WO2006001198A1 - White organic fluorescent compound - Google Patents

White organic fluorescent compound Download PDF

Info

Publication number
WO2006001198A1
WO2006001198A1 PCT/JP2005/010910 JP2005010910W WO2006001198A1 WO 2006001198 A1 WO2006001198 A1 WO 2006001198A1 JP 2005010910 W JP2005010910 W JP 2005010910W WO 2006001198 A1 WO2006001198 A1 WO 2006001198A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorescent compound
organic fluorescent
white organic
alkyl group
Prior art date
Application number
PCT/JP2005/010910
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Nakaya
Atsushi Ikeda
Mitukura Sato
Original Assignee
Hirose Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Engineering Co., Ltd. filed Critical Hirose Engineering Co., Ltd.
Publication of WO2006001198A1 publication Critical patent/WO2006001198A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a white organic fluorescent compound, and more particularly to a white organic fluorescent compound that has a quinacridone skeleton, is robust, has good processability, and emits white light with high luminance.
  • the white organic fluorescent compound represented by the formula (1) has been studied as a good light-emitting material for EL devices having a quinacridone skeleton.
  • R 1 and R 2 are disclosed for R 1 and R 2 .
  • R 1 is a hydrogen atom, an alkyl group, a benzyl group, etc.
  • Force R 2 is an alkyl group.
  • Patent Document 1 and Patent Document 2 See Patent Document 1 and Patent Document 2.
  • the already known white organic fluorescent compounds having the above-mentioned characteristic groups still have difficulties in luminance and lifetime as EL devices. In particular, there was a problem in stably attaching the EL element on the substrate.
  • Patent Document 1 JP 2003-192684 A
  • Patent Document 2 JP 2003-203780 A
  • a first means for solving the above problem is a white organic fluorescent compound represented by the formula (1).
  • R 1 represents a benzyl group in which a hydrogen atom of a phenyl group is substituted with an alkyl group having 2 to 5 carbon atoms.
  • R 2 represents any of a hydrogen atom, an alkyl group, an aryl group or an aryl group.
  • a second means for solving the above problem is a white organic fluorescent compound represented by the above formula (1).
  • R 1 represents a naphthomethyl group in which a hydrogen atom of a naphthyl group is replaced with an alkyl group having 1 to 5 carbon atoms.
  • R 2 represents a hydrogen atom, an alkyl group, an aryl group, or an arylenorequinolene group! /.
  • a third means for solving the above problem is a white organic fluorescent compound represented by the above formula (1).
  • R 1 represents an anthrylmethyl group in which a hydrogen atom of an anthryl group (anthryl group) is substituted with an alkyl group having 1 to 5 carbon atoms.
  • R 2 represents a hydrogen atom, an alkyl group, an aryl group or an aryl group.
  • R 1 and R 2 may be the same group or different groups. Further, the substituent bonded to the phenyl group, naphthyl group and anthryl group in R 1 may be one alkyl group or two or more alkyl groups. Further, when there are two or more substituted alkyl groups, they may be the same or different substituents.
  • a white organic phosphor compound suitable as a light-emitting material for high-luminance, high-purity white and long-life EL elements that can be used for various white light emitters including organic EL elements and the like. Can provide. In particular, it is well suited for the production of stable EL elements that adhere well on the substrate as EL elements.
  • FIG. 1 is an IR chart of compound (13) in Example 1.
  • FIG. 2 is an NMR chart of the compound (13) in Example 1.
  • FIG. 3 shows the fluorescence spectrum of the white organic fluorescent compound (14) of Example 1. is there.
  • FIG. 4 is an IR chart of the compound (15) in Example 2.
  • FIG. 5 is an NMR chart of the compound (15) in Example 2.
  • FIG. 6 is an IR chart of the white organic fluorescent compound (16) in Example 2.
  • FIG. 7 is an NMR chart of white organic fluorescent compound (16) in Example 2.
  • FIG. 8 is a graph showing the fluorescence spectrum of the white organic fluorescent compound (16) of Example 2.
  • FIG. 9 is an IR chart of the compound (19) in Example 3.
  • FIG. 10 is an NMR chart of the compound (19) in Example 3.
  • FIG. 11 is an IR chart of the compound (20) in Example 3.
  • FIG. 12 is an NMR chart of the compound (20) in Example 3.
  • FIG. 13 is an IR chart of the compound (21) in Example 3.
  • FIG. 14 is an IR chart of the white organic fluorescent compound (22) in Example 3.
  • FIG. 15 is a graph showing the fluorescence spectrum of the white organic fluorescent compound (22) of Example 3.
  • FIG. 16 is an explanatory view showing an example of an organic EL element.
  • a compound having a quinacridone skeleton such as a white organic fluorescent compound represented by the general formula (1), can be used as an EL device.
  • some of R 1 and R 2 have already been used.
  • Such groups are disclosed.
  • the present inventors obtained a particularly excellent white organic fluorescent compound for EL devices by optimally selecting the characteristic group R 1 bonded to the nitrogen atom of quinacridone. I was able to.
  • the quinacridone skeleton was distorted by utilizing steric hindrance and electron donating property in the molecule, and the luminescence function was adjusted.
  • the inventors have invented a white light-emitting material that enhances light emission on the low wavelength side, which is relatively difficult to emit light, and sufficiently develops red light emission and is well-balanced or has adjusted light emission characteristics.
  • the white organic fluorescent compound represented by the formula (1) according to the present invention has a quinacridone skeleton represented by the formula (3).
  • This quinacridone is well known as a pigment called Pigment Violet 19, which is synthesized by, for example, condensation, ring closure and acidification using, for example, jetyl succinyl succinate and arrin as main raw materials. Therefore, the white organic fluorescent compound according to the present invention is also excellent in fastness, weather resistance, light resistance and heat resistance.
  • R 1 is a benzyl group in which a hydrogen atom of a phenyl group is substituted with an alkyl group having 2 to 5 carbon atoms, or a hydrogen atom of a naphthyl group is an alkyl group having 1 to 5 carbon atoms.
  • Two R 1 may be the same or different.
  • R 1 is a substituted benzyl group
  • the hydrogen atom of the phenyl group is substituted with an alkyl group having 2 to 5 carbon atoms.
  • This alkyl group having 2 to 5 carbon atoms is a characteristic group selected from an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • the propyl group, butyl group and pentyl group may each be linear or branched. Branched characteristic groups such as isopropyl and tertiary butyl groups are preferred.
  • the substitution position on the phenyl group may be anywhere, but the ortho and para positions are suitable. This is probably because the electron donating effect of the benzyl group is strong.
  • Two or more alkyl groups may be substituted for the hydrogen atom of the phenyl group. In this case, the same or different substituents may be used.
  • the quinacridone skeleton As described above, by selecting a characteristic group that binds to the nitrogen atom of the quinacridone skeleton, the quinacridone skeleton, or even the entire molecule, has a steric or electronic state due to steric hindrance or electron donating properties in the molecule.
  • the light emission function changes. As a result, light emission on the low wavelength side, which is considered to be relatively difficult to emit light, is increased, so that red light emission is sufficiently developed and a balanced white light-emitting material can be obtained.
  • the reason why the substituent alkyl group is 5 or less carbon atoms is that if the alkyl group becomes too large, the light emitting device per molecule Even if the performance is the same, the light emitting function per weight will be reduced. In addition, if the molecular weight is too large, production and handling as a compound becomes difficult.
  • R 1 is a substituted naphthomethyl group
  • the hydrogen atom of the naphthyl group is a naphthomethyl group substituted with an alkyl group having 1 to 5 carbon atoms.
  • This alkyl group having 1 to 5 carbon atoms is a characteristic group in which methyl, ethyl, propyl, butyl, and pentyl groups are also selected.
  • the substituted naphthomethyl group may be either (X naphthomethyl group or ⁇ -naphthomethyl group.
  • the alkyl group as a substituent is a propyl group, a butyl group, or a pentyl group, each is linear or branched.
  • the substitution position of the alkyl group to the naphthyl group may be anywhere, and more than two alkyl groups may be substituted for the hydrogen atom of the naphthyl group.
  • the quinacridone skeleton is distorted due to steric hindrance and electron donating properties in the molecule, and As a result, the light emission on the low wavelength side, which is considered to be relatively difficult to emit light, increases, and the red light emission is fully developed and balanced.
  • the alkyl group as a substituent is 5 or less carbon atoms, if the alkyl group is too large, the light emission function per weight will drop even if the light emission function per molecule is the same. In addition, if the molecular weight is too large, manufacture and handling as a compound becomes difficult.
  • R 1 is a substituted anthrylmethyl group
  • the hydrogen atom of the anthryl group is an anthrylmethyl group substituted with an alkyl group having 1 to 5 carbon atoms.
  • This alkyl group having 1 to 5 carbon atoms is a characteristic group selected from a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • the alkyl group as a substituent is a propyl group, a butyl group, or a pentyl group, each may be linear or branched.
  • the substitution position of the alkyl group to the anthryl group may be anywhere.
  • Two or more alkyl groups may be substituted for the hydrogen atom of the anthryl group.
  • the same substituent or different substituents may be used.
  • the quinacridone skeleton is distorted due to steric hindrance and electron donating properties in the molecule, and the luminescence function changes . This makes it relatively difficult to emit light. Therefore, red light emission is sufficiently developed and a balanced white light emitting material can be obtained.
  • the reason why the substituent alkyl group is 5 or less carbon atoms is that if the alkyl group becomes too large, the light emitting function per weight will be lowered even if the light emitting function per molecule is the same. If the molecular weight is too large, it is difficult to manufacture and handle as a compound.
  • the two characteristic groups R 2 are each a hydrogen atom, an alkyl group, an aryl group or an aryl group, each of which is the same group May be different groups.
  • the alkyl group include an alkyl group having 1 to 30 carbon atoms, and a lower alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group is particularly preferable.
  • the two characteristic groups R 2 may be the same or different.
  • R 2 is an aryl group
  • the aryl group includes a phenyl group, a naphthyl group, an anthryl group, a biphenyl group, and a substituent such as an alkyl group or an alkoxy group bonded to these aromatic rings. Examples thereof include a p-tolyl group and a p-alkoxyphenol group.
  • the arylalkyl group includes a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a 2-phenylpropyl group, 3 Examples thereof include a phenylpropyl group and a 4-phenylbutyl group.
  • the phenyl group may be further substituted with a substituent such as an alkyl group.
  • Preferred arylalkyl groups are benzyl group and p-methylbenzyl group.
  • the white organic fluorescent compound represented by the formula (1) of the third invention of the first force is By having the substituent of R 2 , solubility in a solvent is improved, and therefore, coating property by dissolving in an appropriate solvent is improved, and sublimation temperature is lowered, so that workability by vapor deposition is improved. Furthermore, the compatibility with the polymer compound is improved, so that it can be included in the polymer film. In particular, by selecting R 1 , it is an excellent white organic fluorescent compound with particularly improved emission luminance, sublimation temperature, and compatibility with a polymer compound when an EL device is obtained.
  • the white organic fluorescent compound represented by the formula (1) can be produced, for example, according to the following reaction formula.
  • R is a lower alkyl group such as a methyl group or an ethyl group
  • R 1 and R 2 are the same characteristic groups as described above.
  • the above reaction formula is, for example, dialkyl 2,5 dihydroxy 1,4-cyclohexadiene 1,4-dicarboxylate (compound (4) in the above reaction formula) and a compound (5) such as 3-amino-9 alkyl strength rubazole.
  • the reaction proceeds by heating in an appropriate solvent.
  • a dehydration reaction proceeds to obtain a compound (6) crosslinked with an amino group.
  • an appropriate dehydrating agent such as concentrated sulfuric acid can be used.
  • R 2 When R 1 is hydrogen, the dehydrogenation reaction product (7) is, for example, I ⁇ HaU in DMF, where HaL represents a halogen atom. ) Can be reacted to alkylate the dehydrogenation reaction product (7).
  • the ring closure reaction is carried out by heating in an appropriate solvent, preferably in the presence of an organic acid catalyst such as sulfuric acid or p-toluenesulfonic acid, in an appropriate solvent such as dichlorobenzene in an inert high-boiling organic solvent. It progresses by heating with.
  • an organic acid catalyst such as sulfuric acid or p-toluenesulfonic acid
  • dichlorobenzene in an inert high-boiling organic solvent.
  • the compound power represented by (8) in the above reaction formula is the white organic fluorescent compound according to the present invention represented by the above formula (1).
  • the white organic fluorescent compound according to the present invention emits light in the region of 400 to 700 nm and can be used for an organic EL device capable of emitting white light.
  • the organic EL device using the white organic fluorescent compound of the present invention comprises an ITO anode, polybulur rubazole (PVK), 2- (4 tert butylphenol) 5- (4-biphenyl) -1, 3 4, 4 Oxadiazole and a white organic fluorescent compound-containing light emitting layer and a cathode formed on the surface of the light emitting layer may be used.
  • ITO anode polybulur rubazole (PVK)
  • 2- (4 tert butylphenol) 5- (4-biphenyl) -1, 3 4, 4 Oxadiazole and a white organic fluorescent compound-containing light emitting layer and a cathode formed on the surface of the light emitting layer may be used.
  • the energy level is conduction band power It is a phenomenon in which energy is released as light when returning to the child band.
  • This organic EL element can employ various types of structures as long as it has a light emitting layer containing a white organic fluorescent compound according to the present invention between an anode and a cathode.
  • this organic EL element for example, as shown in FIG. 16, the transparent electrode 3 formed on the surface of the transparent substrate 2 and the white electrode according to the present invention formed on the surface of the transparent electrode 3 are used.
  • a single-layer organic light emitting device comprising a light emitting layer 4 containing an organic fluorescent compound and a cathode 5 formed on the surface of the light emitting layer 4 can be mentioned.
  • the light emitting layer can be a deposited layer formed by depositing a white organic fluorescent compound represented by the above formula (1).
  • an electron transporting material that transports electrons between the anode and the cathode, the white organic fluorescent compound according to the present invention, and a hole transporting hole.
  • a single-layer organic light-emitting device having a light-emitting layer containing both a hole-transporting polymer, a hole-transporting layer containing a hole-transporting substance between the anode and the cathode formed on the substrate, and the present invention A two-layer organic low-molecular light-emitting device formed by laminating such a white organic fluorescent compound-containing electron transporting light emitting layer (for example, a hole transporting layer between an anode and a cathode, and a white color according to the present invention as a guest dye)
  • the organic EL element can usually be formed on a substrate.
  • this substrate include transparent substrates such as glass and plastic.
  • the anode can be made of various materials as long as it has a large work function and is transparent, and holes can be injected into the film by applying a voltage.
  • ITO indium gallium
  • Inorganic transparent conductive materials such as O, SnO, ZnO, CdO, etc., and their compounds, and poly
  • This anode is formed on the substrate by chemical vapor deposition, spray pie-lysis, vacuum deposition, electron beam deposition, sputtering, ion beam sputtering, ion plating, ion assisted deposition, It can be formed by other methods.
  • the cathode employs a material having a small work function, and may be formed of a single metal or a metal alloy such as MgAg, aluminum alloy, and calcium metal.
  • a preferred cathode is an alloy electrode of aluminum and a small amount of lithium.
  • the cathode can be easily formed on the surface of the organic layer including the light emitting layer formed on the substrate, for example, by a vapor deposition technique.
  • Examples of the electron transporting substance include 2- (4-tert-butylphenol) -5- (4-biphenyl) 1,3,4-oxadiazole derivatives and the like, and 2, 5 bis (1 naphthyl) 1,3,4 oxadiazole, 2,5 bis (5′-tert-butyl-2′-benzoxazolyl) thiophene, and the like.
  • a metal complex material such as quinolinol aluminum complex (Alq3) or benzoquinolinol beryllium complex (Bebq2) can be preferably used.
  • Examples of the hole transport material include triphenylamine compounds such as N, N'-diphenyl-N, N, 1di (m tolyl) 1benzidine (TPD), and ⁇ -NPD, hydrazone compounds, Examples include stilbene compounds, heterocyclic compounds, and ⁇ -electron starburst hole transport materials.
  • the organic layer in the organic EL element can be formed by any one of a coating method such as a spin casting method, a coating method, a dip method, and a vapor deposition method. Whichever of the coating method and the vapor deposition method is adopted, it is preferable to interpose a buffer layer between the electrode and the organic layer. Forming the buffer layer formed between the cathode and the organic layer; Examples of materials that can be used include, for example, alkali metal compounds such as lithium fluoride, alkaline earth metal compounds such as magnesium fluoride, acid compounds such as acid aluminum, 4, 4, 1 bis carbazole biphenol (Cz-TPD).
  • a coating method such as a spin casting method, a coating method, a dip method, and a vapor deposition method. Whichever of the coating method and the vapor deposition method is adopted, it is preferable to interpose a buffer layer between the electrode and the organic layer. Forming the buffer layer formed between the cathode and the organic layer; Examples of materials that can be used include
  • m-MTDA TA (4, 4 ,, 4 "-tris (3-methylphenol-lamino) is used as a material for forming a buffer layer formed between an anode such as ITO and an organic layer.
  • anode such as ITO and an organic layer.
  • Triphenylamine Triphenylamine
  • lid opening polyarine
  • polythiophene derivatives polythiophene derivatives
  • inorganic oxides such as molybdenum oxide, ruthenium oxide, vanadium oxide, and lithium fluoride.
  • the electron-transporting light-emitting layer in this light-emitting element is usually 50 to 80% polyvinyl carbazole (PVK), 5 to 40% of an electron-transporting light-emitting agent, and the white organic fluorescent material according to the present invention. When formed with 0.01 to 20% (by weight) of compound, white light emission occurs with high brightness.
  • the hole transporting polymer include polyvinylcarbazole and poly (3-alkylenephene).
  • the organic layer preferably contains rubrene as a sensitizer, and particularly preferably contains rubrene and Alq3.
  • the organic EL device using the white organic fluorescent compound according to the present invention can be generally used as, for example, a direct current drive device, and can also be used as a pulse drive device and an AC drive device. Can be used.
  • the white organic fluorescent compound according to the present invention is further used in the display field such as a monochrome display and a color display, and in the lighting field such as a light sign, a direct-view sign, indirect illumination, and an LCD backlight.
  • X represents a 4-methyl-1-naphthomethyl group (CH C H CH—).
  • X represents a 4-methyl-1-naphthomethyl group (CH C H CH-).
  • the white organic fluorescent compound (14) was dissolved in mixed xylene to a concentration of lOmgZL to prepare a sample solution.
  • This sample solution was loaded into an F-4500 spectrofluorometer manufactured by Shimadzu Corporation, and the fluorescence spectrum was measured under the following conditions. The resulting fluorescent spectrum is shown in FIG.
  • the white organic fluorescent compound obtained in this example is 400 700 nm. Fluorescence can be seen, covering the entire area.
  • Example 1 The compound represented by the manufactured formula (12) in Example 1 5. 0 g of (8. 49 X 10- 3 mol) was placed in ⁇ bottle 1000 ml, 4-t-butylbenzyl bromide 9. 3 g (5 09 X 10 _2 mol) was added, and then 400 ml of N, N-dimethylformamide (DMF) was added. Using a silicone oil bath, the pressure bottle was heated to 160 ° C with stirring and allowed to react for 20 hours. After completion of the reaction, the mixture was cooled to room temperature, concentrated using an evaporator, poured into ice water, and neutralized with sodium hydroxide. Using a separatory funnel, black mouth form extraction was performed three times, and water washing was performed twice.
  • DMF N, N-dimethylformamide
  • Y represents a 4-tbutylbenzyl group (4- (CH 3) CC H CH—).
  • Y represents a 4-tbutylbenzyl group (4- (CH) CC H CH-).
  • This white organic fluorescent compound-containing solution was made sufficiently uniform by irradiating ultrasonic waves with an ultrasonic cleaner (US-2, manufactured by SND Corporation) for 20 minutes.
  • an ultrasonic cleaner US-2, manufactured by SND Corporation
  • an ITO substrate 50 ⁇ 50 mm, Sanyo Vacuum Industries Co., Ltd.
  • UV irradiation was performed for 30 seconds with a UV irradiation device (manufactured by M'D Excimer, wavelength 172 nm) for cleaning.
  • the prepared white organic fluorescent compound-containing solution is dropped onto an ITO substrate that has been cleaned and dried using a spin coater (Mikasa Co., Ltd., 1H-D7), and the rotational speed is 1,500 rpm and the rotational time is A film was formed by spin coating in 3 seconds.
  • An EL device was manufactured. The luminance and chromaticity of this EL element were measured with a spectroradiometer SR-3 manufactured by Topcon Corporation.
  • the voltage was 12.5 V
  • the current was 18.8 mA
  • the luminance was 12000 CdZm 2
  • the chromaticity X was 0.
  • the white organic fluorescent compound (16) was dissolved in mixed xylene to a concentration of lOmgZL to prepare a sample solution.
  • This sample solution was loaded into an F-4500 spectrofluorometer manufactured by Shimadzu Corporation, and the fluorescence spectrum was measured under the following conditions. The resulting fluorescent spectrum is shown in FIG.
  • the white organic fluorescent compound obtained in this example is 400 to 700 nm. Fluorescence can be seen, covering the entire area. In particular, there is a large peak at 562 nm.
  • X represents a 4-tbutylbenzyl group (4- (CH) CC H CH-).
  • the solid obtained was washed with methyl alcohol, acetone and petroleum ether cooled to 5 ° C., and then dried in vacuo to obtain a solid, and 1.0 g of the solid was collected using a Soxhlet extraction apparatus. Extracted with 250 ml of silene over 24 hours, concentrated to dryness using an evaporator after completion of extraction, and the resulting solid was washed with petroleum ether and vacuum dried to obtain 0.5 g of a black powder.
  • Fig. 14 shows the IR chart of the body
  • Fig. 15 shows the fluorescence spectrum measured in the same manner as in Example 1. Indicated.
  • the solid was filed white organic fluorescent compounds having the structure shown by the formula (22).
  • X represents a 4-tbutylbenzyl group (4- (CH) CC H CH-).
  • the white organic fluorescent compound (22) obtained in this example shows fluorescence emission at 400 to 700 nm and covers the entire region. In particular, there are large peaks not only on the short wavelength side but also on the long wavelength side of 555 nm and 595 nm.
  • the white organic fluorescent compound of the present invention can be used to emit white light by an organic EL element, a display, a lighting device, or the like.
  • the white organic fluorescent compound can be made into a light emitting element capable of emitting blue light, red light and green light by spectroscopic analysis using a prism, and further, a full color display can be performed using a color filter. It can also be used for LCD backlights.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a white organic fluorescent compound which is a single compound emitting white light with higher luminance. Such a white organic fluorescent compound is fast, excellent in processability and can be used for various white light-emitting bodies such as organic EL devices. Specifically disclosed is a white organic fluorescent compound which is characterized by being represented by the formula (1) below. In the formula (1), R1 represents a C2-C5 alkyl benzyl group, a C1-C5 alkylnaphtho-methyl group or a C1-C5 alkylanthryl methyl group; and R2 represents a hydrogen atom, an alkyl group, an aryl group or an arylalkyl group.

Description

白色有機蛍光化合物  White organic fluorescent compound
技術分野  Technical field
[0001] この発明は白色有機蛍光化合物に関し、さらに詳しくは、キナクリドン骨格を有する ことにより堅牢であり、加工性が良好で、大きな輝度で白色発光する白色有機蛍光化 合物に関する。  TECHNICAL FIELD [0001] The present invention relates to a white organic fluorescent compound, and more particularly to a white organic fluorescent compound that has a quinacridone skeleton, is robust, has good processability, and emits white light with high luminance.
背景技術  Background art
[0002] 有機 EL素子は、従来、 R、 G、及び Bの三原色それぞれを発光させる素子及び白 色発光素子を中心に開発が進められてきた。白色発光は、赤発光の化合物、青発 光の化合物及び緑発光の化合物や複数の発光化合物を混色して白色発光を実現 するものであった。そこで、単一化合物で白色蛍光を発する化合物の調査が進めら れた結果、式 (3)で示されるキナクリドンを骨格に有する化合物が白色発光を実現す るものであることが知られるようになった。なお、キナクリドンはビグメントバイオレット 1 9とも称される顔料として周知であり、一般に、堅牢性、耐候性、耐光性及び耐熱性 に優れると言われている。  [0002] Conventionally, organic EL devices have been developed mainly for devices that emit light of R, G, and B, respectively, and white light emitting devices. White light emission was realized by mixing a red light emitting compound, a blue light emitting compound, a green light emitting compound, and a plurality of light emitting compounds to achieve white light emission. Therefore, as a result of investigations on a single compound that emits white fluorescence, it has become known that a compound having a quinacridone skeleton represented by formula (3) realizes white light emission. It was. Quinacridone is well known as a pigment also called pigment violet 19 and is generally said to be excellent in fastness, weather resistance, light resistance and heat resistance.
[0003] [化 1]  [0003] [Chemical 1]
Figure imgf000003_0001
《3 )
Figure imgf000003_0001
(3)
[0004] 例えば、式(1)で示される白色有機蛍光化合物は、キナクリドン骨格を有する良好 な EL素子用発光材料として研究されてきた。 [0004] For example, the white organic fluorescent compound represented by the formula (1) has been studied as a good light-emitting material for EL devices having a quinacridone skeleton.
[0005] [化 2] O [0005] [Chemical 2] O
N  N
ノ 、、 No,
、、一 o , One o
( i )  (i)
[0006] ここで、 R1及び R2についてはいくつかの基が開示されている。例えば、 R1は水素原 子、アルキル基、ベンジル基など力 R2はアルキル基が知られている。(特許文献 1、 特許文献 2参照)。しかし、これら式(1)で示される化合物のうちすでに知られている 上記の特性基を持つ白色有機蛍光化合物は、 EL素子としての輝度や寿命にはまだ 難点があった。特に、 EL素子として基板上に安定的に付着させるには問題があった Here, several groups are disclosed for R 1 and R 2 . For example, R 1 is a hydrogen atom, an alkyl group, a benzyl group, etc. Force R 2 is an alkyl group. (See Patent Document 1 and Patent Document 2). However, among the compounds represented by the formula (1), the already known white organic fluorescent compounds having the above-mentioned characteristic groups still have difficulties in luminance and lifetime as EL devices. In particular, there was a problem in stably attaching the EL element on the substrate.
[0007] 特許文献 1 :特開 2003— 192684 [0007] Patent Document 1: JP 2003-192684 A
特許文献 2:特開 2003 - 203780  Patent Document 2: JP 2003-203780 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] この発明の目的は、有機 EL素子等を初めとする各種の白色発光体に利用可能な 白色有機蛍光化合物を提供することにある。また、この発明の目的は高輝度、高純 度白色及び長寿命の EL素子用の発光材料として適した蛍光化合物を提供すること である。 An object of the present invention is to provide a white organic fluorescent compound that can be used for various white light emitters such as an organic EL element. Another object of the present invention is to provide a fluorescent compound suitable as a light emitting material for an EL device having high brightness, high purity white color and long life.
課題を解決するための手段  Means for solving the problem
[0009] 前記課題を解決するための第一の手段は、式(1)で示される白色有機蛍光化合物 である。但し、 R1は、フエニル基の水素原子が炭素数 2〜5のアルキル基で置換され たベンジル基を示す。 R2は、水素原子、アルキル基、ァリール基又はァリールアルキ ル基の 、ずれかを示す。 [0009] A first means for solving the above problem is a white organic fluorescent compound represented by the formula (1). R 1 represents a benzyl group in which a hydrogen atom of a phenyl group is substituted with an alkyl group having 2 to 5 carbon atoms. R 2 represents any of a hydrogen atom, an alkyl group, an aryl group or an aryl group.
[0010] [化 3] O [0010] [Chemical 3] O
N  N
ノ 、、 No,
、、一 o , One o
( i )  (i)
[0011] 前記課題を解決するための第二の手段は、上記式(1)で示される白色有機蛍光化 合物である。但し、 R1は、ナフチル基の水素原子が炭素数 1〜5のアルキル基で置 換されたナフトメチル基を示す。 R2は、水素原子、アルキル基、ァリール基又はァリー ノレアノレキノレ基の!/、ずれかを示す。 [0011] A second means for solving the above problem is a white organic fluorescent compound represented by the above formula (1). R 1 represents a naphthomethyl group in which a hydrogen atom of a naphthyl group is replaced with an alkyl group having 1 to 5 carbon atoms. R 2 represents a hydrogen atom, an alkyl group, an aryl group, or an arylenorequinolene group! /.
[0012] 前記課題を解決するための第三の手段は、上記式(1)で示される白色有機蛍光化 合物である。但し、 R1は、アントリル基 (anthryl基)の水素原子が炭素数 1〜5のアル キル基で置換されたアントリルメチル基(anthrylmethyl基)を示す。 R2は、水素原子、 アルキル基、ァリール基又はァリールアルキル基の 、ずれかを示す。 [0012] A third means for solving the above problem is a white organic fluorescent compound represented by the above formula (1). R 1 represents an anthrylmethyl group in which a hydrogen atom of an anthryl group (anthryl group) is substituted with an alkyl group having 1 to 5 carbon atoms. R 2 represents a hydrogen atom, an alkyl group, an aryl group or an aryl group.
[0013] なお、上記第一から第三の発明にお!/、て R1及び R2は、それぞれ同一の基であって も相違する基であっても良い。また、 R1におけるフエニル基、ナフチル基及びアントリ ル基に結合する置換基は、一つのアルキル基でも良!ヽし二つ以上のアルキル基でも よい。さらに置換されたアルキル基が二つ以上の場合は、同一の置換基でも異なつ た置換基でもよい。 [0013] In the above first to third inventions, R 1 and R 2 may be the same group or different groups. Further, the substituent bonded to the phenyl group, naphthyl group and anthryl group in R 1 may be one alkyl group or two or more alkyl groups. Further, when there are two or more substituted alkyl groups, they may be the same or different substituents.
発明の効果  The invention's effect
[0014] この発明はおいては、有機 EL素子等を初めとする各種の白色発光体に利用可能 な高輝度、高純度白色及び長寿命の EL素子用の発光材料として適した白色有機蛍 光化合物を提供できる。特に、 EL素子として基板上に良好に密着させ、安定した EL 素子の作成に適している。  [0014] In the present invention, a white organic phosphor compound suitable as a light-emitting material for high-luminance, high-purity white and long-life EL elements that can be used for various white light emitters including organic EL elements and the like. Can provide. In particular, it is well suited for the production of stable EL elements that adhere well on the substrate as EL elements.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]図 1は、実施例 1における化合物(13)の IRチャートである。  FIG. 1 is an IR chart of compound (13) in Example 1.
[図 2]図 2は、実施例 1における化合物(13)の NMRチャートである。  FIG. 2 is an NMR chart of the compound (13) in Example 1.
[図 3]図 3は、実施例 1の白色有機蛍光化合物(14)の蛍光スペクトルを示- ある。 [FIG. 3] FIG. 3 shows the fluorescence spectrum of the white organic fluorescent compound (14) of Example 1. is there.
[図 4]図 4は、実施例 2における化合物(15)の IRチャートである。  FIG. 4 is an IR chart of the compound (15) in Example 2.
[図 5]図 5は、実施例 2における化合物(15)の NMRチャートである。  FIG. 5 is an NMR chart of the compound (15) in Example 2.
[図 6]図 6は、実施例 2における白色有機蛍光化合物(16)の IRチャートである。  FIG. 6 is an IR chart of the white organic fluorescent compound (16) in Example 2.
[図 7]図 7は、実施例 2における白色有機蛍光化合物(16)の NMRチャートである。  FIG. 7 is an NMR chart of white organic fluorescent compound (16) in Example 2.
[図 8]図 8は、実施例 2の白色有機蛍光化合物(16)の蛍光スペクトルを示すグラフで ある。  FIG. 8 is a graph showing the fluorescence spectrum of the white organic fluorescent compound (16) of Example 2.
[図 9]図 9は、実施例 3における化合物(19)の IRチャートである。  FIG. 9 is an IR chart of the compound (19) in Example 3.
[図 10]図 10は、実施例 3における化合物(19)の NMRチャートである。  FIG. 10 is an NMR chart of the compound (19) in Example 3.
[図 11]図 11は、実施例 3における化合物(20)の IRチャートである。  FIG. 11 is an IR chart of the compound (20) in Example 3.
[図 12]図 12は、実施例 3における化合物(20)の NMRチャートである。  FIG. 12 is an NMR chart of the compound (20) in Example 3.
[図 13]図 13は、実施例 3における化合物(21)の IRチャートである。  FIG. 13 is an IR chart of the compound (21) in Example 3.
[図 14]図 14は、実施例 3における白色有機蛍光化合物(22)の IRチャートである。  FIG. 14 is an IR chart of the white organic fluorescent compound (22) in Example 3.
[図 15]図 15は、実施例 3の白色有機蛍光化合物(22)の蛍光スペクトルを示すグラフ である。  FIG. 15 is a graph showing the fluorescence spectrum of the white organic fluorescent compound (22) of Example 3.
[図 16]図 16は、有機 EL素子の一例を示す説明図である。  FIG. 16 is an explanatory view showing an example of an organic EL element.
符号の説明  Explanation of symbols
[0016] 1 · ·有機EL素子 [0016] 1 · · Organic EL device
2· '基板  2 'PCB
3 · '陽極  3'Anode
4· ·発光層  4.Light emitting layer
5 · ·陰極  5 · · Cathode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 上述のように、キナクリドン骨格を有する化合物、例えば一般式(1)で示される白色 有機蛍光化合物は、 EL素子として利用可能であり、上述のように R1及び R2について はすでにいくつかの基が開示されている。そこで、これらの化合物をさらに詳細に検 討した結果、本発明者らはキナクリドンの窒素原子に結合する特性基 R1を最適に選 択することにより特に優れた EL素子用白色有機蛍光化合物を得ることができた。す なわち、分子内の立体障害や電子供与性を利用してキナクリドン骨格にひずみを生 じさせ、発光機能を調整することができた。これにより、相対的に発光し難いとされる 低波長側の発光を強化し、赤色発光も十分に発現され、バランスの取れた、あるいは 発光特性を調整した白色発光材料を発明した。 [0017] As described above, a compound having a quinacridone skeleton, such as a white organic fluorescent compound represented by the general formula (1), can be used as an EL device. As described above, some of R 1 and R 2 have already been used. Such groups are disclosed. Thus, as a result of examining these compounds in more detail, the present inventors obtained a particularly excellent white organic fluorescent compound for EL devices by optimally selecting the characteristic group R 1 bonded to the nitrogen atom of quinacridone. I was able to. The In other words, the quinacridone skeleton was distorted by utilizing steric hindrance and electron donating property in the molecule, and the luminescence function was adjusted. As a result, the inventors have invented a white light-emitting material that enhances light emission on the low wavelength side, which is relatively difficult to emit light, and sufficiently develops red light emission and is well-balanced or has adjusted light emission characteristics.
[0018] 本発明に係る前記式(1)で示される白色有機蛍光化合物は ヽずれも、式 (3)で示 されるキナクリドン骨格を有する。このキナクリドンは、例えばジェチルスクシニルスク シナートとァ-リンとを主原料として、例えば縮合、閉環、酸ィ匕を行って合成され、ピ グメントバイオレット 19と称される顔料として周知である。したがって、本発明に係る白 色有機蛍光化合物も、堅牢性、耐候性、耐光性及び耐熱性に優れる。  [0018] The white organic fluorescent compound represented by the formula (1) according to the present invention has a quinacridone skeleton represented by the formula (3). This quinacridone is well known as a pigment called Pigment Violet 19, which is synthesized by, for example, condensation, ring closure and acidification using, for example, jetyl succinyl succinate and arrin as main raw materials. Therefore, the white organic fluorescent compound according to the present invention is also excellent in fastness, weather resistance, light resistance and heat resistance.
[0019] 式(1)において、 R1は、フエ-ル基の水素原子が炭素数 2〜5のアルキル基で置換 されたベンジル基、ナフチル基の水素原子が炭素数 1〜5のアルキル基で置換され たナフトメチル基、アントリル基 (anthryl基)の水素原子が炭素数 1〜5のアルキル基 で置換されたアントリルメチル基(anthrylmethyl基)を示す。 2個の R1は同一であって も相違していても良い。 In the formula (1), R 1 is a benzyl group in which a hydrogen atom of a phenyl group is substituted with an alkyl group having 2 to 5 carbon atoms, or a hydrogen atom of a naphthyl group is an alkyl group having 1 to 5 carbon atoms. An anthrylmethyl group (anthrylmethyl group) in which a hydrogen atom of a naphthomethyl group or anthryl group (anthryl group) substituted with an alkyl group having 1 to 5 carbon atoms is substituted. Two R 1 may be the same or different.
[0020] R1が置換べンジル基であるとき、そのフエ-ル基の水素原子は炭素数 2〜5のアル キル基で置換されたものである。この炭素数 2〜5のアルキル基はェチル基、プロピ ル基、ブチル基、ペンチル基カゝら選ばれる特性基である。なお、プロピル基、ブチル 基、ペンチル基はそれぞれ直鎖状でも分岐状でもよい。分岐状の特性基たとえばィ ソプロピル基やターシャルブチル基などが好ましい。さらに、フエ-ル基への置換位 置はどこでもよいが、オルト及びパラ位置が適している。ベンジル基の電子供与性効 果が強いからと考えられる。また、フエニル基の水素原子を置換するアルキル基は二 つ以上でもよぐこの場合は、同一の置換基でも異なった置換基でもよい。 [0020] When R 1 is a substituted benzyl group, the hydrogen atom of the phenyl group is substituted with an alkyl group having 2 to 5 carbon atoms. This alkyl group having 2 to 5 carbon atoms is a characteristic group selected from an ethyl group, a propyl group, a butyl group, and a pentyl group. The propyl group, butyl group and pentyl group may each be linear or branched. Branched characteristic groups such as isopropyl and tertiary butyl groups are preferred. In addition, the substitution position on the phenyl group may be anywhere, but the ortho and para positions are suitable. This is probably because the electron donating effect of the benzyl group is strong. Two or more alkyl groups may be substituted for the hydrogen atom of the phenyl group. In this case, the same or different substituents may be used.
[0021] 上記のように、キナクリドン骨格の窒素原子に結合する特性基を選択することにより 、分子内の立体障害や電子供与性に起因してキナクリドン骨格、さらには分子全体 に立体的あるいは電子状態のひずみが生じ、発光機能が変化する。これにより、相 対的に発光し難いとされる低波長側の発光が増えるため、赤色発光も十分に発現さ れ、バランスの取れた白色発光材料とすることができる。置換基であるアルキル基を 炭素数 5以下としたのは、アルキル基があまり大きなものになると分子あたりの発光機 能が同じでも重量あたりの発光機能は落ちることになる。また、分子量が大きくなりす ぎると化合物としての製造や取扱 、が難しくなる。 [0021] As described above, by selecting a characteristic group that binds to the nitrogen atom of the quinacridone skeleton, the quinacridone skeleton, or even the entire molecule, has a steric or electronic state due to steric hindrance or electron donating properties in the molecule. The light emission function changes. As a result, light emission on the low wavelength side, which is considered to be relatively difficult to emit light, is increased, so that red light emission is sufficiently developed and a balanced white light-emitting material can be obtained. The reason why the substituent alkyl group is 5 or less carbon atoms is that if the alkyl group becomes too large, the light emitting device per molecule Even if the performance is the same, the light emitting function per weight will be reduced. In addition, if the molecular weight is too large, production and handling as a compound becomes difficult.
[0022] R1が置換ナフトメチル基であるとき、そのナフチル基の水素原子は炭素数 1〜5の アルキル基で置換されたナフトメチル基である。この炭素数 1〜5のアルキル基はメチ ル基、ェチル基、プロピル基、ブチル基、ペンチル基カも選ばれる特性基である。置 換ナフトメチル基は (Xナフトメチル基でも βナフトメチル基でもよい。上記ベンジル基 の場合と同様、置換基であるアルキル基がプロピル基、ブチル基、ペンチル基のとき は、それぞれ直鎖状でも分岐状でもよい。さらに、ナフチル基へのアルキル基の置換 位置はどこでもよい。また、ナフチル基の水素原子を置換するアルキル基は二つ以 上でもよぐこの場合は、同一の置換基でも異なった置換基でもよい。上記のように、 キナクリドン骨格の窒素原子に結合する特性基を置換ナフトメチル基とすることにより 、分子内の立体障害や電子供与性に起因してキナクリドン骨格にひずみが生じ、発 光機能が変化する。これにより、相対的に発光し難いとされる低波長側の発光が増え るため、赤色発光も十分に発現され、バランスの取れた白色発光材料とすることがで きる。置換基であるアルキル基を炭素数 5以下としたのは、アルキル基があまり大きな ものになると分子あたりの発光機能が同じでも、重量あたりの発光機能は落ちること になる。また、分子量が大きくなりすぎると化合物としての製造や取扱いが難しくなる [0022] When R 1 is a substituted naphthomethyl group, the hydrogen atom of the naphthyl group is a naphthomethyl group substituted with an alkyl group having 1 to 5 carbon atoms. This alkyl group having 1 to 5 carbon atoms is a characteristic group in which methyl, ethyl, propyl, butyl, and pentyl groups are also selected. The substituted naphthomethyl group may be either (X naphthomethyl group or β-naphthomethyl group. As in the case of the above benzyl group, when the alkyl group as a substituent is a propyl group, a butyl group, or a pentyl group, each is linear or branched. Furthermore, the substitution position of the alkyl group to the naphthyl group may be anywhere, and more than two alkyl groups may be substituted for the hydrogen atom of the naphthyl group. As described above, when the characteristic group bonded to the nitrogen atom of the quinacridone skeleton is a substituted naphthomethyl group, the quinacridone skeleton is distorted due to steric hindrance and electron donating properties in the molecule, and As a result, the light emission on the low wavelength side, which is considered to be relatively difficult to emit light, increases, and the red light emission is fully developed and balanced. If the alkyl group as a substituent is 5 or less carbon atoms, if the alkyl group is too large, the light emission function per weight will drop even if the light emission function per molecule is the same. In addition, if the molecular weight is too large, manufacture and handling as a compound becomes difficult.
[0023] R1が置換アントリルメチル基であるとき、そのアントリル基の水素原子が炭素数 1〜 5のアルキル基で置換されたアントリルメチル基である。この炭素数 1〜5のアルキル 基はメチル基、ェチル基、プロピル基、ブチル基、ペンチル基カゝら選ばれる特性基で ある。上記べンジル基の場合と同様、置換基であるアルキル基がプロピル基、ブチル 基、ペンチル基のときは、それぞれ直鎖状でも分岐状でもよい。さらに、アントリル基 へのアルキル基の置換位置はどこでもよい。また、アントリル基の水素原子を置換す るアルキル基は二つ以上でもよぐこの場合は、同一の置換基でも異なった置換基で もよい。上記のように、キナクリドン骨格の窒素原子に結合する特性基を置換アントリ ルメチル基とすることにより、分子内の立体障害や電子供与性に起因してキナクリドン 骨格にひずみが生じ、発光機能が変化する。これにより、相対的に発光し難いとされ る低波長側の発光が増えるため、赤色発光も十分に発現され、バランスの取れた白 色発光材料とすることができる。置換基であるアルキル基を炭素数 5以下としたのは、 アルキル基があまり大きなものになると分子あたりの発光機能が同じでも重量あたりの 発光機能は落ちることになる。また、分子量が大きくなりすぎると化合物としての製造 や取扱いが難しくなる。 [0023] When R 1 is a substituted anthrylmethyl group, the hydrogen atom of the anthryl group is an anthrylmethyl group substituted with an alkyl group having 1 to 5 carbon atoms. This alkyl group having 1 to 5 carbon atoms is a characteristic group selected from a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. As in the case of the benzyl group, when the alkyl group as a substituent is a propyl group, a butyl group, or a pentyl group, each may be linear or branched. Furthermore, the substitution position of the alkyl group to the anthryl group may be anywhere. Two or more alkyl groups may be substituted for the hydrogen atom of the anthryl group. In this case, the same substituent or different substituents may be used. As described above, by using a substituted anthrylmethyl group as a characteristic group bonded to the nitrogen atom of the quinacridone skeleton, the quinacridone skeleton is distorted due to steric hindrance and electron donating properties in the molecule, and the luminescence function changes . This makes it relatively difficult to emit light. Therefore, red light emission is sufficiently developed and a balanced white light emitting material can be obtained. The reason why the substituent alkyl group is 5 or less carbon atoms is that if the alkyl group becomes too large, the light emitting function per weight will be lowered even if the light emitting function per molecule is the same. If the molecular weight is too large, it is difficult to manufacture and handle as a compound.
[0024] 第一から第三の発明の式(1)において、 2個の特性基 R2はそれぞれ、水素原子、 アルキル基、ァリール基又はァリールアルキル基であり、それぞれ同一の基であって も相違する基であっても良い。このアルキル基としては、例えば炭素数が 1〜30のァ ルキル基を挙げることができ、特にメチル基、ェチル基、プロピル基等の、炭素数が 1 〜 5である低級アルキル基が好まし 、。 2個の特性基 R2は同一であっても相違して ヽ ても良い。 R2がァリール基であるときのそのァリール基としては、フエ-ル基、ナフチ ル基、アントリル基、ビフヱ-ル基並びにこれらの芳香環にアルキル基及びアルコキ シ基等の置換基が結合した基例えば p トリル基、 p アルコキシフエ-ル基等を挙 げることができる。 R2がァリールアルキル基であるときのそのァリールアルキル基とし ては、ベンジル基、 1 フエ-ルェチル基、 2—フエ-ルェチル基、 1 フエ-ルプロ ピル基、 2 フエ-ルプロピル基、 3 フエ-ルプロピル基、 4 フエ-ルブチル基等 を挙げることができ、フエニル基には更にアルキル基等の置換基で置換されていても 良い。好ましいァリールアルキル基は、ベンジル基、 p メチルベンジル基である。 In the formulas (1) of the first to third inventions, the two characteristic groups R 2 are each a hydrogen atom, an alkyl group, an aryl group or an aryl group, each of which is the same group May be different groups. Examples of the alkyl group include an alkyl group having 1 to 30 carbon atoms, and a lower alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group is particularly preferable. . The two characteristic groups R 2 may be the same or different. When R 2 is an aryl group, the aryl group includes a phenyl group, a naphthyl group, an anthryl group, a biphenyl group, and a substituent such as an alkyl group or an alkoxy group bonded to these aromatic rings. Examples thereof include a p-tolyl group and a p-alkoxyphenol group. When R 2 is an arylalkyl group, the arylalkyl group includes a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a 2-phenylpropyl group, 3 Examples thereof include a phenylpropyl group and a 4-phenylbutyl group. The phenyl group may be further substituted with a substituent such as an alkyl group. Preferred arylalkyl groups are benzyl group and p-methylbenzyl group.
[0025] 第一力も第三の発明の前記式(1)で示される白色有機蛍光化合物は、
Figure imgf000009_0001
R2の置 換基を有することにより、溶媒に対する溶解性が向上し、したがって、適宜の溶媒に 溶解することによる塗布性が向上し、また昇華温度が低下するので蒸着による加工 性が向上し、さらに、高分子化合物との相溶性が向上するので高分子膜中に含める ことができるようになる。特に、 R1の選択により、 EL素子にした場合の発光輝度、昇 華温度、高分子化合物との相溶性が特に向上した優れた白色有機蛍光化合物であ る。
[0025] The white organic fluorescent compound represented by the formula (1) of the third invention of the first force is
Figure imgf000009_0001
By having the substituent of R 2 , solubility in a solvent is improved, and therefore, coating property by dissolving in an appropriate solvent is improved, and sublimation temperature is lowered, so that workability by vapor deposition is improved. Furthermore, the compatibility with the polymer compound is improved, so that it can be included in the polymer film. In particular, by selecting R 1 , it is an excellent white organic fluorescent compound with particularly improved emission luminance, sublimation temperature, and compatibility with a polymer compound when an EL device is obtained.
[0026] 式(1)で示される白色有機蛍光化合物は、例えば、以下の反応式に従って製造す ることがでさる。  [0026] The white organic fluorescent compound represented by the formula (1) can be produced, for example, according to the following reaction formula.
[0027] [化 4]
Figure imgf000010_0001
[0027] [Chemical 4]
Figure imgf000010_0001
[0028] 上記式中、 Rはメチル基、ェチル基などの低級アルキル基であり、 R1及び R2は前記 と同様の特性基である。上記反応式は、例えば、ジアルキル 2, 5 ジヒドロキシ 1, 4ーシクロへキサジェンー 1, 4ージカルボキシレート(上記反応式中の化合物(4) )と 3—アミノー 9 アルキル力ルバゾール等の化合物(5)とを適宜の溶媒中で加熱する ことにより進行する。脱水反応が進行して、ァミノ基で架橋した化合物(6)が得られる 。脱水反応には、適宜の脱水剤例えば濃硫酸等を使用することができる。 In the above formula, R is a lower alkyl group such as a methyl group or an ethyl group, and R 1 and R 2 are the same characteristic groups as described above. The above reaction formula is, for example, dialkyl 2,5 dihydroxy 1,4-cyclohexadiene 1,4-dicarboxylate (compound (4) in the above reaction formula) and a compound (5) such as 3-amino-9 alkyl strength rubazole. The reaction proceeds by heating in an appropriate solvent. A dehydration reaction proceeds to obtain a compound (6) crosslinked with an amino group. In the dehydration reaction, an appropriate dehydrating agent such as concentrated sulfuric acid can be used.
[0029] 上記脱水反応生成物をさらに濃硫酸等で処理すると、次式のように脱水素反応が 起こる。  [0029] When the dehydration reaction product is further treated with concentrated sulfuric acid or the like, a dehydrogenation reaction occurs as shown in the following formula.
[0030] [化 5]  [0030] [Chemical 5]
Figure imgf000010_0002
Figure imgf000010_0002
R1 R 1
Figure imgf000010_0003
Figure imgf000010_0003
R 2 [0031] R1が水素の場合には、前記脱水素反応生成物(7)に、例えば DMF中で I^HaU ただし、 HaLはハロゲン原子を示す。)を反応させることにより、前記脱水素反応生成 物(7)をアルキル化させることもできる。 R 2 [0031] When R 1 is hydrogen, the dehydrogenation reaction product (7) is, for example, I ^ HaU in DMF, where HaL represents a halogen atom. ) Can be reacted to alkylate the dehydrogenation reaction product (7).
[0032] 次いで、次の反応式により閉環反応を行う。  [0032] Next, a ring-closing reaction is carried out according to the following reaction formula.
[0033] [化 6]  [0033] [Chemical 6]
Figure imgf000011_0001
Figure imgf000011_0001
(8)  (8)
[0034] 閉環反応は、適宜の溶媒中で加熱することにより、好ましくは硫酸、 p トルエンス ルホン酸等の有機酸の触媒の存在下に適宜の溶媒例えばジクロロベンゼン等の不 活性高沸点有機溶媒中で加熱することにより、進行する。閉環した化合物として上記 式 (8)で示される力ルバゾール骨格含有の白色有機蛍光化合物がある。上記反応 式において(8)で示される化合物力 前記式(1)で示されるところの、本発明に係る 白色有機蛍光化合物である。  [0034] The ring closure reaction is carried out by heating in an appropriate solvent, preferably in the presence of an organic acid catalyst such as sulfuric acid or p-toluenesulfonic acid, in an appropriate solvent such as dichlorobenzene in an inert high-boiling organic solvent. It progresses by heating with. As a ring-closed compound, there is a white organic fluorescent compound containing a force rubazole skeleton represented by the above formula (8). The compound power represented by (8) in the above reaction formula is the white organic fluorescent compound according to the present invention represented by the above formula (1).
[0035] 本発明に係る白色有機蛍光化合物は、 400〜700nmの領域で発光が見られ、白 色発光可能な有機 EL素子に利用することができる。  The white organic fluorescent compound according to the present invention emits light in the region of 400 to 700 nm and can be used for an organic EL device capable of emitting white light.
[0036] 本発明の白色有機蛍光化合物を用いた有機 EL素子は、 ITO陽極と、ポリビュル力 ルバゾール(PVK)、 2- (4 tert ブチルフエ-ル) 5—(4ービフエ-ル)—1, 3, 4 ォキザジァゾール及び白色有機蛍光化合物含有の発光層と、この発光層の表 面に形成された陰極とを有して成る構造とすればよい。発光は、前記陰極と前記陽 極との間に電界が印加されると、陰極側から電子が注入され、陽極カゝら正孔が注入さ れ、更に電子が発光層において正孔と再結合し、エネルギー準位が伝導帯力 価電 子帯に戻る際にエネルギーを光として放出する現象である。 [0036] The organic EL device using the white organic fluorescent compound of the present invention comprises an ITO anode, polybulur rubazole (PVK), 2- (4 tert butylphenol) 5- (4-biphenyl) -1, 3 4, 4 Oxadiazole and a white organic fluorescent compound-containing light emitting layer and a cathode formed on the surface of the light emitting layer may be used. For light emission, when an electric field is applied between the cathode and the cathode, electrons are injected from the cathode side, holes are injected from the anode side, and electrons are recombined with holes in the light emitting layer. However, the energy level is conduction band power It is a phenomenon in which energy is released as light when returning to the child band.
[0037] この有機 EL素子は、陽極及び陰極の間に、この発明に係る白色有機蛍光化合物 含有の発光層を有している限り様々のタイプの構造を採用することができる。この有 機 EL素子として、例えば、図 16に示されるように、透明基板 2の表面に形成された透 明電極 3と、その透明電極 3の表面に形成されたところの、この発明に係る白色有機 蛍光化合物を含有する発光層 4と、この発光層 4の表面に形成された陰極 5とを備え て成る一層型有機発光素子を挙げることができる。  [0037] This organic EL element can employ various types of structures as long as it has a light emitting layer containing a white organic fluorescent compound according to the present invention between an anode and a cathode. As this organic EL element, for example, as shown in FIG. 16, the transparent electrode 3 formed on the surface of the transparent substrate 2 and the white electrode according to the present invention formed on the surface of the transparent electrode 3 are used. A single-layer organic light emitting device comprising a light emitting layer 4 containing an organic fluorescent compound and a cathode 5 formed on the surface of the light emitting layer 4 can be mentioned.
[0038] この一層型有機発光素子において、発光層を、前記式(1)で示される白色有機蛍 光化合物を蒸着させることにより形成された蒸着層とすることができ、また、この発光 層を、前記(1)で示される本発明の白色有機蛍光化合物をポリビュル力ルバゾール 等の高分子化合物と共に有機溶媒に溶解し、得られる高分子溶液を塗布し、乾燥す ること〖こより得られる発光層とすることちでさる。  [0038] In this one-layer type organic light emitting device, the light emitting layer can be a deposited layer formed by depositing a white organic fluorescent compound represented by the above formula (1). A light emitting layer obtained by dissolving the white organic fluorescent compound of the present invention shown in (1) above in an organic solvent together with a polymer compound such as polybulur rubazole, applying the polymer solution obtained, and drying It's a monkey.
[0039] 又、これとは別のタイプの有機 EL素子として、陽極と陰極との間に、電子を輸送す る電子輸送性物質、この発明に係る白色有機蛍光化合物、及びホールを輸送するホ ール輸送性高分子を共に含有する発光層を有する一層型有機発光素子、基板上に 形成された陽極と陰極との間に、ホール輸送性物質を含有するホール輸送層と、こ の発明に係る白色有機蛍光化合物含有の電子輸送性発光層とを積層して成る二層 型有機低分子発光素子 (例えば、陽極と陰極との間に、ホール輸送層と、ゲスト色素 としてこの発明に係る白色有機蛍光化合物及びホスト色素を含有する発光層とを積 層して成る二層型色素ドープ型発光素子)、陽極と陰極との間に、ホール輸送性物 質を含有するホール輸送層と、この発明に係る白色有機蛍光化合物と電子輸送性 物質とを共蒸着してなる電子輸送性発光層とを積層して成る二層型有機発光素子( 例えば、陽極と陰極との間に、ホール輸送層と、ゲスト色素としてこの発明に係る白色 有機蛍光化合物及びホスト色素とを含有する電子輸送発光層とを積層して成る二層 型色素ドープ型有機発光素子)、陽極と陰極との間に、ホール輸送層、この発明に 係る白色有機蛍光化合物含有の発光層及び電子輸送層を積層して成る三層型有 機発光素子を挙げることができる。上記各種の有機 EL素子において、一層の発光 層、並びに二層及び三層からなる積層体を有機層と称されることがある。 [0040] 上記有機 EL素子は通常基板上に形成されることができる。この基板としては、例え ばガラス、プラスチック等の透明基板を挙げることができる。前記陽極としては、仕事 関数が大きくて透明であり、電圧を印加することにより前記膜にホールを注入すること ができる限り様々の素材を採用することができる。具体的には、陽極として、 ITO、 In [0039] As another type of organic EL device, an electron transporting material that transports electrons between the anode and the cathode, the white organic fluorescent compound according to the present invention, and a hole transporting hole. A single-layer organic light-emitting device having a light-emitting layer containing both a hole-transporting polymer, a hole-transporting layer containing a hole-transporting substance between the anode and the cathode formed on the substrate, and the present invention A two-layer organic low-molecular light-emitting device formed by laminating such a white organic fluorescent compound-containing electron transporting light emitting layer (for example, a hole transporting layer between an anode and a cathode, and a white color according to the present invention as a guest dye) A two-layer dye-doped light-emitting device in which a light-emitting layer containing an organic fluorescent compound and a host dye is stacked), a hole transport layer containing a hole-transporting substance between the anode and the cathode, White organic fluorescent compound and electron according to the invention A two-layer organic light-emitting device formed by laminating an electron-transporting light-emitting layer formed by co-evaporation with a substance having a transportability (for example, a hole transport layer and a guest dye according to the present invention A two-layer dye-doped organic light-emitting device comprising a white organic fluorescent compound and a host dye, and a hole transport layer between the anode and the cathode; the white organic according to the present invention; A three-layer organic light-emitting element formed by laminating a light-emitting layer containing a fluorescent compound and an electron transport layer can be given. In the various organic EL devices described above, a single light emitting layer and a laminate composed of two layers and three layers may be referred to as an organic layer. [0040] The organic EL element can usually be formed on a substrate. Examples of this substrate include transparent substrates such as glass and plastic. The anode can be made of various materials as long as it has a large work function and is transparent, and holes can be injected into the film by applying a voltage. Specifically, as the anode, ITO, In
2 2
O 、 SnO 、 ZnO、 CdO等、及びそれらの化合物等の無機透明導電材料、及びポリInorganic transparent conductive materials such as O, SnO, ZnO, CdO, etc., and their compounds, and poly
3 2 3 2
ァ-リン等の導電性高分子材料等で形成することができる。この陽極は、前記基板上 に、化学気相成長法、スプレーパイ口リシス、真空蒸着法、電子ビーム蒸着法、スパ ッタ法、イオンビームスパッタ法、イオンプレーティング法、イオンアシスト蒸着法、そ の他の方法により形成されることができる。  It can be formed of a conductive polymer material such as phosphorus. This anode is formed on the substrate by chemical vapor deposition, spray pie-lysis, vacuum deposition, electron beam deposition, sputtering, ion beam sputtering, ion plating, ion assisted deposition, It can be formed by other methods.
[0041] 前記陰極は、仕事関数の小さな物質が採用され、例えば、 MgAg、アルミニウム合 金、金属カルシウム等の、金属単体又は金属の合金で形成されることができる。好適 な陰極はアルミニウムと少量のリチウムとの合金電極である。この陰極は、例えば基 板の上に形成された前記発光層を含む有機層の表面に、蒸着技術により、容易に形 成することができる。 [0041] The cathode employs a material having a small work function, and may be formed of a single metal or a metal alloy such as MgAg, aluminum alloy, and calcium metal. A preferred cathode is an alloy electrode of aluminum and a small amount of lithium. The cathode can be easily formed on the surface of the organic layer including the light emitting layer formed on the substrate, for example, by a vapor deposition technique.
[0042] 前記電子輸送性物質としては、例えば、 2- (4—tert ブチルフエ-ル)ー5—(4 ービフヱ-ル) 1, 3, 4ーォキサジァゾール等のォキサジァゾール誘導体及び 2, 5 ビス(1 ナフチル) 1, 3, 4 ォキサジァゾール、並びに 2, 5 ビス(5 '—tert ーブチルー 2'—べンゾキサゾリル)チォフェン等を挙げることができる。また、電子輸 送性物質として、例えばキノリノールアルミ錯体 (Alq3)、ベンゾキノリノールベリリウム 錯体 (Bebq2)等の金属錯体系材料を好適に使用することもできる。  [0042] Examples of the electron transporting substance include 2- (4-tert-butylphenol) -5- (4-biphenyl) 1,3,4-oxadiazole derivatives and the like, and 2, 5 bis (1 naphthyl) 1,3,4 oxadiazole, 2,5 bis (5′-tert-butyl-2′-benzoxazolyl) thiophene, and the like. Further, as the electron transporting substance, for example, a metal complex material such as quinolinol aluminum complex (Alq3) or benzoquinolinol beryllium complex (Bebq2) can be preferably used.
[0043] 前記ホール輸送物質としては、トリフエ-ルァミン系化合物例えば N, N'—ジフエ- ルー N, N,一ジ(m トリル)一ベンジジン(TPD)、及び α— NPD等、ヒドラゾン系 化合物、スチルベン系化合物、複素環系化合物、 π電子系スターバースト正孔輸送 物質等を挙げることができる。  [0043] Examples of the hole transport material include triphenylamine compounds such as N, N'-diphenyl-N, N, 1di (m tolyl) 1benzidine (TPD), and α-NPD, hydrazone compounds, Examples include stilbene compounds, heterocyclic compounds, and π-electron starburst hole transport materials.
[0044] この有機 EL素子における有機層は、塗布法例えばスピンキャスト法、コート法、及 びディップ法、並びに蒸着法のいずれかにより形成されることができる。塗布法及び 蒸着法のいずれを採用するにしても、電極と有機層との間に、バッファ層を介装する のが好ましい。前記陰極と前記有機層との間に形成される前記バッファ層を形成する ことのできる材料として、例えば、フッ化リチウム等のアルカリ金属化合物、フッ化マグ ネシゥム等のアルカリ土類金属化合物、酸ィ匕アルミニウム等の酸ィ匕物、 4, 4,一ビス カルバゾールビフエ-ル(Cz—TPD)を挙げることができる。また、例えば ITO等の陽 極と有機層との間に形成されるバッファ層を形成する材料として、例えば m— MTDA TA (4, 4,, 4"—トリス(3—メチルフエ-ルフエ-ルァミノ)トリフエ-ルァミン)、フタ口 シ了ニン、ポリア-リン、ポリチォフェン誘導体、無機酸ィ匕物例えば酸ィ匕モリブデン、 酸化ルテニウム、酸化バナジウム、フッ化リチウムを挙げることができる。これらのバッ ファ層は、その材料を適切に選択することにより、有機 EL素子の駆動電圧を低下さ せることができ、発光の量子効率を改善することができ、発光輝度の向上を達成する ことができる。 [0044] The organic layer in the organic EL element can be formed by any one of a coating method such as a spin casting method, a coating method, a dip method, and a vapor deposition method. Whichever of the coating method and the vapor deposition method is adopted, it is preferable to interpose a buffer layer between the electrode and the organic layer. Forming the buffer layer formed between the cathode and the organic layer; Examples of materials that can be used include, for example, alkali metal compounds such as lithium fluoride, alkaline earth metal compounds such as magnesium fluoride, acid compounds such as acid aluminum, 4, 4, 1 bis carbazole biphenol (Cz-TPD). In addition, for example, m-MTDA TA (4, 4 ,, 4 "-tris (3-methylphenol-lamino) is used as a material for forming a buffer layer formed between an anode such as ITO and an organic layer. (Triphenylamine), lid opening, polyarine, polythiophene derivatives, inorganic oxides such as molybdenum oxide, ruthenium oxide, vanadium oxide, and lithium fluoride. By appropriately selecting the material, the driving voltage of the organic EL element can be lowered, the quantum efficiency of light emission can be improved, and the emission luminance can be improved.
[0045] この発光素子における電子輸送性発光層は、通常の場合、 50〜80%のポリビ- ルカルバゾール (PVK)と、電子輸送性発光剤 5〜40%と、この発明に係る白色有機 蛍光化合物 0. 01〜20% (重量)とで形成されていると、白色発光が高輝度で起こる 。ホール輸送性高分子としては、例えばポリビニルカルバゾール、ポリ(3—アルキレ ンチォフェン)が挙げられる。また、この有機層中には、増感剤としてルブレンが含有 されているのが好ましぐ特に、ルブレンと Alq3とが含有されているのが好ましい。  [0045] The electron-transporting light-emitting layer in this light-emitting element is usually 50 to 80% polyvinyl carbazole (PVK), 5 to 40% of an electron-transporting light-emitting agent, and the white organic fluorescent material according to the present invention. When formed with 0.01 to 20% (by weight) of compound, white light emission occurs with high brightness. Examples of the hole transporting polymer include polyvinylcarbazole and poly (3-alkylenephene). The organic layer preferably contains rubrene as a sensitizer, and particularly preferably contains rubrene and Alq3.
[0046] この発明に係る白色有機蛍光化合物を利用した有機 EL素子は、例えば一般に直 流駆動型の素子として使用することができ、また、パルス駆動型の素子及び交流駆 動型の素子としても使用することができる。  [0046] The organic EL device using the white organic fluorescent compound according to the present invention can be generally used as, for example, a direct current drive device, and can also be used as a pulse drive device and an AC drive device. Can be used.
[0047] この発明に係る白色有機蛍光化合物は、更に、モノクロディスプレイ、カラーデイス プレイ等のディスプレイ分野、ライトサイン、直視型サイン、間接照明、 LCD用バック ライト等の照明分野にも使用される。  [0047] The white organic fluorescent compound according to the present invention is further used in the display field such as a monochrome display and a color display, and in the lighting field such as a light sign, a direct-view sign, indirect illumination, and an LCD backlight.
実施例  Example
[0048] (実施例 1) [0048] (Example 1)
<脱水反応 >  <Dehydration reaction>
1000mlの 3口フラスコに 3—アミノー 9—ェチルカルバゾール 25.0g (1.2 X 10_1 mol)と式(10)で示される化合物 13.6g (6.0 X 10_2mol)とを加えて、更に酢酸、ェ チルアルコール各々 200ml加えた。シリコーンオイルバスを用いて 120°Cまで加熱 攪拌し、 4時間反応した。反応終了後、室温まで冷却し、氷の中に投入した。 To a 1000 ml three-necked flask, add 25.0 g (1.2 X 10 _1 mol) of 3-amino-9-ethylcarbazole and 13.6 g (6.0 X 10 _2 mol) of the compound represented by the formula (10). 200 ml each of chilled alcohol was added. Heat to 120 ° C using a silicone oil bath Stir and react for 4 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice.
[0049] [化 7] [0049] [Chemical 7]
Figure imgf000015_0001
Figure imgf000015_0001
[0050] これをガラスフィルターを用いてろ過した。フィルター内に残った固形物を 5°Cに冷 却したメチルアルコール、及び石油エーテルで順次に洗浄した後、真空乾燥してレ ンガ色の粉体(35.2g)を得た。このレンガ色粉体は以下の式(11)で示される。 [0050] This was filtered using a glass filter. The solid matter remaining in the filter was washed successively with methyl alcohol cooled to 5 ° C. and petroleum ether, and then dried in vacuo to obtain a longa powder (35.2 g). This brick-colored powder is represented by the following formula (11).
[0051] [化 8]  [0051] [Chemical 8]
H C 2 5 H C 2 5
Figure imgf000015_0002
Figure imgf000015_0002
[0052] <脱水素反応 > [0052] <Dehydrogenation reaction>
1000mlの 3口フラスコに、前記脱水反応で得られた粉体 (11)を 25.0g入れ、 o—ジ クロ口ベンゼン 500mlを加えて、室温で 95%硫酸 l.Ogを徐々に滴下し 30分間攪拌 した後、シリコーンオイルバスを用いて 160°Cまでに加熱攪拌し、 2時間反応した。反 応終了後、室温まで冷却し、氷の中に投入した。分液ロートを用いてクロ口ホルム抽 出を 3回行い、水洗浄を 2回行った後硫酸ナトリウムを入れ水分の除去したものを濾 過し、エバポレータを用いて濃縮乾固させた。得られた固形物を酢酸ェチル、及び 石油エーテルで順次に洗净した後、真空乾燥して赤色粉体(13.1g)を得た。この赤 色粉体は以下の式(12)で示される。  Place 25.0 g of the powder (11) obtained in the above dehydration reaction in a 1000 ml three-necked flask, add 500 ml of o-dichloromouth benzene, and slowly drop 95% sulfuric acid l.Og at room temperature for 30 minutes. After stirring, the mixture was heated and stirred up to 160 ° C using a silicone oil bath and reacted for 2 hours. After completion of the reaction, it was cooled to room temperature and placed in ice. Using a separatory funnel, extraction of the black mouth form was performed three times, followed by washing with water twice, and after removing sodium sulfate and removing water, the solution was filtered and concentrated to dryness using an evaporator. The obtained solid was sequentially washed with ethyl acetate and petroleum ether, and then vacuum-dried to obtain a red powder (13.1 g). This red powder is expressed by the following formula (12).
[0053] [化 9] H S [0053] [Chemical 9] HS
Figure imgf000016_0001
Figure imgf000016_0001
[0054] <メチルナフトメチル化反応 > [0054] <Methylnaphthomethylation reaction>
前記式(12)で示される構造を有する化合物 5. 0g (8. 49 X 10_3mol)を 1000ml の而圧瓶に入れ、 4—メチル 1—クロロメチルナフタレン(CH C H CH Cl) 9.7g ( The compound having the structure represented by the formula (12) 5.0 g (8. 49 X 10 _3 mol) was put into a 1000 ml pressure bottle, and 4-methyl 1-chloromethylnaphthalene (CH CH CH Cl) 9.7 g (
3 10 6 2  3 10 6 2
5.09 X 10— 2mol)を加え、更に、 N, N ジメチルホルムアミド(DMF) 400mlをカロえた 。シリコーンオイルバスを用いて 160°Cまで加熱攪拌し、 20時間反応した。反応終了 後、室温まで冷却し、エバポレータを用いて濃縮した後、ガラスフィルターでろ過した 。得られた固形物を水、メチルアルコール、石油エーテルで洗浄した後、真空乾燥さ せ、レンガ色紛体 6. 8gを得た。このレンガ色紛体の IRチャートを図 1に NMRチヤ一 トを図 2に示した。このレンガ色粉体を以下の式(13)に示す。 5.09 X 10- 2 mol) was added, further, N, N-dimethylformamide (DMF) 400 ml was Karoe. The mixture was heated and stirred to 160 ° C using a silicone oil bath and reacted for 20 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, concentrated using an evaporator, and then filtered through a glass filter. The obtained solid was washed with water, methyl alcohol, and petroleum ether and then vacuum-dried to obtain 6.8 g of a brick colored powder. Fig. 1 shows the IR chart of this brick powder, and Fig. 2 shows the NMR chart. This brick-colored powder is represented by the following formula (13).
[0055] [化 10] ^ 5 [0055] [Chem. 10] ^ 5
Figure imgf000016_0002
Figure imgf000016_0002
[0056] ただし、 Xは 4—メチル—1—ナフトメチル基(CH C H CH―)を表す。 [0056] However, X represents a 4-methyl-1-naphthomethyl group (CH C H CH—).
3 10 6 2  3 10 6 2
<閉環反応 >  <Ring ring reaction>
500mlの 3口フラスコに上記レンガ色粉体(13) 6.0g (6.53 X 10— 3mol)を入れ、 p —トルエンスルホン酸一水和物 7. 5g (3.94 X 10— 2mol)を加え、更に、 o ジクロロべ ンゼン 200mlをカ卩えた。シリコーンオイルバスを用いて 160°Cまで加熱攪拌し、 20時 間反応した。反応終了後、エバポレータを用いて濃縮乾固させた。得られた固形物 を 5°Cに冷却したメチルアルコール、アセトン、石油エーテルで洗浄した後、真空乾 燥させ、黒色紛体 3. 9gを得た。この黒色粉体は以下の式(14)で示される本発明の 白色有機蛍光化合物である。 Three-necked flask 500ml putting the bricks Irokotai (13) 6.0g (6.53 X 10- 3 mol), p - toluenesulfonic acid monohydrate 7. 5 g of (3.94 X 10- 2 mol) was added, In addition, o I got 200ml. The mixture was stirred and heated to 160 ° C using a silicone oil bath for 20 hours. After completion of the reaction, the mixture was concentrated to dryness using an evaporator. The obtained solid was washed with methyl alcohol, acetone and petroleum ether cooled to 5 ° C. and then vacuum-dried to obtain 3.9 g of a black powder. This black powder is the white organic fluorescent compound of the present invention represented by the following formula (14).
[0057] [化 11] [0057] [Chemical 11]
Figure imgf000017_0001
Figure imgf000017_0001
[0058] ただし、 Xは 4—メチル—1—ナフトメチル基(CH C H CH―)を表す。 [0058] However, X represents a 4-methyl-1-naphthomethyl group (CH C H CH-).
3 10 6 2  3 10 6 2
<発光特性の評価(1) >  <Evaluation of luminous characteristics (1)>
混合キシレンに前記白色有機蛍光化合物(14)を lOmgZLの濃度になるように溶 解して試料液を調製した。この試料液を、島津製作所製の F— 4500型分光蛍光光 度計に装填して、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スぺタト ノレを図 3に示した。  The white organic fluorescent compound (14) was dissolved in mixed xylene to a concentration of lOmgZL to prepare a sample solution. This sample solution was loaded into an F-4500 spectrofluorometer manufactured by Shimadzu Corporation, and the fluorescence spectrum was measured under the following conditions. The resulting fluorescent spectrum is shown in FIG.
測定条件  Measurement condition
測定モード 波長スキャン  Measurement mode Wavelength scan
励起波長 365nm  Excitation wavelength 365nm
蛍光開始波長 400nm  Fluorescence start wavelength 400nm
蛍光終了波長 700nm  Fluorescence end wavelength 700nm
スキャンスピード 2400nm/分  Scan speed 2400nm / min
励起側スリット 5. Onm  Excitation side slit 5. Onm
蛍光側スリット 5. Onm  Fluorescent side slit 5. Onm
ホトマル電圧 700V  Photomultiplier voltage 700V
図 3から判るように、この実施例で得られた白色有機蛍光化合物は、 400 700nm に蛍光発光が見られ全領域をカバーして 、る。 As can be seen from FIG. 3, the white organic fluorescent compound obtained in this example is 400 700 nm. Fluorescence can be seen, covering the entire area.
(実施例 2)  (Example 2)
< tブチルベンジル化反応 >  <t-Butylbenzylation reaction>
前記実施例 1において製造された式(12)で示される化合物 5. 0g (8. 49 X 10—3 mol)を 1000mlの而圧瓶に入れ、 4— t—ブチルベンジルブロミド 9. 3g (5. 09 X 10 _2mol)を更に加え、次いで N, N—ジメチルホルムアミド(DMF) 400mlをカ卩えた。 シリコーンオイルバスを用 Vヽて耐圧瓶内を 160°Cまで撹拌下に加熱し、 20時間反応 させた。反応終了後、室温にまで冷却し、エバポレータを用いて濃縮した後に、氷水 に投入し、更に水酸ィ匕ナトリウムで中性にした。分液ロートを用いてクロ口ホルム抽出 を 3回行い、水洗浄を 2回行った。次いで、硫酸ナトリウムを入れて水分を除去し、濾 過し、エバポレータを用いて濃縮乾固させた。得られた固形物を石油エーテルで洗 浄した後に、真空乾燥して粉体 3. 4gを得た。この粉体の IRチャートを図 4に NMRチ ヤートを図 5に示した。この茶褐色粉体は式( 15)で示される構造を有する。 The compound represented by the manufactured formula (12) in Example 1 5. 0 g of (8. 49 X 10- 3 mol) was placed in而圧bottle 1000 ml, 4-t-butylbenzyl bromide 9. 3 g (5 09 X 10 _2 mol) was added, and then 400 ml of N, N-dimethylformamide (DMF) was added. Using a silicone oil bath, the pressure bottle was heated to 160 ° C with stirring and allowed to react for 20 hours. After completion of the reaction, the mixture was cooled to room temperature, concentrated using an evaporator, poured into ice water, and neutralized with sodium hydroxide. Using a separatory funnel, black mouth form extraction was performed three times, and water washing was performed twice. Next, sodium sulfate was added to remove water, filtered, and concentrated to dryness using an evaporator. The obtained solid was washed with petroleum ether and then vacuum dried to obtain 3.4 g of powder. Fig. 4 shows the IR chart of this powder, and Fig. 5 shows the NMR chart. This brown powder has a structure represented by the formula (15).
[化 12] [Chemical 12]
Figure imgf000018_0001
Figure imgf000018_0001
(10)  (Ten)
ただし、 Yは 4— tブチルベンジル基(4— (CH ) CC H CH―)を表す。 Y represents a 4-tbutylbenzyl group (4- (CH 3) CC H CH—).
3 3 6 4 2  3 3 6 4 2
<閉環反応 >  <Ring ring reaction>
500mlの三口フラスコに、上記式(15)で示される化合物 3. Og (3. 32 X 10"3mol )を入れ、 p—トルエンスルホン酸一水和物 3. 8g (2. 00 X 10_2mol)を加え、更に o —ジクロ口ベンゼン 250mlをカ卩えた。シリコーンオイルバスで 160°Cにまで加熱撹拌 し、 20時間反応させた。反応終了後、エバポレータを用いて濃縮乾固した。得られた 固形物を 5°Cに冷却したメチルアルコール、アセトン及び石油エーテルで洗浄した後 に、真空乾燥させて固体を得た。ソクスレー抽出装置を用いて前記固体 1. 0gをキシ レン 250mlで 24時間かけて抽出した。抽出終了後にエバポレータを用いて濃縮乾 固し、得られた固形物を石油エーテルで洗浄し、真空乾燥し、粉体 2. 5gを得た。こ の粉体の IRチャートを図 6に NMRチャートを図 7に示した。この固体は式(16)で示 す構造を有する白色有機蛍光化合物であった。 In a 500 ml three-necked flask, the compound represented by the above formula (15) 3. Og (3.32 X 10 " 3 mol) was put, and p-toluenesulfonic acid monohydrate 3.8 g (2. 00 X 10 _2 mol) was added, and 250 ml of o-dichlorobenzene was added, and the mixture was stirred and heated to 160 ° C in a silicone oil bath for 20 hours, after which the reaction was concentrated to dryness using an evaporator. The obtained solid was washed with methyl alcohol, acetone and petroleum ether cooled to 5 ° C., and then vacuum-dried to obtain a solid, and 1.0 g of the solid was oxidized using a Soxhlet extraction apparatus. Extracted with 250 ml of Ren over 24 hours. After completion of extraction, the mixture was concentrated to dryness using an evaporator, and the resulting solid was washed with petroleum ether and vacuum dried to obtain 2.5 g of powder. Fig. 6 shows the IR chart of this powder, and Fig. 7 shows the NMR chart. This solid was a white organic fluorescent compound having a structure represented by formula (16).
[0061] [化 13] [0061] [Chemical 13]
Figure imgf000019_0001
Figure imgf000019_0001
2 Η 5 ' (1 6)  2 Η 5 '(1 6)
[0062] ただし、 Yは 4— tブチルベンジル基(4— (CH ) CC H CH―)を表す。 [0062] However, Y represents a 4-tbutylbenzyl group (4- (CH) CC H CH-).
3 3 6 4 2  3 3 6 4 2
<発光特性 (2) >  <Luminescent characteristics (2)>
5mlのメスフラスコに、ポリビ-ルカルバゾール 70mg、 t—ブチルフエ-ルージフエ 二ルー 1, 3, 4ーォキザジァゾール 29mg、及び白色有機蛍光化合物(16) lmgを 秤量し、ジクロロェタンをカ卩えて 5mlになるように白色有機蛍光化合物(16)含有溶液 を調製する代わりに、 5mlのメスフラスコに、ポリビ-ルカルバゾール 70mg、式(17) で示される構造を有する BND 29. 7mg及び前記式(16)で示される白色有機蛍光 化合物 0. 3mgをジクロロェタンを加えて 5mlになるように白色有機蛍光化合物含有 溶液を調製した。この白色有機蛍光化合物含有溶液は、超音波洗浄器((株)エスェ ヌディ製、 US— 2)で超音波を 20分間照射することにより、十分に均一なものにされ た。一方、 ITO基板 (50 X 50mm、三容真空工業 (株)製)をアセトンで 10分間超音 波洗浄した後に 2—プロパノールで 10分間超音波洗浄し、窒素でブローして乾燥さ せた。その後に、 UV照射装置((株)ェム'ディ'エキシマ製、波長 172nm)で 30秒 間 UVを照射して洗浄した。スピンコータ (ミカサ (株)製、 1H— D7)を用いて洗浄乾 燥の終了した ITO基板に、調製しておいた前記白色有機蛍光化合物含有溶液を滴 下し、回転数 1, 500rpm、回転時間 3秒にてスピンコートして製膜した。製膜した基 板を、 50°Cの恒温槽中で 30分乾燥させた後に、真空蒸着装置 (大亜真空技研 (株) 製、 VDS— M2— 46型)でアルミ合金 (Al:Li= 99 : l重量比、(株)高純度化学研究 所製)電極を、 4 X 10— 6Torrで約 150nmの厚みに蒸着し、 EL素子を製作した。この EL素子につき (株)トプコン製の分光放射計 SR— 3にて輝度及び色度を測定した。 In a 5 ml volumetric flask, weigh 70 mg of polycarbcarbazole, 29 mg of t-butylphenol-ludiphenol, 29 mg of 1,3,4-oxazadiazole, and 1 mg of white organic fluorescent compound (16), and store dichloroethane. Instead of preparing a white organic fluorescent compound (16) -containing solution so as to be 5 ml, in a 5 ml volumetric flask is added 70 mg of polycarbcarbazole, 29.7 mg of BND having the structure represented by the formula (17) and the above formula ( A white organic fluorescent compound-containing solution was prepared so that 0.3 mg of white organic fluorescent compound represented by 16) was added to dichloroethane to 5 ml. This white organic fluorescent compound-containing solution was made sufficiently uniform by irradiating ultrasonic waves with an ultrasonic cleaner (US-2, manufactured by SND Corporation) for 20 minutes. On the other hand, an ITO substrate (50 × 50 mm, Sanyo Vacuum Industries Co., Ltd.) was ultrasonically cleaned with acetone for 10 minutes, then ultrasonically cleaned with 2-propanol for 10 minutes, and blown with nitrogen to dry. After that, UV irradiation was performed for 30 seconds with a UV irradiation device (manufactured by M'D Excimer, wavelength 172 nm) for cleaning. The prepared white organic fluorescent compound-containing solution is dropped onto an ITO substrate that has been cleaned and dried using a spin coater (Mikasa Co., Ltd., 1H-D7), and the rotational speed is 1,500 rpm and the rotational time is A film was formed by spin coating in 3 seconds. The deposited substrate was dried in a thermostatic chamber at 50 ° C for 30 minutes, and then vacuum deposition equipment (Daia Vacuum Engineering Co., Ltd.) Ltd., VDS- M2- 46 type) in aluminum alloy (Al: Li = 99: l weight ratio, Inc. manufactured by Pure Chemical Laboratory) electrode was deposited to a thickness of about 150nm at 4 X 10- 6 Torr An EL device was manufactured. The luminance and chromaticity of this EL element were measured with a spectroradiometer SR-3 manufactured by Topcon Corporation.
[0063] [化 14] [0063] [Chemical 14]
Figure imgf000020_0001
Figure imgf000020_0001
[0064] その結果、電圧 12. 5V及び電流 18. 8mAで輝度が 12000CdZm2、色度 Xが 0. As a result, the voltage was 12.5 V, the current was 18.8 mA, the luminance was 12000 CdZm 2 , and the chromaticity X was 0.
33及び色度 Yが 0. 33の結果が得られた。この分光放射輝度グラフにより、肉眼では 十分に白色発光していたと認めることができる。  A result of 33 and chromaticity Y of 0.33 was obtained. From this spectral radiance graph, it can be recognized that the white light was sufficiently emitted by the naked eye.
[0065] <発光特性(3) > [0065] <Luminescent characteristics (3)>
混合キシレンに前記白色有機蛍光化合物(16)を lOmgZLの濃度になるように溶 解して試料液を調製した。この試料液を、島津製作所製の F— 4500型分光蛍光光 度計に装填して、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スぺタト ノレを図 8に示した。  The white organic fluorescent compound (16) was dissolved in mixed xylene to a concentration of lOmgZL to prepare a sample solution. This sample solution was loaded into an F-4500 spectrofluorometer manufactured by Shimadzu Corporation, and the fluorescence spectrum was measured under the following conditions. The resulting fluorescent spectrum is shown in FIG.
[0066] 測定条件 [0066] Measurement conditions
測定モード 波長スキャン  Measurement mode Wavelength scan
励起波長 365nm  Excitation wavelength 365nm
蛍光開始波長 400nm  Fluorescence start wavelength 400nm
蛍光終了波長 700nm  Fluorescence end wavelength 700nm
スキャンスピード 2400nm/分  Scan speed 2400nm / min
励起側スリット 5. Onm  Excitation side slit 5. Onm
蛍光側スリット 5. Onm  Fluorescent side slit 5. Onm
ホトマル電圧 700V  Photomultiplier voltage 700V
図 8から判るように、この実施例で得られた白色有機蛍光化合物は、 400〜700nm に蛍光発光が見られ全領域をカバーして 、る。特に 562nmに大きなピークがある。 As can be seen from FIG. 8, the white organic fluorescent compound obtained in this example is 400 to 700 nm. Fluorescence can be seen, covering the entire area. In particular, there is a large peak at 562 nm.
[0067] (実施例 3) [0067] (Example 3)
<脱水反応 >  <Dehydration reaction>
500mlの 3口フラスコに 3—ァミノ— 9— (p—トリル)力ルバゾール 3. 6g (l. 32 X 1 0_2mol)と式(10)で示される化合物 1. 4g (6.13 X 10_3mol)とを加えて、更に酢 酸、エチルアルコール各々 100mlカ卩えた。シリコーンオイルバスを用いて 120°Cまで 加熱攪拌し、 4時間反応した。反応終了後、室温まで冷却し、氷の中に投入した。 3-Amino-9- (p-tolyl) force rubazole in a 500 ml 3-neck flask 3.6 g (l. 32 X 1 0 _2 mol) and the compound represented by formula (10) 1.4 g (6.13 X 10 _3 mol ) And 100 ml each of acetic acid and ethyl alcohol. The mixture was heated and stirred to 120 ° C using a silicone oil bath and reacted for 4 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice.
[0068] [化 15] [0068] [Chemical 15]
■ I
Figure imgf000021_0001
■ I
Figure imgf000021_0001
[0069] これをガラスフィルターを用いてろ過した。フィルター内に残った固形物を 5°Cに冷 却したメチルアルコール、及び石油エーテルで順次に洗浄した後、真空乾燥して赤 色の粉体(3. lg)を得た。この赤色紛体の IRチャートを図 9に NMRチャートを図 10 に示した。この赤色粉体は下式(19)で示される。 [0069] This was filtered using a glass filter. The solid matter remaining in the filter was washed successively with methyl alcohol cooled to 5 ° C. and petroleum ether, and then vacuum-dried to obtain a red powder (3. lg). Fig. 9 shows the IR chart of this red powder, and Fig. 10 shows the NMR chart. This red powder is represented by the following formula (19).
[0070] [化 16]  [0070] [Chemical 16]
Figure imgf000021_0002
[0071] <脱水素反応 >
Figure imgf000021_0002
[0071] <Dehydrogenation reaction>
500mlの 3口フラスコに、前記脱水反応で得られた粉体 (19)を 1. 3g入れ、 o—ジク ロロベンゼン 250mlをカ卩えて、室温で 95%硫酸 2滴を徐々に滴下し 30分間攪拌した 後、シリコーンオイルバスを用いて 160°Cまでに加熱攪拌し、 1時間反応した。反応 終了後、室温まで冷却し、氷の中に投入した。分液ロートを用いてクロ口ホルム抽出 を 3回行い、水洗浄を 2回行った後硫酸ナトリウムを入れ水分の除去したものを濾過 し、エバポレータを用いて濃縮乾固させた。得られた固形物を酢酸ェチル、及び石 油エーテルで順次に洗浄した後、真空乾燥して赤色粉体(1. 3g)を得た。このレンガ 色紛体の IRチャートを図 11に NMRチャートを図 12に示した。この赤色粉体は下式( 20)で示される。  In a 500 ml three-necked flask, put 1.3 g of the powder (19) obtained in the above dehydration reaction, add 250 ml of o-dichlorobenzene, gradually drop 2 drops of 95% sulfuric acid at room temperature and stir for 30 minutes. After that, the mixture was heated and stirred up to 160 ° C using a silicone oil bath and reacted for 1 hour. After completion of the reaction, it was cooled to room temperature and put into ice. Extraction was performed three times using a separatory funnel, followed by washing twice with water, followed by sodium sulfate addition and removal of the water, filtering, and concentrating to dryness using an evaporator. The obtained solid was sequentially washed with ethyl acetate and petroleum ether, and then dried under vacuum to obtain a red powder (1.3 g). Fig. 11 shows the IR chart of this brick colored powder, and Fig. 12 shows the NMR chart. This red powder is represented by the following formula (20).
[0072] [化 17]  [0072] [Chemical 17]
Figure imgf000022_0001
Figure imgf000022_0001
[0073] <tブチルベンジル化反応 > [0073] <t-butylbenzylation reaction>
前記において製造された式(20)で示される化合物 1. 28g (l. 74 X 10_3mol)を 5 00mlの而圧瓶に入れ、 4— t—ブチルベンジルブロミド 1. 90g (l. 04 X 10 mol) を更に加え、次いで N, N—ジメチルホルムアミド(DMF) 200mlをカ卩えた。シリコー ンオイルバスを用 ヽて耐圧瓶内を 160°Cまで撹拌下に加熱し、 18時間反応させた。 反応終了後、室温にまで冷却し、エバポレータを用いて濃縮した後に、氷水に投入 し、更に水酸ィ匕ナトリウムで中性にした。分液ロートを用いてクロ口ホルム抽出を 3回 行い、水洗浄を 2回行った。次いで、硫酸ナトリウムを入れて水分を除去し、濾過し、 エバポレータを用いて濃縮乾固させた。得られた固形物を石油エーテルで洗浄した 後に、真空乾燥して粉体を得た。この粉体の IRチャートを図 13に示した。この粉体は 式 (21)で示される構造を有する。 1. 28 g (l. 74 X 10 _3 mol) of the compound represented by the formula (20) prepared above was put in a 500 ml pressure bottle, and 4-90-butylbenzyl bromide 1.90 g (l. 04 X 10 mol) was added and then 200 ml of N, N-dimethylformamide (DMF) was added. Using a silicone oil bath, the inside of the pressure bottle was heated to 160 ° C with stirring and allowed to react for 18 hours. After completion of the reaction, the mixture was cooled to room temperature, concentrated using an evaporator, poured into ice water, and neutralized with sodium hydroxide. Using a separatory funnel, black mouth form extraction was performed three times, followed by washing with water twice. Next, add sodium sulfate to remove moisture, filter, Concentrate to dryness using an evaporator. The obtained solid was washed with petroleum ether and then vacuum dried to obtain a powder. An IR chart of this powder is shown in FIG. This powder has a structure represented by formula (21).
[0074] [化 18]  [0074] [Chemical 18]
Figure imgf000023_0001
Figure imgf000023_0001
[0075] ただし、 Xは 4— tブチルベンジル基(4— (CH ) CC H CH―)を表す。 [0075] However, X represents a 4-tbutylbenzyl group (4- (CH) CC H CH-).
3 3 6 4 2  3 3 6 4 2
<閉環反応 >  <Ring ring reaction>
500mlの三口フラスコに、上記式(21)で示される化合物 0. 61g (5. 94 X 10"4mo 1)を入れ、 P—トルエンスルホン酸一水和物 0. 68g (3. 57 X 10_3mol)をカ卩え、更に 。―ジクロロベンゼン 200mlをカ卩えた。シリコーンオイルバスで 160°Cにまで力卩熱撹 拌し、 20時間反応させた。反応終了後、エバポレータを用いて濃縮乾固した。得られ た固形物を 5°Cに冷却したメチルアルコール、アセトン及び石油エーテルで洗浄した 後に、真空乾燥させて固体を得た。ソクスレー抽出装置を用いて前記固体 1. 0gをキ シレン 250mlで 24時間かけて抽出した。抽出終了後にエバポレータを用いて濃縮 乾固し、得られた固形物を石油エーテルで洗浄し、真空乾燥し、黒色粉体 0. 5gを得 た。この粉体の IRチャートを図 14に、実施例 1と同様にして測った蛍光スペクトルを 図 15に示した。この固体は式(22)で示す構造を有する白色有機蛍光化合物であつ た。 In a 500 ml three-necked flask, 0.61 g (5.94 X 10 " 4 mo 1) of the compound represented by the above formula (21) was placed, and P-toluenesulfonic acid monohydrate 0.668 g (3.57 X 10 _3 mol) was added, and 200 ml of dichlorobenzene was added, and the mixture was vigorously heated to 160 ° C in a silicone oil bath and allowed to react for 20 hours, after which the reaction was concentrated using an evaporator. The solid obtained was washed with methyl alcohol, acetone and petroleum ether cooled to 5 ° C., and then dried in vacuo to obtain a solid, and 1.0 g of the solid was collected using a Soxhlet extraction apparatus. Extracted with 250 ml of silene over 24 hours, concentrated to dryness using an evaporator after completion of extraction, and the resulting solid was washed with petroleum ether and vacuum dried to obtain 0.5 g of a black powder. Fig. 14 shows the IR chart of the body, and Fig. 15 shows the fluorescence spectrum measured in the same manner as in Example 1. Indicated. The solid was filed white organic fluorescent compounds having the structure shown by the formula (22).
[0076] [化 19]
Figure imgf000024_0001
[0076] [Chemical 19]
Figure imgf000024_0001
[0077] ただし、 Xは 4— tブチルベンジル基(4— (CH ) CC H CH―)を表す。  [0077] However, X represents a 4-tbutylbenzyl group (4- (CH) CC H CH-).
3 3 6 4 2  3 3 6 4 2
[0078] 図 15から判るように、この実施例で得られた白色有機蛍光化合物(22)は、 400〜 700nmに蛍光発光が見られ全領域をカバーしている。特に、短波長側だけでなく 5 55nmと 595nmという長波長側にも大きなピークがある。  As can be seen from FIG. 15, the white organic fluorescent compound (22) obtained in this example shows fluorescence emission at 400 to 700 nm and covers the entire region. In particular, there are large peaks not only on the short wavelength side but also on the long wavelength side of 555 nm and 595 nm.
産業上の利用可能性  Industrial applicability
[0079] 本発明の白色有機蛍光化合物を利用して有機 EL素子、ディスプレイ、照明装置等 により白色に発光させることができる。又、この白色有機蛍光化合物は、プリズムを用 いて分光することにより青発光、赤発光及び緑発光が可能な発光素子にすることもで き、さらに、カラーフィルターを用いてフルカラーの表示をすることもでき、 LCDのバッ クライ卜等にも使用されることができる。 [0079] The white organic fluorescent compound of the present invention can be used to emit white light by an organic EL element, a display, a lighting device, or the like. In addition, the white organic fluorescent compound can be made into a light emitting element capable of emitting blue light, red light and green light by spectroscopic analysis using a prism, and further, a full color display can be performed using a color filter. It can also be used for LCD backlights.

Claims

請求の範囲 [1] 下式 (1)で示される白色有機蛍光化合物。 Claims [1] A white organic fluorescent compound represented by the following formula (1):
[化 1]  [Chemical 1]
Figure imgf000025_0001
Figure imgf000025_0001
(但し、 R1は、フ -ル基の水素原子が炭素数 2〜5のアルキル基で置換されたべ ンジル基を示し、 R2は、水素原子、アルキル基、ァリール基又はァリールアルキル基 を示す。) (However, R 1 represents a benzyl group in which the hydrogen atom of the full group is substituted with an alkyl group having 2 to 5 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group, an aryl group, or an aryl alkyl group. Show.)
[2] 下式 (1)で示される白色有機蛍光化合物。  [2] A white organic fluorescent compound represented by the following formula (1):
[化 2]  [Chemical 2]
Figure imgf000025_0002
Figure imgf000025_0002
(但し、 R1は、ナフチル基の水素原子が炭素数 1〜5のアルキル基で置換されたナ フトメチル基を示し、 R2は、水素原子、アルキル基、ァリール基又はァリールアルキル 基を示す。 ) (However, R 1 represents a naphthomethyl group in which a hydrogen atom of a naphthyl group is substituted with an alkyl group having 1 to 5 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group, an aryl group, or an aryl alkyl group. )
[3] 下式 (1)で示される白色有機蛍光化合物。 [3] A white organic fluorescent compound represented by the following formula (1):
Figure imgf000026_0001
但し、 R1は、アントリル基(anthryl基)の水素原子が炭素数 1〜5のアルキル基で置 換されたアントリルメチル基(anthrylmethyl基)を示し、 R2は、水素原子、アルキル基、 ァリール基又はァリールアルキル基を示す n
Figure imgf000026_0001
However, R 1 represents a anthrylmethyl group in which a hydrogen atom is substitution with an alkyl group having 1 to 5 carbon atoms anthryl group (Anthryl group) (anthrylmethyl group), R 2 represents a hydrogen atom, an alkyl group, n indicating the Ariru group or § reel alkyl group
PCT/JP2005/010910 2004-06-25 2005-06-15 White organic fluorescent compound WO2006001198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-188501 2004-06-25
JP2004188501 2004-06-25

Publications (1)

Publication Number Publication Date
WO2006001198A1 true WO2006001198A1 (en) 2006-01-05

Family

ID=35781702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010910 WO2006001198A1 (en) 2004-06-25 2005-06-15 White organic fluorescent compound

Country Status (2)

Country Link
TW (1) TW200602477A (en)
WO (1) WO2006001198A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187059A (en) * 1997-09-04 1999-03-30 Mitsui Chem Inc Organic electroluminescent element
WO2003062237A1 (en) * 2002-01-18 2003-07-31 Hirose Engineering Co., Ltd. White light emitting compound, white light emission illuminator, and white light emission organic el device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187059A (en) * 1997-09-04 1999-03-30 Mitsui Chem Inc Organic electroluminescent element
WO2003062237A1 (en) * 2002-01-18 2003-07-31 Hirose Engineering Co., Ltd. White light emitting compound, white light emission illuminator, and white light emission organic el device

Also Published As

Publication number Publication date
TW200602477A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
JP3109896B2 (en) Organic electroluminescence device
JP3724833B2 (en) Organic electroluminescence device
JP5274459B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP2651233B2 (en) Thin-film organic EL device
KR101115156B1 (en) Benzofluoranthene compound and organic light-emitting device using the compound
WO2003080761A1 (en) Material for organic electroluminescent element and organic electroluminescent element employing the same
JP5186173B2 (en) Materials and compounds for organic electroluminescence devices
JP2003272857A (en) White color group organic electroluminescent element
JPH1088121A (en) Organic electroluminescent element material and organic electroluminescent element using the same
KR101424266B1 (en) Organic Light Emitting Device
US20050118454A1 (en) Luminescent compound emitting white light, illuminator and organic el element emitting white light
JP3798985B2 (en) White light emitting illumination device and white light emitting organic EL element using a single compound
US20060152143A1 (en) White-emitting compounds, process for the production thereof, and white-emitting devices
WO2006001198A1 (en) White organic fluorescent compound
JP2007099723A (en) White-colored organic phosphor compound and light-emitting element
JPH05247459A (en) Organic electroluminescent device
EP1475372A1 (en) Nile red type compound emitting red light, process for producing the same, and luminescent element utilizing the same
JP3109894B2 (en) Organic electroluminescence device
JP2003192684A (en) White fluorescent organic compound
US20060004201A1 (en) White organic fluorescent compound
JP2002249469A5 (en)
JP2005071773A (en) Full-color picture display device
US20050089719A1 (en) White light-emitting compound, process for producing the same, and luminescent element utilizing the same
JP2670121B2 (en) Organic thin-film electroluminescence device
JP2004035447A (en) Fluoroalkyl group-containing stilbene-based blue light-emitting compound and light-emitting element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP