WO2006001417A1 - Functional silica particle and use thereof - Google Patents

Functional silica particle and use thereof Download PDF

Info

Publication number
WO2006001417A1
WO2006001417A1 PCT/JP2005/011731 JP2005011731W WO2006001417A1 WO 2006001417 A1 WO2006001417 A1 WO 2006001417A1 JP 2005011731 W JP2005011731 W JP 2005011731W WO 2006001417 A1 WO2006001417 A1 WO 2006001417A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
xylenol orange
amino
silica
silica particles
Prior art date
Application number
PCT/JP2005/011731
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Miyoshi
Original Assignee
Techno Network Shikoku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku Co., Ltd. filed Critical Techno Network Shikoku Co., Ltd.
Priority to JP2006528665A priority Critical patent/JP4820963B2/en
Publication of WO2006001417A1 publication Critical patent/WO2006001417A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds

Definitions

  • the present invention relates to functional silica particles and uses thereof. More specifically, the present invention relates to a novel functional silica particle that expresses new characteristics by fixing a specific compound to the silica particle, and its use.
  • Patent Document 2 Wehry, E.L-; Rogers, L.B.In Fluorescence and Phosphorescence Analysis; Hercules, D.M..Ed .; Interscience: New York, 1966; pp81—149.
  • Non-Patent Document 3 Keith, AD; Snipes, W .; Metlhorn, RJ; Gunter, T. Factors Resrictin g Diffusion of Water-soluble Spin Labels; Biophysicaljournal 1977 (19); pp205-218.
  • Non-Patent Document 4 Imhof, A.; Megens, M.; Engelberts, JJ; Lang, DTN ;; Sprik, R.; Vos, W ⁇ ; Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres; J. Phys. Chem. B1999 (103); ppl408-1415.
  • FITC Fluorescein
  • the present invention is novel and powerful by using methyl viologen, xylenol orange, or 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) as the molecule. It aims at providing the functional material which expressed the special characteristic.
  • an object of the present invention is to provide functional silica particles that can be used effectively in the nano-region and micro-region as the functional material.
  • the present inventor has intensively studied day and night.
  • the silica particles are subjected to methyl viologen, xylenol orange, or 4-amino- (2,3,6,6-tetramethyl-
  • silica particles having new functions that are inherent in these compounds can be obtained, or the functions of these compounds can be further improved. It has been found that silica particles that can be more effectively exhibited are obtained, and it has been confirmed that these are extremely useful materials as functional silica particles.
  • the present invention has been completed based on hard knowledge.
  • the present invention firstly relates to a group consisting of methyl viologen, xylenolene diene, and 4-amino- (2,3,6,6-tetramethyl-1-piveridyl-loxy) in silica nanoparticles.
  • the gist is functional silica particles containing one kind of compound whose force is also selected.
  • Powerful functional silica particles can be classified into the following (1) to (3):
  • the functional silica nanoparticles have the following characteristics: (a) having fluorescence, (b) being colorless and transparent to yellow when irradiated with ultraviolet rays in the presence of oxygen, and (c) being excited by ultraviolet irradiation and having a long excitation Z fluorescence wavelength. It can be mentioned that the wavelength shifts to the wavelength side.
  • the characteristics of the functional silica particles are as follows: (d) yellow under acidic conditions and red under alkaline conditions And (e) a purple color due to the presence of Fe 3+ under acidic conditions.
  • the functional silica particles are red in the presence of alkali regardless of the presence or absence of Fe 3+ .
  • the functional silica particles are characterized by having stable (f) radicals by stably including “4-amino Tempo” in the protected state in the silica layer. .
  • the present invention provides the following methods for producing the functional silica particles: methyl viologen, xylenol orange, and 4-amino- (2,3,6,6-tetramethyl-1-
  • One compound selected from the group consisting of (Pyberidi-Loxy) is mixed with (3-thiocyanatepropyl) triethoxysilane, and then mixed with tetraethylorthosilicate in the presence of ammonia in The method for producing functional silica particles according to any one of the above (1) to (3).
  • the methyl viologen Zsio particles of the present invention are fine particles (silica particles) formed from silica.
  • the immobilization mode is not particularly limited as long as methyl viologen molecules are incorporated in the silica particles.
  • Silica particles are formed in layers of silica (SiO 2)
  • a mode in which a plurality of methylviologens are present between the layers of the silica particles can be exemplified.
  • it is not limited to this.
  • the size of the methyl viologen ZSiO particles of the present invention is not particularly limited, depending on the purpose.
  • Ruviologen ZSiO particles with a nano-order particle size (diameter) of several nm to several hundred nm
  • the particle size can be freely adjusted as desired, for example, as a nanoparticle having a particle size, or as a microparticle having a particle size (diameter) on the order of several tens / zm to ten / zm. be able to.
  • Preferred methyl viologen ZSiO particles have a nanoparticle diameter.
  • nanoparticles for example, a diameter of 2 to 1000 nm, preferably a diameter of 2 to 100 nm, more preferably about 5 to 60 nm, and even more preferably a diameter of 10 to Silica nanoparticles having a diameter of about 40 nm, more preferably about 15 to 30 nm, and particularly preferably about 20 to 30 nm can be mentioned.
  • the silica particles may contain a plurality of methyl viologen molecules.
  • methyl viologen molecules For example, when silica nanoparticles having a diameter of 30 nm are taken as an example, 1 to 5 molecules, preferably 5 to 10 molecules, more preferably about 15 molecules of methyl viologen molecules can be contained in one particle. In the case of particles containing 15 molecules of methyl viologen in one particle, the concentration of the methyl viologen in the particle is about 1.8 mM.
  • Methyl viologen also known as paraquat
  • Methyl viologen is a known compound represented by the following formula.
  • the methyl viologen itself has the following properties (a) to (c) by allowing the silica particles to retain a force that is a colorless and transparent compound having no fluorescence. Become.
  • the maximum peak wavelength (357 nm Z430 nm) of the excitation light Z emission before irradiation is shifted to the longer wavelength side.
  • the shift width toward the long wavelength side can be adjusted by changing the proportion of methylviologen retained in the silica particles.
  • the methyl viologen ZSiO particles of the present invention can be irradiated by ultraviolet irradiation.
  • methyl viologen radical the reduced form of methyl viologen is called a methyl viologen radical, and it is known that an oxygen molecule is easily reduced in vivo to generate an active oxygen radical (Bruemnn, DW; Fisher, Jan., E .; Henglein, A .; The Two-electron Oxidation of Methyl Viologen; J. Chem. Soc. Faraday Trans. 1, 1987 (83); pp 2559-2571.).
  • tumor radiotherapy involves irradiating a tumor site with ⁇ -rays to destroy the tumor by radicals generated by radiolysis of water around the tumor or by high energy directly from ⁇ -rays. is there.
  • methyl viologen ZSiO 2 particles of the present invention which is washed only with water, are taken into the tumor site, methyl viologen ZSiO particles in addition to radicals generated by the decomposition of water by the irradiated ⁇ -rays.
  • the methylviologen ZSiO particles of the present invention are used as a sensitizer for ⁇ -ray irradiation in radiotherapy.
  • ESR-CT is known as a device for non-invasively measuring radicals generated in vivo.
  • ESR-CT is used to track radicals in living organisms.
  • Can For example, labeling a target drug with methylviologen Zsio particles
  • the methyl viologen ZSiO particles of the present invention first contain methyl viologen (3-thiocyanate).
  • Topropyl) triethoxysilane and then mixed with tetraethylorthosilicate in the presence of an aqueous ammonia solution as a catalyst for silica particle formation.
  • a high concentration of methylviologen in the silica particles (for example, a nanoparticle having a particle diameter of 30 nm).
  • the particles can be fixed at a ratio of 15 molecules / particle or more, and preferably a ratio of 5 molecules / particle or more to nanoparticles having a particle size of 20 nm.
  • this operation can be performed by dissolving methyl viologen in a dimethyl sulfoxide solution and mixing it with (3-thiocyanate propyl) triethoxysilane.
  • the mixing ratio of methylviologen and (3-thiocyanatepropyl) triethoxysilane for example, the mixing ratio of (3-thiocyanatepropyl) triethoxysilane to 2.5 mg of methylviologen is usually 0.5 to A ratio of about 1 ⁇ 1, preferably 1 to 21 and more preferably about 2.31 can be exemplified.
  • the mixing ratio of (3-thiocyanatepropyl) triethoxysilane used per 1 mol of methylviologen is usually 0.5 to 1 mol, preferably 1 About 2 mol, more preferably about 1 mol can be mentioned.
  • the mixing conditions are not particularly limited.
  • the room temperature can usually be raised as the mixing temperature.
  • Other mixing conditions are not particularly limited, but it is preferable to mix well for about 20 to 24 hours while stirring.
  • reaction solution is mixed with tetraethyl orthosilicate.
  • the reaction in this case is a polycondensation reaction of tetraethylorthosilicate to form silica particles.
  • This reaction (silica particle formation) should be performed in the presence of ammonia as a catalyst. Is preferred. Further, this reaction is preferably carried out in a hydrous alcohol, preferably a hydrous ethanol, as a solvent.
  • the alcohol concentration in the reaction system is not limited, and preferably about 80% by volume.
  • the proportion of tetraethyl orthosilicate used in the reaction is not particularly limited, but is 400 to 500 times, preferably 500 to 600 times the amount of methyl viologen used in the previous step 8.5 ⁇ mol / ml. It is preferable to use at a ratio of 500 times to 550 times, more preferably 500 to 550 times. In terms of the molar ratio, 400 to 500 moles, preferably 500 to 600 moles, more preferably 500 to 550 moles may be cited as a blending ratio of tetraethyl orthosilicate used for 1 mole of methylviologen. Can do.
  • Powerful mixing conditions are not particularly limited, but examples thereof include a method of sufficiently mixing for 20 to 24 hours with stirring under conditions of 20 to 25 ° C, for example.
  • the obtained reaction solution is subjected to solid-liquid separation using, for example, an ultrafiltration apparatus in which a membrane filter is set, and washed with water as necessary, whereby the methyl piorogen Zsio particles of the present invention are obtained. Can be obtained.
  • the xylenol orange / SiO particles of the present invention are fine particles formed from silica (silica
  • Particles are fixed with a plurality of xylenol orange molecules.
  • the manner of immobilization is not particularly limited as long as it exists in a form in which xylenol orange molecules are incorporated into silica particles!
  • the existence mode of xylenol orange molecules inside silica particles is the methylviologen Zsio particles described in (1).
  • a plurality of xylenol alcohols are formed between the layers of silica (SiO 2) forming the particles.
  • the size of the xylenol orange ZSiO particles of the present invention is not particularly limited and depends on the purpose.
  • xylenol orange ZSiO particles Nano-order from several nm to several hundred nm They can be prepared as nanoparticles with a single particle size (diameter), or as microparticles with a particle size (diameter) on the order of several micrometers to several tens of micrometers. The particle size can be adjusted freely.
  • the twins are nanoparticles (silica nanoparticles) having a diameter of the order of nanometers, and as such nanoparticles, for example, a diameter of 2 to 1000 nm, preferably a diameter of 2 to 100 nm, more preferably about 5 to 60 nm, More preferred are silica nanoparticles having a diameter of about 10 to 40 nm, more preferably about 15 to 30 nm, and particularly preferably about 20 to 30 nm.
  • the silica particles may contain a plurality of xylenol orange molecules.
  • xylenol orange molecules may contain 1 to 10 molecules, preferably 50 to 150 molecules, more preferably 100 to 150 molecules, and even more preferably 112 molecules of xylenol orange molecules are contained in one particle.
  • the concentration of xylenol orange in the particles is about 13 mM.
  • Xylenol orange is a known compound represented by the following formula.
  • Xylenol orange is a compound that has different properties depending on pH changes (yellow under acidity, red under alkali) and itself has a use as a pH indicator.
  • the silica nanoparticles have the same properties as shown in the following (d):
  • the xylenol orange Zsio particles of the present invention are nano-order and
  • the force can be contained inside the xylenol orange in a concentrated form without impairing its properties. It can be effectively used as a pH indicator in the measurement of pH and changes in pH in the micro region such as cells, microcells and fine tissues.
  • xylenol orange ZSiO particles can be produced under acidic conditions, for example Fe 2+
  • Fe 3+ In the absence also Fe 3+ in the case but the present exhibits a purple coordinated with F e 3+ in the presence of a force Fe 3+ that exhibits a yellow color. However, under alkaline conditions, Fe 3+ is red regardless of the presence or absence of Fe 3+ .
  • Such a phenomenon is caused by immobilizing xylenol orange on SiO particles to form Fe 3+ .
  • SiO particles can be used as a detection agent for Fe 3+ in cells, etc.
  • the xylenol orange ZSiO of the present invention has a radiation sensitivity as described below.
  • the xylenol orange / SiO particles of the present invention have xylenol orange molecules in one SiO particle.
  • the xylenol orange ZSiO particles of the present invention first have xylenol orange (3-thiol).
  • It can be prepared by mixing with cyanatepropyl) triethoxysilane and then mixing with tetraethylorthosilicate in the presence of aqueous ammonia as a catalyst for silica particle formation.
  • xylenol orange is mixed with (3-thiocyanatepropyl) triethoxy silane to increase the concentration of xylenol orange in silica particles (for example, more than 112 molecules Z particles or more in 30 nm nanoparticles). Can be fixed in proportion).
  • such an operation can be carried out by dissolving xylenol orange in a dimethyl sulfoxide solution and mixing it with (3-thiocyanatepropyl) triethoxysilane.
  • the mixing ratio of xylenol orange and (3-thiocyanatepropyl) triethoxysilane is, for example, xylenol orange 14 mol / ml, and (3-thiocyanatepropyl) triethoxysilane as a molar ratio of 0.5.
  • a method of mixing at a ratio of ⁇ 2, preferably 0.5 to 1.5, more preferably about 0.5 can be mentioned.
  • the mixing conditions are not particularly limited.
  • the room temperature can usually be raised as the mixing temperature.
  • Other mixing conditions are not particularly limited, but it is preferable to mix well for about 20 to 24 hours while stirring.
  • the obtained reaction solution is mixed with tetraethyl orthosilicate.
  • the reaction in this case is a polycondensation reaction of tetraethylorthosilicate to form silica particles.
  • This reaction (silica particle formation) is preferably carried out in the presence of ammonia as a catalyst. Further, such a reaction is preferably performed in a hydrous alcohol, preferably hydrous ethanol, as a solvent.
  • the alcohol concentration in the reaction system is not limited, but preferably about 80% by volume.
  • the ratio of tetraethyl orthosilicate used in the reaction is not limited !, but it is preferably 200 to 500 times the amount of xylenol orange used in the previous step, 7 ⁇ mol / ml. Is preferably used in a ratio of 500 to 700 times, more preferably 600 to 650 times. When this is shown by molar ratio, the proportion of tetraethyl orthosilicate used per mole of xylenol orange is 200 to 500 moles, preferably 500 to 700 moles, more preferably 600 to 650 moles.
  • Powerful mixing conditions are not particularly limited. For example, while stirring at 20 to 25 ° C, 2
  • a method of sufficiently mixing for about 0 to 24 hours can be exemplified.
  • the xylenol orange ZSiO particles of the present invention are then separated by solid-liquid separation of the obtained reaction liquid using, for example, an ultrafiltration device with a membrane filter set, and washing with water as necessary. Can be obtained.
  • the 4-amino tempoZSiO particles of the present invention are fine particles (silica particles) formed from silica.
  • a plurality of 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) [4-amino tempo] molecules are fixedly attached to each other.
  • the form of the anchor is not particularly limited as long as it is present in the form in which 4-amino Tempo molecules are incorporated inside the silica nanoparticles! / ⁇ .
  • the presence mode of 4-amino tempo molecules in silica nanoparticles is similar to the methyl viologen ZSiO particles described in (1), and the SiO layer that forms the particles.
  • the size of the 4-amino tempoZSiO particles of the present invention is not particularly limited, and is suitable according to the purpose.
  • the particle size can be freely adjusted as desired, for example, as a microparticle, or as a microparticle having a microorder particle size (diameter) of several / zm to several tens / zm.
  • the preferred 4-amino tempo / SiO particles are nano-sized in diameter.
  • Particles for example, having a diameter of 2 to 1000 nm, preferably 2 to 100 nm, more preferably about 5 to 60 nm, even more preferably about 10 to 40 nm, and even more preferably.
  • Examples thereof include silica nanoparticles having a diameter of about 15 to 30 nm, particularly preferably a diameter of about 20 to 30 nm.
  • the silica particles can contain a plurality of 4-amino tempo molecules.
  • one particle can contain 1 to 100 molecules, preferably 100 to 200 molecules, more preferably about 150 molecules of 4-amino tempo molecules.
  • the concentration of 4-amino tempo in the particles is about 17 mM.
  • the 4_amino Tempo molecule is a radical molecule, and as such is a compound having a use as a labeling reagent.
  • the 4-amino tempoZSiO particles of the present invention have 4-
  • the 4-amino tempo ZSiO particles of the present invention are prepared by first producing 4-amino tempo (3-thiocyanate).
  • It can be prepared by mixing with oral pill) triethoxysilane and then with tetraethylorthosilicate in the presence of aqueous ammonia as a catalyst for silica particle formation.
  • 4-amino tempo is mixed with (3-thiocyanatepropyl) triethoxysilane to give a high concentration of 4-amino tempo (for example, as 30-particle particles). It can be fixed at a ratio of 150 molecules Z particles or more.
  • This operation is specific Specifically, it can be carried out by dissolving 4-amino tempo in a dimethyl sulfoxide solution and mixing it with (3-thiocyanatepropyl) triethoxysilane.
  • the blending ratio of 4-amino tempo and (3-thiocyanatepropyl) triethoxysilane is, for example, 7 mol / ml of 4-amino tempo molecule, (3-thiocyanatepropyl) triethoxysilane.
  • the mixing conditions are not particularly limited.
  • the room temperature can usually be raised as the mixing temperature.
  • Other mixing conditions are not particularly limited, but it is preferable to mix well for about 20 to 24 hours while stirring.
  • the obtained reaction liquid is mixed with tetraethyl orthosilicate.
  • the reaction in this case is a polycondensation reaction of tetraethylorthosilicate to form silica particles.
  • This reaction (silica particle formation) is preferably carried out in the presence of ammonia as a catalyst. Further, such a reaction is preferably performed in a hydrous alcohol, preferably hydrous ethanol, as a solvent.
  • the alcohol concentration in the reaction system is not limited, but preferably about 80% by volume.
  • the ratio of tetraethyl orthosilicate used in the reaction is not limited, but it is 200 to 400 times, preferably 400 to 550, with respect to the amount of 4-amino tempo used in the previous step of 7 mol / ml. It is preferably used at a ratio of 550 to 600 times.
  • the proportion of tetraethyl orthosilicate used relative to 4-amino tempol mole is 200 to 400 moles, preferably 400 to 550 moles, more preferably 550 to 600 moles. be able to.
  • vigorous mixing conditions are not particularly limited, for example, a method of sufficiently mixing for about 20 to 24 hours with stirring under conditions of 20 to 25 ° C can be exemplified.
  • reaction solution is subjected to solid-liquid separation using, for example, an ultrafiltration apparatus in which a membrane filter is set, and washed with water as necessary, whereby the 4-amino tempo of the present invention is obtained. / SiO particles can be obtained.
  • methyl viologen, xylenol orange, or 4-amino- (2,3,6,6 -Tetramethyl-tobiberidi-loxy) can be retained stably and at a high concentration in silica particles, and as a result, a new function or characteristic that cannot be obtained by each of the above molecules alone can be obtained. It became possible.
  • FIG. 1 A first figure.
  • FIG. 2 is a diagram comparing the excitation Z fluorescence spectra of methyl viologen ZSiO 2 particles before irradiation with ultraviolet rays (dotted line) and after irradiation with ultraviolet rays (solid line) in Example 1.
  • the vertical axis represents fluorescence intensity (Intensity), and the horizontal axis represents wavelength (Wavelength: nm).
  • FIG. 3 shows an absorption spectrum of xylenol orange ZSiO particles in Example 2.
  • the vertical axis represents the absorbance
  • the horizontal axis represents the wavelength (wavelength).
  • b is the spectrum before ⁇ -ray irradiation
  • a is the spectrum after ⁇ -ray irradiation.
  • the dotted line is the spectrum of the aqueous solution before ⁇ -ray irradiation
  • the solid line is the spectrum of the aqueous solution after ⁇ -ray irradiation.
  • reaction solution 3 ml of ethanol, 0.1 ml of tetraethylorthosilicate (TEOS), 1 ml of distilled water, and 0.1 ml of 30% by volume aqueous ammonia solution are added to 1 ml of this reaction solution, and stirred at about 25 ° C. for about 1 day. Mixed. Thereafter, the obtained reaction solution was filtered using an ultrafiltration apparatus in which an Amicon YM-100 membrane filter (Amicon, pore size: 15 nm) was set, and methyl viologen ZSiO particles (particle size: 20
  • the absorbance was measured and found to be 0.072. Since the molecular extinction coefficient is 204170, the concentration is 10.5 ⁇ . Since 20 ml of this solution was obtained, it becomes 0.21 ⁇ mol per 20 ml. Therefore, as a 30 nm particle, the methyl viologen concentration in the particle is about 1.8 mM. Until now, there have been known examples of methyl viologen molecules immobilized on silica nanoparticles at such concentrations.
  • It can be used as a fluorescent label that emits fluorescence in the visible light region.
  • UV light was irradiated for about 10 minutes, and fluorescence was measured again. Then, it was observed that the aqueous solution was colored yellow, and as shown in Table 1 and FIG. 2, the excitation light and the emission wavelength were shifted to the longer wavelength side.
  • the forceful methyl viologen ZSiO particles are the amount of methyl viologen molecules to be encapsulated.
  • the shift wavelength of the fluorescence wavelength after UV irradiation can be changed and the amount of electrons captured per particle can be increased, so it is effective as a wavelength selective fluorescent label for cells, etc., for 400-500 nm fluorescence. It is thought that it can be used.
  • reaction solution 2 ml was mixed with 6 ml of ethanol, 0.1 ml of tetraethylorthosilicate (TEOS), 2 ml of distilled water, and 0.2 ml of 30% by volume aqueous ammonia solution at about 25 ° C.
  • TEOS tetraethylorthosilicate
  • the resulting reaction solution was filtered using an ultrafiltration device in which an Amicon YM-100 membrane filter (Amicon, pore size: 15 nm) was set, Xylenol orange ZSiO grains (Grain
  • a plurality of xylenol orange molecules are formed between each layer of particles formed by SiO. Is considered to have a form of inclusion.
  • the absorbance at m was measured to be 2.173 (Fig. 3). Since the molecular extinction coefficient is 47000, 0.462 mM xylenol orange molecule was fixed in silica particles, that is, about 6.6% of xylenol orange used as a raw material was fixed in silica particles. confirmed. Therefore, the xylenol orange molecular concentration in the 30 nm particle is about 13 mM. To date, it is well known that xylenol orange molecules have been immobilized on silica nanoparticles at such concentrations.
  • xylenol orange As with xylenol orange, the color was yellow under acidic conditions (pH 7) and red under alkaline conditions (pH> 7). Xylenol orange itself is a pH indicator (yellow under acidic conditions and red under alkaline conditions). From the above, xylenol orange can be used as a pH indicator even when it is supported on SiO and concentrated. Confirm that it can be used
  • xylenol orange can be used as it is by supporting it on SiO.
  • xylenol orange ZSiO particles of the present invention for example, in vivo microparticles such as macrophages
  • Zero-protected xylenol orange can detect Fe 3+ in cells
  • Luorange ZSiO reagent aqueous solution is irradiated with about 10 Gy of ⁇ -ray at room temperature (60-Co y-ray irradiation device
  • 0.2 g / ml gelatin was mixed at a rate of 1 ml to 3 ml, and these aqueous solutions were irradiated with about 10 Gy of ⁇ rays (irradiated with a 60-Co y ray irradiation device for 30 minutes).
  • a color change (change from yellow to purple) was observed as a result of coordination of Fe 3+ produced by Fe 2+ by ⁇ -irradiation to xylenol orange as described above.
  • 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) [hereinafter referred to as “4-amino Tempo”] (manufactured by Aldrich) 0.9 mg of lml of dimethyl sulfoxide ( In (DMSO), the (3-thioocyanatopropyl) triethoxysilane ((3-Thiocyanatopropyl) triethoxysilane) stock solution was mixed with a solution 18 1 diluted 10-fold with DMSO, and this was mixed. The mixture was stirred at 25 ° C for about 1 hour.
  • DMSO dimethyl sulfoxide
  • 3-thioocyanatopropyl) triethoxysilane ((3-Thiocyanatopropyl) triethoxysilane) stock solution was mixed with a solution 18 1 diluted 10-fold with DMSO, and this was mixed. The mixture was stirred at 25 ° C for about 1 hour.
  • reaction solution 0.05 ml, ethanol 3.95 ml, tetraethylorthosilicate (TEOS) 0.05 ml, of distilled water lml, and 30 volume 0/0 aqueous ammonia 0.1ml pressurized
  • TEOS tetraethylorthosilicate
  • the mixture was stirred at about 25 ° C. for about 1 day.
  • the obtained reaction solution was filtered using an ultrafiltration apparatus in which an Amicon YM-100 membrane filter (Amicon, pore size: 15 nm) was set, and 4-amino TempoZSiO particles (particle size: 20- (30 nm)
  • 170 1 was collected in a quartz flat cell for measuring aqueous solutions (JEOL DATUM LC12), and electron spin resonance (ESR) spectra were measured at room temperature (JEOL TE-300 [X-band ]use). The result is shown in FIG.
  • the peak interval was 17.2 gauss, which was slightly larger than the peak interval (15 gauss) when 4-amino Tempo itself was measured in the same manner. This is because the free rotation of the radical (4-Amino Tempo) is suppressed, that is, 4-Amino Tempo is converted into SiO.
  • a plurality of 4-amino tempo molecules are formed between each layer of particles formed by SiO layers.
  • 4-amino TempoZ SiO particles are effective as a labeling reagent for evaluating the kinetics of drug metabolism in vivo.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

Disclosed is a functional silica particle which can be effectively used in nano-sized regions or micro-sized regions. Also disclosed is a method for producing such a functional silica particle. Specifically disclosed is a functional silica particle wherein one compound selected from the group consisting of methyl viologen, xylenol orange and 4-amino-(2,3,6,6-tetramethyl-1-piperidinyloxy) is contained in a silica particle. Such a functional silica particle can be produced by a method including a step wherein the above-mentioned one compound is mixed with (3-thiocyanatepropyl)triethoxysilane and then further mixed with tetraethylorthosilicate in the presence of ammonia.

Description

明 細 書  Specification
機能性シリカ粒子及びその用途  Functional silica particles and uses thereof
技術分野  Technical field
[0001] 本発明は、機能性シリカ粒子及びその用途に関する。より詳細には、本発明は特定 の化合物をシリカ粒子に固定ィ匕することによって、新たな特性を発現してなる新規機 能性シリカ粒子、並びにその用途に関する。  [0001] The present invention relates to functional silica particles and uses thereof. More specifically, the present invention relates to a novel functional silica particle that expresses new characteristics by fixing a specific compound to the silica particle, and its use.
背景技術  Background art
[0002] 従来、信号強度を得るための色素分子の高濃度化は、会合体や凝集体の生成を 引き起こし、色素分子自身の特性とは異なった好ましくない特性を引き起こしていた 。それは、例えば蛍光分子であれば濃度消光であり、色素であれば凝集形成による 吸収の変化であり、安定ラジカルであればスピンスピン相互作用による ESRピークの ブロード化、それによる強度低下であった (例えば、非特許文献 1〜3参照のこと)。  Conventionally, increasing the concentration of a dye molecule for obtaining signal intensity has caused the formation of aggregates and aggregates, which has caused undesirable properties that are different from the properties of the dye molecules themselves. For example, in the case of fluorescent molecules, concentration quenching, and in the case of dyes, absorption changes due to aggregation formation, and in the case of stable radicals, ESR peaks are broadened due to spin-spin interaction, resulting in intensity reduction ( For example, see Non-Patent Documents 1 to 3.)
[0003] 色素分子を高濃度化する一つの方法として、色素を何らか支持体に固定化する方 法が考えられる。力かる支持体として、種々のガラスビーズが提案されている(例えば 、非特許文献 4参照のこと)。  [0003] As one method for increasing the concentration of dye molecules, a method of immobilizing some dye on a support can be considered. Various glass beads have been proposed as a strong support (see, for example, Non-Patent Document 4).
[0004] し力しながらそれらは、粒子サイズがマイクロメーター以上と大きぐ所望の大きさに 調整できな!/、ので、例えばナノ領域やマイクロ領域での使用はできな!、と!/、う短所が ある。 [0004] However, they cannot be adjusted to the desired size with particle sizes larger than micrometer! /, So for example, they cannot be used in the nano- or micro-region! There are disadvantages.
¥ af .l '■ Ferrer, M. L.; Monte, F.;Levy,D.. Rhodamine 19 Fluorescent Dimers Resulting from Dye aggregation on the Porous Surface of Sol-Gel Silica Glasses; Lan gmuir (19) 2003;pp2782-2786.  ¥ af .l '■ Ferrer, ML; Monte, F.; Levy, D .. Rhodamine 19 Fluorescent Dimers Resulting from Dye aggregation on the Porous Surface of Sol-Gel Silica Glasses; Lan gmuir (19) 2003; pp2782-2786.
特許文献 2 :Wehry,E.L -; Rogers, L.B. In Fluorescence and Phosphorescence Anal ysis; Hercules, D.M..Ed.; Interscience: New York, 1966;pp81— 149.  Patent Document 2: Wehry, E.L-; Rogers, L.B.In Fluorescence and Phosphorescence Analysis; Hercules, D.M..Ed .; Interscience: New York, 1966; pp81—149.
非特許文献 3 : Keith, A. D.; Snipes, W.;Metlhorn, R.J.;Gunter, T. Factors Resrictin g Diffusion of Water-soluble Spin Labels; Biophysicaljournal 1977(19);pp205-218. 非特許文献 4 : Imhof,A.;Megens,M.;Engelberts,J.J.; Lang,D.T.N.;;Sprik,R.;Vos,W丄. ; Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres; J. Phys. Chem. B1999(103);ppl408-1415. Non-Patent Document 3: Keith, AD; Snipes, W .; Metlhorn, RJ; Gunter, T. Factors Resrictin g Diffusion of Water-soluble Spin Labels; Biophysicaljournal 1977 (19); pp205-218. Non-Patent Document 4: Imhof, A.; Megens, M.; Engelberts, JJ; Lang, DTN ;; Sprik, R.; Vos, W 丄; Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres; J. Phys. Chem. B1999 (103); ppl408-1415.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、上記分子としてメチルビオロゲン、キシレノールオレンジ、または 4-ァミノ -(2,3,6,6-テトラメチル -1-ピベリジ-ルォキシ)を利用することにより、新規でし力も有 用な特性を発現した機能性材料を提供することを目的とする。特に本発明は、当該 機能性材料として、ナノ領域やマイクロ領域で有効に使用できる、機能性シリカ粒子 を提供することを目的とする。 [0005] The present invention is novel and powerful by using methyl viologen, xylenol orange, or 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) as the molecule. It aims at providing the functional material which expressed the special characteristic. In particular, an object of the present invention is to provide functional silica particles that can be used effectively in the nano-region and micro-region as the functional material.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者は、上記目的を達成するために日夜鋭意検討して 、たところ、シリカ粒子 にメチルビオロゲン、キシレノールオレンジ、または 4-ァミノ- (2,3, 6,6-テトラメチル -1- ピベリジ-ルォキシ)といったィ匕合物を固定ィ匕することによって、これらの化合物が本 来有さな 、新たな機能を有するシリカ粒子が得られるか、またはこれらの化合物の機 能をより一層効果的に発揮し得るシリカ粒子が得られることを見いだし、これらがいず れも機能性シリカ粒子として極めて有用な材料となることを確認するに至った。 [0006] In order to achieve the above-mentioned object, the present inventor has intensively studied day and night. As a result, the silica particles are subjected to methyl viologen, xylenol orange, or 4-amino- (2,3,6,6-tetramethyl- By fixing compounds such as (1-piberidyl-loxy), silica particles having new functions that are inherent in these compounds can be obtained, or the functions of these compounds can be further improved. It has been found that silica particles that can be more effectively exhibited are obtained, and it has been confirmed that these are extremely useful materials as functional silica particles.
[0007] 本発明は、力かる知見に基づいて完成したものである。 [0007] The present invention has been completed based on hard knowledge.
[0008] すなわち、本発明は第 1に、シリカナノ粒子内に、メチルビオロゲン、キシレノールォ レンジ、及び 4-ァミノ- (2,3,6,6-テトラメチル -1-ピベリジ-ルォキシ)よりなる群力も選 択される 1種の化合物を含有してなる、機能性シリカ粒子を要旨とするものである。  That is, the present invention firstly relates to a group consisting of methyl viologen, xylenolene diene, and 4-amino- (2,3,6,6-tetramethyl-1-piveridyl-loxy) in silica nanoparticles. The gist is functional silica particles containing one kind of compound whose force is also selected.
[0009] 力かる機能性シリカ粒子は、下記(1)〜(3)に分類することができる:  [0009] Powerful functional silica particles can be classified into the following (1) to (3):
(1)シリカ粒子内に、メチルビオロゲンを含有する機能性シリカ粒子 (以下、便宜上 「メチルビオロゲン ZSiO粒子」とも!/、う)  (1) Functional silica particles containing methyl viologen in the silica particles (hereinafter referred to as “methyl viologen ZSiO particles” for convenience! /)
2  2
当該機能性シリカナノ粒子の特性として、(a)蛍光を有する、(b)酸素存在下、紫外 線照射することにより無色透明から黄色に変色する、及び (c)紫外線照射により励起 Z蛍光波長が長波長側にシフトする、ことを挙げることができる。  The functional silica nanoparticles have the following characteristics: (a) having fluorescence, (b) being colorless and transparent to yellow when irradiated with ultraviolet rays in the presence of oxygen, and (c) being excited by ultraviolet irradiation and having a long excitation Z fluorescence wavelength. It can be mentioned that the wavelength shifts to the wavelength side.
[0010] (2)シリカ粒子内に、キシレノールオレンジを含有する機能性シリカ粒子(以下、便 一 2 [0010] (2) Functional silica particles containing xylenol orange in silica particles (hereinafter referred to as feces 1)
当該機能性シリカ粒子の特性として、(d)酸性下で黄色、アルカリ下で赤色を呈す る、及び (e)酸性下で Fe3+の存在により紫色を呈する、ことを挙げることができる。な お、機能性シリカ粒子は、アルカリ下では Fe3+の存在の有無に関わらず赤色を呈し ている。 The characteristics of the functional silica particles are as follows: (d) yellow under acidic conditions and red under alkaline conditions And (e) a purple color due to the presence of Fe 3+ under acidic conditions. The functional silica particles are red in the presence of alkali regardless of the presence or absence of Fe 3+ .
[0011] (3)シリカ粒子内に、 4-ァミノ- (2,3,6,6-テトラメチル -1-ピベリジニルォキシ)を含有 する機能性シリカ粒子(以下、便宜上「4-ァミノ TempoZSiO粒子」ともいう)  [0011] (3) Functional silica particles containing 4-amino- (2,3,6,6-tetramethyl-1-piberidinyloxy) in silica particles (hereinafter referred to as “4-amino” for convenience) Also called “TempoZSiO particles”)
2  2
当該機能性シリカ粒子の特徴として、内部に「4-ァミノ Tempo」をシリカ層に保護され た状態で安定に包含することによって、安定した (f)ラジカルを有する、ことを挙げるこ とがでさる。  The functional silica particles are characterized by having stable (f) radicals by stably including “4-amino Tempo” in the protected state in the silica layer. .
[0012] 更に本発明は、上記機能性シリカ粒子の製造方法として、下記の方法を提供する: メチルビオロゲン、キシレノールオレンジ、及び 4-ァミノ- (2,3, 6,6-テトラメチル- 1-ピ ベリジ-ルォキシ)よりなる群力も選択される 1種の化合物を、(3-チオシァネートプロ ピル)トリエトキシシランと混合し、次 、でアンモニアの存在下でテトラエチルオルソシリ ケートと混合する工程を有する、上記(1)〜(3)の 、ずれかに記載する機能性シリカ 粒子の製造方法。  Furthermore, the present invention provides the following methods for producing the functional silica particles: methyl viologen, xylenol orange, and 4-amino- (2,3,6,6-tetramethyl-1- One compound selected from the group consisting of (Pyberidi-Loxy) is mixed with (3-thiocyanatepropyl) triethoxysilane, and then mixed with tetraethylorthosilicate in the presence of ammonia in The method for producing functional silica particles according to any one of the above (1) to (3).
[0013] 以下、本発明につ 、て説明する。 Hereinafter, the present invention will be described.
[0014] (1)メチルビオロゲン ZSiO粒子 [0014] (1) Methylviologen ZSiO particles
2  2
本発明のメチルビオロゲン Zsio粒子は、シリカから形成される微粒子 (シリカ粒子  The methyl viologen Zsio particles of the present invention are fine particles (silica particles) formed from silica.
2  2
)に複数のメチルビオロゲン分子が固定ィ匕されてなるものである。固定化の態様は、 シリカ粒子の内部にメチルビオロゲン分子が取り込まれた形で存在して 、ればよぐ 特に制限されるものではない。シリカ粒子はシリカ(SiO )が幾層もの層をなして形成  ) Is fixed with a plurality of methyl viologen molecules. The immobilization mode is not particularly limited as long as methyl viologen molecules are incorporated in the silica particles. Silica particles are formed in layers of silica (SiO 2)
2  2
されている力 当該シリカ粒子内におけるメチルビオロゲン分子の存在様式としては Forces that exist as a form of methyl viologen molecules in the silica particles
、例えば図 1に示すように、シリカ粒子の当該層と層との間に、複数のメチルビオロゲ ンが存在している態様を例示することができる。但し、これに制限されるものではない For example, as shown in FIG. 1, a mode in which a plurality of methylviologens are present between the layers of the silica particles can be exemplified. However, it is not limited to this.
[0015] 本発明のメチルビオロゲン ZSiO粒子の大きさは、特に制限されず、 目的に応じて [0015] The size of the methyl viologen ZSiO particles of the present invention is not particularly limited, depending on the purpose.
2  2
適宜調整することができる。例えば、後述するメチルビオロゲン Zsio粒子の製造方  It can be adjusted appropriately. For example, how to produce methylviologen Zsio particles as described below
2  2
法にぉ 、て、アンモニア存在下でのテトラオルソシリケートとの反応回数を調整したり 、また当該反応に使用するテトラオルソシリケートの濃度を調整することによって、メチ ルビオロゲン ZSiO粒子を、数 nmから数百 nmといったナノオーダーの粒径(直径) By adjusting the number of reactions with tetraorthosilicate in the presence of ammonia, or by adjusting the concentration of tetraorthosilicate used in the reaction, Ruviologen ZSiO particles with a nano-order particle size (diameter) of several nm to several hundred nm
2  2
を有するナノ粒子として調製したり、また数/ z mから十数/ z mといったマイクロオーダ 一の粒径 (直径)を有するマイクロ粒子として調製したりと、所望に応じて自在にその 粒径を調整することができる。好ましいメチルビオロゲン ZSiO粒子は、直径がナノォ  The particle size can be freely adjusted as desired, for example, as a nanoparticle having a particle size, or as a microparticle having a particle size (diameter) on the order of several tens / zm to ten / zm. be able to. Preferred methyl viologen ZSiO particles have a nanoparticle diameter.
2  2
ーダ一であるナノ粒子 (シリカナノ粒子)であり、かかるナノ粒子として、例えば直径 2 〜1000nm、好ましくは直径 2〜100nm、より好ましくは直径 5〜60nm程度、さらにより好 ましくは直径 10〜40nm程度、一層好ましくは直径 15〜30nm程度、特に好ましくは直 径 20〜30nm程度のシリカナノ粒子を挙げることができる。  As such nanoparticles, for example, a diameter of 2 to 1000 nm, preferably a diameter of 2 to 100 nm, more preferably about 5 to 60 nm, and even more preferably a diameter of 10 to Silica nanoparticles having a diameter of about 40 nm, more preferably about 15 to 30 nm, and particularly preferably about 20 to 30 nm can be mentioned.
[0016] シリカ粒子内にはメチルビオロゲン分子を複数含ませることが可能である。例えば、 直径 30nmのシリカナノ粒子を例にすると、その 1粒子中には 1〜5分子、好ましくは 5 〜10分子、より好ましくは 15分子程度のメチルビオロゲン分子を含めることができる。 なお、 1粒子中にメチルビオロゲンを 15分子の割合で含有する粒子の場合、当該メチ ルビオロゲンの粒子内濃度は約 1.8 mMとなる。  [0016] The silica particles may contain a plurality of methyl viologen molecules. For example, when silica nanoparticles having a diameter of 30 nm are taken as an example, 1 to 5 molecules, preferably 5 to 10 molecules, more preferably about 15 molecules of methyl viologen molecules can be contained in one particle. In the case of particles containing 15 molecules of methyl viologen in one particle, the concentration of the methyl viologen in the particle is about 1.8 mM.
[0017] メチルビオロゲン(Methyl Viologen)は、パラコートとも呼ばれる、下記式で示される 公知の化合物である。  [0017] Methyl viologen (also known as paraquat) is a known compound represented by the following formula.
[0018] [化 1]  [0018] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
1.1 圆  1.1 圆
[0019] 当該メチルビオロゲンそれ自体は、蛍光を有さな 、無色透明な化合物である力 こ れをシリカ粒子に保有させることにより、新たに下記 (a)〜 (c)の特性を有するように なる。 [0019] The methyl viologen itself has the following properties (a) to (c) by allowing the silica particles to retain a force that is a colorless and transparent compound having no fluorescence. Become.
(a)蛍光を有する  (a) having fluorescence
波長 357nmの励起光を照射することによって、波長 430nmの発光を生じる。 By emitting excitation light with a wavelength of 357 nm, light emission with a wavelength of 430 nm is generated.
(b)酸素存在下、紫外線照射することにより無色透明から黄色に変色する なお、メチルビオロゲンそのものは無色透明であり、酸素存在下で紫外線照射して も色の変化は生じない。但し、酸素非存在下で紫外線照射すると無色透明から青色 に変色する。 (b) It turns from colorless and transparent to yellow when irradiated with ultraviolet light in the presence of oxygen.Methylviologen itself is colorless and transparent, and is irradiated with ultraviolet light in the presence of oxygen. No color change occurs. However, when it is irradiated with ultraviolet rays in the absence of oxygen, it turns from colorless and transparent to blue.
(C)紫外線照射により励起 Z蛍光波長が長波長側にシフトする  (C) Excitation by ultraviolet irradiation Z fluorescence wavelength shifts to longer wavelength side
後述する実施例 1に示すように、紫外線 (ピーク波長 365應)を照射すると、照射前 の励起光 Z発光の極大ピーク波長(357nmZ430nm)が、長波長側にシフトする。か 力る長波長側へのシフト幅は、シリカ粒子に保有させるメチルビオロゲンの割合を変 更すること〖こよって調整することができる。  As shown in Example 1 described later, when ultraviolet rays (peak wavelength 365) are irradiated, the maximum peak wavelength (357 nm Z430 nm) of the excitation light Z emission before irradiation is shifted to the longer wavelength side. The shift width toward the long wavelength side can be adjusted by changing the proportion of methylviologen retained in the silica particles.
[0020] 上記に示すように、本発明のメチルビオロゲン ZSiO粒子は、紫外線照射により可 [0020] As indicated above, the methyl viologen ZSiO particles of the present invention can be irradiated by ultraviolet irradiation.
2  2
視光領域に蛍光を発するため、蛍光標識剤として有効に利用することができる。また 、紫外線照射によって 400〜500應の範囲で連続的に蛍光波長を変化させることも可 能であることから、 400-500nmの蛍光に関して細胞等の波長選択的蛍光標識剤とし て有効に利用できると考えられる。  Since it emits fluorescence in the visible light region, it can be effectively used as a fluorescent labeling agent. In addition, since it is possible to change the fluorescence wavelength continuously in the range of 400 to 500 by ultraviolet irradiation, it can be effectively used as a wavelength-selective fluorescent labeling agent for cells, etc. with respect to 400-500 nm fluorescence. it is conceivable that.
[0021] さらに、メチルビオロゲンの還元体は、メチルビオロゲンラジカルと呼ばれ、生体内 で容易に酸素分子を還元して活性酸素ラジカルを生じることが知られて 、る (Bahnem ann, D. W.; Fisher, C.-H.; Janata, E.; Henglein, A.; The Two-electron Oxidation of Methyl Viologen;J. Chem. Soc. Faraday Trans. 1, 1987(83);pp2559— 2571.)。  [0021] Furthermore, the reduced form of methyl viologen is called a methyl viologen radical, and it is known that an oxygen molecule is easily reduced in vivo to generate an active oxygen radical (Bahnemnn, DW; Fisher, Jan., E .; Henglein, A .; The Two-electron Oxidation of Methyl Viologen; J. Chem. Soc. Faraday Trans. 1, 1987 (83); pp 2559-2571.).
[0022] 一般に、腫瘍の放射線治療は、 γ線を腫瘍部に照射して腫瘍周辺にある水の放射 線分解によって生じたラジカルや、 γ線直接の高エネルギーによって、腫瘍を破壊 するというものである。このときに、水だけでなぐ本発明のメチルビオロゲン ZSiO 2粒 子を腫瘍部に取り込ませておけば、照射される γ線によって、水が分解して生成する ラジカルに加えて、メチルビオロゲン ZSiO粒子に担持されているメチルビオロゲン  [0022] Generally, tumor radiotherapy involves irradiating a tumor site with γ-rays to destroy the tumor by radicals generated by radiolysis of water around the tumor or by high energy directly from γ-rays. is there. At this time, if the methyl viologen ZSiO 2 particles of the present invention, which is washed only with water, are taken into the tumor site, methyl viologen ZSiO particles in addition to radicals generated by the decomposition of water by the irradiated γ-rays. Methylviologen supported on
2  2
が還元されて電子が貯まり、その還元力によって、腫瘍を攻撃することが可能になる と考えられる。こうすることにより、通常の γ線照射量を低くすることが可能であり、 γ 線照射によって生じる副作用を低減できるものと考えられる。このように、本発明のメ チルビオロゲン ZSiO粒子は、放射線治療における γ線照射の増感剤としての用途  It is thought that the electrons are stored as a result of the reduction, and the reducing power makes it possible to attack the tumor. By doing so, it is possible to reduce the normal γ-ray irradiation dose, and to reduce the side effects caused by γ-ray irradiation. Thus, the methylviologen ZSiO particles of the present invention are used as a sensitizer for γ-ray irradiation in radiotherapy.
2  2
も期待される。  Is also expected.
[0023] また、生体内で生じたラジカルを非侵襲に測定するための装置として ESR-CTが知 られており、これを利用することによって、生きたままで生体内でのラジカルを追跡す ることができる。従って、例えば、メチルビオロゲン Zsio粒子で、標的の薬物を標識 [0023] In addition, ESR-CT is known as a device for non-invasively measuring radicals generated in vivo. By using this, ESR-CT is used to track radicals in living organisms. Can. Thus, for example, labeling a target drug with methylviologen Zsio particles
2  2
することにより、その体内での代謝を観測することが可能である。また、放射線治療の 際に生じたラジカルがどのように生成し消滅し、腫瘍を攻撃するか、あるいは、正常 細胞がどのように攻撃されて副作用が起こるかについて、リアルタイムで観測するた めにも利用することが可能である。  By doing so, it is possible to observe the metabolism in the body. It can also be used to observe in real time how radicals generated during radiation therapy are generated and disappeared, attacking tumors, or how normal cells are attacked and cause side effects. It is possible to use.
[0024] 本発明のメチルビオロゲン ZSiO粒子は、まずメチルビオロゲンを (3-チオシァネー [0024] The methyl viologen ZSiO particles of the present invention first contain methyl viologen (3-thiocyanate).
2  2
トプロピル)トリエトキシシランと混合し、次 、でシリカ粒子形成の触媒としてのアンモ- ァ水溶液の存在下で、テトラエチルオルソシリケートと混合することによって製造する ことができる。  Topropyl) triethoxysilane, and then mixed with tetraethylorthosilicate in the presence of an aqueous ammonia solution as a catalyst for silica particle formation.
[0025] 始めの工程として、メチルビオロゲンを (3-チオシァネートプロピル)トリエトキシシラン と混合する工程を採用することにより、シリカ粒子内にメチルビオロゲンを高濃度 (例 えば、粒径 30nmのナノ粒子に 15分子/粒子以上、好ましくは粒径 20nmのナノ粒子に 5分子/粒子以上の割合)に固定ィ匕することができる。かかる操作は、具体的には、メ チルビオロゲンをジメチルスルホキシド溶液に溶解し、これと (3-チオシァネートプロピ ル)トリエトキシシランとを混合することによって実施することができる。この場合、メチ ルビオロゲンと (3-チオシァネートプロピル)トリエトキシシランとの配合割合として、例 えば、メチルビオロゲン 2.5 mgに対する (3-チオシァネートプロピル)トリエトキシシラン の配合割合として、通常 0.5〜1 μ 1、好ましくは 1〜2 1、より好ましくは 2.3 1程度の 割合を例示することができる。また、これをモル比の割合で示すと、メチルビオロゲン 1モルに対して使用される (3-チオシァネートプロピル)トリエトキシシランの配合割合と しては、通常 0.5〜1モル、好ましくは 1〜2モル、より好ましくは 1モル程度を挙げること ができる。  [0025] By adopting a process in which methylviologen is mixed with (3-thiocyanatepropyl) triethoxysilane as the first process, a high concentration of methylviologen in the silica particles (for example, a nanoparticle having a particle diameter of 30 nm). The particles can be fixed at a ratio of 15 molecules / particle or more, and preferably a ratio of 5 molecules / particle or more to nanoparticles having a particle size of 20 nm. Specifically, this operation can be performed by dissolving methyl viologen in a dimethyl sulfoxide solution and mixing it with (3-thiocyanate propyl) triethoxysilane. In this case, the mixing ratio of methylviologen and (3-thiocyanatepropyl) triethoxysilane, for example, the mixing ratio of (3-thiocyanatepropyl) triethoxysilane to 2.5 mg of methylviologen is usually 0.5 to A ratio of about 1 μ1, preferably 1 to 21 and more preferably about 2.31 can be exemplified. In addition, when expressed as a molar ratio, the mixing ratio of (3-thiocyanatepropyl) triethoxysilane used per 1 mol of methylviologen is usually 0.5 to 1 mol, preferably 1 About 2 mol, more preferably about 1 mol can be mentioned.
[0026] ここで混合条件は特に制限されない。例えば混合時の温度として、通常室温を挙 げることができる。その他の混合条件も特に制限されないが、攪拌しながら、 20〜24 時間程度、十分混合することが好ましい。  Here, the mixing conditions are not particularly limited. For example, the room temperature can usually be raised as the mixing temperature. Other mixing conditions are not particularly limited, but it is preferable to mix well for about 20 to 24 hours while stirring.
[0027] 次 、で、得られた反応液をテトラェチルオルソシリケートと混合する。この場合の反 応は、シリカ粒子を形成するためのテトラエチルオルソシリケートの重縮合反応である 1S この反応 (シリカ粒子生成)は、触媒としてアンモニアの存在下で用いて行うこと が好ましい。さらにかかる反応は、溶媒として含水アルコール、好ましくは含水エタノ ールの中で行うことが好ましい。ここで反応系のアルコール濃度として、制限されない 力 好ましくは 80容量%程度を挙げることができる。 Next, the obtained reaction solution is mixed with tetraethyl orthosilicate. The reaction in this case is a polycondensation reaction of tetraethylorthosilicate to form silica particles. 1S This reaction (silica particle formation) should be performed in the presence of ammonia as a catalyst. Is preferred. Further, this reaction is preferably carried out in a hydrous alcohol, preferably a hydrous ethanol, as a solvent. Here, the alcohol concentration in the reaction system is not limited, and preferably about 80% by volume.
[0028] 当該反応に使用するテトラェチルオルソシリケートの割合は、特に制限されないが、 前工程で使用したメチルビオロゲンの量 8.5 μ mol/mlに対して、 400〜500倍、好ましく は 500〜600倍、より好ましくは 500〜550倍の割合で用いられることが好ましい。これを モル比で示すと、メチルビオロゲン 1モルに対して使用されるテトラェチルオルソシリ ケートの配合割合として 400〜500モル、好ましくは 500〜600モル、より好ましくは 500 〜550モルを挙げることができる。  [0028] The proportion of tetraethyl orthosilicate used in the reaction is not particularly limited, but is 400 to 500 times, preferably 500 to 600 times the amount of methyl viologen used in the previous step 8.5 μmol / ml. It is preferable to use at a ratio of 500 times to 550 times, more preferably 500 to 550 times. In terms of the molar ratio, 400 to 500 moles, preferably 500 to 600 moles, more preferably 500 to 550 moles may be cited as a blending ratio of tetraethyl orthosilicate used for 1 mole of methylviologen. Can do.
[0029] 力かる混合条件も特に制限されな 、が、例えば 20〜25°Cの条件下、攪拌しながら 2 0〜24時間程度、十分混合する方法を例示することができる。  [0029] Powerful mixing conditions are not particularly limited, but examples thereof include a method of sufficiently mixing for 20 to 24 hours with stirring under conditions of 20 to 25 ° C, for example.
[0030] 次いで得られた反応液を、例えばメンブランフィルターをセットした限外濾過装置等 を利用して固液分離し、また必要に応じて水で洗浄することにより、本発明のメチル ピオロゲン Zsio粒子を取得することができる。  [0030] Next, the obtained reaction solution is subjected to solid-liquid separation using, for example, an ultrafiltration apparatus in which a membrane filter is set, and washed with water as necessary, whereby the methyl piorogen Zsio particles of the present invention are obtained. Can be obtained.
2  2
[0031] (2)キシレノールオレンジ ZSiO粒子  [0031] (2) Xylenol orange ZSiO particles
2  2
本発明のキシレノールオレンジ/ SiO粒子は、シリカから形成される微粒子 (シリカ  The xylenol orange / SiO particles of the present invention are fine particles formed from silica (silica
2  2
粒子)に複数のキシレノールオレンジ分子が固定されてなるものである。固定化の態 様は、シリカ粒子の内部にキシレノールオレンジ分子が取り込まれた形で存在して!/ヽ ればよぐ特に制限されるものではない。例えば、シリカ粒子の内部におけるキシレノ ールオレンジ分子の存在様式としては、(1)で説明したメチルビオロゲン Zsio粒子  Particles) are fixed with a plurality of xylenol orange molecules. The manner of immobilization is not particularly limited as long as it exists in a form in which xylenol orange molecules are incorporated into silica particles! For example, the existence mode of xylenol orange molecules inside silica particles is the methylviologen Zsio particles described in (1).
2 と同様に、粒子を形成しているシリカ(SiO )の層と層との間に、複数のキシレノールォ  2, a plurality of xylenol alcohols are formed between the layers of silica (SiO 2) forming the particles.
2  2
レンジが存在している態様を例示することができる力 これに制限されるものではない [0032] 本発明のキシレノールオレンジ ZSiO粒子の大きさは、特に制限されず、 目的に応  Force that can exemplify a mode in which a range exists [0032] The size of the xylenol orange ZSiO particles of the present invention is not particularly limited and depends on the purpose.
2  2
じて適宜調整することができる。例えば、後述するキシレノールオレンジ Zsio粒子  It can be adjusted accordingly. For example, xylenol orange Zsio particles described below
2 の製造方法にぉ 、て、アンモニア存在下でのテトラオルソシリケートとの反応回数を 調整したり、また当該反応に使用するテトラオルソシリケートの濃度を調整することに よって、キシレノールオレンジ ZSiO粒子を、数 nmから数百 nmといったナノオーダ 一の粒径 (直径)を有するナノ粒子として調製したり、また数 μ mから十数 μ mと 、つ たマイクロオーダーの粒径 (直径)を有するマイクロ粒子として調製したりと、所望に応 じて自在にその粒径を調整することができる。好ましいキシレノールオレンジ/ SiO粒 By adjusting the number of reactions with tetraorthosilicate in the presence of ammonia or adjusting the concentration of tetraorthosilicate used in the reaction according to the production method of 2, xylenol orange ZSiO particles Nano-order from several nm to several hundred nm They can be prepared as nanoparticles with a single particle size (diameter), or as microparticles with a particle size (diameter) on the order of several micrometers to several tens of micrometers. The particle size can be adjusted freely. Preferred xylenol orange / SiO grains
2 子は、直径がナノオーダーであるナノ粒子 (シリカナノ粒子)であり、かかるナノ粒子と して、例えば直径 2〜1000nm、好ましくは直径 2〜100nm、より好ましくは直径 5〜60n m程度、さらにより好ましくは直径 10〜40nm程度、一層好ましくは直径 15〜30nm程度 、特に好ましくは直径 20〜30nm程度のシリカナノ粒子を挙げることができる。  The twins are nanoparticles (silica nanoparticles) having a diameter of the order of nanometers, and as such nanoparticles, for example, a diameter of 2 to 1000 nm, preferably a diameter of 2 to 100 nm, more preferably about 5 to 60 nm, More preferred are silica nanoparticles having a diameter of about 10 to 40 nm, more preferably about 15 to 30 nm, and particularly preferably about 20 to 30 nm.
[0033] なお、シリカ粒子内にはキシレノールオレンジ分子を複数含ませることが可能である 。例えば、直径 30nmのシリカナノ粒子を例にすると、その 1粒子中には 1〜10分子、 好ましくは 50〜150分子、より好ましくは 100〜150分子、さらにより好ましくは 112分子 程度のキシレノールオレンジ分子を含めることができる。なお、 1粒子中にキシレノー ルオレンジを 112分子の割合で含有する粒子の場合、当該キシレノールオレンジの粒 子内濃度は約 13mMとなる。  [0033] The silica particles may contain a plurality of xylenol orange molecules. For example, when silica nanoparticles having a diameter of 30 nm are taken as an example, 1 to 10 molecules, preferably 50 to 150 molecules, more preferably 100 to 150 molecules, and even more preferably 112 molecules of xylenol orange molecules are contained in one particle. Can be included. In the case of particles containing 112 molecules of xylenol orange in one particle, the concentration of xylenol orange in the particles is about 13 mM.
[0034] キシレノールオレンジは下記式で示される公知の化合物である。  [0034] Xylenol orange is a known compound represented by the following formula.
[0035] [化 2]  [0035] [Chemical 2]
Figure imgf000009_0001
キシレノールオレンジは pHの変化に応じて異なる色を呈すると 、う性質を有し (酸 性下で黄色、アルカリ下で赤色を有する)、それ自体 pH指示薬としての用途を有す る化合物である。また、これをシリカナノ粒子に保有させることによつても、同様に下記 (d)に示す性質を有する:
Figure imgf000009_0001
Xylenol orange is a compound that has different properties depending on pH changes (yellow under acidity, red under alkali) and itself has a use as a pH indicator. In addition, the silica nanoparticles have the same properties as shown in the following (d):
(d)酸性下 (例えば pH2)で黄色、アルカリ下 (例えば pH9)で赤色を呈する 当該本発明のキシレノールオレンジ Zsio粒子は、前述するようにナノオーダーや (d) yellow under acidic conditions (e.g. pH 2), red under alkali conditions (e.g. pH 9) As described above, the xylenol orange Zsio particles of the present invention are nano-order and
2  2
マイクロオーダーの微粒子に調整することができ、し力もその内部にキシレノールォレ ンジをその性質を損なうことなく濃縮した形で包含させることができるため、従来キシ レノールオレンジ単独使用では難しかった、マクロファージ内部や微小細胞ならびに 微細組織などのマイクロ領域における pHの測定や pHの変化の測定に、 pH指示薬 として有効に利用することができる。  It can be adjusted to micro-order microparticles, and the force can be contained inside the xylenol orange in a concentrated form without impairing its properties. It can be effectively used as a pH indicator in the measurement of pH and changes in pH in the micro region such as cells, microcells and fine tissues.
(e)酸性下で、 Fe3+の存在により紫色を呈する (e) Under acidic conditions, purple due to the presence of Fe 3+
前述するように、キシレノールオレンジ ZSiO粒子は、酸性条件下で、例えば Fe2+ As mentioned above, xylenol orange ZSiO particles can be produced under acidic conditions, for example Fe 2+
2  2
が存在する場合であっても Fe3+非存在下では黄色を呈する力 Fe3+の存在下では F e3+と配位して紫色を呈する。但し、アルカリ条件下では、 Fe3+の存在 '非存在に関わ らず赤色を呈している。 In the absence also Fe 3+ in the case but the present exhibits a purple coordinated with F e 3+ in the presence of a force Fe 3+ that exhibits a yellow color. However, under alkaline conditions, Fe 3+ is red regardless of the presence or absence of Fe 3+ .
[0037] かかる現象は、キシレノールオレンジを SiO粒子に固定化することによって、 Fe3+[0037] Such a phenomenon is caused by immobilizing xylenol orange on SiO particles to form Fe 3+ .
2  2
対する配位能力が増大したことによると考えられる。本発明のキシレノールオレンジ This is thought to be due to an increase in coordination ability. Xylenol orange of the present invention
/SiO粒子のこうした性質は、細胞等における Fe3+の検出薬として利用することがで/ SiO particles can be used as a detection agent for Fe 3+ in cells, etc.
2 2
きる。  wear.
[0038] また、本発明のキシレノールオレンジ ZSiOは、下記に説明するように、放射線感  [0038] Further, the xylenol orange ZSiO of the present invention has a radiation sensitivity as described below.
2  2
光用色素として放射線に係る個人被ばく管理,汚染管理,医療被曝管理、あるいは 放射線線量計測のための化学線量計に利用することができる:  It can be used as a dye for light in chemical dosimeters for radiation-related personal exposure management, contamination management, medical exposure management, or radiation dosimetry:
Fe2+を含む水溶液は、 γ線照射されると、まず水の放射線分解が起こり、 ΟΗラジカ ルゃ Ηラジカル、水和電子など生成する。これらのラジカルは、溶存酸素と反応し、過 酸化水素や ΟΗラジカルを多く生成し、この中に Fe2+が共存する場合には、これらが 酸化剤となって Fe2+を Fe3+へと酸ィ匕する。従って、この酸化量 (Fe2+→Fe3+)から、どれ だけの放射線を受けたか、放射線の吸収線量を測定することができる。本発明のキ シレノールオレンジ/ SiO粒子は、 1つの SiO粒子内にキシレノールオレンジ分子が When an aqueous solution containing Fe 2+ is irradiated with γ-rays, the radiolysis of water first occurs, generating radicals and hydrated electrons. These radicals react with dissolved oxygen to produce a large amount of hydrogen peroxide and soot radicals. When Fe 2+ coexists in these, they become oxidizing agents and convert Fe 2+ to Fe 3+ . And sour. Therefore, it is possible to measure the amount of radiation received from this oxidation amount (Fe 2+ → Fe 3+ ). The xylenol orange / SiO particles of the present invention have xylenol orange molecules in one SiO particle.
2 2  twenty two
高濃度に含まれて 、るので (言 、換えると、 1粒子中にキシレノールオレンジが濃縮さ れて含まれている)、わずかの線量で Fe2+から生じた Fe3+を効果的に捕捉することがで き、わずかの線量を色変化 (黄色→紫)によって定性的にまた定量的に示すことが可 能である。 [0039] 本発明のキシレノールオレンジ ZSiO粒子は、まずキシレノールオレンジを (3-チォ Because it is contained in a high concentration (in other words, xylenol orange is concentrated and contained in one particle), it effectively captures Fe 3+ generated from Fe 2+ with a small dose A small dose can be qualitatively and quantitatively indicated by a color change (yellow to purple). [0039] The xylenol orange ZSiO particles of the present invention first have xylenol orange (3-thiol).
2  2
シァネートプロピル)トリエトキシシランと混合し、次 、でシリカ粒子形成の触媒としての アンモニア水溶液の存在下で、テトラエチルオルソシリケートと混合することによって 製造することができる。  It can be prepared by mixing with cyanatepropyl) triethoxysilane and then mixing with tetraethylorthosilicate in the presence of aqueous ammonia as a catalyst for silica particle formation.
[0040] 始めの工程として、キシレノールオレンジを (3-チオシァネートプロピル)トリエトキシ シランと混合することにより、シリカ粒子内にキシレノールオレンジを高濃度 (例えば、 30nmのナノ粒子に 112分子 Z粒子以上の割合で)に固定ィ匕することができる。かかる 操作は、具体的には、キシレノールオレンジをジメチルスルホキシド溶液に溶解し、こ れと (3-チオシァネートプロピル)トリエトキシシランとを混合することによって実施するこ とができる。この場合、キシレノールオレンジと (3-チオシァネートプロピル)トリエトキシ シランとの配合割合として、例えばキシレノールオレンジ 14 mol/mlに対して、(3-チ オシァネートプロピル)トリエトキシシランをモル比として 0.5〜2、好ましくは 0.5〜1.5、 より好ましくは 0.5程度の割合で混合する方法を挙げることができる。  [0040] As a first step, xylenol orange is mixed with (3-thiocyanatepropyl) triethoxy silane to increase the concentration of xylenol orange in silica particles (for example, more than 112 molecules Z particles or more in 30 nm nanoparticles). Can be fixed in proportion). Specifically, such an operation can be carried out by dissolving xylenol orange in a dimethyl sulfoxide solution and mixing it with (3-thiocyanatepropyl) triethoxysilane. In this case, the mixing ratio of xylenol orange and (3-thiocyanatepropyl) triethoxysilane is, for example, xylenol orange 14 mol / ml, and (3-thiocyanatepropyl) triethoxysilane as a molar ratio of 0.5. A method of mixing at a ratio of ˜2, preferably 0.5 to 1.5, more preferably about 0.5 can be mentioned.
[0041] ここで混合条件は特に制限されない。例えば混合時の温度として、通常室温を挙 げることができる。その他の混合条件も特に制限されないが、攪拌しながら、 20〜24 時間程度、十分混合することが好ましい。  [0041] Here, the mixing conditions are not particularly limited. For example, the room temperature can usually be raised as the mixing temperature. Other mixing conditions are not particularly limited, but it is preferable to mix well for about 20 to 24 hours while stirring.
[0042] 次 、で、得られた反応液をテトラェチルオルソシリケートと混合する。この場合の反 応は、シリカ粒子を形成するためのテトラエチルオルソシリケートの重縮合反応である 力 この反応 (シリカ粒子生成)は、触媒としてアンモニアの存在下で行うことが好まし い。さらにかかる反応は、溶媒として含水アルコール、好ましくは含水エタノールの中 で行うことが好ましい。ここで反応系のアルコール濃度として、制限はされないが好ま しくは 80容量%程度を挙げることができる。  [0042] Next, the obtained reaction solution is mixed with tetraethyl orthosilicate. The reaction in this case is a polycondensation reaction of tetraethylorthosilicate to form silica particles. This reaction (silica particle formation) is preferably carried out in the presence of ammonia as a catalyst. Further, such a reaction is preferably performed in a hydrous alcohol, preferably hydrous ethanol, as a solvent. Here, the alcohol concentration in the reaction system is not limited, but preferably about 80% by volume.
[0043] 当該反応に使用するテトラェチルオルソシリケートの割合は、制限されな!、が、前 工程で使用したキシレノールオレンジの量 7 μ mol/mlに対して、 200〜500倍、好まし くは 500〜700倍、より好ましくは 600〜650倍の割合で用いられることが好ましい。これ をモル比で示すと、キシレノールオレンジ 1モルに対して使用されるテトラェチルオル ソシリケートの配合割合として 200〜500モル、好ましくは 500〜700モル、より好ましく は 600〜650モルを挙げることができる。 [0044] 力かる混合条件も特に制限されな 、が、例えば 20〜25°Cの条件下、攪拌しながら 2[0043] The ratio of tetraethyl orthosilicate used in the reaction is not limited !, but it is preferably 200 to 500 times the amount of xylenol orange used in the previous step, 7 μmol / ml. Is preferably used in a ratio of 500 to 700 times, more preferably 600 to 650 times. When this is shown by molar ratio, the proportion of tetraethyl orthosilicate used per mole of xylenol orange is 200 to 500 moles, preferably 500 to 700 moles, more preferably 600 to 650 moles. [0044] Powerful mixing conditions are not particularly limited. For example, while stirring at 20 to 25 ° C, 2
0〜24時間程度、十分混合する方法を例示することができる。 A method of sufficiently mixing for about 0 to 24 hours can be exemplified.
[0045] 次いで得られた反応液を、例えばメンブランフィルターをセットした限外濾過装置等 を利用して固液分離し、また必要に応じて水で洗浄することにより、本発明のキシレノ ールオレンジ ZSiO粒子を取得することができる。 [0045] The xylenol orange ZSiO particles of the present invention are then separated by solid-liquid separation of the obtained reaction liquid using, for example, an ultrafiltration device with a membrane filter set, and washing with water as necessary. Can be obtained.
2  2
[0046] (3) 4-ァミノ TempoZSiO粒子  [0046] (3) 4-Amino TempoZSiO particles
2  2
本発明の 4-ァミノ TempoZSiO粒子は、シリカから形成される微粒子 (シリカ粒子)  The 4-amino tempoZSiO particles of the present invention are fine particles (silica particles) formed from silica.
2  2
に複数の 4-ァミノ- (2,3,6,6-テトラメチル- 1-ピベリジ-ルォキシ)〔4-ァミノ Tempo〕分 子が固定ィ匕されてなるものである。固定ィ匕の態様は、シリカナノ粒子の内部に 4-アミ ノ Tempo分子が取り込まれた形で存在して ヽればよぐ特に制限されるものではな!/ヽ 。例えば、シリカナノ粒子の内部における 4-ァミノ Tempo分子の存在様式としては、( 1)で説明したメチルビオロゲン ZSiO粒子と同様に、粒子を形成している SiOの層と  A plurality of 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) [4-amino tempo] molecules are fixedly attached to each other. The form of the anchor is not particularly limited as long as it is present in the form in which 4-amino Tempo molecules are incorporated inside the silica nanoparticles! / ヽ. For example, the presence mode of 4-amino tempo molecules in silica nanoparticles is similar to the methyl viologen ZSiO particles described in (1), and the SiO layer that forms the particles.
2 2 層との間に、複数の 4-ァミノ Tempo存在している態様を例示することができる力 これ に制限されるものではな 、。  2 A force that can exemplify a mode in which a plurality of 4-amino tempos exist between two layers, but is not limited to this.
[0047] 本発明の 4-ァミノ TempoZSiO粒子の大きさは、特に制限されず、 目的に応じて適 [0047] The size of the 4-amino tempoZSiO particles of the present invention is not particularly limited, and is suitable according to the purpose.
2  2
宜調整することができる。例えば、後述する 4-ァミノ TempoZSiO粒子の製造方法に  It can be adjusted. For example, in the production method of 4-amino TempoZSiO particles described later
2  2
おいて、  Leave
アンモニア存在下でのテトラオルソシリケートとの反応回数を調整したり、また当該反 応に使用するテトラオルソシリケートの濃度を調整することによって、 4-ァミノ Tempo/ SiO粒子を、数 nmから数百 nmといったナノオーダーの粒径(直径)を有するナノ粒 By adjusting the number of reactions with tetraorthosilicate in the presence of ammonia and adjusting the concentration of tetraorthosilicate used in the reaction, 4-amino Tempo / SiO particles can be reduced to several nm to several hundred nm. Nano-particles with a nano-order particle size (diameter)
2 2
子として調製したり、また数/ z mから十数/ z mといったマイクロオーダーの粒径 (直径 )を有するマイクロ粒子として調製したりと、所望に応じて自在にその粒径を調整する ことができる。好ましい 4-ァミノ Tempo/SiO粒子は、直径がナノオーダーであるナノ  The particle size can be freely adjusted as desired, for example, as a microparticle, or as a microparticle having a microorder particle size (diameter) of several / zm to several tens / zm. The preferred 4-amino tempo / SiO particles are nano-sized in diameter.
2  2
粒子(シリカナノ粒子)であり、かかるナノ粒子として、例えば直径 2〜1000nm、好まし くは直径 2〜100nm、より好ましくは直径 5〜60nm程度、さらにより好ましくは直径 10〜 40nm程度、一層好ましくは直径 15〜30nm程度、特に好ましくは直径 20〜30nm程度 のシリカナノ粒子を挙げることができる。  Particles (silica nanoparticles), for example, having a diameter of 2 to 1000 nm, preferably 2 to 100 nm, more preferably about 5 to 60 nm, even more preferably about 10 to 40 nm, and even more preferably. Examples thereof include silica nanoparticles having a diameter of about 15 to 30 nm, particularly preferably a diameter of about 20 to 30 nm.
[0048] なお、シリカ粒子内には 4-ァミノ Tempo分子を複数含ませることが可能である。例え ば、直径 30nmのシリカナノ粒子を例にすると、その 1粒子中には、 1〜100分子、好ま しくは 100〜200分子、より好ましくは 150分子程度の 4-ァミノ Tempo分子を含めること ができる。なお、 1粒子中に 4-ァミノ Tempoを 150分子の割合で含有する粒子の場合、 当該 4-ァミノ Tempoの粒子内濃度は約 17mMとなる。 [0048] The silica particles can contain a plurality of 4-amino tempo molecules. example For example, taking silica nanoparticles with a diameter of 30 nm as an example, one particle can contain 1 to 100 molecules, preferably 100 to 200 molecules, more preferably about 150 molecules of 4-amino tempo molecules. In the case of particles containing 150 molecules of 4-amino tempo in one particle, the concentration of 4-amino tempo in the particles is about 17 mM.
[0049] 4-ァミノ Tempo (4-ァミノ- (2,3,6,6-テトラメチル- 1-ピベリジ-ルォキシ))は下記式で 示される公知の化合物である。  [0049] 4-Amino Tempo (4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy)) is a known compound represented by the following formula.
[0050] [化 3]  [0050] [Chemical 3]
Figure imgf000013_0001
Figure imgf000013_0001
[0051] 当該 4_ァミノ Tempo分子はラジカル分子であり、それ自体、標識試薬としての用途 を有する化合物である。本発明の 4-ァミノ TempoZSiO粒子は、シリカ粒子内に、 4-[0051] The 4_amino Tempo molecule is a radical molecule, and as such is a compound having a use as a labeling reagent. The 4-amino tempoZSiO particles of the present invention have 4-
2 2
ァミノ Tempo分子をラジカル分子として安定に、またシリカ層内でそれを保護する状 態で保有することによって下記 (f)に示す性質を有する:  By maintaining the amino Tempo molecule as a radical molecule stably and in a state of protecting it in the silica layer, it has the following properties (f):
(f)ラジカルを有する  (f) having radicals
4-ァミノ TempoZSiO粒子のこうした性質は、生体内にラジカルを投与する場合に、  These properties of 4-amino TempoZSiO particles, when administering radicals in vivo,
2  2
ラジカルの酸化や消失を防ぎ、有効な標識物質として利用することができる。  It can prevent oxidation and disappearance of radicals and can be used as an effective labeling substance.
[0052] 本発明の 4-ァミノ TempoZSiO粒子は、まず 4-ァミノ Tempoを(3-チオシァネートプ [0052] The 4-amino tempo ZSiO particles of the present invention are prepared by first producing 4-amino tempo (3-thiocyanate).
2  2
口ピル)トリエトキシシランと混合し、次いでシリカ粒子形成の触媒としてのアンモニア 水溶液の存在下で、テトラエチルオルソシリケートと混合することによって製造するこ とがでさる。  It can be prepared by mixing with oral pill) triethoxysilane and then with tetraethylorthosilicate in the presence of aqueous ammonia as a catalyst for silica particle formation.
[0053] 始めの工程として、 4-ァミノ Tempoを、(3-チオシァネートプロピル)トリエトキシシラン と混合することにより、シリカ粒子内に 4-ァミノ Tempoを高濃度 (例えば、 30應の粒子 として 150分子 Z粒子以上の割合で)に固定ィ匕することができる。かかる操作は、具体 的には、 4-ァミノ Tempoをジメチルスルホキシド溶液に溶解し、これと (3-チオシァネー トプロピル)トリエトキシシランとを混合することによって実施することができる。この場合 、 4-ァミノ Tempoと (3-チオシァネートプロピル)トリエトキシシランとの配合割合として、 例えば、 4-ァミノ Tempo分子 7 mol/mlに対して、(3-チオシァネートプロピル)トリエト キシシランをモル比で 0.5〜2、好ましくは 0.5〜1.5、より好ましくは 1程度の割合で混 合する方法を挙げることがでさる。 [0053] As the first step, 4-amino tempo is mixed with (3-thiocyanatepropyl) triethoxysilane to give a high concentration of 4-amino tempo (for example, as 30-particle particles). It can be fixed at a ratio of 150 molecules Z particles or more. This operation is specific Specifically, it can be carried out by dissolving 4-amino tempo in a dimethyl sulfoxide solution and mixing it with (3-thiocyanatepropyl) triethoxysilane. In this case, the blending ratio of 4-amino tempo and (3-thiocyanatepropyl) triethoxysilane is, for example, 7 mol / ml of 4-amino tempo molecule, (3-thiocyanatepropyl) triethoxysilane. Can be mentioned in a molar ratio of 0.5 to 2, preferably 0.5 to 1.5, more preferably about 1.
[0054] ここで混合条件は特に制限されない。例えば混合時の温度として、通常室温を挙 げることができる。その他の混合条件も特に制限されないが、攪拌しながら、 20〜24 時間程度、十分混合することが好ましい。  Here, the mixing conditions are not particularly limited. For example, the room temperature can usually be raised as the mixing temperature. Other mixing conditions are not particularly limited, but it is preferable to mix well for about 20 to 24 hours while stirring.
[0055] 次 、で、得られた反応液をテトラェチルオルソシリケートと混合する。この場合の反 応は、シリカ粒子を形成するためのテトラエチルオルソシリケートの重縮合反応である 力 この反応 (シリカ粒子生成)は、触媒としてアンモニアの存在下で行うことが好まし い。さらにかかる反応は、溶媒として含水アルコール、好ましくは含水エタノールの中 で行うことが好ましい。ここで反応系のアルコール濃度として、制限されないが、好ま しくは 80容量%程度を挙げることができる。  [0055] Next, the obtained reaction liquid is mixed with tetraethyl orthosilicate. The reaction in this case is a polycondensation reaction of tetraethylorthosilicate to form silica particles. This reaction (silica particle formation) is preferably carried out in the presence of ammonia as a catalyst. Further, such a reaction is preferably performed in a hydrous alcohol, preferably hydrous ethanol, as a solvent. Here, the alcohol concentration in the reaction system is not limited, but preferably about 80% by volume.
[0056] 当該反応に使用するテトラェチルオルソシリケートの割合は、制限されないが、前 工程で使用した 4-ァミノ Tempoの量 7 mol/mlに対して、 200〜400倍、好ましくは 400 〜550倍、より好ましくは 550〜600倍の割合で用いられることが好ましい。これをモル 比で示すと、 4-ァミノ Tempolモルに対して使用されるテトラェチルオルソシリケートの 配合割合として 200〜400モル、好ましくは 400〜550モル、より好ましくは 550〜600モ ノレを挙げることができる。  [0056] The ratio of tetraethyl orthosilicate used in the reaction is not limited, but it is 200 to 400 times, preferably 400 to 550, with respect to the amount of 4-amino tempo used in the previous step of 7 mol / ml. It is preferably used at a ratio of 550 to 600 times. In terms of molar ratio, the proportion of tetraethyl orthosilicate used relative to 4-amino tempol mole is 200 to 400 moles, preferably 400 to 550 moles, more preferably 550 to 600 moles. be able to.
[0057] 力かる混合条件も特に制限されな 、が、例えば 20〜25°Cの条件下、攪拌しながら 2 0〜24時間程度、十分混合する方法を例示することができる。  [0057] Although vigorous mixing conditions are not particularly limited, for example, a method of sufficiently mixing for about 20 to 24 hours with stirring under conditions of 20 to 25 ° C can be exemplified.
[0058] 次いで得られた反応液を、例えばメンブランフィルターをセットした限外濾過装置等 を利用して固液分離し、また必要に応じて水で洗浄することにより、本発明の 4-ァミノ Tempo/SiO粒子を取得することができる。  [0058] Next, the obtained reaction solution is subjected to solid-liquid separation using, for example, an ultrafiltration apparatus in which a membrane filter is set, and washed with water as necessary, whereby the 4-amino tempo of the present invention is obtained. / SiO particles can be obtained.
2  2
発明の効果  The invention's effect
[0059] 本発明によれば、メチルビオロゲン、キシレノールオレンジ、または 4-ァミノ- (2,3,6,6 -テトラメチル-トビベリジ-ルォキシ)を、シリカ粒子中に安定に、また高濃度に、保 持させることができ、その結果、上記各分子単品では得られなカゝつた新しい機能また は特性を得ることが可能となった。 [0059] According to the present invention, methyl viologen, xylenol orange, or 4-amino- (2,3,6,6 -Tetramethyl-tobiberidi-loxy) can be retained stably and at a high concentration in silica particles, and as a result, a new function or characteristic that cannot be obtained by each of the above molecules alone can be obtained. It became possible.
図面の簡単な説明  Brief Description of Drawings
[0060] [図 1]予想されるメチルビオロゲン ZSiO粒子の形態(SiO粒子中のメチルビオロゲン  [0060] [Fig. 1] Expected morphology of methyl viologen ZSiO particles (methyl viologen in SiO particles)
2 2  twenty two
の存在様式)を示す模式図である。  FIG.
[図 2]実施例 1において、メチルビオロゲン ZSiO 2粒子の励起 Z蛍光スペクトルを、紫 外線照射前 (点線)と紫外線照射後 (実線)で比較した図である。縦軸は蛍光強度 (In tensity)を、横軸は波長(Wavelength: nm)を意味する。  FIG. 2 is a diagram comparing the excitation Z fluorescence spectra of methyl viologen ZSiO 2 particles before irradiation with ultraviolet rays (dotted line) and after irradiation with ultraviolet rays (solid line) in Example 1. The vertical axis represents fluorescence intensity (Intensity), and the horizontal axis represents wavelength (Wavelength: nm).
[図 3]実施例 2において、キシレノールオレンジ ZSiO粒子の吸収スペクトルを示す図  FIG. 3 shows an absorption spectrum of xylenol orange ZSiO particles in Example 2.
2  2
である。縦軸は吸光度 (Absorbance)を、横軸は波長 (Wavelength:應)を意味する。  It is. The vertical axis represents the absorbance, and the horizontal axis represents the wavelength (wavelength).
[図 4]実施例 2 (5)において、 Fe2+Zキシレノールオレンジ ZSiO試薬の水溶液に γ [Fig. 4] In Example 2 (5), the Fe 2+ Z xylenol orange ZSiO reagent aqueous solution
2  2
線を約 10Gy照射 (60-Co y線照射装置で 30分間照射)した前後における、当該水溶 液の吸光度(520〜700nm)を測定したスペクトルである。 y線照射による色変化によ つて、 600nmにおける吸光度が約 0.15増大することがわかる。 bは γ線照射前のスぺ タトル、 aは γ線照射後のスペクトルを示す。  This is a spectrum obtained by measuring the absorbance (520 to 700 nm) of the aqueous solution before and after irradiation of about 10 Gy (irradiation with a 60-Coy line irradiation device for 30 minutes). It can be seen that the absorbance at 600 nm increases by about 0.15 due to the color change caused by y-ray irradiation. b is the spectrum before γ-ray irradiation, and a is the spectrum after γ-ray irradiation.
[図 5]実施例 2 (5)において、 Fe2+Zキシレノールオレンジ ZSiO試薬にゼラチン (0.2g [FIG. 5] In Example 2 (5), Fe 2+ Z xylenol orange ZSiO reagent and gelatin (0.2 g
2  2
/mlのゼラチンを lml)を配合した水溶液に γ線を約 10Gy照射 (60_Co y線照射装置 で 30分間照射)し、その前後における当該水溶液の吸光度 (300〜800nm)を測定し たスペクトルである。点線は γ線照射前の当該水溶液のスペクトル、実線は γ線照射 後の当該水溶液のスペクトルである。  This is a spectrum obtained by measuring the absorbance (300-800 nm) of the aqueous solution before and after γ-irradiation (irradiated with 60_Co y-ray irradiator for 30 minutes) to an aqueous solution containing 1 ml of gelatin / ml gelatin). . The dotted line is the spectrum of the aqueous solution before γ-ray irradiation, and the solid line is the spectrum of the aqueous solution after γ-ray irradiation.
[図 6]実施例 3において調製した 4-ァミノ TempoZSiO粒子の、電子スピン共鳴(ESR)  [FIG. 6] Electron spin resonance (ESR) of 4-amino TempoZSiO particles prepared in Example 3
2  2
スペクトルを示す図である。  It is a figure which shows a spectrum.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0061] 以下に、本発明の構成ならびに効果をより明確にするために、実施例を記載する。  [0061] In the following, in order to clarify the configuration and effects of the present invention, examples will be described.
但し本発明は、これらの実施例に何ら影響されるものではない。  However, the present invention is not affected by these examples.
実施例 1  Example 1
[0062] メチルビオロゲンを含有するシリカ粒子(メチルビオロゲン ZSiO粒モ 1 (1)メチルビオロゲン n水和物(和光純薬工業株式会社製) 2.1mgを、 1mlのジメチル スルホキシド(DMSO)に溶解し、これに、(3-チオシァネートプロピル)トリエトキシシラ ン〔(3- Thiocyanatopropyl)triethoxy silane]原液を DMSOで 10倍に希釈した溶液 18 1を混合して、約 25°Cで約 1時間混合した。次いでこの反応溶液 lmlに、エタノール 3ml、テトラエチルオルソシリケート(TEOS) 0.1ml、 蒸留水 lml、及び 30容量%アン モ-ァ水溶液 0.1mlを加えて、約 25°Cで約 1日中攪拌しながら混合した。その後、得 られた反応液を、 Amicon YM-100メンブランフィルター(Amicon社製、孔径: 15nm)を セットした限外ろ過装置を利用して濾過して、メチルビオロゲン ZSiO粒子 (粒径: 20 [0062] Silica particles containing methyl viologen (methyl viologen ZSiO granule 1 (1) Methyl viologen n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 2.1 mg was dissolved in 1 ml of dimethyl sulfoxide (DMSO), and (3-thiocyanatepropyl) triethoxysilane [( 3-Thiocyanatopropyl) triethoxy silane] stock solution diluted with DMSO 10 times was mixed with 181, and mixed at about 25 ° C for about 1 hour. Next, 3 ml of ethanol, 0.1 ml of tetraethylorthosilicate (TEOS), 1 ml of distilled water, and 0.1 ml of 30% by volume aqueous ammonia solution are added to 1 ml of this reaction solution, and stirred at about 25 ° C. for about 1 day. Mixed. Thereafter, the obtained reaction solution was filtered using an ultrafiltration apparatus in which an Amicon YM-100 membrane filter (Amicon, pore size: 15 nm) was set, and methyl viologen ZSiO particles (particle size: 20
2  2
〜30nm)を濾取し、これを蒸留水で洗浄した。  ˜30 nm) was filtered off and washed with distilled water.
[0063] (2)得られたメチルビオロゲン ZSiO粒子を水で 30倍に希釈した水溶液の 260nmの [0063] (2) 260 nm of an aqueous solution obtained by diluting the obtained methylviologen ZSiO particles 30 times with water
2  2
吸光度を測定したところ、吸光度 0.072であった。分子吸光係数が 204170であること から、濃度は 10.5 μ Μとなる。この溶液が 20ml得られたので、 20mlあたり 0.21 μ molと なる。したがって、 30nmの粒子としてその粒子内のメチルビオロゲン濃度は、約 1.8m Mである。いままでに、このような濃度でメチルビオロゲン分子をシリカナノ粒子に固 定された例は知られて 、な 、。  The absorbance was measured and found to be 0.072. Since the molecular extinction coefficient is 204170, the concentration is 10.5 μΜ. Since 20 ml of this solution was obtained, it becomes 0.21 μmol per 20 ml. Therefore, as a 30 nm particle, the methyl viologen concentration in the particle is about 1.8 mM. Until now, there have been known examples of methyl viologen molecules immobilized on silica nanoparticles at such concentrations.
[0064] (3)原料に使用したメチルビオロゲンは蛍光を発しない物質であるのに対し、上記 で得られたメチルビオロゲン ZSiO粒子は蛍光を有しており、スリット幅(Ex/Em) =5/5 [0064] (3) The methyl viologen used as a raw material is a substance that does not emit fluorescence, whereas the methyl viologen ZSiO particles obtained above have fluorescence, and the slit width (Ex / Em) = 5 /Five
2  2
nmで、励起光 357nmで 430nmにブロードな発光が観測された。このことから、メチルビ ォロゲン ZSiO粒子は、それ自体蛍光物質として有用であり、例えば、紫外線照射に  Broad emission was observed at 430 nm with excitation light at 357 nm at nm. From this fact, methyl viologen ZSiO particles are useful as fluorescent substances themselves.
2  2
より可視光領域に蛍光を発する蛍光標識等として利用できると考えられる。  It can be used as a fluorescent label that emits fluorescence in the visible light region.
[0065] (4)次!、で、このメチルビオロゲン ZSiO粒子の 30倍希釈水溶液に、 500W超高圧 [0065] (4) Next! In, in this 30-fold diluted aqueous solution of methyl viologen ZSiO particles, 500 W ultra high pressure
2  2
水銀ランプ (Ushio-500)を用いて、紫外線を約 10分間照射した後、再び蛍光を測定し た。すると、上記水溶液が黄色に着色し、表 1及び図 2に示すように、励起光および 発光波長が 、ずれも長波長側にシフトして 、ることが観察された。  Using a mercury lamp (Ushio-500), UV light was irradiated for about 10 minutes, and fluorescence was measured again. Then, it was observed that the aqueous solution was colored yellow, and as shown in Table 1 and FIG. 2, the excitation light and the emission wavelength were shifted to the longer wavelength side.
[0066] [表 1] 超高圧水銀ランプ照射前後の励起 ·発光波長(S I U
Figure imgf000017_0001
)
Figure imgf000017_0002
[0066] [Table 1] Excitation / emission wavelength (SIU) before and after ultra-high pressure mercury lamp irradiation
Figure imgf000017_0001
)
Figure imgf000017_0002
[0067] このように、メチルビオロゲン ZSiO粒子に紫外線照射することで蛍光波長が長波 [0067] As described above, when the methyl viologen ZSiO particles are irradiated with ultraviolet rays, the fluorescence wavelength is increased.
2  2
長(低エネルギー側)にシフトすることから、メチルビオロゲン ZSiO粒子内には、メチ  Since it shifts to longer (low energy side), methyl viologen
2  2
ルビオロゲン分子の重なりが起こり、生じた電子が非局在化していると考えられる。限 定されるものではないが、上記で得られたメチルビオロゲン ZSiO粒子は、図 1に示  It is considered that ruviologen molecules overlap and the resulting electrons are delocalized. Although not limited, the methylviologen ZSiO particles obtained above are shown in FIG.
2  2
すように、複数のメチルビオロゲン分子力 SiOが形成する層の間に内包されて、粒  Thus, a plurality of methyl viologen molecular forces encapsulated between layers formed by SiO
2  2
子を形成して ヽると考えられる。  It is thought to form a child.
[0068] また、力かるメチルビオロゲン ZSiO粒子は、内包させるメチルビオロゲン分子の量  [0068] Further, the forceful methyl viologen ZSiO particles are the amount of methyl viologen molecules to be encapsulated.
2  2
を変えることで、紫外線照射後の蛍光波長のシフト波長が変わるとともに 1粒子あたり の電子の補足量も増加し得るので、例えば、 400-500nmの蛍光に関して細胞等の波 長選択的蛍光標識として有効に利用できると考えられる。  By changing, the shift wavelength of the fluorescence wavelength after UV irradiation can be changed and the amount of electrons captured per particle can be increased, so it is effective as a wavelength selective fluorescent label for cells, etc., for 400-500 nm fluorescence. It is thought that it can be used.
実施例 2  Example 2
[0069] キシレノールオレンジを含有するシリカナノ粒子(キシレノールオレンジ SiO粒  [0069] Silica nanoparticles containing xylenol orange (xylenol orange SiO particles)
2 ¾1 2 ¾1
(1)キシレノールオレンジ(Aldrich社製) 2. lmgを、 2mlのジメチルスルホキシド(DMS 0)に溶解し、これに、(3-チオシァネートプロピル)トリエトキシシラン〔(3- Thiocyanatop ropyDtriethoxy silane〕原液を 3.8 μ 1混合して、反応液中に含まれるキシレノールォレ ンジ: (3-チオシァネートプロピル)トリエトキシシランの重量比が 2: 1になるように調整 した。これを約 25°Cで約 1時間攪拌混合した。次いでこの反応溶液 2mlに、エタノー ル 6ml、 テトラエチルオルソシリケート(TEOS) 0.1ml、 蒸留水 2ml、及び 30容量%ァ ンモユア水溶液 0.2mlをカ卩えて、約 25°Cで約 1日中攪拌しながら混合した。その後、 得られた反応液を、 Amicon YM-100メンブランフィルター(Amicon社製、孔径: 15nm) をセットした限外ろ過装置を利用して濾過して、キシレノールオレンジ ZSiO粒子 (粒 (1) Xylenol orange (manufactured by Aldrich) 2. Dissolve lmg in 2ml of dimethyl sulfoxide (DMS 0) and add (3-Thiocyanatopropyl) triethoxysilane ((3-Thiocyanatop ropyDtriethoxy silane) stock solution Was adjusted so that the weight ratio of xylenolene range: (3-thiocyanatepropyl) triethoxysilane contained in the reaction solution was 2: 1, which was about 25 ° C. Then, 2 ml of this reaction solution was mixed with 6 ml of ethanol, 0.1 ml of tetraethylorthosilicate (TEOS), 2 ml of distilled water, and 0.2 ml of 30% by volume aqueous ammonia solution at about 25 ° C. The resulting reaction solution was filtered using an ultrafiltration device in which an Amicon YM-100 membrane filter (Amicon, pore size: 15 nm) was set, Xylenol orange ZSiO grains (Grain
2 径 20〜30nm)を濾取し、これを蒸留水で洗浄した。なお、限定されるものではないが 、得られたキシレノールオレンジ ZSiO粒子は、メチルビオロゲン ZSiO粒子と同様  (2 diameter 20-30 nm) was collected by filtration and washed with distilled water. Although not limited, the obtained xylenol orange ZSiO particles are the same as the methylviologen ZSiO particles.
2 2  twenty two
に、 SiOが層をなして形成する粒子の各層の間に、複数のキシレノールオレンジ分子 が内包されてなる形態を有していると考えられる。 In addition, a plurality of xylenol orange molecules are formed between each layer of particles formed by SiO. Is considered to have a form of inclusion.
[0070] (2)得られたキシレノールオレンジ ZSiO粒子を水で 10倍に希釈した水溶液の 578η  [0070] (2) 578 η of an aqueous solution obtained by diluting the obtained xylenol orange ZSiO particles 10 times with water
2  2
mの吸光度を測定したところ、 2.173であった(図 3)。分子吸光係数が 47000であること から、 0.462 mMのキシレノールオレンジ分子がシリカ粒子内に固定されたこと、すな わち原料として使用したキシレノールオレンジの約 6.6%がシリカ粒子内に固定された ことが確認された。したがって、 30nmの粒子としてその粒子内のキシレノールオレンジ 分子濃度は、約 13mMとなる。いままでに、このような濃度でキシレノールオレンジ分 子をシリカナノ粒子に固定された例は知られて ヽな 、。  The absorbance at m was measured to be 2.173 (Fig. 3). Since the molecular extinction coefficient is 47000, 0.462 mM xylenol orange molecule was fixed in silica particles, that is, about 6.6% of xylenol orange used as a raw material was fixed in silica particles. confirmed. Therefore, the xylenol orange molecular concentration in the 30 nm particle is about 13 mM. To date, it is well known that xylenol orange molecules have been immobilized on silica nanoparticles at such concentrations.
[0071] (3)上記のキシレノールオレンジ ZSiO粒子の 10倍希釈水溶液は、原料として用い [0071] (3) A 10-fold diluted aqueous solution of the above xylenol orange ZSiO particles is used as a raw material.
2  2
たキシレノールオレンジと同様に、酸性条件下 (pHく 7)で黄色、アルカリ条件下 (pH > 7)で赤色を呈した。キシレノールオレンジは、それ自体 pH指示薬であるが(酸性 条件下で黄色、アルカリ条件下で赤色を示す)、上記のことから、キシレノールオレン ジは、 SiOに担持されて濃縮された状態でも pH指示薬として使用できることが確認で  As with xylenol orange, the color was yellow under acidic conditions (pH 7) and red under alkaline conditions (pH> 7). Xylenol orange itself is a pH indicator (yellow under acidic conditions and red under alkaline conditions). From the above, xylenol orange can be used as a pH indicator even when it is supported on SiO and concentrated. Confirm that it can be used
2  2
きた。さらに、 SiOに担持させることによって、キシレノールオレンジをそのまま使用す  Came. Furthermore, xylenol orange can be used as it is by supporting it on SiO.
2  2
る場合では難しかった、特定領域の pH測定 (例えば水溶液中に分散された物質ある いは細胞などの内部の pH測定)に使用することが可能である。このことから本発明の キシレノールオレンジ ZSiO粒子によれば、例えばマクロファージ等の生体内の微小  It can be used for pH measurement in a specific area (for example, pH measurement of substances dispersed in an aqueous solution or cells). From this, according to the xylenol orange ZSiO particles of the present invention, for example, in vivo microparticles such as macrophages
2  2
組織内の pHを測定することも可能と考えられる。  It may be possible to measure the pH in the tissue.
[0072] (4)前述するように、キシレノールオレンジ ZSiO粒子の 10倍希釈水溶液は、酸性 [0072] (4) As described above, a 10-fold diluted aqueous solution of xylenol orange ZSiO particles is acidic.
2  2
条件下 (pHく 7)で黄色を示した。次いで、この中に Fe3+を添加したところ、紫色に色 が変化した。キシレノールオレンジ/ SiO粒子のこの現象を利用することによって、 Si It showed a yellow color under the conditions (pH 7). Next, when Fe 3+ was added thereto, the color changed to purple. By taking advantage of this phenomenon of xylenol orange / SiO particles, Si
2  2
0で保護されたキシレノールオレンジによって細胞中等の Fe3+を検出することが可能Zero-protected xylenol orange can detect Fe 3+ in cells
2 2
である。  It is.
[0073] (5)キシレノールオレンジ Zシリカ粒子の水溶液 0.4ml、 10mMの硫酸アンモ-ゥム 鉄(Π) (1Ν)水溶液 0.1ml、及び IN硫酸 0.1mlを混合して、 Fe2+Zキシレノールオレンジ /SiO試薬の水溶液 (酸性、 pH2、黄色)を調製した。次いで、この Fe2+/キシレノー[0073] (5) Xylenol orange Z silica particle aqueous solution 0.4ml, 10mM ammonium sulfate iron (Π) (1Ν) 0.1ml aqueous solution and 0.1ml IN sulfuric acid were mixed, and Fe 2+ Z xylenol orange An aqueous solution of / SiO reagent (acidic, pH 2, yellow) was prepared. Then this Fe 2+ / xyleno
2 2
ルオレンジ ZSiO試薬水溶液に、室温で γ線を約 10Gy照射 (60-Co y線照射装置  Luorange ZSiO reagent aqueous solution is irradiated with about 10 Gy of γ-ray at room temperature (60-Co y-ray irradiation device
2  2
で 30分間照射)した。すると、上記水溶液が黄色力 紫色へと色変化することが観測 された。この色変化は、 γ線照射によって水溶液中の Fe2+が酸ィ匕されて生成した Fe3+ 力 キシレノールオレンジに配位したことによって生じたものと思われる。また、 600nm における吸光度を測定したところ、 γ線照射による色変化によって、当該吸光度が約 0.15増大することがわかった(図 4、スペクトル bからスペクトル aに変化)。以上のこと 力も、キシレノールオレンジをシリカナノ粒子に固定した本発明のキシレノールオレン ジ ZSiO粒子を利用することによって、 γ線照射に伴って生じる吸光度変化が観測For 30 minutes). Then, it is observed that the aqueous solution changes its color to yellowish purple. It was done. This color change is thought to be caused by the coordination of Fe 3+ force xylenol orange produced by acidification of Fe 2+ in aqueous solution by gamma irradiation. When the absorbance at 600 nm was measured, it was found that the absorbance increased by about 0.15 due to the color change caused by γ-ray irradiation (Fig. 4, change from spectrum b to spectrum a). In view of the above, the change in absorbance caused by γ-irradiation was observed by using the xylenol orange ZSiO particles of the present invention in which xylenol orange was fixed to silica nanoparticles.
2 2
できることが判明した。  It turns out that you can.
[0074] 次いで、キシレノールオレンジ Ζシリカ粒子の水溶液 0.4mlまたは 0.2mlと、 10mMの 硫酸アンモ-ゥム鉄 (IIX1N)水溶液 0.1ml、 IN硫酸 0.1ml、及び蒸留水 0.6〜2.4mlを混 合して Fe2+/キシレノールオレンジ/ SiO試薬の水溶液 (酸性、 pH2、黄色)を調製し [0074] Next, 0.4 ml or 0.2 ml of an aqueous solution of xylenol orange-silica particles was mixed with 0.1 ml of 10 mM ammonium iron sulfate (IIX1N) solution, 0.1 ml of IN sulfuric acid, and 0.6-2.4 ml of distilled water. Prepare an aqueous solution of Fe 2+ / xylenol orange / SiO reagent (acidic, pH 2, yellow)
2  2
た後、これに 0.2g/mlのゼラチンを lml〜3mlの割合で配合し、これらの水溶液に γ線 を約 10Gy照射した (60-Co y線照射装置で 30分間照射)。その結果、上記と同様に、 γ線照射により Fe2+の酸ィ匕により生じた Fe3+がキシレノールオレンジに配位することに より色変化 (黄色から紫色への変化)が観測できた。またこの色変化を吸光度測定に よって観察したところ、 0.2g/mlのゼラチンを lml配合した場合に、紫色の吸光度が最 大に変化することが確認された (586nmで 1.329の吸光度)。この値から、本発明のキ シレノールオレンジ Zシリカ粒子によると、照射後のキシレノールオレンジの吸光度に ついて、文献 [Radiation Physics and Chemistry, 61 (2001) 433- 435〕の約 1.2倍の感 度が得られたことがわ力つた(図 5) Thereafter, 0.2 g / ml gelatin was mixed at a rate of 1 ml to 3 ml, and these aqueous solutions were irradiated with about 10 Gy of γ rays (irradiated with a 60-Co y ray irradiation device for 30 minutes). As a result, a color change (change from yellow to purple) was observed as a result of coordination of Fe 3+ produced by Fe 2+ by γ-irradiation to xylenol orange as described above. In addition, when this color change was observed by measuring the absorbance, it was confirmed that the purple absorbance changed to the maximum when 1 ml of 0.2 g / ml gelatin was added (absorbance of 1.329 at 586 nm). From this value, according to the xylenol orange Z silica particles of the present invention, the absorbance of xylenol orange after irradiation is about 1.2 times that of the literature [Radiation Physics and Chemistry, 61 (2001) 433-435]. What I got was helping (Figure 5)
実施例 3  Example 3
[0075] 4-ァミノ- (2,3,6,6-テトラメチル-トビペリジニルォキシ)を含有するシリカナノ粒子「4- ァミノ Terqpo SiO粒  [0075] Silica nanoparticles containing 4-amino- (2,3,6,6-tetramethyl-biperidinyloxy) "4-amino amino acid Terqpo SiO
2 ¾1  2 ¾1
(1) 4-ァミノ- (2,3,6,6-テトラメチル- 1-ピベリジ-ルォキシ)〔以下、「4-ァミノ Tempo」 という〕(Aldrich社製) 0.9mgを、 lmlのジメチルスルホキシド(DMSO)に溶解し、これに 、(3-チオシァネートプロピル)トリエトキシシラン〔(3- Thiocyanatopropyl)triethoxy silan e〕原液を DMSOで 10倍に希釈した溶液 18 1と混合して、これを約 25°Cで約 1時間攪 拌混合した。次いでこの反応溶液 0.05mlに、エタノール 3.95ml、テトラエチルオルソ シリケート(TEOS) 0.05ml、 蒸留水 lml、及び 30容量0 /0アンモニア水溶液 0.1mlを加 えて、約 25°Cで約 1日中攪拌しながら混合した。その後、得られた反応液を、 Amicon YM-100メンブランフィルター(Amicon社製、孔径: 15nm)をセットした限外ろ過装置を 利用して濾過して、 4-ァミノ TempoZSiO粒子(粒径: 20〜30nm)を濾取し、これを蒸 (1) 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) [hereinafter referred to as “4-amino Tempo”] (manufactured by Aldrich) 0.9 mg of lml of dimethyl sulfoxide ( In (DMSO), the (3-thioocyanatopropyl) triethoxysilane ((3-Thiocyanatopropyl) triethoxysilane) stock solution was mixed with a solution 18 1 diluted 10-fold with DMSO, and this was mixed. The mixture was stirred at 25 ° C for about 1 hour. Then the reaction solution 0.05 ml, ethanol 3.95 ml, tetraethylorthosilicate (TEOS) 0.05 ml, of distilled water lml, and 30 volume 0/0 aqueous ammonia 0.1ml pressurized The mixture was stirred at about 25 ° C. for about 1 day. Thereafter, the obtained reaction solution was filtered using an ultrafiltration apparatus in which an Amicon YM-100 membrane filter (Amicon, pore size: 15 nm) was set, and 4-amino TempoZSiO particles (particle size: 20- (30 nm)
2  2
留水で洗浄した。  Washed with distilled water.
[0076] (2)得られた 4-ァミノ TempoZSiO粒子を蒸留水に分散してコロイド状態に調製し、  (2) The obtained 4-amino amino TempoZSiO particles are dispersed in distilled water to prepare a colloidal state,
2  2
このうち 170 1を水溶液測定用石英製扁平セル (JEOL DATUM LC12)に採取して、 室温下で電子スピン共鳴 (ESR)スペクトルを測定した(日本電子株式会社製の JEOL TE-300 [X-band]使用)。結果を図 6に示す。  Of these, 170 1 was collected in a quartz flat cell for measuring aqueous solutions (JEOL DATUM LC12), and electron spin resonance (ESR) spectra were measured at room temperature (JEOL TE-300 [X-band ]use). The result is shown in FIG.
[0077] 図 6に示すように、ピーク間隔は 17.2gaussであり、 4-ァミノ Tempoそのものを同様に 測定した場合のピーク間隔(15gauss)よりも少し大きくなつていた。これは、ラジカル (4 -ァミノ Tempo)の自由回転が抑えられていること、すなわち 4-ァミノ Tempoが SiOに [0077] As shown in FIG. 6, the peak interval was 17.2 gauss, which was slightly larger than the peak interval (15 gauss) when 4-amino Tempo itself was measured in the same manner. This is because the free rotation of the radical (4-Amino Tempo) is suppressed, that is, 4-Amino Tempo is converted into SiO.
2 固定ィ匕されていることを示唆するものである。限定されるものではないが、これらのこ と力 、得られた 4-ァミノ TempoZSiO粒子は、メチルビオロゲン ZSiO粒子と同様に  2 This indicates that it is fixed. Although not limited to these, the resulting 4-amino amino TempoZSiO particles are similar to the methylviologen ZSiO particles.
2 2  twenty two
、 SiOが層を成して形成する粒子の、当該各層の間に、複数の 4-ァミノ Tempo分子が A plurality of 4-amino tempo molecules are formed between each layer of particles formed by SiO layers.
2 2
内包され固定ィ匕されてなる形態を有していると考えられる。  It is considered to have a form that is enclosed and fixed.
[0078] 従来、生体内にラジカル (4-ァミノ Tempo)を投与した場合に、生体内では酸化され たり、シグナルを消失するという問題があつたが、本発明によれば、前述するようにラ ジカル (4-ァミノ Tempo)を、 SiO粒子に安定に固定化できることから、こうした問題を [0078] Conventionally, when a radical (4-amino tempo) is administered in a living body, there is a problem that it is oxidized in the living body or a signal disappears. Dicar (4-amino Tempo) can be stably immobilized on SiO particles,
2  2
生じることなぐラジカル信号を観測することができる。このことから、 4-ァミノ TempoZ SiO粒子は、生体内での薬物代謝等の動態を評価するための標識試薬として有効 A radical signal that does not occur can be observed. Therefore, 4-amino TempoZ SiO particles are effective as a labeling reagent for evaluating the kinetics of drug metabolism in vivo.
2 2
に利用できるものと考えられる。  It is considered that it can be used.

Claims

請求の範囲 The scope of the claims
[1] シリカ粒子内に、メチルビオロゲン、キシレノールオレンジ、及び 4-ァミノ- (2,3, 6,6- テトラメチル -1-ピベリジ-ルォキシ)よりなる群力も選択される 1種の化合物を含有し てなる、機能性シリカ粒子。  [1] Silica particles contain one compound with a selected group strength consisting of methyl viologen, xylenol orange, and 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) Thus, functional silica particles.
[2] シリカ粒子内にメチルビオロゲンを含有する、下記の特性を有する請求項 1記載の 機能性シリカ粒子:  [2] The functional silica particle according to claim 1, which contains methyl viologen in the silica particle and has the following characteristics:
(a)蛍光を有する、  (a) having fluorescence,
(b)酸素存在下、紫外線照射することにより無色透明から黄色に変色する、  (b) It turns from colorless and transparent to yellow when irradiated with ultraviolet light in the presence of oxygen.
(c)紫外線照射により励起 Z蛍光波長が長波長側にシフトする。  (c) Excitation Z fluorescence wavelength shifts to longer wavelength side by ultraviolet irradiation.
[3] シリカ粒子内にキシレノールオレンジを含有する、下記の特性を有する請求項 1記 載の機能性シリカ粒子:  [3] The functional silica particle according to claim 1, which contains xylenol orange in the silica particle and has the following characteristics:
(d)酸性下で黄色、アルカリ下で赤色を呈する、  (d) yellow under acid, red under alkali,
(e)酸性下で Fe3+の存在により紫色を呈する。 (e) It turns purple due to the presence of Fe 3+ under acidic conditions.
[4] シリカ粒子内に、 4-ァミノ- (2,3,6,6-テトラメチル-トピベリジ-ルォキシ)を、シリカ層 により保護された状態で安定に含有する、下記の特性を有する請求項 1記載の機能 性シリカ粒子:  [4] The silica particle according to claim 4, wherein 4-amino- (2,3,6,6-tetramethyl-topiberidioxy) is stably contained in a state protected by a silica layer. Functional silica particles described in 1:
(f)ラジカノレを有する。  (f) Has a radio canore.
[5] 機能性シリカ粒子がナノオーダーの粒径を有する微粒子である、請求項 1乃至 4の V、ずれかに記載する機能性シリカ粒子。  [5] The functional silica particles according to V of claim 1 to 4, wherein the functional silica particles are fine particles having a nano-order particle size.
[6] メチルビオロゲン、キシレノールオレンジ、及び 4-ァミノ- (2,3, 6,6-テトラメチル- 1-ピ ベリジ-ルォキシ)よりなる群力も選択される 1種の化合物を、(3-チオシァネートプロ ピル)トリエトキシシランと混合し、次 、でアンモニアの存在下でテトラエチルオルソシリ ケートと混合する工程を有する、請求項 1に記載の機能性シリカ粒子の製造方法。  [6] One compound selected from the group consisting of methylviologen, xylenol orange, and 4-amino- (2,3,6,6-tetramethyl-1-piberidi-loxy) is selected as (3-thio The method for producing functional silica particles according to claim 1, comprising a step of mixing with cyanate propyl) triethoxysilane and then mixing with tetraethylorthosilicate in the presence of ammonia.
PCT/JP2005/011731 2004-06-28 2005-06-27 Functional silica particle and use thereof WO2006001417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528665A JP4820963B2 (en) 2004-06-28 2005-06-27 Functional silica particles and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-190288 2004-06-28
JP2004190288 2004-06-28

Publications (1)

Publication Number Publication Date
WO2006001417A1 true WO2006001417A1 (en) 2006-01-05

Family

ID=35781853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011731 WO2006001417A1 (en) 2004-06-28 2005-06-27 Functional silica particle and use thereof

Country Status (2)

Country Link
JP (1) JP4820963B2 (en)
WO (1) WO2006001417A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265306A (en) * 2005-03-22 2006-10-05 Univ Of Tokushima Color material composition and color developing or luminescent product containing the same
JP2008273790A (en) * 2007-04-27 2008-11-13 Furukawa Electric Co Ltd:The Method for producing silica nanoparticles using reverse micelle disperse system, silica nanoparticles obtained by the method and labelling reagent using the nanoparticles
JP2009046330A (en) * 2007-08-15 2009-03-05 Furukawa Electric Co Ltd:The Method for producing silica nanoparticle using reverse micelle dispersion system, silica nanoparticle obtained by the method, and labeling reagent using the nanoparticle
KR101608766B1 (en) 2009-05-16 2016-04-04 한국생명공학연구원 Photochromism-silica Nanoparticles and Method for Preparing the Same
JP2016204579A (en) * 2015-04-28 2016-12-08 国立大学法人徳島大学 Scintillator stabilization silicic acid particle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125312B (en) * 2020-10-12 2022-02-11 东南大学 Method for modifying amino on surface of silicon dioxide nano-particle

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MILOSAVLJEVIC B.H. ET AL: "KInetic and Thermodynamic Aspects of Adsorption on Silica Nanoparticles. A Pulse Radiolysis Study", J.PHYS.CHEM. B, vol. 108, no. 6, February 2004 (2004-02-01), pages 1827 - 1830, XP002998946 *
MIYOSHI K. ET AL: "Silica Nano-Bubble-chu Methylviologen Radical no Hoshasen Bunkaiteki Seisei", THE CHEMICAL SOCIETY OF JAPAN DAI 81 SHUNKEI NENKAI - KOEN YOKOSHU I, March 2002 (2002-03-01), pages 473, XP002998945 *
ZAPOROZHETS O.A. ET AL: "Xylenol orange adsorbed on silica surface as a solid phase reagent for lead determination using diffuse reflectance spectroscopy", TALANTA, vol. 58, no. 5, November 2002 (2002-11-01), pages 861 - 868, XP002998947 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265306A (en) * 2005-03-22 2006-10-05 Univ Of Tokushima Color material composition and color developing or luminescent product containing the same
JP2008273790A (en) * 2007-04-27 2008-11-13 Furukawa Electric Co Ltd:The Method for producing silica nanoparticles using reverse micelle disperse system, silica nanoparticles obtained by the method and labelling reagent using the nanoparticles
JP2009046330A (en) * 2007-08-15 2009-03-05 Furukawa Electric Co Ltd:The Method for producing silica nanoparticle using reverse micelle dispersion system, silica nanoparticle obtained by the method, and labeling reagent using the nanoparticle
KR101608766B1 (en) 2009-05-16 2016-04-04 한국생명공학연구원 Photochromism-silica Nanoparticles and Method for Preparing the Same
JP2016204579A (en) * 2015-04-28 2016-12-08 国立大学法人徳島大学 Scintillator stabilization silicic acid particle

Also Published As

Publication number Publication date
JPWO2006001417A1 (en) 2008-04-17
JP4820963B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
Jia et al. Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging
JP6910388B2 (en) Plasmonics assisted systems and methods for internal energy activity from external sources
Li et al. Upconversion nanoprobes for biodetections
Chen et al. Current advances in lanthanide‐doped upconversion nanostructures for detection and bioapplication
Wang et al. Design and synthesis of core–shell–shell upconversion nanoparticles for NIR-induced drug release, photodynamic therapy, and cell imaging
Jain et al. Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells
Wang et al. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications
WO2006001417A1 (en) Functional silica particle and use thereof
CN105969331A (en) Preparation method of nano-material suitable for targeting drug carriers
Liu et al. Facile synthesis of Er3+/Tm3+ co-doped magnetic/luminescent nanosystems for possible bioimaging and therapy applications
Kumar et al. FITC-Dextran entrapped and silica coated gadolinium oxide nanoparticles for synchronous optical and magnetic resonance imaging applications
Yu et al. Tunable photoluminescence studies based on blue-emissive carbon dots and sequential determination of Fe (III) and pyrophosphate ions
Popovich et al. LuAG: Pr3+-porphyrin based nanohybrid system for singlet oxygen production: Toward the next generation of PDTX drugs
CN109592664A (en) A kind of carbon nano dot and preparation method thereof for having light stimulating activity oxygen and generating performance
Wang et al. Improved photodynamic efficiency for methylene blue from silica-methylene blue@ tannic acid-Fe (III) ions complexes in aqueous solutions
Zou et al. Singlet oxygen generation of photosensitizers effectively activated by Nd3+-doped upconversion nanoparticles of luminescence intensity enhancing with shell thickness decreasing
Wang et al. Enhanced photodynamic efficiency of methylene blue with controlled aggregation state in silica-methylene bule-acetate@ tannic acid-iron (III) ions complexes
Maksimchuk et al. LaF3: Tb3+− Bengal Rose nanocomplexes for X-ray activated ROS generation
Fu et al. Gold nanoclusters with enhanced near-infrared emission and its application as sensors for biological molecules
Juzenas et al. Generation of nitrogen oxide and oxygen radicals by quantum dots
CN111253932A (en) Ratio type fluorescent probe based on fluorescent carbon dots and co-doped nanocrystals and preparation method and application thereof
CN111303877A (en) Quantum dot fluorescent probe in cell and human blood Hg2+Application in visual detection
Sameer et al. Carbon nanodots as a remedial nanovesicles for drug delivery
Porcel et al. Plasmonic silica-gold core-shell nanoparticles: Interaction with organic dyes for light-induced applications
Yang et al. Lead/cadmium-free near-infrared multifunctional nanoplatform for deep-tissue bimodal imaging and drug delivery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528665

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase