WO2005121667A1 - Systeme pour regler le courant d'air de convection naturelle dans des appareils de refrigeration combines - Google Patents

Systeme pour regler le courant d'air de convection naturelle dans des appareils de refrigeration combines Download PDF

Info

Publication number
WO2005121667A1
WO2005121667A1 PCT/BR2005/000115 BR2005000115W WO2005121667A1 WO 2005121667 A1 WO2005121667 A1 WO 2005121667A1 BR 2005000115 W BR2005000115 W BR 2005000115W WO 2005121667 A1 WO2005121667 A1 WO 2005121667A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrangement
refrigerating compartment
obturator
cooling chamber
deflecting plate
Prior art date
Application number
PCT/BR2005/000115
Other languages
English (en)
Inventor
Guilherme Klitzke Giesbrecht
José Alberto Corrêa SALLES
Edson Luiz Izui
Jaime King Chin
Luciano Mendonça SEILER
André Hideto FUTAMI
Camila Da Rosa Longo
Original Assignee
Multibrás S.A. Eletrodomésticos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Multibrás S.A. Eletrodomésticos filed Critical Multibrás S.A. Eletrodomésticos
Publication of WO2005121667A1 publication Critical patent/WO2005121667A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Definitions

  • the present invention refers to a constructive arrangement applied to combined refrigeration appliances of the type comprising a refrigerating compartment and a freezing compartment separated from each other, closed by respective front doors and each lodging, internally and in the rear portion thereof, a respective evaporating plate portion responsible for cooling the airflow which circulates by natural convection inside the respective refrigerating or freezing compartment.
  • Prior Art Combined refrigeration appliances comprising a cabinet defining therewithin a freezing compartment and a refrigerating compartment, which are generally superposed, separated by a horizontal dividing wall and closed by respective front doors, are well known in the prior art.
  • the refrigerating and freezing compartments are each provided with a respective evaporating plate portion.
  • said evaporating plate portion is usually vertically disposed and secured against a rear wall portion of the respective compartment .
  • These evaporating plate portions are dimensioned to refrigerate the descending airflow produced by natural convection in the interior of the respective refrigerating and freezing compartments and are disposed in series in the same refrigerating circuit so as to receive the already condensed refrigerant fluid being pumped by a compressor of said refrigerating circuit.
  • the control of the temperature and consequently of the refrigeration of the refrigerating compartment is effected by the adjustment of a thermostat (when mechanical) , or by an electronic system, generally using a control module of the refrigeration appliance.
  • a thermostat when mechanical
  • an electronic system generally using a control module of the refrigeration appliance.
  • both the refrigerating and the freezing compartments are refrigerated even though one of the compartments does not require further refrigeration.
  • the refrigeration appliance does not have independent devices to control the refrigeration capacity of each of said refrigerating and freezing compartments, which can cause serious operational problems .
  • the compressor can be maintained switched on for a longer period than the refrigerating compartment needs, which can reduce the air temperature therein to negative or near zero values and freeze or excessively refrigerate the food stored therein, which is not desired to occur inside the refrigerating compartment.
  • This type of problem may occur due to the fact that the temperature control of both the freezing compartment and the refrigerating compartment is carried out only by a temperature sensor or by a thermostat usually positioned in the evaporating plate portion of the refrigerating compartment.
  • the thermal load applied to the refrigeration system is consequently increased, raising the evaporation temperature common to both compartments and avoiding the evaporating plate portion of the refrigerating compartment from reaching, in a determined time interval, a temperature which is sufficiently low to provoke the switching off of the compressor. Since this temperature for a two-door combined refrigeration appliance is normally equal to or lower than -20°C, the temperature of the evaporating plate portion of the refrigerating compartment will be the same due to the freezing temperature required from the evaporating plate portion designed for the freezing compartment .
  • the refrigerating compartment Since the temperature difference between the evaporating plate and the air temperature in the refrigerating compartment is significantly higher than that in the freezing compartment, the refrigerating compartment will experience excessive refrigeration, since its evaporating plate portion, which is also submitted to a refrigeration of about -20°C, will provoke excessive cooling of the descending airflow which is forced to pass there along by natural convection inside the refrigerating compartment. The excessive refrigeration of the refrigerating compartment can also cause problems to the food stored therein.
  • a possible solution for this problem is to reduce the evaporating plate portion of the refrigerating compartment. Nevertheless, such reduction can cause a problem of insufficient refrigeration when a reverse situation occurs, i.e., when the refrigerating compartment is severely loaded. In this case, a smaller evaporating plate portion results in a thermal exchange area which is insufficient to comply with the refrigeration requirements determined by the user upon loading the refrigerating compartment with a quantity of food products to be refrigerated.
  • the arrangement of the present invention comprises a deflecting plate, which can be or not made of a thermal conductive material, such as a metallic sheet, which is substantially vertically disposed in front of the evaporating plate portion of the refrigerating compartment, so as to occupy the width of the latter and to define, with a rear wall of said refrigerating compartment, an air cooling chamber lodging said evaporating plate portion and presenting an air inlet upper opening and an air outlet lower opening, communicating the air cooling chamber with the interior of the refrigerating compartment.
  • a deflecting plate which can be or not made of a thermal conductive material, such as a metallic sheet, which is substantially vertically disposed in front of the evaporating plate portion of the refrigerating compartment, so as to occupy the width of the latter and to define, with a rear wall of said refrigerating compartment, an air cooling chamber lodging said evaporating plate portion and presenting an air inlet upper opening and an air outlet lower opening, communicating the air cooling chamber with the interior of the refrigerating
  • One of said upper and lower openings is provided with an obturator which can be displaced between a closed position, in which it blocks the natural convection airflow descending through the air cooling chamber, and at least one open position in which it allows said natural convection airflow to descend through the air cooling chamber.
  • the construction proposed above allows the user to activate the obturator in order to totally block, partially restrain, or totally release the airflow descending through the air cooling chamber and consequently along the evaporating plate portion of the refrigerating compartment, so as to adjust the refrigeration degree inside the refrigerating compartment, independently of the requirements of the thermal load stored inside the freezing compartment, i.e., independently of the operating time of the compressor of the refrigeration circuit of the combined refrigeration appliance.
  • the construction proposed herein further allows the user to adjust the refrigeration capacity inside the refrigerating compartment as a function of the characteristics of the operation required from the appliance.
  • the user can, for example, reduce said refrigeration capacity during winter to prevent the refrigerating compartment from working in a very cold condition, or increase the refrigeration capacity during summer, when the appliance works with higher thermal loads.
  • the combined refrigeration appliance is provided with an evaporating plate portion of the refrigerating compartment which is dimensioned to comply with a higher thermal load, even in case said evaporating plate portion works over-dimensioned during determined operating phases of the refrigeration appliance.
  • the user may adjust the obturator to reduce the airflow through the air cooling chamber, reducing the refrigeration capacity inside the refrigerating compartment, even with said evaporating plate portion being dimensioned to produce a thermal exchange with a much more intense airflow and corresponding to a totally open obturator position.
  • Figure 1 schematically illustrates a longitudinal vertical sectional view of a combined refrigeration appliance of the type considered herein and presenting a first embodiment of the present arrangement
  • Figure 2 is an elevational front view of the upper portion of the refrigerating compartment, illustrating the relative positioning of the deflecting plate in relation to the width of said refrigerating compartment;
  • Figure 3 is an enlarged vertical sectional view of the upper portion of the refrigerating compartment, illustrating the assembly of the obturator in the deflecting plate, said section being taken according to line III-III in figure 2 ;
  • Figures 4 and 4a are enlarged sectional views of the obturator assembly of figure 3 in the closed and open positions, respectively;
  • Figure 5 is an exploded rear perspective view of both the deflecting plate and the obturator;
  • Figure 6 is a view similar to that of figure 1, but illustrating another embodiment for the positioning of the obturator of the present arrangement .
  • the present arrangement is applied to a combined refrigeration appliance of the type which comprises a cabinet 10 constructed in any adequate manner and internally forming a refrigerating compartment R and a freezing compartment F separated from each other by a horizontal dividing wall 11, closed by respective front doors 12 and 13 and lodging, internally and in the rear portion thereof, a respective evaporating plate portion 20, 30, which is vertically disposed and secured to the cabinet, maintaining a certain distance in relation to an adjacent portion of a rear wall 14 of the latter.
  • the refrigerating compartment R is delimited by the rear wall 14, superiorly by the dividing wall 11 of the cabinet 10, by the respective front door 13, by a pair of lateral walls 15 and by a bottom wall 16.
  • a deflecting plate 40 generally made of a metallic plate of high thermal conductivity or other material such as plastic, which is substantially vertically secured inside the refrigerating compartment R, parallel to and in front of the evaporating plate portion 30 of said refrigerating compartment R.
  • the deflecting plate 40 is preferably dimensioned to occupy practically the whole width of the refrigerating compartment R, defining with the rear wall 14 of the latter an air cooling chamber 50 in which the respective evaporating plate portion 30 is lodged.
  • the air cooling chamber 50 presents an air inlet upper opening 51 and an air outlet lower opening 52, said upper opening 51 and lower opening 52 communicating the air cooling chamber 50 with the interior of the refrigerating compartment R. Still in accordance with the invention, one of said upper opening 51 and lower opening 52 is provided with an obturator 50 that can be displaced between a closed position, in which it blocks the natural convection airflow descending through the air cooling chamber 50, and at least one open or partially open position, in which it allows a corresponding airflow to descend through the interior of the air cooling chamber 50 and along the respective evaporating plate portion 30.
  • the deflecting plate 40 presents an upper edge 41 seated against the adjacent portion of the dividing wall 11 of the cabinet 10, and in this case the air inlet upper opening 51 in the air cooling chamber 50 is defined by at least one window 40a or a respective plurality of windows 40a provided in the deflecting plate 40 itself and the obturator 60 is mounted in said upper opening 51 of the windows 40a.
  • the deflecting plate 40 presents a lower edge 42 which is maintained spaced in relation to the adjacent portion of the rear wall 14 of the refrigerating compartment R, defining the air outlet lower opening 52 of the air cooling chamber.
  • the air outlet lower opening 52 of the air cooling chamber 50 is defined by a plurality of openings 70a produced in the finishing plate 70 which is molded preferably in plastic material and provided with rear fixation means 71 to be fitted in respective housings provided in any of the parts of evaporating plate portion 30, deflecting plate 40 or even the internal wall of the cabinet of the combined refrigeration appliance.
  • the obturator 60 takes preferably the form of an elongated plate, preferably made of a synthetic material and dimensioned so as to completely cover the upper opening 51 and the respective air inlet windows 40a in the air cooling chamber 50.
  • the obturator 60 is provided with a plurality of orifices 60a disposed according to an alignment coinciding with that of the window 40a of the deflecting plate 40 and which are dimensioned to coincide with the respective windows 40a when the obturator 60 is displaced to the full open position illustrated in figure 4a of the enclosed drawings.
  • the obturator 60 in the illustrated construction incorporates a pair of small rear lower teeth 61 and a rear upper jaw 62 which are respectively slidingly fitted in respective slots 45 and 46 provided in the deflecting plate 40.
  • the user needs only to promote the linear displacement of the obturator 60 between a closed position, illustrated in figure 4, in which its orifices 60a are displaced out from the alignment with the windows 40a of the deflecting plate 40, blocking completely the fluid communication between the air cooling chamber 50 and the interior of the refrigerating compartment R by the upper part of said compartment.
  • the user can also displace the obturator 60 to other positions which allow the partial or total alignment of its orifices 60a in relation to the corresponding windows 40a of the deflecting plate 40, thus allowing the total or partial liberation of the air inlet upper opening 51 in the air cooling chamber 50.
  • the upper opening 51 and the lower opening 52 of the air cooling chamber 50 are defined by a gap which is formed, respectively, between the upper edge 41 of the deflecting plate 40 and an adjacent portion of the dividing wall 11 of the cabinet 10 and between the lower edge 42 of the deflecting plate 40 and the portion of the rear wall 14 of the refrigerating compartment R.
  • the obturator 60 is mounted in the gap formed between the lower edge 42 of the deflecting plate 40 and the portion of the rear wall 14 of the refrigerating compartment R.
  • the cooling of the refrigerating compartment R is made by heat being transferred from the air to the deflecting plate 40 and therefrom to the ambient of the air cooling chamber 50 refrigerated by the evaporating plate portion 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

Cette invention concerne un système servant à régler le courant d'air de convection naturelle dans des appareils de réfrigération combinés du type comprenant un compartiment de réfrigération (R) et un compartiment de congélation (F) dans lequel est logé, dans son espace intérieur et dans sa partie arrière, une partie plaque d'évaporation correspondante (20, 30). Ce système comprend une plaque déflectrice (40) disposée face à la partie plaque d'évaporation (30) du compartiment de réfrigération (R) et définissant avec une paroi arrière (14) du compartiment de réfrigération (R) une chambre de refroidissement d'air (50) présentant une ouverture supérieure d'entrée d'air (51) et une ouverture inférieure de sortie d'air (52) mettant en communication la chambre de refroidissement d'air (50) avec l'espace intérieur du compartiment de réfrigération (R), l'ouverture supérieure (51) ou l'ouverture inférieure (52) étant pourvue d'un obturateur (60) pouvant être déplacé entre une position fermée et au moins une position ouverte.
PCT/BR2005/000115 2004-06-14 2005-06-13 Systeme pour regler le courant d'air de convection naturelle dans des appareils de refrigeration combines WO2005121667A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI0402332-3 2004-06-14
BRPI0402332-3A BRPI0402332B1 (pt) 2004-06-14 2004-06-14 Arranjo para regulagem de fluxo de ar por convecção natural em refrigeradores combinados

Publications (1)

Publication Number Publication Date
WO2005121667A1 true WO2005121667A1 (fr) 2005-12-22

Family

ID=36090773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2005/000115 WO2005121667A1 (fr) 2004-06-14 2005-06-13 Systeme pour regler le courant d'air de convection naturelle dans des appareils de refrigeration combines

Country Status (3)

Country Link
AR (1) AR049221A1 (fr)
BR (1) BRPI0402332B1 (fr)
WO (1) WO2005121667A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2192562A (en) * 1939-03-11 1940-03-05 James G Scott Refrigerator apparatus
US2318532A (en) * 1938-09-03 1943-05-04 James G Scott Refrigerating system and apparatus
US2480617A (en) * 1945-10-08 1949-08-30 Westinghouse Electric Corp Refrigerator, including means for controlling circulation of air therein
US2889693A (en) * 1957-05-29 1959-06-09 Gen Electric Refrigerator including air circulator control means
WO1994005959A1 (fr) * 1992-09-01 1994-03-17 Allan John Cassell Refrigerateurs et congelateurs
EP1154210A1 (fr) * 2000-05-12 2001-11-14 Whirlpool Corporation Réfrigérateur statique avec évaporateur dans un conduit d'aération
JP2002267317A (ja) * 2001-03-13 2002-09-18 Toshiba Corp 冷蔵庫

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2318532A (en) * 1938-09-03 1943-05-04 James G Scott Refrigerating system and apparatus
US2192562A (en) * 1939-03-11 1940-03-05 James G Scott Refrigerator apparatus
US2480617A (en) * 1945-10-08 1949-08-30 Westinghouse Electric Corp Refrigerator, including means for controlling circulation of air therein
US2889693A (en) * 1957-05-29 1959-06-09 Gen Electric Refrigerator including air circulator control means
WO1994005959A1 (fr) * 1992-09-01 1994-03-17 Allan John Cassell Refrigerateurs et congelateurs
EP1154210A1 (fr) * 2000-05-12 2001-11-14 Whirlpool Corporation Réfrigérateur statique avec évaporateur dans un conduit d'aération
JP2002267317A (ja) * 2001-03-13 2002-09-18 Toshiba Corp 冷蔵庫

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 01 14 January 2003 (2003-01-14) *

Also Published As

Publication number Publication date
BRPI0402332A (pt) 2006-01-24
BRPI0402332B1 (pt) 2015-08-11
AR049221A1 (es) 2006-07-05

Similar Documents

Publication Publication Date Title
KR101659622B1 (ko) 냉장고의 제어 방법
US7237395B2 (en) Methods and apparatus for controlling refrigerators
US6802369B2 (en) Refrigerator quick chill and thaw control methods and apparatus
EP1642070B1 (fr) Refrigerateur
US5816060A (en) Air flow control in a side-by-side refrigerator
CN1934399A (zh) 具有两个储藏格的制冷器具
EP1733176A1 (fr) Appareil de r frig ration
KR102320766B1 (ko) 냉장고
US6862891B2 (en) Methods and apparatus for controlling heating within refrigerators
JP3904866B2 (ja) 冷蔵庫
US20060196217A1 (en) Arrangement for the forced air circulation in refrigerators and freezers
WO2005121667A1 (fr) Systeme pour regler le courant d'air de convection naturelle dans des appareils de refrigeration combines
KR100490820B1 (ko) 냉각 저장고
US7260957B2 (en) Damper for refrigeration apparatus
US20060016202A1 (en) Refrigerator with system for controlling drawer temperatures
KR20070023901A (ko) 양문형 냉장고의 야채실 온도 독립제어장치
WO2018041340A1 (fr) Appareil de réfrigération
KR100245570B1 (ko) 냉장고의 냉기 순환구조
US20060218962A1 (en) Airflow control system in refrigerators and freezers
KR100404467B1 (ko) 냉장고의 냉기공급구조
KR0113426Y1 (ko) 냉장고의 냉기공급 조절장치
KR20010047665A (ko) 입체 냉각방식 냉장고
KR20000000702U (ko) 복합냉장고
KR20020015242A (ko) 냉장고의 냉기순환구조
KR920008348Y1 (ko) 냉장고

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1)EPC

122 Ep: pct application non-entry in european phase

Ref document number: 05755010

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5755010

Country of ref document: EP