WO2006003149A1 - Systeme d’illumination pour imageur et projecteur correspondant - Google Patents

Systeme d’illumination pour imageur et projecteur correspondant Download PDF

Info

Publication number
WO2006003149A1
WO2006003149A1 PCT/EP2005/053032 EP2005053032W WO2006003149A1 WO 2006003149 A1 WO2006003149 A1 WO 2006003149A1 EP 2005053032 W EP2005053032 W EP 2005053032W WO 2006003149 A1 WO2006003149 A1 WO 2006003149A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
illumination
polarization
imager
sources
Prior art date
Application number
PCT/EP2005/053032
Other languages
English (en)
Inventor
Pascal Benoit
Original Assignee
Thomson Licensing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing filed Critical Thomson Licensing
Priority to US11/630,006 priority Critical patent/US20080024728A1/en
Priority to JP2007518609A priority patent/JP2008507717A/ja
Priority to EP05758665A priority patent/EP1763696A1/fr
Publication of WO2006003149A1 publication Critical patent/WO2006003149A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms

Definitions

  • Illumination system for imager and corresponding projector.
  • the invention relates to the field of image projection.
  • the invention relates to a system emitting a polarized illumination beam particularly well suited to an imager.
  • the projection with LCOS or transmissive liquid crystal imager uses an illumination system with uniform and polarized light.
  • the illumination system polarizes an illumination beam from a non-polarized light source and converts the unwanted polarizations.
  • conventional systems for this, conventional systems (flye-eye or integrating bar) use a network of PBS (polarized beam splitter of the English "Polariser Beam
  • the illumination system comprises a single PBS half-prism (multilayer polarization separator) with a first plate of network of lenses called flye-eye.
  • a first polarization is reflected and transmitted to a second lens array.
  • a second polarization crosses the half-prism and is reflected on a mirror placed behind the separating surface of the half-prism.
  • the second polarization again crosses the half-wave and is returned by a network of blades ⁇ / 2 located on the second lens array plate.
  • the invention aims to overcome these disadvantages of the prior art. More particularly, the invention aims to allow a polarized illumination with a system having a high luminous efficiency.
  • the invention proposes an illumination system intended to illuminate an imager, the system comprising a plurality of illumination sources each generating illumination beams, called beams. sources, comprising first and second distinct polarizations.
  • the system is remarkable in that it further comprises a grid polarizer illuminated by the source beams, a mirror, and half-wavelength phase shift means; the first polarization of each of said source beams passes through the polarization surface of the polarizer, before being reflected by the mirror and traversing again the polarization surface of the polarizer; the second polarization of each of the source beams is reflected by the polarization surface of the polarizer; only one of the first or second polarizations crossing the phase shift means after crossing or reflection on the polarization surface, the first and second polarizations of the source beams being separated spatially.
  • the system is remarkable in that it comprises a light guide and a main light source, the illumination sources being obtained by transmitting, through the light guide, an illumination beam generated by the main light source.
  • the light guide is an integrating bar.
  • the system is remarkable in that it comprises a plurality of light-emitting diodes, each of the diodes being associated with one of the illumination sources.
  • the reflecting surface of the mirror is parallel to the polarization surface of the polarizer.
  • the grid polarizer comprises a transparent substrate, one face forms the polarization surface of the polarizer and the other side forms the reflecting surface of the mirror.
  • the illumination system comprises a first lens group comprising at least one focusing lens situated between the illumination sources and the polarizer, the phase-shifting means being situated in a plane placed between the two focusing planes of the sources of illumination. illumination by the first group, each of the two focusing planes corresponding to either the first polarization or the second polarization.
  • the illumination system comprises a second group of lenses and the imager placed in a first plane of focus of the second group of lenses, the second plane of focusing of the second lens group being placed between the two focusing planes of the illumination sources by the first group.
  • the phase-shift means comprise a substrate, one of the faces of which has half-wavelength phase-shift bands.
  • the invention also relates to a projector comprising:
  • FIG. 1 illustrates a backlighting device implementing an illumination system of an imager, according to a particular embodiment of the invention
  • FIGS. 2 and 3 show the illumination system of FIG. 1;
  • FIGS. 2 and 3 schematically describe illumination beams implemented in the system of Figures 2 and 3;
  • FIG. 6 shows a polarization separation implemented in the system of FIGS. 2 and 3;
  • FIG. 7 illustrates the distribution of the sources before the polarization separation presented with reference to FIG. 6;
  • FIG. 8 illustrates the image of the sources after the polarization separation presented with reference to FIG. 6;
  • FIG. 9 and 10 show alternative embodiments of the polarizer implemented in the system of Figures 2 and 3.
  • FIG. 1 illustrates a retro-projector 1 implementing an illumination system 10 of an imager 16, according to a particular embodiment of the invention.
  • the overhead projector 1 comprises:
  • a projection lens 11 transmitting an imaging beam produced by the imager 16;
  • the backlight can be more or less narrow. Nevertheless, because of the small size of the illumination system 10 and the illumination beam being folded, the invention is particularly well suited to thin-walled projectors (for example 6 or 9 inches thick). Of course, the invention also applies to wider backlights (with, for example, a single folding mirror) and front projectors.
  • Figures 2 and 3 show the illumination system 1 respectively in a side view and in perspective illuminating an imager
  • LCD type liquid crystal display, "Liquid Crystal”
  • the imager 16 has a width // and a height hi which depends on the format of the image to be projected.
  • the illumination system 1 comprises: a plurality of light sources of unpolarized light
  • a second lens 22 (or a group of several lenses), of focal length F1;
  • phase-shifting means of half a wavelength for example in the form of ⁇ / 2 bands placed on a transparent substrate 26 (for example made of glass), the strips
  • the grid polarizer 23 is for example provided by the company
  • MOXTEK ® a face corresponding to the polarization surface, the other face being, for example, treated to be reflective.
  • the magnification of the lens 22 is equal to G1 (plane of the strips 25 with respect to the entry plane of the guide 21).
  • the ⁇ / 2 bands are achromatic on the visible spectral zone: the delay varies with the wavelength so that the difference between the indices, ordinary and extraordinary, respectively, is equal to a half-wavelength divided by the thickness of the bands 25 on the visible spectral zone.
  • the ⁇ / 2 bands have a constant or substantially constant delay on the visible spectral zone.
  • the ⁇ / 2 bands phase out by half a wavelength a precise frequency of the visible spectral zone; preferably, this frequency is the middle frequency of the visible spectrum.
  • the plurality of light sources is generated by means of a lamp-type main light source 20 and of a light guide (in English "light pipe") of height h, length L and depth p.
  • the light sources are thus obtained by transmission through the light guide of a source illumination beam produced by the main light source.
  • the light guide is, for example, a solid integrator bar or a hollow guide with reflective walls.
  • the illumination system illuminates the imager 16 operating with a polarized illumination beam.
  • the imager is of the LCOS type (Liquid Crystal on Silicon of the English "Liquid
  • a polarizer is placed in the path of the polarized illumination beam before the imager in order to purify the polarization and improve the contrast.
  • FIGS. 4 and 5 schematically describe illumination beams implemented in the system 10, respectively vertically and horizontally polarized.
  • the lamp 20 illuminates the entrance of the light guide 21 located parallel to an axis z, its height and depth being parallel to an axis respectively x and y.
  • several virtual sources are present forming a network with several lines and several columns.
  • the first lens 22 images the input of the guide 21 in a plane close to the ⁇ / 2 bands 25 and the output of the guide 21 to infinity (the distance between the lens 22 and the output of the guide is equal to F1).
  • several virtual sources corresponding to the sources present at the entrance of the guide 21 appear.
  • three sources 40 to 42 have been represented at the entrance of the guide 21 in FIGS. 4 and 5.
  • FIG. 7 which represent the virtual sources placed in input of the guide, the latter are separated by a distance h along the x axis and a distance p along the y axis. Each of these virtual sources emits unpolarized light.
  • the number of sources depends on the opening angle of the lamp which defines the number of reflection of the beam in the guide 21.
  • the virtual sources form a network of at least three lines and three columns.
  • the grid polarizer 23 located behind the first lens 22 in the path of the illumination beam separates the vertical polarization and the horizontal polarization.
  • the grid polarizer is inclined at an angle preferably equal to 45 ° with respect to the z axis of propagation of the illumination beam.
  • the polarizer grid is oriented in the x direction, perpendicular to the plane of propagation defined by the y and z axes.
  • the vertical polarization of the illumination beam is reflected along the y direction.
  • the horizontal polarization passes through the polarization surface and the substrate of the polarizer 23.
  • the vertical polarization then crosses the substrate 26 outside the blades 25 and the second lens 27 which images the output of the guide 21 on the imager 16.
  • the horizontal polarization is reflected by the mirror 24 parallel to the polarization surface of the polarizer 23 and placed at a distance e from this surface. Then, the horizontal polarization of the illumination beam crosses again the polarizer 23 and hits the blades 25 which turns the polarization which becomes vertical.
  • the illumination beam thus comprises only the vertical polarization obtained by direct transmission of the vertical polarization at the output of the guide 21 and by reversal of the horizontal polarization. This optimizes the use of the illumination beam.
  • the grid of the polarizer is oriented perpendicularly to the direction x. It is then the horizontal polarization of the illumination beam which is reflected; according to this variant, the vertical polarization passes through the polarization surface.
  • the illumination beam thus comprises only the horizontal polarization (if the blades or strips 25 are positioned in the same place).
  • the substrate is the glass slide 26 which carries the half wave plates 25.
  • each of the columns is separated by a distance G1.p / 2, an alternate column corresponding to the part of the illumination beam reflected by the polarizer 23 and the other columns corresponding to the part of the illumination beam reflected by the mirror 24.
  • the dimension of the plane of the bands 25 (or substrate 26) is such that it collects at least six columns of sources, the number of lines depending on the number of lines. Even more preferably, the dimension of the substrate 26 is such that it collects at least eight columns of sources. The dimension of the substrate is larger than the opening of the objective through to the lens 27.
  • Figure 6 illustrates in detail the path of a beam 60 of the illumination beam striking the polarizer 23.
  • the incident ray 60 makes an angle ⁇ ext with the normal to the separation surface of the polarizer 23.
  • the incident ray 60 is, in part, reflected by the polarization surface to form a vertical polarization ray 61 and partly refracted for forming a horizontal polarization beam 62.
  • the ray 62 is reflected by the mirror 24 to form a ray 63 which itself is refracted by the polarization surface to form a ray 64.
  • the polarization surface of the polarizer 23 and the mirror 24 are separated by a material of optical index n with a thickness e.
  • the substrate 26 includes ⁇ / 2 phase shift strips 25 parallel to the x axis which change the polarization. Each of the strips is separated from a band close to the distance d and is itself of width d.
  • the ray 61 passes through the substrate 26 without passing through the strips 25 and so that, on the other hand, the ray 64 passes through the strips 25 so that its polarization is modified then the second lens 27 which images the exit of the guide 21 on the imager 16.
  • the strips 25 are placed in the path of the polarization which is reflected by the polarization surface of the polarizer 23, the polarization which passes through this surface does not illuminate the strips 25.
  • the polarization of the illumination beam at the output of the substrate 26 is horizontal or vertical.
  • Imager 16 must be oriented correctly according to the polarization of the illumination beam which illuminates it.
  • the virtual sources placed at the entrance of the guide 21 focus through the first lens 22 on two planes 65 and 67 slightly offset as a function of the polarization of the rays striking the polarizer 23:
  • the distances separating the lens 27 and the plane of the strips 25, on the one hand, and the imager 16, on the other hand, are equal to the focal length F2: More precisely, the imager 16 is located in a foreground focusing the lens 27; the second plane of focus of the lens 27 is located between the planes 65 and 67 of focusing of the lens 22, and preferably in the median plane of the planes 65 and 67. In this way, the illumination on the imager is optimized.
  • angle Qext is preferably between 30 and
  • the grid polarizer has the advantage of conferring a little sensitive contrast to the angles of incidence. Even more preferentially, the angle Qext equal to 45 °
  • the geometry of the illumination system also makes it possible to bend the illumination beam, which limits its bulk (especially in the frame for use in a headlamp or in a narrow backlight).
  • the value of Qext may therefore advantageously be chosen as a function of the constraints of space specific to the projection apparatus in question.
  • the size of the substrate 26 is hs along the axis x and // along the y axis.
  • the size of the substrate 26 is chosen as a function of the number of virtual sources illuminating it.
  • the parameters of the illumination system may be as follows:
  • the dimensions of the guide are generally fixed in part by the format of the imager (3/4 or 16/9 th for example), the size of the focus of the lamp to have a good collection and the dimensions of the imager for have a magnification of about 2 (other magnifications are possible).
  • a guide of small section allows to work with constant extension with large angles (typically between 15 ° and 25 °).
  • the lamp 20 can be relatively powerful. Indeed, unlike PBS polarizers, the grid polarizer 23 is resistant to high light fluxes.
  • such a polarizer also has the advantage of providing a low sensitivity contrast wavelengths.
  • FIG. 9 illustrates a polarizer 90 that can be used, according to the invention, to replace the polarizer 23 and the mirror 24.
  • the polarizer 90 comprises a grid polarizer 91 similar to the polarizer 23 and a substrate 92, for example, glass covered with a reflecting surface 93 on one of its faces.
  • FIG. 10 illustrates a polarizer 95 which can also be used, according to the invention, to replace the polarizer 23 and the mirror 24.
  • the polarizer 95 comprises a grid polarizer 96 similar to the polarizer 23 and a substrate 98, for example, made of glass.
  • the substrate 98 and the polarizer 96 are separated by a thin layer of air 97.
  • the substrate 98 is covered with a reflecting surface 99 on one of its faces, which is preferably that common with the air layer 97.
  • the invention is not limited to the embodiments described above.
  • the invention in particular relates to different types of projectors using an illumination beam with polarized light, including backlights or headlamps.
  • these projectors include or not one or more flat or curved folding mirrors.
  • the illumination system is positioned or oriented in different ways with respect to the imager. According to a preferred variant, it can in particular be rotated or 180 ° along the axis of the imaging beam that illuminates the imager. In the context of a projection on a 4/3 or 16/9 screen, or more generally when one dimension is larger than the other, the duplication of the sources is preferentially done according to the largest dimension. According to other variants, the rotation is equal to +/- 90 °. It may also be more or less distant from the projection lens, the projection lens being adapted to the overall geometry of the projector structure; the objective makes it possible, in particular, to focus an image produced by the imager on the screen by limiting the distortions.
  • the projection objective is preferably as close as possible to the illumination system.
  • the plurality of light sources is obtained using a plurality of LEDs (light emitting diodes), each of the LEDs corresponding to a light source.
  • each of the LEDs is associated with optical means for uniformly illuminating the imager: it may be a reflector or collimation means or appropriate collection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

L'invention concerne un système d'illumination destiné à éclairer un imageur (16), qui comprend une pluralité de sources d'illumination générant des faisceaux sources à deux polarisations distinctes. Afin d'optimiser l'efficacité des faisceaux sources, les faisceaux sources éclairent un polariseur à grille (23), une polarisation traverse la surface de polarisation du polariseur, avant d'être réfléchie par un miroir (24) et de traverser à nouveau la surface de polarisation; la seconde polarisation est réfléchie par la surface de polarisation ; les deux polarisations étant ainsi séparée spatialement, des moyens de déphasage déphasent ensuite d'une demi-longueur d'onde (25) une seule des deux polarisations. L'invention concerne également un projecteur comprenant le système d'illumination, l'imageur et un objectif de projection.

Description

Système d'illumination pour imageur et projecteur correspondant.
1. Domaine de l'invention. L'invention se rapporte au domaine de la projection d'image.
Plus précisément, l'invention concerne un système émettant un faisceau d'illumination polarisé particulièrement bien adapté à un imageur.
2. Etat de l'art.
Selon l'état de la technique, la projection avec imageur du type LCOS ou à cristaux liquide transmissif met en oeuvre un système d'illumination avec lumière uniforme et polarisée. Pour obtenir une projection efficace, le système d'illumination polarise un faisceau d'illumination issu d'une source de lumière non polarisée et convertit les polarisations non voulues. Pour cela, des systèmes classiques (flye-eye ou barreau intégrateur) utilisent un réseau de PBS (Séparateur de faisceau polarisé de l'anglais « Polariser Beam
Splitter »).
Selon une autre technique connue de l'art antérieur, telle qu'illustrée dans le document de brevet US6190013 de la société Minolta ®, Ie système d'illumination comprend un demi-prisme PBS unique (séparateur de polarisation multicouches) avec une première plaque de réseau de lentilles dite flye-eye. Une première polarisation est réfléchie puis transmise vers un second réseau de lentilles. Une deuxième polarisation traverse le demi-prisme et est réfléchie sur miroir placé derrière la surface séparatrice du demi-prisme. La deuxième polarisation traverse à nouveau le demi -prisme et est retournée par un réseau de lames λ/2 situées sur la seconde plaque de réseau de lentilles.
Ces techniques présentent l'inconvénient d'avoir une taille de prisme PBS importante. En outre, il existe une limitation angulaire du contraste du PBS. De plus, il y a une perte de flux des rayons polarisés P lors du retour sur le PBS (rayons en biais ou « skew rays » en anglais). 3. Résumé de l'invention.
L'invention a pour but de pallier ces inconvénients de l'art antérieur. Plus particulièrement, l'invention a pour objectif de permettre une illumination polarisée avec un système possédant une grande efficacité lumineuse. A cet effet, l'invention propose un système d'illumination destiné à éclairer un imageur, le système comprenant une pluralité de sources d'illumination générant chacun des faisceaux d'illumination, dits faisceaux sources, comprenant des première et seconde polarisations distinctes. Selon l'invention, le système est remarquable en ce qu'il comprend, en outre, un polariseur à grille éclairé par les faisceaux sources, un miroir, et des moyens de déphasage d'une demi-longueur d'onde ; la première polarisation de chacun desdits faisceaux sources traverse la surface de polarisation du polariseur, avant d'être réfléchie par le miroir et de traverser à nouveau la surface de polarisation du polariseur ; la seconde polarisation de chacun des faisceaux sources, est réfléchie par la surface de polarisation du polariseur ; une seule des première ou seconde polarisations traversant les moyens de déphasage après traversée de ou réflexion sur la surface de polarisation, les première et seconde polarisations des faisceaux sources étant séparées spatialement.
Ainsi, après les moyens de déphasage, une seule polarisation est présente pour éclairer l'imageur. Selon une caractéristique préférentielle, le système est remarquable en ce qu'il comprend un guide de lumière et une source lumineuse principale, les sources d'illumination étant obtenues par transmission, à travers le guide de lumière, d'un faisceau d'illumination généré par la source lumineuse principale.
Selon une caractéristique particulière, le guide de lumière est un barreau intégrateur.
Selon une autre caractéristique, le système est remarquable en ce qu'il comprend une pluralité de diodes électroluminescentes, chacune des diodes étant associée à une des sources d'illumination.
Selon une caractéristique préférée, la surface réfléchissante du miroir est parallèle à la surface de polarisation du polariseur.
Avantageusement, le polariseur à grille comprend un substrat transparent dont une face forme la surface de polarisation du polariseur et l'autre face forme la surface réfléchissante du miroir.
Préférentiellement, le système d'illumination comprend un premier groupe de lentilles comprenant au moins une lentille de focalisation située entre les sources d'illumination et le polariseur, les moyens de déphasage étant situés dans un plan placé entre les deux plans de focalisation des sources d'illumination par le premier groupe, chacun des deux plans de focalisation correspondant soit à la première polarisation soit à la seconde polarisation. Selon une caractéristique avantageuse, le système d'illumination comprend un second groupe de lentilles et l'imageur placé dans un premier plan de focalisation du second groupe de lentilles, le second plan de focalisation du second groupe de lentilles étant placé entre les deux plans de focalisation des sources d'illumination par le premier groupe.
Préférentiellement, les moyens de déphasage comprennent un substrat dont l'une des faces comportent des bandes de déphasage d'une demi-longueur d'onde.
L'invention concerne également un projecteur comportant :
- le système d'illumination ;
- un imageur éclairé par le système d'illumination ; et
- un objectif de projection. 4. Liste des figures.
L'invention sera mieux comprise, et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :
- la figure 1 illustre un rétro-projecteur mettant en oeuvre un système d'illumination d'un imageur, selon un mode particulier de réalisation de l'invention ;
- les figures 2 et 3 présentent le système d'illumination de la figure 1 ;
- les figures 4 et 5 décrivent schématiquement des faisceaux d'illumination mis en oeuvre dans le système des figures 2 et 3 ; - la figure 6 présente une séparation de polarisation mise en oeuvre dans le système des figures 2 et 3 ;
Φ - la figure 7 illustre la répartition des sources avant' la séparation de polarisation présentée en regard de la figure 6 ;
- la figure 8 illustre l'image des sources après la séparation de polarisation présentée en regard de la figure 6 ; et
- les figures 9 et 10 présentent des variantes de réalisation du polariseur mis en oeuvre dans le système des figures 2 et 3.
5. Description détaillée de l'invention.
La figure 1 illustre un rétro-projecteur 1 mettant en oeuvre un système d'illumination 10 d'un imageur 16, selon un mode particulier de réalisation de l'invention.
Le rétro-projecteur 1 comprend :
- le système d'illumination 10 éclairant l'imageur 16 ;
- un objectif de projection 11 transmettant un faisceau d'imagerie 15 produit par l'imageur 16 ;
- des miroirs de repli 12 et 13 sur lesquels se réfléchit le faisceau d'imagerie 15 ; et - un écran 14 sur lequel est projeté une image produite par le faisceau d'imagerie 15.
Selon l'invention, le rétro-projecteur peut être plus ou moins étroit. Néanmoins, du fait de la faible taille du système d'illumination 10 et le faisceau d'illumination étant replié, l'invention est particulièrement bien adaptée aux rétro-projecteurs de faible épaisseur (par exemple d'épaisseur 6 ou 9 pouces). Bien entendu, l'invention s'applique également au rétro-projecteurs plus larges (avec par exemple un seul miroir de repli) et aux projecteurs frontaux.
Les figures 2 et 3 présentent le système d'illumination 1 respectivement selon une vue de coté et en perspective éclairant un imageur
16, du type LCD (Afficheur à cristaux liquides, de l'anglais « Liquid Crystal
Display ») transmissif. L'imageur 16 a une largeur // et une hauteur hi qui dépend du format de l'image à projeter.
Le système d'illumination 1 comprend : - une pluralité de sources lumineuses de lumière non polarisée
(c'est à dire qui comprennent aux moins deux polarisations distinctes), les sources étant séparées dans un plan perpendiculaire à un axe de propagation ;
- une deuxième lentille 22 (ou un groupe de plusieurs lentilles), de distance focale F1 ;
- un polariseur à grilles 23 ;
- un miroir 24 situé derrière le polariseur à grilles 23 ;
- des moyens de déphasages d'une demi -longueur d'ondes, par exemples sous forme de bandes λ/2 25 placées sur un substrat 26 transparent (par exemple en verre), les bandes
25 étant, par exemple, obtenues par lamination sur le substrat 26 ; et
- une deuxième lentille 27 (ou un groupe de plusieurs lentilles), de distance focale F2. Le polariseur à grille 23 est par exemple fourni par la société
MOXTEK ®, une face correspondant à la surface de polarisation, l'autre face étant, par exemple, traitée pour être réfléchissante.
Le grandissement de la lentille 22 est égal à G1 (plan des bandes 25 par rapport au plan d'entrée du guide 21 ). Préférentiellement, les bandes λ/2 25 .sont achromatiques sur la zone spectrale visible : le retard varie avec la longueur d'onde pour que la différence des indices respectivement ordinaire et extraordinaire soit égale à une demi-longueur d'onde divisée par l'épaisseur des bandes 25 sur la zone spectrale visible.
Selon une variante, les bandes λ/2 25 ont un retard constant ou sensiblement constant sur la zone spectrale visible. Les bandes λ/2 25 déphasent d'une demi-longueur d'onde une fréquence précise de la zone spectrale visible ; de préférence, cette fréquence est la fréquence milieu du spectre visible.
Selon un mode particulier de l'invention, la pluralité de sources lumineuses est générée à l'aide d'une source lumineuse principale de type lampe 20 et d'un guide de lumière (en anglais « light pipe ») de hauteur h, de longueur L et de profondeur p. Les sources lumineuses sont ainsi obtenues par transmission à travers du guide de lumière d'un faisceau d'illumination source produit par la source lumineuse principale. Le guide de lumière est, par exemple, un barreau intégrateur plein ou un guide creux avec parois réfléchissantes.
Le système d'illumination éclaire l'imageur 16 fonctionnant avec un faisceau d'illumination polarisé. Aussi, selon une variante de l'invention, l'imageur est du type LCOS (Cristal liquide sur du silicium de l'anglais « Liquid
Crystal On Silicon ») associé à un séparateur de polarisation (polariseur à grilles ou PBS) pour réorienter le faisceau d'imagerie.
Selon d'autres variantes, on place un polariseur sur le trajet du faisceau d'illumination polarisé avant l'imageur afin de purifier la polarisation et d'améliorer le contraste.
Les figures 4 et 5 décrivent schématiquement des faisceaux d'illumination mis en oeuvre dans le système 10, selon une polarisation respectivement verticale et horizontale.
La lampe 20 éclaire l'entrée du guide de lumière 21 situé parallèlement à un axe z, sa hauteur et sa profondeur étant parallèles à un axe respectivement x et y. A la sortie du guide, plusieurs sources virtuelles sont présentes formant un réseau à plusieurs lignes et plusieurs colonnes.
La première lentille 22 image l'entrée du guide 21 dans un plan proche des bandes λ/2 25 et la sortie du guide 21 à l'infini (la distance entre la lentille 22 et la sortie du guide est égale à F1 ). Ainsi, autour du plan des bandes λ/2 25, plusieurs sources virtuelles correspondant aux sources présentes à l'entrée du guide 21 apparaissent. A titre illustratif, trois sources 40 à 42 ont été représentées à l'entrée du guide 21 sur les figures 4 et 5. Comme illustré en regard de la figure 7 qui représentent les sources virtuelles placées en entrée du guide, ces dernières sont séparées d'une distance h suivant l'axe x et d'une distance p suivant l'axe y. Chacune de ces sources virtuelles émet une lumière non polarisée.
Le nombre de sources dépend de l'angle d'ouverture de la lampe qui définit le nombre de réflexion du faisceau dans le guide 21. Préférentiellement, les sources virtuelles forment un réseau d'au moins trois lignes et trois colonnes.
Le polariseur à grille 23 situé derrière la première lentille 22 sur le trajet du faisceau d'illumination sépare la polarisation verticale et la polarisation horizontale. Le polariseur à grilles est incliné d'un angle préférentiellement égal à 45° par rapport à l'axe zde propagation du faisceau d'illumination. La grille du polariseur est orientée suivant la direction x, perpendiculairement au plan de propagation défini par les axes y et z Ainsi, la polarisation verticale du faisceau d'illumination est réfléchie suivant la direction y. En revanche, la polarisation horizontale traverse la surface de polarisation et le substrat du polariseur 23.
La polarisation verticale traverse alors le substrat 26 en dehors des lames 25 puis la deuxième lentille 27 qui image la sortie du guide 21 sur I'imageur 16.
Après avoir traversé une première fois le polariseur 23, Ia polarisation horizontale est réfléchie par le miroir 24 parallèle à la surface de polarisation du polariseur 23 et placée à une distance e de cette surface. Ensuite, la polarisation horizontale du faisceau d'illumination traverse à nouveau le polariseur 23 et frappe les lames 25 qui tourne la polarisation qui devient donc verticale. A la sortie du substrat 25, le faisceau d'illumination comprend donc uniquement la polarisation verticale obtenue par transmission directe de la polarisation verticale en sortie du guide 21 et par retournement de la polarisation horizontale. On optimise ainsi l'utilisation du faisceau d'illumination.
Selon une variante de réalisation, la grille du polariseur est orientée perpendiculairement à la direction x. C'est alors la polarisation horizontale du faisceau d'illumination qui est réfléchie ; selon cette variante, la polarisation verticale traverse la surface de polarisation. Dans ce cas, à la sortie du substrat 26, le faisceau d'illumination comprend donc uniquement la polarisation horizontale (si les lames ou bandes 25 sont positionnées au même endroit). Comme illustré en regard de la figure 8, le substrat est la lame de verre 26 qui porte les lames demi ondes 25. Il peut être indifféremment avant ou après les bandes 25 sur le trajet du faisceau d'illumination), chacune des colonnes est séparée d'une distance G1.p/2, une colonne sur deux correspondant à la partie du faisceau d'illumination réfléchie par le polariseur 23 et les autres colonnes correspondant à la partie du faisceau d'illumination réfléchie par le miroir 24. Préférentiellement, la dimension du plan des bandes 25 (ou substrat 26) est telle qu'il collecte au moins six colonnes de sources, le nombre de lignes dépendant du nombre de lignes. Encore plus préférentiellement, la dimension du substrat 26 est telle qu'il collecte au moins huit colonnes de sources. La dimension du substrat est plus grande que l'ouverture de l'objectif à travers à la lentille 27. La figure 6 illustre en détail le trajet d'un rayon 60 du faisceau d'illumination frappant le polariseur 23.
Le rayon incident 60 fait un angle θext avec la normale à la surface de séparation du polariseur 23. Le rayon incident 60 est, en partie, réfléchi par la surface de polarisation pour former un rayon 61 de polarisation verticale et, en partie, réfracté pour former un rayon 62 de polarisation horizontale. Le rayon 62 est réfléchi par le miroir 24 pour former un rayon 63 qui lui même est réfracté par la surface de polarisation pour former un rayon 64.
La surface de polarisation du polariseur 23 et le miroir 24 sont séparés par un matériau d'indice optique n d'une épaisseur e. Comme indiqué sur la figure 6, les rayons 61 et 64 sont séparés d'une distance dqύi dépend des paramètres n et e suivant les relations : n s\n(Qint) = s\n(θext) et d = 2 etan(Qint) cosβext) = G1.p/2. Le substrat 26 comprend des bandes 25 de déphasage λ/2 parallèles à l'axe x qui changent la polarisation. Chacune des bandes est séparée d'une bande voisine de la distance d et est elle-même de largeur d. Il est positionné de sorte que le rayon 61 traverse le substrat 26 sans traverser les bandes 25 et de sorte qu'en revanche, le rayon 64 traverse les bandes 25 pour que sa polarisation soit modifiée puis la deuxième lentille 27 qui image la sortie du guide 21 sur l'imageur 16.
Selon une variante de réalisation de l'invention, les bandes 25 sont placées sur le trajet de la polarisation qui est réfléchie par la surface de polarisation du polariseur 23, la polarisation qui traverse cette surface n'éclairant pas les bandes 25. Ainsi, en fonction de l'orientation de la grille du polariseur 23 et du placement des bandes 25, la polarisation du faisceau d'illumination en sortie du substrat 26 est horizontale ou verticale. L'imageur 16 doit être orienté correctement en fonction de la polarisation du faisceau d'illumination qui l'éclairé.
Les sources virtuelles placées à l'entrée du guide 21 (sources 41 à 42 notamment) se focalisent à travers la première lentille 22 sur deux plans 65 et 67 légèrement décalés en fonction de la polarisation des rayons frappant le polariseur 23 :
- un premier plan 65 correspondant à la focalisation des rayons réfléchis par le polariseur 23 ; et
- un deuxième plan 67 correspondant à la focalisation des rayons qui traversent le polariseur 23.
Le décalage des plans correspond à la différence de chemin optique entre ces rayons soit Δ qui vérifie la relation :
Δ = 2n.e/cos(θ/rtfJ - 2 e.tan((Qint)/sin(θθxt)= 2eA:os(θint)*(n -1/n) Puisque préférentiellement la distance optique entre la surface de polarisation 23 du polariseur et la surface de réflexion 24 est relativement faible, la différence de chemin optique entre les deux polarisation est elle- même relativement faible et le décalage entre les plans de focalisation 65 et 67 l'est également. Les bandes λ/2 25 sont placées dans un plan 66 placé entre les plans de focalisation 65 et 67. Préférentiellement, le plan 66 est le plan médian des plans 65 et 67. Ainsi, les deux polarisations sont bien séparées spatialement au niveau des bandes 25. Par ailleurs, la première lentille 22 image la sontie du guide 21 à l'infini (la distance entre la lentille 22 et la sortie du guide est égale à F1 ).
Les distances séparant la lentille 27 et le plan des bandes 25, d'une part, et l'imageur 16, d'autre part, sont égales à la distance focale F2 : Plus précisément, l'imageur 16 est situé dans un premier plan de focalisation de la lentille 27 ; le deuxième plan de focalisation de la lentille 27 est situé entre les plans 65 et 67 de focalisation de la lentille 22, et préférentiellement dans le plan médian des plans 65 et 67. De cette manière, l'illumination sur l'imageur est optimisée.
Par ailleurs, l'angle Qext est préférentiellement compris entre 30 et
60°. Selon différentes variantes de l'invention, une large gamme de valeurs est possible. En effet, le polariseur à grilles présente l'avantage de conférer un contraste peu sensible aux angles d'incidences. Encore plus préférentiellement, l'angle Qext égal à 45 °
La géométrie du système d'illumination permet aussi de plier le faisceau d'illumination, ce qui limite son encombrement (notamment dans le cadre d'une utilisation dans un projecteur frontal ou dans un rétro-projecteur étroit). La valeur de Qext pourra donc avantageusement être choisie en fonction des contraintes d'encombrement propres à l'appareil de projection considéré.
La taille du substrat 26 est hs suivant l'axe x et // suivant l'axe y. La taille du substrat 26 est choisie en fonction du nombres de sources virtuelles l'éclairant.
A titre illustratif, les paramètres du système d'illumination peuvent être les suivants :
- d= 2.5mm ; - n = 1.5 (verre) ;
- e = 3.3mm ;
- et G1=0.55 pour p = 9mm (avec un guide de section 9mmx5,06mm).
Les dimensions du guide sont généralement fixées en partie par le format de l'imageur (3/4 ou 16/9eme par exemple), par la dimension du focus de la lampe pour avoir une bonne collection et les dimensions de l'imageur pour avoir un grandissement de l'ordre de 2 (d'autres grandissements sont possibles).
Un guide de faible section permet de travailler à étendue constante avec des grands angles (typiquement entre 15° et 25°).
Par ailleurs, la lampe 20 peut être relativement puissante. En effet, contrairement aux polariseurs PBS, le polariseur à grilles 23 résiste bien aux flux lumineux élevés.
En outre, un tel polariseur présente également l'avantage de conférer un contraste peu sensible aux longueurs d'ondes.
La figure 9 illustre un polariseur 90 qui peut être utilisé, selon l'invention, en remplacement du polariseur 23 et du miroir 24.
Le polariseur 90 comprend un polariseur à grille 91 similaire au polariseur 23 et un substrat 92, par exemple, en verre recouvert d'une surface réfléchissante 93 sur l'une de ses faces.
La figure 10 illustre un polariseur 95 qui peut également être utilisé, selon l'invention, en remplacement du polariseur 23 et du miroir 24.
Le polariseur 95 comprend un polariseur à grille 96 similaire au polariseur 23 et un substrat 98, par exemple, en verre. Le substrat 98 et le polariseur 96 sont séparés par une fine couche d'air 97. Le substrat 98 est recouvert d'une surface réfléchissante 99 sur l'une de ses faces, qui est de préférence celle commune avec la couche d'air 97. Bien entendu, l'invention ne se limite pas aux modes de réalisation décrits précédemment.
L'invention en particulier concerne différents types de projecteurs mettant en oeuvre un faisceau d'illumination avec lumière polarisée, notamment rétro-projecteurs ou projecteurs frontaux. En outre, ces projecteurs comprennent ou non un ou plusieurs miroirs de repli plans ou courbes.
Selon différentes variantes de l'invention, le système d'illumination est positionné ou orienté de différentes manières par rapport à l'imageur. Selon une variante préférée, il peut notamment subir une rotation ou 180° suivant l'axe du faisceau d'imagerie qui éclaire l'imageur. Dans le cadre d'une projection sur un écran 4/3 ou 16/9, ou plus généralement lorsque une dimension est plus grande que l'autre, le dédoublement des sources se fait préférentiellement suivant la plus grande dimension. Selon d'autres variantes, la rotation est égale à +/- 90°. Il peut également être plus ou moins éloigné de l'objectif de projection, l'objectif de projection étant adapté à la géométrie globale de la structure du projecteur ; l'objectif permet, notamment, de focaliser une image produite par l'imageur sur l'écran en limitant les distorsions. Néanmoins, l'objectif de projection est préférentiellement le plus proche possible de le système d'illumination. Selon une variante de l'invention, non représentée, la pluralité de sources lumineuses est obtenue à l'aide d'une pluralité de LEDs (Diode ElectroLuminescentes de l'anglais « Light Emitting Diods »), chacune des LEDs correspondant à une source lumineuse. Préférentiellement, chacune des LEDs est associée à des moyens optiques permettant d'éclairer uniformément l'imageur : il peut s'agir d'un réflecteur ou des moyens de collimation ou de collection appropriés.

Claims

REVENDICATIONS
1. Système d'illumination (10) destiné à éclairer un imageur
(16), ledit système comprenant une pluralité de sources d'illumination (40, 41 , 42) générant chacun des faisceaux d'illumination, dits faisceaux sources, comprenant des première et seconde polarisations distinctes, caractérisé en ce que le système comprend, en outre, un polariseur à grille (23, 90, 95) éclairé par lesdits faisceaux sources, un miroir (24), et des moyens de déphasage d'une demi -longueur d'onde (25) ; ladite première polarisation (64) de chacun desdits faisceaux sources, traversant la surface de polarisation dudit polariseur, avant d'être réfléchie par ledit miroir et de traverser à nouveau la surface de polarisation dudit polariseur ; ladite seconde polarisation (61 ) de chacun desdits faisceaux sources, étant réfléchie par la surface de polarisation dudit polariseur ; une seule desdites première ou seconde polarisations traversant lesdits moyens de déphasage après traversée de ladite surface de polarisation ou réflexion sur ladite surface de polarisation, lesdites première et seconde polarisations desdits faisceaux sources étant séparées spatialement.
2. Système selon la revendication 1 , caractérisé en ce qu'il comprend un guide de lumière (21) et une source lumineuse principale (20), lesdites soueees d'illumination étant obtenues par transmission, à travers ledit guide de lumière, d'un faisceau d'illumination généré par ladite source lumineuse principale.
3. Système selon la revendication 1 , caractérisé en ce que ledit guide de lumière est un barreau intégrateur.
4, Système selon la revendication 1 , caractérisé en ce qu'il comprend une pluralité de diodes électroluminescentes, chacune desdites diodes étant associée à une desdites sources d'illumination.
5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la surface réfléchissante dudit miroir (24, 99) est parallèle à la surface de polarisation dudit polariseur (23).
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit polariseur à grille comprend un substrat transparent dont une face (23) forme ladite surface de polarisation dudit polariseur et l'autre face (24) forme la surface réfléchissante dudit miroir.
7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend un premier groupe de lentilles (22) comprenant au moins une lentille de focalisation située entre lesdites sources d'illumination et ledit polariseur, lesdits moyens de déphasage étant situés
5 dans un plan (66) placé entre les deux plans (65, 67) de focalisation desdites sources d'illumination par ledit premier groupe, chacun des deux plans de focalisation correspondant soit à ladite première polarisation soit à ladite seconde polarisation.
8. Système selon la revendication 7, caractérisé en ce qu'il 10 comprend un second groupe de lentilles (27) et ledit imageur (16) placé dans un premier plan de focalisation dudit second groupe de lentilles, le second plan de focalisation dudit second groupe de lentilles étant placé entre les deux plans de focalisation (65, 67) desdites sources d'illumination par ledit premier groupe.
15 9. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que lesdits moyens de déphasage comprennent un substrat dont l'une des faces comportent des bandes de déphasage d'une demi- longueur d'onde.
10. Projecteur comportant : 20 - un système d'illumination selon l'une quelconque des revendications 1 à 9 ;
& - un imageur éclairé par ledit système d'illumination ; et
- un objectif de projection.
25
PCT/EP2005/053032 2004-07-02 2005-06-28 Systeme d’illumination pour imageur et projecteur correspondant WO2006003149A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/630,006 US20080024728A1 (en) 2004-07-02 2005-06-28 Imager Illumination System and Corresponding Projector
JP2007518609A JP2008507717A (ja) 2004-07-02 2005-06-28 イメージャの照明系及び対応する投射器
EP05758665A EP1763696A1 (fr) 2004-07-02 2005-06-28 Systeme d'illumination pour imageur et projecteur correspondant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR04/51427 2004-07-02
FR0451427A FR2872588A1 (fr) 2004-07-02 2004-07-02 Systeme d'illumination pour imageur et projecteur correspondant

Publications (1)

Publication Number Publication Date
WO2006003149A1 true WO2006003149A1 (fr) 2006-01-12

Family

ID=34946039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/053032 WO2006003149A1 (fr) 2004-07-02 2005-06-28 Systeme d’illumination pour imageur et projecteur correspondant

Country Status (6)

Country Link
US (1) US20080024728A1 (fr)
EP (1) EP1763696A1 (fr)
JP (1) JP2008507717A (fr)
CN (1) CN1977208A (fr)
FR (1) FR2872588A1 (fr)
WO (1) WO2006003149A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402017A (zh) * 2010-09-08 2012-04-04 华新丽华股份有限公司 偏振光转换系统
CN103713451B (zh) 2012-09-28 2016-06-22 扬明光学股份有限公司 多重投影系统以及使用该系统的显示系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751480A (en) * 1991-04-09 1998-05-12 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
EP1003064A1 (fr) * 1998-06-04 2000-05-24 Seiko Epson Corporation Dispositif d'eclairage, dispositif optique et affichage a cristaux liquides
US6139157A (en) * 1997-02-19 2000-10-31 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
US6190013B1 (en) * 1997-07-03 2001-02-20 Minolta Co., Ltd. Polarized beam splitter and an illumination optical system and a projector provided with a polarized beam splitter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387388B2 (en) * 2004-04-15 2008-06-17 Jds Uniphase Corporation Illumination system using polarization conversion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751480A (en) * 1991-04-09 1998-05-12 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
US6139157A (en) * 1997-02-19 2000-10-31 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
US6190013B1 (en) * 1997-07-03 2001-02-20 Minolta Co., Ltd. Polarized beam splitter and an illumination optical system and a projector provided with a polarized beam splitter
EP1003064A1 (fr) * 1998-06-04 2000-05-24 Seiko Epson Corporation Dispositif d'eclairage, dispositif optique et affichage a cristaux liquides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANSEN D ET AL: "INVITED PAPER: THE DISPLAY APPLICATIONS AND PHYSICS OF THE PROFLUX WIRE GRID POLARIZER", 2002 SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS. BOSTON, MA, MAY 21 - 23, 2002, SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, SAN JOSE, CA : SID, US, vol. VOL. 33 / 1, 21 May 2002 (2002-05-21), pages 730, XP009029129 *

Also Published As

Publication number Publication date
JP2008507717A (ja) 2008-03-13
FR2872588A1 (fr) 2006-01-06
CN1977208A (zh) 2007-06-06
US20080024728A1 (en) 2008-01-31
EP1763696A1 (fr) 2007-03-21

Similar Documents

Publication Publication Date Title
EP0547949B1 (fr) Séparateur de polarisation optique et application à un système de visualisation
EP0030875B1 (fr) Dispositif d'éclairage pour grand écran
FR2758890A1 (fr) Dispositif optique de polarisation
FR2665773A1 (fr) Dispositif de projection d'images utilisant deux composantes orthogonales de polarisation de la lumiere.
WO2014033035A1 (fr) Dispositif optique comportant un guide optique et procede de fabrication d'un tel dispositif
EP0778700B1 (fr) Perfectionnement au système de projection
EP0740477B1 (fr) Dispositif de séparation de polarisation et application à un système d'éclairement d'un écran à cristal liquide
FR2883645A1 (fr) Systeme d'imagerie pour projecteur et projecteur correspondant
FR2978564A1 (fr) Dispositif pour la polarisation d'une sequence video a visionner en stereoscopie
WO2020216914A1 (fr) Systeme de mesure par deflectometrie
EP0757274B1 (fr) Dispositif optique de polarisation et système de projection à valve à cristaux liquides utilisant un tel dispositif optique
EP0549406B1 (fr) Séparateur optique de polarisation et application à un système de visualisation
EP0740476B1 (fr) Dispositif de séparation de polarisations et application à un système d'éclairement d'un écran à cristal liquide
EP1763696A1 (fr) Systeme d'illumination pour imageur et projecteur correspondant
EP0104114B1 (fr) Dispositif viseur à miroir holographique, et procédé de fabrication du miroir
BE898150A (fr) Système de détection de rayonnement infrarouge.
WO2005008301A1 (fr) Dispositif d’eclairage a recyclage de polarisation dans un double prisme
EP0740169A1 (fr) Dispositif d'éclairement
EP0738077A2 (fr) Téléviseur ou moniteur vidéo compact du type à rétroprojection
FR2880699A1 (fr) Retroprojecteur de faible encombrement
FR2693561A1 (fr) Source de lumière polarisée et rétroprojecteur utilisant cette source.
FR2878626A1 (fr) Systeme optique et element optique correspondant
FR2533326A1 (fr) Dispositif viseur a champ instantane agrandi comportant un miroir et procede de fabrication de ce miroir
FR2654844A1 (fr) Dispositif de polarisation de la lumiere.
BE426070A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005758665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7569/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11630006

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580021660.7

Country of ref document: CN

Ref document number: 2007518609

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005758665

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005758665

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11630006

Country of ref document: US