WO2005123726A1 - Pyridinylisoxazole und ihre verwendung als herbizide - Google Patents

Pyridinylisoxazole und ihre verwendung als herbizide Download PDF

Info

Publication number
WO2005123726A1
WO2005123726A1 PCT/EP2005/006017 EP2005006017W WO2005123726A1 WO 2005123726 A1 WO2005123726 A1 WO 2005123726A1 EP 2005006017 W EP2005006017 W EP 2005006017W WO 2005123726 A1 WO2005123726 A1 WO 2005123726A1
Authority
WO
WIPO (PCT)
Prior art keywords
plants
compounds
methyl
formula
general formula
Prior art date
Application number
PCT/EP2005/006017
Other languages
English (en)
French (fr)
Inventor
Andreas Van Almsick
Lothar Willms
Thomas Auler
Martin Hills
Heinz Kehne
Dieter Feucht
Dorothee Hoischen
Original Assignee
Bayer Cropscience Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Gmbh filed Critical Bayer Cropscience Gmbh
Priority to CA002570529A priority Critical patent/CA2570529A1/en
Priority to EP05750290A priority patent/EP1758896A1/de
Priority to JP2007515819A priority patent/JP2008502615A/ja
Priority to MXPA06014483A priority patent/MXPA06014483A/es
Priority to BRPI0512272-4A priority patent/BRPI0512272A/pt
Publication of WO2005123726A1 publication Critical patent/WO2005123726A1/de
Priority to IL179791A priority patent/IL179791A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/57Nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • C07D213/71Sulfur atoms to which a second hetero atom is attached
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the invention relates to the technical field of herbicides, in particular that of herbicides for the selective control of weeds and weeds in crops of useful plants.
  • the object of the present invention is therefore to provide herbicidally active compounds having improved herbicidal properties compared to the compounds known from the prior art.
  • Q represents one of Q1, Q2 or Q3;
  • R 1 represents methyl
  • R 2 represents Cl, Br, CF 3 , S (O) n CH 3 or S (O) n C 2 H 5
  • R 3 represents methyl, ethyl, iso-propyl, cyclo-propyl or tertiary-butyl
  • n means 0, 1, or 2.
  • the compounds of the general formula (I) can be present as stereoisomers.
  • stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods, for example by chromatographic separation processes.
  • Stereoisomers can also be prepared selectively by using stereoselective reactions using optically active starting materials and / or auxiliary substances.
  • the invention also relates to all stereoisomers and their mixtures which are encompassed by the general formula (I) but are not specifically defined.
  • Preferred compounds of the general formula (I) are those in which Q is Q1.
  • the compounds of the formula (I) according to the invention in which Q represents Q1 or Q2, can be prepared, for example, in accordance with Scheme 1 by the known ⁇ -keto esters of the formula A1 (Y. Oikawa et al., JOC 43, 2087, 1978) with a pyridinecarboxylic acid derivative of the formula A2, in which T is chlorine, to an acylate of the formula A3.
  • the pyridinecarboxylic acids of the formula A2 are known or can be prepared in a manner known per se.
  • the compounds of formula (I) according to the invention have excellent herbicidal activity against a broad spectrum of economically important mono- and dicotyledonous harmful plants.
  • Perennial weeds that are difficult to control and that sprout from rhizomes, rhizomes or other permanent organs are also well captured by the active ingredients. It is usually irrelevant whether the substances are applied by pre-sowing, pre-emergence or post-emergence.
  • Some representatives of the monocotyledonous and dicotyledonous weed flora can be mentioned in detail, which can be controlled by the compounds according to the invention without the name being intended to restrict them to certain species.
  • weed species for example, Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria and Cyperus species from the annual group and on the perennial species Agropyron, Cynodon, Imperata and Sorghum as well as perennial Cyperus species are well recorded.
  • the spectrum of activity extends to species such as Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Sida, Matricaria and Abutilon on the annual side as well as Convolvulus, Cirsium, Rumex and Artemisia for the perennial weeds.
  • Harmful plants occurring in the rice under the specific culture conditions such as, for example, Echinochloa, Sagittaria, Alisma, Eleocharis, Scirpus and Cyperus, are also excellently combated by the active compounds according to the invention. If the compounds according to the invention are applied to the surface of the earth before germination, either the weed seedlings emerge completely or the weeds grow to the cotyledon stage, but then stop growing and finally die completely after three to four weeks.
  • the compounds according to the invention show an excellent activity against Apera spica venti, Chenopodium album, Lamium purpureum, Polygonum convulvulus, Stellaria media, Veronica hederifolia, Veronica persica and Viola tricolor.
  • the compounds of the invention have excellent herbicidal activity against monocotyledonous and dicotyledonous weeds
  • crop plants of economically important crops such as e.g. Wheat, barley, rye, rice, corn, sugar beet, cotton and soy are only slightly or not at all damaged.
  • they have excellent compatibility in cereals such as wheat, barley and corn, especially wheat.
  • the present compounds are very suitable for the selective control of undesired plant growth in agricultural crops or in ornamental crops.
  • the active compounds can also be used to control harmful plants in crops of known or still to be developed genetically modified plants.
  • the transgenic plants are generally distinguished by special advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. B. the crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • Transgenic plants with an increased starch content or altered starch quality or with a different fatty acid composition of the crop are known.
  • B. of cereals such as wheat, barley, rye, oats, millet, rice, cassava and corn or else crops of sugar beet, cotton, soybeans, rapeseed, Potato, tomato, pea and other vegetables.
  • the compounds of the formula (I) can preferably be used as herbicides in crops which are resistant to the phytotoxic effects of the herbicides or have been rendered genetically resistant.
  • new plants which have modified properties in comparison to previously occurring plants are, for example, classic breeding methods and the generation of mutants.
  • new plants with modified properties can be produced using genetic engineering methods (see, for example, EP-A-0221044, EP-A-0131624).
  • genetic engineering modifications of crop plants have been described in order to modify the starch synthesized in the plants (e.g.
  • transgenic crop plants which are active against certain herbicides of the glufosinate type (see, e.g., EP-A-0242236, EP-A-242246) or glyphosate (WO 92/00377) or the sulfonylureas (EP-A-0257993, US-A-5013659) are resistant, transgenic crop plants, for example cotton with the ability to produce Bacillus thuringiensis toxins (Bt toxins) which make the plants resistant to certain pests (EP-A-0142924, EP-A-0193259). transgenic crop plants with modified fatty acid composition (WO 91/13972).
  • nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombining DNA sequences.
  • base exchanges partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments.
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by the expression of at least one corresponding antisense RNA, a sense RNA to achieve a cosuppression effect or the expression of at least one appropriately constructed ribozyme which specifically cleaves transcripts of the above-mentioned gene product.
  • DNA molecules can be used that comprise the entire coding sequence of a gene product, including any flanking sequences that may be present, as well as DNA molecules that only comprise parts of the coding sequence, these parts having to be long enough to be in the cells to cause an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but which are not completely identical.
  • the synthesized protein can be located in any compartment of the plant cell.
  • the coding region can be linked to DNA sequences that ensure localization in a particular compartment.
  • sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1: 95-106 (1991).
  • the transgenic plant cells can be regenerated into whole plants using known techniques.
  • the transgenic plants can in principle be plants of any plant species, ie both monocot and dicot plants.
  • the active compounds according to the invention are used in transgenic crops, in addition to the effects on harmful plants which can be observed in other crops, effects often occur which are specific to the application in the respective transgenic culture, for example a changed or specially expanded weed spectrum which can be controlled changed Application rates that can be used for the application, preferably good combinability with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the substances according to the invention have excellent growth-regulating properties in crop plants. They intervene regulating the plant's own metabolism and can thus be used to influence plant constituents in a targeted manner and to facilitate harvesting, for example by triggering desiccation and stunted growth. Furthermore, they are also suitable for general control and inhibition of undesirable vegetative growth without killing the plants. Inhibiting vegetative growth plays a major role in many monocotyledonous and dicotyledonous crops, as this can reduce or completely prevent storage.
  • the compounds according to the invention can be used in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules in the customary formulations.
  • the invention therefore also relates to herbicidal compositions which comprise compounds of the formula (I).
  • the compounds of the formula (I) can be formulated in various ways, depending on which biological and / or chemical-physical parameters are specified. Possible formulation options are, for example: wettable powder (WP), water-soluble powder (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), dispersions based on oil or water, oil-miscible solutions, capsule suspensions (CS), dusts (DP), pickling agents, granules for spreading and soil application, granules (GR) in the form of micro, spray , Elevator and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • Spray powders are preparations which are uniformly dispersible in water and which, in addition to the active substance, contain not only a diluent or an inert substance, but also ionic and / or nonionic surfactants (wetting agents, dispersing agents), for example polyoxyethylated alkylphenols, polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, alkylbenzene sulfates Contain 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium, ligninsulfonic acid sodium, dibutylnaphthalene sulfonic acid sodium or oleoylmethyl tauric acid sodium.
  • the herbicidal active ingredients are, for example, finely ground in customary apparatuses such as hammer mills, fan mills and air
  • Emulsifiable concentrates are made by dissolving the active ingredient in an organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of the organic solvents with the addition of one or more surfactants of ionic and / or nonionic type (emulsifiers).
  • organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of the organic solvents.
  • alkylarylsulfonic acid calcium salts such as Ca-dodecylbenzenesulfonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as e.g. Sorbitan fatty acid esters or polyoxethylene sorbitan esters such as e.g. Polyoxyethylene sorbitan fatty acid esters.
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • finely divided solid substances e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and, if appropriate, addition of surfactants, such as those already listed above for the other types of formulation.
  • Emulsions for example oil-in-water emulsions (EW)
  • EW oil-in-water emulsions
  • Granules can either be produced by spraying the active ingredient onto adsorbable, granulated inert material or by applying active ingredient concentrates by means of adhesives, e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils, on the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules, if desired in a mixture with fertilizers.
  • adhesives e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils
  • Water-dispersible granules are generally produced using the customary methods, such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of active ingredient of the formula (I).
  • the active ingredient concentration in wettable powders is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components.
  • the active substance concentration can be about 1 to 90, preferably 5 to 80,% by weight.
  • Dust-like formulations contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient
  • sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is in liquid or solid form and which granulating aids, fillers, etc. are used.
  • the active ingredient content of the water-dispersible granules is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned may contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetrants, preservatives, antifreezes and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and Agents influencing viscosity.
  • combinations with other pesticidally active substances e.g. Manufacture insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a finished formulation or as a tank mix.
  • pesticidally active substances e.g. Manufacture insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a finished formulation or as a tank mix.
  • active ingredients such as those described, for example, in Weed Research 26, 441-445 (1986) or "The Pesticide Manual", 11th edition, The British Crop Protection Council and the, can be used as combination partners for the active ingredients according to the invention in mixture formulations or in the tank mix Royal Soc. of Chemistry, 1997 and the literature cited therein.
  • Known herbicides which can be combined with the compounds of the formula (I) are, for example, the following active substances (note: the compounds are either with the "common name” according to the International Organization for Standardization (ISO) or with the chemical name , possibly together with a usual code number): acetochlor; acifluorfen; aclonifen; AKH 7088, ie [[[1- [5- [2-chloro-4- (trifluoromethyl) phenoxy] -2-nitrophenyl] -2-methoxyethylidene] amino] oxy] acetic acid and methyl acetate; alachlor; alloxydim; ametryn; amidosulfuron; amitrol; AMS, ie ammonium sulfamate; anilofos; asulam; atrazine; azimsulfurone (DPX-A8947); aziprotryn; barban; BAS 516 H, ie 5-fluoro-2-phen
  • the formulations present in the commercial form are optionally diluted in the customary manner, for example for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water.
  • Preparations in the form of dust, ground granules or granules as well as sprayable solutions are usually no longer diluted with other inert substances before use.
  • the required application rate of the compounds of formula (I) varies. It can fluctuate within wide limits, e.g. between 0.001 and 1.0 kg / ha or more of active substance, but is preferably between 0.005 and 750 g / ha.
  • the following examples illustrate the invention.
  • i-Pr iso-propyl
  • Dusts A dusts are obtained by mixing 10 parts by weight of a compound of the general formula (I) and 90 parts by weight of talc as an inert substance and comminuting them in a hammer mill. 2. Dispersible powder
  • a water-dispersible, wettable powder is obtained by mixing 25 parts by weight of a compound of the general formula (I), 64 parts by weight of quartz containing kaolin as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyl taurine as a wetting and dispersing agent grinds in a pin mill.
  • a dispersion concentrate which is readily dispersible in water is obtained by mixing 20 parts by weight of a compound of the general formula (I), 6 parts by weight of alkylphenol polyglycol ether ( ⁇ Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight. Mixes parts of paraffinic mineral oil (boiling range approx. 255 to above 277 ° C) and grinds to a fineness of less than 5 microns in a attritor.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the general formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of oxyethylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by
  • a water-dispersible granulate is also obtained by adding 25 parts by weight of a compound of the general formula (I), 5 "2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium,
  • Seeds of monocotyledonous and dicotyledonous harmful plants are laid out in sandy loam in cardboard pots and covered with earth.
  • the compounds according to the invention formulated in the form of wettable powders or emulsion concentrates are then applied to the surface of the covering earth as an aqueous suspension or emulsion with a water application rate of the equivalent of 600 to 800 l / ha in a dosage of the equivalent of 320 g of active substance or less per hectare.
  • the pots are placed in the greenhouse and kept under good growth conditions for the harmful plants.
  • the optical damage to the plants or the emergence damage is assessed after a test period of 3 to 4 weeks in comparison to untreated controls.
  • Seeds of monocotyledonous and dicotyledonous harmful plants are laid out in cardboard pots in sandy loam soil, covered with soil and grown in the greenhouse under good growth conditions. Two to three weeks after sowing, the test plants are treated in a three-leaf study.
  • the as a wettable powder or compounds of the invention formulated as emulsion concentrates are sprayed onto the surface of the green parts of the plant at a rate of water equivalent to 600 to 800 l / ha in different dosages.
  • the action of the compounds is determined by optical evaluation.
  • the compounds of Nos. 1.39, 2.4, 3.4 and 3.39 show at least 90% activity against Sinapis arvensis and Stellaria media at 320 g application rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

Pyridinylisoxazole und ihre Verwendung als Herbizide Es werden Pyridinylisoxazole der Formel (I) oder deren Salze beschrieben. In dieser allgemeinen Formel (I) bedeutet Q einen der Reste Q1, Q2 oder Q3; R1, R2 und R3 stehen für verschiedene Reste und n für 0 bis 2.

Description

Beschreibung
Pyridinylisoxazole und ihre Verwendung als Herbizide
Die Erfindung betrifft das technische Gebiet der Herbizide, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsem in Nutzpflanzenkulturen.
Aus verschiedenen Schriften ist bereits bekannt, daß bestimmte Isoxazole und Diketonitrile, die durch einen Benzoyl- oder Heteroaroyl-Rest substituiert sind, herbizide Eigenschaften besitzen. So sind aus EP 0 588 357 zahlreiche 4- Heteroaroyl-isoxazole bekannt. Unter anderem sind dort einige 4-Pyridinyl-oyl- isoxazole beschrieben, bei denen die Verknüpfung in 3-Position des Pyridin-Rings erfolgt, und der Pyridin-Ring einen weiteren Substituenten in 2-Position trägt. EP 0 524 018 beschreibt 5-Aryl-isoxazole mit einer Carbonylgruppe in 4-Position, wobei Aryl auch für Pyridinyl stehen kann. 5-(3-Pyridinyl)-isoxazole werden hingegen nicht offenbart.
Die bekannten Verbindungen zeigen jedoch häufig eine nicht ausreichende herbizide Wirksamkeit oder eine unzureichende Verträglichkeit gegenüber Kulturpflanzen. Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung von herbizid wirksamen Verbindungen mit - gegenüber den aus dem Stand der Technik bekannten Verbindungen - verbesserten herbiziden Eigenschaften.
Es wurde nun gefunden, daß 4-(3-Pyridinyl-oyl)isoxazole, 5-(3-Pyridinyl)-isoxazole oder (3-Pyridinyl-oyl)-3-oxopropionitrile , deren Pyridin-Ring durch einen weiteren Rest in 6-Position substituiert ist, als Herbizide besonders gut geeignet sind. Ein Gegenstand der vorliegenden Erfindung sind daher Verbindungen der Formel (I) oder deren Salze
Figure imgf000003_0001
worin
Q einen der Reste Q1 , Q2 oder Q3 bedeutet;
Figure imgf000003_0002
R1 bedeutet Methyl; R2 bedeutet Cl, Br, CF3, S(O)nCH3 oder S(O)nC2H5; R3 bedeutet Methyl, Ethyl, iso-Propyl, cyclo-Propyl oder tertiär-Butyl; n bedeutet 0, 1 , oder 2.
Für den Fall, daß Q für Q3 steht, können die erfindungsgemäßen Verbindungen der Formel (I) in Abhängigkeit von äußeren Bedingungen, wie Lösungsmittel und pH- Wert, in unterschiedlichen tautomeren Strukturen auftreten:
Figure imgf000003_0003
Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Sind beispielsweise ein oder mehrere asymmetrische Kohlenstoffatome vorhanden, so können Enantiomere und Diastereomere auftreten. Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden, beispielsweise durch chromatographische Trennverfahren, erhalten. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangsund/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft auch alle Stereoisomeren und deren Gemische, die von der allgemeinen Formel (I) umfaßt, jedoch nicht spezifisch definiert sind.
Bevorzugt sind Verbindungen der allgemeinen Formel (I), worin Q für Q1 steht.
Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin R3 für cyclo-Propyl steht.
In allen nachfolgend genannten Formeln haben die Substituenten und Symbole, sofern nicht anders definiert, dieselbe Bedeutung wie unter Formel (I) beschrieben.
Aus Pesticide Science 50, 83-84, (1997) ist bekannt, daß manche Isoxazole - ähnlich den Teilstrukturen Q1 und Q2 - unter bestimmten Bedingungen zu einem offenkettigen 3-Oxopropionithl - ähnlich der Teilstruktur Q3 - umlagern können.
Die erfindungsgemäßen Verbindungen der Formel (I), worin Q für Q1 oder Q2 steht, können beispielsweise gemäß Schema 1 dadurch hergestellt werden, dass die an sich bekannten ß-Ketoester der Formel A1 (Y. Oikawa et al., JOC 43, 2087, 1978) mit einem Pyridincarbonsäurederivat der Formel A2, worin T für Chlor steht, zu einem Ester der Formel A3 acyliert werden. Durch anschließende Säurespaltung, beispielsweise durch Erhitzen in Gegenwart von Trifluoressigsäure oder durch Erhitzen in Gegenwart von p-Toluolsulfonsäure in Toluol, erhält man ein 1,3-Diketon der Formel A4, das durch Reaktion mit einem Orthocarbonsäureester oder einem Carbonsäureamidacetal zu einer Verbindung der Formel A5, worin L für eine Abgangsgruppe wie Ethoxy oder N,N-Dimethylamino steht, umgesetzt wird. Schließlich werden durch basenkatalysierte Reaktion mit Hydroxylamin und anschließender chromatographischen Trennung die erfindungsgemäßen Verbindungen (I), in der Q für einen Rest der Formel Q1 oder Q2 steht, erhalten.
Schema 1 :
Figure imgf000005_0001
L = OEt, NMe2, etc.
Figure imgf000005_0002
Q = Q1 Q = Q2
Die erfindungsgemäßen Verbindungen der Formel (I), worin Q für Q3 steht, können beispielsweise direkt aus den erfindungsgemäßen Verbindungen der Formel (I) mit Q = Q1 oder Q2 durch Umsetzung in Gegenwart einer Base wie NEt.3 erhalten werden (Schema 2), oder indem man das Magnesiumenolat eines Cyanoketons der Formel A6 mit einem Pyridincarbonsäurederivat der Formel A2 (T = Cl) umsetzt (Schema 3). Schema 2:
Figure imgf000006_0001
Q = Q2
Schema 3:
Figure imgf000006_0002
A6 A2 Q = Q3 T = CI
Die Pyridincarbonsäurederivate der Formel A2, worin T für Chlor steht, können in an sich bekannter Weise durch Umsetzung der Pyridincarbonsäuren der Formel A2 (T = OH) mit Thionylchlorid oder Oxalylchlorid hergestellt werden.
Die Pyridincarbonsäuren der Formel A2 (T = OH) können in bekannter Weise durch saure oder basische Hydrolyse aus den entsprechenden Estern der Formel A2 (T = C-ι-C4 Alkoxy) hergestellt werden. Die Pyridincarbonsäuren der Formel A2 sind bekannt oder können in an sich bekannter Weise hergestellt werden.
Die erfindungsgemäßen Verbindungen der Formel (I) weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler Schadpflanzen auf. Auch schwer bekämpfbare perennierende Unkräuter, die aus Rhizomen, Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Dabei ist es in der Regel unerheblich, ob die Substanzen im Vorsaat-, Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne daß durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Auf der Seite der monokotylen Unkrautarten werden z.B. Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria sowie Cyperusarten aus der annuellen Gruppe und auf Seiten der perennierenden Spezies Agropyron, Cynodon, Imperata sowie Sorghum und auch ausdauernde Cyperusarten gut erfaßt. Bei dikotylen Unkrautarten erstreckt sich das Wirkungsspektrum auf Arten wie z.B. Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Sida, Matricaria und Abutilon auf der annuellen Seite sowie Convolvulus, Cirsium, Rumex und Artemisia bei den perennierenden Unkräutern. Unter den spezifischen Kulturbedingungen im Reis vorkommende Schadpflanzen wie z.B. Echinochloa, Sagittaria, Alisma, Eleocharis, Scirpus und Cyperus werden von den erfindungsgemäßen Wirkstoffen ebenfalls hervorragend bekämpft. Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt ebenfalls sehr rasch nach der Behandlung ein drastischer Wachstumsstop ein und die Unkrautpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so daß auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Insbesondere zeigen die erfindungsgemäßen Verbindungen eine hervorragende Wirkung gegen Apera spica venti, Chenopodium album, Lamium purpureum, Polygonum convulvulus, Stellaria media, Veronica hederifolia, Veronica persica und Viola tricolor.
Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen wie z.B. Weizen, Gerste, Roggen, Reis, Mais, Zuckerrübe, Baumwolle und Soja nur unwesentlich oder gar nicht geschädigt. Insbesondere weisen sie eine ausgezeichnete Verträglichkeit in Getreide, wie Weizen, Gerste und Mais, insbesondere Weizen, auf. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Nutzpflanzungen oder in Zierpflanzungen.
Aufgrund ihrer herbiziden Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpfianzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z. B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.
Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz- und Zierpflanzen, z. B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die Verbindungen der Formel (I) als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind.
Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z. B. EP-A-0221044, EP-A-0131624). Beschrieben wurden beispielsweise in mehreren Fällen gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z. B. WO 92/11376, WO 92/14827, WO 91/19806), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z. B. EP-A-0242236, EP-A-242246) oder Glyphosate (WO 92/00377) oder der Sulfonylharnstoffe (EP-A-0257993, US-A-5013659) resistent sind, transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP-A-0142924, EP-A-0193259). transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/13972).
Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996 oder Christou, "Trends in Plant Science" 1 (1996) 423-431). Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe der obengenannten Standardverfahren können z. B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet.
Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.
Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z. B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219- 3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen.
So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
Darüberhinaus weisen die erfindungsgemäßen Substanzen hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert werden kann. Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Ein weiterer Gegenstand der Erfindung sind deshalb auch herbizide Mittel, die Verbindungen der Formel (I) enthalten. Die Verbindungen der Formel (I) können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemischphysikalischen Parameter vor-gegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-ÖI-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapsel-suspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973; K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvente Guide"; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolether- sulfate, Alkansulfonate, Alkylbenzolsulfonate, 2,2'-dinaphthylmethan-6,6'-disulfon- saures Natrium, ligninsulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen fein gemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäure- polyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid- Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylen- sorbitanfettsäureester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. ÖI-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.
Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57.
Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.
Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gew.-%, insbesondere 0,1 bis 95 Gew.-%, Wirkstoff der Formel (I). In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0,05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Als Kombinationspartner für die erfindungsgemäßen Wirkstoffe in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe einsetzbar, wie sie z.B. in Weed Research 26, 441-445 (1986) oder "The Pesticide Manual", 11th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 1997 und dort zitierter Literatur beschrieben sind. Als bekannte Herbizide, die mit den Verbindungen der Formel (I) kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (Anmerkung: Die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen, ggf. zusammen mit einer üblichen Codenummer bezeichnet): acetochlor; acifluorfen; aclonifen; AKH 7088, d.h. [[[1-[5-[2-Chloro-4-(trifluoromethyl)- phenoxy]-2-nitrophenyl]-2-methoxyethylidene]-amino]-oxy]-essigsäure und - essigsäuremethylester; alachlor; alloxydim; ametryn; amidosulfuron; amitrol; AMS, d.h. Ammoniumsulfamat; anilofos; asulam; atrazin; azimsulfurone (DPX-A8947); aziprotryn; barban; BAS 516 H, d.h. 5-Fluor-2-phenyl-4H-3,1-benzoxazin-4-on; benazolin; benfluralin; benfuresate; bensulfuron-methyl; bensulide; bentazone; benzofenap; benzofluor; benzoylprop-ethyl; benzthiazuron; bialaphos; bifenox; bromacil; bromobutide; bromofenoxim; bromoxynil; bromuron; buminafos; busoxinone; butachlor; butamifos; butenachlor; buthidazole; butralin; butylate; cafenstrole (CH-900); carbetamide; cafentrazone (ICI-A0051); CDAA, d.h. 2-Chlor- N,N-di-2-propenylacetamid; CDEC, d.h. Diethyldithiocarbaminsäure-2-chlorallylester; chlomethoxyfen; chloramben; chlorazifop-butyl, chlormesulon (ICI-A0051); chlorbromuron; chlorbufam; chlorfenac; chlorflurecol-methyl; chloridazon; chlorimuron ethyl; chlornitrofen; chlorotoluron; chloroxuron; chlorpropham; chlorsulfuron; chlorthal-dimethyl; chlorthiamid; cinmethylin; cinosulfuron; clethodim; clodinafop und dessen Esterderivate (z.B. clodinafop-propargyl); clomazone; clomeprop; cloproxydim; clopyralid; cumyluron (JC 940); cyanazine; cycloate; cyclosulfamuron (AC 104); cycloxydim; cycluron; cyhalofop und dessen Esterderivate (z.B. Butylester, DEH-112); cyperquat; cyprazine; cyprazole; daimuron; 2,4-DB; dalapon; desmedipham; desmetryn; di-allate; dicamba; dichlobenil; dichlorprop; diclofop und dessen Ester wie diclofop-methyl; diethatyl; difenoxuron; difenzoquat; diflufenican; dimefuron; dimethachlor; dimethametryn; dimethenamid (SAN-582H); dimethazone, clomazon; dimethipin; dimetrasulfuron, dinitramine; dinoseb; dinoterb; diphenamid; dipropetryn; diquat; dithiopyr; diuron; DNOC; eglinazine-ethyl; EL 77, d.h. 5-Cyano-1-(1 ,1-dimethylethyl)-N-methyl-1H-pyrazole-4- carboxamid; endothal; EPTC; esprocarb; ethalfluralin; ethametsulfuron-methyl; ethidimuron; ethiozin; ethofumesate; F5231 , d.h. N-[2-Chlor-4-fluor-5-[4-(3- fluorpropyl)-4,5-dihydro-5-oxo-1 H-tetrazol-1-yl]-phenyl]-ethansulfonamid; ethoxyfen und dessen Ester (z.B. Ethylester, HN-252); etobenzanid (HW 52); fenoprop; fenoxan, fenoxaprop und fenoxaprop-P sowie deren Ester, z.B. fenoxaprop-P-ethyl und fenoxaprop-ethyl; fenoxydim; fenuron; flamprop-methyl; flazasulfuron; fluazifop und fluazifop-P und deren Ester, z.B. fluazifop-butyl und fluazifop-P-butyl; fluchloralin; flumetsulam; flumeturon; flumiclorac und dessen Ester (z.B. Pentylester, S-23031); flumioxazin (S-482); flumipropyn; flupoxam (KNW-739); fluorodifen; fluoroglycofen-ethyl; flupropacil (UBIC-4243); fluridone; flurochloridone; fluroxypyr; flurtamone; fomesafen; fosamine; furyloxyfen; glufosinate; glyphosate; halosafen; halosulfuron und dessen Ester (z.B. Methylester, NC-319); haloxyfop und dessen Ester; haloxyfop-P (= R-haloxyfop) und dessen Ester; hexazinone; imazapyr; imazamethabenz-methyl; imazaquin und Salze wie das Ammoniumsalz; ioxynil; imazethamethapyr; imazethapyr; imazosulfuron; isocarbamid; isopropalin; isoproturon; isouron; isoxaben; isoxapyrifop; karbutilate; lactofen; lenacil; linuron; MCPA; MCPB; mecoprop; mefenacet; mefluidid; metamitron; metazachlor; metham; methabenzthiazuron; methazole; methoxyphenone; methyldymron; metabenzuron, methobenzuron; metobromuron; metolachlor; metosulam (XRD 511); metoxuron; metribuzin; metsulfuron-methyl; MH; molinate; monalide; monolinuron; monuron; monocarbamide dihydrogensulfate; MT 128, d.h. 6-Chlor-N-(3-chlor-2-propenyl)- 5-methyl-N-phenyl-3-pyridazinamin; MT 5950, d.h. N-[3-Chlor-4-(1-methylethyl)- phenyl]-2-methylpentanamid; naproanilide; napropamide; naptalam; NC 310, d.h. 4-(2,4-dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol; neburon; nicosulfuron; nipyraclophen; nitralin; nitrofen; nitrofluorfen; norflurazon; orbencarb; oryzalin; oxadiargyl (RP-020630); oxadiazon; oxyfluorfen; paraquat; pebulate; pendimethalin; perfluidone; phenisopham; phenmedipham; picloram; piperophos; piributicarb; pirifenop-butyl; pretilachlor; primisulfuron-methyl; procyazine; prodiamine; profluralin; proglinazine-ethyl; prometon; prometryn; propachlor; propanil; propaquizafop und dessen Ester; propazine; propham; propisochlor; propyzamide; prosulfalin; prosulfocarb; prosulfuron (CGA-152005); prynachlor; pyrazolinate; pyrazon; pyrazosulfuron-ethyl; pyrazoxyfen; pyridate; pyrithiobac (KIH-2031); pyroxofop und dessen Ester (z.B. Propargylester); quinclorac; quinmerac; quinofop und dessen Esterderivate, quizalofop und quizalofop-P und deren Esterderivate z.B. quizalofop-ethyl; quizalofop-P-tefuryl und -ethyl; renriduron; rimsulfuron (DPX-E 9636); S 275, d.h. 2-[4-Chlor-2-fluor-5-(2-propynyloxy)-phenyl]-4,5,6,7-tetrahydro- 2H-indazol; secbumeton; sethoxydim; siduron; simazine; simetryn; SN 106279, d.h. 2-[[7-[2-Chlor-4-(trifluor-methyl)-phenoxy]-2-naphthalenyl]-oxy]-propansäure und - methylester; sulfentrazon (FMC-97285, F-6285); sulfazuron; sulfometuron-methyl; sulfosate (ICI-A0224); TCA; tebutam (GCP-5544); tebuthiuron; terbacil; terbucarb; terbuchlor; terbumeton; terbuthylazine; terbutryn; TFH 450, d.h. N,N-Diethyl-3-[(2- ethyl-6-methylphenyl)-sulfonyl]-1 H-1 ,2,4-triazol-1-carboxamid; thenylchlor (NSK- 850); thiazafluron; thiazopyr (Mon-13200); thidiazimin (SN-24085); thiobencarb; thifensulfuron-methyl; tiocarbazil; tralkoxydim; tri-allate; triasulfuron; triazofenamide; tribenuron-methyl; triclopyr; tridiphane; trietazine; trifluralin; triflusulfuron und Ester (z.B. Methylester, DPX-66037); trimeturon; tsitodef; vernolate; WL 110547, d.h. 5- Phenoxy-1-[3-(trifluormethyl)-phenyl]-1H-tetrazol; UBH-509; D-489; LS 82-556; KPP- 300; NC-324; NC-330; KH-218; DPX-N8189; SC-0774; DOWCO-535; DK-8910; V-53482; PP-600; MBH-001 ; KIH-9201 ; ET-751 ; KIH-6127 und KIH-2023.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 1,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 750 g/ha. Die nachstehenden Beispiele erläutern die Erfindung.
A. Chemische Beispiele
1. (5-Cyclopropylisoxazol-4-yl)-(2-methyl-6-(trifluormethyl)pyridin-3-yl)methanon (Tabellenbeispiel 1.44) und Cyclopropyl{5-[2-methyl-6-(trifluormethyl)pyridin-3-yl]isoxazol-4-yl}methanon (Tabellenbeispiel 2.44)
a) 1 -Cyclopropyl-3-[2-methyl-6-(trifluormethyl)pyridin-3-yl]propan-1 ,3-dion 4.83 g (24 mmol) 2-Methyl-6-(trifluormethyl)nicotinsäure wurden in 150 ml CH2CI2 vorgelegt und mit einem Tropfen DMF und 5.98 g (47 mmol) Oxalylchlorid versetzt. Nach Beendigung der Gasentwicklung wurde noch 3 h unter Rückfluß erhitzt und anschließend eingeengt. Der Rückstand wurde in 100 ml Toluol suspendiert. In einem zweiten Ansatz wurden 4.34 g (24 mmol) 3-Cyclopropyl-3-oxopropan-säure- tert.-butylester in 150 ml Methanol vorgelegt und mit 0.57 g (24 mmol) Magnesiumspäne und einem Tropfen CCI versetzt. Man ließ bei RT rühren bis sich alles Magnesium umgesetzt hatte. Anschließend wurde vollständig eingeengt und der Rückstand in 150 ml Toluol gelöst. Zu dieser Lösung wurde die obige Säurechloridlösung getropft und anschließend noch 3 h bei RT gerührt. Es wurde eingeengt, der Rückstand in 200 ml EE aufgenommen, mit Wasser gewaschen und über MgSO4 getrocknet. Anschließend wurde erneut eingeengt. Der Rückstand wurde in 100 ml Toluol gelöst, mit 0.1 g p-Toluolsulfonsäure versetzt und 2 h unter Rückfluß erhitzt. Anschließend wurde eingeengt, mit 200 ml EE aufgenommen, mit Wasser gewaschen, über MgSO4 getrocknet und erneut eingeengt. Ausbeute: 5.07 g (18.7 mmol) 78 %, braunes Öl, 95 % Reinheit nach HPLC 1H-NMR: δ[CDCI3] 1.05 (m,2H), 1.25 (m,2H), 1.78 (m,1H), 2.78 (s,3H), 5.95 (s,1H), 7.58 (d,1H), 7.92 (d,1H)
b) 1-Cyclopropyl-2-[(dimethylamino)methylene]-3-[2-methyl-6-(trifluormethyl)pyridin- 3-yl]propan-1 ,3-dion
5.07 g (19 mmol) 1-Cyclopropyl-3-[2-methyl-6-(trifIuormethyl)pyridin-3-yl]propan-1 ,3- dion wurden zusammen mit 8.9 g (75 mmol) N,N-Dimethylformamid-dimethylacetal 3h bei RT gerührt. Anschließend wurde eingeengt und chromatographisch gereinigt. Ausbeute: 5.7 g (17.5 mmol) 92 %, braunes Öl, 95 % Reinheit nach HPLC 1H-NMR: δ[CDCI3] 0.65 (m,2H), 0.95 (m,2H), 1.82 (m,1H), 2.7 (s,3H), 2.82 (s,br,3H), 3.25 (s,br,3H), 7.45 (s,1H), 7.52 (d,1H), 7.75 (d,1H)
c) (5-Cyclopropylisoxazol-4-yl)-(2-methyl-6-(trifluormethyl)pyridin-3-yl)methanon und Cyclopropyl{5-[2-methyl-6-(trifluormethyl)pyridin-3-yl]isoxazol-4-yl}methanon
1g (2 mmol) 1-Cyclopropyl-2-[(dimethylamino)methylene]-3-[2-methyl-6-trifluor- methyl)pyridin-3-yl]propan-1 ,3-dion wurden in 50 ml Ethanol gelöst und anschließend mit 1.15 g (2 mmol) Hydroxylamin Hydrochlorid versetzt. Man ließ 4 h bei RT rühren. Anschließend wurde eingeengt, der Rückstand in 100 ml EE aufgenommen, mit Wasser gewaschen, über MgSO getrocknet und erneut eingeengt. Die beiden Produkte wurden chrmatographisch getrennt. Ausbeute: 235 mg (0.79 mmol) 40 % (5-Cyclopropylisoxazol-4-yl)[2-methyl-6 (trifluormethyl)pyridin-3-yl]methanon als gelbliches Harz
1H-NMR: δ[CDCI3] 1.3 (m,2H), 1.4 (m,2H), 2.7 (m,1H), 2.7 (s,3H), 7.65 (d,1 H), 7.85 (d,1H), 8.15 (s,1H) und
120 mg (0.41 mmol) 20 % Cyclopropyl{5-[2-methyl-6-(trifluormethyl)pyridin-3- yl]isoxazol-4-yl}methanon als gelber Feststoff
1H-NMR: δ[CDCI3] 1.0 (m,2H), 1.2 (m,2H), 2.05 (m,1 H), 2.6 (s,3H), 7.65 (s,1H), 7.98 (d,1H), 8.8 (s,1 H)
2. 3-Cyclopropyl-2-{[2-methyl-6-(methylsulfonyl)pyridin-3-yl]carbonyl}-3-oxopropan- nitril (Tabellenbeispiel 3.4)
1.48 g (5 mmol) (5-Cyclopropylisoxazol-4-yl)[2-methyl-6-(methylsulfonyl)pyridin-3- yljmethanon wurden in 100 ml CH2CI2 gelöst und mit 0.58 g (6 mmol) NEt3 versetzt.
Man ließ 2 h bei RT rühren, wusch anschließend mit 10 %iger Schwefelsäure und ges. NaCI Lösung, trocknete über MgSO und engte anschließend ein.
Ausbeute: 1.18 g (3.9 mmol) 78 % als gelbliches Öl
1H-NMR: δ[CDCI3] 1.35 (m,2H), 1.5 (m,2H), 2.4 (m,1H), 2.75 (s,3H), 3.25 (s,3H),
8.05 (m,2H)
Die in nachfolgenden Tabellen aufgeführten Beispiele wurden analog oben genannten Methoden hergestellt beziehungsweise sind analog oben genannten Methoden erhältlich.
Die verwendeten Abkürzungen bedeuten:
Et = Ethyl Me = Methyl i-Pr = iso-Propyl c-Pr = cyclo-Propyl t-Bu = tertiär-Butyl Fp. = Festpunkt
RT = Raumtemperatur EE = Essigsäureethylester Rf = Retentionswert Tabelle 1 : Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben:
Q = Q1 R 1 _ Me
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000022_0001
Tabelle 2: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben: Q = Q2 R1 = Me
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000024_0001
Tabelle 3: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben: Q = Q3 R1 = Me
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000026_0001
B. Formulierungsbeispiele 1. Stäubemittel Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der allgemeinen Formel (I) und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert. 2. Dispergierbares Pulver
Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
3. Dispersionskonzentrat
Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 6 Gew.-Teile Alkylphenolpolyglykolether (©Triton X 207), 3 Gew.-Teile Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teile paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
4. Emulgierbares Konzentrat
Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der allgemeinen Formel (I), 75 Gew.Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
5. Wasserdispergierbares Granulat
Ein in Wasser dispergierbares Granulat wird erhalten, indem man
75 Gew.-Teile einer Verbindung der allgemeinen Formel(l),
10 " ligninsulfonsaures Caicium, 5 " Natriumlaurylsulfat, 3 " Polyvinylalkohol und 7 " Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch
Aufsprühen von Wasser als Granulierflüssigkeit granuliert.
Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew.-Teile einer Verbindung der allgemeinen Formel (I), 5 " 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
2 " oleoylmethyltaurinsaures Natrium, 1 " Polyvinylalkohol,
17 " Calciumcarbonat und
50 " Wasser auf einer Kolloidmühle homogenesiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
C. Biologische Beispiele
1. Herbizide Wirkung im Vorauflauf
Samen von mono- und dikotylen Schadpflanzen werden in Papptöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern oder Emulsionskonzentraten formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha in einer Dosierung von umgerechnet 320 g Aktivsubstanz oder weniger pro Hektar auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Schadpflanzen gehalten. Die optische Bonitur der Pflanzen- bzw. Auflaufschäden erfolgt nach dem Auflaufen der Versuchspflanzen nach einer Versuchszeit von 3 bis 4 Wochen im Vergleich zu unbehandelten Kontrollen. Dabei zeigen beispielsweise die Verbindungen der Nr. 1.4, 1.19, 1.39, 2.14, 2.19, 2.39 und 3.44 eine 100 %ige Wirkung gegen Amaranthus retroflexus, Sinapis arvensis und Setaria yiridis. Die Verbindungen der Nr. 1.14, 2.34 und 3.4 zeigten eine mindestens 90 %ige Wirkung gegen Amaranthus retroflexus und Setaria viridis.
2. Herbizide Wirkung gegen Schadpflanzen im Nachauflauf
Samen von mono- und dikotylen Schadpflanzen werden in Papptöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. Zwei bis drei Wochen nach der Aussaat werden die Versuchspflanzen im Dreiblattstudium behandelt. Die als Spritzpulver bzw. als Emulsionskonzentrate formulierten erfindungsgemäßen Verbindungen werden mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha in unterschiedlichen Dosierungen auf die Oberfläche der grünen Pflanzenteile gesprüht. Nach 3 bis 4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Verbindungen durch optische Bonitur ermittelt. Dabei zeigen beispielsweise die Verbindungen der Nr. 1.39, 2.4, 3.4 und 3.39 bei 320 g Aufwandmenge eine mindestens 90 %ige Wirkung gegen Sinapis arvensis und Stellaria media.
3. Kulturpflanzenverträglichkeit
In weiteren Versuchen im Gewächshaus werden Samen von Kulturpflanzen und mono- und dikotyler Schadpflanzen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus aufgestellt, bis die Pflanzen zwei bis drei echte Blätter entwickelt haben. Die Behandlung mit den erfindungsgemäßen Verbindungen der Formel (I) und im Vergleich dazu mit den im Stand der Technik offenbarten erfolgt dann wie oben unter Punkt 1 beschrieben. Vier bis fünf Wochen nach der Applikation und Standzeit im Gewächshaus wird eine optische Bonitur vorgenommen. Dabei führen beispielsweise die Verbindungen der Nr. 1.44, 2.39 und 3.44 bei 320 g Aufwandmenge zu keiner Schädigung an Mais- und Weizenpflanzen.

Claims

Patentansprüche:
Pyridinylisoxazole der Formel (I) oder deren Salze
Figure imgf000030_0001
worin
Q bedeutet einen der Reste Q1 , Q2 oder Q3;
Figure imgf000030_0002
R1 bedeutet Methyl; R2 bedeutet CF3, Cl, Br, S(O)nCH3 oder S(O)nC2H5; R3 bedeutet Methyl, Ethyl, iso-Propyl, cyclo-Propyl oder tertiär-Butyl; n bedeutet 0, 1 , oder 2.
2. Pyridinylisoxazole nach Anspruch 1 , worin Q für Q1 steht.
3. Pyridinylisoxazole nach Anspruch 1 oder 2, worin R3 für cyclo-Propyl steht.
4. Herbizide Mittel, gekennzeichnet durch einen herbizid wirksamen Gehalt an mindestens einer Verbindung der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 3.
Herbizide Mittel nach Anspruch 4 in Mischung mit Formulierungshilfsmitteln.
6. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 3 oder von herbiziden Mitteln nach Anspruch 4 oder 5 auf die Pflanzen oder auf den Ort des unerwünschten Pflanzenwachstums appliziert.
7. Verwendung von Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 3 oder von herbiziden Mitteln nach Anspruch 4 oder 5 zur Bekämpfung unerwünschter Pflanzen.
8. Verwendung nach Anspruch 7, dadurch gekennzeichnet, daß die Verbindungen der allgemeinen Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, daß die Nutzpflanzen transgene Nutzpflanzen sind.
PCT/EP2005/006017 2004-06-17 2005-06-04 Pyridinylisoxazole und ihre verwendung als herbizide WO2005123726A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002570529A CA2570529A1 (en) 2004-06-17 2005-06-04 Pyridinyl-isoxazoles and their use as herbicides
EP05750290A EP1758896A1 (de) 2004-06-17 2005-06-04 Pyridinylisoxazole und ihre verwendung als herbizide
JP2007515819A JP2008502615A (ja) 2004-06-17 2005-06-04 ピリジニル−イソオキサゾール及び除草剤としてのそれらの使用
MXPA06014483A MXPA06014483A (es) 2004-06-17 2005-06-04 Piridinilisoxazoles y su uso como herbicidas.
BRPI0512272-4A BRPI0512272A (pt) 2004-06-17 2005-06-04 isoxazóis de piridinila e seu uso como herbicidas
IL179791A IL179791A0 (en) 2004-06-17 2006-12-03 Pyridinylisoxazoles and their use as herbicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004029309A DE102004029309A1 (de) 2004-06-17 2004-06-17 Pyridinylisoxazole und ihre Verwendung als Herbizide
DE102004029309.0 2004-06-17

Publications (1)

Publication Number Publication Date
WO2005123726A1 true WO2005123726A1 (de) 2005-12-29

Family

ID=34970023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006017 WO2005123726A1 (de) 2004-06-17 2005-06-04 Pyridinylisoxazole und ihre verwendung als herbizide

Country Status (13)

Country Link
US (1) US20050282707A1 (de)
EP (1) EP1758896A1 (de)
JP (1) JP2008502615A (de)
CN (1) CN1968950A (de)
AR (1) AR052517A1 (de)
BR (1) BRPI0512272A (de)
CA (1) CA2570529A1 (de)
DE (1) DE102004029309A1 (de)
IL (1) IL179791A0 (de)
MX (1) MXPA06014483A (de)
RU (1) RU2007101282A (de)
WO (1) WO2005123726A1 (de)
ZA (1) ZA200609716B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3915367A1 (de) 2010-08-18 2021-12-01 BioSplice Therapeutics, Inc. Diketone und hydroxyketone als cateninsignalweg-aktivatoren
LT2968249T (lt) 2013-02-22 2019-03-12 Samumed, Llc Gama-diketonai, kaip wnt/beta-katenino signalinio kelio aktyvikliai
CN107106549B (zh) 2014-08-20 2020-06-16 萨穆梅德有限公司 用于治疗和预防老化皮肤和皱纹的γ–二酮

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0524018A1 (de) * 1991-07-17 1993-01-20 Rhone-Poulenc Agriculture Ltd. Isoxazolederivate als Herbizide
EP0588357A1 (de) * 1992-09-18 1994-03-23 Rhone Poulenc Agriculture Ltd. Isoxazole Derivate und ihre Verwendung als Herbizide
WO1995025099A1 (en) * 1994-03-17 1995-09-21 Rhone-Poulenc Agriculture Ltd. 2-cyano-1,3-dione derivatives useful as herbicides
WO2000015615A1 (en) * 1998-09-15 2000-03-23 Syngenta Participations Ag Pyridine ketones useful as herbicides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013659A (en) * 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
MA21177A1 (fr) * 1987-02-11 1988-10-01 May & Baker Ltd Diones cycliques.
CA2117413C (en) * 1993-07-30 2006-11-21 Neil Geach Herbicidal isoxazole-4-yl-methanone derivatives
GB2335658A (en) * 1998-03-25 1999-09-29 Rhone Poulenc Agriculture Processes for preparing 1-aryl-3-cyclopropyl-propane-1,3-dione intermediates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0524018A1 (de) * 1991-07-17 1993-01-20 Rhone-Poulenc Agriculture Ltd. Isoxazolederivate als Herbizide
EP0588357A1 (de) * 1992-09-18 1994-03-23 Rhone Poulenc Agriculture Ltd. Isoxazole Derivate und ihre Verwendung als Herbizide
WO1995025099A1 (en) * 1994-03-17 1995-09-21 Rhone-Poulenc Agriculture Ltd. 2-cyano-1,3-dione derivatives useful as herbicides
WO2000015615A1 (en) * 1998-09-15 2000-03-23 Syngenta Participations Ag Pyridine ketones useful as herbicides

Also Published As

Publication number Publication date
EP1758896A1 (de) 2007-03-07
CA2570529A1 (en) 2005-12-29
BRPI0512272A (pt) 2008-02-26
IL179791A0 (en) 2007-05-15
JP2008502615A (ja) 2008-01-31
US20050282707A1 (en) 2005-12-22
AR052517A1 (es) 2007-03-21
MXPA06014483A (es) 2007-03-01
RU2007101282A (ru) 2008-07-27
CN1968950A (zh) 2007-05-23
ZA200609716B (en) 2007-09-26
DE102004029309A1 (de) 2005-12-29

Similar Documents

Publication Publication Date Title
EP1527067B1 (de) 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine
EP1280778B1 (de) Benzoylpyrazole und ihre verwendung als herbizide
EP1866287B1 (de) Substituierte pyrazolyloxyphenylderivate als herbizide
EP1202978B1 (de) Isoxazolyl- und isoxazolinyl-substituierte benzoylcyclohexandione, verfahren zu ihrer herstellung und ihre verwendung als herbizide und pflanzenwachstumsregulatoren
WO2005089551A1 (de) Substituierte 4-(4-trifluormethylpyrazolyl)-pyrimidine als herbizide
WO2004013131A2 (de) 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine
DE102005014906A1 (de) Substituierte N-[Pyrimidin-2-yl-methyl]carboxamide und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
EP1585742B1 (de) Substituierte benzoylderivate als herbizide
WO2008125214A1 (de) 4-(4-trifluormethyl-3-thiobenzoyl)pyrazole und ihre verwendung als herbizide
WO2005097754A1 (de) Herbizid wirksame 3-amino-2 thiomethyl -benzoylpyrazole
WO2005122768A1 (de) Substituierte benzoylpyrazole als herbizide
EP1824338B1 (de) 3-cyclopropyl-4-(3-amino-2-methylbenzoyl)pyrazole und ihre verwendung als herbizide
EP2146966B1 (de) 4-(3-aminobenzoyl)-1-methylpyrazole und ihre verwendung als herbizide
EP1758877A1 (de) Substituierte benzoylcyclohexandione als herbizide
WO2005123726A1 (de) Pyridinylisoxazole und ihre verwendung als herbizide
EP2146965B1 (de) 4-(3-aminobenzoyl)-1,3-dimethylpyrazole und ihre verwendung als herbizide
EP2137159A1 (de) 4-(3-aminobenzoyl)-1-ethylpyrazole und ihre verwendung als herbizide
WO2002081434A1 (de) Derivate von benzoylcyclohexandionen und ihre verwendung als herbizide
DE10014761A1 (de) Substituierte N-Arylpyrazole, Verfahren zu deren Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE102007029603A1 (de) Verwendung von N2-Phenylamidinen als Herbizide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005750290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006/09716

Country of ref document: ZA

Ref document number: 200609716

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 179791

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/014483

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2570529

Country of ref document: CA

Ref document number: 200580019884.4

Country of ref document: CN

Ref document number: 2007515819

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4622/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007101282

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005750290

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005750290

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0512272

Country of ref document: BR