lett., 20 09 (1993)  [Non-Patent Document 4] T. Aoki, M. Kokai, K. Shinohara, and E. Oikawa, Chem. Lett., 20 09 (1993)
〔 特 §午文献 5〕 E. Yashima, S. Huang, and Y. Okamoto, J. Am. Chem. Soc, し hem . Commun" 1811 (1994) [Special Article 5] E. Yashima, S. Huang, and Y. Okamoto, J. Am. Chem. Soc, Shi hem Commun "1811 (1994)
〔非特許文献 6〕 E. Yashima, S. Hung, T. Matsushima, and Y. Okamoto, Macromole cules, 28, 4184 (1995)  [Non-Patent Document 6] E. Yashima, S. Hung, T. Matsushima, and Y. Okamoto, Macromole cules, 28, 4184 (1995)
〔非特許文献 7〕Tabata, M., Lindgren, M., Lee, H., Yokota, K., Yang, W. Polymer , 32 (8), 1531-1534, 1991.  [Non-Patent Document 7] Tabata, M., Lindgren, M., Lee, H., Yokota, K., Yang, W. Polymer, 32 (8), 1531-1534, 1991.
〔非特許文献 8〕 Yashima, E., Maeda, Y., Matsushima, T., Okamoto, Y. Chirality, 9 , 593-600, 1997.  [Non-Patent Document 8] Yashima, E., Maeda, Y., Matsushima, T., Okamoto, Y. Chirality, 9, 593-600, 1997.
上述のように、フエ-ル基上にモノエステルまたはモノアミドを有するポリフエ-ルァ セチレン誘導体は既に報告されている力 フエ-ル基上にジエステル、ジカルボン酸 またはイミドを有するポリフエ-ルアセチレン誘導体は過去に報告されて 、な 、。また 、水酸基を有するポリフエ-ルアセチレン誘導体にっ 、ても過去に報告されて ヽな ヽ  As mentioned above, polyacetylene derivatives having monoesters or monoamides on the phenyl group have already been reported. Polyethylene derivatives having diesters, dicarboxylic acids or imides on the phenyl group have been reported in the past. Reported to,,,. In addition, polyacetylene derivatives having a hydroxyl group have been reported in the past.
[0014] 一方、アミノ基を有するポリフエ-ルアセチレン誘導体にっ 、ては報告があるが、非 特許文献 7に記載の 4-(N,N-dimethylamino)phenylacetyleneの重合により得られたポ リマーは本発明のポリフエ-ルアセチレン誘導体とは異なるものである。また、非特許 文献 8に記載のポリマーは、得られたポリマーが不溶性であるため、ポリマーの同定、 分子量測定等が実施されておらず、本発明のポリフエニルアセチレン誘導体と同一 のポリマーか否かについては不明である。 [0014] On the other hand, a polyacetylene derivative having an amino group has been reported, but a polymer obtained by polymerization of 4- (N, N-dimethylamino) phenylacetylene described in Non-Patent Document 7 is This is different from the polyacetylene derivative of the present invention. In addition, since the polymer described in Non-Patent Document 8 is insoluble in the obtained polymer, the identification of the polymer, the measurement of the molecular weight, etc. have not been carried out, and whether or not the polymer is the same as the polyphenylacetylene derivative of the present invention. Is unknown.
[0015] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、従来報告や 確認がされていないフエ-ル基上に水酸基、アミノ基、 2つのエステル、 2つのカルボ ン酸またはイミドを有するポリフエニルアセチレン誘導体を提供することにある。 [0015] The present invention has been made in view of the above-mentioned problems, and the object thereof is a hydroxyl group, an amino group, two esters, and two carbos on a phenol group that has not been reported or confirmed so far. The object is to provide a polyphenylacetylene derivative having an acid or an imide.
発明の開示  Disclosure of the invention
[0016] 本発明者らは、上記課題を解決するために、フエ-ル基上にジエステル、ジカルボ ン酸またはイミドを有するフエ-ルアセチレン化合物を合成し、これらのモノマーを重 合することにより、ジエステル、ジカルボン酸またはイミドを有するポリフエニルァセチ レン誘導体の合成に成功した。さら〖こ、本発明者らは、水酸基またはアミノ基を置換 基で保護した構造を有するフエニルアセチレンモノマーを重合し、得られたポリマー を脱保護することにより、水酸基またはアミノ基を有するポリフエ-ルアセチレン誘導 体の合成に成功し、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventors synthesized a phenylacetylene compound having a diester, dicarboxylic acid or imide on a phenol group, and superposed these monomers. Polyphenylacetylene derivatives having diesters, dicarboxylic acids or imides were successfully synthesized. Furthermore, the present inventors polymerized a phenylacetylene monomer having a structure in which a hydroxyl group or an amino group is protected by a substituent, and deprotected the resulting polymer to obtain a polyphenol having a hydroxyl group or an amino group. Ruacetylene induction The body was successfully synthesized and the present invention was completed.
[0017] すなわち、本発明に係るポリフエニルアセチレン誘導体は、次の一般式 (I)、(Π)ま たは (ΠΙ)で表される構造を有することを特徴として!/、る。 That is, the polyacetylacetylene derivative according to the present invention is characterized by having a structure represented by the following general formula (I), (Π) or (ΠΙ)! /
[0018] [化 1] [0018] [Chemical 1]
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 R1は水素またはアルキル基であり、 R2はアルキル基であり、 R3は水酸基また はァミノ基であり、 nは 10以上の整数である。 ) (Wherein R 1 is hydrogen or an alkyl group, R 2 is an alkyl group, R 3 is a hydroxyl group or an amino group, and n is an integer of 10 or more.)
上記式 (I)における R1は炭素数 10以下の直鎖アルキル基であることが好ましぐよ り好ましくは、メチル基、ェチル基、 n—ブチル基または n—へキシル基である。 R 1 in the above formula (I) is preferably a linear alkyl group having 10 or less carbon atoms, more preferably a methyl group, an ethyl group, an n-butyl group or an n-hexyl group.
[0019] 上記式 (Π)における R2は炭素数 15以下の直鎖アルキル基であることが好ましぐよ り好ましくは n -ドデシル基である。 In the above formula (Π), R 2 is preferably a linear alkyl group having 15 or less carbon atoms, more preferably an n-dodecyl group.
[0020] 上記式 (III)における R3はパラ位またはメタ位にあることが好まし 、。 In the above formula (III), R 3 is preferably in the para position or the meta position.
[0021] また、本発明に係るポリフエ-ルアセチレン誘導体は、次の一般式 (IV)で表される 構造を有することを特徴として 、る。 [0021] Further, the polyacetylene derivative according to the present invention is characterized by having a structure represented by the following general formula (IV).
[0022] [化 2]
Figure imgf000007_0001
[0022] [Chemical 2]
Figure imgf000007_0001
(式中、 R4(Where R 4 is
[0023] [化 3] [0023] [Chemical 3]
Figure imgf000007_0002
または
Figure imgf000007_0002
Or
[0024] [化 4]
Figure imgf000007_0003
であり、 nは 10以上の整数である。 )
[0024] [Chemical 4]
Figure imgf000007_0003
And n is an integer of 10 or more. )
上記 R4はパラ位またはメタ位にあることが好ましい。 R 4 is preferably in the para position or the meta position.
[0025] 上記本発明に係るポリフエニルアセチレン誘導体の重量平均分子量は 1万以上で あることが好ましい。 [0025] The polyphenylacetylene derivative according to the present invention preferably has a weight average molecular weight of 10,000 or more.
[0026] 上記構成により、過去に報告または確認されていない新規かつ極性の高いポリフエ [0026] With the above configuration, a new and highly polar polyphew that has not been reported or confirmed in the past.
-ルアセチレン誘導体を実現することができる。 -A ruacetylene derivative can be realized.
[0027] 本発明に係る導電性榭脂組成物は、上記本発明に係るポリフエ-ルアセチレン誘 導体を含有しており、さらに、電子のドナーまたはァクセプターとなる化合物をドーパ ントとして添加してなることを特徴として 、る。 [0027] The conductive resin composition according to the present invention contains the polyacetylene derivative according to the present invention, and further includes a compound serving as an electron donor or acceptor as a dopant. It is characterized by that.
[0028] 上記構成により、より導電性の高い榭脂組成物を実現することができる。 [0028] With the above configuration, a highly conductive rosin composition can be realized.
[0029] 本発明に係るフエ-ルアセチレン化合物は、アセチレンの一方の水素がベンゼン 環を含む置換基で置換されたフエニルアセチレンィ匕合物であって、次の式 (V)また は (VI)で表される構造を有することを特徴として!/、る。 [0029] The phenylacetylene compound according to the present invention is such that one hydrogen atom of acetylene is benzene. A phenylacetylene compound substituted with a substituent containing a ring, and having a structure represented by the following formula (V) or (VI)! /
[化 5]  [Chemical 5]
Figure imgf000008_0001
Figure imgf000008_0001
[0031] [ィ匕 6] [0031] [6]
Figure imgf000008_0002
上記各フ ニルアセチレン化合物は、従来報告されていない新規物質であり、これ らをそれぞれ原料として重合させることにより、上記本発明に係るポリフエ-ルァセチ レン誘導体を得ることができる。
Figure imgf000008_0002
Each of the above-mentioned phenylacetylene compounds is a novel substance that has not been reported so far, and the above-mentioned polyacetylene derivative according to the present invention can be obtained by polymerizing these compounds as raw materials.
[0032] 本発明に係るポリフエニルアセチレン誘導体の製造方法は、フエニル基に結合した 水酸基またはアミノ基を置換基で保護した構造を有するポリフエニルアセチレン誘導 体を脱保護することで、次の一般式 (III)  [0032] The method for producing a polyphenylacetylene derivative according to the present invention comprises deprotecting a polyphenylacetylene derivative having a structure in which a hydroxyl group or an amino group bonded to a phenyl group is protected with a substituent, and the following general formula: (III)
[0033] [化 7]  [0033] [Chemical 7]
Figure imgf000008_0003
(式中、 R3は水酸基またはアミノ基であり、 nは 10以上の整数である。 ) で表されるポリフエ-ルアセチレン誘導体を製造する工程を含むことを特徴としている
Figure imgf000008_0003
(Wherein R 3 is a hydroxyl group or an amino group, and n is an integer of 10 or more.) Characterized in that it comprises a step of producing a polyacetylene derivative represented by:
[0034] また、本発明に係るポリフエ-ルアセチレン誘導体の製造方法は、次の一般式 (IV ) [0034] The method for producing a polyacetylene derivative according to the present invention includes the following general formula (IV):
[0035] [化 8]  [0035] [Chemical 8]
Figure imgf000009_0001
Figure imgf000009_0001
(式中、 R4(Where R 4 is
[0036] [化 9] [0036] [Chemical 9]
Figure imgf000009_0002
または
Figure imgf000009_0002
Or
[0037] [化 10] [0037] [Chemical 10]
Figure imgf000009_0003
であり、 nは 10以上の整数である。 )
Figure imgf000009_0003
And n is an integer of 10 or more. )
で表される構造を有するポリフエ-ルアセチレン誘導体を、脱保護することで、次の 一般式 (III)  By deprotecting the polyacetylene derivative having the structure represented by the following general formula (III)
[0038] [化 11]
Figure imgf000010_0001
[0038] [Chemical 11]
Figure imgf000010_0001
(式中、 R3は水酸基またはアミノ基であり、 nは 10以上の整数である。 ) (Wherein R 3 is a hydroxyl group or an amino group, and n is an integer of 10 or more.)
で表されるポリフエ-ルアセチレン誘導体を製造する工程を含むものであってもよい  It may include a step of producing a polyacetylene derivative represented by
[0039] さらに、本発明に係るポリフエ-ルアセチレン誘導体の製造方法は、上記一般式 (I V)で表される構造を有するポリフエニルアセチレン誘導体を製造する工程を含むこと が好ましぐ上記一般式 (IV)で表される構造を有するポリフエニルアセチレン誘導体 を製膜する工程を含むことが好まし ヽ。 [0039] Further, the method for producing a polyacetylene derivative according to the present invention preferably includes a step of producing a polyacetylacetylene derivative having a structure represented by the above general formula (IV). Preferably, the method includes a step of forming a film of a polyacetylacetylene derivative having a structure represented by (IV).
[0040] 本発明に係るポリフエニルアセチレン誘導体の製造方法にぉ 、て、上記一般式 (II )で表される構造を有するポリフエ-ルアセチレン誘導体を製造する際には、ロジウム 触媒を用いることが好ましぐ特に、主触媒として [Rh(nbd)Cl]を用い、共触媒として K  [0040] In the process for producing a polyacetylacetylene derivative according to the present invention, a rhodium catalyst may be used when producing a polyacetylacetylene derivative having a structure represented by the general formula (II). In particular, using [Rh (nbd) Cl] as the main catalyst and K as the cocatalyst
2  2
N(SiMe )を用いることが好ましい。  N (SiMe) is preferably used.
3 2  3 2
[0041] 上記製造方法により、上記本発明に係る高分子量のポリフエ-ルアセチレン誘導体 を高収量で製造することが可能となる。  [0041] The production method described above makes it possible to produce the high molecular weight polyacetylene derivative according to the present invention in a high yield.
[0042] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、次の説明で明白になるだろう。 [0042] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will also become apparent in the following description.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] <実施の形態 1 > <Embodiment 1>
本発明の一実施形態について説明すれば、以下のとおりである。なお、本発明はこ れに限定されるものではな 、。  An embodiment of the present invention will be described as follows. The present invention is not limited to this.
[0044] 〔フエ-ル基上に 2つのエステル、 2つのカルボン酸またはイミドを有するポリフエ- ルアセチレン誘導体〕 [Polyacetylene derivative having two esters, two carboxylic acids or imides on the phenyl group]
本発明に係るポリフエニルアセチレン誘導体は、上記式 (I)に示される構造を有す るものであって、 R1が水素またはアルキル基であればよい。 R1のアルキル基は特に 限定されるものではないが、炭素数が 10以下の直鎖アルキル基が好ましい。より好ま しくは、炭素数 1〜6の直鎖アルキル基である。炭素数が 10以下の直鎖アルキル基 は充分な溶解性をポリマーに付与し、その原料は容易に入手可能である。上記炭素 数が 10以下の直鎖アルキル基としては、例えばメチル基、ェチル基、 n—ブチル基、 n—へキシル基を挙げることができる。 The polyphenylacetylene derivative according to the present invention has a structure represented by the above formula (I), and R 1 may be hydrogen or an alkyl group. R 1 alkyl group is especially Although not limited, a linear alkyl group having 10 or less carbon atoms is preferable. More preferably, it is a linear alkyl group having 1 to 6 carbon atoms. A linear alkyl group having 10 or less carbon atoms imparts sufficient solubility to the polymer, and its raw materials are readily available. Examples of the linear alkyl group having 10 or less carbon atoms include a methyl group, an ethyl group, an n-butyl group, and an n-hexyl group.
[0045] また、本発明に係るポリフエ-ルアセチレン誘導体は上記式 (Π)に示される構造を 有するものであって、 R2がアルキル基であればよい。 R2のアルキル基は特に限定さ れるものではないが、炭素数が 15以下の直鎖アルキル基が好ましい。より好ましくは 、炭素数 1〜12の直鎖アルキル基である。炭素数が 15以下の直鎖アルキル基は充 分な溶解性をポリマーに付与し、その原料は容易に入手可能である。上記炭素数が 15以下の直鎖アルキル基としては、 n—ドデシル基を挙げることができる。 [0045] In addition, the polyacetylene derivative according to the present invention has a structure represented by the above formula (R), and R 2 may be an alkyl group. The alkyl group for R 2 is not particularly limited, but a linear alkyl group having 15 or less carbon atoms is preferable. More preferably, it is a linear alkyl group having 1 to 12 carbon atoms. A linear alkyl group having 15 or less carbon atoms imparts sufficient solubility to the polymer, and its raw materials are readily available. Examples of the linear alkyl group having 15 or less carbon atoms include n-dodecyl group.
[0046] 本発明に係るポリフエニルアセチレン誘導体は、重合度 nが 10以上であればよい。  [0046] The polyphenylacetylene derivative according to the present invention may have a polymerization degree n of 10 or more.
好ましくは 100〜107の範囲内で選択される。 Preferably, it is selected within the range of 100 to 10 7 .
[0047] また、本発明に係るポリフエ-ルアセチレン誘導体の分子量は特に限定されるもの ではないが、重量平均分子量は 1万以上であることが好ましぐ 5万以上であることが より好ましぐ 10万以上であることが特に好ましぐ 50万以上であることが最も好まし V、。重量平均分子量が 1万未満であると十分な力学強度を確保できて!/、な 、ため好 ましくない。  [0047] The molecular weight of the polyacetylene derivative according to the present invention is not particularly limited, but the weight average molecular weight is preferably 10,000 or more, more preferably 50,000 or more. It is particularly preferred to be over 100,000. V, most preferably over 500,000. If the weight average molecular weight is less than 10,000, sufficient mechanical strength can be secured!
[0048] 上記式 (I)または式 (II)に示される構造を有するポリフエニルアセチレン誘導体は、 例えば以下のようにして製造することができる。すなわち、乾燥不活性気体雰囲気下 において、その繰り返し単位であるフエ-ルアセチレンィ匕合物(原料モノマー)を適当 な溶媒中で触媒の存在下に重合させることにより製造することができる。溶液中の原 料モノマーの濃度は 0.1 M〜2 M、好ましくは 0.5 M〜l Mの範囲に調製する。反応 温度は 0 °C〜80。C、好ましくは 30 °C〜60 °Cの範囲で選択され、反応時間 60分〜 48 時間の範囲で選択される。  [0048] The polyacetylacetylene derivative having the structure represented by the above formula (I) or (II) can be produced, for example, as follows. That is, it can be produced by polymerizing a phenylacetylene compound (raw material monomer) which is a repeating unit in a dry inert gas atmosphere in an appropriate solvent in the presence of a catalyst. The concentration of the raw material monomer in the solution is 0.1 M to 2 M, preferably 0.5 M to 1 M. The reaction temperature is 0 ° C ~ 80. C, preferably in the range of 30 ° C to 60 ° C, and in the range of 60 minutes to 48 hours reaction time.
[0049] 上記不活性気体としては、例えば窒素、アルゴン等を挙げることができる。 [0049] Examples of the inert gas include nitrogen and argon.
[0050] 上記溶媒としては、モノマーおよび触媒の種類により種々のものを用いることができ 、例えば炭化水素 (脂肪族炭化水素、芳香族炭化水素等)、ハロゲン化炭化水素、 アルコール、窒素化合物、エーテル、ケトン、脂肪酸、エステル等を挙げることができ る。中でも、触媒および生成ポリマーをよく溶解させるテトラヒドロフラン (THF)、トルェ ン、クロ口ホルム等が好ましい。溶媒は 2種類以上を混合した混合溶媒でもよい。 [0050] As the solvent, various solvents can be used depending on the type of the monomer and the catalyst. For example, hydrocarbon (aliphatic hydrocarbon, aromatic hydrocarbon, etc.), halogenated hydrocarbon, Alcohols, nitrogen compounds, ethers, ketones, fatty acids, esters and the like can be mentioned. Of these, tetrahydrofuran (THF), toluene, chloroform, etc., which dissolve the catalyst and the produced polymer well, are preferable. The solvent may be a mixed solvent in which two or more types are mixed.
[0051] 上記触媒としては、遷移金属触媒が好ましぐ例えば、 [Rh+(nbd)( r? 6-C H ) B"Ph ] [0051] As the catalyst, a transition metal catalyst is preferred. For example, [Rh + (nbd) (r? 6 -CH) B "Ph]
6 5 3 6 5 3
、 [(norbornadiene)RhCl] /アミン系等を挙げることができる。 , [(Norbornadiene) RhCl] / amine type, and the like.
2  2
[0052] 原料モノマーのフエ-ルアセチレン化合物は下記の一般式 (VII)または(VIII)で 表される構造を有するものであればよい。また、新規ィ匕合物に限定されるものではな ぐ既知化合物でもよい。  [0052] The phenylacetylene compound as the raw material monomer may have any structure represented by the following general formula (VII) or (VIII). Further, the compound is not limited to a novel compound, and may be a known compound.
[0053] [化 12]  [0053] [Chemical 12]
■ ■ ■ ( V I I I )
Figure imgf000012_0001
■ ■ ■ (VIII)
Figure imgf000012_0001
(式中、 R1は水素またはアルキル基、 R2はアルキル基である。 ) (Wherein R 1 is hydrogen or an alkyl group, and R 2 is an alkyl group.)
原料モノマーとして利用可能なフエニルアセチレンィ匕合物としては、例えば、 4-ェ チュルフタル酸ジメチル、 4-ェチュルフタル酸ジェチル、 4-ェチュルフタル酸ジプロ ピル、 4-ェチュルフタル酸ジイソプロピル、 4-ェチュルフタル酸ジブチル、 4-ェチ- ルフタル酸ジイソブチル、 4-ェチュルフタル酸ジ -S-ブチル、 4-ェチュルフタル酸ジ ペンチル、 4-ェチュルフタル酸ジへキシル、 N-ォクチル- 4-ェチュル-フタルイミド、 N -ノ -ル- 4-ェチュル-フタルイミド、 N-デシル- 4-ェチュル-フタルイミド、 N-ゥンデシ ル- 4-ェチュル-フタルイミド、 N-ドデシル- 4-ェチュル-フタルイミド等を挙げることが できる。これらの原料モノマーは、例えば市販品の 4-ェチュル無水フタル酸を原料と して合成することができる(後述の実施例参照。;)。  Examples of phenylacetylene compounds that can be used as raw material monomers include dimethyl 4-ethyl phthalate, dimethyl 4-ethyl phthalate, dipropyl 4-ethyl phthalate, diisopropyl 4-ethyl phthalate, dibutyl 4-ethyl phthalate, 4-ethyl phthalate diisobutyl, 4-ethyl phthalate di-S-butyl, 4-ethyl phthalate dipentyl, 4-ethyl phthalate dihexyl, N-octyl-4-ethyl phthalimide, N-nor- Examples include 4-ethyl-phthalimide, N-decyl-4-ethyl-phthalimide, N-undecyl-4-ethyl-phthalimide, and N-dodecyl-4-ethyl-phthalimide. These raw material monomers can be synthesized using, for example, commercially available 4-ethyl phthalic anhydride as a raw material (see Examples described later;).
[0054] 上記式 (I)または式 (II)に示される構造を有するポリフエニルアセチレン誘導体は、 ガス分離膜や液体分離膜に好適に利用できる。ガス分離膜としては、例えば酸素富 化膜を挙げることができる。液体分離膜としては、例えばバイオマスを利用して合成し たエタノールの分離膜を挙げることができる。また、繰り返し単位中にジエステル、ジ カルボン酸またはイミドを有しているため非常に極性が高ぐ従来の置換ポリアセチレ ンより広い範囲での応用が期待できる。 The polyacetylacetylene derivative having the structure represented by the above formula (I) or formula (II) can be suitably used for a gas separation membrane or a liquid separation membrane. An example of the gas separation membrane is an oxygen-enriched membrane. Examples of liquid separation membranes include ethanol separation membranes synthesized using biomass. In addition, diester, diester Since it has a carboxylic acid or an imide, it can be expected to be used in a wider range than conventional substituted polyacetylene, which has a very high polarity.
[0055] また、本発明に係るポリフエ-ルアセチレン誘導体は、当該ポリフエニルアセチレン 誘導体を含有し、さらに電子のドナーまたはァクセプターとなる化合物をドーパントと して添加した導電性榭脂ィ匕合物として利用することができる。当該導電性榭脂化合 物は、少なくとも本発明に係るプライマーフエニルアセチレン誘導体と上記ドーパント を含んでなるものであればよぐこれら以外のもの、例えば他のポリマー等が含まれて V、てもよ 、ことは 、うまでもな 、。  [0055] Further, the polyacetylene derivative according to the present invention is a conductive resin compound containing the polyphenylacetylene derivative and further containing a compound serving as an electron donor or acceptor as a dopant. Can be used. The conductive resin compound is not limited as long as it contains at least the primer phenylacetylene derivative according to the present invention and the above-mentioned dopant, for example, other polymers such as V are included. Okay, that's ugly.
[0056] ドーパントとしては、例えば、 HC1、 HBr、 HI、過塩素酸、硫酸等のプロトン酸、塩素 、臭素、ヨウ素等のハロゲン、五フッ化アンチモン、五フッ化リン、五フッ化ヒ素、三フッ 化ホウ素、塩ィ匕第二鉄等のルイス酸、テトラシァノエチレン等の電子のァクセプター などが挙げられる。  [0056] Examples of the dopant include proton acids such as HC1, HBr, HI, perchloric acid and sulfuric acid, halogens such as chlorine, bromine and iodine, antimony pentafluoride, phosphorus pentafluoride, arsenic pentafluoride, Examples thereof include Lewis acids such as boron fluoride and ferric chloride, and electron acceptors such as tetracyanethylene.
[0057] 〔フエ-ル基上に 2つのエステルまたはイミドを有するフエ-ルアセチレン化合物〕 本発明に係るフエ-ルアセチレンィ匕合物は、上記式 (V)および (VI)に示される構 造を有するものである。これら (V)および (VI)に示されるフエ-ルアセチレン化合物 は、従来報告されていない新規な化合物である。  [Phenolacetylene compound having two esters or imides on the phenyl group] The phenylacetylene compound according to the present invention has a structure represented by the above formulas (V) and (VI). It is what you have. These phenylacetylene compounds shown in (V) and (VI) are novel compounds that have not been reported so far.
[0058] (V)は 4-ェチニルフタル酸ジ n-ブチルであり、これを重合することにより本発明に係 るポリ(4-ェチュルフタル酸ジ n-ブチル)(上記式 (I)において R1が n—ブチル基であ るポリフエ-ルアセチレン誘導体)を得ることができる。また、(VI)は N-ドデシル- 4-ェ チニル-フタルイミドであり、これを重合することにより本発明に係るポリ(N-ドデシル -4 -ェチュル-フタルイミド)(上記式 (Π)において R2が n—ドデシル基であるポリフエ-ル アセチレン誘導体)を得ることができる。 [0058] (V) is di-n-butyl 4-ethynylphthalate, which is polymerized to produce poly (4-n-butyl phthalate) (in formula (I) above, R 1 is a polyacetylene derivative which is an n-butyl group). Further, (VI) is N-dodecyl-4-ethynyl-phthalimide, and by polymerizing this, poly (N-dodecyl-4-ethur-phthalimide) according to the present invention (in the above formula (式), R 2 Is a n-dodecyl group).
[0059] 上記 (V)および (VI)に示されるフエ-ルアセチレンィ匕合物の製造方法は特に限定 されるものではない。上記 (V)の 4-ェチュルフタル酸ジ n-ブチルは、例えば、市販品 の 4-ェチュル無水フタル酸と n-ブタノールとを混合し、硫酸を加えて加熱攪拌するこ とにより製造することができる。  [0059] There are no particular limitations on the method for producing the phenylacetylene compound shown in (V) and (VI) above. The di-n-butyl 4-ethyl phthalate of (V) above can be produced, for example, by mixing commercially available 4-ethyl phthalic anhydride and n-butanol, adding sulfuric acid and stirring with heating. .
[0060] また、上記 (VI)の N-ドデシル- 4-ェチュル-フタルイミドは、例えば、市販品の 4-ェ チュル無水フタル酸と n-ドデシルァミンとをトルエンに溶解し、 Dean-Starkトラップで 加熱還流することにより製造することができる。 [0060] In addition, N-dodecyl-4-ethyl-phthalimide of (VI) above is prepared by, for example, dissolving commercially available 4-ethyl phthalic anhydride and n-dodecylamine in toluene, and using a Dean-Stark trap. It can be produced by heating to reflux.
[0061] <実施の形態 2 >  <Embodiment 2>
本発明の他の実施形態について説明すれば、以下のとおりである。なお、本発明 はこれに限定されるものではな!/、。  The following will describe another embodiment of the present invention. The present invention is not limited to this! /.
[0062] 〔水酸基またはアミノ基を有するポリフ ニルアセチレン誘導体〕  [Polyphenylacetylene derivative having a hydroxyl group or an amino group]
本発明に係るポリフエニルアセチレン誘導体は、上記式 (III)に示される構造を有 するものであって、 R3が水酸基またはアミノ基であればよい。また、 R3はパラ位または メタ位にあることが好ましい。具体的には下記式 (IX)がパラ位に水酸基を有するポリ フエニルアセチレン誘導体であり、下記式 (X)がメタ位に水酸基を有するポリフエニル アセチレン誘導体であり、下記式 (XI)がパラ位にアミノ基を有するポリフエ二ルァセ チレン誘導体であり、下記式 (XII)がメタ位にアミノ基を有するポリフエ二ルァセチレ ン誘導体である。 The polyphenylacetylene derivative according to the present invention has a structure represented by the above formula (III), and R 3 may be a hydroxyl group or an amino group. R 3 is preferably in the para or meta position. Specifically, the following formula (IX) is a polyacetylacetylene derivative having a hydroxyl group at the para position, the following formula (X) is a polyphenylacetylene derivative having a hydroxyl group at the meta position, and the following formula (XI) is a para position A polyphenylene acetylene derivative having an amino group in the formula, and the following formula (XII) is a polyphenylene acetylene derivative having an amino group at the meta position.
[0063] [化 13]  [0063] [Chemical 13]
Figure imgf000014_0001
また、本発明に係るポリフエ-ルアセチレン誘導体は、上記式 (IV)に示される構造 を有するものであって、 R4
Figure imgf000015_0001
Figure imgf000014_0001
The polyacetylene derivative according to the present invention has a structure represented by the above formula (IV), and R 4 is
Figure imgf000015_0001
(以下「OSiMe t— Bu」と称する。 ) (Hereafter referred to as “OSiMe t-Bu”.)
または  Or
[0065] [化 15]
Figure imgf000015_0002
[0065] [Chemical 15]
Figure imgf000015_0002
(以下「NHCO t— Bu」と称する。 ) (Hereafter referred to as “NHCO t-Bu”.)
2  2
であればよい。また、 R4はパラ位またはメタ位にあることが好ましい。具体的には下記 式 (ΧΠΙ)がパラ位に OSiMe t— Buを有するポリフエ-ルアセチレン誘導体であり、 If it is. R 4 is preferably in the para or meta position. Specifically, the following formula (ΧΠΙ) is a polyacetylene derivative having OSiMe t-Bu in the para position,
2  2
下記式 (XIV)力メタ位に OSiMe t— Buを有するポリフエ-ルアセチレン誘導体であ  The following formula (XIV) is a polyacetylene derivative having OSiMe-t-Bu in the force meta position.
2  2
り、下記式 (XV)がパラ位に NHCO t— Buを有するポリフエ-ルアセチレン誘導体  The following formula (XV) is a polyacetylene derivative having NHCO t-Bu in the para position
2  2
であり、下記式 (XVI)カ^タ位に NHCO t— Buを有するポリフエ-ルアセチレン誘導 体である。  And is a polyacetylene derivative having NHCO t-Bu at the position of the following formula (XVI).
[0066] [化 16] [0066] [Chemical 16]
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0002
( X V) 本発明に係るポリフエニルアセチレン誘導体は、重合度 nが 10以上であればよい。 好ましくは 100〜107の範囲内で選択される。 (XV) The polyphenylacetylene derivative according to the present invention may have a polymerization degree n of 10 or more. Preferably, it is selected within the range of 100 to 10 7 .
[0067] また、本発明に係るポリフエ-ルアセチレン誘導体の分子量は特に限定されるもの ではないが、重量平均分子量は 1万以上であることが好ましぐ 5万以上であることが より好ましぐ 10万以上であることが特に好ましぐ 50万以上であることが最も好まし V、。重量平均分子量が 1万未満であると十分な力学強度を確保できて!/、な 、ため好 ましくない。 [0067] The molecular weight of the polyacetylene derivative according to the present invention is not particularly limited, but the weight average molecular weight is preferably 10,000 or more, more preferably 50,000 or more. It is particularly preferred to be over 100,000. V, most preferably over 500,000. If the weight average molecular weight is less than 10,000, sufficient mechanical strength can be secured!
[0068] 上記式 (III)に示される構造を有するポリフエニルアセチレン誘導体は、ガス分離膜 や液体分離膜などの高性能分離膜に好適に利用できる。ガス分離膜としては、例え ば酸素富化膜を挙げることができる。酸素富化膜は、例えば酸素富化機能を持った エアコンなどに応用することができる。また、液体分離膜としては、例えばバイオマス を利用して合成したエタノールの分離膜を挙げることができる。 [0069] 〔水酸基またはアミノ基を有するポリフエニルアセチレン誘導体の製造方法〕 本発明に係るポリフエニルアセチレンの製造方法は、フエニル基に結合した水酸基 またはアミノ基を置換基で保護した構造を有するポリフエニルアセチレン誘導体を脱 保護することで、上記一般式 (III)で表されるポリフエニルアセチレン誘導体を製造す る工程を含むものであればよい。 [0068] Polyphenylacetylene derivatives having the structure represented by the above formula (III) can be suitably used for high-performance separation membranes such as gas separation membranes and liquid separation membranes. An example of the gas separation membrane is an oxygen-enriched membrane. The oxygen-enriched film can be applied to, for example, an air conditioner having an oxygen-enriching function. Examples of liquid separation membranes include ethanol separation membranes synthesized using biomass. [Method for Producing Polyphenylacetylene Derivative Having Hydroxyl Group or Amino Group] The method for producing polyphenylacetylene according to the present invention comprises a polyphenyl having a structure in which a hydroxyl group or amino group bonded to a phenyl group is protected by a substituent. Any method may be used as long as it includes a step of producing the polyacetylacetylene derivative represented by the above general formula (III) by deprotecting the acetylene derivative.
[0070] 上記水酸基またはアミノ基を保護する置換基 (以下、「保護基」とも称する。 )は特に 限定されるものではな ヽが、かさ高 ヽもので極性基を十分に保護し重合触媒と反応 しな!/ヽと ヽぅ特徴を有する置換基が好ま ヽ。具体的には例えば t—プチルジメチル シリル基、 t—ブトキシカルボニル基、トリチル基等を挙げることができる。  [0070] The substituent for protecting the hydroxyl group or amino group (hereinafter, also referred to as "protecting group") is not particularly limited. However, the substituent is bulky and sufficiently protects the polar group. Don't react! Substituents with / ヽ and ヽ ぅ characteristics are preferred ヽ. Specific examples include t-butyldimethylsilyl group, t-butoxycarbonyl group, and trityl group.
[0071] したがって、上記フエニル基に結合した水酸基またはアミノ基を置換基で保護した 構造を有するポリフエニルアセチレン誘導体も特に限定されるものではなぐ上記例 示した保護基を有するポリフ -ルアセチレン誘導体誘導体であればよ!、。より具体 的には、上記式 (XIII)〜(XVI)に示される構造を有するポリフエ-ルアセチレン誘導 体を挙げることができる。  Accordingly, the polyacetylene derivative having a structure in which the hydroxyl group or amino group bonded to the phenyl group is protected with a substituent is not particularly limited, and the polyacetylene derivative derivative having the protecting group shown in the above example is not particularly limited. If so! More specifically, a polyacetylene derivative having a structure represented by the above formulas (XIII) to (XVI) can be mentioned.
[0072] また、上記水酸基またはアミノ基を保護する置換基を脱保護する方法は特に限定さ れるものではなぐ公知の方法を適宜選択して用いればよい。例えば、保護基として t —プチルジメチルシリル基を用いた場合 (例えば上記式 (XIII)および (XIV) )や t— ブトキシカルボ二ル基を用いた場合 (例えば上記式 (XV)および (XVI) )には、トリフ ルォロ酢酸と水あるいはへキサンなどの有機溶媒との混合溶液に浸漬することにより 、脱保護することができる。  [0072] The method for deprotecting the substituent protecting the hydroxyl group or amino group is not particularly limited, and a known method may be appropriately selected and used. For example, when a t-butyldimethylsilyl group is used as a protecting group (for example, the above formulas (XIII) and (XIV)) or when a t-butoxycarbonyl group is used (for example, the above formulas (XV) and (XVI) ) Can be deprotected by immersing in a mixed solution of trifluoroacetic acid and water or an organic solvent such as hexane.
[0073] また、本発明に係るポリフエ-ルアセチレン誘導体の製造方法にぉ 、ては、上記一 般式 (IV)で表される構造を有するポリフ ニルアセチレン誘導体 (例えば、上記式( XIII)〜 (XVI)に示される構造を有するポリフ -ルアセチレン誘導体)を製造する 工程を含むことが好ましい。  [0073] In addition, in the method for producing a polyacetylene derivative according to the present invention, a polyacetylene derivative having a structure represented by the above general formula (IV) (for example, the above formula (XIII) to It is preferable to include a step of producing a polyacetylene derivative having a structure represented by (XVI).
[0074] 上記一般式 (IV)で表される構造を有するポリフエ-ルアセチレン誘導体は、下記 一般式 (XVII)で表される構造を有するフエニルアセチレンィ匕合物(モノマー)を重合 すること〖こより製造することができる。  [0074] The polyacetylene derivative having the structure represented by the general formula (IV) is obtained by polymerizing a phenylacetylene compound (monomer) having the structure represented by the following general formula (XVII). It can be manufactured from Tsujiko.
[0075] [化 17]
Figure imgf000018_0001
[0075] [Chemical 17]
Figure imgf000018_0001
( X V I I )  (X V I I)
(式中、 R5は、 OSiMe t— Buまたは NHCO t— Bu) (Where R 5 is OSiMe t— Bu or NHCO t— Bu)
2 2  twenty two
ここで、上記一般式 (XVII)で表されるモノマーの製造方法は特に限定されるもの ではなぐ公知の方法を適宜選択して製造すればよい。例えば、後述の実施例に記 載の方法で製造することができる。  Here, the production method of the monomer represented by the general formula (XVII) is not particularly limited, and a known method may be appropriately selected and produced. For example, it can be produced by the method described in Examples described later.
[0076] 上記モノマーを重合する方法も特に限定されるものではなぐ公知の重合方法を適 宜選択して製造すればょ 、。例えば以下のようにして製造することができる。  [0076] The method for polymerizing the monomer is not particularly limited, and may be produced by appropriately selecting a known polymerization method. For example, it can be produced as follows.
[0077] すなわち、乾燥不活性気体雰囲気下において、上記モノマーを適当な溶媒中で触 媒の存在下に重合させることにより製造することができる。溶液中のモノマーの濃度 は 0.1 Μ〜2 Μ、好ましくは 0.5 M〜l Μの範囲に調製する。反応温度は 0 °C〜80 °C、好ましくは 30 °C〜60 °Cの範囲で選択され、反応時間 60分〜 48時間の範囲で選 択される。  That is, it can be produced by polymerizing the monomer in a suitable solvent in the presence of a catalyst in a dry inert gas atmosphere. The concentration of the monomer in the solution is adjusted to be in the range of 0.1 ~ 2 ~, preferably 0.5M ~ l ~. The reaction temperature is selected in the range of 0 ° C to 80 ° C, preferably 30 ° C to 60 ° C, and the reaction time is selected in the range of 60 minutes to 48 hours.
[0078] 上記不活性気体としては、例えば窒素、アルゴン等を挙げることができる。  [0078] Examples of the inert gas include nitrogen and argon.
[0079] 上記溶媒としては、モノマーおよび触媒の種類により種々のものを用いることができ 、例えば炭化水素 (脂肪族炭化水素、芳香族炭化水素等)、ハロゲン化炭化水素、 アルコール、窒素化合物、エーテル、ケトン、脂肪酸、エステル等を挙げることができ る。中でも、触媒および生成ポリマーをよく溶解させるテトラヒドロフラン (THF)、トルェ ン、クロ口ホルム等が好ましい。溶媒は 2種類以上を混合した混合溶媒でもよい。 [0079] Various solvents can be used as the solvent depending on the kind of the monomer and the catalyst. For example, hydrocarbons (aliphatic hydrocarbons, aromatic hydrocarbons, etc.), halogenated hydrocarbons, alcohols, nitrogen compounds, ethers. , Ketones, fatty acids, esters and the like. Of these, tetrahydrofuran (THF), toluene, chloroform, etc., which dissolve the catalyst and the produced polymer well, are preferable. The solvent may be a mixed solvent in which two or more types are mixed.
[0080] 上記触媒としては、遷移金属触媒が好ましぐ中でもロジウム触媒が特に好ましい。 [0080] As the catalyst, a rhodium catalyst is particularly preferable among transition metal catalysts.
ロジウム触媒としては、例えば [Rh(nbd)Cl]、 Rh+(nbd)[h6-C H B"(C H ) ]などを挙げる Examples of rhodium catalysts include [Rh (nbd) Cl], Rh + (nbd) [h 6 -CHB "(CH)] and the like.
2 6 5 6 5 3  2 6 5 6 5 3
ことができるが、これに限定されるものではない。本製造方法においては、主触媒に [ Rh(nbd)Cl]、共触媒に KN(SiMe )を用いることが最も好ましい。  However, the present invention is not limited to this. In this production method, it is most preferable to use [Rh (nbd) Cl] as the main catalyst and KN (SiMe) as the cocatalyst.
2 3 2  2 3 2
[0081] さらに、本発明に係るポリフエ-ルアセチレン誘導体の製造方法においては、上記 一般式 (IV)で表される構造を有するポリフエニルアセチレン誘導体 (例えば、上記式 (XIII)〜 (XVI)に示される構造を有するポリフ -ルアセチレン誘導体)を製膜する 工程を含むことが好ましい。製膜後に上記保護基を脱保護することで、従来合成が 不可能なポリマーの膜や有機溶媒に不溶なポリマーの膜を製造できるという利点が ある。 [0081] Further, in the method for producing a polyacetylene derivative according to the present invention, a polyacetylene derivative having a structure represented by the above general formula (IV) (for example, the above formula Preferably, the method includes a step of forming a film of a polyacetylene derivative having a structure represented by (XIII) to (XVI). By deprotecting the protecting group after film formation, there is an advantage that a polymer film that cannot be synthesized conventionally or a polymer film that is insoluble in an organic solvent can be produced.
[0082] 製膜の方法は特に限定されるものではなぐ公知の方法を適宜選択して用いれば よい。例えば、ポリマー溶液を用いたキャスト法等を好適に用いることができる。  [0082] The method of film formation is not particularly limited, and a known method may be appropriately selected and used. For example, a casting method using a polymer solution can be suitably used.
[0083] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定される ものではない。  [0083] Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[0084] く実施例 1.フエ-ル基上に 2つのエステル、 2つのカルボン酸またはイミドを有す るポリフエ-ルアセチレン誘導体 >  [0084] Examples 1. Polyacetylene derivatives having two esters, two carboxylic acids or imides on the phenolic group>
1.モノマー(フエニルアセチレン化合物)の合成  1. Synthesis of monomers (phenylacetylene compounds)
〔原料〕  〔material〕
モノマー合成の原料として、市販品の 4-ェチュル無水フタル酸(次式 (XVIII)、富 士写真フィルム社製、商品名 KK-1)を用いた。  Commercially available 4-ethyl phthalic anhydride (following formula (XVIII), manufactured by Fuji Photo Film Co., Ltd., trade name KK-1) was used as a raw material for monomer synthesis.
[0085] [化 18] [0085] [Chemical 18]
Figure imgf000019_0001
Figure imgf000019_0001
〔4-ェチニルフタル酸ジメチル (化合物 2)の合成〕 (Synthesis of dimethyl 4-ethynylphthalate (Compound 2))
200 mLナスフラスコに 4-ェチュル無水フタル酸(ィ匕合物 1) 4.0 g (23 mmol)、メタノ ール 186 mL (4.6 mol)を入れ、攪拌しながら H SO 2.0 mLを加え加熱し、 50 °Cで 24  In a 200 mL eggplant flask, add 4.0 g (23 mmol) of 4-ethyl phthalic anhydride (compound 1) and 186 mL (4.6 mol) of methanol, add 2.0 mL of H 2 SO 2 with stirring, and heat. 24 ° C
2 4  twenty four
時間加熱攪拌した (下記スキーム (1)参照)。反応終了後、溶媒を減圧留去し、酢酸ェ チルで抽出した。炭酸水素ナトリウム水溶液および水で洗浄し、有機層の溶媒に無 水硫酸ナトリウムを加え脱水した。無水硫酸ナトリウムをろ別し、ろ液を減圧留去し、 黄色固体の粗生成物 4.1 gを得た。得られた粗生成物をフラッシュカラムクロマトダラ フィー (固定相—シリカゲル、移動層—酢酸ェチル)により精製して化合物 2の 4-ェチ -ルフタル酸ジメチル(黄色固体)を得た (収量 3.3 g、収率 65%)。 The mixture was stirred with heating for a period of time (see the following scheme (1)). After completion of the reaction, the solvent was distilled off under reduced pressure and extracted with ethyl acetate. The organic layer was washed with an aqueous sodium hydrogen carbonate solution and water, and dehydrated by adding anhydrous sodium sulfate to the organic layer solvent. Anhydrous sodium sulfate was removed by filtration, and the filtrate was distilled off under reduced pressure to obtain 4.1 g of a crude product as a yellow solid. The resulting crude product was purified by flash column chromatography (stationary phase—silica gel, moving bed—ethyl acetate) -Dimethyl phthalate (yellow solid) was obtained (yield 3.3 g, yield 65%).
[0086] [化 19] [0086] [Chemical 19]
Figure imgf000020_0001
Figure imgf000020_0001
1 化合物 2 (4-ェチュルフタル酸ジメチル)の1 H— NMRスペクトルおよび13 C— NMR スペクトルを以下に示す。 1 1 H-NMR spectrum and 13 C-NMR spectrum of compound 2 (dimethyl 4-ethyl phthalate) are shown below.
JH NMR (DMSO-d ): 7.86 (m, 3H, Ar), 4.62 (s, 1H, sp- CH), 3.93 (s, 6H, OCH ). J H NMR (DMSO-d): 7.86 (m, 3H, Ar), 4.62 (s, 1H, sp-CH), 3.93 (s, 6H, OCH).
6 3 6 3
13CfH} NMR (DMSO-d ): 166.46 (C=0), 134.40 (Ar), 132.10 (Ar), 131.49 (Ar), 130. 13 CfH} NMR (DMSO-d): 166.46 (C = 0), 134.40 (Ar), 132.10 (Ar), 131.49 (Ar), 130.
6  6
89 (Ar), 129.24 (Ar), 125.01 (Ar), 84.21(sp- CH), 81.49 (sp— C), 52.78 (OCH ), 52.7  89 (Ar), 129.24 (Ar), 125.01 (Ar), 84.21 (sp- CH), 81.49 (sp— C), 52.78 (OCH), 52.7
3  Three
5 (OCH ).  5 (OCH).
3  Three
〔4-ェチニルフタル酸ジェチル(化合物 2)の合成〕  [Synthesis of 4-ethyl ethynyl phthalate (Compound 2)]
500 mLナスフラスコに 4-ェチュル無水フタル酸(ィ匕合物 1) 3.0 g (17 mmol)、ェタノ ール 203 mL (3.5 mol)を入れ、攪拌しながら H SO 1.1 mLを加え加熱し、 50 °Cで 24  Into a 500 mL eggplant flask, add 3.0 g (17 mmol) of 4-ethyl phthalic anhydride (Compound 1) and 203 mL (3.5 mol) of ethanol, add 1.1 mL of H 2 SO 2 with stirring, and heat. 24 ° C
2 4  twenty four
時間加熱攪拌した (下記スキーム (2)参照)。反応終了後、溶媒を減圧留去し、酢酸ェ チルで抽出した。炭酸水素ナトリウム水溶液および水で洗浄し、有機層の溶媒に無 水硫酸ナトリウムを加え脱水した。無水硫酸ナトリウムをろ別し、ろ液を減圧留去し、 黄色液体の粗生成物を得た。得られた粗生成物をフラッシュカラムクロマトグラフィー ( 固定相—シリカゲル、移動層—酢酸ェチル /へキサン 1/3 v/v)により精製して化合 物 3の 4-ェチュルフタル酸ジェチル (黄色液体)を得た (収量 2.3 g、収率 53%)。  The mixture was stirred with heating for a period of time (see the following scheme (2)). After completion of the reaction, the solvent was distilled off under reduced pressure and extracted with ethyl acetate. The organic layer was washed with an aqueous sodium hydrogen carbonate solution and water, and dehydrated by adding anhydrous sodium sulfate to the solvent of the organic layer. Anhydrous sodium sulfate was removed by filtration, and the filtrate was distilled off under reduced pressure to obtain a crude product as a yellow liquid. The resulting crude product was purified by flash column chromatography (stationary phase—silica gel, moving bed—ethyl acetate / hexane 1/3 v / v) to obtain compound 3, 4-ethyl phthalate (yellow liquid). Obtained (yield 2.3 g, 53% yield).
[0087] [化 20] [0087] [Chemical 20]
Figure imgf000020_0002
化合物 3 (4-ェチュルフタル酸ジェチル)の1 H— NMR ^ベクトルおよび13 C— NM Rスペクトルを以下に示す。
Figure imgf000020_0002
1 H—NMR ^ vector and 13 C—NM of compound 3 (jetyl 4-ethyl phthalate) The R spectrum is shown below.
1H NMR (DMSO-d ): 7.72 (m, 3H, Ar), 4.47 (s, 1H, sp-CH), 4.26 (q, 4H, OCH ), 1  1H NMR (DMSO-d): 7.72 (m, 3H, Ar), 4.47 (s, 1H, sp-CH), 4.26 (q, 4H, OCH), 1
6 2 6 2
.26 (t, 6H, CH ). .26 (t, 6H, CH).
3  Three
13CfH} NMR (DMSO-d ): 165.99 (C=0), 165.94 (C=0), 134.21 (Ar), 132.32 (Ar), 1 13 CfH} NMR (DMSO-d): 165.99 (C = 0), 165.94 (C = 0), 134.21 (Ar), 132.32 (Ar), 1
6  6
31.44 (Ar), 131.22 (Ar), 129.14 (Ar), 124.86 (Ar), 83.97 (sp-CH), 81.48 (sp— C), 61. 54 (OCH ), 61.49 (OCH ), 13.76 (CH ), 13.74 (CH ).  31.44 (Ar), 131.22 (Ar), 129.14 (Ar), 124.86 (Ar), 83.97 (sp-CH), 81.48 (sp— C), 61. 54 (OCH), 61.49 (OCH), 13.76 (CH) , 13.74 (CH).
2 2 3 3  2 2 3 3
〔4-ェチニルフタル酸ジ n-ブチル(化合物 4)の合成〕  [Synthesis of 4-n-butyl 4-ethynylphthalate (Compound 4)]
1 Lナスフラスコに 4-ェチュル無水フタル酸(ィ匕合物 1) 4.0 g (23 mmol)、 n-ブタノー ル 425 mL (4.6 mol)を入れ、攪拌しながら H SO 1.8 mLを加え加熱し、 50 °Cで 24時  In a 1 L eggplant flask, add 4.0 g (23 mmol) of 4-ethyl phthalic anhydride (compound 1) and 425 mL (4.6 mol) of n-butanol, add 1.8 mL of H 2 SO 2 with stirring, and heat. 24 hours at 50 ° C
2 4  twenty four
間加熱攪拌した (下記スキーム (3)参照)。反応終了後、溶媒を減圧留去し、酢酸ェチ ルで抽出した。炭酸水素ナトリウム水溶液および水で洗浄し、有機層の溶媒に無水 硫酸ナトリウムを加え脱水した。無水硫酸ナトリウムをろ別し、ろ液を減圧留去し、黄 色液体の粗生成物を得た。得られた粗生成物をフラッシュカラムクロマトグラフィー (固 定相—シリカゲル、移動層—酢酸ェチル /へキサン 1/9 v/v)により精製して化合物 4 の 4-ェチュルフタル酸ジ n-ブチル (黄色液体)を得た (収量 3.1 g、収率 45%)。 The mixture was stirred with heating (see the following scheme (3)). After completion of the reaction, the solvent was distilled off under reduced pressure and extracted with ethyl acetate. The organic layer was washed with an aqueous sodium hydrogen carbonate solution and water, and dehydrated by adding anhydrous sodium sulfate to the solvent of the organic layer. Anhydrous sodium sulfate was removed by filtration, and the filtrate was distilled off under reduced pressure to obtain a crude product as a yellow liquid. The resulting crude product was purified by flash column chromatography (stationary phase—silica gel, moving bed—ethyl acetate / hexane 1/9 v / v) to give compound 4 di-n-butyl 4-ethylphthalate (yellow (Liquid) was obtained (yield 3.1 g, yield 45%).
[化 21] [Chemical 21]
Figure imgf000021_0001
Figure imgf000021_0001
化合物 4 (4-ェチュルフタル酸ジ n-ブチル)の1 H—NMR ^ベクトルおよび13 C—N MRスペクトルを以下に示す。 The 1 H—NMR ^ vector and 13 C—N MR spectrum of Compound 4 (di-n-butyl 4-ethyl phthalate) are shown below.
JH NMR (DMSO-d ): 7.72 (m, 3H, Ar), 4.48 (s, 1H, sp-CH), 4.20 (vq, 4H, OCH ), J H NMR (DMSO-d): 7.72 (m, 3H, Ar), 4.48 (s, 1H, sp-CH), 4.20 (vq, 4H, OCH),
6 2 6 2
1.61 (vt, 4H, CH ) 1.34 (m, 4H, CH ) 0.88 (t, 6H, CH ). 1.61 (vt, 4H, CH) 1.34 (m, 4H, CH) 0.88 (t, 6H, CH).
2 2 3  2 2 3
13CfH} NMR (DMSO-d ): 166.01 (C=0), 165.98 (C=0), 134.23 (Ar), 132.34 (Ar), 1 13 CfH} NMR (DMSO-d): 166.01 (C = 0), 165.98 (C = 0), 134.23 (Ar), 132.34 (Ar), 1
6  6
31.40 (Ar), 131.22 (Ar), 129.15 (Ar), 124.88 (Ar), 84.01 (sp-CH), 81.45 (sp— C), 65. 22 (OCH ), 65.16 (OCH ), 29.95 (CH ), 29.92 (CH ), 18.62 (CH ), 13.45 (CH ). 〔4-ェチニルフタル酸ジ n-へキシル(化合物 5)の合成〕 31.40 (Ar), 131.22 (Ar), 129.15 (Ar), 124.88 (Ar), 84.01 (sp-CH), 81.45 (sp— C), 65. 22 (OCH), 65.16 (OCH), 29.95 (CH) , 29.92 (CH), 18.62 (CH), 13.45 (CH). [Synthesis of 4-n-hexyl 4-ethynylphthalate (Compound 5)]
200 mLナスフラスコに 4-ェチュル無水フタル酸(ィ匕合物 1) 0.93 g (5.4 mmol), n-へ キサノール 101 mL (809 mmol)を入れ、攪拌しながら H SO 0.5 mLを加え加熱し、 50  Into a 200 mL eggplant flask, add 0.93 g (5.4 mmol) of 4-ethyl phthalic anhydride (Compound 1), 101 mL (809 mmol) of n-hexanol, add 0.5 mL of H 2 SO 4 with stirring, and heat. 50
2 4  twenty four
°Cで 20時間加熱攪拌した (下記スキーム (4)参照)。反応終了後、溶媒を減圧留去し、 酢酸ェチルで抽出した。炭酸水素ナトリウム水溶液および水で洗浄し、有機層の溶 媒に無水硫酸ナトリウムを加え半日放置し脱水させた。無水硫酸ナトリウムをろ別し、 有機層の溶媒を減圧留去し、黄色液体の粗生成物を得た。得られた粗生成物をフラ ッシユカラムクロマトグラフィー (固定相一シリカゲル、移動層一酢酸ェチル /へキサン 1/1 v/v)により精製して化合物 5の 4-ェチュルフタル酸ジ n-へキシル (黄色液体)を得 た (収量 1.39 g、収率 72%)。  The mixture was heated and stirred at ° C for 20 hours (see the following scheme (4)). After completion of the reaction, the solvent was distilled off under reduced pressure and extracted with ethyl acetate. The mixture was washed with an aqueous sodium hydrogen carbonate solution and water, and anhydrous sodium sulfate was added to the solvent of the organic layer and left for half a day for dehydration. Anhydrous sodium sulfate was removed by filtration, and the solvent of the organic layer was distilled off under reduced pressure to obtain a crude product as a yellow liquid. The resulting crude product was purified by flash column chromatography (stationary phase 1 silica gel, moving bed 1 ethyl acetate / hexane 1/1 v / v) to give compound 5 di-n-hexyl 4-ethylphthalate. (Yellow liquid) was obtained (yield 1.39 g, yield 72%).
[化 22] [Chemical 22]
Figure imgf000022_0001
Figure imgf000022_0001
化合物 5 (4-ェチュルフタル酸ジ n-へキシル)の1 H—NMR ^ベクトルおよび13 C— NMRスペクトルを以下に示す。 The 1 H-NMR ^ vector and 13 C-NMR spectrum of compound 5 (di-n-hexyl 4-ethyl phthalate) are shown below.
JH NMR (DMSO-d ): 7.72 (m, 3H, Ar), 4.47 (s, 1H, sp-CH), 4.18 (t, 4H, OCH ), 1. J H NMR (DMSO-d): 7.72 (m, 3H, Ar), 4.47 (s, 1H, sp-CH), 4.18 (t, 4H, OCH), 1.
6 2 6 2
61 (m, 4H, CH ) 1.25 (m, 12H, CH ), 0.83 (t, 6H, CH ). 61 (m, 4H, CH) 1.25 (m, 12H, CH), 0.83 (t, 6H, CH).
2 2 3  2 2 3
^Ci'H} NMR (DMSO-d ): 166.59 (C=0), 166.53 (C=0), 134.81 (Ar), 132.89 (Ar), 1  ^ Ci'H} NMR (DMSO-d): 166.59 (C = 0), 166.53 (C = 0), 134.81 (Ar), 132.89 (Ar), 1
6  6
31.98 (Ar), 131.80 (Ar), 129.73 (Ar), 125.46 (Ar), 84.62 (sp-CH), 82.02 (sp— C), 66. 10 (OCH ), 66.03 (OCH ), 28.45 (CH ), 25.63 (CH ), 22.55 (CH ), 14.34 (CH ).  31.98 (Ar), 131.80 (Ar), 129.73 (Ar), 125.46 (Ar), 84.62 (sp-CH), 82.02 (sp— C), 66. 10 (OCH), 66.03 (OCH), 28.45 (CH) , 25.63 (CH), 22.55 (CH), 14.34 (CH).
2 2 2 2 2 3 2 2 2 2 2 3
〔N -ドデシル- 4-ェチュル-フタルイミド(化合物 6)の合成〕 [Synthesis of N-dodecyl-4-ethyl-phthalimide (Compound 6)]
50 mLナスフラスコに 4-ェチュル無水フタル酸(ィ匕合物 1) 0.50 g (2.9 mmol), n-ドデ シルァミン 0.53 g (2.9 mmol)を入れ、溶媒としてトルエン 30 mLを加え、 Dean- Starkトラ ップを組み 140 °Cで 12時間加熱還流した (下記スキーム (5)参照)。反応終了後、溶媒 を減圧留去し、黄色固体の粗生成物を得た。得られた粗生成物をフラッシュカラムク 口マトグラフィー (固定相—シリカゲル、移動層—酢酸ェチル /へキサン 1/3 v/v)によ り精製して化合物 6の N-ドデシル- 4-ェチュル-フタルイミド (黄色固体)を得た (収量 0. 95 g、収率 97%)。 Into a 50 mL eggplant flask, add 0.50 g (2.9 mmol) of 4-ethyl phthalic anhydride (compound 1), 0.53 g (2.9 mmol) of n-dodecylamine, add 30 mL of toluene as a solvent, and add Dean-Stark The trap was assembled and heated to reflux at 140 ° C for 12 hours (see scheme (5) below). After completion of the reaction, the solvent was distilled off under reduced pressure to obtain a crude product as a yellow solid. The obtained crude product is Purification by oral matography (stationary phase—silica gel, moving bed—ethyl acetate / hexane 1/3 v / v) gave N-dodecyl-4-ethyl-phthalimide (yellow solid) of compound 6 ( Yield 0.95 g, yield 97%).
[0090] [化 23] [0090] [Chemical 23]
Figure imgf000023_0001
化合物 6 (N-ドデシル- 4-ェチュル-フタルイミド)の1 H— NMRスペクトルおよび13 C NMRスペクトルを以下に示す。
Figure imgf000023_0001
The 1 H-NMR spectrum and 13 C NMR spectrum of compound 6 (N-dodecyl-4-ethyl-phthalimide) are shown below.
1H NMR (CDC1 ): 7.91 (s, 1H, Ar), 7.78 (s, 2H, Ar), 3.67 (vt, 2H, NCH ), 3.32 (s, 1  1H NMR (CDC1): 7.91 (s, 1H, Ar), 7.78 (s, 2H, Ar), 3.67 (vt, 2H, NCH), 3.32 (s, 1
3 2  3 2
H, sp-CH), 1.66 (m, 2H, CH ), 1.24 (m, 18H, CH ) 0.88 (t, 3H, CH ).  H, sp-CH), 1.66 (m, 2H, CH), 1.24 (m, 18H, CH) 0.88 (t, 3H, CH).
2 2 3  2 2 3
13CfH} NMR (CDC1 ): 167.64 (C=0), 167.53 (C=0), 137.36 (Ar), 132.30 (Ar), 131.5 13 CfH} NMR (CDC1): 167.64 (C = 0), 167.53 (C = 0), 137.36 (Ar), 132.30 (Ar), 131.5
3  Three
7 (Ar), 128.08 (Ar), 126.56 (Ar), 123.06 (Ar), 81.84 (sp-CH), 81.42 (sp— C), 38.28 ( NCH ), 31.92 (CH ), 29.63 (CH ), 29.57 (CH ), 29.50 (CH ), 29.36 (CH ), 29.18 (C 7 (Ar), 128.08 (Ar), 126.56 (Ar), 123.06 (Ar), 81.84 (sp-CH), 81.42 (sp— C), 38.28 (NCH), 31.92 (CH), 29.63 (CH), 29.57 (CH), 29.50 (CH), 29.36 (CH), 29.18 (C
2 2 2 2 2 22 2 2 2 2 2
H ), 28.57 (CH ), 26.87 (CH ), 22.71 (CH ), 14.15 (CH ). H), 28.57 (CH), 26.87 (CH), 22.71 (CH), 14.15 (CH).
2 2 2 2 3  2 2 2 2 3
2.重合  2.Polymerization
上記各モノマー(フエニルアセチレンィ匕合物、化合物 1〜5)をそれぞれ重合し、以 下に示すポリフエ-ルアセチレン誘導体 (poly(l)〜(5))を得た。 Each of the above monomers (phenylacetylene compound, compounds 1 to 5) was polymerized to obtain the following polyacetylene derivatives (pol y (l) to ( 5 )).
[0091] [化 24] [0091] [Chemical 24]
Figure imgf000024_0001
Figure imgf000024_0001
Figure imgf000024_0002
表 1に、各モノマー(フエニルアセチレン化合物、化合物 1〜5)の重合により得られ た各ポリマー(poly(l)〜poly(5))の収率、重量平均分子量(Mw)および重量平均分 子量と数平均分子量との比(MwZMn)を示した。ポリマーの分子量は GPC (PSt換 算)により測定した。
Figure imgf000024_0002
Table 1 shows the yield, weight average molecular weight (Mw), and weight average content of each polymer (poly (l) to poly (5)) obtained by polymerization of each monomer (phenylacetylene compound, compounds 1 to 5). The ratio of molecular weight to number average molecular weight (MwZMn) is shown. The molecular weight of the polymer was measured by GPC (PSt conversion).
[表 1] [table 1]
Figure imgf000024_0003
重合反応の典型例としてポリ(4-ェチュルフタル酸ジメチル)(poly(l))の重合方法 について説明する。
Figure imgf000024_0003
As a typical example of the polymerization reaction, a polymerization method of poly (4-ethyl phthalate) (poly (l)) will be described.
乾燥窒素雰囲気下で、蒸留した THF 1 mLに 4-ェチュルフタル酸ジメチル 218.14 mg (1 mmol)を溶解させた混合物を、蒸留した THF 1 mLに [Rh+(nbd)( r? 6- C H ) B"Ph Diethyl 4-ethyl phthalate 218.14 to 1 mL of distilled THF under dry nitrogen atmosphere mg (1 mmol) dissolved in distilled THF 1 mL [Rh + (nbd) (r? 6 -CH) B "Ph
6 5 3 6 5 3
]触媒 2.0 mg(2.5 /z mol)を溶解させた混合物に添加し、恒温槽にて 1時間 30°Cに保つ た。生成ポリマーは多量のメタノールに再沈澱することにより精製した。同様の手法に より、ポリ(4-ェチュルフタル酸ジェチル)(poly(2))、ポリ(4-ェチュルフタル酸ジ n-ブ チル)(poly(3))およびポリ(4-ェチュルフタル酸ジ n-へキシル)(poly(4))を得ることが 可能である。 ] 2.0 mg (2.5 / z mol) of the catalyst was added to the dissolved mixture, and kept at 30 ° C for 1 hour in a thermostatic bath. The resulting polymer was purified by reprecipitation in a large amount of methanol. In a similar manner, poly (4-ethyl phthalate) (poly (2)), poly (4-ethyl phthalate) (poly (3)) and poly (4-ethyl phthalate) (Xyl) (poly (4)) can be obtained.
[0094] なお、ポリ(N-ドデシル- 4-ェチュル-フタルイミド) (poly(5))につ!/、ては重合時間を 15分間とし、クロ口ホルム可溶部 (可溶部/不溶部 9/1)を多量のアセトンに再沈澱する ことにより精製した。  [0094] For poly (N-dodecyl-4-ethyl-phthalimide) (poly (5))! /, The polymerization time was 15 minutes, and the black mouth form soluble part (soluble part / insoluble part) 9/1) was purified by reprecipitation in a large amount of acetone.
[0095] ポリ(4-ェチュルフタル酸ジメチル)(poly(l))は、 IR、 Η— NMRおよび13 C— NMR により同定した。結果を以下に示す。 [0095] Poly (4-Echurufutaru dimethyl) (poly (l)) was identified by IR, .eta. NMR and 13 C-NMR. The results are shown below.
IR (KBr, cm"1): 2940, 1730, 1436, 1295, 1130, 1069, 1069. IR (KBr, cm " 1 ): 2940, 1730, 1436, 1295, 1130, 1069, 1069.
JH NMR (CDCL ): 7.32, 7.14, 6.80, 5.70, 3.75, 3.73.  JH NMR (CDCL): 7.32, 7.14, 6.80, 5.70, 3.75, 3.73.
3  Three
^Ci'H} NMR (CDCL ): 167.64, 166.84, 144.26, 138.88, 132.49, 132.14, 129.90, 12  ^ Ci'H} NMR (CDCL): 167.64, 166.84, 144.26, 138.88, 132.49, 132.14, 129.90, 12
3  Three
9.20, 127.37, 52.57, 52.47.  9.20, 127.37, 52.57, 52.47.
ポリ(4-ェチュルフタル酸ジェチル)(poly(2))は、
Figure imgf000025_0001
Poly (4-ethyl phthalate) (poly (2))
Figure imgf000025_0001
より同定した。結果を以下に示す。  More identified. The results are shown below.
JH NMR (CDCL ): 7.33, 7.19, 6.73, 5.68, 4.17, 1.22, 1.15. J H NMR (CDCL): 7.33, 7.19, 6.73, 5.68, 4.17, 1.22, 1.15.
3  Three
^Ci'H} NMR (CDCL ): 167.27, 166.38, 144.32, 138.96, 132.81, 132.01, 130.02, 12  ^ Ci'H} NMR (CDCL): 167.27, 166.38, 144.32, 138.96, 132.81, 132.01, 130.02, 12
3  Three
9.09, 127.61, 61.48, 61.34, 14.03, 13.93.  9.09, 127.61, 61.48, 61.34, 14.03, 13.93.
ポリ(4-ェチュルフタル酸ジ n-ブチル)(poly(3))は、 H— NMRおよび13 C— NMR により同定した。結果を以下に示す。 Poly (4-ethyl phthalate di n-butyl) (poly (3)) was identified by 1 H-NMR and 13 C-NMR. The results are shown below.
1H NMR (CDCL ): 7.33, 7.19, 6.76, 5.69, 4.10, 1.58, 1.48, 1.33, 1.23, 0.88, 0.79.  1H NMR (CDCL): 7.33, 7.19, 6.76, 5.69, 4.10, 1.58, 1.48, 1.33, 1.23, 0.88, 0.79.
3  Three
13CfH} NMR (CDCL ): 167.36, 166.29, 144.48, 144.42, 139.05, 132.97, 132.00, 12 13 CfH} NMR (CDCL): 167.36, 166.29, 144.48, 144.42, 139.05, 132.97, 132.00, 12
3  Three
9.86, 129.18, 127.89, 65.29, 65.31, 30.51, 30.32, 19.08, 18.98, 13.70, 13.62.  9.86, 129.18, 127.89, 65.29, 65.31, 30.51, 30.32, 19.08, 18.98, 13.70, 13.62.
ポリ(4-ェチュルフタル酸ジ n-へキシル) (poly(4))は、 H— NMRおよび13 C— NM Rにより同定した。結果を以下に示す。 Poly (4-n-hexylphthalate) (poly (4)) was identified by 1 H-NMR and 13 C-NMR. The results are shown below.
JH NMR (CDCL ): 7.36, 7.20, 6.81, 5.70, 4.13, 1.63, 1.53, 1.29, 1.21, 0.87. C{ H} NMR (CDCL ): 167.40, 166.21, 139.03, 132.99, 132.05, 129.73, 129.20, 12 J H NMR (CDCL): 7.36, 7.20, 6.81, 5.70, 4.13, 1.63, 1.53, 1.29, 1.21, 0.87. C {H} NMR (CDCL): 167.40, 166.21, 139.03, 132.99, 132.05, 129.73, 129.20, 12
3 Three
7.84, 65.58, 65.40, 31.51, 31.46, 28.49, 28.31, 25.54, 25.48, 22.56, 14.00.  7.84, 65.58, 65.40, 31.51, 31.46, 28.49, 28.31, 25.54, 25.48, 22.56, 14.00.
ポリ(N-ドデシル- 4-ェチュル-フタルイミド) (poly(5))は、 1H— NMRぉょび13C— N MRにより同定した。結果を以下に示す。 Poly (N-dodecyl-4-ethyl-phthalimide) (poly (5)) was identified by 1 H-NMR and 13 C-N MR. The results are shown below.
1H NMR (CDC1 ): 7.29, 7.06, 6.84, 5.76, 3.52, 1.58, 1.26, 0.88.  1H NMR (CDC1): 7.29, 7.06, 6.84, 5.76, 3.52, 1.58, 1.26, 0.88.
3  Three
13CfH} NMR (CDC1 ): 167.01, 166.90, 139.12, 132.85, 132.61, 132.30, 131.44, 122 13 CfH} NMR (CDC1): 167.01, 166.90, 139.12, 132.85, 132.61, 132.30, 131.44, 122
3  Three
.85, 120.91, 77.31, 31.95, 30.93, 29.75, 29.71, 29.40, 29.31, 28.53, 27.07, 22.71, 1 4.13.  .85, 120.91, 77.31, 31.95, 30.93, 29.75, 29.71, 29.40, 29.31, 28.53, 27.07, 22.71, 1 4.13.
3.ポリ(4-ェチニルフタル酸)の合成  3. Synthesis of poly (4-ethynylphthalic acid)
重量平均分子量 66万のポリ (4-ェチュルフタル酸ジメチル )500 mgを THF30 mLに 溶解させ、 ION NaOHaqを 30 mLカ卩ぇ 20時間室温攪拌した (下記スキーム (8)参照)。上 澄みを除去し、赤褐色の析出物を少量の蒸留水で一度洗浄したのち、蒸留水 25 mL に溶解させた。この赤色均一溶液を、 IN HClaq 50 mLに滴下し再沈殿させ、ろ過し て得られた固体を 24時間減圧乾燥し、ポリ (4-ェチュルフタル酸) (poly (6)) (赤褐色固 体)を得た (収量 481 mg、収率 96%)。ポリ (4-ェチュルフタル酸)(poly (6))は、 IRおよ び1 H— NMRにより同定した。結果を以下に示す。 500 mg of poly (4-ethyl phthalate) having a weight average molecular weight of 660,000 was dissolved in 30 mL of THF, and ION NaOHaq was stirred for 30 hours at room temperature for 20 hours (see the following scheme (8)). The supernatant was removed, and the reddish brown precipitate was washed once with a small amount of distilled water and then dissolved in 25 mL of distilled water. This red homogeneous solution was added dropwise to 50 mL of IN HClaq to cause reprecipitation, and the solid obtained by filtration was dried under reduced pressure for 24 hours to obtain poly (4-ethylphthalic acid) (poly (6)) (reddish brown solid). Obtained (yield 481 mg, yield 96%). Poly (4-etulphthalic acid) (poly (6)) was identified by IR and 1 H-NMR. The results are shown below.
IR (KBr, cm"1): 3500, 1720, 1560, 1540, 1295, 1143. IR (KBr, cm " 1 ): 3500, 1720, 1560, 1540, 1295, 1143.
JH NMR (CD OD): 7.42, 7.03, 6.80, 5.90, 3.74. JH NMR (CD OD): 7.42, 7.03, 6.80, 5.90, 3.74.
3  Three
[化 25] [Chemical 25]
Figure imgf000026_0001
Figure imgf000026_0001
po l y (6)  po l y (6)
<実施例 2.水酸基を有するポリフエ-ルアセチレン誘導体 > <Example 2. Polyacetylene derivative having a hydroxyl group>
1.モノマーの合成  1.Synthesis of monomers
モノマ ~~は、 Yashimaらの論文 (Yashima, E .; Huang, S .; Matsusita, T .; Okamoto, Y . Macromolecules 1995, 28, 4184.)にしたがって合成した。上記論文には、パラ体モ ノマーの合成方法のみが記されている力 S、メタ体モノマーも同様の方法で合成した。 Monoma ~~ is a paper by Yashima et al. (Yashima, E.; Huang, S.; Matsusita, T.; Okamoto, Y Macromolecules 1995, 28, 4184.) In the above paper, only the method for synthesizing para-monomers is described.
[0097] 下記スキーム (9)にパラ体の合成手順および収量を示した。  [0097] The following scheme (9) shows the synthesis procedure and yield of the para isomer.
[0098] [化 26] [0098] [Chemical 26]
-OH /PdCI2(Ph3P)2/Ph3P/Cul-OH / PdCI 2 (Ph 3 P) 2 / Ph 3 P / Cul
Et3N, 12h Et 3 N, 12h
-O— 一 ί-Bu colorless liquid
Figure imgf000027_0001
reflux, 8h
-O— 一 ί-Bu colorless liquid
Figure imgf000027_0001
reflux, 8h
yield 94% yield 59%  yield 94% yield 59%
スキーム (9) また、下記スキーム (10)にメタ体の合成手順および収量を示した  Scheme (9) In addition, scheme (10) below shows the synthesis procedure and yield of the meta isomer.
[0099] [化 27]  [0099] [Chemical 27]
-OH /PdCI2(Ph3P)2/Ph3P/Cul-OH / PdCI 2 (Ph 3 P) 2 / Ph 3 P / Cul
CISiMe2i-Bu CISiMe 2 i-Bu
Imidazole Et3N, 12hImidazole Et 3 N, 12h
Figure imgf000027_0002
Figure imgf000027_0002
yield 94% colorless liquid
Figure imgf000027_0003
yield 94% colorless liquid
Figure imgf000027_0003
yield 88% yield 56% スキーム (10)  yield 88% yield 56% scheme (10)
2.重合 2.Polymerization
重合は乾燥窒素雰囲気下でロジウム (Rh)触媒を用いて行った。ロジウム触媒として は、 [Rh(nbd)Cl]と Rh+(nbd)[h6- C H B— (C H ) ]との 2種類を用いた。 [Rh(nbd)Cl]を用 The polymerization was performed using a rhodium (Rh) catalyst under a dry nitrogen atmosphere. Two types of rhodium catalysts were used: [Rh (nbd) Cl] and Rh + (nbd) [h 6 -CHB- (CH)]. Use [Rh (nbd) Cl]
2 6 5 6 5 3 2 いた場合は、共触媒として Et Nまたは KN(SiMe )をカ卩えて次のような条件下で行った  2 6 5 6 5 3 2 was performed under the following conditions with Et N or KN (SiMe) as a cocatalyst.
3 3 2  3 3 2
。蒸留したトルエン中で、 30°C、 24時間、 [M] = 0.5 M、 [Rh] = 5.0 mMまたは 10 mM o  . In distilled toluene, 30 ° C, 24 hours, [M] = 0.5 M, [Rh] = 5.0 mM or 10 mM o
、 [Cocat]/[Cat] = 10という条件である。すなわち、触媒と共触媒のトルエン溶液に、 モノマーのトルエン溶液をカ卩えて行う重合方法である。 [0100] また、主触媒として Rh+(nbd)[h6-C H B"(C H ) ]を用いた場合は、共触媒は用いずに , [Cocat] / [Cat] = 10. That is, a polymerization method in which a toluene solution of a monomer is mixed with a toluene solution of a catalyst and a cocatalyst. [0100] When Rh + (nbd) [h 6 -CHB "(CH)] is used as the main catalyst, the cocatalyst is not used.
6 5 6 5 3  6 5 6 5 3
ロジウム触媒単独で、次のような条件下で行った。蒸留したトルエン中で、 30°C、 24時 間、 [M] = 0.5 M、 [Cat] = 5.0 mMまたは 10 mMという条件である。  The rhodium catalyst was used alone under the following conditions. In distilled toluene, 30 ° C, 24 hours, [M] = 0.5 M, [Cat] = 5.0 mM or 10 mM.
0  0
[0101] 重合溶媒は蒸留により精製したものを使用した。ポリマーは多量のメタノールに滴 下し、メタノール不溶部をガラスフィルターで回収した。  [0101] The polymerization solvent used was purified by distillation. The polymer was dropped into a large amount of methanol, and the methanol-insoluble part was recovered with a glass filter.
[0102] パラ体の結果を表 2に示した。 run5の主触媒 [Rh(nbd)Cl]と共触媒 KN(SiMe )との  [0102] The results of the para-body are shown in Table 2. The main catalyst of run5 [Rh (nbd) Cl] and the cocatalyst KN (SiMe)
2 3 2 組み合わせにおいて、分子量が runl〜4の 2倍以上に増加した。  In the 2 3 2 combination, the molecular weight increased more than twice that of runl-4.
[0103] [表 2] polymer' [0103] [Table 2] polymer '
run com plex add itive0 yield Mw/1 04 e Mw 1 M, run com plex add itive 0 yield M w / 1 0 4 e M w 1 M,
(%)  (%)
1 a [Rh(nbd)CI]2 Et3N 65 88 8.01 a [Rh (nbd) CI] 2 Et 3 N 65 88 8.0
2b [Rh(nbd)CI]2 Et3N 73 80 8.02 b [Rh (nbd) CI] 2 Et 3 N 73 80 8.0
3a Rh+(nbd )[ ^6-C6H6B-(C6H5)3] - 53 48 6.23 a Rh + (nbd) [^ 6 -C 6 H 6 B- (C 6 H 5 ) 3 ]-53 48 6.2
4b Rh+(nbd )[ 776-C6H5B— (C6H5)3] - 86 28 4.54 b Rh + (nbd) [77 6 -C 6 H 5 B— (C 6 H 5 ) 3 ]-86 28 4.5
5b [Rh(nbd)CI]2 KN(Si Me3)2 61 21 0 10.0 5 b [Rh (nbd) CI] 2 KN (Si Me 3 ) 2 61 21 0 10.0
a) In toluene, at 30, for 24 h ; [M]0 = 0.5 , [Rh] = 5.0 m M , a) In toluene, at 30, for 24 h; [M] 0 = 0.5, [Rh] = 5.0 m M,
b) In toluene, at 30, for 24 h ; [M]0 = 0.5 M, [Rh] = 10 mM. c) [Et3N]/[Rh] = 10 d) Toluene-soluble and methano卜 insoluble product, e) Measured by GPC. パラ体は1 H— NMRおよび IRにより同定した。結果を以下に示す。 b) In toluene, at 30, for 24 h; [M] 0 = 0.5 M, [Rh] = 10 mM. c) [Et 3 N] / [Rh] = 10 d) Toluene-soluble and methano 卜 insoluble product e) Measured by GPC. The para-body was identified by 1 H-NMR and IR. The results are shown below.
JH NMR (CDC1 ): 7.92, 6.83, 6.60, 0.95, 0.20.  JH NMR (CDC1): 7.92, 6.83, 6.60, 0.95, 0.20.
3  Three
IR (KBr, cm"1): 2957, 1604, 1505, 1265, 1165, 912, 841, 783, 683. IR (KBr, cm " 1 ): 2957, 1604, 1505, 1265, 1165, 912, 841, 783, 683.
メタ体の結果を表 3に示した。上記パラ体の結果と同様に、 run5の主触媒 [Rh(nbd) C1]と共触媒 KN(SiMe )との組み合わせにおいて、分子量が非常に増加した。  Table 3 shows the results of the meta form. Similar to the result of the para-body, the molecular weight was greatly increased in the combination of the main catalyst [Rh (nbd) C1] of run5 and the cocatalyst KN (SiMe).
2 3 2  2 3 2
[表 3] polymerd run complex additive0 yield Mw/104 e Mw 1 Mn e [Table 3] polymer d run complex additive 0 yield M w / 10 4 e M w 1 M n e
(%)  (%)
1a [Rh(nbd)CI]2 Et3N 45 78 2.21 a [Rh (nbd) CI] 2 Et 3 N 45 78 2.2
2b [ h(nbd)CI]2 Et3N 60 130 4.52 b [h (nbd) CI] 2 Et 3 N 60 130 4.5
3a Rh+(nbd)[?76-C6H5B-(C6H5)3] - 55 52 6.03 a Rh + (nbd) [? 7 6 -C 6 H 5 B- (C 6 H 5 ) 3]-55 52 6.0
4b Rh+(nbd)[776-C6H5B-(C6H5)3] - 91 95 4.24 b Rh + (nbd) [77 6 -C 6 H 5 B- (C 6 H 5 ) 3 ]-91 95 4.2
5b [Rh(nbd)CI]2 KN(SiMe3)2 69 570 8.0 5 b [Rh (nbd) CI] 2 KN (SiMe 3 ) 2 69 570 8.0
a) In toluene, at 30, for 24 h; [M]0 = 0.5 M, [Rh] = 5.0 mM. a) In toluene, at 30, for 24 h; [M] 0 = 0.5 M, [Rh] = 5.0 mM.
b) In toluene, at 30, for 24 h; [M]0 = 0.5 , [Rh] = 10 mM. =) [Et3N]/[Rh] = 10 d) Toluene-soluble and methano卜 insoluble product, e) Measured by GPC. メタ体は1 H— NMRおよび IRにより同定した。結果を以下に示す。 b) In toluene, at 30, for 24 h; [M] 0 = 0.5, [Rh] = 10 mM. =) [Et 3 N] / [Rh] = 10 d) Toluene-soluble and methano 卜 insoluble product, e) Measured by GPC. The meta form was identified by 1 H-NMR and IR. The results are shown below.
'Η NMR (CDC1 ): 6.70, 6.37, 6.25, 5.64, 0.82,—0.06.  'Η NMR (CDC1): 6.70, 6.37, 6.25, 5.64, 0.82, —0.06.
3  Three
IR (KBr, cm"1): 2957, 1595, 1570, 1494, 1482, 1258, 1148, 968, 783, 689. IR (KBr, cm " 1 ): 2957, 1595, 1570, 1494, 1482, 1258, 1148, 968, 783, 689.
3.製膜  3.Film formation
ポリマーのトルエン溶液をシャーレ上にキャストすることによって自立膜を調製した。 得られたメタ体ポリマー膜 (表 3の run2の条件で合成したポリマーを製膜したもの)は 透明な均一な膜であった。  A free-standing membrane was prepared by casting a toluene solution of the polymer on a petri dish. The obtained meta polymer film (a polymer synthesized under the conditions of run 2 in Table 3) was a transparent and uniform film.
[0105] 当該膜の気体透過性を測定した。結果を表 4に示した。いずれの気体についても、 ジフエニルアセチレン膜の気体透過性よりも低い結果となった。これは、フエニル基が 1つ少なくなつたことにより、ポリマー膜がかなり密になったためであると考えられる。  [0105] The gas permeability of the membrane was measured. The results are shown in Table 4. For all gases, the gas permeability of the diphenylacetylene membrane was lower. This is thought to be because the polymer film became quite dense due to one fewer phenyl group.
[0106] [表 4]  [0106] [Table 4]
Gas permeability coefTicients (P) of polymers Gas permeability coefTicients (P) of polymers
P (barrer )  P (barrer)
He H2 02 N2 C02 CH4 He H 2 0 2 N 2 C0 2 CH 4
Polymer0 48 64 17 7.6 58 12 2.2 Polymer 0 48 64 17 7.6 58 12 2.2
a) P values measured at 25°C .  a) P values measured at 25 ° C.
b) 1 barrer = 1 x 10"10 cm3 (STP) cm cm"2 s"1 cmHg-1. b) 1 barrer = 1 x 10 " 10 cm 3 (STP) cm cm" 2 s " 1 cmHg -1 .
c) Methano卜 conditioned. 4.ポリマー膜の脱保護 (脱シリル化) c) Methano 卜 conditioned. 4. Deprotection of polymer membrane (desilylation)
ポリマー膜をトリフルォロ酢酸と水あるいは有機溶媒との混合溶液に 24時間浸漬す ることにより、脱シリル化反応を行った。  The desilylation reaction was performed by immersing the polymer film in a mixed solution of trifluoroacetic acid and water or an organic solvent for 24 hours.
[0107] く実施例 3.アミノ基を有するポリフエ-ルアセチレン誘導体 > [0107] Example 3. Polyacetylene Derivative Having Amino Group>
1.モノマーの合成  1.Synthesis of monomers
モノマーは、 3—ェチュルァ-リン (メタ体)または 4 -ェチュルァ-リン (パラ体)と te rt-butyl pyrocarbonateとをテトラヒドロフラン(THF)中で還流することにより合成した。  Monomers were synthesized by refluxing 3-ethulurin (meta) or 4-etulurin (para) and tert-butyl pyrocarbonate in tetrahydrofuran (THF).
[0108] 下記スキーム (11)にモノマー合成のスキームおよび収量を示した。 [0108] The scheme and yield of monomer synthesis are shown in the following scheme (11).
[0109] [化 28] [0109] [Chemical 28]
Figure imgf000030_0001
Figure imgf000030_0001
1a: mefa (yield = 89%)  1a: mefa (yield = 89%)
スチーム (11 ) 1b: para (yield = 82%)  Steam (11) 1b: para (yield = 82%)
また、各モノマーは1 H— NMRおよび IRにより同定した。メタ体の1 H— NMRおよび IRの結果を以下に示す。 Each monomer was identified by 1 H-NMR and IR. The results of 1 H-NMR and IR of the meta form are shown below.
JH NMR (CDC1 ): 7.52, 7.35, 7.23, 7.16, 6.45, 3.04, 1.53. J H NMR (CDC1): 7.52, 7.35, 7.23, 7.16, 6.45, 3.04, 1.53.
3  Three
IR (KBr, cm"1): 3340, 3310, 2952, 1698, 1605, 1530, 1479, 1454, 1367, 1242, 1154, 888, 870, 787, 685, 658. IR (KBr, cm '' 1 ): 3340, 3310, 2952, 1698, 1605, 1530, 1479, 1454, 1367, 1242, 1154, 888, 870, 787, 685, 658.
パラ体の1 H— NMRおよび IRの結果を以下に示す。 The results of 1 H-NMR and IR of the para form are shown below.
JH NMR (CDC1 ): 7.41, 7.32, 6.53, 3.02, 1.54.  JH NMR (CDC1): 7.41, 7.32, 6.53, 3.02, 1.54.
3  Three
IR (KBr, cm"1): 3390, 3295, 2957, 1705, 1609, 1584, 1559, 1512, 1408, 1316, 1231, 1156, 1056, 902, 837, 774, 761. IR (KBr, cm '' 1 ): 3390, 3295, 2957, 1705, 1609, 1584, 1559, 1512, 1408, 1316, 1231, 1156, 1056, 902, 837, 774, 761.
2.重合 重合は、三方活栓付シュレンク管内においてアルゴン雰囲気下でロジウム (Rh)触 媒を用いて行った。モノマー 1.0 mmolを含む THF溶液 1.0 mL、 [Rh(nbd)Cl] 20.0 μ 2.Polymerization The polymerization was carried out using a rhodium (Rh) catalyst in a Schlenk tube with a three-way stopcock under an argon atmosphere. 1.0 mL of THF solution containing 1.0 mmol of monomer, [Rh (nbd) Cl] 20.0 μ
2 molを含む THF溶液 1.0 mLおよび KN(SiMe ) (15%溶液、 10.0 mol)を含むトルェ  2 mL of THF solution 1.0 mL and KN (SiMe) (15% solution, 10.0 mol)
3 2  3 2
ン溶液 27 μ Lを混合し、攪拌しながら 30°Cで 24時間反応させた。  27 μL of the solution was mixed and allowed to react at 30 ° C. for 24 hours with stirring.
[0110] 主触媒に [Rh(nbd)Cl]、共触媒に Et Nを用いる場合は、 Et Nを 100.0 μ molの濃度 [0110] When [Rh (nbd) Cl] is used as the main catalyst and Et N is used as the cocatalyst, Et N is added at a concentration of 100.0 μmol.
2 3 3  2 3 3
で用いる以外は上記と同様の方法で重合した。また、主触媒として [Rh(nbd)BPh ] (20  Polymerization was carried out in the same manner as described above except for use in 1. In addition, [Rh (nbd) BPh] (20
4 Four
.0 mol)を用いた場合は、共触媒は用いずにロジウム触媒単独とした。 When 0.0 mol) was used, the rhodium catalyst was used alone without using a cocatalyst.
[0111] ポリマーは多量のへキサンに滴下し、へキサン不溶部をガラスフィルターで回収し た後、へキサンで洗浄し、真空下で乾燥させた。 [0111] The polymer was added dropwise to a large amount of hexane, and the hexane-insoluble portion was collected with a glass filter, washed with hexane, and dried under vacuum.
[0112] メタ体の結果を表 5に示した。また、パラ体の結果を表 6に示した。いずれのロジウム 触媒を用いた場合にも高分子量のポリマーが高収量 (80%〜95%)で得られた。中 でも表 5の run5の主触媒 [Rh(nbd)Cl]と共触媒 KN(SiMe )との組み合わせにおいて、 [0112] Table 5 shows the results of the meta form. Table 6 shows the results of the para body. A high molecular weight polymer was obtained in a high yield (80% to 95%) when any rhodium catalyst was used. Among them, in the combination of the main catalyst [Rh (nbd) Cl] of run5 in Table 5 and the cocatalyst KN (SiMe),
2 3 2  2 3 2
非常に高分子量 (310,000)のポリマーが得られた。メタ体のポリマーおよびパラ体の ポリマーともに黄色であり、クロ口ホルム、 THF、アセトン、メタノールなどの有機溶媒 に溶けやすぐへキサンおよびトルエンに不溶であった。  A very high molecular weight (310,000) polymer was obtained. Both the meta polymer and para polymer were yellow, soluble in organic solvents such as black mouth form, THF, acetone, and methanol, and immediately insoluble in hexane and toluene.
[0113] [表 5] [0113] [Table 5]
Polymerization 01 Monomer ( meta V Polymerization 01 Monomer (meta V
Polymer  Polymer
Run Solvent Catalyst Co-Catalyst Yield  Run Solvent Catalyst Co-Catalyst Yield
M MD MM D
(%)  (%)
1 Toluene^ [Rh(nbd)Cl]2 Et3N 88 131000 1 .81 Toluene ^ [Rh (nbd) Cl] 2 Et 3 N 88 131000 1 .8
2 [Rh(nbd)Cl], N(SiMe3)2 e 91 253000 1 .92 [Rh (nbd) Cl], N (SiMe 3 ) 2 e 91 253000 1.9
3 Rh(nbd)BPh4 - 85 28000 2.4 3 Rh (nbd) BPh 4 - 85 28000 2.4
4 THF [Rh(nbd)Cl]2 Et3N, 83 131000 1 .84 THF [Rh (nbd) Cl] 2 Et 3 N, 83 131000 1 .8
5 [Rh(nbd)Cl]2 KN(SiMe3)2 e 89 310000 1 .75 [Rh (nbd) Cl] 2 KN (SiMe 3 ) 2 e 89 310000 1 .7
6 Rh(nbd)BPh4 - 82 96000 2.2 a 30 °C, 4 h; [M]0 = 0.50 M, [Rh] 二 2.0 mM. 6 Rh (nbd) BPh 4 - 82 96000 2.2 a 30 ° C, 4 h; [M] 0 = 0.50 M, [Rh] two 2.0 mM.
b Hexane- insoluble product. c Measured by GPC . b Hexane- insoluble product. c Measured by GPC.
d Insoluble polymers were obtained in toluene but dissolved in THF. e [N]/[Rh] 1  d Insoluble polymers were obtained in toluene but dissolved in THF. e [N] / [Rh] 1
f [N]/[Rh] - 10  f [N] / [Rh]-10
[0114] [表 6]
Figure imgf000032_0001
[0114] [Table 6]
Figure imgf000032_0001
各ポリマーは1 H— NMRおよび IRにより同定した。メタ体の1 H— NMRおよび IRの 結果を以下に示す。 Each polymer was identified by 1 H-NMR and IR. The results of 1 H-NMR and IR of the meta form are shown below.
JH NMR (CDC1 ): 7.26, 6.70, 6.37, 5.71, 1.43. J H NMR (CDC1): 7.26, 6.70, 6.37, 5.71, 1.43.
3  Three
IR (KBr, cm"1): 3324, 2952, 1685, 1635, 1559, 1507, 1457, 1362, 1234, 1154, 1056, 856, 785, 697. IR (KBr, cm '' 1 ): 3324, 2952, 1685, 1635, 1559, 1507, 1457, 1362, 1234, 1154, 1056, 856, 785, 697.
パラ体の1 H— NMRおよび IRの結果を以下に示す。 The results of 1 H-NMR and IR of the para form are shown below.
JH NMR (CDC1 ): 6.83, 6.57, 5.72, 1.48.  JH NMR (CDC1): 6.83, 6.57, 5.72, 1.48.
3  Three
IR (KBr, cm"1): 3370, 2980, 1685, 1559, 1540, 1457, 1368, 1313, 1231, 1160, 1052, 836, 768. IR (KBr, cm '' 1 ): 3370, 2980, 1685, 1559, 1540, 1457, 1368, 1313, 1231, 1160, 1052, 836, 768.
3.製膜  3.Film formation
表 5の run5の条件で合成したポリマーの THF溶液をシャーレ上にキャストすること によって自立膜を調製した。  A free-standing membrane was prepared by casting a THF solution of the polymer synthesized under the conditions of run 5 in Table 5 onto a petri dish.
[0115] 4.ポリマー膜の脱保護 [0115] 4. Deprotection of polymer membrane
ポリマー膜をトリフルォロ酢酸とへキサンなどの有機溶媒との混合溶液に 24時間浸 漬することにより、脱保護を行った。  Deprotection was performed by immersing the polymer membrane in a mixed solution of trifluoroacetic acid and an organic solvent such as hexane for 24 hours.
[0116] なお、発明を実施するための最良の形態の項においてなした具体的な実施態様ま たは実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのよう な具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に 記載する請求の範囲内で、いろいろと変更して実施することができるものである。 産業上の利用の可能性 [0117] 本発明に係るポリフエニルアセチレン誘導体は、その繰り返し単位中に水酸基、ァ ミノ基、ジエステル、ジカルボン酸またはイミドを有しているため非常に極性の高い高 分子である。したがって、当該ポリフエ-ルアセチレン誘導体を用いて膜を形成すれ ば、従来にない機能を有する高性能分離膜を実現することができ、利用可能な範囲 が広いという効果を奏する。 [0116] It should be noted that the specific embodiments or examples made in the section of the best mode for carrying out the invention are merely to clarify the technical contents of the present invention. The present invention is not limited to specific examples and should not be construed in a narrow sense, and can be implemented with various modifications within the scope of the claims described below. Industrial applicability [0117] The polyacetylacetylene derivative according to the present invention has a hydroxyl group, an amino group, a diester, a dicarboxylic acid, or an imide in its repeating unit, and is therefore a very high molecular weight molecule. Therefore, if a membrane is formed using the polyacetylene derivative, a high-performance separation membrane having an unprecedented function can be realized, and the usable range is wide.
[0118] 本発明に係るポリフエニルアセチレン誘導体は、酸素富化膜などのガス分離膜や 水精製膜などの液体分離膜として利用可能である。酸素富化膜は酸素富化機能を 持ったエアコン等に応用することができる。また、電池への応用も期待できる。  The polyacetylacetylene derivative according to the present invention can be used as a gas separation membrane such as an oxygen-enriched membrane or a liquid separation membrane such as a water purification membrane. The oxygen-enriched film can be applied to air conditioners with an oxygen-enriching function. Application to batteries is also expected.

Claims

請求の範囲 The scope of the claims
次の一般式 (I)、(II)または (in)  The following general formula (I), (II) or (in)
一 … ( I I ) One… (I I)
Figure imgf000034_0001
Figure imgf000034_0001
(式中、 R1は水素またはアルキル基であり、 R2はアルキル基であり、 R3は水酸基また はァミノ基であり、 nは 10以上の整数である。 ) (Wherein R 1 is hydrogen or an alkyl group, R 2 is an alkyl group, R 3 is a hydroxyl group or an amino group, and n is an integer of 10 or more.)
で表される構造を有することを特徴とするポリフエニルアセチレン誘導体。  A polyphenylacetylene derivative having a structure represented by:
[2] 上記式 (I)における R1は炭素数 10以下の直鎖アルキル基であることを特徴とする 請求の範囲 1に記載のポリフエニルアセチレン誘導体。 [2] The polyphenylacetylene derivative according to claim 1, wherein R 1 in the formula (I) is a linear alkyl group having 10 or less carbon atoms.
[3] 上記炭素数 10以下の直鎖アルキル基力 メチル基、ェチル基、 n—ブチル基また は n—へキシル基であることを特徴とする請求の範囲 2に記載のポリフエ-ルァセチレ ン誘導体。 [3] The polyphenylene acetylene derivative according to claim 2, which is a linear alkyl group having 10 or less carbon atoms, which is a methyl group, an ethyl group, an n-butyl group or an n-hexyl group. .
[4] 上記式 (Π)における R2は炭素数 15以下の直鎖アルキル基であることを特徴とする 請求の範囲 1に記載のポリフエニルアセチレン誘導体。 [4] The polyphenylacetylene derivative according to claim 1, wherein R 2 in the above formula (Π) is a linear alkyl group having 15 or less carbon atoms.
[5] 上記炭素数 15以下の直鎖アルキル基が n—ドデシル基であることを特徴とする請 求の範囲 4に記載のポリフエニルアセチレン誘導体。 [5] The polyacetylene derivative according to claim 4, wherein the linear alkyl group having 15 or less carbon atoms is an n-dodecyl group.
[6] 上記式 (III)における R3がパラ位またはメタ位にあることを特徴とする請求の範囲 1 に記載のポリフエ-ルアセチレン誘導体。 次の一般式 (IV) Le acetylene derivative - [6] Porifue according to claim 1, wherein the R 3 in formula (III) is characterized in that the para position or meta position. The following general formula (IV)
Figure imgf000035_0001
Figure imgf000035_0001
(式中、 R4(Where R 4 is
[化 3]  [Chemical 3]
Figure imgf000035_0002
または
Figure imgf000035_0002
Or
[化 4]  [Chemical 4]
Figure imgf000035_0003
であり、 nは 10以上の整数である。 )
Figure imgf000035_0003
And n is an integer of 10 or more. )
で表される構造を有することを特徴とするポリフエニルアセチレン誘導体。  A polyphenylacetylene derivative having a structure represented by:
[8] 上記 R4がパラ位またはメタ位にあることを特徴とする請求の範囲 3に記載のポリフエ[8] The polyphephine according to claim 3, wherein R 4 is in a para position or a meta position.
-ルアセチレン誘導体。 -Ruacetylene derivatives.
[9] 重量平均分子量が 1万以上であることを特徴とする請求の範囲 1な 、し 8の 、ずれ 力 1項に記載のポリフエニルアセチレン誘導体。 [9] The polyphenylacetylene derivative according to [1], wherein the weight average molecular weight is 10,000 or more, and the shear force is 1 according to claim 1.
[10] 請求の範囲 1ないし 8の何れ力 1項に記載のポリフ -ルアセチレン誘導体を含有 しており、さらに、電子のドナーまたはァクセプターとなる化合物をドーパントとして添 カロしてなることを特徴とする導電性榭脂組成物。 アセチレンの一方の水素がベンゼン環を含む置換基で置換されたフエ-ルァセチ レン化合物であって、 [10] It is characterized in that it contains the polyacetylene derivative according to any one of claims 1 to 8 and further contains a compound serving as an electron donor or acceptor as a dopant. Conductive resin composition. A phenylacetylene compound in which one hydrogen atom of acetylene is substituted with a substituent containing a benzene ring,
次の式 (V)または (VI)  The following formula (V) or (VI)
[化 5]  [Chemical 5]
Figure imgf000036_0001
Figure imgf000036_0001
[化 6] [Chemical 6]
Figure imgf000036_0002
で表される構造を有することを特徴とするフエ-ルアセチレンィ匕合物。
Figure imgf000036_0002
A fuel acetylene compound characterized by having a structure represented by:
[12] 請求の範囲 11に記載のフエニルアセチレンィ匕合物を重合してなることを特徴とする ポリフヱ -ルアセチレン誘導体。 [12] A polyacetylene derivative obtained by polymerizing the phenylacetylene compound according to claim 11.
[13] フエ-ル基に結合した水酸基またはアミノ基を置換基で保護した構造を有するポリ フエニルアセチレン誘導体を脱保護することで、次の一般式 (III) [13] By deprotecting a polyphenylacetylene derivative having a structure in which a hydroxyl group or amino group bonded to a phenyl group is protected with a substituent, the following general formula (III)
[化 7]  [Chemical 7]
Figure imgf000036_0003
Figure imgf000036_0003
(式中、 R3は水酸基またはアミノ基であり、 nは 10以上の整数である。 ) (Wherein R 3 is a hydroxyl group or an amino group, and n is an integer of 10 or more.)
で表されるポリフエ-ルアセチレン誘導体を製造する工程を含むことを特徴とするポリ フエニルアセチレン誘導体の製造方法。 Comprising a step of producing a polyacetylene derivative represented by the formula: A method for producing a phenylacetylene derivative.
次の一般式 (IV)  The following general formula (IV)
[化 8]
Figure imgf000037_0001
[Chemical 8]
Figure imgf000037_0001
(式中、 R4(Where R 4 is
[化 9] [Chemical 9]
Figure imgf000037_0002
または
Figure imgf000037_0002
Or
[化 10]
Figure imgf000037_0003
であり、 nは 10以上の整数である。 )
[Chemical 10]
Figure imgf000037_0003
And n is an integer of 10 or more. )
で表される構造を有するポリフエ-ルアセチレン誘導体を、脱保護することで、次の 一般式 (ΠΙ) By deprotecting the polyacetylene derivative having the structure represented by the following general formula (ΠΙ)
[化 11]
Figure imgf000038_0001
[Chemical 11]
Figure imgf000038_0001
(式中、 R3は水酸基またはアミノ基であり、 nは 10以上の整数である。 ) (Wherein R 3 is a hydroxyl group or an amino group, and n is an integer of 10 or more.)
で表されるポリフエ-ルアセチレン誘導体を製造する工程を含むことを特徴とするポリ フエニルアセチレン誘導体の製造方法。  A process for producing a polyacetylene derivative represented by the formula:
[15] 上記一般式 (IV)で表される構造を有するポリフエ-ルアセチレン誘導体を製造す る工程を含むことを特徴とする請求の範囲 14に記載のポリフエニルアセチレン誘導 体の製造方法。 [15] The method for producing a polyacetylacetylene derivative according to [14], further comprising the step of producing a polyacetylene derivative having a structure represented by the general formula (IV).
[16] 上記一般式 (IV)で表される構造を有するポリフエ-ルアセチレン誘導体を製膜す る工程を含むことを特徴とする請求の範囲 14または 15に記載のポリフエニルァセチ レン誘導体の製造方法。  [16] The polyphenylacetylene derivative according to [14] or [15], further comprising a step of forming a film of the polyacetylene derivative having the structure represented by the general formula (IV). Production method.
[17] 上記一般式 (IV)で表される構造を有するポリフエニルアセチレン誘導体を製造す る際に、ロジウム触媒を用いることを特徴とする請求の範囲 15または 16に記載のポリ フエニルアセチレン誘導体の製造方法。 [17] The polyphenylacetylene derivative according to [15] or [16], wherein a rhodium catalyst is used in producing the polyphenylacetylene derivative having the structure represented by the general formula (IV). Manufacturing method.
[18] 上記ロジウム触媒は [Rh(nbd)Cl]であり、共触媒として KN(SiMe )を用いることを特 [18] The rhodium catalyst is [Rh (nbd) Cl], and KN (SiMe) is used as a cocatalyst.
2 3 2  2 3 2
徴とする請求の範囲 17に記載のポリフエニルアセチレン誘導体の製造方法。  The method for producing a polyphenylacetylene derivative according to claim 17, wherein
PCT/JP2005/012508 2004-07-06 2005-07-06 Novel polyphenylacetylene derivatives WO2006004161A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528946A JPWO2006004161A1 (en) 2004-07-06 2005-07-06 New polyphenylacetylene derivatives

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-199882 2004-07-06
JP2004199882 2004-07-06
JP2004253248 2004-08-31
JP2004-253248 2004-08-31

Publications (1)

Publication Number Publication Date
WO2006004161A1 true WO2006004161A1 (en) 2006-01-12

Family

ID=35782962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012508 WO2006004161A1 (en) 2004-07-06 2005-07-06 Novel polyphenylacetylene derivatives

Country Status (2)

Country Link
JP (1) JPWO2006004161A1 (en)
WO (1) WO2006004161A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238663A (en) * 2009-03-09 2010-10-21 Sumitomo Chemical Co Ltd Air cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168907A (en) * 1981-04-11 1982-10-18 Agency Of Ind Science & Technol Production of phenylacetylene copolymer
JPH03103441A (en) * 1989-07-31 1991-04-30 General Electric Co <Ge> Acetylene bis-phthalic acid compound and polyimide formed therefrom
JPH04246405A (en) * 1991-01-31 1992-09-02 Asahi Chem Ind Co Ltd Ester-substituted diacetylene polymer
JPH07292037A (en) * 1994-04-21 1995-11-07 Daicel Chem Ind Ltd New optically active polyacetylene derivative and its production
JPH09143129A (en) * 1995-11-16 1997-06-03 Fuji Photo Film Co Ltd Production of 4-aminophenylacetylene compound
JPH09176243A (en) * 1995-10-25 1997-07-08 Daicel Chem Ind Ltd Novel polymer of acetylene derivative
JP2002540231A (en) * 1999-03-22 2002-11-26 アメルシャム・バイオサイエンシーズ・アクチボラグ Amino group-containing carrier matrix, its use and production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168907A (en) * 1981-04-11 1982-10-18 Agency Of Ind Science & Technol Production of phenylacetylene copolymer
JPH03103441A (en) * 1989-07-31 1991-04-30 General Electric Co <Ge> Acetylene bis-phthalic acid compound and polyimide formed therefrom
JPH04246405A (en) * 1991-01-31 1992-09-02 Asahi Chem Ind Co Ltd Ester-substituted diacetylene polymer
JPH07292037A (en) * 1994-04-21 1995-11-07 Daicel Chem Ind Ltd New optically active polyacetylene derivative and its production
JPH09176243A (en) * 1995-10-25 1997-07-08 Daicel Chem Ind Ltd Novel polymer of acetylene derivative
JPH09143129A (en) * 1995-11-16 1997-06-03 Fuji Photo Film Co Ltd Production of 4-aminophenylacetylene compound
JP2002540231A (en) * 1999-03-22 2002-11-26 アメルシャム・バイオサイエンシーズ・アクチボラグ Amino group-containing carrier matrix, its use and production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238663A (en) * 2009-03-09 2010-10-21 Sumitomo Chemical Co Ltd Air cell

Also Published As

Publication number Publication date
JPWO2006004161A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
US20190153154A1 (en) Polymers of intrinsic microporosity (pims) containing locked spirobisindane structures and methods of synthesis of pims polymers
Tsuchihara et al. Polymerization of silicon-containing diphenylacetylenes and high gas permeability of the product polymers
Li et al. An acid/base switchable and reversibly cross-linkable polyrotaxane
Nishikubo et al. Successful synthesis of polymers containing pendant norbornadiene moieties and norbornadiene photochemical valence isomerization
JP2011508736A (en) Spiro compounds
Han et al. Cyclopolymerization of bis (fluoroalkyl) dipropargylmalonate derivatives and characterization of the products
Xiao et al. Microporous aromatic polyimides derived from triptycene-based dianhydride
Teraguchi et al. Synthesis and properties of polyacetylenes with adamantyl groups
WO2006004161A1 (en) Novel polyphenylacetylene derivatives
Yu et al. Novel triblock copolymers synthesized via radical telomerization of N-isopropylacrylamide in the presence of polypseudorotaxanes made from thiolated PEG and α-CDs
Koo et al. Cyclopolymerization of fluorinated dipropargylmalonate and [(tert-butyldimethylsilyl) oxy]-1, 6-heptadiyne and characterization of the polymers
Hu et al. Synthesis and gas permeation properties of poly (diarylacetylene) s having substituted and twisted biphenyl moieties
CN113136023B (en) Preparation method of porous aromatic skeleton containing hydroxymethyl, and functional material and application thereof
Shida et al. Preparation and properties of polytolan membranes bearing p-hydroxyl groups
KR101809493B1 (en) Norbonene-based membranes with hydrogen selective permeability, and manufacturing method thereof
Jia et al. Synthesis and oxygen permselectivity of copoly (substituted acetylene) s with bulky fused polycyclic aliphatic groups
Yoshida et al. Polymerization and polymer properties of (p‐tert‐butyl‐o, o‐dimethylphenyl) acetylene
US20020177637A1 (en) Polymers and oligomers, their synthesis, and electronic devices incorporating same
CN113354810B (en) Clustering peptide with side chain containing functionalized biphenyl group and preparation method thereof
JP3717687B2 (en) Optically active polymer and method for producing the same
JPS6392619A (en) O-(trialkylsilyl)phenylacetylene polymer and its production
Kono et al. Synthesis and properties of poly (phenylacetylenes) having two polar groups or one cyclic polar group on the phenyl ring
CN103923260B (en) Ring-opening metathesis polymerization method prepares the copolymer based on polyoxometallate
JP3076845B1 (en) Organosilicon polymer having functional group and method for producing the same
JPH04114012A (en) Hydrophilic polymer supporting terpyridyl group and polymer complex coordinated therewith

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528946

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase