WO2005122294A1 - Electric device packed in film - Google Patents

Electric device packed in film Download PDF

Info

Publication number
WO2005122294A1
WO2005122294A1 PCT/JP2005/010843 JP2005010843W WO2005122294A1 WO 2005122294 A1 WO2005122294 A1 WO 2005122294A1 JP 2005010843 W JP2005010843 W JP 2005010843W WO 2005122294 A1 WO2005122294 A1 WO 2005122294A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
sealing
electric device
sheet
Prior art date
Application number
PCT/JP2005/010843
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yageta
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006514603A priority Critical patent/JP4876915B2/en
Publication of WO2005122294A1 publication Critical patent/WO2005122294A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a film-covered electric device in which electric device elements such as a battery element and a capacitor element, such as a chemical battery element and a capacitor element, are sealed with a film material.
  • a battery element is surrounded by a laminated film in which a metal layer and a heat-sealing resin layer are laminated, and a positive electrode and a negative electrode connected to the battery element.
  • the battery element is hermetically sealed (hereinafter simply referred to as “sealing”) by heat-sealing the open edge of the laminate film with the lead of the battery pulled out from the laminate film. Being done.
  • a battery using a film as an exterior material does not cause outside air to enter the inside of the battery or leak of electrolyte in the battery, as shown in Fig. It is required that the sealing reliability at the heat-sealed part be ensured.
  • sealing reliability is important for batteries containing non-aqueous electrolyte (hereinafter also referred to as “non-aqueous electrolyte batteries”). If there is poor heat fusion, the electrolyte deteriorates due to the components of the outside air, and the battery performance is significantly reduced.
  • Patent Document 1 discloses a film-covered battery in which a multilayer sheet is interposed in a part of a sealing portion of a package film.
  • the multilayer sheet is obtained by laminating a resin film having sufficient heat-fusibility with the exterior film on both sides of a resin film having a lower melting point than the heat-fusible resin layer of the exterior film.
  • the inner layer of the multilayer sheet is melted and melted, thereby releasing gas generated inside the battery.
  • Patent Document 2 discloses that a sheet-like member having a higher melting point than the heat-fusible resin layer of the exterior film is sandwiched in a part of the sealing portion of the exterior film, A film-covered battery in which an outer film is in an unfused state in a region where this member is interposed is disclosed.
  • Patent Document 3 discloses a film-covered battery in which at least a part of a sealing portion of a covering film is provided with a sealing means having low pressure resistance.
  • the sealing means a sealing portion which is heat-sealed under a heat-sealing condition such that the peel strength becomes a predetermined value, or a shape obtained by making a material of a fusion bonding material or an adhesive different from other portions.
  • An example of the formed sealing portion is shown in FIG.
  • the pressure release structure disclosed in Patent Document 1 is a structure in which the pressure inside the battery is released by softening and melting the inner layer of the multilayer sheet, the release pressure depends on the temperature and the inner layer. It depends on the melting point of the constituent resin film, and it is difficult to arbitrarily adjust the opening pressure.
  • the pressure release structure disclosed in Patent Document 2 since the member sandwiched between the sealing portions is sheet-shaped, the exterior material is not joined in the region where the member is sandwiched, and the sealing reliability is reduced. It will be extremely low.
  • the pressure release structure disclosed in Patent Document 3 as described above, the conditions for heat fusion are changed, and The material of the adhesive is different from other parts.
  • An object of the present invention is to provide a film-covered electric device that can easily set an opening pressure at the time of film expansion due to generation of a gas in an abnormal state without lowering the sealing reliability of an electric device element. It is.
  • the film-covered electric device of the present invention has a structure in which an electric device element and at least a heat-sealing layer made of a heat-fusible resin and a non-venting layer are laminated. And
  • the sealing film surrounds the electric device elements with the heat-sealing layer as the inner surface, and the heat-sealing layers facing each other around the heat-sealing layer are heat-sealed to form a sealing region for sealing the electric device elements.
  • At least one sheet-shaped member made of a resin having a melting point higher than that of the heat-fusible resin is sandwiched in a part of the sealing region in a space between the facing exterior films and surrounding the electric device. It is arranged to be exposed to.
  • the sheet-like member has a structure in which the molten heat-fusible resin can penetrate, and the heat-fusible resin permeates the sheet-shaped member.
  • the sheet-shaped member is sandwiched between the facing outer films in a part of the sealing region.
  • the sheet-shaped member has a structure through which the molten heat-fusible resin can penetrate.
  • the resin constituting the sheet-like member is melted by heat fusion for forming a sealing region having a higher melting point than the heat-fusible resin constituting the heat-sealing layer of the exterior film. Absent. Therefore, the peeling strength of the portion where the sheet-like member is sandwiched in the sealing region is smaller than that of the other portions, and this portion can be preferentially peeled when the internal pressure rises, and the pressure can be released.
  • the heat-sealing resin can penetrate into the sheet member by the heat-sealing of the exterior film, and the sealing reliability does not decrease even if the structure is interposed with the sheet member. Yes. Since the peel strength at the portion where the sheet-shaped member is sandwiched depends on the degree of penetration of the heat-fusible resin of the sheet-shaped member, the penetration degree of the heat-fusible resin should be appropriately selected. Thereby, the peeling strength at the portion where the sheet-like member is sandwiched, that is, the opening pressure can be arbitrarily set.
  • a fiber aggregate represented by a nonwoven fabric, a microporous film, or the like can be used as the sheet-like member.
  • a pressure release portion is provided for communicating the inside of the space surrounding the electric device element with the outside air by peeling the exterior film in this region.
  • the pressure release portion can be, for example, a hole or cut formed in at least one of the facing films in the sealing region.
  • a very simple configuration in which a sheet-like member having a structure through which molten heat-fusible resin can penetrate is sandwiched between facing exterior films in a part of the sealing region,
  • the opening pressure can be easily and reliably set without lowering the sealing reliability of the electric device element.
  • FIG. 1 is an exploded perspective view of a film-covered battery according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the film-covered battery shown in FIG. 1 at a portion where a nonwoven fabric is sandwiched, along a longitudinal direction of a sealing region.
  • FIG. 3A is a view showing an example of an arrangement direction of nonwoven fabric fibers sandwiched between sealing regions.
  • FIG. 3B is a view showing another example of the arrangement direction of the fibers of the nonwoven fabric sandwiched between the sealing regions.
  • FIG. 4 is a schematic cross-sectional view along a longitudinal direction of a sealing region at a portion where the nonwoven fabric is sandwiched when two nonwoven fabrics are sandwiched.
  • FIG. 5 Another example of a nonwoven fabric to be sandwiched, showing a sealed region at a portion where the nonwoven fabric is sandwiched.
  • FIG. 6 is a plan view of a sealing region in a portion where the nonwoven fabric is sandwiched in a case where a through hole is added to a portion where the nonwoven fabric is sandwiched.
  • FIG. 7 is a plan view showing a modified example of the example shown in FIG. 6, showing a sealing region at a portion where a nonwoven fabric is sandwiched.
  • FIG. 8 is a plan view of a sealed region in a portion where a nonwoven fabric is sandwiched in a film-covered battery according to another embodiment of the present invention.
  • FIG. 9 is a perspective view for explaining a peeling stress acting when the boundary of the heat-sealed portion of the exterior film has no unevenness.
  • FIG. 9 is a perspective view illustrating a peeling stress acting on the protruding portion shown in FIG. [11]
  • FIG. 9 is a plan view showing the progress of peeling at the protruding portion shown in FIG.
  • a flattened structure having a structure in which a plurality of positive electrodes and a plurality of negative electrodes are stacked
  • the battery element 2 having a substantially rectangular parallelepiped shape, the positive electrode lead 3 and the negative electrode lead 4 connected to the positive electrode and the negative electrode of the battery element 2, respectively, and a part of the positive electrode lead 3 and the negative electrode lead 4 are extended to form the battery element 2.
  • a film packaged battery 1 according to an embodiment of the present invention having a package film 5 to be sealed is shown.
  • a plurality of positive electrodes and a plurality of negative electrodes each made of a metal foil having both surfaces coated with an electrode material are alternately stacked via a separator.
  • Each positive electrode and each negative electrode has an uncoated portion on which no electrode material is applied. The non-applied portion is also provided so that one side force of each positive electrode and each negative electrode also protrudes.
  • the non-coated portions of the positive electrode and the non-coated portions of the negative electrode are collectively ultrasonically welded and connected to the positive electrode lead 3 and the negative electrode lead 4, respectively.
  • the positive electrode and the negative electrode are overlapped with the non-coated portion of the electrode material protruding in the opposite direction.
  • the positive electrode lead 3 and the negative electrode lead 4 are drawn out from the sides of the film-covered battery 1 facing each other.
  • the planar shape of the film-covered battery 1 is substantially rectangular, and the positive electrode lead 3 and the negative electrode lead 4 are drawn out from short sides of the rectangle.
  • an aluminum foil is used for a metal foil constituting a positive electrode
  • a copper foil is used for a metal foil constituting a negative electrode
  • An aluminum plate is used for the positive electrode lead 3
  • a nickel plate or a copper plate is used for the negative electrode lead 4.
  • the negative electrode lead 4 is made of a copper plate, its surface may be plated with nickel.
  • a sheet-like member that can be impregnated with an electrolyte such as a microporous film (microporous film), a nonwoven fabric, or a woven fabric, made of a thermoplastic resin such as polyolefin is used. be able to.
  • a dry process in which fine holes are formed in the film by uniaxially or biaxially stretching the film, or a film is formed by melting and kneading a base polymer with a solvent or fine particles, and then immersion in a solvent it can be produced by a production method such as a wet process in which a solvent or fine particles are extracted by volatilization, and if necessary, further stretched to form a porous film.
  • the exterior film 5 is formed by two sheets of lamination surrounding the battery element 2 sandwiching the battery element 2 from both sides in the thickness direction, and heat-fusing the opposing surfaces overlapping each other around the battery element 2 to form a battery. Element 2 is sealed.
  • Figure 1 shows the area of the exterior film 5 that is to be heat-sealed.
  • the stop area 5a is indicated by oblique lines.
  • the exterior film 5 has a cup portion 5b in a central region in order to form a battery element storage portion which is a space surrounding the battery element 2.
  • the sealing region 5a is formed all around the cup portion 5b.
  • the processing of the cup portion 5b can be performed by deep drawing. In the example shown in FIG. 1, the cup portion 5b is formed on both the outer films 5, the force cup portion may be formed on only one of them, or the outer film 5 may be formed without forming the cup portion.
  • the battery element 2 may be surrounded by utilizing the flexibility of the above.
  • a laminate film constituting the exterior film 5 if the battery element 2 is flexible and can seal the battery element 2 by heat fusion so as to prevent electrolyte solution from leaking, this type of laminate film is used.
  • a film generally used for a film-covered battery can be used.
  • a typical layer configuration of the laminate film used for the exterior film 5 is a configuration in which a non-venting layer made of a metal thin film and the like and a heat-sealing layer made of a heat-fusible resin are laminated, or a non-venting layer is used.
  • a protective layer made of a film such as polyester or nylon such as polyethylene terephthalate is further laminated on the surface of the layer opposite to the heat-sealing layer.
  • a protective layer made of a film such as polyester or nylon such as polyethylene terephthalate is further laminated on the surface of the layer opposite to the heat-sealing layer.
  • the metal thin film constituting the non-ventilated layer for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy, or the like having a thickness of 10 m to L00 m can be used.
  • the heat-fusible resin used for the heat-sealing layer is not particularly limited as long as it is a heat-fusible resin.
  • examples include polypropylene, polyethylene, acid modified products thereof, polyphenylene sulfide, and polyolefin. Polyesters such as ethylene terephthalate, polyamides, ethylene butyl acetate copolymer and the like can be used.
  • the thickness of the heat-sealing layer is preferably from 30 m to 100 m, more preferably from 10 m to 200 m.
  • a nonwoven fabric 8 sandwiched between the exterior films 5 sandwiching the battery element 2 and exposed in the battery element storage portion is formed by heat of the exterior films 5 with each other. It is held by fusion.
  • the nonwoven fabric 8 is made of a resin having a melting point higher than the melting point of the heat-fusible resin constituting the heat-fusible layer of the exterior film 5 and different from the heat-fusible resin of the exterior film 5. It is a thing.
  • the heat-fusible resin constituting the heat-sealing layer of the exterior film 5 is polypropylene
  • the nonwoven fabric 8 is made of polyethylene terephthalate. Can be used.
  • the heat-sealing of the exterior films 5 is performed at a temperature higher than the melting point of the heat-fusible resin constituting the heat-sealing layer of the exterior film 5 and lower than the melting point of the resin constituting the nonwoven fabric 8. Do with. As a result, the heat-fusible layer 6 melts, but the fibers 9 of the nonwoven fabric 8 do not melt, so that the heat-fusible resin of the heat-fusible layer 6 permeates between the fibers 9 of the nonwoven fabric 8 as shown in FIG. Then, the nonwoven fabric 8 is embedded and held in the heat sealing layer 6 of the exterior film 5.
  • FIG. 2 schematically shows a cross section of a side of the sealing region 5a in which the nonwoven fabric 8 is sandwiched in FIG.
  • the heat-sealing layers 6 of the two external films 5 are united by heat-sealing.
  • the layer outside the heat-sealing layer 6 is the non-venting layer 7 of the exterior film 5.
  • the structure in which the nonwoven fabric 8 is sandwiched between the facing films 5 facing each other in the sealing region 5a can be manufactured, for example, as follows. First, a nonwoven fabric 8 cut in advance to a predetermined size is placed on a portion to be the sealing region 5a of one of the two exterior films 5, and the adhesive or the heat-sealing layer 6 is slightly softened. The nonwoven fabric 8 is temporarily fixed to the exterior film 5 by heat fusion at a low temperature. The temporary fixing is not required to firmly fix the nonwoven fabric 8 to the exterior film 5, but may be sufficient to hold the nonwoven fabric 8 on the exterior film 5 until the sealing region 5 a is finally formed.
  • the battery element 2 to which the positive electrode lead 3 and the negative electrode lead 4 are connected is mounted on the outer film 5 on which the nonwoven fabric 8 is temporarily fixed, and another outer film 5 is further covered therefrom.
  • the outer film 5 is heat-sealed around the entire circumference.
  • the heat fusion temperature at this time is higher than the melting point of the heat-fusible resin constituting the heat-fusible layer 6 of the exterior film 5 and higher than the melting point of the resin constituting the nonwoven fabric 8.
  • Use a low temperature As a result, the heat-sealed portion of the exterior film 5 becomes the sealing region 5a, and the film exterior battery 1 having the nonwoven fabric 8 interposed in a part thereof is obtained.
  • the heat-sealing layer 6 has heat-fusible resin continuously above and below the non-woven fabric 8 even though the non-woven fabric 8 is interposed therebetween, which is different from the case where a sheet-like member is sandwiched.
  • the heat-fusible resin is not divided in the thickness direction of the heat-fusible layer 6. Therefore, the sealing performance required for the sealing region 5a can be obtained.
  • the bonding region between the heat-fusible layers 6 of the respective exterior films 5, that is, the heat-fusible resin is continuously connected.
  • the non-woven fabric 8 having the same area is sandwiched, the area becomes smaller than that of the other areas.
  • the nonwoven fabric 8 is made of a resin having a different melting point and a higher melting point than the heat-fusible resin constituting the heat-fusible layer 6. Adhesive strength to fat is smaller than adhesive strength between heat-fusible resins.
  • the portion where the nonwoven fabric 8 is sandwiched can be peeled off with a small peeling stress as compared with the other sealing region 5a. Therefore, when the peeling force acts on the sealing region 5a, the peeling of the exterior film 5 in the sealing region 5a proceeds preferentially in the portion where the nonwoven fabric 8 is sandwiched.
  • the battery element housing communicates with the outside (outside air) of the film package battery 1, whereby the increased pressure is released. Therefore, a specific positional force gas can be ejected before the film-covered battery 1 ruptures, so that the rupture of the film-covered battery 1 and ejection of gas in an unintended direction can be prevented.
  • the peel strength of the sealing region 5 a depends on the proportion of the heat-fusible resin in the heat-fusible layer 6. If this proportion is high, the peel strength tends to be high, and if the proportion is low, the peel strength tends to be low.
  • the proportion of the heat-fusible resin in the heat-fusible layer 6 depends on the basis weight of the nonwoven fabric 8 to be sandwiched. If the basis weight is large, the proportion of the heat-fusible resin is low. If the basis weight is small, the proportion of the heat-fusible resin tends to be high. As described above, the peel strength in the region where the nonwoven fabric 8 is sandwiched can be adjusted by appropriately setting the basis weight of the nonwoven fabric 8 to be sandwiched.
  • Low peel strength means that the gas can be released at a lower internal pressure.
  • sandwich the nonwoven fabric 8 By adopting a structure in which the peel strength is adjusted, the basis weight of the nonwoven fabric 8 can be appropriately set, and the gas release pressure can be arbitrarily set.
  • a non-woven cloth 8 which is an aggregate of fibers 9, as a member to be sandwiched between the parts from which gas is to be released, different types of seals, such as those found in a conventional oil-sandwiched safety valve structure, can be obtained.
  • a non-woven cloth 8 which is an aggregate of fibers 9, as a member to be sandwiched between the parts from which gas is to be released.
  • any of a wet type, a dry type (fat adhesion, thermal bond, spunlace) and a spun bond type (melt spinning, wet spinning, flash spinning, melt blowing) may be used.
  • a dry type fat adhesion, thermal bond, spunlace
  • a spun bond type melt spinning, wet spinning, flash spinning, melt blowing
  • the nonwoven fabric 8 may be sandwiched so that the fibers 9 are arranged from the outer edge to the inner edge of the sealing region 5a substantially in parallel with the direction of force, or as shown in FIG.3B.
  • the nonwoven fabric 8 may be sandwiched so that the fibers 9 are arranged in a direction substantially perpendicular to the direction from the outer edge to the inner edge of the sealing region 5a.
  • the arrangement direction of the fibers 9 may be different from these.
  • the inner edge of the sealing region 5a is an edge on the battery element 2 side
  • the outer edge is an edge on a side remote from the battery element 2.
  • the basis weight of the nonwoven fabric 8 to be sandwiched may be increased.
  • the thickness of the nonwoven fabric 8 generally increases in accordance with the basis weight, if the thickness of the nonwoven fabric 8 is excessively large in order to obtain a desired basis weight, heat is not generated during heat fusion.
  • the adhesive resin does not sufficiently penetrate between the fibers 9 of the nonwoven fabric 8 and the sealing reliability is impaired. Therefore, when a lower opening pressure is required, it is preferable to sandwich two nonwoven fabrics 8 one on top of the other, as shown in FIG.
  • the peel strength is made smaller than when one nonwoven fabric 8 having the same basis weight as the total basis weight of the two nonwoven fabrics 8 is sandwiched. be able to. This is because the two nonwoven fabrics 8 overlap each other, so that This is presumably because the area where the heat-fusible resin permeated through the woven fabric 8 is connected becomes smaller, and the bonding area between the heat-fusible resins becomes smaller than in the case of a single nonwoven fabric 8.
  • the number of the nonwoven fabrics 8 to be superimposed is not limited to two, but if it is necessary to set a lower opening pressure than it is, three or more nonwoven fabrics can be used.
  • the shape and size of the nonwoven fabric 8 are not particularly limited as long as the shape and size of the nonwoven fabric 8 have a portion extending from the outer edge to the inner edge of the sealing region 5a!
  • FIG. 1 shows the force of a rectangular nonwoven fabric 8 .
  • the trapezoidal shape shown in FIG. 5 the inner edge length L1 of the nonwoven fabric 8 is longer than the outer edge length L2, and the battery element 2 side edge to the outer edge
  • the nonwoven fabric 8 may be shaped such that the size decreases as the force increases. Thereby, the shape of the nonwoven fabric 8 becomes a shape according to the progress of the peeling, so that the peeling can proceed smoothly.
  • the inner edge and the outer edge of the nonwoven fabric 8 are, similarly to the inner edge and the outer edge of the sealing region 5a described above, an edge on the battery element 2 side and an outer edge on the side away from the battery element 2.
  • the number of the nonwoven fabrics 8 to be sandwiched is not limited to one, and a plurality of nonwoven fabrics can be used.
  • a through-hole 10 that penetrates through the exterior film 5 can be formed as a pressure release part in a region where the nonwoven fabric 8 is sandwiched in the sealing region 5a.
  • the opening pressure can also be adjusted by adjusting the position of the through hole 10, and the adjustment of the position of the through hole 10 is easier than the adjustment of the basis weight of the nonwoven fabric 8. By providing such a through hole 10, the opening pressure can be adjusted more accurately.
  • the through-hole 8 When the through-hole 8 is formed in the region where the nonwoven fabric 8 is sandwiched, the pressure is released when the peeling reaches the through-hole 10, so that the peeling does not proceed outside the through-hole 10. . Therefore, when the through hole 10 which is a pressure release portion is provided, as shown in FIG. 7, the width W1 of the nonwoven fabric 8 is made smaller than the width W2 of the sealing region 5a, and the outer edge 8b of the nonwoven fabric 8 is sealed. Even if it is located inside the outer edge of the stop region 5a, the substantial opening pressure does not change. In addition, this allows the size of the nonwoven fabric 8 to be reduced, and the amount of the nonwoven fabric 8 to be used can be reduced.
  • the width of the nonwoven fabric 8 and the sealing region 5a means a length in a direction from the outer edge to the inner edge of the sealing region 5a.
  • the shape of the nonwoven fabric 8 is arbitrary. Yes, for example, the shape shown in FIG. 5 can be used, and the number of nonwoven fabrics 8 to be sandwiched can be not only one but also a plurality of nonwoven fabrics.
  • FIGS. 6 and 7 show an example in which the through hole 10 is provided as the pressure release portion, but the pressure release portion does not need to be the through hole 10.
  • the same effect can be obtained by forming a cut in the non-woven fabric 8 halfway in the region where the non-woven fabric 8 is sandwiched from the outer edge to the inner edge of the sealing region 5a.
  • the opening pressure can be arbitrarily adjusted depending on the position of the tip of the cut.
  • the pressure release portion does not need to have a structure that penetrates two overlapping exterior films. The same effect can be obtained even if a through hole or cut is formed in only one of the two exterior films that overlap. can get.
  • the shape of the force sealing region 5a itself which is an example in which the sealing region 5a is formed with a constant width, is changed to a shape in which the peeling stress is likely to act locally, and the nonwoven fabric 8 is formed. Can be more effectively exerted.
  • Fig. 8 shows an example.
  • the exterior films facing each other are thermally fused to the edge of the sealing region 5a on the battery element 2 side, that is, the two non-fused portions 11
  • the two non-fused portions 11 are spaced from each other in the direction along the peripheral edge of the sealing region 5a, so that the region between the non-fused portions 11 becomes the battery element housing portion.
  • the protruding portion 12 protrudes toward the front.
  • the nonwoven fabric 8 is located at the projecting portion 12, and the facing outer film is heat-sealed at the projecting portion 12 via the nonwoven fabric 8. Further, a through hole 10 which is a pressure release part is formed in the protruding part 12.
  • the protruding portion 12 that protrudes toward the battery element storage portion in the sealing region 5a
  • the internal pressure of the film-covered battery increases due to generation of gas from the battery element 2.
  • the bowing I peeling stress of the exterior film in the sealing region 5a acts intensively on the protrusion 12, and the peeling of the exterior film proceeds preferentially at the protrusion 12.
  • the peeling reaches the position of the through hole 8 as the internal pressure increases, the battery element housing communicates with the outside of the film-covered battery, and the increased pressure is released through the through hole 8.
  • the peeling stress F1 is one-way. Only for The peeling proceeds toward the outer edge of the exterior film 5.
  • the non-fused portion 11 exists on both sides of the protruding portion 12, and the non-fused portion 11 is also filled with gas as shown in FIG.
  • the exterior film 5 swells on both sides of the protruding portion 12, so that the protruding portion 12 is subjected to a peeling stress F2 on the side edge in addition to the peeling stress F1 acting on the tip. Therefore, a peeling stress greater than that of the other portions acts on the corners of the protruding portion 12 as these resultant forces, and the peeling of the exterior film 5 proceeds at the corners in preference to the other portions.
  • FIG. 11 shows the progress of peeling of the exterior film 5 at the protruding portions 12.
  • peeling proceeds from both sides of the protruding portion 12 as a ⁇ b ⁇ c as the internal pressure increases.
  • the peeling position of the exterior film 5 depends on the material of the exterior film 5, the width Wp of the projection 12, the projection length L of the projection 12, and the internal pressure. Therefore, if the material of the outer film 5, the width Wp of the protruding portion 12, and the protruding length L of the protruding portion 12 are determined in advance, by adjusting the position of the through hole 8, the inside and outside of the battery element housing portion can be adjusted.
  • the opening pressure which is the internal pressure of the battery element housing when the communication is established, can be arbitrarily set. In other words, if the through hole 8 is provided at a position near the tip of the protruding portion 12, the pressure can be released at a low internal pressure, and if the through hole 8 is provided near the base of the protruding portion 12, the pressure can be increased to a high internal pressure. Do not open.
  • the protruding portion 12 functions as a stress concentration portion when the internal pressure of the exterior film battery increases.
  • this function of the protruding portions 12 and the above-described operation and effect of the nonwoven fabric 8 can be combined to more reliably and easily control the opening pressure. .
  • the shape and the like of the stress concentration portion provided in the sealing region 5a are not limited to those shown in FIG. 8, as long as the peeling stress can act in a concentrated manner.
  • the shape of the protruding portion 12 is substantially protruding toward the battery element 2, if the shape thereof is tapered, Any shape, such as one having an arc-shaped tip, can function as a stress concentration portion.
  • the non-fused portion 11 may be provided in an island shape independently of other heat-fused portions, or may be provided so as to protrude from the inner edge of the sealing region 5a without providing the non-fused portion 11. Is also good.
  • the nonwoven fabric 8 is sandwiched between the facing outer films at the stress concentration portion, and a pressure release portion is provided in this portion.
  • the nonwoven fabric 8 is sandwiched at a position where the internal pressure due to the gas generated in the battery housing is most likely to act.
  • the long side from which the positive electrode lead 3 and the negative electrode lead 4 are not drawn out is approximately at the center in the direction along that side.
  • the nonwoven fabric 8 is sandwiched between the portions.
  • a nonwoven fabric is used as the sheet-like member disposed between the facing exterior films in the sealing region.
  • the nonwoven fabric is not limited to a nonwoven fabric as long as it is made of a resin having a higher melting point than the heat-fusible resin constituting the fusion-bonding layer and has a structure through which the melted heat-fusible resin can penetrate.
  • Examples of such a sheet-like member include a fiber aggregate, a microporous film, and a resin sheet. Even when the structure of each of the above-described examples is replaced with a fiber aggregate, a microporous film, a resin sheet, and the like. The same effect as described above can be obtained.
  • the fiber aggregate is configured so that the heat-fusible resin penetrates between a large number of fibers and the fibers.
  • a woven fabric in which fibers are woven in the course of the process is also used.
  • the opening pressure can also be set arbitrarily in the woven fabric by appropriately setting the basis weight.
  • the microporous film is a film formed by dispersing a large number of micropores. When a microporous film is used as a sheet-like member, the heat-fusible resin permeates into these micropores.
  • the same material as used for the separator can be used as long as it has a higher melting point than the heat-fusible resin constituting the heat-fused layer of the exterior film.
  • the manufacturing method is also as described in the description of the separator.
  • the opening pressure can be controlled by appropriately setting the size and distribution density of the micropores.
  • the size and distribution density of the micropores depend on the stretching ratio of the microporous film when manufactured by a dry process, and the diameter of the solvent and fine particles when manufactured by a wet process.
  • the resin sheet like the microporous film, is formed by dispersing a number of openings through which the molten heat-fusible resin penetrates, and the opening pressure can be controlled by the opening ratio.
  • the resin sheet is distinguished from the microporous film in that the thickness is larger than that of the microporous film.
  • a resin sheet through which molten heat-fusible resin can penetrate can be produced by forming a large number of openings in a raw sheet formed by, for example, a ⁇ die method using a punching method or a heating needle.
  • the size of the gap between the fibers of the fiber assembly, the pore size of the microporous film, and the pore size of the opening of the resin sheet are as small as possible and the gap between the fibers of the fiber assembly, the pores of the microporous film, It is preferable that the openings of the fat sheet are uniformly arranged over the entire area of these sheet-shaped members. Since these are intended to function as pressure relief parts, it is important to ensure that when internal pressure rises, stable peeling occurs at the part where the path for pressure relief is to be formed. This is because it is preferable that the adhesive strength is uniform.
  • the size of the gap between the fibers and the diameter of the pores are too large, inconveniences such as non-uniform bonding strength with the exterior film and a large variation in the opening pressure are caused.
  • the sealing width width W2 in Fig. 7
  • using a resin sheet with openings of 3 mm in diameter randomly distributed may lead to uneven bonding strength at a pitch of 3 mm.
  • the number of openings may differ for each product.
  • the size of the gap between the fibers and the pore diameter are preferably 1 mm or less, more preferably 0.5 mm or less, and most preferably 0.1 mm or less.
  • the gap between the fibers and the diameter of the pores need to be large enough to allow the molten heat-fusible resin to penetrate.
  • the density should be such that the adhesive strength between the sheet-like member and the exterior film is as uniform as possible. It is preferred to be located! / ,.
  • the battery element is sandwiched from both sides in the thickness direction by two exterior films, and the surrounding four sides are heat-sealed. Fold the battery element, open it, and heat seal the three sides to seal the battery element.
  • a positive electrode, a negative electrode, and a separator were formed in a strip shape in which a plurality of positive electrodes and a plurality of negative electrodes were alternately stacked, and the positive electrode and the separator were sandwiched by a separator.
  • a negative electrode may be a wound-type battery element in which positive electrodes and negative electrodes are alternately arranged by stacking the negative electrode, winding the negative electrode, and compressing the negative electrode.
  • any battery element used for a normal battery can be applied as long as it includes a positive electrode, a negative electrode, and an electrolyte.
  • a battery element in a general lithium ion secondary battery includes a positive electrode plate in which a positive electrode active material such as lithium manganese composite oxide and lithium cobalt oxide is coated on both surfaces such as aluminum foil, and a lithium dope.
  • a negative electrode plate coated with a dopable carbon material on both sides such as copper foil is opposed to each other via a separator, and is impregnated with an electrolyte containing a lithium salt.
  • Other battery elements include other types of battery elements such as nickel metal hydride batteries, nickel cadmium batteries, lithium metal primary or secondary batteries, and lithium polymer batteries.
  • the present invention can accumulate electric energy inside and generate gas by a danigami reaction or a physical reaction, such as a capacitor element such as a capacitor such as an electric double layer capacitor or an electrolytic capacitor.
  • a danigami reaction or a physical reaction, such as a capacitor element such as a capacitor such as an electric double layer capacitor or an electrolytic capacitor.
  • the present invention can also be applied to electric devices in which electric device elements are sealed with an exterior film.
  • FIG. 1 shows an example in which the positive electrode lead 3 and the negative electrode lead 4 are extended from the opposite side of the film-covered battery 1. These forces may extend on the same side. Then, they may extend from adjacent sides.
  • Nylon Z aluminum foil Z polypropylene 25 ⁇ m thick, Using a laminated film having a laminated structure of 40 ⁇ m, 50 / zm), battery elements were housed inside to prepare a film-covered battery.
  • the external shape of the film-covered battery was rectangular, and the two opposing short sides pulled out the positive and negative leads, respectively.
  • a portion functioning as a safety valve was formed on one of the two long sides of the film-covered battery from which the lead was not drawn out as follows.
  • One nonwoven fabric cut into a rectangle of 20 mm ⁇ 20 mm was temporarily fixed to one of the two laminated films on the polypropylene side of the portion to be sealed on the long side.
  • the temporary fixing position of the nonwoven fabric was set at the center of the long side.
  • As the nonwoven fabric a polyester nonwoven fabric having a basis weight of 18 g / m 2 and a thickness of 36 / zm was used.
  • the other laminated film is opposed to the non-woven fabric with the polypropylene layer inside, sandwiching the nonwoven fabric. A sandwiched sealing region was formed.
  • the heat fusion heater one having a metal head on one side and a silicone rubber on the other head was used.
  • the heat fusion temperature was 190 ° C.
  • the heat fusion temperature, pressure, and time were set to the same conditions in each of the following examples and comparative examples including the present example.
  • a film-covered battery was produced in the same manner as in Example 1, except that the same nonwoven fabric used in Example 1 was stacked as two nonwoven fabrics to be sandwiched.
  • a film-covered battery was produced in the same manner as in Example 1, except that a nonwoven fabric made of polyester having a basis weight of 43 g / m 2 and a thickness of 90 m was used as the nonwoven fabric to be sandwiched.
  • the number of sandwiched nonwoven fabrics is one.
  • a film-covered battery was produced in the same manner as in Example 1 except that a non-woven fabric was sandwiched.
  • the peel strength of the sealed region was measured for the film-covered batteries of Examples 1 to 3 and Comparative Example 1 manufactured as described above.
  • a portion where a non-woven fabric is sandwiched (Comparative Example 1 uses a non-woven fabric, so the same as in Examples 1-3) Part) was cut into an elongated shape in the direction from the outside to the inside of the film-covered battery, including the unsealed part.
  • the unsealed portion of the obtained sample was gripped by two chucks of a tensile tester, and the peel strength was measured by a T-type peel test. Table 1 shows the measurement results.
  • Example 2 As shown in Table 1, by sandwiching the nonwoven fabric in the sealing region, a portion having a small peel strength was able to be formed. Comparing Example 1 with Example 3, it can be seen that the peel strength can be controlled by the basis weight of the nonwoven fabric to be sandwiched. Further, as shown in Example 2, by laminating a plurality of nonwoven fabrics, the peel strength can be significantly reduced. Specifically, in Example 2, the total basis weight of the two nonwoven fabrics was 36 gZ, and the total thickness was 72 / zm.These values were smaller than those of Example 3, but the peel strength was higher than that of Example 3. It is getting smaller.

Abstract

A releasing pressure can be easily set for inner pressure increase due to gas generation, without deteriorating sealing reliability of an electric device element. A battery (1) packed in a film is provided with a battery element (2) and a packing film (5) for packing the battery element (2). The packing film (5) is a laminated film provided by laminating a non-breathable layer composed of a metal foil and a heat sealing layer composed of a heat sealing resin. The heat sealing layers are faced and are heat-sealed in the periphery of the battery element (2) to seal the battery element (2). In a part of a sealed area (5a) formed by heat-sealing the packing film (5), a nonwoven cloth (8) is sandwiched between the facing packing films (5), and the heat sealing resin is spread in the fiber of the nonwoven cloth (8).

Description

明 細 書  Specification
フィルム外装電気デバイス  Film-covered electrical device
技術分野  Technical field
[0001] 本発明は、電池やキャパシタに代表される、化学電池要素やキャパシタ要素などの 電気デバイス要素をフィルムカゝらなる外装材で封止したフィルム外装電気デバイスに 関する。  The present invention relates to a film-covered electric device in which electric device elements such as a battery element and a capacitor element, such as a chemical battery element and a capacitor element, are sealed with a film material.
背景技術  Background art
[0002] 従来、フィルムを外装材として用いたフィルム外装電池としては、金属層と熱融着榭 脂層とを積層したラミネートフィルムで電池要素を包囲し、電池要素に接続された正 極および負極のリードをラミネートフィルムから引き出した状態で、ラミネートフィルム の開放した縁部を熱融着することによって、電池要素を気密封止(以下、単に「封止」 とも 、う)した構成のものが知られて 、る。  [0002] Conventionally, as a film-covered battery using a film as a packaging material, a battery element is surrounded by a laminated film in which a metal layer and a heat-sealing resin layer are laminated, and a positive electrode and a negative electrode connected to the battery element. The battery element is hermetically sealed (hereinafter simply referred to as “sealing”) by heat-sealing the open edge of the laminate film with the lead of the battery pulled out from the laminate film. Being done.
[0003] フィルムを外装材とする電池は、他の種類の外装材を用いた場合と同様、電池内 部への外気の進入や電池内の電解液の漏れが生じな!/、ように、熱融着部分での封 止信頼性が確保されることが要求される。特に、非水電解液を含む電池 (以下、「非 水電解電池」ともいう)では封止信頼性は重要である。熱融着不良があった場合、外 気の成分により電解液が劣化し、電池性能が著しく低下する。  [0003] As in the case of using other types of exterior materials, a battery using a film as an exterior material does not cause outside air to enter the inside of the battery or leak of electrolyte in the battery, as shown in Fig. It is required that the sealing reliability at the heat-sealed part be ensured. In particular, sealing reliability is important for batteries containing non-aqueous electrolyte (hereinafter also referred to as “non-aqueous electrolyte batteries”). If there is poor heat fusion, the electrolyte deteriorates due to the components of the outside air, and the battery performance is significantly reduced.
[0004] ところで、電池の使用時に、電池に規格範囲外の電圧が印加されたりすると、電解 液溶媒の電気分解によりガス種が発生することがある。さら〖こ、電池が規格範囲外の 高温で使用されたりしても、電解質塩の分解などによりガス種のもとになる物質が生 成される。基本的には、規格範囲内で電池を使用してガスを発生させないようにする ことが理想である。しかし、電池の制御回路が何らかの原因で故障して異常な電圧が 印加されたり、何らかの原因で周囲が異常に高温となったりすると、場合によっては 大量にガスが発生することもある。  [0004] By the way, when a voltage outside the specified range is applied to the battery during use of the battery, gas species may be generated due to electrolysis of the electrolyte solvent. In addition, even if the battery is used at a high temperature outside the specified range, substances that are the source of gas are generated by decomposition of the electrolyte salt. Basically, it is ideal to use batteries within the specified range so that no gas is generated. However, if the battery control circuit fails for some reason and abnormal voltage is applied, or if the surroundings become abnormally high for some reason, a large amount of gas may be generated in some cases.
[0005] 電池内部でのガスの発生は、電池の内圧上昇をもたらす。内圧が極度に上昇する ことにより電池が暴発するのを防ぐために、外装材として金属缶を用いた電池の多く は、電池の内圧が上昇した際にガスを電池の外部に逃がす圧力安全弁を有している 。しかし、フィルムを外装材とするフィルム外装電池においては、圧力安全弁を設ける ことが構造上難しい。フィルム外装電池では内圧が上昇しすぎるとフィルムが膨張し、 最終的にはフィルムが破裂しその箇所力 ガスが噴出するが、破裂がどの箇所で発 生するか特定できない。そのため、破裂した箇所によっては周囲の機器や部材に悪 影響を及ぼすことがある。 [0005] The generation of gas inside the battery causes an increase in the internal pressure of the battery. In order to prevent the battery from exploding due to an extremely high internal pressure, many batteries that use metal cans as exterior materials have a pressure relief valve that allows gas to escape to the outside of the battery when the internal pressure of the battery increases. ing . However, it is structurally difficult to provide a pressure relief valve in a film-covered battery using a film as a cover material. In the case of a film-covered battery, if the internal pressure rises too much, the film expands, and eventually the film bursts and gas is ejected at that location, but it is not possible to specify where the burst occurs. Therefore, depending on the location of the rupture, it may adversely affect surrounding equipment and members.
[0006] そこで、従来のフィルム外装電池においては、こういった電池内部でのガスの発生 による不具合を解消するための圧力開放構造が ヽくつか提案されて!ヽる。  [0006] Therefore, in the case of conventional film-covered batteries, several pressure relief structures have been proposed to solve the problems caused by the generation of gas inside the battery!
[0007] 特開 2001— 93489号公報 (特許文献 1)には、外装フィルムの封止部の一部に多 層シートを介在させたフィルム外装電池が開示されている。多層シートは、外装フィ ルムの熱融着性榭脂層よりも低融点の榭脂フィルムの両面に、外装フィルムとの熱融 着性が十分にある榭脂フィルムを積層したものである。異常高温時などには、多層シ ートの内層が軟ィ匕溶融し、それより、電池内部で発生したガスが放出される。特許第 2725881号明細書 (特許文献 2)には、外装フィルムの封止部の一部に、外装フィル ムの熱融着性榭脂層よりも融点の高いシート状の部材を挟み込み、実質的にこの部 材が介在した領域で外装フィルムを未融着状態としたフィルム外装電池が開示され ている。特開平 11— 86823号公報 (特許文献 3)には、外装フィルムの封止部の少 なくとも一部に、耐圧性能が低い封止手段を設けたフィルム外装電池が開示されて いる。封止手段としては、剥離強度が所定の値となるような熱融着条件で熱融着を行 つた封止部や、融着材または接着剤の材料を他の部分と相違させることによって形 成した封止部などが例示されて 、る。  [0007] Japanese Patent Application Laid-Open No. 2001-93489 (Patent Document 1) discloses a film-covered battery in which a multilayer sheet is interposed in a part of a sealing portion of a package film. The multilayer sheet is obtained by laminating a resin film having sufficient heat-fusibility with the exterior film on both sides of a resin film having a lower melting point than the heat-fusible resin layer of the exterior film. At an abnormally high temperature or the like, the inner layer of the multilayer sheet is melted and melted, thereby releasing gas generated inside the battery. Japanese Patent No. 2725881 (Patent Document 2) discloses that a sheet-like member having a higher melting point than the heat-fusible resin layer of the exterior film is sandwiched in a part of the sealing portion of the exterior film, A film-covered battery in which an outer film is in an unfused state in a region where this member is interposed is disclosed. Japanese Patent Application Laid-Open No. H11-86823 (Patent Document 3) discloses a film-covered battery in which at least a part of a sealing portion of a covering film is provided with a sealing means having low pressure resistance. As the sealing means, a sealing portion which is heat-sealed under a heat-sealing condition such that the peel strength becomes a predetermined value, or a shape obtained by making a material of a fusion bonding material or an adhesive different from other portions. An example of the formed sealing portion is shown in FIG.
発明の開示  Disclosure of the invention
[0008] し力しながら、特許文献 1に開示された圧力開放構造では、多層シートの内層を軟 化溶融させることで電池内部の圧力を開放させる構造であるので、開放圧力は温度 および内層を構成する榭脂フィルムの融点に依存しており、開放圧力を任意に調整 するのは困難である。また、特許文献 2に開示された圧力開放構造では、封止部に 挟み込む部材はシート状であるので、この部材が挟み込まれた領域では外装材は接 合されておらず、封止信頼性が極めて低くなつてしまう。さらに、特許文献 3に開示さ れた圧力開放構造では、前述したように、熱融着条件を変更したり、融着材または接 着剤の材料を他の部分と相違させたりしている。しかし、熱融着条件を変更した場合 にお 、ては、熱融着条件を変更しても外装材の融着強度はそれほど変わらな 、ため 開放圧力を任意に調整するのは困難である。一方、融着材または接着剤の材料を他 の部分と相違させた場合であってもやはり、開放圧力は融着材または接着剤の材料 に依存するので、開放圧力を任意に調整するのは困難である。 [0008] However, while the pressure release structure disclosed in Patent Document 1 is a structure in which the pressure inside the battery is released by softening and melting the inner layer of the multilayer sheet, the release pressure depends on the temperature and the inner layer. It depends on the melting point of the constituent resin film, and it is difficult to arbitrarily adjust the opening pressure. Further, in the pressure release structure disclosed in Patent Document 2, since the member sandwiched between the sealing portions is sheet-shaped, the exterior material is not joined in the region where the member is sandwiched, and the sealing reliability is reduced. It will be extremely low. Further, in the pressure release structure disclosed in Patent Document 3, as described above, the conditions for heat fusion are changed, and The material of the adhesive is different from other parts. However, when the heat fusion conditions are changed, even if the heat fusion conditions are changed, the fusion strength of the exterior material does not change so much, and it is difficult to arbitrarily adjust the opening pressure. On the other hand, even when the material of the bonding material or the adhesive is different from the other parts, since the opening pressure depends on the material of the bonding material or the adhesive, it is not necessary to arbitrarily adjust the opening pressure. Have difficulty.
[0009] 上述のことは、電池に限らず、ガスを発生する可能性のある電気デバイス要素を外 装フィルムで封止したフィルム外装電気デバイスに共通の課題である。  [0009] The above is a problem common to not only batteries but also film-covered electric devices in which electric device elements that may generate gas are sealed with an external film.
[0010] 本発明の目的は、電気デバイス要素の封止信頼性を低下させることなぐ異常時の ガスの発生によるフィルムの膨張時の開放圧力を容易に設定できるフィルム外装電 気デバイスを提供することである。  [0010] An object of the present invention is to provide a film-covered electric device that can easily set an opening pressure at the time of film expansion due to generation of a gas in an abnormal state without lowering the sealing reliability of an electric device element. It is.
[0011] 上記目的を達成するため本発明のフィルム外装電気デバイスは、電気デバイス要 素と、少なくとも非通気層と熱融着性榭脂からなる熱融着層とを積層した構造を持つ 外装フィルムと、を有する。外装フィルムには、熱融着層を内面として電気デバイス要 素を包囲しその周囲で向き合った熱融着層同士が熱融着されることによって電気デ バイス要素を封止する封止領域が形成されている。封止領域の一部には、熱融着性 榭脂よりも高い融点の榭脂からなる少なくとも 1枚のシート状部材が、対向する外装フ イルムに挟まれ、かつ電気デバイスを包囲する空間内に露出して配されている。シー ト状部材は、溶融した熱融着性榭脂が浸透することができる構造を有し、シート状部 材には熱融着性榭脂が浸透して 、る。  [0011] In order to achieve the above object, the film-covered electric device of the present invention has a structure in which an electric device element and at least a heat-sealing layer made of a heat-fusible resin and a non-venting layer are laminated. And The sealing film surrounds the electric device elements with the heat-sealing layer as the inner surface, and the heat-sealing layers facing each other around the heat-sealing layer are heat-sealed to form a sealing region for sealing the electric device elements. Have been. At least one sheet-shaped member made of a resin having a melting point higher than that of the heat-fusible resin is sandwiched in a part of the sealing region in a space between the facing exterior films and surrounding the electric device. It is arranged to be exposed to. The sheet-like member has a structure in which the molten heat-fusible resin can penetrate, and the heat-fusible resin permeates the sheet-shaped member.
[0012] 上記のとおり構成された本発明のフィルム外装電気デバイスでは、封止領域の一 部において、少なくとも 1枚のシート状部材力 対向する外装フィルム間に挟み込ま れている。シート状部材は、溶融した熱融着性榭脂が浸透可能な構造を有している。 しかし、シート状部材を構成する榭脂は、外装フィルムの熱融着層を構成する熱融着 性榭脂よりも融点が高ぐ封止領域を形成するための熱融着によっては溶融していな い。よって、封止領域のシート状部材が挟み込まれた部分では他の部分と比べて剥 離強度が小さくなつており、この部分を内圧上昇時に優先的に剥離させ、圧力開放 することができる。外装フィルムの熱融着によって、熱融着性榭脂はシート部材中に 浸透させることができ、シート部材を介在させた構成としても、封止信頼性は低下しな い。シート状部材が挟み込まれた部分での剥離強度は、シート状部材の、熱融着性 榭脂の浸透の度合いに依存するので、熱融着性榭脂の浸透の度合いを適宜選択す ることによって、シート状部材が挟み込まれた部分での剥離強度すなわち開放圧力 を任意に設定可能である。 [0012] In the film-covered electric device of the present invention configured as described above, at least a part of the sheet-shaped member is sandwiched between the facing outer films in a part of the sealing region. The sheet-shaped member has a structure through which the molten heat-fusible resin can penetrate. However, the resin constituting the sheet-like member is melted by heat fusion for forming a sealing region having a higher melting point than the heat-fusible resin constituting the heat-sealing layer of the exterior film. Absent. Therefore, the peeling strength of the portion where the sheet-like member is sandwiched in the sealing region is smaller than that of the other portions, and this portion can be preferentially peeled when the internal pressure rises, and the pressure can be released. The heat-sealing resin can penetrate into the sheet member by the heat-sealing of the exterior film, and the sealing reliability does not decrease even if the structure is interposed with the sheet member. Yes. Since the peel strength at the portion where the sheet-shaped member is sandwiched depends on the degree of penetration of the heat-fusible resin of the sheet-shaped member, the penetration degree of the heat-fusible resin should be appropriately selected. Thereby, the peeling strength at the portion where the sheet-like member is sandwiched, that is, the opening pressure can be arbitrarily set.
[0013] シート状部材としては、不織布に代表される繊維集合体、あるいは微多孔フィルム などを用いることができる。  [0013] As the sheet-like member, a fiber aggregate represented by a nonwoven fabric, a microporous film, or the like can be used.
[0014] 複数枚のシート状部材を重ね合わせることによって、 1枚のシート状部材を用いた 場合と比較して剥離強度の低減効果が得られる。よって、より小さな剥離強度が必要 である場合は、複数のシート状部材を重ね合わせて挟み込むことが好まし 、。  [0014] By stacking a plurality of sheet-like members, an effect of reducing the peel strength can be obtained as compared with the case where one sheet-like member is used. Therefore, when a smaller peel strength is required, it is preferable to sandwich a plurality of sheet-like members in an overlapping manner.
[0015] さらに、シート状部材が挟み込まれた領域に、この領域での外装フィルムの剥離に より、電気デバイス要素を包囲する空間の内部を外気と連通させる圧力開放部を設 けることによって、剥離の進行がこの圧力開放部に達した時点で圧力開放がなされる 。よって、圧力開放部の位置を適宜設定することで、開放圧力の設定自由度がより大 きくなる。圧力開放部としては、例えば、封止領域で対向している外装フィルムの少な くとも一方に形成した穴または切り込みとすることができる。  [0015] Furthermore, in a region where the sheet-shaped member is sandwiched, a pressure release portion is provided for communicating the inside of the space surrounding the electric device element with the outside air by peeling the exterior film in this region. When the process reaches the pressure release section, the pressure is released. Therefore, by appropriately setting the position of the pressure release portion, the degree of freedom in setting the release pressure is increased. The pressure release portion can be, for example, a hole or cut formed in at least one of the facing films in the sealing region.
[0016] 本発明によれば、封止領域の一部で対向する外装フィルム間に、溶融した熱融着 性榭脂が浸透可能な構造を有するシート状部材を挟み込むという極めて単純な構成 で、電気デバイス要素の封止信頼性を低下させることなぐ開放圧力の設定を容易か つ確実に行うことができる。  According to the present invention, a very simple configuration in which a sheet-like member having a structure through which molten heat-fusible resin can penetrate is sandwiched between facing exterior films in a part of the sealing region, The opening pressure can be easily and reliably set without lowering the sealing reliability of the electric device element.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の一実施形態によるフィルム外装電池の分解斜視図である。 FIG. 1 is an exploded perspective view of a film-covered battery according to one embodiment of the present invention.
[図 2]図 1に示すフィルム外装電池の、不織布が挟み込まれた部分での、封止領域の 長手方向に沿った模式的断面図である。  FIG. 2 is a schematic cross-sectional view of the film-covered battery shown in FIG. 1 at a portion where a nonwoven fabric is sandwiched, along a longitudinal direction of a sealing region.
[図 3A]封止領域に挟み込む不織布の繊維の配列方向の一例を示す図である。  FIG. 3A is a view showing an example of an arrangement direction of nonwoven fabric fibers sandwiched between sealing regions.
[図 3B]封止領域に挟み込む不織布の繊維の配列方向の他の例を示す図である。  FIG. 3B is a view showing another example of the arrangement direction of the fibers of the nonwoven fabric sandwiched between the sealing regions.
[図 4]2枚の不織布を挟み込んだ場合の、不織布が挟み込まれた部分での、封止領 域の長手方向に沿った模式的断面図である。  FIG. 4 is a schematic cross-sectional view along a longitudinal direction of a sealing region at a portion where the nonwoven fabric is sandwiched when two nonwoven fabrics are sandwiched.
[図 5]挟み込む不織布の他の例を示す、不織布が挟み込まれた部分での封止領域 の平面図である。 [FIG. 5] Another example of a nonwoven fabric to be sandwiched, showing a sealed region at a portion where the nonwoven fabric is sandwiched. FIG.
圆 6]不織布を挟み込んだ部分に貫通穴を付加した例の、不織布が挟み込まれた部 分での封止領域の平面図である。 [6] FIG. 6 is a plan view of a sealing region in a portion where the nonwoven fabric is sandwiched in a case where a through hole is added to a portion where the nonwoven fabric is sandwiched.
圆 7]図 6に示す例の変形例を示す、不織布が挟み込まれた部分での封止領域の平 面図である。 [7] FIG. 7 is a plan view showing a modified example of the example shown in FIG. 6, showing a sealing region at a portion where a nonwoven fabric is sandwiched.
[図 8]本発明の他の実施形態によるフィルム外装電池の、不織布が挟み込まれた部 分での封止領域の平面図である。  FIG. 8 is a plan view of a sealed region in a portion where a nonwoven fabric is sandwiched in a film-covered battery according to another embodiment of the present invention.
圆 9]外装フィルムの熱融着部の境界が凹凸のない形状の場合に作用する引き剥が し応力を説明する斜視図である。 [9] FIG. 9 is a perspective view for explaining a peeling stress acting when the boundary of the heat-sealed portion of the exterior film has no unevenness.
圆 10]図 8に示す突出部に作用する引き剥がし応力を説明する斜視図である。 圆 11]図 8に示す突出部での剥離の進行を示す平面図である。 [10] FIG. 9 is a perspective view illustrating a peeling stress acting on the protruding portion shown in FIG. [11] FIG. 9 is a plan view showing the progress of peeling at the protruding portion shown in FIG.
符号の説明 Explanation of symbols
1 フィルム外装電池  1 Battery with battery
2 電池要素  2 Battery element
3 正極リード  3 Positive lead
4 負極リード  4 Negative electrode lead
5 外装フィルム  5 Exterior film
5a 封止領域  5a Sealed area
5b カップ部  5b Cup part
6 熱融着層  6 Thermal fusion layer
7 非通気層  7 Non-breathable layer
8 不織布  8 Non-woven fabric
9 繊維  9 Fiber
10 貫通穴  10 Through hole
11 非融着部  11 Non-fused part
12 突出部  12 Projection
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1を参照すると、複数の正極および複数の負極を積層した構造を有する扁平な 略直方体状の電池要素 2と、電池要素 2の正極および負極にそれぞれ接続された正 極リード 3および負極リード 4と、正極リード 3および負極リード 4の一部を延出させて 電池要素 2を封止する外装フィルム 5とを有する、本発明の一実施形態によるフィル ム外装電池 1が示されている。 Referring to FIG. 1, a flattened structure having a structure in which a plurality of positive electrodes and a plurality of negative electrodes are stacked The battery element 2 having a substantially rectangular parallelepiped shape, the positive electrode lead 3 and the negative electrode lead 4 connected to the positive electrode and the negative electrode of the battery element 2, respectively, and a part of the positive electrode lead 3 and the negative electrode lead 4 are extended to form the battery element 2. A film packaged battery 1 according to an embodiment of the present invention having a package film 5 to be sealed is shown.
[0020] 電池要素 2は、それぞれ電極材料が両面に塗布された金属箔からなる複数の正極 と複数の負極とが、セパレータを介して交互に積層されている。各正極および各負極 は、電極材料が塗布されていない非塗布部分を有する。非塗布部分は、各正極およ び各負極の一辺力も突出して設けられている。正極の未塗布部同士、および負極の 非塗布部同士は一括して超音波溶接されて、それぞれ正極リード 3および負極リード 4と接続されている。正極および負極は、電極材料の非塗布部分を反対向きに突出 させて重ねられている。したがって、正極リード 3と負極リード 4とは、このフィルム外装 電池 1の互いに対向する辺から引き出されている。本実施形態では、フィルム外装電 池 1の平面形状を略長方形とし、正極リード 3および負極リード 4を、その長方形の短 辺から引き出している。 [0020] In the battery element 2, a plurality of positive electrodes and a plurality of negative electrodes each made of a metal foil having both surfaces coated with an electrode material are alternately stacked via a separator. Each positive electrode and each negative electrode has an uncoated portion on which no electrode material is applied. The non-applied portion is also provided so that one side force of each positive electrode and each negative electrode also protrudes. The non-coated portions of the positive electrode and the non-coated portions of the negative electrode are collectively ultrasonically welded and connected to the positive electrode lead 3 and the negative electrode lead 4, respectively. The positive electrode and the negative electrode are overlapped with the non-coated portion of the electrode material protruding in the opposite direction. Therefore, the positive electrode lead 3 and the negative electrode lead 4 are drawn out from the sides of the film-covered battery 1 facing each other. In this embodiment, the planar shape of the film-covered battery 1 is substantially rectangular, and the positive electrode lead 3 and the negative electrode lead 4 are drawn out from short sides of the rectangle.
[0021] リチウムイオン電池などの非水電解質電池の場合、正極を構成する金属箔にはァ ルミ-ゥム箔が用いられ、負極を構成する金属箔には銅箔が用いられる。正極リード 3にはアルミニウム板が用いられ、負極リード 4にはニッケル板または銅板が用いられ る。負極リード 4を銅板で構成する場合、表面にニッケルめっきを施してもよい。  In the case of a non-aqueous electrolyte battery such as a lithium ion battery, an aluminum foil is used for a metal foil constituting a positive electrode, and a copper foil is used for a metal foil constituting a negative electrode. An aluminum plate is used for the positive electrode lead 3, and a nickel plate or a copper plate is used for the negative electrode lead 4. When the negative electrode lead 4 is made of a copper plate, its surface may be plated with nickel.
[0022] セパレータは、ポリオレフイン等の熱可塑性榭脂から作られた、マイクロポーラスフィ ルム (微多孔フィルム)、不織布あるいは織布など、電解液を含浸することができるシ ート状の部材を用いることができる。微多孔フィルムは、フィルムを一軸延伸または二 軸延伸することによってフィルムに微細な孔を形成する乾式プロセスや、基材ポリマ 一を溶媒や微粒子とともに溶融混練してフィルムを形成し、その後、溶剤浸漬あるい は揮発によって溶媒や微粒子を抽出し、必要に応じてさらに延伸して多孔質ィ匕する 湿式プロセスなどの製造方法によって製造することができる。  For the separator, a sheet-like member that can be impregnated with an electrolyte, such as a microporous film (microporous film), a nonwoven fabric, or a woven fabric, made of a thermoplastic resin such as polyolefin is used. be able to. For microporous films, a dry process in which fine holes are formed in the film by uniaxially or biaxially stretching the film, or a film is formed by melting and kneading a base polymer with a solvent or fine particles, and then immersion in a solvent Alternatively, it can be produced by a production method such as a wet process in which a solvent or fine particles are extracted by volatilization, and if necessary, further stretched to form a porous film.
[0023] 外装フィルム 5は、電池要素 2をその厚み方向両側から挟んで包囲する 2枚のラミネ 一トフイルム力 なり、電池要素 2の周囲で重なり合った対向面同士を熱融着すること で、電池要素 2が封止されている。図 1には、外装フィルム 5の熱融着される領域を封 止領域 5aとして斜線で示している。外装フィルム 5には、電池要素 2を包囲する空間 である電池要素収納部を形成するために、それぞれ中央領域にカップ部 5bを有する 。封止領域 5aは、このカップ部 5bの周囲全周にわたって形成されている。カップ部 5 bの加工は、深絞り成形によって行うことができる。図 1に示した例では両方の外装フ イルム 5にカップ部 5bが形成されている力 カップ部はいずれか一方のみに形成して もよいし、また、カップ部を形成せずに外装フィルム 5の柔軟性を利用して電池要素 2 を包囲してもよい。 The exterior film 5 is formed by two sheets of lamination surrounding the battery element 2 sandwiching the battery element 2 from both sides in the thickness direction, and heat-fusing the opposing surfaces overlapping each other around the battery element 2 to form a battery. Element 2 is sealed. Figure 1 shows the area of the exterior film 5 that is to be heat-sealed. The stop area 5a is indicated by oblique lines. The exterior film 5 has a cup portion 5b in a central region in order to form a battery element storage portion which is a space surrounding the battery element 2. The sealing region 5a is formed all around the cup portion 5b. The processing of the cup portion 5b can be performed by deep drawing. In the example shown in FIG. 1, the cup portion 5b is formed on both the outer films 5, the force cup portion may be formed on only one of them, or the outer film 5 may be formed without forming the cup portion. The battery element 2 may be surrounded by utilizing the flexibility of the above.
[0024] 外装フィルム 5を構成するラミネートフィルムとしては、柔軟性を有しており、かつ電 解液が漏洩しないように熱融着によって電池要素 2を封止できるものであれば、この 種のフィルム外装電池に一般に用いられるフィルムを用いることができる。外装フィル ム 5に用いられるラミネートフィルムの代表的な層構成としては、金属薄膜などからな る非通気層と熱融着性榭脂からなる熱融着層とを積層した構成、あるいは、非通気 層の熱融着層と反対側の面にさらに、ポリエチレンテレフタレートなどのポリエステル やナイロン等のフィルムカゝらなる保護層を積層した構成が挙げられる。電池要素 2を 封止するに際しては、熱融着層を対向させて電池要素 2を包囲する。  [0024] As a laminate film constituting the exterior film 5, if the battery element 2 is flexible and can seal the battery element 2 by heat fusion so as to prevent electrolyte solution from leaking, this type of laminate film is used. A film generally used for a film-covered battery can be used. A typical layer configuration of the laminate film used for the exterior film 5 is a configuration in which a non-venting layer made of a metal thin film and the like and a heat-sealing layer made of a heat-fusible resin are laminated, or a non-venting layer is used. There is a configuration in which a protective layer made of a film such as polyester or nylon such as polyethylene terephthalate is further laminated on the surface of the layer opposite to the heat-sealing layer. When sealing the battery element 2, the battery element 2 is surrounded by the heat-sealing layers facing each other.
[0025] 非通気層を構成する金属薄膜としては、例えば、厚さ 10 m〜: L 00 mの、 Al、 Ti 、 Ti合金、 Fe、ステンレス、 Mg合金などの箔を用いることができる。熱融着層に用い られる熱融着性榭脂としては、熱融着が可能な榭脂であれば特に制限はなぐ例え ば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフエ-レンサルファイド、ポ リエチレンテレフタレートなどのポリエステル等、ポリアミド、エチレン 酢酸ビュル共 重合体などが使用できる。熱融着層の厚さは 10 m〜200 mが好ましぐより好ま しくは 30 μ m〜100 μ mである。 As the metal thin film constituting the non-ventilated layer, for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy, or the like having a thickness of 10 m to L00 m can be used. The heat-fusible resin used for the heat-sealing layer is not particularly limited as long as it is a heat-fusible resin.Examples include polypropylene, polyethylene, acid modified products thereof, polyphenylene sulfide, and polyolefin. Polyesters such as ethylene terephthalate, polyamides, ethylene butyl acetate copolymer and the like can be used. The thickness of the heat-sealing layer is preferably from 30 m to 100 m, more preferably from 10 m to 200 m.
[0026] 封止領域 5aの一部には、電池要素 2を挟む外装フィルム 5の間に挟み込まれ、か つ電池要素収納部内に露出して配された不織布 8が、外装フィルム 5同士の熱融着 によって保持されている。不織布 8は、外装フィルム 5の熱融着層を構成する熱融着 性榭脂の融点よりも高 、融点を有する、外装フィルム 5の熱融着性榭脂とは異種の榭 脂から作られたものである。例えば、外装フィルム 5の熱融着層を構成する熱融着性 榭脂をポリプロピレンとした場合は、不織布 8はポリエチレンテレフタレートで作られた ものを用いることができる。 [0026] In a part of the sealing region 5a, a nonwoven fabric 8 sandwiched between the exterior films 5 sandwiching the battery element 2 and exposed in the battery element storage portion is formed by heat of the exterior films 5 with each other. It is held by fusion. The nonwoven fabric 8 is made of a resin having a melting point higher than the melting point of the heat-fusible resin constituting the heat-fusible layer of the exterior film 5 and different from the heat-fusible resin of the exterior film 5. It is a thing. For example, when the heat-fusible resin constituting the heat-sealing layer of the exterior film 5 is polypropylene, the nonwoven fabric 8 is made of polyethylene terephthalate. Can be used.
[0027] 外装フィルム 5同士の熱融着は、外装フィルム 5の熱融着層を構成する熱融着性榭 脂の融点よりも高ぐかつ不織布 8を構成する榭脂の融点よりも低い温度で行う。これ により、熱融着層 6は溶融するが不織布 8の繊維 9は溶融しないので、図 2に示すよう に、熱融着層 6の熱融着性榭脂が不織布 8の繊維 9間に浸透し、不織布 8が外装フィ ルム 5の熱融着層 6の中に埋め込まれて保持される。なお、図 2は、図 1において封 止領域 5aの不織布 8が挟み込まれた辺をその長手方向に沿って切断した断面を模 式的に示している。封止領域 5aが形成された状態では、図 2に示すように、 2枚の外 装フィルム 5の熱融着層 6は熱融着により一体になつている。また、図 2において、熱 融着層 6の外側にある層は、外装フィルム 5の非通気層 7である。  The heat-sealing of the exterior films 5 is performed at a temperature higher than the melting point of the heat-fusible resin constituting the heat-sealing layer of the exterior film 5 and lower than the melting point of the resin constituting the nonwoven fabric 8. Do with. As a result, the heat-fusible layer 6 melts, but the fibers 9 of the nonwoven fabric 8 do not melt, so that the heat-fusible resin of the heat-fusible layer 6 permeates between the fibers 9 of the nonwoven fabric 8 as shown in FIG. Then, the nonwoven fabric 8 is embedded and held in the heat sealing layer 6 of the exterior film 5. FIG. 2 schematically shows a cross section of a side of the sealing region 5a in which the nonwoven fabric 8 is sandwiched in FIG. 1 along the longitudinal direction. In the state where the sealing region 5a is formed, as shown in FIG. 2, the heat-sealing layers 6 of the two external films 5 are united by heat-sealing. In FIG. 2, the layer outside the heat-sealing layer 6 is the non-venting layer 7 of the exterior film 5.
[0028] 封止領域 5aにおいて互いに対向する外装フィルム 5の間に不織布 8を挟み込んだ 構造は、例えば、以下のようにして作製することができる。まず、 2枚の外装フィルム 5 のいずれか一方の封止領域 5aとなる部分に、予め所定の寸法に切り取った不織布 8 を載せ、接着剤や、熱融着層 6が僅かに軟化する程度の低い温度での熱融着などに より、不織布 8を外装フィルム 5に仮止めする。この仮止めは、不織布 8を外装フィル ム 5に強固に固定する必要はなぐ最終的に封止領域 5aを形成するまでの間、不織 布 8を外装フィルム 5上に保持できる程度でよい。次いで、不織布 8を仮止めした外装 フィルム 5の上に、正極リード 3および負極リード 4を接続した電池要素 2を載せ、さら にその上からもう 1枚の外装フィルム 5を被せ、電池要素 2の周囲で外装フィルム 5を 全周にわたって熱融着する。このときの熱融着温度は、上述のように、外装フィルム 5 の熱融着層 6を構成する熱融着性榭脂の融点よりも高ぐかつ不織布 8を構成する榭 脂の融点よりも低い温度とする。これにより、外装フィルム 5の熱融着された部分が封 止領域 5aとなり、その一部に不織布 8が介在したフィルム外装電池 1が得られる。  [0028] The structure in which the nonwoven fabric 8 is sandwiched between the facing films 5 facing each other in the sealing region 5a can be manufactured, for example, as follows. First, a nonwoven fabric 8 cut in advance to a predetermined size is placed on a portion to be the sealing region 5a of one of the two exterior films 5, and the adhesive or the heat-sealing layer 6 is slightly softened. The nonwoven fabric 8 is temporarily fixed to the exterior film 5 by heat fusion at a low temperature. The temporary fixing is not required to firmly fix the nonwoven fabric 8 to the exterior film 5, but may be sufficient to hold the nonwoven fabric 8 on the exterior film 5 until the sealing region 5 a is finally formed. Next, the battery element 2 to which the positive electrode lead 3 and the negative electrode lead 4 are connected is mounted on the outer film 5 on which the nonwoven fabric 8 is temporarily fixed, and another outer film 5 is further covered therefrom. The outer film 5 is heat-sealed around the entire circumference. As described above, the heat fusion temperature at this time is higher than the melting point of the heat-fusible resin constituting the heat-fusible layer 6 of the exterior film 5 and higher than the melting point of the resin constituting the nonwoven fabric 8. Use a low temperature. As a result, the heat-sealed portion of the exterior film 5 becomes the sealing region 5a, and the film exterior battery 1 having the nonwoven fabric 8 interposed in a part thereof is obtained.
[0029] 以上のように構成されたフィルム外装電池 1にお 、て、使用中に規格範囲外の電圧 が印加されたり、一時的に高温になったりすることなどによって電池要素 2からガスが 発生すると、フィルム外装電池 1の内圧が上昇する。内圧が上昇すると、外装フィルム 5のカップ部 5bによって囲まれた空間である電池要素収納部はドーム状に膨らもうと し、封止領域 5aの内縁には引き剥がし応力が作用する。 [0030] 封止領域 5aの一部には不織布 8が挟み込まれており、この不織布 8が挟み込まれ た部分では、図 2に示したように、熱融着層 6を構成する熱融着性榭脂は不織布 8の 繊維 9間に染み込んでいる。そのため、熱融着層 6は、不織布 8が間に介在していな がらも、不織布 8の上下で熱融着性榭脂が連続して存在しており、シート状の部材を 挟み込む場合と異なり熱融着性榭脂が熱融着層 6の厚さ方向で分断されていない。 そのため、封止領域 5aに必要な封止性能を得ることができる。 [0029] In the film-covered battery 1 configured as described above, gas is generated from the battery element 2 due to, for example, application of a voltage out of the specification range or temporary high temperature during use. Then, the internal pressure of the film-covered battery 1 increases. When the internal pressure increases, the battery element housing portion, which is a space surrounded by the cup portion 5b of the exterior film 5, tries to expand in a dome shape, and a peeling stress acts on the inner edge of the sealing region 5a. [0030] A nonwoven fabric 8 is sandwiched in a part of the sealing region 5a, and in the portion where the nonwoven fabric 8 is sandwiched, as shown in FIG. The resin is soaked between the fibers 9 of the nonwoven fabric 8. Therefore, the heat-sealing layer 6 has heat-fusible resin continuously above and below the non-woven fabric 8 even though the non-woven fabric 8 is interposed therebetween, which is different from the case where a sheet-like member is sandwiched. The heat-fusible resin is not divided in the thickness direction of the heat-fusible layer 6. Therefore, the sealing performance required for the sealing region 5a can be obtained.
[0031] さらに、不織布 8を挟み込むことにより、不織布 8を挟み込んだ領域では、各外装フ イルム 5の熱融着層 6同士の接着領域、すなわち熱融着性榭脂が連続してつながつ て 、る面積力 同じ面積での不織布 8を挟み込んで 、な 、他の領域と比べて小さくな る。不織布 8は、熱融着層 6を構成する熱融着性榭脂とは異種の、融点がより高い榭 脂から作られて ヽるので、不織布 6を構成する榭脂と熱融着性榭脂との接着強度は、 熱融着性榭脂同士の接着強度よりも小さい。  Further, by sandwiching the nonwoven fabric 8, in the region where the nonwoven fabric 8 is sandwiched, the bonding region between the heat-fusible layers 6 of the respective exterior films 5, that is, the heat-fusible resin is continuously connected. When the non-woven fabric 8 having the same area is sandwiched, the area becomes smaller than that of the other areas. The nonwoven fabric 8 is made of a resin having a different melting point and a higher melting point than the heat-fusible resin constituting the heat-fusible layer 6. Adhesive strength to fat is smaller than adhesive strength between heat-fusible resins.
[0032] このことにより、不織布 8が挟み込まれた部分は、他の封止領域 5aと比べて小さな 引き剥がし応力で引き剥がすことが可能である。したがって、封止領域 5aに引き剥が し力が作用することにより、封止領域 5aでの外装フィルム 5の剥離が、不織布 8が挟 み込まれた部分で優先的に進行する。外装フィルム 5の剥離が進行し、封止領域 5a の外縁まで達すると、電池要素収納部がフィルム外装電池 1の外部(外気)と連通し、 これによつて、上昇した圧力は開放される。よって、フィルム外装電池 1が破裂する前 に特定の位置力 ガスを噴出させることができ、フィルム外装電池 1の破裂や意図し ない方向へのガスの噴出を防止することができる。  [0032] Thus, the portion where the nonwoven fabric 8 is sandwiched can be peeled off with a small peeling stress as compared with the other sealing region 5a. Therefore, when the peeling force acts on the sealing region 5a, the peeling of the exterior film 5 in the sealing region 5a proceeds preferentially in the portion where the nonwoven fabric 8 is sandwiched. When the peeling of the package film 5 progresses and reaches the outer edge of the sealing region 5a, the battery element housing communicates with the outside (outside air) of the film package battery 1, whereby the increased pressure is released. Therefore, a specific positional force gas can be ejected before the film-covered battery 1 ruptures, so that the rupture of the film-covered battery 1 and ejection of gas in an unintended direction can be prevented.
[0033] 封止領域 5aの剥離強度は、熱融着層 6中での熱融着性榭脂の存在割合に依存す る。この存在割合が高ければ剥離強度は高ぐ存在割合が低ければ剥離強度は低く なる傾向がある。一方、熱融着層 6中での熱融着性榭脂の存在割合は、挟み込む不 織布 8の目付量に依存する。目付量が大きければ熱融着性榭脂の存在割合は低ぐ 目付量が小さければ熱融着性榭脂の存在割合は高くなる傾向にある。以上のことか ら、挟み込む不織布 8の目付量を適宜設定することによって、不織布 8が挟み込まれ た領域での剥離強度を調整することができる。剥離強度が小さいということは、それだ け低い内圧でガスを開放できるということである。このように、不織布 8を挟み込んで 剥離強度を調整する構造とすることにより、不織布 8の目付量を適宜設定して、ガス の開放圧力を任意に設定することができる。 The peel strength of the sealing region 5 a depends on the proportion of the heat-fusible resin in the heat-fusible layer 6. If this proportion is high, the peel strength tends to be high, and if the proportion is low, the peel strength tends to be low. On the other hand, the proportion of the heat-fusible resin in the heat-fusible layer 6 depends on the basis weight of the nonwoven fabric 8 to be sandwiched. If the basis weight is large, the proportion of the heat-fusible resin is low. If the basis weight is small, the proportion of the heat-fusible resin tends to be high. As described above, the peel strength in the region where the nonwoven fabric 8 is sandwiched can be adjusted by appropriately setting the basis weight of the nonwoven fabric 8 to be sandwiched. Low peel strength means that the gas can be released at a lower internal pressure. Thus, sandwich the nonwoven fabric 8 By adopting a structure in which the peel strength is adjusted, the basis weight of the nonwoven fabric 8 can be appropriately set, and the gas release pressure can be arbitrarily set.
[0034] また、ガスを放出させるべき部位に挟み込む部材として、繊維 9の集合体である不 織布 8を用いることで、従来の榭脂挟み込み型安全弁構造で見られるような、異なる 種類の榭脂が平面状の界面において見力け上接着している場合と異なり、有機溶媒 である電解液に対する接着性の長期信頼性と、異常時に小さな力で作動しうる作動 容易性を両立させることができる。  [0034] Further, by using a non-woven cloth 8, which is an aggregate of fibers 9, as a member to be sandwiched between the parts from which gas is to be released, different types of seals, such as those found in a conventional oil-sandwiched safety valve structure, can be obtained. Unlike the case where the fat is apparently adhered to the flat interface, it is necessary to balance the long-term reliability of the adhesiveness to the electrolyte, which is an organic solvent, and the ease of operation that can be operated with a small force in the event of an abnormality. it can.
[0035] 挟み込む不織布 8としては、湿式、乾式 (榭脂接着、サーマルボンド、スパンレース) 、スパンボンド式 (溶融紡糸、湿式紡糸、フラッシュ紡糸、メルトブロー)のいずれを用 いてもよい。また、不織布 8の中には、繊維 9がほぼ一方向に配列されたものやランダ ムに配列されたものがある力 剥離強度の調整には熱融着層 6中に占める繊維 9の 割合が大きく関係しており、繊維 9の配列はそれほど重要ではない。したがって、例 えば図 3Aに示すように、封止領域 5aの外縁から内縁に向力 方向と略平行に繊維 9 が配列されるように不織布 8を挟み込んでもよいし、図 3Bに示すように、封止領域 5a の外縁から内縁に向力う方向と略直角な方向に繊維 9が配列されるように不織布 8を 挟み込んでもよい。もちろん、繊維 9の配列方向がこれらとは異なる方向であってもよ い。ここで、封止領域 5aの内縁とは電池要素 2側の縁であり、外縁とは電池要素 2か ら離れた側の縁である。  [0035] As the nonwoven fabric 8 to be sandwiched, any of a wet type, a dry type (fat adhesion, thermal bond, spunlace) and a spun bond type (melt spinning, wet spinning, flash spinning, melt blowing) may be used. In the nonwoven fabric 8, there are fibers in which fibers 9 are arranged in almost one direction and those in which fibers 9 are randomly arranged.For adjusting the peel strength, the ratio of the fibers 9 in the heat-fused layer 6 is determined. Closely related, the arrangement of the fibers 9 is not so important. Therefore, for example, as shown in FIG.3A, the nonwoven fabric 8 may be sandwiched so that the fibers 9 are arranged from the outer edge to the inner edge of the sealing region 5a substantially in parallel with the direction of force, or as shown in FIG.3B. The nonwoven fabric 8 may be sandwiched so that the fibers 9 are arranged in a direction substantially perpendicular to the direction from the outer edge to the inner edge of the sealing region 5a. Of course, the arrangement direction of the fibers 9 may be different from these. Here, the inner edge of the sealing region 5a is an edge on the battery element 2 side, and the outer edge is an edge on a side remote from the battery element 2.
[0036] 開放圧力を低くするためには、挟み込む不織布 8の目付量を大きくすればよいこと は、前述したとおりである。ただし、開放圧力の低減化には、単一の不織布 8だけで は限界がある。また、不織布 8は、一般的に目付量の大きさに応じて厚さも増加する ので、所望の目付量とするために不織布 8の厚さを厚くしすぎると、熱融着の際に、 熱融着性榭脂が不織布 8の繊維 9間に十分に浸透せず封止信頼性が損なわれるお それがある。そこで、より低い開放圧力が必要な場合は、図 4に示すように、 2枚の不 織布 8を重ねて挟み込むことが好ま 、。  [0036] As described above, in order to lower the opening pressure, the basis weight of the nonwoven fabric 8 to be sandwiched may be increased. However, there is a limit in reducing the opening pressure with a single nonwoven fabric 8 alone. In addition, since the thickness of the nonwoven fabric 8 generally increases in accordance with the basis weight, if the thickness of the nonwoven fabric 8 is excessively large in order to obtain a desired basis weight, heat is not generated during heat fusion. There is a possibility that the adhesive resin does not sufficiently penetrate between the fibers 9 of the nonwoven fabric 8 and the sealing reliability is impaired. Therefore, when a lower opening pressure is required, it is preferable to sandwich two nonwoven fabrics 8 one on top of the other, as shown in FIG.
[0037] 2枚の不織布 8を重ねることで、 2枚の不織布 8の目付量を合計した目付量と同じ目 付量を有する 1枚の不織布 8を挟み込んだ場合以上に、剥離強度を小さくすることが できる。これは、 2枚の不織布 8を重ねることにより、 2枚の不織布 8の境界では、各不 織布 8を浸透した熱融着性榭脂の接続する領域が小さくなり、 1枚の不織布 8の場合 と比べて熱融着性榭脂同士の接着領域がより小さくなるためと考えられる。重ね合せ る不織布 8の枚数は 2枚に限られるものではなぐより低い開放圧力とする必要がある 場合は、 3枚以上とすることもできる。 [0037] By stacking two nonwoven fabrics 8, the peel strength is made smaller than when one nonwoven fabric 8 having the same basis weight as the total basis weight of the two nonwoven fabrics 8 is sandwiched. be able to. This is because the two nonwoven fabrics 8 overlap each other, so that This is presumably because the area where the heat-fusible resin permeated through the woven fabric 8 is connected becomes smaller, and the bonding area between the heat-fusible resins becomes smaller than in the case of a single nonwoven fabric 8. The number of the nonwoven fabrics 8 to be superimposed is not limited to two, but if it is necessary to set a lower opening pressure than it is, three or more nonwoven fabrics can be used.
[0038] 不織布 8の形状やサイズは、不織布 8が封止領域 5aの外縁から内縁にわたって存 在する部分を有する形状やサイズであれば特に限定されな!ヽ。図 1では矩形状の不 織布 8を示した力 例えば図 5に示す台形形状のような、不織布 8の内縁の長さ L1が 外縁の長さ L2より長い、電池要素 2側の縁から外側に向力つて寸法が小さくなる形 状の不織布 8とすることもできる。これにより、不織布 8の形状が剥離の進行に合わせ た形状となるので、剥離をスムーズに進行させることができる。ここで、不織布 8の内 縁および外縁も、前述した封止領域 5aの内縁および外縁と同様に、電池要素 2側の 縁を内縁とし、電池要素 2から離れた側の縁を外縁とする。この場合も、挟み込む不 織布 8の枚数は 1枚だけでなく複数枚を重ねて用いることもできる。  [0038] The shape and size of the nonwoven fabric 8 are not particularly limited as long as the shape and size of the nonwoven fabric 8 have a portion extending from the outer edge to the inner edge of the sealing region 5a! FIG. 1 shows the force of a rectangular nonwoven fabric 8 .For example, the trapezoidal shape shown in FIG. 5, the inner edge length L1 of the nonwoven fabric 8 is longer than the outer edge length L2, and the battery element 2 side edge to the outer edge The nonwoven fabric 8 may be shaped such that the size decreases as the force increases. Thereby, the shape of the nonwoven fabric 8 becomes a shape according to the progress of the peeling, so that the peeling can proceed smoothly. Here, the inner edge and the outer edge of the nonwoven fabric 8 are, similarly to the inner edge and the outer edge of the sealing region 5a described above, an edge on the battery element 2 side and an outer edge on the side away from the battery element 2. Also in this case, the number of the nonwoven fabrics 8 to be sandwiched is not limited to one, and a plurality of nonwoven fabrics can be used.
[0039] さらに、図 6に示すように、封止領域 5aの不織布 8が挟み込まれた領域に、圧力開 放部として、外装フィルム 5を貫通する貫通穴 10を形成することもできる。貫通穴 10 を形成することによって、剥離の進行が貫通穴 10に達した時点で電池要素収納部の 内部が外気と連通し、圧力を開放することができる。この貫通穴 10の位置を調整する ことによつても開放圧力を調整することができ、し力も、貫通穴 10の位置の調整は不 織布 8の目付量の調整よりも容易であるので、このような貫通穴 10を設けることによつ て、開放圧力をより正確に調整することができる。  Further, as shown in FIG. 6, a through-hole 10 that penetrates through the exterior film 5 can be formed as a pressure release part in a region where the nonwoven fabric 8 is sandwiched in the sealing region 5a. By forming the through-hole 10, when the progress of the peeling reaches the through-hole 10, the inside of the battery element housing communicates with the outside air, and the pressure can be released. The opening pressure can also be adjusted by adjusting the position of the through hole 10, and the adjustment of the position of the through hole 10 is easier than the adjustment of the basis weight of the nonwoven fabric 8. By providing such a through hole 10, the opening pressure can be adjusted more accurately.
[0040] 不織布 8が挟み込まれた領域に貫通穴 8を形成した場合、圧力開放は剥離が貫通 穴 10まで達した時点でなされるので、貫通穴 10よりも外側までは剥離は進行しな ヽ 。したがって、圧力開放部である貫通穴 10を設けた場合は、図 7に示すように、不織 布 8の幅 W1を封止領域 5aの幅 W2よりも小さくし、不織布 8の外縁 8bを封止領域 5a の外縁より内側に位置させても、実質的な開放圧力は変わらない。また、これにより、 不織布 8のサイズを小さくすることができ、不織布 8の使用量を少なくすることができる 。不織布 8および封止領域 5aの幅とは、封止領域 5aの外縁から内縁に向力う方向で の長さを意味する。図 6および図 7に示した構成においても不織布 8の形状は任意で あり、例えば、図 5に示した形状とすることもできるし、また、挟み込む不織布 8の枚数 は 1枚だけでなく複数枚を重ねて用いることもできる。 When the through-hole 8 is formed in the region where the nonwoven fabric 8 is sandwiched, the pressure is released when the peeling reaches the through-hole 10, so that the peeling does not proceed outside the through-hole 10. . Therefore, when the through hole 10 which is a pressure release portion is provided, as shown in FIG. 7, the width W1 of the nonwoven fabric 8 is made smaller than the width W2 of the sealing region 5a, and the outer edge 8b of the nonwoven fabric 8 is sealed. Even if it is located inside the outer edge of the stop region 5a, the substantial opening pressure does not change. In addition, this allows the size of the nonwoven fabric 8 to be reduced, and the amount of the nonwoven fabric 8 to be used can be reduced. The width of the nonwoven fabric 8 and the sealing region 5a means a length in a direction from the outer edge to the inner edge of the sealing region 5a. 6 and 7, the shape of the nonwoven fabric 8 is arbitrary. Yes, for example, the shape shown in FIG. 5 can be used, and the number of nonwoven fabrics 8 to be sandwiched can be not only one but also a plurality of nonwoven fabrics.
[0041] 図 6および図 7では、圧力開放部として貫通穴 10を設けた例を示したが、圧力開放 部は貫通穴 10である必要はない。例えば、不織布 8が挟み込まれた領域において 封止領域 5aの外縁から内縁に向力つて不織布 8の途中まで切り込みを形成すること によっても同様の効果を得ることができる。この場合は、切り込みの先端位置によって 開放圧力を任意に調整することができる。また、圧力開放部は、重なり合った 2枚の 外装フィルムを貫通した構造である必要はなぐ重なり合った 2枚の外装フィルムのう ちの一方のみに貫通穴や切り込みなどを形成した場合でも同様の効果が得られる。  FIGS. 6 and 7 show an example in which the through hole 10 is provided as the pressure release portion, but the pressure release portion does not need to be the through hole 10. For example, the same effect can be obtained by forming a cut in the non-woven fabric 8 halfway in the region where the non-woven fabric 8 is sandwiched from the outer edge to the inner edge of the sealing region 5a. In this case, the opening pressure can be arbitrarily adjusted depending on the position of the tip of the cut. In addition, the pressure release portion does not need to have a structure that penetrates two overlapping exterior films.The same effect can be obtained even if a through hole or cut is formed in only one of the two exterior films that overlap. can get.
[0042] 上述した実施形態では封止領域 5aが一定の幅で形成されている例を示した力 封 止領域 5a自身の形状を、引き剥がし応力が局部的に作用しやすい形状とし、不織布 8による効果をより効果的に発揮させることもできる。その一例を図 8に示す。  [0042] In the above-described embodiment, the shape of the force sealing region 5a itself, which is an example in which the sealing region 5a is formed with a constant width, is changed to a shape in which the peeling stress is likely to act locally, and the nonwoven fabric 8 is formed. Can be more effectively exerted. Fig. 8 shows an example.
[0043] 図 8に示す例では、封止領域 5aの電池要素 2側の縁部に、互いに対向する外装フ イルム同士が熱融着されて 、な 、部分である 2つの非融着部 11が、電池要素収納部 に連続して入り江状に形成されている。 2つの非融着部 11は、封止領域 5aの周縁に 沿った方向に互いに間隔をあけて配されており、これによつて非融着部 11の間の領 域は、電池要素収納部に向力つて突出した突出部 12となっている。不織布 8はこの 突出部 12に位置し、突出部 12では不織布 8を介して対向する外装フィルムが熱融 着されている。さらに、圧力開放部である貫通穴 10が、突出部 12に形成されている。  In the example shown in FIG. 8, the exterior films facing each other are thermally fused to the edge of the sealing region 5a on the battery element 2 side, that is, the two non-fused portions 11 However, it is formed in a cove shape continuously with the battery element storage section. The two non-fused portions 11 are spaced from each other in the direction along the peripheral edge of the sealing region 5a, so that the region between the non-fused portions 11 becomes the battery element housing portion. The protruding portion 12 protrudes toward the front. The nonwoven fabric 8 is located at the projecting portion 12, and the facing outer film is heat-sealed at the projecting portion 12 via the nonwoven fabric 8. Further, a through hole 10 which is a pressure release part is formed in the protruding part 12.
[0044] このように、封止領域 5aに、電池要素収納部へ向力つて突出する突出部 12を設け ることによって、電池要素 2からのガスの発生によりフィルム外装電池の内圧が上昇し たとき、封止領域 5aでの外装フィルムの弓 Iき剥がし応力は突出部 12に集中的に作 用し、外装フィルムの剥離は突出部 12で優先的に進行する。内圧の上昇に伴ってこ の剥離が貫通穴 8の位置まで達することによって、電池要素収納部がフィルム外装電 池の外部と連通し、上昇した圧力は貫通穴 8を通じて開放される。  As described above, by providing the protruding portion 12 that protrudes toward the battery element storage portion in the sealing region 5a, the internal pressure of the film-covered battery increases due to generation of gas from the battery element 2. At this time, the bowing I peeling stress of the exterior film in the sealing region 5a acts intensively on the protrusion 12, and the peeling of the exterior film proceeds preferentially at the protrusion 12. When the peeling reaches the position of the through hole 8 as the internal pressure increases, the battery element housing communicates with the outside of the film-covered battery, and the increased pressure is released through the through hole 8.
[0045] 以下に、内圧上昇に伴う外装フィルムの剥離の進行について詳しく説明する。  [0045] Hereinafter, the progress of peeling of the exterior film due to an increase in internal pressure will be described in detail.
[0046] 外装フィルムの熱融着された領域と熱融着されていない領域との境界が凹凸のな い形状となっている場合は、図 9に示すように、引き剥がし応力 F1は一方向にのみ作 用し、剥離は外装フィルム 5の外縁へ向かって進行していく。 When the boundary between the heat-sealed region and the non-heat-sealed region of the exterior film has a shape without unevenness, as shown in FIG. 9, the peeling stress F1 is one-way. Only for The peeling proceeds toward the outer edge of the exterior film 5.
[0047] ところが、上記のように突出部 12を設けた場合は、突出部 12の両側に非融着部 11 が存在し、図 10に示すように、非融着部 11にもガスが充満して突出部 12の両側部 でも外装フィルム 5が膨らむので、突出部 12には、その先端に作用する引き剥がし応 力 F1に加え、側縁にも引き剥がし応力 F2が作用する。そのため、突出部 12の角部 には、これらの合力として他の部位よりも大きな引き剥がし応力が作用し、この角部で 外装フィルム 5が他の部位に優先して剥離が進行する。角部で外装フィルム 5が剥離 すると、角部は丸みを帯びてくるが、それでもまだ突出部 12は凸形状を維持しており 、突出部 12には複数の方向から引き剥がし応力が作用する。従って、外装フィルム 5 の剥離は、この凸形状の先鋭度を減らしながら、最終的には突出部 12がほぼなくな るまで、突出部 12での外装フィルム 5の剥離が他の部位よりも優先的に進行する。  However, when the protruding portion 12 is provided as described above, the non-fused portion 11 exists on both sides of the protruding portion 12, and the non-fused portion 11 is also filled with gas as shown in FIG. As a result, the exterior film 5 swells on both sides of the protruding portion 12, so that the protruding portion 12 is subjected to a peeling stress F2 on the side edge in addition to the peeling stress F1 acting on the tip. Therefore, a peeling stress greater than that of the other portions acts on the corners of the protruding portion 12 as these resultant forces, and the peeling of the exterior film 5 proceeds at the corners in preference to the other portions. When the outer film 5 peels off at the corners, the corners are rounded, but the projections 12 still maintain a convex shape, and the projections 12 are subjected to peeling stress from a plurality of directions. Therefore, the peeling of the exterior film 5 has a lower priority than the other portions, while reducing the sharpness of the convex shape and finally until the projection 12 is almost eliminated. Progress.
[0048] 突出部 12での外装フィルム 5の剥離の進行を図 11に示す。図 11に示すように、突 出部 12では、内圧の上昇に伴って a→b→cのように、突出部 12の両側から剥離が進 行していく。外装フィルム 5の剥離位置は、外装フィルム 5の材質、突出部 12の幅 Wp 、突出部 12の突出長さ L、および内圧に依存する。従って、外装フィルム 5の材質、 突出部 12の幅 Wp、および突出部 12の突出長さ Lを予め決めておけば、貫通穴 8の 位置を調整することによって、電池要素収納部の内部と外部とが連通するときの電池 要素収納部の内圧である開放圧力を、任意に設定することができる。すなわち、貫通 穴 8を突出部 12の先端に近い位置に設ければ低い内圧で圧力を開放することがで き、突出部 12の根元付近に貫通穴 8を設ければ、高い内圧まで圧力は開放しない。  FIG. 11 shows the progress of peeling of the exterior film 5 at the protruding portions 12. As shown in FIG. 11, in the protruding portion 12, peeling proceeds from both sides of the protruding portion 12 as a → b → c as the internal pressure increases. The peeling position of the exterior film 5 depends on the material of the exterior film 5, the width Wp of the projection 12, the projection length L of the projection 12, and the internal pressure. Therefore, if the material of the outer film 5, the width Wp of the protruding portion 12, and the protruding length L of the protruding portion 12 are determined in advance, by adjusting the position of the through hole 8, the inside and outside of the battery element housing portion can be adjusted. The opening pressure, which is the internal pressure of the battery element housing when the communication is established, can be arbitrarily set. In other words, if the through hole 8 is provided at a position near the tip of the protruding portion 12, the pressure can be released at a low internal pressure, and if the through hole 8 is provided near the base of the protruding portion 12, the pressure can be increased to a high internal pressure. Do not open.
[0049] 以上のように封止領域 5aに突出部 12を設けることによって、この突出部 12は外装 フィルム電池の内圧が上昇したときの応力集中部として機能する。その結果、突出部 12において不織布 8を挟み込むことで、突出部 12によるこの機能と、不織布 8による 前述した作用効果とが相俟って、開放圧力をより確実かつ容易に制御することができ る。  [0049] By providing the protruding portion 12 in the sealing region 5a as described above, the protruding portion 12 functions as a stress concentration portion when the internal pressure of the exterior film battery increases. As a result, by sandwiching the nonwoven fabric 8 between the protruding portions 12, this function of the protruding portions 12 and the above-described operation and effect of the nonwoven fabric 8 can be combined to more reliably and easily control the opening pressure. .
[0050] 封止領域 5aに設ける応力集中部は、引き剥がし応力が集中して作用し得るもので あれば、その形状等は図 8に示したものに限定されない。例えば、図 8において突出 部 12の形状は電池要素 2に向力つて実質的に突出していれば、先細り形状のものや 、円弧状の先端部を有するものなど、如何なる形状であっても応力集中部としての機 能は有する。また、非融着部 11の中に他の熱融着部と独立して島状に設けたり、さら には非融着部 11を設けず封止領域 5aの内縁から突出して設けたりしてもよい。いず れの場合でも、不織布 8はこの応力集中部において対向する外装フィルム間に挟み 込まれ、この部分に圧力開放部が設けられる。 The shape and the like of the stress concentration portion provided in the sealing region 5a are not limited to those shown in FIG. 8, as long as the peeling stress can act in a concentrated manner. For example, in FIG. 8, if the shape of the protruding portion 12 is substantially protruding toward the battery element 2, if the shape thereof is tapered, Any shape, such as one having an arc-shaped tip, can function as a stress concentration portion. Further, the non-fused portion 11 may be provided in an island shape independently of other heat-fused portions, or may be provided so as to protrude from the inner edge of the sealing region 5a without providing the non-fused portion 11. Is also good. In any case, the nonwoven fabric 8 is sandwiched between the facing outer films at the stress concentration portion, and a pressure release portion is provided in this portion.
[0051] 不織布 8が挟み込まれた領域で効果的に剥離を進行させるためには、電池収容部 内で発生したガスによる内圧が最も作用し易い位置に不織布 8を挟み込むことである 。このためには、図 1に示したように、フィルム外装電池 1の周囲の辺のうち、正極リー ド 3および負極リード 4が引き出されていない長辺の、その辺に沿った方向の略中央 部に不織布 8を挟み込むことが好ましい。  [0051] In order for the peeling to proceed effectively in the region where the nonwoven fabric 8 is sandwiched, the nonwoven fabric 8 is sandwiched at a position where the internal pressure due to the gas generated in the battery housing is most likely to act. For this purpose, as shown in FIG. 1, of the sides around the film-covered battery 1, the long side from which the positive electrode lead 3 and the negative electrode lead 4 are not drawn out is approximately at the center in the direction along that side. Preferably, the nonwoven fabric 8 is sandwiched between the portions.
[0052] 以上、本発明について代表的な幾つかの例を挙げて説明したが、本発明はこれら に限定されるものではなぐ本発明の技術的思想の範囲内で適宜変更されうることは 明らかである。  Although the present invention has been described with reference to some typical examples, it is apparent that the present invention is not limited to these but can be appropriately modified within the scope of the technical idea of the present invention. It is.
[0053] 例えば、上述した例では封止領域において対向する外装フィルム間に配置するシ ート状部材として不織布を用いた例を示したが、本発明におけるシート状部材は、外 装フィルムの熱融着層を構成する熱融着性榭脂よりも高い融点の榭脂からなり、溶融 した熱融着性榭脂が浸透可能な構造を有するものであれば不織布に限定されない。 このようなシート状部材としては、繊維集合体、微多孔フィルム、榭脂シートなどが挙 げられ、上述した各例の構造を繊維集合体、微多孔フィルム、榭脂シート等で置き換 えても、上述したのと同様の効果が得られる。  For example, in the above-described example, an example is shown in which a nonwoven fabric is used as the sheet-like member disposed between the facing exterior films in the sealing region. The nonwoven fabric is not limited to a nonwoven fabric as long as it is made of a resin having a higher melting point than the heat-fusible resin constituting the fusion-bonding layer and has a structure through which the melted heat-fusible resin can penetrate. Examples of such a sheet-like member include a fiber aggregate, a microporous film, and a resin sheet. Even when the structure of each of the above-described examples is replaced with a fiber aggregate, a microporous film, a resin sheet, and the like. The same effect as described above can be obtained.
[0054] 繊維集合体は、多数の繊維カゝらなり繊維間に熱融着性榭脂が浸透するように構成 したものであり、前述した不織布の他、繊維を経緯に織成した織布も含む。織布にお いても、目付量を適宜設定することで、開放圧力を任意に設定することができる。微 多孔フィルムは、多数の微孔が分散して形成されたフィルムであり、シート状部材とし て微多孔フィルムを用いた場合、熱融着性榭脂はこれら微孔に浸透する。微多孔フ イルムとしては、外装フィルムの熱融層を構成する熱融着性榭脂よりも高 ヽ融点を有 する材質であれば、セパレータに用いたものと同じものを用いることもでき、また、その 製造方法についても、セパレータの説明で述べたとおりである。微多孔フィルムを用 いた場合、開放圧力は、微孔の大きさや分布密度を適宜設定することで制御可能で ある。微孔の大きさや分布密度は、微多孔フィルムを乾式プロセスで製造した場合は フィルムの延伸倍率に依存し、湿式プロセスで製造した場合は溶媒や微粒子の直径[0054] The fiber aggregate is configured so that the heat-fusible resin penetrates between a large number of fibers and the fibers. In addition to the nonwoven fabric described above, a woven fabric in which fibers are woven in the course of the process is also used. Including. The opening pressure can also be set arbitrarily in the woven fabric by appropriately setting the basis weight. The microporous film is a film formed by dispersing a large number of micropores. When a microporous film is used as a sheet-like member, the heat-fusible resin permeates into these micropores. As the microporous film, the same material as used for the separator can be used as long as it has a higher melting point than the heat-fusible resin constituting the heat-fused layer of the exterior film. The manufacturing method is also as described in the description of the separator. Use microporous film In this case, the opening pressure can be controlled by appropriately setting the size and distribution density of the micropores. The size and distribution density of the micropores depend on the stretching ratio of the microporous film when manufactured by a dry process, and the diameter of the solvent and fine particles when manufactured by a wet process.
、含有量に依存する。榭脂シートも、微多孔フィルムと同様、溶融した熱融着性榭脂 が浸透する多数の開口を分散して形成したものであり、開口率によって開放圧力を 制御することができる。なお本発明では、厚さが微多孔フィルムよりも厚いという点で、 榭脂シートを微多孔フィルムと区別して 、る。溶融した熱融着性榭脂が浸透可能な 榭脂シートは、例えば、 τダイ法などにより形成したシート原反に、パンチングゃ熱針 などで多数の開口を形成して作製することができる。シート状部材として榭脂シートを 用いた場合は、開口の大きさや配置などと自由に設定し開口率を任意に制御できる という利点がある。 , Depending on the content. The resin sheet, like the microporous film, is formed by dispersing a number of openings through which the molten heat-fusible resin penetrates, and the opening pressure can be controlled by the opening ratio. In the present invention, the resin sheet is distinguished from the microporous film in that the thickness is larger than that of the microporous film. A resin sheet through which molten heat-fusible resin can penetrate can be produced by forming a large number of openings in a raw sheet formed by, for example, a τ die method using a punching method or a heating needle. When a resin sheet is used as the sheet-shaped member, there is an advantage that the size and arrangement of the openings can be freely set and the opening ratio can be arbitrarily controlled.
[0055] 繊維集合体の繊維間の隙間の大きさや、微多孔フィルムの孔径や、榭脂シートの 開口の孔径はできるだけ小さぐかつ繊維集合体の繊維間の隙間、微多孔フィルム の孔、榭脂シートの開口がこれらシート状部材の全域にわたって一様に配置されて いることが好ましい。これらは圧力開放部として機能させることが目的であるので、内 圧が上昇したときに、圧力開放のための経路形成予定部において安定して剥離する ようにすることが重要であり、外装フィルムとの接着強度が均一になっていることが好 ましいためである。  [0055] The size of the gap between the fibers of the fiber assembly, the pore size of the microporous film, and the pore size of the opening of the resin sheet are as small as possible and the gap between the fibers of the fiber assembly, the pores of the microporous film, It is preferable that the openings of the fat sheet are uniformly arranged over the entire area of these sheet-shaped members. Since these are intended to function as pressure relief parts, it is important to ensure that when internal pressure rises, stable peeling occurs at the part where the path for pressure relief is to be formed. This is because it is preferable that the adhesive strength is uniform.
[0056] 繊維間の隙間の大きさや孔径が大きすぎると、外装フィルムとの接着強度の不均一 を招いたり、開放圧力の個々のばらつきが大きくなつたりといった不都合を生じる。例 えば、封止幅(図 7における幅 W2)が 10mmである場合に、直径 3mmの開口をラン ダムに分布させた榭脂シートを用いると、 3mmのピッチで接着強度の不均一を招くこ とになり、また、封止幅方向に開口が 2つ並んだり 3つ並んだりと、製品ごとに開口の 数が異なったりすることが考えられる。以上のことを考慮すると、繊維間の隙間の大き さや孔径は、好ましくは lmm以下、より好ましくは 0. 5mm以下、最も好ましくは 0. 1 mm以下である。もちろん、繊維間の隙間ゃ孔径は、溶融した熱融着性榭脂が染み 込むことのできる大きさであることが必要である。繊維間の隙間ゃ孔の配置に関して は、シート状部材と外装フィルムとの接着強度ができるだけ均一になるような密度で 配置されて 、ることが好まし!/、。 If the size of the gap between the fibers and the diameter of the pores are too large, inconveniences such as non-uniform bonding strength with the exterior film and a large variation in the opening pressure are caused. For example, if the sealing width (width W2 in Fig. 7) is 10 mm, using a resin sheet with openings of 3 mm in diameter randomly distributed may lead to uneven bonding strength at a pitch of 3 mm. In addition, if two or three openings are arranged in the sealing width direction, the number of openings may differ for each product. In consideration of the above, the size of the gap between the fibers and the pore diameter are preferably 1 mm or less, more preferably 0.5 mm or less, and most preferably 0.1 mm or less. Needless to say, the gap between the fibers and the diameter of the pores need to be large enough to allow the molten heat-fusible resin to penetrate. Regarding the arrangement of the gaps and holes between the fibers, the density should be such that the adhesive strength between the sheet-like member and the exterior film is as uniform as possible. It is preferred to be located! / ,.
[0057] また、上述した例では 2枚の外装フィルムで電池要素をその厚み方向両側から挟ん で周囲の 4辺を熱融着したものを示した力 その他にも、 1枚の外装フィルムを 2つ折 りにして電池要素を挟み、開放して 、る 3辺を熱融着することによって電池要素を封 止してちょい。 Further, in the above-described example, the battery element is sandwiched from both sides in the thickness direction by two exterior films, and the surrounding four sides are heat-sealed. Fold the battery element, open it, and heat seal the three sides to seal the battery element.
[0058] 電池要素の構造について、上述した例では複数の正極および複数の負極を交互 に積層した積層型を示した力 正極、負極およびセパレータを帯状に形成し、セパレ ータを挟んで正極および負極を重ね合わせ、これを捲回した後、扁平状に圧縮する ことによって、正極と負極とを交互に配置させた捲回型の電池要素であってもよ 、。  [0058] Regarding the structure of the battery element, in the above-described example, a positive electrode, a negative electrode, and a separator were formed in a strip shape in which a plurality of positive electrodes and a plurality of negative electrodes were alternately stacked, and the positive electrode and the separator were sandwiched by a separator. A negative electrode may be a wound-type battery element in which positive electrodes and negative electrodes are alternately arranged by stacking the negative electrode, winding the negative electrode, and compressing the negative electrode.
[0059] 電池要素としては、正極、負極および電解質を含むものであれば、通常の電池に 用いられる任意の電池要素が適用可能である。一般的なリチウムイオン二次電池に おける電池要素は、リチウム 'マンガン複合酸ィ匕物、コバルト酸リチウム等の正極活物 質をアルミニウム箔などの両面に塗布した正極板と、リチウムをドープ '脱ドープ可能 な炭素材料を銅箔などの両面に塗布した負極板とを、セパレータを介して対向させ、 それにリチウム塩を含む電解液を含浸させて形成される。電池要素としては、この他 に、ニッケル水素電池、ニッケルカドミウム電池、リチウムメタル一次電池あるいは二 次電池、リチウムポリマー電池等、他の種類の化学電池の電池要素が挙げられる。さ らに、本発明は、電気二重層キャパシタなどのキャパシタゃ電解コンデンサなどに例 示されるキャパシタ要素のような、電気エネルギーを内部に蓄積しィ匕学反応または物 理反応でガスを発生し得る電気デバイス要素を外装フィルムで封止した電気デバィ スにも適用可能である。  [0059] As the battery element, any battery element used for a normal battery can be applied as long as it includes a positive electrode, a negative electrode, and an electrolyte. A battery element in a general lithium ion secondary battery includes a positive electrode plate in which a positive electrode active material such as lithium manganese composite oxide and lithium cobalt oxide is coated on both surfaces such as aluminum foil, and a lithium dope. A negative electrode plate coated with a dopable carbon material on both sides such as copper foil is opposed to each other via a separator, and is impregnated with an electrolyte containing a lithium salt. Other battery elements include other types of battery elements such as nickel metal hydride batteries, nickel cadmium batteries, lithium metal primary or secondary batteries, and lithium polymer batteries. Further, the present invention can accumulate electric energy inside and generate gas by a danigami reaction or a physical reaction, such as a capacitor element such as a capacitor such as an electric double layer capacitor or an electrolytic capacitor. The present invention can also be applied to electric devices in which electric device elements are sealed with an exterior film.
[0060] さらに、図 1には、正極リード 3と負極リード 4をフィルム外装電池 1の反対側の辺か ら延出させた例を示した力 これらは同じ辺カも延出させてもよいし、隣り合う辺から 延出させてもよい。  Further, FIG. 1 shows an example in which the positive electrode lead 3 and the negative electrode lead 4 are extended from the opposite side of the film-covered battery 1. These forces may extend on the same side. Then, they may extend from adjacent sides.
実施例  Example
[0061] 次に、本発明の具体的な実施例について比較例とともに説明する。  Next, specific examples of the present invention will be described together with comparative examples.
[0062] (実施例 1) (Example 1)
外装フィルムとして、ナイロン Zアルミ箔 Zポリプロピレン (それぞれ厚さが 25 μ m、 40 ^ m, 50 /z m)の積層構造を有するラミネートフィルムを用い、内部に電池要素を 収納してフィルム外装電池を作製した。フィルム外装電池の外形は長方形で、対向 する 2つの短辺力もそれぞれ正極リードおよび負極リードを引き出した。 Nylon Z aluminum foil Z polypropylene (25 μm thick, Using a laminated film having a laminated structure of 40 ^ m, 50 / zm), battery elements were housed inside to prepare a film-covered battery. The external shape of the film-covered battery was rectangular, and the two opposing short sides pulled out the positive and negative leads, respectively.
[0063] フィルム外装電池のリードが引き出されていない 2つの長辺のうち一方に、以下のよ うにして、安全弁として機能する部分を形成した。 2枚のラミネートフィルムのうち 1枚 の、長辺の封止予定部のポリプロピレン側に、 20mm X 20mmの矩形に切り取った 1 枚の不織布を仮止めした。不織布の仮止め位置は、長辺の中央部とした。不織布と しては、 目付量が 18g/m2、厚さ 36 /z mのポリエステル製不織布を用いた。次いで、 もう 1枚のラミネートフィルムを、ポリプロピレンの層を内側にして不織布を挟み込むよ うに対向させ、 10mm幅の細長!/ヽ熱融着ヒータによって 2枚のラミネートフィルムを熱 融着し、不織布が挟み込まれた封止領域を形成した。熱融着ヒータとしては、片側の ヘッドが、表面が金属製で、もう片側のヘッドが、表面にシリコーンゴムが貼付けられ たものを用いた。熱融着温度は 190°Cとした。なお、不織布を挟み込む辺の熱融着 において、熱融着温度、圧力、時間は、本実施例も含め、以下に述べる各実施例お よび比較例で同じ条件とした。 [0063] A portion functioning as a safety valve was formed on one of the two long sides of the film-covered battery from which the lead was not drawn out as follows. One nonwoven fabric cut into a rectangle of 20 mm × 20 mm was temporarily fixed to one of the two laminated films on the polypropylene side of the portion to be sealed on the long side. The temporary fixing position of the nonwoven fabric was set at the center of the long side. As the nonwoven fabric, a polyester nonwoven fabric having a basis weight of 18 g / m 2 and a thickness of 36 / zm was used. Next, the other laminated film is opposed to the non-woven fabric with the polypropylene layer inside, sandwiching the nonwoven fabric. A sandwiched sealing region was formed. As the heat fusion heater, one having a metal head on one side and a silicone rubber on the other head was used. The heat fusion temperature was 190 ° C. In the heat fusion on the side sandwiching the nonwoven fabric, the heat fusion temperature, pressure, and time were set to the same conditions in each of the following examples and comparative examples including the present example.
[0064] (実施例 2)  (Example 2)
挟み込む不織布として、実施例 1で用いたのと同じ不織布を 2枚重ねた他は、実施 例 1と同様にしてフィルム外装電池を作製した。  A film-covered battery was produced in the same manner as in Example 1, except that the same nonwoven fabric used in Example 1 was stacked as two nonwoven fabrics to be sandwiched.
[0065] (実施例 3)  (Example 3)
挟み込む不織布として、 目付量 43g/m2、厚さ 90 mのポリエステル製不織布を 用いた他は、実施例 1と同様にしてフィルム外装電池を作製した。挟み込んだ不織布 の枚数は 1枚である。 A film-covered battery was produced in the same manner as in Example 1, except that a nonwoven fabric made of polyester having a basis weight of 43 g / m 2 and a thickness of 90 m was used as the nonwoven fabric to be sandwiched. The number of sandwiched nonwoven fabrics is one.
[0066] (比較例 1)  (Comparative Example 1)
不織布を挟まなカゝつた他は、実施例 1と同様にしてフィルム外装電池を作製した。  A film-covered battery was produced in the same manner as in Example 1 except that a non-woven fabric was sandwiched.
[0067] (評価)  [0067] (Evaluation)
以上のように作製した実施例 1〜3および比較例 1のフィルム外装電池について、 封止領域の剥離強度を測定した。まず、剥離強度測定用のサンプルを得るため、不 織布を挟み込んだ部分 (比較例 1は不織布を用いて 、な 、ので、実施例 1〜3と同じ 部分)を含む外装フィルムを、フィルム外装電池の外側から内側へ向かう方向に、封 止されていない部分まで含めて細長く切り出した。そして、得られたサンプルについ て、封止されていない部分を引っ張り試験機の 2つのチャックに掴ませ、 T型剥離試 験によって剥離強度を測定した。測定結果を表 1に示す。 The peel strength of the sealed region was measured for the film-covered batteries of Examples 1 to 3 and Comparative Example 1 manufactured as described above. First, in order to obtain a sample for peel strength measurement, a portion where a non-woven fabric is sandwiched (Comparative Example 1 uses a non-woven fabric, so the same as in Examples 1-3) Part) was cut into an elongated shape in the direction from the outside to the inside of the film-covered battery, including the unsealed part. Then, the unsealed portion of the obtained sample was gripped by two chucks of a tensile tester, and the peel strength was measured by a T-type peel test. Table 1 shows the measurement results.
[表 1][table 1]
Figure imgf000020_0001
表 1からわ力るように、封止領域に不織布を挟み込むことによって、剥離強度の小さ い部分を形成することができた。実施例 1と実施例 3を比較すると、挟み込む不織布 の目付量によって、剥離強度の制御が可能であることがわかる。また、実施例 2から わ力るように、複数枚の不織布を重ねることにより、剥離強度を大幅に小さくすること が可能である。具体的には、実施例 2では、 2枚の不織布の合計の目付量は 36gZ 総厚は 72 /z mであり、これらの値は実施例 3よりも小さいが、実施例 3よりも剥離 強度が小さくなつている。
Figure imgf000020_0001
As shown in Table 1, by sandwiching the nonwoven fabric in the sealing region, a portion having a small peel strength was able to be formed. Comparing Example 1 with Example 3, it can be seen that the peel strength can be controlled by the basis weight of the nonwoven fabric to be sandwiched. Further, as shown in Example 2, by laminating a plurality of nonwoven fabrics, the peel strength can be significantly reduced. Specifically, in Example 2, the total basis weight of the two nonwoven fabrics was 36 gZ, and the total thickness was 72 / zm.These values were smaller than those of Example 3, but the peel strength was higher than that of Example 3. It is getting smaller.

Claims

請求の範囲 The scope of the claims
[1] 電気デバイス要素と、  [1] electrical device elements,
少なくとも非通気層と熱融着性榭脂からなる熱融着層とを積層した構造を持ち、該 熱融着層を内面として前記電気デバイス要素を包囲しその周囲で向き合った前記熱 融着層同士が熱融着されることによって前記電気デバイス要素を封止する封止領域 が形成された外装フィルムと、  A heat-sealing layer having a structure in which at least a non-ventilating layer and a heat-sealing resin made of a heat-sealing resin are laminated, the heat-sealing layer surrounding the electric device element with the heat-sealing layer as an inner surface and facing around the electric device element An exterior film in which a sealing region for sealing the electric device element is formed by heat-sealing the two,
前記封止領域の一部に配された、前記熱融着性榭脂よりも高い融点の榭脂からな り、かつ溶融した前記熱融着性榭脂が浸透可能な構造を有する少なくとも 1枚のシー ト状部材と、を有し、  At least one sheet of resin arranged at a part of the sealing region and having a melting point higher than that of the heat-fusible resin, and having a structure through which the melted heat-fusible resin can penetrate. And a sheet-like member of
前記シート状部材は、対向する前記外装フィルムに挟まれ、かつ前記電気デバイス を包囲する空間内に露出して配され、前記シート状部材に前記熱融着性榭脂が浸 透して 、るフィルム外装電気デバイス。  The sheet-shaped member is sandwiched between the facing exterior films and is exposed and arranged in a space surrounding the electric device, and the heat-fusible resin is impregnated in the sheet-shaped member. Film-covered electrical device.
[2] 前記シート状部材は、前記熱融着性榭脂よりも高!、融点の榭脂から作られた繊維 集合体である、請求項 1に記載のフィルム外装電気デバイス。  2. The film-covered electric device according to claim 1, wherein the sheet-shaped member is a fiber aggregate made of a resin having a melting point higher than that of the heat-fusible resin.
[3] 前記繊維集合体は不織布であり、該不織布を構成する繊維間に前記熱融着性榭 脂が浸透して ヽる、請求項 2に記載のフィルム外装電気デバイス。 3. The film-covered electric device according to claim 2, wherein the fiber aggregate is a nonwoven fabric, and the heat-fusible resin penetrates between fibers constituting the nonwoven fabric.
[4] 前記シート状部材は、前記熱融着性榭脂よりも高!、融点の榭脂から作られた微多 孔フィルムであり、該微多孔フィルムの微孔に前記熱融着性榭脂が浸透している、請 求項 1に記載のフィルム外装電気デバイス。 [4] The sheet-like member is a microporous film made of a resin having a melting point higher than that of the heat-fusible resin, and the heat-fusible resin is applied to micropores of the microporous film. The film-covered electrical device according to claim 1, wherein the fat is impregnated.
[5] 複数枚の前記シート状部材が重なり合って前記外装フィルムに挟み込まれて 、る、 請求項 1に記載のフィルム外装電気デバイス。 [5] The film-covered electric device according to claim 1, wherein a plurality of the sheet-shaped members are overlapped and sandwiched by the package film.
[6] 前記外装フィルムの前記シート状部材が挟み込まれた領域に、この領域での前記 外装フィルムの剥離により前記空間の内部を外気と連通させる圧力開放部が設けら れて 、る、請求項 1に記載のフィルム外装電気デバイス。 [6] A pressure release portion is provided in a region of the exterior film where the sheet-like member is sandwiched, for releasing the exterior film in this region to communicate the inside of the space with outside air. 2. The film-covered electric device according to 1.
[7] 前記圧力開放部は、前記封止領域で対向している前記外装フィルムの少なくとも 一方に形成された穴または切り込みである、請求項 6に記載のフィルム外装電気デ バイス。 7. The film-covered electric device according to claim 6, wherein the pressure release portion is a hole or a cut formed in at least one of the outer films facing each other in the sealing region.
[8] 前記封止領域は前記電気デバイス要素に向かって突出する突出部を有し、該突出 部にお 、て前記不織布が挟み込まれて 、る、請求項 6に記載のフィルム外装電気デ バイス。 [8] The sealing region has a protrusion projecting toward the electric device element, 7. The film-covered electric device according to claim 6, wherein the nonwoven fabric is sandwiched between portions.
[9] 前記封止領域の一部に、前記外装フィルム同士が熱融着されていない非融着部が 前記電池要素を包囲する空間に連続して入り江状に形成され、この入り江状の部位 に前記突出部が設けられている、請求項 8に記載のフィルム外装電気デバイス。  [9] In a part of the sealing region, a non-fused portion in which the exterior films are not thermally fused to each other is continuously formed in a space surrounding the battery element in a cove shape. 9. The film-covered electric device according to claim 8, wherein the projecting portion is provided on the device.
[10] 前記シート状部材は、前記電池要素側の縁から外側に向かって寸法が小さくなる 形状である請求項 1に記載のフィルム外装電気デバイス。  10. The film-covered electric device according to claim 1, wherein the sheet-shaped member has a shape whose size decreases outward from an edge on the battery element side.
[11] 前記熱融着榭脂はポリプロピレンであり、前記シート状部材を構成する榭脂はポリ エチレンである、請求項 1に記載のフィルム外装電気デバイス。  11. The film-covered electric device according to claim 1, wherein the heat-sealing resin is polypropylene, and the resin constituting the sheet-like member is polyethylene.
[12] 前記電気デバイス要素は、化学電池要素またはキャパシタ要素である、請求項 1に 記載のフィルム外装電気デバイス。  [12] The film-covered electric device according to claim 1, wherein the electric device element is a chemical battery element or a capacitor element.
PCT/JP2005/010843 2004-06-14 2005-06-14 Electric device packed in film WO2005122294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514603A JP4876915B2 (en) 2004-06-14 2005-06-14 Film exterior electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-175360 2004-06-14
JP2004175360 2004-06-14

Publications (1)

Publication Number Publication Date
WO2005122294A1 true WO2005122294A1 (en) 2005-12-22

Family

ID=35503394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010843 WO2005122294A1 (en) 2004-06-14 2005-06-14 Electric device packed in film

Country Status (2)

Country Link
JP (1) JP4876915B2 (en)
WO (1) WO2005122294A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324174A (en) * 2005-05-20 2006-11-30 Nec Tokin Corp Film exterior battery
WO2006126446A1 (en) * 2005-05-23 2006-11-30 Matsushita Electric Industrial Co., Ltd. Safety mechanism for laminate battery
EP1750195A1 (en) 2005-08-05 2007-02-07 Niles Co., Ltd. Joystic input device
WO2007098507A2 (en) 2006-02-24 2007-08-30 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
EP2057709A1 (en) * 2006-08-28 2009-05-13 LG Chem, Ltd. Secondary battery including one-way exhaust valve
JP2009188253A (en) * 2008-02-07 2009-08-20 Nisshinbo Holdings Inc Energy storage device and its manufacturing method
WO2009136995A2 (en) 2008-04-16 2009-11-12 Portola Pharmaceuticals, Inc. Inhibitors of syk protein kinase
EP2180537A3 (en) * 2008-10-23 2010-06-16 Li-Tec Battery GmbH Galvanic cell for a rechargeable battery
JP2010219024A (en) * 2009-02-20 2010-09-30 Sony Corp Battery, and battery pack
JP2010257948A (en) * 2009-03-31 2010-11-11 Jm Energy Corp Laminate-armored power storage device
JP2011507183A (en) * 2007-12-14 2011-03-03 エルジー・ケム・リミテッド Secondary battery having a sealing part with a novel structure
JP2011249343A (en) * 2009-02-20 2011-12-08 Sony Corp Battery and battery pack
US8138339B2 (en) 2008-04-16 2012-03-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
WO2012061415A1 (en) 2010-11-01 2012-05-10 Portola Pharmaceuticals, Inc. Oxypyrimidines as syk modulators
EP2244318A3 (en) * 2009-04-22 2012-07-25 Tesla Motors, Inc. Battery pack enclosure with controlled thermal runaway release system
US8258144B2 (en) 2008-04-22 2012-09-04 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8268469B2 (en) 2009-04-22 2012-09-18 Tesla Motors, Inc. Battery pack gas exhaust system
US8322532B2 (en) 2008-10-23 2012-12-04 Tim Schafer Packaging device and packaging system for essentially flat objects, for example lithium-ion cells
JP2013105743A (en) * 2011-11-15 2013-05-30 Sk Innovation Co Ltd Pouch type secondary battery
US8557416B2 (en) 2009-04-22 2013-10-15 Tesla Motors, Inc. Battery pack directed venting system
US8557415B2 (en) 2009-04-22 2013-10-15 Tesla Motors, Inc. Battery pack venting system
US8603655B2 (en) 2008-10-24 2013-12-10 Li-Tec Battery Gmbh Accumulator comprising a plurality of galvanic cells
JP2014110114A (en) * 2012-11-30 2014-06-12 Showa Denko Packaging Co Ltd External packaging body for electrochemical element
JP2014211994A (en) * 2013-04-18 2014-11-13 日新電機株式会社 Power storage device
US8952027B2 (en) 2008-04-16 2015-02-10 Portola Pharmaceuticals, Inc. Inhibitors of syk and JAK protein kinases
US8956743B2 (en) 2006-08-28 2015-02-17 Lg Chem, Ltd. Secondary battery including one-way exhaust member
US9359308B2 (en) 2011-11-23 2016-06-07 Portola Pharmaceuticals, Inc. Pyrazine kinase inhibitors
EP3176154A1 (en) 2010-11-01 2017-06-07 Portola Pharmaceuticals, Inc. Benzamides and nicotinamides as syk modulators
US9676756B2 (en) 2012-10-08 2017-06-13 Portola Pharmaceuticals, Inc. Substituted pyrimidinyl kinase inhibitors
JP2019046535A (en) * 2017-08-29 2019-03-22 積水化学工業株式会社 Sheet material, secondary battery, and method for manufacturing the same
JP2020055587A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, storage body with the same and power storage device with valve structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186823A (en) * 1997-09-05 1999-03-30 Ricoh Co Ltd Nonaqueous flat battery
JP2001093489A (en) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd Flat battery
JP2001250526A (en) * 2000-03-06 2001-09-14 Yuasa Corp Sealed battery
JP2001266814A (en) * 2000-03-17 2001-09-28 Tdk Corp Sheet-shaped battery
JP2001283800A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Thin battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186823A (en) * 1997-09-05 1999-03-30 Ricoh Co Ltd Nonaqueous flat battery
JP2001093489A (en) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd Flat battery
JP2001250526A (en) * 2000-03-06 2001-09-14 Yuasa Corp Sealed battery
JP2001266814A (en) * 2000-03-17 2001-09-28 Tdk Corp Sheet-shaped battery
JP2001283800A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Thin battery

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324174A (en) * 2005-05-20 2006-11-30 Nec Tokin Corp Film exterior battery
WO2006126446A1 (en) * 2005-05-23 2006-11-30 Matsushita Electric Industrial Co., Ltd. Safety mechanism for laminate battery
JP2007157678A (en) * 2005-05-23 2007-06-21 Matsushita Electric Ind Co Ltd Safety mechanism for laminate battery
US8057933B2 (en) 2005-05-23 2011-11-15 Panasonic Corporation Safety mechanism for laminate battery
EP1750195A1 (en) 2005-08-05 2007-02-07 Niles Co., Ltd. Joystic input device
WO2007098507A2 (en) 2006-02-24 2007-08-30 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
EP2057709A1 (en) * 2006-08-28 2009-05-13 LG Chem, Ltd. Secondary battery including one-way exhaust valve
US8956743B2 (en) 2006-08-28 2015-02-17 Lg Chem, Ltd. Secondary battery including one-way exhaust member
EP2057709A4 (en) * 2006-08-28 2010-08-04 Lg Chemical Ltd Secondary battery including one-way exhaust valve
JP2011507183A (en) * 2007-12-14 2011-03-03 エルジー・ケム・リミテッド Secondary battery having a sealing part with a novel structure
JP2009188253A (en) * 2008-02-07 2009-08-20 Nisshinbo Holdings Inc Energy storage device and its manufacturing method
US10533001B2 (en) 2008-04-16 2020-01-14 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US9868729B2 (en) 2008-04-16 2018-01-16 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8501944B2 (en) 2008-04-16 2013-08-06 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US9579320B2 (en) 2008-04-16 2017-02-28 Portola Pharmaceuticals, Inc. Inhibitors of syk and JAK protein kinases
US8138339B2 (en) 2008-04-16 2012-03-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US11414410B2 (en) 2008-04-16 2022-08-16 Alexion Pharmaceuticals, Inc. Inhibitors of protein kinases
WO2009136995A2 (en) 2008-04-16 2009-11-12 Portola Pharmaceuticals, Inc. Inhibitors of syk protein kinase
US8952027B2 (en) 2008-04-16 2015-02-10 Portola Pharmaceuticals, Inc. Inhibitors of syk and JAK protein kinases
US8937070B2 (en) 2008-04-16 2015-01-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US9139581B2 (en) 2008-04-22 2015-09-22 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
US8258144B2 (en) 2008-04-22 2012-09-04 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
EP2180537A3 (en) * 2008-10-23 2010-06-16 Li-Tec Battery GmbH Galvanic cell for a rechargeable battery
US8394527B2 (en) 2008-10-23 2013-03-12 Li-Tec Battery Gmbh Galvanic cell for an accumulator
US8322532B2 (en) 2008-10-23 2012-12-04 Tim Schafer Packaging device and packaging system for essentially flat objects, for example lithium-ion cells
US8617739B2 (en) 2008-10-23 2013-12-31 Li-Tec Battery Gmbh Galvanic cell for an accumulator
US8603655B2 (en) 2008-10-24 2013-12-10 Li-Tec Battery Gmbh Accumulator comprising a plurality of galvanic cells
US10930897B2 (en) 2009-02-20 2021-02-23 Murata Manufacturing Co., Ltd. Battery and battery pack
JP2010219024A (en) * 2009-02-20 2010-09-30 Sony Corp Battery, and battery pack
JP2011249343A (en) * 2009-02-20 2011-12-08 Sony Corp Battery and battery pack
JP2010257948A (en) * 2009-03-31 2010-11-11 Jm Energy Corp Laminate-armored power storage device
EP2244318A3 (en) * 2009-04-22 2012-07-25 Tesla Motors, Inc. Battery pack enclosure with controlled thermal runaway release system
US8268469B2 (en) 2009-04-22 2012-09-18 Tesla Motors, Inc. Battery pack gas exhaust system
US8361642B2 (en) 2009-04-22 2013-01-29 Tesla Motors, Inc. Battery pack enclosure with controlled thermal runaway release system
US8557415B2 (en) 2009-04-22 2013-10-15 Tesla Motors, Inc. Battery pack venting system
US8557416B2 (en) 2009-04-22 2013-10-15 Tesla Motors, Inc. Battery pack directed venting system
US8367233B2 (en) 2009-04-22 2013-02-05 Tesla Motors, Inc. Battery pack enclosure with controlled thermal runaway release system
US8277965B2 (en) 2009-04-22 2012-10-02 Tesla Motors, Inc. Battery pack enclosure with controlled thermal runaway release system
WO2012061415A1 (en) 2010-11-01 2012-05-10 Portola Pharmaceuticals, Inc. Oxypyrimidines as syk modulators
EP3176154A1 (en) 2010-11-01 2017-06-07 Portola Pharmaceuticals, Inc. Benzamides and nicotinamides as syk modulators
JP2013105743A (en) * 2011-11-15 2013-05-30 Sk Innovation Co Ltd Pouch type secondary battery
US9359308B2 (en) 2011-11-23 2016-06-07 Portola Pharmaceuticals, Inc. Pyrazine kinase inhibitors
US9676756B2 (en) 2012-10-08 2017-06-13 Portola Pharmaceuticals, Inc. Substituted pyrimidinyl kinase inhibitors
JP2014110114A (en) * 2012-11-30 2014-06-12 Showa Denko Packaging Co Ltd External packaging body for electrochemical element
JP2014211994A (en) * 2013-04-18 2014-11-13 日新電機株式会社 Power storage device
JP2019046535A (en) * 2017-08-29 2019-03-22 積水化学工業株式会社 Sheet material, secondary battery, and method for manufacturing the same
JP7036554B2 (en) 2017-08-29 2022-03-15 積水化学工業株式会社 Sheet material, secondary battery and method of manufacturing secondary battery
JP2020055587A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, storage body with the same and power storage device with valve structure
JP7367301B2 (en) 2018-10-01 2023-10-24 大日本印刷株式会社 Valve structure, container including the same, and electricity storage device with valve structure

Also Published As

Publication number Publication date
JPWO2005122294A1 (en) 2008-04-10
JP4876915B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4876915B2 (en) Film exterior electrical device
JP5010467B2 (en) Film-clad electrical device and method for manufacturing the same
KR100705101B1 (en) Film-covered electric device having pressure release opening
JP4232038B2 (en) Film-clad electrical device and method for manufacturing the same
JP4622019B2 (en) Flat battery
JP5692264B2 (en) Film-clad battery, battery mounting body, and assembled battery
JP4491843B2 (en) Lithium ion secondary battery and method of sealing a lithium ion secondary battery container
EP1976043B1 (en) Electrical part, nonaqueous-electrolyte cell and lead conductor with insulating coating layer and sealed bag-like body
JP4900339B2 (en) Film-clad electrical device and method for manufacturing the same
US20140349167A1 (en) Method for manufacturing packed electrode, and packed electrode, secondary battery and heat sealing machine
JP6298032B2 (en) Storage cell, exterior film, and storage module
EP0228757B1 (en) Flat cell
JP5527717B2 (en) Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP5114018B2 (en) Film-clad electrical device and manufacturing method thereof
JP6530850B1 (en) battery
JP3890334B2 (en) Film exterior electrical device and internal pressure release system
WO2022009687A1 (en) Metal-air cell production method
JP6530847B1 (en) battery
JP2560882B2 (en) Thin sealed lead acid battery
JP2023504380A (en) An electrode assembly including an electrode lead connection part connected by an adhesive part and a spot weld, and a pouch-type battery cell including the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514603

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase