WO2005122450A1 - Recepteur multi-utilisateur d'un canal physique specialise de liaison montante - Google Patents

Recepteur multi-utilisateur d'un canal physique specialise de liaison montante Download PDF

Info

Publication number
WO2005122450A1
WO2005122450A1 PCT/CN2005/000812 CN2005000812W WO2005122450A1 WO 2005122450 A1 WO2005122450 A1 WO 2005122450A1 CN 2005000812 W CN2005000812 W CN 2005000812W WO 2005122450 A1 WO2005122450 A1 WO 2005122450A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpcch
unit
channel
result
dpdch
Prior art date
Application number
PCT/CN2005/000812
Other languages
English (en)
French (fr)
Inventor
Limei Wei
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2005122450A1 publication Critical patent/WO2005122450A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71075Parallel interference cancellation

Definitions

  • the present invention relates to the field of mobile communication technology, and in particular, to an uplink dedicated physical channel multi-user receiving device in a code division multiple access (CDMA) system.
  • CDMA code division multiple access
  • CDMA systems have become the development direction of the third generation of mobile communications due to their high capacity, high service quality, and good confidentiality. Because CDMA systems mainly rely on feature codes to distinguish users, it will cause multiple access interference problems in the mobile communication environment, thereby limiting the improvement of uplink capacity, coverage, and performance of CDMA systems.
  • RAKE receiving technology enables a single-user receiver to use multipath components to generate multipath diversity gain, but it cannot eliminate the impact of multiple-access interference on user signal detection. With the number of users increasing and near-far effects, single-user The detection performance of the receiver will be significantly reduced.
  • the multi-user detection technology mainly uses the information of multiple users to jointly detect the signals of multiple users, thereby minimizing the impact of multiple-access interference on the performance of the receiver and increasing the capacity of the system.
  • the parallel interference cancellation method in multi-user detection technology is to treat the signal of the desired user as a useful signal and the signals of other users as interference signals; to cancel the interference of the signals of all other users for each user in parallel from the received signal, and obtain The signal of the desired user is then detected, thereby improving the performance of the system.
  • the double-layer weighted parallel interference cancellation method can greatly improve the performance of the traditional parallel interference cancellation method.
  • this method uses a soft decision method based on the Bayesian criterion. The decision cost of each symbol is the smallest.
  • partial interference cancellation is used to compensate for the deviation of the user's signal estimation in a statistical sense.
  • Smart antenna technology mainly separates all user signals in space. User signals in a certain direction of the incoming wave are enhanced to varying degrees, and user signals that are not in the beam are strongly suppressed. Detection of user signals becomes easy and improves
  • HSDPA high-speed data packet access
  • HSDPA technology is an enhanced technology that improves the downlink capacity of a CDMA system.
  • WCDMA Wideband Code Division Multiple Access
  • HSDPA sends high-speed data packets to a user equipment (UE) through a high-speed downlink shared channel (HS-DSCH), and implements HSDPA through a downlink high-speed shared control channel (HS-SCCH).
  • HS-SCCH downlink high-speed shared control channel
  • the uplink dedicated physical channel allocated to the user includes a dedicated physical data channel (DPDCH) and a dedicated physical control channel (DPCCH), as well as a high-speed dedicated physical control channel (HS-DPCCH).
  • DPDCH dedicated physical data channel
  • DPCCH dedicated physical control channel
  • HS-DPCCH high-speed dedicated physical control channel
  • the HS-DPCCH channel specifically carries feedback information of the UE under high-speed data services, that is, acknowledgement / non-acknowledgement (ACK / NACK) information and channel quality indication (CQI) information.
  • the UE After receiving the data packet, the UE decodes the data packet, and sends ACK / NACK information and CQI information through the uplink HS-DPCCH channel according to the decoding result and the downlink channel quality test result.
  • the UE sends an ACK message to the BS, so that the BS then sends the next data packet. If the data packet is decoded incorrectly, the UE sends a NACK message to the BS, so that the BS retransmits the data packet.
  • the CQI bits are encoded and sent to the BS.
  • the BS obtains the CQI bits through decoding, and uses the CQI bits to perform adaptive modulation and coding (AMC) control, and adjusts the coding and modulation mode of the downlink HS-DSCH.
  • AMC adaptive modulation and coding
  • the BS can increase the data transmission rate by using a corresponding coding and modulation mode, and decrease the data transmission rate by changing the coding and modulation mode.
  • the BS sends a data packet to the UE, it will receive the ACK / NACK information and CQI information fed back by the UE in the corresponding uplink time slot according to a certain timing relationship.
  • the main purpose of the present invention is to provide an uplink dedicated physical channel multi-user receiving device.
  • multi-user detection technology smart antenna technology and HSDPA technology
  • the uplink capacity, coverage and performance of a CDMA system are greatly improved.
  • An uplink dedicated physical channel multi-user receiving device includes: a first-level parallel interference cancellation (PIC) structure and a last-level PIC structure, wherein the first-level PIC structure includes K user signal processing units and an interference The cancellation unit, where K is the number of users, each user corresponds to a user signal processing unit, and the last-stage PIC structure includes K user signal processing units, and each user corresponds to one user signal processing unit, which is characterized in that:
  • Each user signal processing unit in the first-level PIC structure described above receives all external beam signals and user multipath delay information of the corresponding user, and according to all received beam signals and user multipath delay information, Dedicated physical data channel (DPDCH), dedicated The physical control channel (DPCCH) and high-speed dedicated physical control channel (HS-DPCCH) perform despreading, RAKE combining and decision and decision weighting processing, signal regeneration processing, and HS '-DPCCH hard decision processing to obtain HS-DPCCH feedback information, A symbol-level reproduction signal and a chip-level reproduction
  • the interference cancellation unit in the first-stage PIC structure receives all beam signals from the outside and chip-level regeneration signals from each user signal processing unit in the first-stage PIC structure, and according to the received all beam signals and codes
  • the slice-level reproduced signal is subjected to intra-beam signal summation, shaping matching filtering, and intra-beam residual calculation processing to obtain all beam residual signals, and then output all the obtained beam residual signals to the next-stage PIC structure;
  • Each user signal processing unit in the last-stage PIC structure receives all beam residual signals from the upper-stage PIC structure and a symbol-level reproduction signal of a corresponding user, and a user multipath delay from a corresponding user from the outside Information, performing DPDCH and DPCCH channel despreading, symbol correction, RAKE combining, and decoding or hard decision processing to obtain the DPDCH channel according to the received all beam residual signals, symbol-level reproduced signals, and user multipath delay information.
  • Information bits transmitted and information bits transmitted on the DPCCH channel are transmitted on the DPCCH channel.
  • the device further includes: an intermediate-stage PIC structure of no less than one stage, the intermediate-stage PIC structure is located between the first-stage PIC structure and the last-stage PIC structure; the intermediate-stage PIC structure includes K user signal processing units And an interference cancellation unit, each user corresponds to a user signal processing unit in an intermediate PIC structure;
  • Each user signal processing unit in the intermediate-stage PIC structure receives a signal from an external source;
  • the user ’ s multipath delay information for the corresponding user, and all beam residual signals from the upper-level PIC structure and the symbol-level regeneration signal for the corresponding user, and based on the received user multipath delay information, all beam residual signals, and
  • the symbol-level reproduced signal is subjected to DPDCH channel, DPCCH channel, and HS-DPCCH channel despreading, symbol correction, RAKE combining and decision and decision weighting processing, and signal regeneration processing to obtain symbol-level reproduced signal and chip-level reproduced signal, and then The obtained symbol-level reproduction signal is output to the next-stage PIC structure, and the chip-level reproduction signal is output to the interference cancellation unit in the current-stage PIC structure;
  • the interference cancellation unit in the intermediate-stage PIC structure receives all beam signals from the outside and chip-level regeneration signals from each user signal processing unit in the PIC structure of the current stage, and according to all the received beam signals and chip-levels
  • the reproduced signal is subjected to intra-beam signal summation, shaped matching filtering, and intra-beam residual calculation processing to obtain all beam residual signals, and then output all the obtained beam residual signals to the next-stage PIC structure.
  • the present invention applies a multi-beam dual-layer weighted parallel interference cancellation method to an uplink dedicated physical channel under high-speed data services, and integrates smart antenna technology, HSDPA technology, and multi-user detection technology in Together, an uplink dedicated physical channel multi-user receiving device in a CDMA system is implemented.
  • the device can simultaneously obtain the gain of the smart antenna system and the gain of multi-user detection.
  • the input multi-antenna array element signals are beamformed by smart antenna technology, and all user signals are spatially separated, so that the user signals in each beam are interfered by the user signals in other beams during beamforming.
  • the present invention greatly improves the uplink capacity, coverage, and performance of a CDMA system.
  • FIG. 1 is a schematic flowchart of a dual-layer weighted parallel interference cancellation method in a multi-beam according to the present invention.
  • FIG. 2 is a schematic diagram of an uplink dedicated physical channel multi-user receiving apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of any user signal processing unit in a first-stage PIC structure in an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an interference cancellation processing unit in a first-stage PIC structure in an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a user signal processing unit in an intermediate stage PIC structure of an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a spreading factor calculation unit in an intermediate stage PIC structure of an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a user signal processing unit in a last-stage PIC structure of an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a spreading factor calculation unit in a last-stage PIC structure of an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • the present invention combines smart antenna technology, HSDPA technology and multi-user detection technology Together, that is, first combining the multi-user detection technology and smart antenna technology to achieve a double-layer weighted parallel interference cancellation method under multi-beams, and then combined with HSDPA technology, that is, double-layer weighted parallel interference under multi-beams
  • the cancellation method is applied to an uplink dedicated physical channel in a high-speed data service, and an uplink dedicated physical channel in a CDMA system is realized Multi-user receiving device, thereby greatly improving the uplink capacity, coverage and performance of the CDMA system.
  • the present invention combines a multi-user detection technology and a smart antenna technology to obtain a multi-beam double-layer weighted parallel interference cancellation method.
  • FIG. 1 is a schematic flowchart of a dual-layer weighted parallel interference cancellation method in a multi-beam according to the present invention.
  • a specific processing process of a multi-beam dual-layer weighted parallel interference cancellation method implemented by the present invention includes the following steps:
  • Step 101 Receive an antenna array signal.
  • the smart antenna system has several antenna array elements, and the antenna array signal is a multipath fading signal received by each antenna array element.
  • Step 102 Form a beam signal of each user according to the received antenna element signal.
  • the number of the formed beam signals is determined according to the distribution of multipaths in the received antenna element signals.
  • Step 103 Search the beam signals of each user to obtain the multipath delay information of each user.
  • the multipath delay information of each user includes the delays of the user's various paths and the beam number where each path is located.
  • Step 104 Perform first-level parallel interference cancellation processing on a single beam signal of each user and multi-path delay information of each user to obtain a first-level beam signal of each user.
  • the first-level beam signal includes estimation of multiple access interference and interference cancellation of a single beam signal of each user and multipath delay information of each user according to all beam signals, where all beam signals are determined by each user's All different beam signals in a single beam signal.
  • Step 105 Perform the second-level parallel interference cancellation processing on the obtained first-level beam signals of each user and the multipath delay information of each user to obtain the second-level beam signals of each user.
  • step 104 the process of the second-level parallel interference cancellation processing is the same as that described in step 104.
  • the process of first-level parallel interference cancellation processing is the same.
  • Step 106 Perform the last-level parallel interference cancellation processing on the obtained second-level beam signals of each user and the multipath delay information of each user to obtain the soft output signals of each user.
  • the last-stage parallel interference cancellation processing includes: the RAKE receiver despreads and descrambles the beam signal of the input user according to the multipath delay information obtained by the multipath search, and obtains the despread solutions of each path.
  • Channel interference results then perform channel estimation on the despreading and descrambling results of each path to obtain the channel estimation results of each path; finally, perform intra-beam multipath combining and beamforming
  • the multi-path combining obtains a total multi-path combining result of the user, and the multi-path combining result is the soft output signal of the user.
  • Step 107 Decode the obtained soft output signal of the user to obtain the bit sequence sent by each user.
  • a three-level parallel interference cancellation structure is used when parallel interference cancellation is performed on a single beam signal of each user and multipath delay information of each user.
  • a parallel interference cancellation structure of two or more levels is used.
  • the invention applies a multi-beam double-layer weighted parallel interference cancellation method to an uplink dedicated physical channel under a high-speed data service, and obtains an uplink dedicated physical in a CDMA system that combines smart antenna technology, HSDPA technology and multi-user detection technology.
  • a channel multi-user receiving device which is composed of at least a first-stage PIC structure and a last-stage PIC structure.
  • FIG. 2 is a schematic diagram of an uplink dedicated physical channel multi-user receiving apparatus according to an embodiment of the present invention.
  • the uplink dedicated physical channel multi-user receiving device is composed of a first-stage PIC structure 201, a middle-stage HC structure 202, and a last-stage PIC structure 203.
  • all the received antenna element signals are demodulated and matched and filtered, and then enter the beamforming and multipath searching unit 200 to form a plurality of beam signals and applications for each user.
  • the user's multipath delay information where the number of beam signals for each user is determined by the multipath distribution of the user's multipath fading signal, and the user's multipath delay information is determined by the beam number and time Extending composition. Then, the beam signals of each user are sent to a user signal processing unit of each user in the first-stage PIC structure 201.
  • All beam signals composed of different signals from the beam signals of all users are sent to the first-stage PIC structure 201 and the middle-stage PIC structure 202 for interference cancellation of the first-stage PIC structure 201 and the middle-stage PIC structure 202 .
  • the multipath delay information of each user is sent to the first-stage PIC structure 201, the middle-stage PIC structure 202, and the last-stage PIC structure 203.
  • all beam signals may be sent to the first-stage PIC structure 201, and then the first-stage PIC structure 201 searches for the beam number in the information according to the user's multipath
  • a beam signal of a corresponding user is selected from all the beam signals and sent to a user signal processing unit corresponding to the user for processing.
  • a corresponding beam signal is selected from all beam signals according to the beam number in the multipath delay information of the corresponding user, and the selected beam signals are processed correspondingly in the user signal processing unit.
  • the beamforming and multipath searching unit 200 is determined by the implementation structure of the smart antenna technology.
  • a fixed beamforming method may be adopted, and then a multipath search is performed in each beam to obtain multipath delay information of a desired user.
  • Other methods can also be used to complete the beamforming and multipath search for each user.
  • FIG. 3 is a schematic diagram of any user signal processing unit in a first-level PIC structure in an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an interference cancellation processing unit in a first-level PIC structure in an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • the first level PIC structure 201 is composed of K user signal processing units 301 and an interference cancellation unit 421, and each user corresponds to a user signal processing unit. $ 301.
  • the beam signals of each user entering the first-stage PIC structure 201 enter the user signal processing unit 301 of the corresponding user in a parallel manner.
  • the multipath delay information of each user entering the first-level PIC structure 201 also enters the user signal processing unit 301 of the corresponding user in parallel.
  • Each user signal processing unit 301 has the same structure and performs the same functions.
  • Each user signal processing unit 301 in the first-level PIC structure obtains the power control instruction, symbol-level regeneration signal, and power of each user through a series of processes according to the input beam signals of the user and the multipath delay information of the user. Chip-level regeneration signal and feedback information of HS-DPCCH; Then, the user signal processing unit 301 feeds back the user's power control instruction to the UE at the transmitting end via the downlink, so that the UE can adjust the uplink transmit power according to the power control instruction; the user signal The processing unit 301 also outputs the user's symbol-level regeneration signal to the user signal processing unit corresponding to the same user in the next-level PIC structure; the user signal processing unit 301 also outputs the feedback information of the HS-DPCCH to the downlink channel processing unit, for Controls information transmission of the downlink HS-DSCH channel and HS-SCCH channel; the user signal processing unit 301 also outputs the chip-level regeneration signal of the user to the interference cancellation unit 421 in the first-stage PIC structure
  • the interference cancellation unit 421 in the first-stage PIC structure processes the input signals to obtain all beam signals.
  • the residual signals of all beam signals are then used as output signals of the first-stage PIC structure 201 and output to the next-stage PIC structure.
  • each user signal processing unit 301 in the first-level PIC structure includes 16 units.
  • the beam signals entering each user signal processing unit 301 and the user's multipath delay information enter the user signal processing unit 301 respectively.
  • DPDCH despreading unit 302, DPCCH despreading unit 303, and HS-DPCCH despreading unit 304, and the user's multipath delay information also enters the signal regeneration unit 316 in the user signal processing unit 301, each unit
  • the specific functions are:
  • the DPCCH despreading unit 303 performs multipath despreading on each input beam signal according to the multipath delay information and the spreading code of the DPCCH channel (the product of the DPCCH channel code and the scrambling code), and each of the input beam signals includes The user's signals of each path are despread, and the DPCCH despread results of all input beam signals are output to the channel estimation unit 306, the power control unit 305, the noise power estimation unit 307, and the RAKE combining unit 309 of the DPCCH channel; channel estimation Unit 306: Obtain channel estimation results of each path from the despread results of each path of the DPCCH, and output the obtained channel estimation results to the RAKE combining unit 308 of the DPDCH channel, the RAKE combining unit 309 of the DPCCH channel, and the HS-DPCCH channel.
  • the power control unit 305 obtains a power control instruction from the despread results of the paths of the input DPCCH channel, and uses the obtained power control instruction as an output of the first-stage PIC structure 201, and feeds it back to the transmitting end of the user;
  • the noise power estimation unit 307 obtains an estimation result of the noise power of each beam DPCCH channel from the input DPCCH channel despreading result, and then outputs the estimation result of the DPCCH channel noise power of each beam to the DPDCH soft decision and soft decision weighting at the same time.
  • the DAKECH RAKE combining unit 309 combines the input channel estimation result and noise power estimation result to perform de-channel modulation and RAKE combining on the input DPCCH despreading result.
  • Transmission Format Combination Indication (TFCI) decoding unit 3111 performs TFCI decoding on the RAKE combined result of DPCCH, obtains the DPDCH spreading factor, and outputs the DPDCH spreading factor to the DPDCH despreading unit 302;
  • TFCI Transmission Format Combination Indication
  • the DPDCH despreading unit 302 performs multipath despreading on the input beam signal according to the multipath delay information and the spreading factor of the DPDCH, and outputs the obtained DPDCH despreading result to the RAKE combining unit 308 of the DPDCH channel;
  • the RAKE combining unit 308 of the DPDCH is configured to perform de-channel modulation and RAKE combining on the input DPDCH despreading result in combination with the input channel estimation result and the noise power estimation result, and output the combined result to the DPDCH soft decision and soft decision weighting unit 313 ;
  • the HS-DPCCH despreading unit 304 performs multipath despreading on the input beam signal according to the multipath delay information and the spreading code of the HS-DPCCH channel (the product of the HS-DPCCH channel code and the scrambling code), and applies the obtained HS-DPCCH despread result is output to RAKE combining unit 310 of HS-DPCCH channel;
  • the RAKE combining unit 310 of the HS-DPCCH is used to combine the input channel estimation result and the noise power estimation result to perform de-channel modulation and RAKE combining on the HS-DPCCH despreading result, and output the combined result to the HS-DPCCH decision and judgment.
  • the hard decision unit 312 of the HS-DPCCH performs hard decision on the RAKE combination result of the HS-DPCCH, and obtains the sent ACK / NACK bit decision result and CQI information to a downlink channel processing unit in the CDMA system, which is used to control the downlink HS. -DSCH channel and HS-SCCH channel information transmission;
  • the decision and decision weighting unit 315 of the HS-DPCCH performs decision and weighting by the RAKE combined result and the channel estimation result and the noise power estimation result of the HS-DPCCH, and outputs the obtained weighted result to the signal regeneration unit 316;
  • the DPDCH soft decision and soft decision weighting unit 313 obtains the soft decision of each symbol from the RAKE of the DPDCH, the union result and the channel estimation result, and the noise power estimation result, and performs soft decision weighting, and then weights the soft decision of the DPDCH channel. The weight is output to the signal regeneration unit 316;
  • the DPCCH soft decision and soft decision weighting unit 314 obtains the soft decision for each symbol from the RAKE combined result of DPCCH, the channel estimation result, and the noise power estimation result, and performs soft decision weighting, and then outputs the weighted weight of the DPCCH channel soft decision.
  • the signal regeneration unit 316 To the signal regeneration unit 316;
  • the weights of the soft decision weights of the DPDCH channel, the weights of the soft decision weights of the DPCCH channel, the weights of the ACK / NACK decision weights of the HS-DPCCH channel, and the weights of the soft decision weight of CQI can take different values.
  • the noise power of each channel must first be calculated from the estimated noise power of DPCCH channel;
  • the signal regeneration unit 316 obtains the DPDCH channel symbol-level regeneration of the user from the DPDCH channel soft decision weighted result, the DPCCH channel soft decision weighted result, the HS-DPCCH channel decision weighted result, the user's path delay information, and the channel estimation result.
  • Three symbol correction sub-units which are respectively output to the user signal processing unit of the same user in the second-stage PIC structure.
  • the symbol-level reproduced signal of the DPDCH channel is a result of symbol-level estimation of the signal of the DPDCH channel in each path of the user in each beam; the symbol-level reproduced signal of the DPCCH channel is in each relevant beam.
  • the symbol-level reproduced signal of the HS-DPCCH channel is the symbol of the signal of the signal of the HS-DPCCH channel in each path of the user in each beam
  • the result of the level estimation is that the number of regenerated signals of each channel symbol level is the sum of the number of all path signals of the user in all relevant beams.
  • the chip-level reproduction signal is a chip-level estimate of the sum of all user-path signals in each beam, and the number of related beams is the number of chip-level reproduction signals.
  • the related beam is the set of beams corresponding to the beam number of each path in the multipath delay information.
  • FIG. 4 is a schematic diagram of an interference cancellation processing unit in a first-stage PIC structure in an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • the interference cancellation processing unit-421 in the first-level PIC structure in the uplink dedicated physical channel multi-user receiving device of the present invention includes an intra-beam signal summing unit 422, a shaping and matching filtering unit 423, and an intra-beam
  • the residual calculation unit 424 has three parts.
  • the chip-level regeneration signals output by all users from the user signal processing unit 301 enter the first-stage PIC structure interference cancellation unit 422 in the intra-beam signal summing unit 422, and the intra-beam signal summing unit 422 performs The chip-level reproduced signals are summed, and then the summation result of each beam is output to the shaping and matching filtering unit 423; the shaping and matching filtering unit 423 performs shaping filtering and matching filtering on the inputted summation signals of each beam, respectively.
  • the shaping filter is the same as the shaping filter used by the modulation part of the uplink dedicated physical channel.
  • the matched filter is the matched filter used by the receiving end of the uplink dedicated physical channel, and then the shaping and matching filtering unit 423 filters the obtained filtering results of each beam.
  • Output to the intra-beam residual calculation unit 424, and all beam signals also enter the intra-beam residual calculation unit 424; the intra-beam residual calculation unit 424 subtracts the filtering result of the summation signal of the beam from a certain beam signal to obtain the Residual signal of the beam, and then the intra-beam residual calculation unit 424 Residual signal parallel output to the next stage PIC structure as the output signal of the first stage PIC structure.
  • the user signal processing unit of user i selects the corresponding beam from the residual signals of all beams according to the beam number included in the multipath delay information of the user
  • the residual signals of the multiple beams are processed accordingly.
  • the spreading factor obtained by TFCI decoding can be used only by the current-stage PIC structure, or it can be transmitted to the subsequent-stage PIC structure for use by the DPDCH despreading unit in the subsequent PIC structure.
  • the structure of the middle-level PIC is exactly the same.
  • the second-level PIC structure is taken as an example to explain the function and processing of the middle-level PIC structure.
  • the second-level PIC structure 202 is composed of K user signal processing units and an interference cancellation unit.
  • FIG. 5 is a schematic diagram of a user signal processing unit in an intermediate PIC structure of an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • the residual signal of each beam obtained by the first-stage PIC structure 201, the symbol-level reproduced signal of each user, and the multipath delay information of each user enter the second-stage PIC structure 202.
  • each user corresponds to a user signal processing unit 501.
  • Each user signal processing unit 501 has completely the same function.
  • the interference cancellation unit in the second-stage PIC structure has the same function and structure as the interference cancellation unit 421 in the first-stage PIC structure.
  • the interference cancellation unit in the intermediate-level PIC structure at other levels also has exactly the same function and structure as the interference cancellation unit 421 in the first-level PIC structure.
  • the input signals of each user signal processing unit 501 are: the residual signal of the user's beam, the user's symbol-level reproduction signal, and the user's multipath delay information. .
  • the residual signal of the beam where the user is located is extracted from the residual signals of all beams according to the beam number information in the multipath delay information of the user, and the extraction process may be performed in the user signal processing unit 501.
  • each user signal processing unit 501 the user's multipath delay information and the beam residual signal of the user are simultaneously sent to a DPDCH despreading unit 502, a DPCCH despreading unit 503, and an HS-DPCCH despreading unit 505, and
  • the output DPDCH spreading factor of the first-stage PIC structure is sent to the DPDCH despreading unit 502, and the user's symbol-level regeneration signal is sent to the symbol correction unit 506,
  • the sign correction unit 507 and the sign correction unit 508, and the user's multipath delay information are sent to the signal reproduction unit 516.
  • the DPDCH despreading unit 502 performs DPDCH despreading on the residual signal of the beam according to the user multipath delay information and the DPDCH spreading factor, and then outputs the DPDCH despreading result to the symbol correction unit 506 of the DPDCH channel, and the symbol correction unit 506 performs The DPDCH despread result is subjected to symbol correction, and then the corrected result is output to the RAKE combining unit 509 of DPDCH, and the RPD combining unit 509 of DPDCH performs RAKE combining on the modified result, and then outputs the combined result to DPDCH soft decision and soft decision Weighting unit 513, DPDCH soft decision and soft decision weighting unit 513 performs soft decision and soft decision weighting on the combined result, and outputs the soft decision weighting result to the signal regeneration unit 516;
  • the DPCCH despreading unit 503 performs DPCCH despreading on the residual signal of the beam according to the user multipath delay information, and then outputs the DPCCH despreading result to the symbol correction unit 507 of the DPCCH channel, and the symbol correction unit 507 performs the DPCCH despreading result.
  • the DPCCH soft decision and soft decision weighting unit 514 performs soft decision and soft decision weighting on the combined result, and outputs the soft decision weighted result to the signal regeneration unit 516;
  • the HS-DPCCH despreading unit 505 performs HS-DPCCH despreading on the residual signal of the beam according to the user's multipath delay information, and then outputs the HS-DPCCH despreading result to the symbol correction unit 508 of the HS-DPCCH channel for symbol correction.
  • the unit 508 performs symbol correction on the despread result of the HS-DPCCH, and then outputs the corrected result to the RAKE combining unit 512 of the HS-DPCCH, and the RAKE combining unit 512 of the HS-DPCCH performs RAKE combining on the modified results, and then merges Results are output to HS-DPCCH soft decision and soft Decision weighting unit 515, HS-DPCCH soft decision and soft decision weighting unit 515 performs soft decision and soft decision weighting on the combined result, and outputs the soft decision weighting result to the signal regeneration unit 516;
  • the channel estimation unit 504 obtains the channel estimation result of each path from the input symbol correction result of each path of the DPCCH channel, and outputs it.
  • the signal reproduction unit 516 obtains a symbol-level reproduction signal and a chip-level reproduction signal of the user from all input signals, and outputs the symbol-level reproduction signal to a user signal processing unit of the same user in the third-level PIC structure, and outputs the chip-level signal.
  • the reproduced signal is output to the interference cancellation unit 521 in the second-stage PIC structure.
  • DPDCH RAKE combining unit 509 DPDCH RAKE combining unit 510, and HS-DPCCH RAKE combining unit 512 and DPDCH RAKE combining unit 308, DPCCH RAKE in first-stage PIC structure 201, respectively
  • the merging unit 309 is the same as the RAKE merging unit 310 of the HS-DPCCH; the DPDCH soft and soft decision weighting unit 513, the DPCCH soft and soft decision weighting unit 514, and the HS-DPCCH and soft decision weighting unit 515 are respectively the same as the first-stage PIC DPDCH soft decision and soft decision weighting unit 313, DPCCH soft decision and soft decision weighting in structure 201.
  • Unit 314 and HS-DPCCH decision are the same as soft decision weighting unit 315; signal regeneration unit 516 and signals in the first-stage PIC structure 201
  • the reproduction unit 316 is the same.
  • DPDCH channels, DPCCH, and HS-DPCCH channel decision results may have different weights.
  • the weighted weight of the DPDCH at this level is greater than the weighted weight of the DPDCH at the previous level.
  • the corresponding weights of the DPCCH channel and the HS-DPCCH channel are also the same.
  • the symbol correction unit 506 of the DPDCH channel mainly performs symbol-level correction on the despreading result of the input DPDCH channel, including: The despreading result and the DPDCH channel symbol-level regeneration signal of the diameter in the beam from the previous stage are comparable.
  • the symbol correction unit 507 of the DPCCH channel mainly performs symbol-level correction on the despreading result of the input DPCCH channel, and includes: despreading the result of a certain path of the DPCCH channel in a beam and the despreading result from the beam in the previous stage.
  • the DPCCH channel symbol-level reproduction signals are added together.
  • the symbol correction unit 508 of the HS-DPCCH channel mainly performs symbol-level correction on the despreading result of the input HS-DPCCH channel, including: despreading the result of a certain path of the HS-DPCCH channel in a beam from the previous level
  • the HS-DPCCH channel symbol-level regeneration signals of the path within the beam are added.
  • the user signal processing unit 501 optionally includes a spreading factor calculation unit 622. If the user signal processing unit 501 does not include the spreading factor calculation unit 622, the DPDCH despreading unit uses the DPDCH spreading factor obtained by the TFCI decoding in the first-stage PIC structure 201. If the user signal processing unit 501 includes the spreading factor The factor calculation unit 622, then the despreading unit of the DPDCH uses the DPDCH spreading factor obtained by the TFCI decoding in the spreading factor calculation unit 622 of the current PIC. Spreading factor calculation unit for the second-level PIC. Element 622 performs TFCI decoding on the RAKE combined result of the DPCCH at this level to obtain the spreading factor of DPDCH.
  • the signal-to-noise ratio of the RAKE merged result of the DPCCH in the previous-stage PIC structure should be higher than the signal-to-noise ratio of the RAKE merged result of the DPCCH in the previous-stage PIC structure.
  • the bit error rate 'of the spreading factor obtained by the code will be smaller. Therefore, it is more advantageous for user detection to use the spreading factor calculation unit 622 at this stage and use the spreading factor obtained by the unit to perform DPDCH despreading.
  • TFCI decoding not only increases complexity but also increases latency. It can be determined whether the spreading factor calculation unit 622 is used in the PIC structure of this level as required.
  • the interference cancellation unit in the second-stage PIC structure completes the interference in the first-stage PIC structure
  • the cancellation unit 421 has exactly the same function, that is, the chip-level reproduction signals of all users and all beam signals are used to obtain residual signals of all beams through interference cancellation.
  • the user signal processing unit of user i selects the residual signal of the corresponding beam from the residual signals of all beams according to the beam number contained in the multipath delay information of the user, and then selects the selected several residual signals. The residual signals of the beams are processed accordingly.
  • the RAKE combining unit 509, 510, 512 of the three channels in the second-stage PIC structure and the decision and decision weighting units 513, 514, 515 of the three channels all need to know the noise power of the DPCCH channel of this stage.
  • the noise power of the DPCCH channel can be provided by the noise power estimation unit in the most recent PIC structure, or a noise power estimation unit can be added to the PIC structure of the current stage. Correction results: The DPCCH channel noise power of each beam of the user is estimated.
  • the number of intermediate-stage PIC structures can be adjusted as needed, and the functions of the intermediate-stage PIC structures are exactly the same.
  • FIG. 7 is a schematic diagram of a user signal processing unit in a last-stage PIC structure in an uplink dedicated physical channel multi-user receiving device according to an embodiment of the present invention.
  • the last-stage PIC structure 203 is composed of only K user signal processing units 701, where:
  • the DPDCH despreading unit 702 performs multipath despreading on the input residual signal according to the input multipath delay information and the spreading factor of the DPDCH channel, and outputs the obtained DPDCH multipath.
  • the despread result is output to the DPDCH channel.
  • the DPCCH despreading unit 703 performs multipath despreading on the input residual signal according to the spreading code of the DPCCH channel and the input multipath delay information, and outputs the obtained DPCCH multipath despread result to the DPCCH channel.
  • Symbol correction unit 705
  • the DPDCH channel symbol correction unit 704 is configured to perform symbol correction on the despread result of the input DPDCH channel in combination with the symbol-level regeneration signal of the input DPDCH channel, and output the symbol correction result to the DPDCH AKE combining unit 707;
  • the symbol correction unit 705 of the DPCCH channel is configured to perform symbol correction on the despread result of the input DPCCH channel in combination with the symbol-level reproduced signal of the input DPCCH channel, and output the symbol correction result to the RAKE combining unit 708 and channel estimation unit of the DPCCH. 706;
  • a channel estimation unit 706 obtains channel estimation results for each path from the symbol correction results of the input DPCCH channel, and separately obtains the obtained DPDCH channel and DPCCH channel estimation result.
  • the RAKE combining unit 707 of the DPDCH channel and the RAKE combining unit 708 of the DPCCH channel are used to combine the input channel estimation result and the noise power estimation result to dechannel modulate the input DPDCH channel symbol correction result and the DPCCH channel symbol correction result, respectively.
  • the RAKE combining unit 707 of the DPDCH channel outputs the obtained RAKE combining result of the DPDCH channel to the channel decoding unit 709, and the RAKE combining unit 708 of the DPCCH channel outputs the obtained RAKE combining result of the DPCCH channel to the hard decision unit 710 ;
  • a channel decoding unit 709 configured to perform channel decoding on the RAKE combined result of the input DPDCH channel to obtain the information bits sent by the DPDCH channel;
  • the hard decision unit 710 is configured to perform a hard decision on the RAKE combining result of the input DPCCH channel, to obtain information bits sent by the DPCCH channel.
  • Each user signal processing unit 701 optionally includes a spreading factor calculation unit 822.
  • the input of the user signal processing unit 701 is: the residual signal of the user's beam obtained at the previous stage, the symbol-level regeneration signal of each channel of the user, the DPDCH spreading factor, the noise power estimation, and the multipath delay information of the user.
  • the residual signal of the beam where the user is located is extracted from the residual signals of all beams according to the beam number information in the multipath delay information of the user, and the extraction process may be performed in the user signal processing unit 701. Multipath delay for users
  • the information and the residual signal of the input beam are sent to a DPDCH despreading unit 702 and a DPCCH despreading unit 703, respectively.
  • the DPDCH despreading unit 702 at this stage needs to obtain the spreading factor of the DPDCH. If the user signal processing unit 701 includes a spreading factor calculation unit 822, the DPDCH spreading factor is obtained by the spreading factor calculation unit 822 of the PIC structure of this level. If the user signal processing unit 701 does not include the spreading factor calculation unit 822, Then the DPDCH spreading factor is obtained by TFCI decoding in the upper-level PIC structure. As shown in FIG. 8, the structure of the spreading factor calculation unit 822 of the HC at this stage may be completely the same as that of the spreading factor calculation unit 622 of the second-stage PIC structure.
  • the RAKE combining unit of the DPDCH channel and the DPCCH channel in the PIC structure of this stage needs to know the noise power estimation of the DPCCH channel of this stage.
  • the noise power estimation of the DPCCH channel at this level may be provided by the noise power estimation unit in the PIC structure at the upper level, or a noise power estimation unit may be added to the PIC structure at the current level.
  • the symbol correction result estimates the DPCCH channel noise power of each user beam.
  • the HS-DPCCH channel in a multi-user receiving device applying the uplink dedicated physical channel of the present invention includes an HS-DPCCH despreading unit, a HS-DPCCH RAKE combining unit, and a HS-DPCCH hard decision
  • the processing of the unit and the HS-DPCCH decision and decision weighting unit are as follows:
  • the HS-DPCCH channel may not be processed by despreading, RAKE combining, and hard decision.
  • the despreading unit, RAKE combining unit, and hard decision unit of the HS-DPCCH do not perform any processing and do not produce any output.
  • the decision and decision weighting unit of HS-DPCCH uses DTX as each transmission symbol of the no-signal time slot, and outputs each DTX symbol to the signal regeneration unit, that is: in the frame where there is no signal in the HS-DPCCH signal, the HS-DPCCH channel Do not participate in signal regeneration.
  • the HS-DPCCH despreading unit despreads the time slot; the RAKE combining unit of the HS-DPCCH performs RAKE combining on the despread result of the time slot; HS-DPCCH
  • the hard decision unit performs a hard decision on the time slot, and feeds back the decision result to the downlink channel processing unit for downlink transmission control.
  • the decision and decision weighting unit of the HS-DPCCH performs decision and decision weighting on the RAKE combined result of the slot, and outputs the decision weighting result to the signal regeneration unit for signal regeneration of the HS-DPCCH channel.
  • the HS-DPCCH hard decision unit specifically performs the following functions:
  • the accumulated results of the slots are CQI decoded to obtain 5 CQI bits. These 5 CQI bits are output to a downlink channel processing unit, and control of HSDPA data packet transmission is performed. There are specific methods for the validity decision of the CQI information and the decoding of the CQI, which will not be repeated here.
  • the HS-DPCCH decision and decision weighting unit performs the following functions:
  • the weighted weights of the first time slot and the weighted weights of the second and third time slots may be different.
  • the weight value is taken in the interval [0,1].
  • the number of HC structure levels of the uplink dedicated physical channel multi-user receiving device It can be determined according to requirements, and only the first and last PIC structures can be used, and the intermediate PIC structure can be omitted, and more can be used. PIC structure.
  • the present invention has been described by taking a WCDMA system as an example.
  • the application of the present invention is not limited to the WCDMA system, but can also be applied to the code division multiple access. 2000 (CDMA2000), Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system and other similar CDMA channel structures.
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

一种上行专用物理信道多用户接收装置 技术领域
本发明涉及移动通信技术领域,特别是涉及一种码分多址( CDMA ) 系统中的上行专用物理信道多用户接收装置。 发明背景
CDMA系统因其高容量、 高服务质量以及保密性好等优点, 已成为 第三代移动通信的发展方向。 由于 CDMA 系统主要依靠特征码来区分 用户,因此,在移动通信环境中将导致多址干扰的问题,从而限制 CDMA 系统的上行容量、 覆盖和性能的提高。 瑞克 (RAKE )接收技术使单用 户接收机可以利用多径分量产生多径分集增益, 但却无法消除多址干扰 对用户信号检测的影响, 在用户数目增多和远近效应的情况下, 单用户 接收机的检测性能将会显著降低。
为了克服多址干扰的影响,提高 CDMA系统的上行容量,在现有技 术中, 存在以下的解决方法:
一、 利用多用户检测技术。
多用户检测技术主要是通过多个用户的信息 , 对多个用户信号进行 联合检测, 从而尽可能地减小多址干扰对接收机性能的影响, 并提高系 统的容量。 多用户检测技术中的并行干扰抵消方法是将期望用户的信号 视为有用信号, 将其他用户的信号视为干扰信号; 从接收信号中并行地 为每个用户消除所有其他用户的信号干扰, 得到期望用户的信号, 然后 对期望用户的信号进行检测, 从而提高系统的性能。 在并行干扰对消方 法中, 双层加权并行干扰对消方法可以较大幅度地提高传统并行干扰对 消方法的性能。 该方法一方面采用基于贝叶斯准则的软判决方法, 使用 户每个符号的判决代价最小; 另一方面采用部分干扰对消, 弥补统计意 义上对用户信号估计的偏差。
二、 利用智能天线技术。
智能天线技术主要是对所有用户信号进行空间分隔, 来波方向在某 一个波束内的用户信号被不同程度地增强, 而不在该波束内的用户信号 受到很强地抑制, 从而使每个波束内用户信号的检测变得容易, 提高
CDMA系统的上行容量。
然而,无论是多用户检测技术或者是智能天线技术,对 CDMA系统 上行的容量、 覆盖和性能的提高都非常有限, 在实际业务中并不能达到 理想的效果。
目前, 为提高 CDMA 系统的下行容量, 存在一种高速数据包接入 ( HSDPA )技术。
HSDPA技术是一种提高 CDMA系统下行容量的增强型技术。例如, 在宽带码分多址( WCDMA )系统中 , HSDPA通过高速下行共享信道( HS - DSCH )发送高速数据包给用户设备 ( UE ), 并通过下行高速共享控 制信道( HS - SCCH )实现 HSDPA下行数据在 BS和 UE之间发送和接 收的协调。 在高速数据业务下, 分配给用户的上行专用物理信道除了包 含专用物理数据信道(DPDCH )和专用物理控制信道(DPCCH )之夕卜, 还包含高速专用物理控制信道 ( HS - DPCCH )。 HS - DPCCH信道专门 承载高速数据业务下 UE的反馈信息, 即确认 /不确认 ( ACK/NACK )信 息和信道质量指示(CQI )信息。 UE接收到数据包以后, 对数据包进行 译码, 据译码结果和下行信道质量测试结果通过上行 HS - DPCCH信 道发送 ACK/NACK信息和 CQI信息。 当数据包译码正确时, UE发送 ACK信息给 BS, 使 BS接着发送下一个数据包。 如果数据包译码错误, UE发送 NACK信息至该 BS, 使 BS重传该数据包。 信道质量信息用 CQI比特, CQI比特经过编码后发输出至 BS, BS通过译码得到 CQI比 特, 并用 CQI比特进行自适应调制和编码(AMC )控制, 调整下行 HS - DSCH的编码调制方式。 当 CQI表明下行信道质量较好时, BS可以 采用相应的编码调制方式增大数据发送速率, 反之则通过更改编码调制 方式减少数据发送速率。 当 BS给 UE发送了数据包以后, 会按照一定 的时序关系, 在相应的上行时隙接收该 UE反馈的 ACK/NACK信息和 CQI信息。
在现有技术中, 目前没有任何利用 HSDPA技术来提高 CDMA系统 上行容量的方法, 也不存在将多用户检测技术、 智能天线技术以及 HSDPA技术结合在一起来提高 CDMA系统上行容量的方法, 因此, 极 大地限制了 CDMA系统上行的容量、 覆盖和性能的提高。 发明内容
本发明的主要目的在于提供一种上行专用物理信道多用户接收装 置, 通过将多用户检测技术、 智能天线技术以及 HSDPA技术结合在一 起, 大大提高 CDMA系统上行的容量、 覆盖和性能。
为达到上述目的, 本发明的技术方案是这样实现的:
一种上行专用物理信道多用户接收装置, 该装置包括: 第一级并行 干扰对消 (PIC )结构和最后一级 PIC结构, 其中, 笫一级 PIC结构包 括 K个用户信号处理单元和一个干扰对消单元, 其中 K为用户的个数, 每个用户对应一个用户信号处理单元,最后一级 PIC结构包括 K个用户 信号处理单元, 每个用户对应一个用户信号处理单元, 其特征在于, 所述第一级 PIC结构中的每一个用户信号处理单元 , 接收来自外部 的全部波束信号和对应用户的用户多径时延信息, 并根据接收到的全部 波束信号和用户多径时延信息, 对专用物理数据信道(DPDCH )、 专用 物理控制信道(DPCCH ) 以及高速专用物理控制信道(HS - DPCCH ) 进行解扩、 RAKE合并及判决与判决加权处理,信号再生处理, 以及 HS' - DPCCH硬判决处理, 得到 HS― DPCCH反馈信息, 符号级再生信号 和码片级再生信号, 以及, 根据 DPCCH的解扩结果进行功率控制处理 得到功率控制指令; 每一个用户信号处理单元将所得的功率控制指令经 下行链路输出至对应用户的发送端, 将 HS - DPCCH反馈信息输出至码 分多址系统中的下行信道处理单元, 将符号级再生信号输出至下一级 PIC结构, 以及将码片级再生信号输出至笫一级 PIC结构中的干扰对消 单元;
第一级 PIC结构中的干扰对消单元, 接收来自外部的全部波束信号 和来自第一级 PIC结构中各用户信号处理单元的码片级再生信号, 并根 据所接收到的全部波束信号和码片级再生信号进行波束内信号求和、 成 型匹配滤波以及波束内残差计算处理, 得到全部波束残差信号, 然后将 所得的全部波束残差信号输出至下一级 PIC结构;
所述最后一级 PIC结构中的每一个用户信号处理单元, 接收来自上 一级 PIC结构的全部波束残差信号和对应用户的符号级再生信号, 以及 来自外部的对应用户的用户多径时延信息, 根据接收到的全部波束残差 信号、 符号级再生信号和用户的多径时延信息进行 DPDCH信道及 DPCCH信道的解扩、 符号修正、 RAKE合并以及译码或硬判决处理, 得到 DPDCH信道发送的信息比特和 DPCCH信道发送的信息比特。
该装置进一步包括:不少于一级的中间级 PIC结构,所述中间级 PIC 结构位于笫一级 PIC结构和最后一级 PIC结构之间; 所述中间级 PIC结 构包括 K个用户信号处理单元和一个干扰对消单元,每个用户对应一个 中间级 PIC结构内的用户信号处理单元;
所述中间级 PIC结构中的每一个用户信号处理单元, 接收来自外部 的对应用户的用户多径时延信息, 以及来自上一級 PIC结构的全部波束 残差信号和对应用户的符号级再生信号, 并根据接收到的用户多径时延 信息、全部波束残差信号和符号级再生信号进行 DPDCH信道、 DPCCH 信道以及 HS - DPCCH信道的解扩、 符号修正、 RAKE合并及判决与判 决加权处理, 以及信号再生处理, 得到符号级再生信号和码片级再生信 号, 然后将所得的符号级再生信号输出至下一级 PIC结构, 将码片级再 生信号输出至本级 PIC结构中的干扰对消单元;
中间级 PIC结构中的干扰对消单元, 接收来自外部的全部波束信号 和来自本级 PIC结构中各用户信号处理单元的码片级再生信号 , 并根据 所接收到的全部波束信号和码片级再生信号进行波束内信号求和、 成型 匹配滤波以及波束内残差计算处理, 得到全部波束残差信号, 然后将所 得的全部波束残差信号输出至下一级 PIC结构。
从以上的技术方案可以看出 , 本发明将多波束下双层加权并行干扰 对消方法应用于高速数据业务下的上行专用物理信道, 通过将智能天线 技术、 HSDPA技术和多用户检测技术融合在一起, 而实现了一种在 CDMA系统中的上行专用物理信道多用户接收装置。该装置可以同时获' 得智能天线系统的增益和多用户检测的增益。 在上行, 首先通过智能天 线技术对输入的多天线阵元信号进行波束形成, 对所有用户信号进行空 间分隔, 使每个波束内的用户信号受到的其他波束内用户信号的干扰在 波束形成中被抑制, 然后在每个波束内进行多用户检测, 进一步抑制同' 一波束内不同用户之间的多址干扰, 大幅度地提高上行信号检测性能。 因此, 本发明极大地提高了 CDMA系统上行的容量、 覆盖和性能。 附图简要说明
图 1为本发明中多波束下双层加权并行干扰对消方法流程示意图。 图 2 为本发明一实施例的上行专用物理信道多用户接收装置示意 图。
图 3为本发明一实施例的上行专用物理信道多用户接收装置中第一 级 PIC结构内的任意一个用户信号处理单元示意图。
图 4为本发明一实施例的上行专用物理信道多用户接收装置中第一 级 PIC结构内的干扰对消处理单元示意图。
图 5为本发明一实施例的上行专用物理信道多用户接收装置中间级 PIC结构内的用户信号处理单元示意图。
图 6为本发明一实施例的上行专用物理信道多用户接收装置中间级 PIC结构内的扩频因子计算单元示意图。
图 7为本发明一实施例的上行专用物理信道多用户接收装置最后一 级 PIC结构内的用户信号处理单元示意图。
图 8为本发明一实施例的上行专用物理信道多用户接收装置最后一 级 PIC结构内的扩频因子计算单元示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点表达得更加清楚明白, 下面结 合附图及具体实施例对本发明再作进一步详细的说明。
基于现有技术中仅利用多用户检测技术或者智能天线技术提高 CDMA上行容量非常有限的缺点, 以及存在提高 CDMA系统下行容量 的 HSDPA技术, 本发明将智能天线技术、 HSDPA技术和多用户检测技 术融合在一起, 也就是说, 首先将多用户检测技术和智能天线技术结合 在一起,实现多波束下双层加权并行干扰对消方法,然后,再结合 HSDPA 技术, 即将多波束下双层加权并行干扰对消方法应用于高速数据业务下 的上行专用物理信道, 实现了一种 CDMA 系统中的上行专用物理信道 的多用户接收装置, 从而大大提高 CDMA 系统上行的容量、 覆盖和性 本发明将多用户检测技术和智能天线技术结合在一起可以得到多波 束下双层加权并行干扰对消方法。
图 1 为本发明中多波束下双层加权并行干扰对消方法的流程示意 图。 参见图 1 , 本发明所实现的多波束下双层加权并行干扰对消方法的 具体处理过程包括如下步骤:
步驟 101: 接收天线阵元信号。
这里, 智能天线系统有若干个天线阵元, 其中天线阵元信号是各天 线阵元接收到的多径衰落信号。
步骤 102: 根据接收到的天线阵元信号形成各用户的波束信号。 这里, 所形成的波束信号的个数根据接收到的天线阵元信号中多径 的分布情况确定。
步骤 103: 搜索各用户的波束信号得到各用户的多径时延信息。 这里, 每个用户的多径时延信息包括该用户各径的延时和各径所在 的波束号。
步驟 104: 对各用户的单个波束信号和各用户的多径时延信息进行 第一级并行干扰对消处理, 获得各用户的第一级波束信号。
这里, 所述第一级波束信号中包括根据全部波束信号对各用户的单 个波束信号和各用户的多径时延信息进行多址干扰的估计和干扰对消 , 其中全部波束信号由各用户的单个波束信号中所有不同的波束信号组 成。
步骤 105: 对获得的各用户的第一级波束信号和各用户的多径时延 信息进行第二级并行干扰对消处理, 获得各用户的第二级波束信号。
这里, 所述第二级并行干扰对消处理的过程与步骤 104中所述的第 一级并行干扰对消处理的过程相同。
步骤 106: 对获得的各用户的第二级波束信号和各用户的多径时延 信息进行最后一级并行干扰对消处理, 得到各用户的软输出信号。
这里, 所述的最后一级并行干扰对消处理包括: RAKE接收机根据 多径搜索得到的多径时延信息, 对输入的用户的波束信号进行解扩解 扰, 获得各径的解扩解扰结果; 然后对各径的解扩解扰结果进行信道估 计, 获得各径的信道估计结果; 最后, 由各径解扩解扰结果和信道估计 结果进行波束内多径合并和波束之间的多径合并, 得到用户总的多径合 并结果, 该多径合并结果即为所述的用户的软输出信号。
步骤 107: 对所得的用户的软输出信号进行译码, 分别获得各用户 发送的比特序列。
在图 1所示过程中, 对各用户的单个波束信号和各用户的多径时延 信息进行并行干扰对消处理时采用了三级并行干扰对消结构, 在实际的 业务实现中, 也可以根据系统实际容量、 覆盖和性能等需要, 而采用两 级或三级以上的并行干扰对消结构。
本发明将多波束下双层加权并行干扰对消方法应用于高速数据业务 下的上行专用物理信道,得到将智能天线技术、 HSDPA技术和多用户检 测技术融合在一起的 CDMA 系统中的上行专用物理信道多用户接收装 置, 该装置至少由第一级 PIC结构和最后一级 PIC结构组成。
图 2 为本发明一实施例的上行专用物理信道多用户接收装置示意 图。 如图 2所示, 在本实施例中, 上行专用物理信道多用户接收装置由 第一级 PIC结构 201、 中间各级 HC结构 202和最后一级 PIC结构 203 所组成。
参见图 2, 所接收到的所有天线阵元信号经过解调和匹配滤波后进 入波束形成与多径搜索单元 200, 形成各用户的若干个波束信号和各用 户的多径时延信息, 其中每个用户的波束信号的个数由该用户多径衰落 信号中多径的分布情况确定, 而用户的多径时延信息由径所在波束号和 径的时延构成。 然后, 各用户的波束信号被送入第一级 PIC结构 201中 各用户的用户信号处理单元。 由所有用户的波束信号中不同信号构成的 全部波束信号被送入第一级 PIC结构 201和中间各级 PIC结构 202, 用 于第一级 PIC结构 201和中间各级 PIC结构 202的干扰对消。各用户的 多径时延信息被送入第一级 PIC结构 201、 中间各级 PIC结构 202和最 后一级 PIC结构 203。 在输入各用户的波束信号所构成的全部波束信号 时, 可以将全部波束信号送入第一级 PIC结构 201 , 然后在第一级 PIC 结构 201内, 根据用户的多径搜索信息中的波束号从全部波束信号内选 出相应用户的波束信号, 并送入该用户对应的用户信号处理单元进行处 理。也可以直接将全部波束信号通过 K个并行分支送入第一级 HC结构 201中各用户对应的 K个用户信号处理单元, 其中每个用户对应于一个 用户信号处理单元。 在每个用户信号处理单元中, 根据相应用户的多径 时延信息中的波束号从全部波束信号中选取相应的波束信号, 在用户信 号处理单元中对被选取的若干波束信号进行相应的处理。
参见图 2, 波束形成与多径搜索单元 200由智能天线技术的实现结 构确定。 其中可以采用固定波束形成方式, 然后在每个波束内进行多径 搜索, 得到期望用户的多径时延信息。 也可以采用其他方式完成每个用 户的波束形成和多径搜索。
图 3为本发明一实施例的上行专用物理信道多用户接收装置中第一 级 PIC结构内的任意一个用户信号处理单元示意图。 图 4为本发明一实 施例的上行专用物理信道多用户接收装置中第一级 PIC结构内的干扰对 消处理单元示意图。 第一级 PIC结构 201由 K个用户信号处理单元 301 和一个干扰对消单元 421构成, 并且每个用户对应一个用户信号处理单 元 301。 如图 3所示, 进入第一级 PIC结构 201的各用户的波束信号以 并行方式进入对应用户的用户信号处理单元 301。 进入第一级 PIC结构 201 的各用户的多径时延信息也并行地分别进入对应用户的用户信号处 理单元 301。 每一个用户信号处理单元 301的结构相同, 并且完成相同 的功能。
第一级 PIC结构内的每一个用户信号处理单元 301, 根据输入的用 户的各波束信号和该用户的多径时延信息 , 经过一系列处理得到各用户 的功率控制指令、 符号级再生信号、 码片级再生信号和 HS - DPCCH的 反馈信息; 然后, 用户信号处理单元 301将用户的功率控制指令经下行 链路反馈给发送端的 UE,使得 UE可按照功率控制指令调整上行发射功 率;用户信号处理单元 301还将用户的符号级再生信号输出至下一级 PIC 结构中同一用户对应的用户信号处理单元; 用户信号处理单元 301还将 HS - DPCCH 的反馈信息输出至下行信道处理单元, 用于控制下行 HS-DSCH信道和 HS-SCCH信道的信息发送;用户信号处理单元 301还 将用户的码片级再生信号输出至第一级 PIC结构内的干扰对消单元 421。
所有用户的码片级再生信号和全部波束信号输入至第一级 PIC结构 内的干扰对消单元 421后, 第一级 PIC结构内的干扰对消单元 421对输 入的信号进行处理得到全部波束信号的残差信号, 然后将所得的全部波 束信号的残差信号作为第一级 PIC结构 201的输出信号, 输出至下一级 PIC结构。
参见图 3 , 笫一级 PIC结构内的每一个用户信号处理单元 301包括 16个单元,进入每一个用户信号处理单元 301的波束信号和用户的多径 时延信息分别进入用户信号处理单元 301 中的 DPDCH解扩单元 302、 DPCCH解扩单元 303和 HS - DPCCH解扩单元 304,并且,用户的多径 时延信息还进入用户信号处理单元 301中的信号再生单元 316, 各单元 具体实现的功能为:
DPCCH解扩单元 303 , 根据多径时延信息和 DPCCH信道的扩频码 ( DPCCH信道码和扰码之积)对输入的各波束信号进行多径解扩, 将 每个输入波束信号中包含的用户的各径信号解扩出来, 并将所有输入波 束信号的 DPCCH各径解扩结果输出至信道估计单元 306、 功率控制单 元 305、 噪声功率估计单元 307和 DPCCH信道的 RAKE合并单元 309; 信道估计单元 306, 由 DPCCH各径的解扩结果得到各径的信道估 计结果, 并将得到的信道估计结果同时输出至 DPDCH信道的 RAKE合 并单元 308、 DPCCH信道的 RAKE合并单元 309、 HS - DPCCH信道的 RAKE合并单元 310、 DPDCH软判决与软判决加权 313、 DPCCH软判 决与软判决加权单元 314、 HS - DPCCH判决与判决加权单元 315和信. 号再生单元 316;
功率控制单元 305, 由输入的 DPCCH信道的各径解扩结果得到功 率控制指令, 将所得的功率控制指令作为第一级 PIC结构 201的一个输 出, 反馈给用户的发送端;
噪声功率估计单元 307, 由输入的 DPCCH信道的各径解扩结果得 到各波束 DPCCH信道的噪声功率的估计结果, 然后将各波束 DPCCH 信道噪声功率的估计结果同时输出至 DPDCH软判决与软判决加权单元 313、 DPCCH软判决与软判决加权单元 314、 HS - DPCCH判决与判决 加权单元 315、 DPDCH RAKE合并单元 308、 DPCCH RAKE合并单元 309和 HS - DPCCH RAKE合并单元 310;
DPCCH的 RAKE合并单元 309, 结合输入的信道估计结果和噪声 功率估计结果对输入的 DPCCH解扩结果进行去信道调制和 RAKE合
314和 TFCI译码单元 311; 传输格式组合指示(TFCI )译码单元 311 , 对 DPCCH的 RAKE合 并结果进行 TFCI译码,得到 DPDCH的扩频因子,并将 DPDCH的扩频 因子输出至 DPDCH解扩单元 302;
DPDCH解扩单元 302, 根据多径时延信息、 DPDCH的扩频因子对 输入的波束信号进行多径解扩, 并将所得的 DPDCH解扩结果输出至 DPDCH信道的 RAKE合并单元 308;
DPDCH的 RAKE合并单元 308, 用于结合输入的信道估计结果和 噪声功率估计结果对输入的 DPDCH解扩结果进行去信道调制和 RAKE 合并, 并将合并结果输出至 DPDCH软判决与软判决加权单元 313;
HS - DPCCH解扩单元 304, 根据多径时延信息和 HS - DPCCH信 道的扩频码(HS - DPCCH信道码和扰码之积)对输入的波束信号进行 多径解扩, 并将所得的 HS - DPCCH解扩结果输出至 HS-DPCCH信道 的 RAKE合并单元 310;
HS - DPCCH的 RAKE合并单元 310, 用于结合输入的信道估计结 果和噪声功率估计结果对 HS - DPCCH 解扩结果进行去信道调制和 RAKE合并, 并将合并结果输出至 HS - DPCCH的判决与判决加权单元 315和 HS - DPCCH硬判决单元 312;
HS - DPCCH的硬判决单元 312, 对 HS - DPCCH的 RAKE合并结 果进行硬判决, 得到发送的 ACK/NACK比特的判决结果和 CQI信息的 至 CDMA系统中的下行信道处理单元, 用于控制下行 HS - DSCH信道 和 HS - SCCH信道的信息发送;
HS - DPCCH的判决与判决加权单元 315,由 HS - DPCCH的 RAKE 合并结果和信道估计结果、 噪声功率估计结果进行判决和加权, 并将所 得的加权结果输出至信号再生单元 316; DPDCH软判决与软判决加权单元 313 ,由 DPDCH的 RAKE、 并结 果和信道估计结果、 噪声功率估计结果, 得到每个符号的软判决, 并进 行软判决加权, 然后将 DPDCH信道的软判决加权的权值输出至信号再 生单元 316;
DPCCH软判决与软判决加权单元 314,由 DPCCH的 RAKE合并结 果和信道估计结果、 噪声功率估计结果得到每个符号的软判决, 并进行 软判决加权, 然后将 DPCCH信道软判决加权的权值输出至信号再生单 元 316;
其中, DPDCH信道的软判决加权的权值、 DPCCH信道软判决加权 的权值以及 HS - DPCCH信道 ACK/NACK判决加权的权值、 CQI软判 决加权的权值可以取不同的数值。 DPDCH信道和 HS - DPCCH信道在 . 计算软判决时, 首先要由 DPCCH信道噪声功率的估计折算出各自信道 的噪声功率;
信号再生单元 316, 由 DPDCH信道软判决加权结果、 DPCCH信道 的软判决加权结杲、 HS一 DPCCH信道的判决加权结果和用户的各径时 延信息、 信道估计结果得到用户的 DPDCH信道符号级再生信号、 DPCCH信道符号级再生信号、 HS - DPCCH信道符号级再生信号和该用 户的码片级再生信号, 并将码片级再生信号送入干扰对消单元 421 , 将 上述三个符号级再生信号分别输出至第二级 PIC结构中同一用户的用户 信号处理单元的三个符号修正子单元。
在信号再生单元 316中, DPDCH信道的符号级再生信号是相关的 每个波束内用户的每径中 DPDCH信道的信号的符号级估计结果; DPCCH 信道的符号级再生信号是相关的每个波束内用户的每径中' DPCCH信道的信号的符号级估计结果; HS-DPCCH信道的符号级再生 信号是相关的每个波束内用户的每径中 HS - DPCCH信道的信号的符号 级估计结果, 每个信道符号级再生信号的个数就是该用户在所有相关波 束内所有径信号的个数之和。
在信号再生单元 316中, 码片级再生信号是在相关的每个波束内用 户所有径信号的和的码片级估计, 相关波束的个数就是码片级再生信号 的个数。
相关波束就是多径时延信息中各径的波束号对应的波束的集合。
图 4为本发明一实施例的上行专用物理信道多用户接收装置中第一 级 PIC结构内的干扰对消处理单元示意图。 如图 4所示, 本发明的上行 专用物理信道多用户接收装置中笫一级 PIC结构内的干扰对消处理单元 - 421 包括波束内信号求和单元 422、 成型与匹配滤波单元 423和波束内 残差计算单元 424三个部分。
用户信号处理单元 301输出的所有用户的码片级再生信号进入第一 级 PIC结构干扰对消单元 421中的波束内信号求和单元 422, 波束内信 号求和单元 422对同一波束内各用户的码片级再生信号进行求和, 然后 将各波束的求和结果输出至成型与匹配滤波单元 423; 成型与匹配滤波 单元 423对输入的各波束的求和信号分别进行成型滤波和匹配滤波, 此 处的成型滤波器同上行专用物理信道的调制部分采用的成型滤波器, 匹 配滤波器就是上行专用物理信道接收端采用的匹配滤波器, 然后成型与 匹配滤波单元 423将所得的各波束的滤波结果输出至波束内残差计算单 元 424, 全部波束信号也进入波束内残差计算单元 424; 波束内残差计 算单元 424从某个波束信号中減去该波束的求和信号的滤波结果, 得到 该波束的残差信号, 然后波束内残差计算单元 424将所得的各波束的残 差信号作为第一级 PIC结构的输出信号并行输出至下一级 PIC结构。
在下一级 PIC结构中, 用户 i的用户信号处理单元根据该用户的多 径时延信息中包含的波束号从全部波束的残差信号中选取相应的波束 的残差信号, 再对被选取的若干个波束的残差信号进行相应的处理。 对第一级 PIC结构, TFCI译码得到的扩频因子可以只供本级 PIC 结构使用,也可以传输给后续各级 PIC结构,供后续 PIC结构中 DPDCH 解扩单元使用。
中间各级 PIC的结构完全一样, 下面以第二级 PIC结构为例来说明 中间各级 PIC结构的功能及处理过程。
第二级 PIC结构 202, 由 K个用户信号处理单元和一个干扰对消单 元构成。 图 5为本发明一实施例的上行专用物理信道多用户接收装置中 间级 PIC结构内的用户信号处理单元示意图。 第一级 PIC结构 201得到 的各波束的残差信号、 各用户的符号级再生信号和各用户的多径时延信 息进入第二级 PIC结构 202。 在第二级 PIC结构 202中, 每个用户对应 一个用户信号处理单元 501。 每一个用户信号处理单元 501具有完全相 同的功能。 第二级 PIC结构内的干扰对消单元与笫一级 PIC结构内的干 扰对消单元 421具有完全相同的功能及结构。 同样, 其他级别的中间级 PIC结构内的干扰对消单元也与第一级 PIC结构内的干扰对消单元 421 具有完全相同的功能及结构。
如图 5所示,第二级 PIC结构 202中,每一个用户信号处理单元 501 的输入信号为: 用户所在波束的残差信号、 本用户的符号级再生信号和 本用户的多径时延信息。 其中, 用户所在波束的残差信号是按照该用户 的多径时延信息中波束号信息从全部波束的残差信号中提取出来的, 该 提取过程可以在用户信号处理单元 501进行。 在每一个用户信号处理单 元 501中, 用户的多径时延信息和用户所在的波束残差信号同时被送入 DPDCH解扩单元 502、 DPCCH解扩单元 503和 HS-DPCCH解扩单元 505, 并且, 第一级 PIC结构的输出 DPDCH扩频因子被送入 DPDCH解 扩单元 502, 另外, 用户的符号级再生信号被送入符号修正单元 506、 符号修正单元 507和符号修正单元 508, 以及, 用户的多径时延信息被 送入信号再生单元 516。
DPDCH解扩单元 502,根据用户多径时延信息以及 DPDCH扩频因 子对波束的残差信号进行 DPDCH解扩, 然后将 DPDCH解扩结果输出 至 DPDCH信道的符号修正单元 506, 符号修正单元 506对 DPDCH解 扩结果进行符号修正, 然后将修正后的结果输出至 DPDCH的 RAKE合 并单元 509, DPDCH的 RAKE合并单元 509对所述修正结果进行 RAKE 合并, 然后将合并结果输出至 DPDCH软判决与软判决加权单元 513, DPDCH软判决与软判决加权单元 513对所述合并结果进行软判决与软 判决加权, 并将软判决加权结果输出至信号再生单元 516;
DPCCH解扩单元 503,根据用户多径时延信息对波束的残差信号进 行 DPCCH解扩, 然后将 DPCCH解扩结果输出至 DPCCH信道的符号 修正单元 507, 符号修正单元 507对 DPCCH解扩结果进行符号修正, 然后将修正后的结果输出至信道估计单元 504、 噪声功率估计单元 511 和 DPCCH的 RAKE合并单元 510, DPCCH的 RAKE合并单元 510对 所迷修正结杲进行 RAKE合并, 然后将合并结果输出至 DPCCH软判决 与软判决加权单元 514, DPCCH软判决与软判决加权单元 514对所述合 并结果进行软判决与软判决加权, 并将该软判决加权结果输出至信号再 生单元 516;
HS - DPCCH解扩单元 505, 根据用户多径时延信息对波束的残差 信号进行 HS一 DPCCH解扩, 然后将 HS - DPCCH解扩结果输出至 HS - DPCCH信道的符号修正单元 508,符号修正单元 508对 HS - DPCCH 解扩结果进行符号修正, 然后将修正后的结果输出至 HS - DPCCH 的 RAKE合并单元 512, HS - DPCCH的 RAKE合并单元 512对所述修正 结果进行 RAKE合并,然后将合并结果输出至 HS - DPCCH软判决与软 判决加权单元 515, HS - DPCCH软判决与软判决加权单元 515对所述 合并结果进行软判决与软判决加权, 并将该软判决加权结果输出至信号 再生单元 516;
信道估计单元 504, 由输入的 DPCCH信道的各径的符号修正结果 得到各径的信道估计结果, 并将其输出
信号再生单元 516, 由所有输入信号得到用户的符号级再生信号和 码片级再生信号, 并将符号级再生信号输出至第三级 PIC结构中同一用 户的用户信号处理单元, 以及将码片級再生信号输出至第二级 PIC结构 内的干扰对消单元 521。 在第二级 PIC结构中, DPDCH解扩单元 502、 DPCCH解扩单元 503、 HS - DPCCH解扩单元 505分别与笫一级 PIC结 构 201中的 DPDCH解扩单元 302、 DPCCH解扩单元 303、 HS - DPCCH 解扩单元 304相同; DPDCH的 RAKE合并单元 509、 DPCCH的 RAKE 合并单元 510和 HS - DPCCH的 RAKE合并单元 512分别与第一级 PIC 结构 201中的 DPDCH的 RAKE合并单元 308、 DPCCH的 RAKE合并 单元 309和 HS - DPCCH的 RAKE合并单元 310相同; DPDCH软判决 与软判决加权单元 513、 DPCCH软判决与软判决加权单元 514和 HS - DPCCH判决与软判决加权单元 515分别与第一级 PIC结构 201 中的 DPDCH软判决与软判决加权单元 313、 DPCCH软判决与软判决加权. 单元 314和 HS - DPCCH判决与软判决加权单元 315相同; 信号再生单 元 516和第一级 PIC结构 201中信号再生单元 316相同。 DPDCH信道、 DPCCH 和 HS - DPCCH信道判决结果加权的权值可以不同。 本级 DPDCH的加权的权值要大于前一级 DPDCH加权的权值。 DPCCH信道. 和 HS - DPCCH信道相应的权值也是如此。
DPDCH信道的符号修正单元 506,主要完成对输入的 DPDCH信道 的解扩结果进行符号级修正, 包括: 将一个波束内 DPDCH信道某径的 解扩结果和来自于前一级的该波束内该径的 DPDCH信道符号级再生信 号相力口。
DPCCH信道的符号修正单元 507, 主要完成对输入的 DPCCH信道 的解扩结果进行符号级修正, 包括: 将一个波束内 DPCCH信道某径的 · 解扩结果和来自于前一级的该波束内该径的 DPCCH信道符号级再生信 号相加。
HS - DPCCH信道的符号修正单元 508, 主要完成对输入的 HS - DPCCH信道的解扩结果进行符号级修正, 包括: 将一个波束内 HS - DPCCH信道某径的解扩结果和来自于前一级的该波束内该径的 HS - DPCCH信道符号级再生信号相加。
如图 6所示, 用户信号处理单元 501中可选地包括一个扩频因子计 算单元 622。 如果用户信号处理单元 501 中不包括扩频因子计算单元 622, 则 DPDCH的解扩单元使用第一级 PIC结构 201中 TFCI译码得到 的 DPDCH扩频因子, 如果用户信号处理单元 501中包括扩频因子计算 单元 622,则 DPDCH的解扩单元使用本级 PIC的扩频因子计算单元 622 中 TFCI译码得到的 DPDCH扩频因子。 第二级 PIC的扩频因子计算单 · 元 622对本级 DPCCH的 RAKE合并结果进行 TFCI译码,得到 DPDCH 的扩频因子。经过前一级 PIC结构的干扰对消,本级 PIC结构中 DPCCH 的 RAKE合并结果的信噪比应该比前一级 PIC结构中 DPCCH的 RAKE 合并结果的信噪比高, 所以, 本级 TFCI译码得到的扩频因子的误码率' 将更小。 因此, 在本级采用扩频因子计算单元 622, 并使用该单元得到 的扩频因子进行 DPDCH 的解扩对用户的检测将更有利。 但是, TFCI 译码不仅增加了复杂度, 而且增加了时延。 可以根据需要确定是否在本 级 PIC结构中采用扩频因子计算单元 622。
第二级 PIC结构内的干扰对消单元完成与第一级 PIC结构内的干扰 对消单元 421完全相同的功能, 即由所有用户的码片级再生信号和全部 波束信号通过干扰对消得到全部波束的残差信号。在下一级 PIC结构中, 用户 i的用户信号处理单元根据用户的多径时延信息中包含的波束号从 全部波束的残差信号中选取相应的波束的残差信号, 再对被选取的若干 个波束的残差信号进行相应的处理。
' 第二级 PIC结构中三个信道的 RAKE合并单元 509、 510、 512和三 个信道的判决与判决加权单元 513、 514、 515都需要知道本级 DPCCH 信道的噪声功率。 第二级 PIC结构中, DPCCH信道的噪声功率可以由 最近一级 PIC结构中噪声功率估计单元提供, 也可以在本级 PIC结构中 添加一个噪声功率估计单元, 该单元由本级 DPCCH信道的符号修正结 · 果进行用户各波束的 DPCCH信道噪声功率的估计。
中间级 PIC结构的级数可以根据需要而调整, 并且, 中间各级 PIC 结构的功能完全相同。
图 7为本发明一实施例的上行专用物理信道多用户接收装置中最后 一级 PIC结构内的用户信号处理单元示意图。如图 7所示,最后一级 PIC 结构 203仅由 K个用户信号处理单元 701构成, 其中,
DPDCH解扩单元 702,根据输入的多径时延信息和 DPDCH信道的 扩频因子, 对输入的残差信号进行多径解扩, 并将所得的 DPDCH多径. 解扩结果输出至 DPDCH信道的符号修正单元 704;
DPCCH解扩单元 703 , 根据 DPCCH信道的扩频码, 以及输入的多 径时延信息, 对输入的残差信号进行多径解扩, 并将所得的 DPCCH多 径解扩结果输出至 DPCCH信道的符号修正单元 705;
DPDCH信道的符号修正单元 704,用于结合输入的 DPDCH信道的 符号级再生信号对输入的 DPDCH信道的解扩结果进行符号修正, 并将 符号修正结果输出至 DPDCH的 AKE合并单元 707; DPCCH信道的符号修正单元 705 , 用于结合输入的 DPCCH信道的 符号级再生信号对输入的 DPCCH信道的解扩结果进行符号修正, 并将 符号修正结果输出至 DPCCH的 RAKE合并单元 708以及信道估计单元 706;
信道估计单元 706, 由输入 DPCCH信道的符号修正结果得到各径 的信道估计结果, 并分别将所得的 DPDCH信道和 DPCCH信道估计结
708;
DPDCH信道的 RAKE合并单元 707和 DPCCH信道的 RAKE合并 单元 708, 用于结合输入的信道估计结果和噪声功率估计结果分别对输 入的 DPDCH信道的符号修正结果和 DPCCH信道的符号修正结果进行 去信道调制和 RAKE合并, DPDCH信道的 RAKE合并单元 707将得到 的 DPDCH信道的 RAKE合并结果输出至信道译码单元 709, DPCCH信 道的 RAKE合并单元 708将得到的 DPCCH信道的 RAKE合并结果输出 至硬判决单元 710;
信道译码单元 709, 用于对输入的 DPDCH信道的 RAKE合并结果 进行信道解码, 得到 DPDCH信道发送的信息比特;
硬判决单元 710, 用于对输入的 DPCCH信道的 RAKE合并结果进 行硬判决, 得到 DPCCH信道发送的信息比特。
每一个用户信号处理单元 701中可选地包括扩频因子计算单元 822。 ' 用户信号处理单元 701的输入为: 前一级得到的该用户所在波束的残差 信号、 用户各信道的符号级再生信号、 DPDCH扩频因子、 噪声功率估 计以及用户的多径时延信息。 其中, 用户所在波束的残差信号是按照该 用户的多径时延信息中波束号信息从全部波束的残差信号中提取出来 的, 该提取过程可以在用户信号处理单元 701中进行。 用户的多径时延 信息和输入的波束的残差信号分别送入 DPDCH解扩单元 702和 DPCCH 解扩单元 703。
本级 DPDCH解扩单元 702需要获得 DPDCH的扩频因子。 如果用 户信号处理单元 701中包括扩频因子计算单元 822, 则 DPDCH扩频因 子由本级 PIC结构的扩频因子计算单元 822得到, 如果用户信号处理单 元 701中不包括扩频因子计算单元 822, 则 DPDCH扩频因子由上一级 PIC结构中 TFCI译码得到。 如图 8所示, 本级 HC的扩频因子计算单 元 822的结构可以与第二级 PIC结构的扩频因子计算单元 622完全相同。
本级 PIC结构中 DPDCH信道和 DPCCH信道的 RAKE合并单元需 要知道本级 DPCCH信道的噪声功率的估计。 本级 DPCCH信道的噪声 功率的估计可以由上一级 PIC结构中的噪声功率估计单元提供, 也可以 在本级 PIC结构中添加一个噪声功率估计单元, 该噪声功率估计单元由 本级 DPCCH信道的符号修正结果进行用户各波束的 DPCCH信道噪声 功率的估计。
由于 HS - DPCCH信道的特殊性, 应用本发明的上行专用物理信道 的多用户接收装置中的 HS - DPCCH信道,包括 HS - DPCCH解扩单元、 HS - DPCCH的 RAKE合并单元、 HS - DPCCH硬判决单元以及 HS - DPCCH判决与判决加权单元的处理具体如下:
设 ACK/NACK重复发送次数为 ACKNACK—N— TRANSMIT; CQI 信息的上 4艮周期为 K— REPORT— CYCLE,上报偏移量为 L_OFFSET; CQI 信 息 重 复 发 送 次 数 为 CQI— NJTRANSMIT 。 以 上 ACKNACK—N— TRANSMIT 、 K— REPORT— CYCLE 、 L— OFFSET 、 CQI— NJTRANSMIT等参数由 NODEB通过下行信令提供给 UE。 当 UE 无反馈信息时, HS-DPCCH信道就无信号, 而在 BS接收端将此时 HS - DPCCH发送的信息记为 DTX, DTX值为 0。 在 HS - DPCCH信道无 UE反馈信息的时隙, 对 HS - DPCCH信道 可以不进行解扩、 RAKE合并和硬判决等处理。 HS - DPCCH的解扩单 元、 RAKE合并单元、硬判决单元不进行任何处理, 也不产生任何输出。 HS-DPCCH的判决与判决加权单元用 DTX作为无信号时隙的每个发送 符号, 并将每个 DTX符号输出至信号再生单元, 即: 在 HS - DPCCH 信号无信号的帧, HS-DPCCH信道不参加信号再生。
在 HS - DPCCH信道有 UE反馈信息的时隙, HS - DPCCH解扩单 元对该时隙进行解扩; HS - DPCCH的 RAKE合并单元对该时隙的解扩 结果进行 RAKE合并; HS - DPCCH的硬判决单元对该时隙进行硬判决 , 并将判决结果反馈给下行信道处理单元, 用于下行发送的控制。 HS - DPCCH的判决与判决加权单元对该时隙的 RAKE合并结果进行判决与 判决加权,并将判决加权结果输出至信号再生单元,用于 HS-DPCCH信 道的信号再生。
HS - DPCCH硬判决单元具体完成如下功能:
( 1 )对承载 ACK/NACK信息的连续 ACKNACK— N_TRANSMIT 个 HS - DPCCH帧,将每帧的第一个时隙的每个符号的 RAKE合并结果 累加起来, 由累加结果进行 ACK/NACK/DTX三态判决, 判决结果就是 UE发送的确认信息符号。 ACK/NACK/DTX三态判决有具体的判决方 法, 这里不再赘述。 该符号只能是 ACK/NACK/DTX中的一个值。 并将 该值转给下行信道处理单元 , 进行 HSDPA数据包发送的控制;
( 2 )对承载 CQI信息的连续 CQI—N— TRANSMIT个周期, 取出每 个周期的第 L— OFFSET个 HS - DPCCH帧;从每帧中取出第二和第三个 时隙, 这样总共得到 CQI—N— TRANSMIT个第二和第三时隙。 将每个时 隙相同位置的 CQI— N_TRANSMIT个符号的 RAKE合并结果累加起来, 得到二个时隙的累加结果。 由这两个时隙的累加结果进行判决, 确定这 两个时隙的信息是否是有效信息, 如果不是有效信息, 就把五个 DTX 作为这两个时隙发送的 CQI比特输出至下行信道处理单元;如杲是有效 信息, 就由这两个时隙的累加结果进行 CQI译码, 得到 5个 CQI比特。 这 5个 CQI比特输出至下行信道处理单元, 进行 HSDPA数据包发送的 控制。 CQI信息的有效性判决和 CQI的译码都有具体的方法, 这里不再 赘述。
HS - DPCCH判决与判决加权单元完成如下功能:
( 1 )对承载 ACK/NACK信息的每个 HS - DPCCH帧,对每帧的第 一个时隙的每个符号的 RAKE 合并进行累加, 并对累加结果进行 ACK/NACK/DTX三态判决, 然后对判决结果进行加权, 并将加权结果 作为该时隙每个符号的估计值, 并将每个符号的估计值输出至信号再生 单元。
( 2 )对承载 CQI信息的每个 HS一 DPCCH帧, 从每帧中取出第二 和第三个时隙, 对这两个时隙中每个符号的 RAKE合并结果进行判决, 确定该符号是否是有效信息, 如果不是有效信息, 就把 DTX作为该符 号的估计值, 并输出至信号再生单元。 如果是有效信息, 就对该符号进 行软判决, 并对每个符号的软判决结果进行加权。 把每个符号的加权结 果输出至信号再生单元。
( 3 )第一个时隙加权的权值和第二、第三个时隙加权的权值可以不 同。 而权值在区间 [0,1]内取值。
以上实施例中, 上行专用物理信道多用户接收装置的 HC结构级数. 可以根据需要确定, 可以只采用第一级和最后一级 PIC结构, 而省去中 间的 PIC结构 , 也可以采用更多级的 PIC结构。
以上过程中, 以 WCDMA系统为例对本发明进行了说明, 而实际上 本发明的应用并不局限于 WCDMA 系统, 还可以应用发明于码分多址. 2000 ( CDMA2000 ), 时分同步码分多址(TD - SCDMA )系统等类似的 CDMA信道结构中。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的 保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、一种上行专用物理信道多用户接收装置, 包括第一级并行干扰对 消 PIC结构和最后一級 PIC结构,其中, 第一级 PIC结构包括 K个用户 信号处理单元和一个干扰对消单元, 其中 K为用户的个数, 每个用户对 应一个用户信号处理单元,最后一级 PIC结构包括 K个用户信号处理单 元, 每个用户对应一个用户信号处理单元, 其特征在于,
所述第一级 PIC结构中的每一个用户信号处理单元, 接收来自外部 的全部波束信号和对应用户的用户多径时延信息, 并根据接收到的全部 . 波束信号和用户多径时延信息, 对专用物理数据信道 DPDCH、 专用物 理控制信道 DPCCH以及高速专用物理控制信道 HS - DPCCH进行解扩、 瑞克 RAKE合并及判决与判决加权处理, 信号再生处理, 以及 HS - DPCCH硬判决处理, 得到 HS - DPCCH反馈信息, 符号级再生信号和. 码片级再生信号, 以及, 根据 DPCCH的解扩结果进行功率控制处理得 到功率控制指令; 每一个用户信号处理单元将所得的功率控制指令经下 行链路输出至对应用户的发送端, 将 HS - DPCCH反馈信息输出至码分 多址系统中的下行信道处理单元, 将符号级再生信号输出至下一级 PIC 结构,以及将码片级再生信号输出至第一级 PIC结构中的干扰对消单元; 第一级 PIC结构中的干扰对消单元, 接收来自外部的全部波束信号 和来自第一级 PIC结构中各用户信号处理单元的码片级再生信号, 并根 据所接收到的全部波束信号和码片级再生信号进行波束内信号求和、 成 . 型匹配滤波以及波束内残差计算处理, 得到全部波束残差信号, 然后将 所得的全部波束残差信号输出至下一级 PIC结构;
所述最后一级 PIC结构中的每一个用户信号处理单元, 接收来自上 一级 MC结构的全部波束残差信号和对应用户的符号级再生信号, 以及 来自外部的对应用户的用户多径时延信息, 根据接收到的全部波束残差 信号、 符号级再生信号和用户的多径时延信息进行 DPDCH信道及 DPCCH信道的解扩、 符号修正、 RAKE合并以及译码或硬判决处理, 得到 DPDCH信道发送的信息比特和 DPCCH信道发送的信息比特。
2、 根据权利要求 1所述的装置, 其特征在于, 该装置进一步包括: 不少于一级的中间级 PIC结构,所述中间级 PIC结构位于第一级 PIC结 构和最后一级 PIC结构之间;所述中间级 PIC结构包括 K个用户信号处 理单元和一个干扰对消单元, 每个用户对应一个中间级 PIC结构内的用 户信号处理单元;
.所述中间级 PIC结构中的每一个用户信号处理单元, 接收来自外部 的对应用户的用户多径时延信息, 以及来自上一级 PIC结构的全部波束 残差信号和对应用户的符号级再生信号, 并才 据接收到的用户多径时延 信息、 全部波束残差信号和符号级再生信号进行 DPDCH信道、 DPCCH 信道以及 HS - DPCCH信道的解扩、 符号修正、 RAKE合并及判决与判 决加权处理, 以及信号再生处理, 得到符号级再生信号和码片级再生信 号, 然后将所得的符号级再生信号输出至下一级 PIC结构, 将码片级再 生信号输出至本级 PIC结构中的干扰对消单元;
中间级 PIC结构中的干扰对消单元, 接收来自外部的全部波束信号 和来自本级 PIC结构中各用户信号处理单元的码片级再生信号, 并根据 所接收到的全部波束信号和码片级再生信号进行波束内信号求和、 成型 匹配滤波以及波束内残差计算处理, 得到全部波束残差信号, 然后将所 得的全部波束残差信号输出至下一级 PIC结构。
3、 根据权利要求 1或 2所述的装置, 其特征在于, 所述第一级 PIC 结构中的所有 K个用户信号处理单元的结构相同, 包括:
DPCCH解扩单元,根据 DPCCH信道的扩频码以及输入的多径时延 信息, 对输入的波束信号进行多径解扩, 并将所得的 DPCCH各径解扩 结果输出至信道估计单元、功率控制单元、噪声功率估计单元和 DPCCH 信道的 RAKE合并单元;
信道估计单元, 由输入的 DPCCH的各径解扩结果得到各径的信道 估计结果, 并将得到的信道估计结果同时输出至 DPDCH信道的 RAKE 合并单元、 DPCCH信道的 RAKE合并单元、 HS - DPCCH信道的 RAKE 合并单元、 DPDCH软判决与软判决加权、 DPCCH软判决与软判决加 权单元、 HS - DPCCH判决与判决加权单元和信号再生单元;
功率控制单元, 由输入的 DPCCH信道的各径解扩结果得到功率控 制指令, 并将其作为所述第一级 PIC结构的一个输出, 反馈给用户的发 送端;
噪声功率估计单元, 由输入的 DPCCH信道的各径解扩结果得到在 相关波束内 DPCCH信道的噪声功率的估计结果, 然后将 DPCCH信道 噪声功率的估计结果同时输出至 DPDCH软判决与软判决加权单元、 DPCCH软判决与软判决加权单元、 HS - DPCCH判决与判决加权单元、 DPDCH RAKE合并单元、 DPCCH RAKE合并单元和 HS - DPCCH RAKE合并单元;
DPCCH信道的 RAKE合并单元, 用于结合输入的信道估计结果和 噪声功率估计结果对输入的 DPCCH解扩结果进行去信道调制和 RAKE 合并, 并将所得的合并结果分别输出至 DPCCH软判决与软判决加权单 元和传输格式组合指示 TFCI译码单元;
TFCI译码单元,用于对输入的 DPCCH信道的 RAKE合并结果进行 TFCI译码, 得到 DPDCH信道的扩频因子, 并将 DPDCH的扩频因子输 出至 DPDCH解扩单元;
DPDCH解扩单元, 根据输入的多径时延信息和经 TFCI译码后的 DPDCH信道的扩频因子, 对输入的波束信号进行多径解扩, 并将所得 的 DPDCH解扩结果输出至 DPDCH信道的 RAKE合并单元;
DPDCH信道的 RAKE合并单元, 用于结合输入的信道估计结果和 噪声功率估计结果对输入的 DPDCH解扩结果进行去信道调制和 RAKE 合并, 并将合并结果输出至 DPDCH软判决与软判决加权单元;
DPDCH软判决与软判决加权单元, 由 DPDCH信道的 RAKE合并 结果以及信道估计结果、 噪声功率的估计结果, 得到 DPDCH每个符号 的软判决, 并进行软判决加权, 然后将 DPDCH信道的软判决加权的权 值输出至信号再生单元;
DPCCH软判决与软判决加权单元, 由 DPCCH信道的 RAKE合并 结果以及信道估计结果、 噪声功率的估计结果得到 DPCCH每个符号的 软判决, 并进行软判决加权, 然后将 DPCCH信道软判决加权的权值输 出至信号再生单元;
HS - DPCCH解扩单元, 根据输入的多径时延信息和 HS - DPCCH 信道的扩频码, 对输入的波束信号进行多径解扩, 并将所得的 HS - DPCCH解扩结果输出至 HS-DPCCH信道的 RAKE合并单元;
HS - DPCCH信道的 RAKE合并单元, 用于结合输入的信道估计结 果和噪声功率估计结果对输入的 HS - DPCCH解扩结果进行去信道调制 和 RAKE合并,并将合并结果输出至 HS - DPCCH的判决与判决加权单 元和 HS - DPCCH硬判决单元;
HS - DPCCH硬判决单元, 用于对 HS - DPCCH信道的 RAKE合并 结果进行硬判决, 得到发送的 ACK/NACK比特的判决结果和 CQI信息 的译码结果, 然后将 ACK/NACK比特的判决结果和 CQI的译码结果输 出至 CDMA系统中的下行信道处理单元;
HS― DPCCH判决与判决加权单元, 由 HS - DPCCH信道的 RAKE 合并结果以及信道估计结果、 噪声功率的估计结杲进行判决和加权, 得 到 HS - DPCCH每个符号.的软判决, 并进行软判决加权, 然后将软判决 加权的权值输出至信号再生单元;
信号再生单元, 由 DPDCH信道软判决加权结果、 DPCCH信道软判 决加权结果、 HS - DPCCH信道的判决加权结果和用户的多径时延信息 以及信道估计结果得到用户的 DPDCH信道符号级再生信号、 DPCCH 信道符号级再生信号、 HS一 DPCCH信道符号级再生信号和该用户的码 片级再生信号, 并将码片级再生信号送入所述第一级 HC结构中的干扰 对消单元, 将符号级再生信号输出至下一级 PIC结构中同一用户的用户 信号处理单元。
4、 根据权利要求 1或 2所述的装置, 其特征在于, 所述最后一级 PIC结构中的所有 K个用户信号处理单元的结构相同, 包括:
DPDCH解扩单元,根据输入的多径时延信息和 DPDCH信道的扩频 因子, 对输入的残差信号进行多径解扩, 并将所得的 DPDCH多径解扩 结果输出至 DPDCH信道的符号修正单元;
DPCCH解扩单元,根据 DPCCH信道的扩频码, 以及输入的多径时 延信息, 对输入的残差信号进行多径解扩, 并将所得的 DPCCH多径解 扩结果输出至 DPCCH信道的符号修正单元;
DPDCH信道的符号修正单元,用于结合输入的 DPDCH信道符号级 再生信号对输入的 DPDCH信道的解扩结果进行符号修正, 然后将符号 . 修正结果输出至 DPDCH的 RAKE合并单元;
DPCCH信道的符号修正单元,用于结合输入的 DPCCH信道符号级 再生信号对输入的 DPCCH信道的解扩结果进行符号修正, 然后将符号 修正结果输出至 DPCCH的 RAKE合并单元以及信道估计单元;
信道估计单元, 由输入的 DPCCH信道的符号修正结果得到各径的 信道估计结果, 并将所得的信道估计结果分别输出至 DPDCH4 RAKE 合并单元和 DPCCH的 RAKE合并单元;
DPDCH信道的 RAKE合并单元, 用于结合输入的信道估计结果和 噪声功率估计结果对输入的 DPDCH信道的符号修正结果进行去信道调 制和 RAKE合并,然后将得到的 DPDCH信道的 RAKE合并结果输出至 信道译码单元;
DPCCH信道的 RAKE合并单元, 用于结合输入的信道估计结果和 噪声功率估计结果对输入的 DPCCH信道的符号修正结果进行去信道调 制和 RAKE合并,然后将得到的 DPCCH信道的 RAKE合并结果输出至 硬判决单元;
信道译码单元, 用于对输入的 DPDCH信道的 RAKE合并结果进行 信道解码, 得到 DPDCH信道发送的信息比特;
硬判决单元, 用于对输入的 DPCCH信道的 RAKE合并结果进行硬 判决, 得到 DPCCH信道发送的信息比特。
5、 根据权利要求 2所述的装置, 其特征在于, 所述第一级 PIC结
Figure imgf000032_0001
波束内信号求和单元, 用于对输入的同一波束内的各用户的码片级 再生信号进行求和, 然后将波束求和结果输出至成型与匹配滤波单元; 成型与匹配滤波单元, 用于对输入的波束求和结果进行成型滤波和 匹配滤波, 并分别将各个波束的滤波结果输出至波束内残差计算单元; 波束内残差计算单元, 用于从输入的全部波束信号中每个波束信号 中减去所述成型与匹配滤波单元输出的该波束的滤波结果, 得到每个波 束的残差信号, 并将所述全部波束中的每个波束的残差信号作为本级 PIC的输出信号并行输出至下一级 PIC结构中各用户对应的用户信号处 理单元。
6、 根据权利要求 2所述的装置, 其特征在于, 所述中间级 PIC结 构中的所有 K个用户信号处理单元的结构相同, 包括:
DPDCH解扩单元,根据输入的多径时延信息和 DPDCH信道的扩频 因子, 对输入的残差信号进行多径解扩, 然后将 DPDCH解扩结果输出 至 DPDCH信道的符号修正单元;
DPCCH解扩单元,根据 DPCCH信道的扩频码, 以及输入的多径时 延信息, 对输入的残差信号进行多径解扩, 然后将 DPCCH解扩结果输' 出至 DPCCH信道的符号修正单元;
HS _ DPCCH解扩单元, 根据 HS - DPCCH信道的扩频码, 以及输 入的多径时延信息, 对输入的残差信号进行多径解扩, 然后将 HS - DPCCH解扩结果输出至 HS - DPCCH信道的符号修正单元;
DPDCH信道的符号修正单元,用于结合输入的 DPDCH信道的符号 级再生信号对输入的 DPDCH解扩结果进行符号修正, 然后将符号修正 结果输出至 DPDCH软判决与软判决加权单元;
DPCCH信道的符号修正单元,用于结合输入的用户的 DPCCH信道 的符号级再生信号对输入的 DPCCH解扩结果进行符号修正, 然后将符 号修正结果输出至 DPCCH软判决与软判决加权单元;
HS - DPCCH信道的符号修正单元, 用于结合输入的 HS - DPCCH 信道的符号级再生信号对输入的 HS - DPCCH解扩结果进行符号修正, ' 并将符号修正结果输出至 DPCCH判决与判决加权单元;
信道估计单元, 由输入的 DPCCH信道的各径的符号修正结果得到 各径的信道估计结果, 并将其输出;
DPDCH信道的 RAKE合并单元、 DPCCH信道的 AKE合并单元 和 HS - DPCCH信道的 RAKE合并单元,用于结合输入的信道估计结果 和噪声功率估计结果分别对输入的 DPDCH信道的符号修正结果、 DPCCH信道的符号修正结果和 HS - DPCCH信道的符号修正结果进行 去信道调制和 RAKE合并, 并分别将结果输出;
DPDCH软判决与软判决加权单元, 由 DPDCH信道的 RAKE合并 结果以及信道估计结果、 噪声功率的估计结果得到 DPDCH每个符号的 软判决, 然后进行软判决加权后输出其结果;
DPCCH软判决与软判决加权单元, 由 DPCCH信道的 RAKE合并 结果以及信道估计结果、 噪声功率的估计结果得到 DPCCH每个符号的 软判决, 然后进行软判决加权后输出其结果;
HS一 DPCCH判决与判决加权单元, 由 HS - DPCCH信道的 RAKE 合并结果以及信道估计结果、噪声功率的估计结果得到 HS - DPCCH每 个符号的判决, 然后对判决结果进行加权后输出其结果;
信号再生单元,所述信号再生单元由 DPDCH信道软判决加权结果、 DPCCH信道软判决加权结果、 HS一 DPCCH信道判决加权结果和用户的 多径时延信息、 信道估计结果得到用户的符号级再生信号和码片级再生 信号, 并将码片级再生信号送入本级 PIC结构中的干扰对消单元, 将符 号级再生信号输出至所述后一级 PIC结构中同一用户的用户信号处理单 元。
7、 根据权利要求 6所述的装置, 其特征在于, 所述中间级 PIC结 构的用户信号处理单元中进一步包括: 噪声功率估计单元, 根据从 DPCCH信道的符号修正单元输入的 DPCCH信道的各径的符号修正结 果, 得到相关波束内 DPCCH信道的噪声功率的估计结果, 并分别将其 输出至 DPDCH软判决与软判决加权单元、 DPCCH软判决与软判决加 权单元、 HS - DPCCH的 RAKE合并单元以及 HS - DPCCH判决与判决 力口权单元; 所述 DPDCH软判决与软判决加权单元、 DPCCH软判决与软判决加 权单元、 HS - DPCCH的 RAKE合并单元以及 HS - DPCCH判决与判决 加权单元分别根据 DPCCH信道的噪声功率的估计结果进行判决加权或 RAKE合并。
8、 根据权利要求 4 所述的装置, 其特征在于, 所述最后一级 PIC 结构中进一步包括: 扩频因子计算单元, 用于接收最后一级 PIC结构中 DPCCH的 RAKE合并单元输出的 DPCCH的 RAKE合并结果, 并根据 · 该 DPCCH的 RAKE合并结果计算本级的 DPDCH的扩频因子 , 然后将 计算所得的 DPDCH的扩频因子输出至最后一级 PIC结构中的 DPDCH 解扩单元。
9、 根据权利要求 6所述的装置, 其特征在于, 所述中间级 PIC结 构中进一步包括:扩频因子计算单元,用于接收本级 PIC结构中 DPCCH 的 RAKE合并单元输出的 DPCCH的 RAKE合并结果,并根据该 DPCCH 的 RAKE合并结果计算本级的 DPDCH的扩频因子, 然后将计算所得的 DPDCH的扩频因子输出至本级 PIC结构中的 DPDCH解扩单元。
10、 根据权利要求 8或 9所述的装置, 其特征在于, 所述扩频因子 计算单元为 TFCI译码单元。
PCT/CN2005/000812 2004-06-08 2005-06-08 Recepteur multi-utilisateur d'un canal physique specialise de liaison montante WO2005122450A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410046509.6 2004-06-08
CNB2004100465096A CN100342664C (zh) 2004-06-08 2004-06-08 一种码分多址上行专用物理信道多用户接收装置

Publications (1)

Publication Number Publication Date
WO2005122450A1 true WO2005122450A1 (fr) 2005-12-22

Family

ID=35503457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000812 WO2005122450A1 (fr) 2004-06-08 2005-06-08 Recepteur multi-utilisateur d'un canal physique specialise de liaison montante

Country Status (2)

Country Link
CN (1) CN100342664C (zh)
WO (1) WO2005122450A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135436B2 (en) * 2009-03-13 2012-03-13 Intel Mobile Communications GmbH Mobile radio communication devices and methods for controlling a mobile radio communication device
CN110089169B (zh) * 2017-01-05 2020-11-03 Oppo广东移动通信有限公司 一种信令传输方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030017950A (ko) * 2001-08-25 2003-03-04 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서역방향 전송 전력을 제어하는 장치 및 방법
US20030123396A1 (en) * 2001-11-02 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for reporting quality of downlink channel in W-CDMA communication systems supporting HSDPA
CN1428947A (zh) * 2001-12-28 2003-07-09 华为技术有限公司 高速数据接入系统中高速物理控制信道的功率控制方法
EP1355442A1 (en) * 2002-04-08 2003-10-22 Mitsubishi Electric Information Technology Centre Europe B.V. Uplink signalling in HSDPA
CN1453946A (zh) * 2002-04-26 2003-11-05 上海贝尔有限公司 一种宽带码分多址系统上行信道的部分干扰抵消方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030017950A (ko) * 2001-08-25 2003-03-04 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서역방향 전송 전력을 제어하는 장치 및 방법
US20030123396A1 (en) * 2001-11-02 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for reporting quality of downlink channel in W-CDMA communication systems supporting HSDPA
CN1428947A (zh) * 2001-12-28 2003-07-09 华为技术有限公司 高速数据接入系统中高速物理控制信道的功率控制方法
EP1355442A1 (en) * 2002-04-08 2003-10-22 Mitsubishi Electric Information Technology Centre Europe B.V. Uplink signalling in HSDPA
CN1453946A (zh) * 2002-04-26 2003-11-05 上海贝尔有限公司 一种宽带码分多址系统上行信道的部分干扰抵消方法及装置

Also Published As

Publication number Publication date
CN1707967A (zh) 2005-12-14
CN100342664C (zh) 2007-10-10

Similar Documents

Publication Publication Date Title
CN1081408C (zh) 确定cdma无线电接收机中加权系数的方法
JP5139317B2 (ja) 空間的および時間的に相互に関連のある受信サンプルからの信号再構成のための方法及びシステム
JP5551287B2 (ja) マルチ・ユーザ・スケジューリングおよびmimo送信をサポートする送信構造
EP1357693B1 (en) CDMA transceiver techniques for multiple input multiple output (mimo) wireless communications
US7389099B2 (en) Method and apparatus for canceling interference from high power, high data rate signals
US8306164B2 (en) Interference cancellation with a time-sliced architecture
US7324583B2 (en) Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations
CN1164783A (zh) 自适应调节cdma无线电接收机中加权系数的方法
EP1646157A2 (en) Method and system for diversity processing
EP1913745A2 (en) Channel estimation for wireless communication
JP2007535854A (ja) 適応的mimo無線通信システム
JPH11266232A (ja) 拡散スペクトル通信システムにおいて適応等化を用いて干渉抑制を行うための通信装置および方法
JP2004040801A (ja) 移動通信システムにおける適応的伝送アンテナダイバーシティ装置及び方法
JP2005502258A (ja) 無線通信システムにおけるマルチパス除去のための方法及び装置
EP2515461B1 (en) Root spreading code based assignment for hsdpa
JP2012526435A (ja) 補足的パイロットシンボルの生成によるチャネル推定を向上させる方法および装置
CN107332796B (zh) 盲检、上行接入方法及装置、接收机、发射机、基站
WO2009018725A1 (en) A demodulation method and apparatus, and an equalization method and system in transmitting delivery mode
JP2008504722A (ja) データ送信方法及び受信器
US20080089403A1 (en) Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations
US20070071073A1 (en) method and apparatus for interference cancellation
WO2005122450A1 (fr) Recepteur multi-utilisateur d'un canal physique specialise de liaison montante
WO2011079470A1 (zh) 一种干扰消除的方法和装置
WO2004052038A1 (fr) Dispositif de reception multiutilisateur d'un canal physique dedie aux communications montantes dans un systeme amrc large bande
JP5722407B2 (ja) マルチコードcdmaシステムのmmseスペースタイムイコライザーのための最適重み

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase