WO2005121654A1 - Supercooling apparatus - Google Patents

Supercooling apparatus Download PDF

Info

Publication number
WO2005121654A1
WO2005121654A1 PCT/JP2005/010584 JP2005010584W WO2005121654A1 WO 2005121654 A1 WO2005121654 A1 WO 2005121654A1 JP 2005010584 W JP2005010584 W JP 2005010584W WO 2005121654 A1 WO2005121654 A1 WO 2005121654A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
subcooling
supercooling
heat source
cooling fluid
Prior art date
Application number
PCT/JP2005/010584
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Takegami
Kenji Tanimoto
Satoru Sakae
Iwao Shinohara
Azuma Kondo
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005252958A priority Critical patent/AU2005252958B2/en
Priority to US10/570,879 priority patent/US20070022777A1/en
Priority to EP05748863.7A priority patent/EP1674806A4/en
Publication of WO2005121654A1 publication Critical patent/WO2005121654A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present invention relates to a subcooling device that is attached to a refrigeration system having a heat source unit and a utilization unit and cools a refrigerant sent from the heat source unit to the utilization unit through a liquid-side communication pipe.
  • the supercooling device disclosed in Patent Document 1 is attached to an air conditioner provided with an outdoor unit and an indoor unit.
  • the supercooling device is provided in the middle of the liquid-side connecting pipe connecting the outdoor unit and the indoor unit, and includes a supercooling refrigerant circuit.
  • This supercooling device circulates a refrigerant in a subcooling refrigerant circuit to perform a cooling / freezing cycle, and cools the refrigerant of the air conditioner sent from the liquid-side communication pipe by an evaporator in the subcooling refrigerant circuit.
  • the supercooling device cools the liquid refrigerant sent from the outdoor unit of the air conditioner to the indoor unit, and lowers the enthalpy of the liquid refrigerant sent to the indoor unit, thereby improving the cooling capacity.
  • the supercooling device is for increasing the cooling capacity of a refrigerating device such as an air conditioner by assisting the device. For this reason, it is meaningless to operate only the subcooling device while the refrigerating device is stopped. It is also meaningless to operate the supercooling device while the refrigeration device operates as a heat pump, as in the heating operation of an air conditioner. in this way
  • the control unit of the supercooling device is connected to the control unit of the air conditioner to constitute one control system.
  • a signal indicating the operation state of the air conditioner is input to the control unit of the supercooling device from the control unit of the air conditioner.
  • the signal input from the control unit of the air conditioner is The operation control is performed based on the signal.
  • Patent Document 1 JP-A-10-185333
  • the conventional supercooling device exchanges signals with the refrigerating device to which it is attached. For this reason, when attaching the subcooling device to the refrigeration unit, wiring work for transmitting signals transmitted and received between the two is required, and there has been a problem that the installation work of the supercooling device is complicated. In addition, there is a possibility that erroneous wiring may occur when the supercooling device is installed, and there is a possibility that a trouble due to such an error in the installation work may be caused.
  • the present invention has been made in view of the advantages thereof, and an object of the present invention is to control the operation of a supercooling device without transmitting and receiving signals to and from a refrigeration device to be mounted. In addition to simplifying the installation work of the supercooling device, it aims to prevent troubles caused by human error during the installation work.
  • the first invention provides a refrigeration apparatus (10) that circulates a heat source-side refrigerant between a heat source unit (11) and a use unit (12, 13, 14) connected by a communication pipe to perform a refrigeration cycle. It is intended for a supercooling device which is attached to the heat source unit (11) and cools the refrigerant on the heat source side of the refrigerating device (10) sent to the power utilization units (12, 13, 14).
  • the supercooling heat exchanger (210) for exchanging the heat source side refrigerant in the cooling fluid with the cooling fluid for cooling, and the flow state of the cooling fluid in the cooling fluid circuit (220) are defined by the refrigerant.
  • Control means (240) for controlling according to the flow state of the heat-source-side refrigerant in the passage (205).
  • the refrigerant flows between the heat source unit (11) and the utilization units (12, 13, 14) through the communication pipe. Come and go.
  • the refrigerant passage (205) of the subcooling device (200) is connected to the liquid-side connection pipe (21, 22) of the refrigerating device (10), and the heat source-side refrigerant of the refrigerating device (10) flows through the inside.
  • a cooling fluid flows in the cooling fluid circuit (220) of the supercooling device (200).
  • Subcooling heat exchangers (210) In, the heat source side refrigerant flowing in the refrigerant passage (205) is cooled by exchanging heat with the cooling fluid.
  • the subcooling device (200) of the present invention is for assisting the operation of the refrigeration device (10). For this reason, the operation of the subcooling device (200) is required only while the refrigeration device (10) is operating
  • the supercooling device ( 200 ) of the present invention is for increasing the cooling capacity of the utilization units ( 12 , 13 , 14 ). For this reason, for example, in a state where the refrigeration unit (10) functions as a heat pump, even if the subcooling unit (200) is operated, almost no profit is expected. As described above, the subcooling device (200) may or may not be operated depending on the operation state of the refrigeration device (10).
  • the control means (240) controls the flow state of the cooling fluid in the cooling fluid circuit (220). At this time, the control means (240) controls the flow state of the cooling fluid in accordance with the flow state of the heat source side refrigerant in the refrigerant passage (205).
  • the heat-source-side refrigerant flowing between the heat-source unit (11) and the utilization unit (12, 13, 14) passes through the liquid-side connecting pipe (21, 22). ing. Therefore, it is possible to determine the operation state of the refrigeration system (10) based on the state of circulation of the refrigerant in the refrigerant passage (205).
  • control means (240) of the subcooling device (200) determines the flow state of the heat source side refrigerant in the refrigerant passage (205) that does not receive a signal relating to the operation state of the refrigeration device (10) from the refrigeration device (10).
  • the flow state of the cooling fluid in the cooling fluid circuit (220) is controlled according to the condition.
  • the cooling fluid circuit includes a subcooling refrigerant circuit (220), and the subcooling refrigerant circuit (220) includes a subcooling refrigerant circuit (220). And a refrigeration cycle by circulating a supercooling refrigerant as a cooling fluid.
  • a refrigeration cycle is performed by circulating the subcooling refrigerant.
  • the heat source side refrigerant flowing in the refrigerant passage (205) exchanges heat with the subcooling refrigerant.
  • the supercooling refrigerant also absorbs heat from the heat source side refrigerant and evaporates. The heat source side refrigerant is cooled.
  • control means (240) controls the operation of the subcooling compressor (221) to thereby control the subcooling refrigerant circuit (220). It is configured to control the circulation state of the supercooling refrigerant in the above.
  • the circulation amount of the subcooling refrigerant in the subcooling refrigerant circuit (220) is increased. Change. Accordingly, if the operation of the supercooling compressor (221) is controlled, the circulation state of the supercooling refrigerant in the supercooling refrigerant circuit (220) is thereby controlled.
  • control means (240) is configured to control the flow direction of the heat-source-side refrigerant in the refrigerant passage (205) during operation of the subcooling compressor (221).
  • the flow of the heat source side refrigerant in the refrigerant passage (205) is detected as the flow state of the heat source side refrigerant, and the heat source unit (11) power utilization unit (12, 13, 14) is detected in the refrigerant passage (205). ))
  • the operation of the subcooling compressor (221) is continued, and the inside of the refrigerant passage (205) is directed from the utilization units (12, 13, 14) to the heat source unit (11).
  • the supercooling compressor (221) is stopped. .
  • control means (240) detects the state of flow of the refrigerant during operation of the subcooling compressor (221). Specifically, the control means (240) detects the flow direction of the refrigerant in the refrigerant passage (205) and the presence or absence of the refrigerant flow in the refrigerant passage (205) as the refrigerant flow state.
  • the control means (240) of the present invention controls the operation of the subcooling compressor (221) based on the detected refrigerant flow state.
  • the refrigeration unit (10) is operated by the use unit (12, 13, 14). It can be determined that the operation of cooling the object is being performed. Therefore, in this state, the control means (240) continues the operation of the subcooling compressor (221), and the subcooling device (200) moves from the heat source unit (11) to the utilization unit (12, 13, 14).
  • Direction Cools the refrigerant In a state in which the refrigerant flows in the refrigerant passage (205) toward the heat source unit (11) and the use unit (12, 13, 14), the refrigeration unit (10) is operated by the use unit (12, 13, 14). It can be determined that the operation of cooling the object is being performed. Therefore, in this state, the control means (240) continues the operation of the subcooling compressor (221), and the subcooling device (200) moves from the heat source unit (11) to the utilization unit (12, 13, 14).
  • the refrigeration is not performed.
  • Equipment (10) used It can be determined that the operation of cooling the object is not performed in the units (12, 13, 14). Therefore, in this state, the control means (240) stops the operation of the subcooling compressor (221) and avoids useless operation of the subcooling device (200).
  • control means (240) is configured such that when a predetermined time elapses from the time when the supercooling compressor (221) is stopped, the supercooling compressor (240) 221).
  • the control means (240) measures an elapsed time from a point in time when the supercooling compressor (221) is stopped. Then, the control means (240) activates the subcooling compressor (221) when a predetermined time has elapsed since the supercooling compressor (221) was stopped. The control means (240) detects the flow state of the refrigerant in the refrigerant passage (205) after the activation of the subcooling compressor (221), and operates the subcooling compressor (221) accordingly. Is to be continued or the supercooling compressor (221) is stopped.
  • the utilization unit (12, 13, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210). While a refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in the closer part is provided, the control means (240) controls the refrigerant temperature from the time when the supercooling compressor (221) is started. It is configured to determine the circulation state of the heat source side refrigerant based on a change in the detection value of the detection means (236).
  • the subcooling device (200) is provided with the refrigerant temperature detecting means (236).
  • the refrigerant temperature detecting means (236) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the use unit (12, 13, 14) than the supercooling heat exchanger (210).
  • the control means (240) of the present invention controls the refrigerant passage (205) based on a change in the detected value of the refrigerant temperature detecting means (236) from the time when the subcooling compressor (221) is started. To determine the state of circulation of the refrigerant.
  • the refrigerant temperature detecting means (236) decreases as time elapses from the start of the supercooling compressor (221), the refrigerant cooled by the supercooling heat exchanger (210) It can be determined that the temperature of the refrigerant is detected by the refrigerant temperature detecting means (236), and as a result, the refrigerant flows in the refrigerant passage (205) toward the utilization unit (12, 13, 14) due to the heat source unit (11). Can be determined to be.
  • the subcooling compressor (221) In a state where the detected value of the refrigerant temperature detecting means (236) does not change even after a lapse of time from the start, the temperature of the refrigerant before flowing into the supercooling heat exchanger (210) is changed to the refrigerant temperature detecting means (236). It can be determined that no refrigerant is flowing in the refrigerant detected in the above or in the refrigerant passage (205).
  • the utilization unit (12, 13, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210).
  • the control means (240) determines the circulation state of the heat source side refrigerant based on the detection value of the refrigerant temperature detection means (236) and the detection value of the evaporation temperature detection means (234). It is configured to make a decision.
  • the subcooling device (200) is provided with the refrigerant temperature detecting means (236) and the evaporating temperature detecting means (234).
  • the refrigerant temperature detecting means (236) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the use unit (12, 13, 14) than the supercooling heat exchanger (210).
  • the evaporating temperature detecting means (234) detects an evaporating temperature of the subcooling refrigerant in the subcooling heat exchanger (210).
  • the control means (240) of the present invention determines the state of flow of the refrigerant in the refrigerant passage (205). Judge. For example, if the detected value of the refrigerant temperature detecting means (236) is slightly higher than the detected value of the evaporating temperature detecting means (234), the temperature of the refrigerant cooled by the supercooling heat exchanger (210) becomes higher. It can be determined that the temperature is detected by the temperature detecting means (236).
  • the refrigerant is flowing in the refrigerant passage (205) toward the heat source unit (11) and the power utilization units (12, 13, 14). it can. If the detected value of the refrigerant temperature detecting means (236) is significantly higher than the detected value of the evaporating temperature detecting means (234), the temperature of the refrigerant before flowing into the supercooling heat exchanger (210) is increased. Can be determined as the force detected by the refrigerant temperature detecting means (236) or that the refrigerant is not flowing in the refrigerant passage (205).
  • the utilization unit (12, 13, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210).
  • Heat source side cooling in the closer part A first refrigerant temperature detecting means (237) for detecting the temperature of the medium; and a temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the heat source unit (11) than the supercooling heat exchanger (210).
  • the subcooling device (200) is provided with the first refrigerant temperature detecting means (237) and the second refrigerant temperature detecting means (238).
  • the first refrigerant temperature detecting means (237) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the use unit (12, 13, 14) than the supercooling heat exchanger (210).
  • the second refrigerant temperature detecting means (238) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the heat source unit (11) than the subcooling heat exchanger (210).
  • the control means (240) of the present invention controls the refrigerant passage (205) based on the detection value of the first refrigerant temperature detection means (237) and the detection value of the second refrigerant temperature detection means (238). Judge the state of refrigerant flow. For example, when the detected value of the first refrigerant temperature detecting means (237) is sufficiently lower than the detected value of the second refrigerant temperature detecting means (238), the utilization units (12, 13, 13) are transmitted from the heat source unit (11). It can be determined that the refrigerant working toward 14) is cooled by the supercooling heat exchanger (210).
  • the usage unit (12, 13, 14) transfers to the heat source unit (11). It can be determined that the directional coolant is being cooled by the supercooling heat exchanger (210). In addition, in a state where the detection value of the first refrigerant temperature detecting means (237) and the detection value of the second refrigerant temperature detecting means (238) are almost the same, it is necessary that the refrigerant does not circulate in the refrigerant passage (205). I can judge.
  • the refrigerant passage (205) is provided with a flow meter (251) for detecting a flow rate of the heat source side refrigerant,
  • the means (240) uses the detected value of the flow meter (251) as a flow state display value indicating the flow state of the heat source side refrigerant, and the cooling fluid is flowing in the cooling fluid circuit (220). In the state, whether to continue or stop the flow of the cooling fluid is determined based on the flow state display value.
  • the detection value of the flow meter (251) is input to the control means (240).
  • the flow state of the heat source side refrigerant in the passage (205) can be determined based on the detection value of the flow meter (251). Therefore, the control means (240) uses the detected value of the flow meter (251) as a flow state display value, and based on the flow state display value, the flow state of the cooling fluid in the cooling fluid circuit (220). Control.
  • the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210).
  • the difference from the temperature detection means (238) is used as a flow state display value indicating the flow state of the heat source side refrigerant, and when the cooling fluid is flowing in the cooling fluid circuit (220), the cooling is performed. That is configured to determine whether to continue or stop the flow of the working fluid based on the above-mentioned flow state display value A.
  • the detection values of the first refrigerant temperature detecting means (237) and the second refrigerant temperature detecting means (238) are input to the control means (240).
  • the control means (240) By comparing the detected value of the first refrigerant temperature detecting means (237) with the detected value of the second refrigerant temperature detecting means (238), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205).
  • the control means (240) uses the difference between the detection value of the first refrigerant temperature detection means (237) and the detection value of the second refrigerant temperature detection means (238) as a flow state display value.
  • the circulation state of the cooling fluid in the cooling fluid circuit (220) is controlled based on the displayed value.
  • the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is replaced by the supercooling heat exchanger (210).
  • Heat source side in the closer part while the refrigerant temperature detecting means (236) for detecting the temperature of the refrigerant is provided, the control means (240) displays a change in the value detected by the refrigerant temperature detecting means (236) in a flow state display indicating the flow state of the heat source side refrigerant. In the state where the cooling fluid is flowing in the cooling fluid circuit (220), whether to continue or stop the flow of the cooling fluid is determined based on the flow state display value. It is configured in.
  • the detection value of the refrigerant temperature detection means (236) is input to the control means (240).
  • the flow state of the heat source side refrigerant in the refrigerant passage (205) can be determined. For example, if the detected value of the refrigerant temperature detecting means (236) decreases while the cooling fluid is flowing, the heat source unit (11) and the power utilization units (12, 13, 13) It can be determined that the heat source side refrigerant is circulating toward 14). If not, the refrigerant on the refrigerant passage (205) flows toward the utilization unit (12, 13, 14) toward the heat source unit (11). It can be determined that the medium is not flowing. Therefore, the control means (240) uses the detected value of the refrigerant temperature detecting means (236) as the flow state display value, and based on the flow state display value, the flow of the cooling fluid in the cooling fluid circuit (220). Control the state.
  • the cooling fluid circuit (220) is provided with a cooling fluid at an inlet of a supercooling heat exchanger (210).
  • An inlet fluid temperature detecting means (252) for detecting the temperature and an outlet fluid temperature detecting means (253) for detecting the temperature of the cooling fluid at the outlet of the supercooling heat exchanger (210) are provided.
  • the control means (240) indicates the difference between the detected value of the inlet-side fluid temperature detecting means (252) and the detected value of the outlet-side fluid temperature detecting means (253) to indicate the flow state of the heat source side refrigerant.
  • the flow state display value is used as the flow state display value to determine whether to continue or stop the flow of the cooling fluid while the cooling fluid is flowing in the cooling fluid circuit (220). It is configured to be determined on the basis of this.
  • the detected values of the inlet fluid temperature detecting means (252) and the outlet fluid temperature detecting means (253) are input to the control means (240).
  • the control means (240) By comparing the detected value of the inlet fluid temperature detecting means (252) with the detected value of the inlet fluid temperature detecting means (252), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, inlet fluid temperature If the detected value of the detecting means (252) is higher than the detected value of the inlet-side fluid temperature detecting means (252), the inside of the refrigerant passage (205) is directed to the heat source unit (11) and the power utilization unit (12, 13, 14).
  • the control means (240) uses the difference between the detected value of the inlet-side fluid temperature detecting means (252) and the detected value of the outlet-side fluid temperature detecting means (253) as the flow state display value.
  • the flow state of the cooling fluid in the cooling fluid circuit (220) is controlled on the basis of the above.
  • the evaporating pressure of the subcooling refrigerant in the subcooling heat exchanger (210) is provided in the subcooling refrigerant circuit (220). While the evaporating pressure detecting means for detecting (234) is provided, the control means (240) uses the detected value of the evaporating pressure detecting means (234) as a flow state display value indicating the flow state of the heat source side refrigerant, In a state where the subcooling refrigerant is circulating in the subcooling refrigerant circuit (220), it is configured to determine whether to continue or stop the circulation of the supercooling refrigerant on the basis of the flow state display value. Things.
  • the detected value of the evaporating pressure detecting means (234) is input to the control means (240).
  • the control means (240) By monitoring the change in the detected value of the evaporating pressure detecting means (234), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, if the detected value of the evaporating pressure detecting means (234) is more than a certain level while the subcooling refrigerant is circulating, it can be determined that the heat source side refrigerant is flowing in the refrigerant passage (205). . Otherwise, it can be determined that the enthusiasm-side refrigerant is not flowing in the refrigerant passage (205).
  • control means (240) uses the detected value of the evaporating pressure detecting means (234) as the flow state display value, and based on the flow state display value, determines the excess in the subcooling refrigerant circuit (220). Controls the flow of the cooling refrigerant.
  • a fourteenth invention is directed to the second or third invention, wherein a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210).
  • a refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in (2), and an evaporating temperature detecting means (234) for detecting the evaporating temperature of the subcooling refrigerant in the subcooling heat exchanger (210).
  • the control means (240) uses the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the evaporation temperature detecting means (234) as a flow state display value indicating the flow state of the heat source side refrigerant. In a state where the subcooling refrigerant is circulating in the subcooling refrigerant circuit (220), whether to continue or stop the circulation of the supercooling refrigerant is determined based on the flow state display value. It is configured to determine.
  • the detected values of the refrigerant temperature detecting means (236) and the evaporation temperature detecting means (234) are input to the control means (240).
  • the control means (240) By comparing the detection value of the refrigerant temperature detection means (236) with the detection value of the evaporation temperature detection means (234), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, if the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the evaporating temperature detecting means (234) is within a predetermined value (for example, about 10 ° C), the heat source in the refrigerant passage (205) is heated.
  • a predetermined value for example, about 10 ° C
  • the control means (240) uses the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the evaporating temperature detecting means (234) as the flow state display value, and based on the flow state display value, The state of flow of the supercooling refrigerant in the cooling refrigerant circuit (220) is controlled.
  • the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is replaced with the supercooling heat exchanger (210).
  • the refrigerant temperature detection means (236) for detecting the temperature of the heat source side refrigerant in the nearer part, while the control means (240) determines the flow rate of the heat source side refrigerant by the detection value of the refrigerant temperature detection means (236).
  • the control means (240) determines the flow rate of the heat source side refrigerant by the detection value of the refrigerant temperature detection means (236).
  • the detected value of the refrigerant temperature detecting means (236) is input to the control means (240).
  • the flow state of the heat source side refrigerant in the refrigerant passage (205) can be determined. For example, if the detected value of the refrigerant temperature detecting means (236) is a certain value or more while the flow of the cooling fluid is stopped. For example, it can be determined that the heat source side refrigerant is circulating in the refrigerant passage (205) toward the use units (12, 13, 14) with the power of the heat source unit (11).
  • control means (240) uses the detected value of the refrigerant temperature detecting means (236) as the flow state display value, and based on the flow state display value, controls the cooling fluid in the cooling fluid circuit (220). Control the distribution status.
  • the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is replaced by a subcooling heat exchanger (210).
  • the detected value of the refrigerant temperature detecting means (236) is input to the control means (240).
  • the flow state of the heat source side refrigerant in the refrigerant passage (205) can be determined. For example, if the detected value of the refrigerant temperature detecting means (236) rises and falls while the flow of the cooling fluid is stopped, the inside of the refrigerant passage (205) is moved from the heat source unit (11) to the utilization unit (11). It can be determined that the heat source side refrigerant is circulating toward 12, 13, 14).
  • the unity (12, 13, 14) force in the refrigerant passage (205) is the force of the heat application side refrigerant flowing toward the heat source unit (11), or the heat application side refrigerant is flowing. You can judge that you have not. Accordingly, the control means (240) uses the change in the detected value of the refrigerant temperature detecting means (236) as a flow state display value, and based on the flow state display value, controls the cooling fluid circuit (220) for cooling. Controls the flow state of the fluid.
  • an outdoor temperature detecting means (231) for detecting a temperature of outdoor air, and a subcooling heat exchanger in the refrigerant passage (205) are provided.
  • the difference between the detection value of the means (236) and the detection value of the outdoor temperature detection means (231) It is used as a circulation state display value indicating the state, and in a state where the circulation of the supercooling refrigerant in the supercooling refrigerant circuit (220) is stopped, whether to start or continue to stop the circulation of the supercooling refrigerant. Is determined based on the distribution state display value.
  • the detection values of the outdoor temperature detection means (231) and the refrigerant temperature detection means (236) are input to the control means (240).
  • the control means (240) By comparing the detected value of the refrigerant temperature detecting means (236) with the detected value of the outdoor temperature detecting means (231), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, if the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outdoor temperature detecting means (231) is equal to or more than a predetermined value while the circulation of the cooling fluid is stopped, the refrigerant passage (205) It can be determined that the heat source side refrigerant is circulating inside.
  • control means (240) uses a difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outdoor temperature detecting means (231) as a flow state display value, and based on the flow state display value. Controlling the flow state of the supercooling refrigerant in the subcooling refrigerant circuit (220).
  • the eighteenth invention provides a refrigeration apparatus (10) that circulates a heat source-side refrigerant between a heat source unit (11) and a use unit (12, 13, 14) connected by a communication pipe to perform a refrigeration cycle. It is intended for a supercooler that is attached and cools the heat source side refrigerant of the refrigeration unit (10) sent to the power utilization unit (12, 13, 14).
  • the heat source unit (11) of the refrigerating device (10) is configured to exchange heat between the heat source side refrigerant and the outdoor air, while the connecting pipe (21, 22) on the liquid side of the refrigerating device (10) is provided.
  • a refrigerant passage (205) connected to the cooling medium, a cooling fluid circuit (220) through which a cooling fluid flows, and a heat source-side refrigerant in the refrigerant passage (205) are cooled by exchanging heat with the cooling fluid.
  • Control means (240) for controlling according to the detection value of the temperature detection means (231).
  • the heat-source-side refrigerant in the refrigerant passage (205) is cooled by the cooling fluid.
  • the detection value of the outdoor temperature detection means (231) is input to the control means (240) of the present invention.
  • the control means (240) controls the flow state of the cooling fluid in the cooling fluid circuit (220) based on the detection value of the outdoor temperature detecting means (231).
  • the cooling fluid circuit includes a supercooling coolant circuit (220), and the supercooling coolant circuit (220) includes a supercooling coolant circuit (220). It is equipped with a cooling compressor (221) and performs a refrigeration cycle by circulating a supercooling refrigerant as a cooling fluid.
  • a refrigeration cycle is performed by circulating the subcooling refrigerant.
  • the heat source side refrigerant flowing in the refrigerant passage (205) exchanges heat with the subcooling refrigerant.
  • the supercooling refrigerant absorbs heat from the heat-source-side refrigerant and evaporates, and the heat-source-side refrigerant is cooled.
  • control means (240) is arranged so that the cooling fluid flows in the cooling fluid circuit (220). Whether to continue or stop the flow of the working fluid is determined based on the detection value of the outdoor temperature detecting means (231).
  • control means (240) is configured to stop the flow of the cooling fluid in the cooling fluid circuit (220).
  • the configuration is such that whether to start or stop the flow of the cooling fluid is determined based on the detection value of the outdoor temperature detecting means (231).
  • the control means (240) monitors the detection value of the outdoor temperature detection means (231). If the detection value of the outdoor temperature detection means (231) exceeds a predetermined reference value (for example, 25 ° C), the cooling load on the utilization unit (12, 13, 14) is increased and the inside of the refrigerant passage (205) is increased. It can be assumed that the heat source side refrigerant is to be cooled. Otherwise, it can be guessed that the cooling load on the IJ IJ units (12, 13, 14) is not so large and the necessity to cool the heat source side refrigerant in the refrigerant passage (205) is low. . Therefore, the control means (240) of these inventions uses the cooling fluid circuit (220) based on the detection value of the outdoor temperature detection means (231). It is determined whether or not the cooling fluid is allowed to flow.
  • a predetermined reference value for example, 25 ° C
  • the radiating heat exchanger (222) is connected to the subcooling refrigerant circuit (220) to exchange heat between the supercooling refrigerant and outdoor air.
  • an outdoor fan (230) for supplying outdoor air to the heat-radiating heat exchanger (222), wherein the supercooling refrigerant circuit (220) is stopped while the supercooling compressor (221) is stopped.
  • the supercooling refrigerant in the subcooling refrigerant circuit (220), the supercooling refrigerant is driven by the outdoor fan (230) even when the subcooling compressor (221) is stopped. Circulate. That is, in the subcooling refrigerant circuit (220), the heat source side refrigerant can be cooled in the subcooling heat exchanger (210) only by operating the outdoor fan (230).
  • the control means (240) of the present invention first operates only the outdoor fan (230) to naturally circulate the supercooling refrigerant in the subcooling refrigerant circuit (220). Then, the heat source side refrigerant is cooled by the subcooling refrigerant that circulates naturally.
  • control means (240) determines whether the cooling of the heat source side refrigerant is sufficient in this state, and determines whether or not to activate the supercooling compressor (221) according to the determination. That is, the control means (240) keeps the subcooling compressor (221) stopped if the cooling of the heat source side refrigerant is sufficient, and if the cooling of the heat source side refrigerant is insufficient, the control means (240) (221) is started to start a refrigeration cycle in the subcooling refrigerant circuit (220).
  • the control means (240) controls the operation of the subcooling compressor (221) according to the state of circulation of the refrigerant inside the refrigerant passage (205). I have. In other words, in the subcooling device (200), even if signals are not exchanged with the refrigeration device (10), the subcooling compressor (221) can be used in accordance with the operation state of the refrigeration device (10). Control the operation of Is possible. Therefore, when attaching the subcooling device (200) of the present invention to the refrigeration system (10), the refrigerant passage of the subcooling device (200) is connected to the liquid-side communication pipes (21, 22) of the refrigeration system (10). (205), and there is no need to lay communication wiring for exchanging signals between the refrigeration system (10) and the subcooling system (200).
  • FIG. 1 is a piping diagram showing a configuration of a refrigeration system including a supercooling unit.
  • FIG. 2 is a piping diagram showing an operation during a cooling operation of the refrigeration system.
  • FIG. 3 is a piping diagram illustrating an operation of the refrigeration system during a first heating operation.
  • FIG. 4 is a piping diagram showing an operation of the refrigeration system during a first heating operation.
  • FIG. 5 is a piping diagram showing an operation during a second heating operation of the refrigeration system.
  • FIG. 6 is a flowchart showing a control operation of a controller in the supercooling unit.
  • FIG. 7 is a piping diagram showing a configuration of a refrigeration system according to a first modification of the embodiment.
  • FIG. 8 is a piping diagram illustrating a configuration of a refrigeration system according to a second modification of the embodiment.
  • FIG. 9 is a piping diagram illustrating a configuration of a refrigeration system according to Modification Example 5 of the embodiment.
  • FIG. 10 is a piping diagram showing a configuration of a subcooling unit in Modification 10 of the embodiment.
  • Air conditioning unit (Usage unit)
  • Refrigerant temperature sensor (refrigerant temperature detecting means)
  • Second refrigerant temperature sensor (second refrigerant temperature detecting means)
  • Second subcooling refrigerant temperature sensor (outlet fluid temperature detecting means)
  • the refrigeration system of the present embodiment is installed in a convenience store or the like, and performs air conditioning in the store and cooling in the showcase.
  • This refrigeration system includes a subcooling unit (200) as a subcooling device according to the present invention, and a refrigeration device (10) to which the subcooling unit (200) is attached.
  • the refrigeration system includes an outdoor unit (11), an air conditioning unit (12), a refrigerated showcase (13), a refrigerated showcase (14), and a booster unit (15). ) And a supercooling unit (200).
  • the outdoor unit (11), the air conditioning unit (12), the refrigerated showcase (13), the refrigerated showcase (14), and the booster unit (15) constitute a refrigeration unit (10).
  • the outdoor unit (11) and the subcooling unit (200) are installed outdoors, and the remaining air conditioning unit (12) is installed in a store such as a convenience store.
  • the outdoor unit (11) has an outdoor circuit (40) power.
  • the air conditioning unit (12) has an air conditioning circuit (100), the refrigeration showcase (13) has a refrigeration circuit (110), and a refrigeration showcase (14).
  • the booster unit (15) is provided with a booster circuit (140).
  • the subcooling unit (200) is provided with a refrigerant passage (205).
  • a refrigerant circuit (20) is configured by connecting these circuits (40, 100,...) And the refrigerant passage (205) of the supercooling unit (200) with piping. This refrigerant circuit (20) is filled with a heat source side refrigerant.
  • the refrigerant circuit (20) includes a first liquid side communication pipe (21), a second liquid side communication pipe (22), a first gas side communication pipe (23), and a second gas side communication pipe.
  • a pipe (24) is provided.
  • the first liquid side communication pipe (21) connects one end of the refrigerant passage (205) of the subcooling unit (200) to the outdoor circuit (40).
  • One end of the second liquid side communication pipe (22) is connected to the other end of the refrigerant passage (205).
  • the other end of the second liquid-side connecting pipe (22) branches into three and is connected to the air conditioning circuit (100), the refrigeration circuit (110), and the refrigeration circuit (130).
  • the branch pipe connected to the refrigeration circuit (130) in the second liquid side connection pipe (22) is provided with a liquid side shutoff valve (25).
  • One end of the first gas side communication pipe (23) is branched into two, and a refrigeration circuit (110) and a booster circuit.
  • the branch pipe connected to the booster circuit (140) in the first gas-side communication pipe (23) is provided with a gas-side shutoff valve (26).
  • the other end of the first gas side communication pipe (23) is connected to the outdoor circuit (40).
  • the second gas side communication pipe (24) connects the air conditioning circuit (100) to the outdoor circuit (40).
  • the outdoor unit (11) constitutes a heat source unit of the refrigeration system (10).
  • the outdoor unit (11) includes an outdoor circuit (40).
  • the outdoor circuit (40) includes a variable capacity compressor (41), a first fixed capacity compressor (42), a second fixed capacity compressor (43), and an outdoor heat exchanger (44). , A receiver (45), and an outdoor expansion valve (46).
  • the outdoor circuit (40) has three suction pipes (61, 62, 63), two discharge pipes (64, 65), four liquid pipes (81, 82, 83, 84), and 1
  • the outdoor circuit (40) includes three four-way switching valves (51, 52, 53), one liquid-side shutoff valve (54), and two high-pressure gas pipes (66). And two gas side shut-off valves (55, 56).
  • the first liquid side connecting pipe (21) force S is connected to the liquid side closing valve (54), and the first gas side connecting pipe (55) is connected to the first gas side closing valve (55).
  • the second gas side shut-off valve (56) The gas side communication pipes (24) are respectively connected.
  • variable displacement compressor (41), the first fixed displacement compressor (42), and the second fixed displacement compressor (43) are all hermetic, high pressure dome type scroll compressors. Electric power is supplied to the variable capacity compressor (41) via an inverter.
  • the capacity of the variable capacity compressor (41) can be changed by changing the output frequency of the inverter and changing the rotation speed of the compressor motor.
  • the compressor motor is always operated at a constant rotation speed, and the displacement thereof cannot be changed.
  • first suction pipe (61) is connected to the first gas-side stop valve (55).
  • the first suction pipe (61) is branched at the other end into a first branch pipe (61a) and a second branch pipe (61b), and the first branch pipe (61a) is connected to the variable displacement compressor (41). ),
  • the second branch pipe (61b) is connected to the third four-way switching valve (53), respectively.
  • a valve (CV-1) is provided in the second branch pipe (61b) of the first suction pipe (61).
  • the second suction pipe (62) has one end connected to the third four-way switching valve (53) and the other end connected to the suction side of the first fixed displacement compressor (42).
  • One end of the third suction pipe (63) is connected to the second four-way switching valve (52).
  • the third suction pipe (63) is branched at the other end into a first branch pipe (63a) and a second branch pipe (63b), and the first branch pipe (63a) is connected to a second fixed capacity compressor.
  • the second branch pipe (63b) is connected to the third four-way switching valve (53) on the suction side of (43).
  • the second branch pipe (63b) of the third suction pipe (63) allows only the flow of the refrigerant flowing from the second four-way switching valve (52) to the third four-way switching valve (53).
  • a valve (CV-2) is provided.
  • the first discharge pipe (64) is branched at one end into a first branch pipe (64a) and a second branch pipe (64b), and the first branch pipe (64a) is connected to the variable displacement compressor (64).
  • the second branch pipe (64b) is connected to the discharge side of the first fixed displacement compressor (42) on the discharge side of 41).
  • the other end of the first discharge pipe (64) is connected to the first four-way switching valve (51).
  • the second branch pipe (64b) of the first discharge pipe (64) has a check valve (64) that allows only the flow of the refrigerant from the first fixed displacement compressor (42) to the first four-way switching valve (51). CV-3) is provided.
  • the second discharge pipe (65) has one end on the suction side of the second fixed displacement compressor (43) and the other end on the first four-way switching valve (51) in the first discharge pipe (64). Each is connected immediately before.
  • the second discharge pipe (65) is provided with a check valve (CV-4) that allows only refrigerant to flow from the second fixed displacement compressor (43) to the first four-way switching valve (51). ing.
  • the outdoor heat exchanger (44) is a cross-fin type fin-and-tube heat exchanger.
  • the outdoor heat exchanger (44) heat is exchanged between the refrigerant and the outdoor air.
  • One end of the outdoor heat exchanger (44) is connected to a first four-way switching valve (51) via a closing valve (57).
  • the other end of the outdoor heat exchanger (44) is connected to the top of the receiver (45) via the first liquid pipe (81).
  • the first liquid pipe (81) is provided with a check valve (CV-5) that allows only the flow of the refrigerant from the outdoor heat exchanger (44) to the receiver (45).
  • One end of a second liquid pipe (82) is connected to the bottom of the receiver (45) via a closing valve (58).
  • the other end of the second liquid pipe (82) is connected to the liquid-side stop valve (54).
  • the second liquid pipe (82) is provided with a check valve (CV-6) that allows only the flow of the refrigerant from the receiver (45) to the liquid-side stop valve (54).
  • One end of the third liquid pipe (83) is connected between the check valve (CV-6) and the liquid side stop valve (54) in the second liquid pipe (82).
  • the other end of the third liquid pipe (83) is connected to the top of the receiver (45) via the first liquid pipe (81).
  • the third liquid pipe (83) is provided with a check valve (CV-7) that allows only the flow of the refrigerant from one end to the other end.
  • One end of the fourth liquid pipe (84) is connected between the close valve (58) and the check valve (CV-6) in the second liquid pipe (82).
  • the other end of the fourth liquid pipe (84) is connected between the outdoor heat exchanger (44) and the check valve (CV-5) in the first liquid pipe (81).
  • the fourth liquid pipe (84) is provided with a check valve (CV-8) and an outdoor expansion valve (46) in order from one end to the other end.
  • the check valve (CV-8) allows only one direction of the fourth liquid pipe (84) to flow to the other end of the fourth liquid pipe (84).
  • the outdoor expansion valve (46) is formed by an electronic expansion valve.
  • One end of the high-pressure gas pipe (66) is connected to the first discharge pipe (64) immediately before the first four-way switching valve (51).
  • the high-pressure gas pipe (66) is branched at the other end into a first branch pipe (66a) and a second branch pipe (66b), and the first branch pipe (66a) is connected to the first liquid pipe (81).
  • the second branch pipe (66b) is connected to the third four-way switching valve (53) downstream of the check valve (CV-5).
  • High The first branch pipe (66a) of the compressed gas pipe (66) is provided with a solenoid valve (SV-7), a check valve (CV-9) and a force S.
  • the check valve (CV-9) is arranged downstream of the solenoid valve (SV-7), and allows only the flow of the refrigerant from the solenoid valve (SV-7) to the first liquid pipe (81).
  • the first four-way switching valve (51) has a first port at the end of the first discharge pipe (64), a second port at the second four-way switching valve (52), and a third port. Is connected to the outdoor heat exchanger (44), and the fourth port is connected to the second gas side shut-off valve (56).
  • the first four-way switching valve (51) is in a first state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (in FIG. 1, a solid line indicates a solid state). State), and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. Has become.
  • the first port is located downstream of the check valve (CV-4) in the second discharge pipe (65), and the second port is located in the second suction pipe ( At the beginning of 62), the fourth port is connected to the second port of the first four-way switching valve (51).
  • the third port of the second four-way switching valve (52) is sealed.
  • the second four-way switching valve (52) is in a first state where the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (in FIG. State), and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. I have.
  • the third four-way switching valve (53) has a first port at the end of the second branch pipe (66b) of the high-pressure gas pipe (66), and a second port at the end of the second suction pipe (62). At the beginning, the third port is at the end of the second branch pipe (61b) of the first suction pipe (61), and the fourth port is at the end of the second branch pipe (63b) of the third suction pipe (63). Each is connected.
  • the third four-way switching valve (53) is in a first state in which the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (the state shown by the solid line in FIG. 1). ) And a second state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (the state shown by the broken line in FIG. 1).
  • the outdoor circuit (40) is further provided with an injection pipe (85), a communication pipe (87), an oil separator (75), and an oil return pipe (76).
  • the outdoor circuit (40) is also provided with four oil equalizing pipes (71, 72, 73, 74).
  • the injection pipe (85) is for performing so-called liquid injection.
  • One end of the injection pipe (85) is connected between the check valve (CV-8) and the outdoor expansion valve (46) in the fourth liquid pipe (84), and the other end is connected to the first suction pipe (61). It is connected.
  • the injection pipe (85) is provided with a closing valve (59) and a flow control valve (86) in order from one end to the other end.
  • the flow control valve (86) is formed by an electronic expansion valve.
  • the communication pipe (87) has one end between the closing valve (59) and the flow control valve (86) in the injection pipe (85), and the other end having the first branch pipe (66) of the high-pressure gas pipe (66). They are connected upstream of the solenoid valve (SV-7) in 66a).
  • the communication pipe (87) is provided with a check valve (CV-10) that allows only the flow of the directional refrigerant from one end to the other end.
  • the oil separator (75) is provided upstream of the connection position of the second discharge pipe (65) and the high-pressure gas pipe (66) in the first discharge pipe (64).
  • the oil separator (75) is for separating refrigeration oil from the gas discharged from the compressors (41, 42).
  • the oil return pipe (76) has one end connected to the oil separator (75).
  • the oil return pipe (76) is branched at the other end into a first branch pipe (76a) and a second branch pipe (76b).
  • the first branch pipe (76a) has a flow rate in the S injection pipe (85). Downstream of the control valve (86), second branch pipes (76b) are connected to the second suction pipes (62), respectively.
  • one solenoid valve (SV-5, SV-6) is provided in each of the first branch pipe (76a) and the second branch pipe (76b) of the oil return pipe (76).
  • the first oil equalizing pipe (71) has one end connected to the variable displacement compressor (41) and the other end connected to the second suction pipe (62).
  • the first oil level pipe (71) is provided with a solenoid valve (SV-1).
  • One end of the second oil equalizing pipe (72) is connected to the first fixed displacement compressor (42), and the other end is connected to the first branch pipe (63a) of the third suction pipe (63).
  • the second oil leveling pipe (72) is provided with a solenoid valve (SV-2).
  • One end of the third oil equalizing pipe (73) is connected to the second fixed capacity compressor (43), and the other end is connected to the first branch pipe (61a) of the first suction pipe (61).
  • the third oil level pipe (73) is provided with a solenoid valve (SV-3).
  • the fourth equalizing pipe (74) has one end Is connected to the second oil equalizing pipe (72) on the upstream side of the solenoid valve (SV-2), and the other end is connected to the first branch pipe (61a) of the first suction pipe (61).
  • the fourth oil leveling pipe (74) is provided with a solenoid valve (SV-4).
  • the outdoor circuit (40) is also provided with various sensors and pressure switches. Specifically,
  • the first suction pipe (61) is provided with a first suction temperature sensor (91) and a first suction pressure sensor (92).
  • the second suction pipe (62) is provided with a second suction pressure sensor (93).
  • the third suction pipe (63) is provided with a third suction temperature sensor (94) and a third suction pressure sensor (95).
  • the first discharge pipe (64) is provided with a first discharge temperature sensor (97) and a first discharge pressure sensor (98).
  • Each branch pipe (64a, 64b) of the first discharge pipe (64) is provided with one high pressure switch (96).
  • the second discharge pipe (65) is provided with a second discharge temperature sensor (99) and a high pressure switch (96).
  • the outdoor unit (11) is provided with an outdoor temperature sensor (90) and an outdoor fan (48). Outdoor air is sent to the outdoor heat exchanger (44) by the outdoor fan (48).
  • the air conditioning unit (12) forms a use unit.
  • the air conditioning unit (12) includes an air conditioning circuit (100).
  • the air-conditioning circuit (100) has a liquid-side end connected to a second liquid-side connecting pipe (22) and a gas-side end connected to a second gas-side connecting pipe (24).
  • an air conditioning expansion valve (102) and an air conditioning heat exchanger (101) are provided in that order toward the liquid end force gas end.
  • the air conditioning heat exchanger (101) is a cross-fin type fin-and-tube heat exchanger.
  • heat is exchanged between the refrigerant and room air.
  • the air conditioning expansion valve (102) is constituted by an electronic expansion valve.
  • the air conditioning unit (12) is provided with a heat exchanger temperature sensor (103) and a refrigerant temperature sensor (104).
  • the heat exchanger temperature sensor (103) is attached to a heat transfer tube of the air conditioning heat exchanger (101).
  • the refrigerant temperature sensor (104) is mounted near the gas side end of the air conditioning circuit (100).
  • the air conditioning unit (12) is provided with an internal temperature sensor (106) and an air conditioning fan (105).
  • the air conditioning heat exchanger (101) is supplied to the store by this air conditioning fan (105). The indoor air inside is sent.
  • the refrigerated showcase (13) constitutes a use unit.
  • the refrigerated showcase (13) includes a refrigerated circuit (110).
  • the refrigeration circuit (110) has a liquid side end connected to the second liquid side connection pipe (22) and a gas side end connected to the first gas side connection pipe (23).
  • the refrigeration circuit (110) is provided with a refrigeration solenoid valve (114), a refrigeration expansion valve (112), and a refrigeration heat exchanger (111) in order from the liquid side end to the gas side end.
  • the refrigeration heat exchanger (111) is a cross-fin type fin-and-tube heat exchanger. In the refrigeration heat exchanger (111), heat is exchanged between the refrigerant and the air in the refrigerator.
  • the refrigeration expansion valve (112) is constituted by a temperature automatic expansion valve.
  • the temperature sensing cylinder (113) of the refrigeration expansion valve (112) is attached to the outlet pipe of the refrigeration heat exchanger (111).
  • the refrigerated showcase (13) is provided with a refrigerator temperature sensor (116) and a refrigerator fan (115).
  • the air in the refrigerator showcase (13) is sent to the refrigerator heat exchanger (111) by the fan (115) in the refrigerator.
  • the frozen showcase (14) constitutes a use unit.
  • the refrigeration showcase (14) includes a refrigeration circuit (130).
  • the refrigeration circuit (130) has a liquid-side end connected to the second liquid-side communication pipe (22).
  • the gas side end of the refrigeration circuit (130) is connected to the booster unit (15) via a pipe.
  • a refrigeration solenoid valve (134), a refrigeration expansion valve (132), and a refrigeration heat exchanger (131) are provided in order from the liquid side end to the gas side end.
  • the refrigeration heat exchanger (131) is a cross-fin type fin-and-tube heat exchanger. In the refrigeration heat exchanger (131), heat is exchanged between the refrigerant and the air in the refrigerator.
  • the refrigeration expansion valve (132) is constituted by a temperature automatic expansion valve.
  • the temperature sensing tube (133) of the refrigeration expansion valve (132) is attached to a pipe on the outlet side of the refrigeration heat exchanger (131).
  • the freezer showcase (14) is provided with a freezer temperature sensor (136) and a freezer fan (135).
  • the air inside the refrigerator showcase (14) is sent to the refrigerator heat exchanger (131) by the refrigerator fan (135).
  • the booster unit (15) includes a booster circuit (140).
  • the booster circuit (140) is provided with a booster compressor (141), a suction pipe (143), a discharge pipe (144), and a bypass pipe (150).
  • the booster compressor (141) is a hermetically sealed high-pressure dome-type scroll compressor. Power is supplied to the booster compressor (141) via an inverter. The capacity of the booster compressor (141) can be changed by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
  • the end of the suction pipe (143) is connected to the suction side of the booster compressor (141).
  • the start end of the suction pipe (143) is connected to the gas side end of the refrigeration circuit (130) via a pipe.
  • the discharge pipe (144) has a start end connected to the discharge side of the booster compressor (141) and an end end connected to the first gas side communication pipe (23).
  • the discharge pipe (144) is provided with a high pressure switch (148), an oil separator (145), and a discharge check valve (149) in order from the start end to the end end. .
  • the discharge side check valve (149) allows only the flow of the refrigerant from the start end to the end of the discharge pipe (144).
  • the oil separator (145) is for separating refrigeration oil from the discharge gas of the booster compressor (141).
  • One end of an oil return pipe (146) is connected to the oil separator (145).
  • the other end of the oil return pipe (146) is connected to the suction pipe (143).
  • the oil return pipe (146) is provided with a capillary tube (147). The refrigerating machine oil separated by the oil separator (145) is sent back to the suction side of the booster compressor (141) through the oil return pipe (146).
  • the bypass pipe (150) has a start end connected to the suction pipe (143), and an end connected between the oil separator (145) and the discharge-side check valve (149) in the discharge pipe (64). I have.
  • the bypass pipe (150) is provided with a bypass check valve (151) that allows only the flow of the directional refrigerant from the start end to the end.
  • the subcooling unit (200) as a subcooling device includes a refrigerant passage (205), a subcooling refrigerant circuit (220), a supercooling heat exchanger (210), and a controller (240).
  • the refrigerant passage (205) has one end connected to the first liquid side connection pipe (21) and the other end connected to the second liquid side connection pipe. Each is connected to a pipe (22).
  • the subcooling refrigerant circuit (220) includes a subcooling compressor (221), a subcooling outdoor heat exchanger (2 22), a subcooling expansion valve (223), and a subcooling heat source. This is a closed circuit configured by connecting the exchanger (210) in sequence with piping.
  • the supercooling refrigerant circuit (220) forms a cooling fluid circuit.
  • the supercooling refrigerant circuit (220) is filled with a supercooling refrigerant as a cooling fluid.
  • the supercooling refrigerant not only so-called chlorofluorocarbon refrigerant such as R407C but also various refrigerants such as carbon dioxide (CO 2) and ammonia can be used. This supercooling
  • a refrigeration cycle is performed by circulating the filled subcooling refrigerant.
  • the supercooling compressor (221) is an all-enclosed high-pressure dome-type scroll compressor. Power is supplied to the subcooling compressor (221) via an inverter. The capacity of the subcooling compressor (221) can be changed by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
  • the supercooling outdoor heat exchanger (222) is a cross-fin type fin 'and' tube type heat exchanger. In the subcooling outdoor heat exchanger (222), heat is exchanged between the subcooling refrigerant and the outdoor air.
  • the subcooling expansion valve (223) is constituted by an electronic expansion valve.
  • the subcooling heat exchanger (210) is constituted by a so-called plate heat exchanger.
  • the supercooling heat exchanger (210) has a plurality of first flow paths (211) and a plurality of second flow paths (212).
  • a supercooling refrigerant circuit (220) is connected to the first flow path (211), and a refrigerant passage (205) is connected to the second flow path (212).
  • the supercooling heat exchanger (210) exchanges heat between the supercooling refrigerant flowing through the first flow path (211) and the refrigerant of the refrigerating device (10) flowing through the second flow path (212). Let it.
  • the subcooling unit (200) is also provided with various sensors and pressure switches. Specifically, in the subcooling refrigerant circuit (220), a suction temperature sensor (235) and a suction pressure sensor (234) are provided on the suction side of the subcooling compressor (221), and the subcooling compressor (221) is provided. A discharge temperature sensor (233) and a high pressure switch (232) are provided on the discharge side of (221). In the refrigerant passage (205), a refrigerant temperature sensor (236) is provided at a portion closer to the other end than the supercooling heat exchanger (210), that is, a portion closer to the end connected to the second liquid side communication pipe (22). Is provided. This refrigerant temperature The sensor (236) constitutes a refrigerant temperature detecting means.
  • the subcooling unit (200) is provided with an outside air temperature sensor (231) and an outdoor fan (230). Outdoor air is sent to the subcooling outdoor heat exchanger (222) by the outdoor fan (230).
  • the controller (240) forms control means.
  • the controller (240) receives the detection value of the refrigerant temperature sensor (236), the detection value of the suction pressure sensor (234), and the detection value of the outside air temperature sensor (231).
  • the controller (240) is configured to control the start and stop of the subcooling compressor (221) based on the input detection value of the sensor.
  • the controller (240) does not receive any power signal from the refrigeration system (10) composed of the outdoor unit (11) and the air conditioning unit (12). In other words, the controller (240) uses only the information obtained inside the subcooling unit (200), such as the detection value of the sensor provided in the subcooling unit (200), and The operation control of 221) is performed.
  • the cooling operation is an operation for cooling the inside of the store by cooling the air in the refrigerator in the refrigerated showcase (13) and the freezing showcase (14), and cooling the room air in the air conditioning unit (12).
  • the first four-way switching valve (51), the second four-way switching valve (52), and the third four-way switching valve (53) are each connected to the first four-way switching valve (53).
  • the outdoor expansion valve (46) is fully closed, the opening degrees of the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted.
  • the variable capacity compressor (41), the first fixed capacity compressor (42), the second fixed capacity compressor (43), and the booster compressor (141) are operated.
  • the subcooling unit (200) is in an operating state. The operation of the subcooling unit (200) will be described later.
  • Variable displacement compressor (41), first fixed displacement compressor (42), and second fixed displacement compressor (43) Force The discharged refrigerant passes through the first four-way switching valve (51). To the outdoor heat exchanger (44). In the outdoor heat exchanger (44), the refrigerant radiates heat to outdoor air and condenses. Outdoor heat exchanger ( The refrigerant condensed in 44) passes through the first liquid pipe (81), the receiver (45), and the second liquid pipe (82) in order, and flows into the first liquid side communication pipe (21).
  • the refrigerant flowing into the first liquid side communication pipe (21) flows into the refrigerant passage (205) of the subcooling unit (200).
  • the refrigerant flowing into the refrigerant passage (205) is cooled while passing through the second flow passage (212) of the subcooling heat exchanger (210).
  • the supercooled liquid refrigerant cooled by the supercooling heat exchanger (210) passes through the second liquid-side communication pipe (22), and passes through the air conditioning circuit (100), the refrigeration circuit (110), and the refrigeration circuit (130). And distributed to.
  • the refrigerant flowing into the air conditioning circuit (100) is decompressed when passing through the air conditioning expansion valve (102), and is then introduced into the air conditioning heat exchanger (101).
  • the air-conditioning heat exchanger (101) the refrigerant absorbs indoor air power and evaporates.
  • the evaporation temperature of the refrigerant is set to, for example, about 5 ° C.
  • room air cooled by the air conditioning heat exchanger (101) is supplied into the store.
  • the refrigerant evaporated in the air-conditioning heat exchanger (101) flows into the outdoor circuit (40) through the second gas side communication pipe (24), and then flows to the first four-way switching valve (51). It passes through the second four-way switching valve (52) in order and flows into the third suction pipe (63). A part of the refrigerant flowing into the third suction pipe (63) passes through the first branch pipe (63a) and is sucked into the second fixed capacity compressor (43), and the remaining refrigerant flows into the second branch pipe (63b). The gas passes through the third four-way switching valve (53) and the second suction pipe (62) in order and is sucked into the first fixed displacement compressor (42).
  • the refrigerant that has flowed into the refrigeration circuit (110) is decompressed when passing through the refrigeration expansion valve (112), and is introduced into the power refrigeration heat exchanger (111).
  • the refrigerant evaporates by absorbing heat inside the refrigerator.
  • the evaporation temperature of the refrigerant is set to, for example, about ⁇ 5 ° C.
  • the refrigerant evaporated in the refrigeration heat exchanger (111) flows into the first gas side communication pipe (23).
  • the air in the refrigerator cooled by the refrigeration heat exchanger (111) is supplied into the refrigerator, and the temperature in the refrigerator is maintained at, for example, about 5 ° C.
  • the refrigerant flowing into the refrigeration circuit (130) is decompressed when passing through the refrigeration expansion valve (132), and is introduced into the power refrigeration heat exchanger (131).
  • the refrigerant evaporates by absorbing heat inside the refrigerator.
  • the evaporation temperature of the refrigerant is set to, for example, about -30 ° C.
  • the refrigeration heat exchanger (131) The rejected air in the refrigerator is supplied to the refrigerator, and the temperature in the refrigerator is kept at, for example, about 20 ° C.
  • the refrigerant evaporated in the refrigeration heat exchanger (131) flows into the booster circuit (140) and is sucked into the booster compressor (141).
  • the refrigerant compressed by the booster compressor (141) flows into the first gas side communication pipe (23) through the discharge pipe (144).
  • the refrigerant flowing into 61) is sucked into the variable displacement compressor (41) through the first branch pipe (61a).
  • the first heating operation is an operation in which the inside of the refrigerator is cooled in the refrigerated showcase (13) and the frozen showcase (14), and the room air is heated by the air conditioning unit (12) to heat the inside of the store.
  • the first four-way switching valve (51) is in the second state
  • the second four-way switching valve (52) is in the first state
  • the third four-way switching valve (52) is in the third state.
  • the path switching valves (53) are set to the first state, respectively.
  • the outdoor expansion valve (46) is fully closed, the opening degree of the air-conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) is appropriately adjusted.
  • the variable capacity compressor (41) and the booster compressor (141) are operated, and the first fixed capacity compressor (42) and the second fixed capacity compressor (43) are stopped.
  • the outdoor heat exchanger (44) is in a stopped state without being supplied with the refrigerant.
  • the subcooling unit (200) is in a stopped state.
  • the refrigerant discharged from the variable displacement compressor (41) passes through the first four-way switching valve (51) and the second gas side communication pipe (24) in order, and exchanges air conditioning heat in the air conditioning circuit (100). It is introduced into the vessel (101) and releases heat to indoor air to condense. In the air conditioning unit (12), the room air heated by the air conditioning heat exchanger (101) is supplied into the store. The refrigerant condensed in the air conditioning heat exchanger (101) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130) through the second liquid-side communication pipe (22).
  • the air in the refrigerator is cooled as in the cooling operation.
  • the refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas-side communication pipe (23).
  • flow to the refrigeration circuit (130) The entered refrigerant evaporates in the refrigerating heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23).
  • the refrigerant flowing into the first gas side communication pipe (23) is sucked into the variable capacity compressor (41) after passing through the first suction pipe (61) and is compressed.
  • the refrigerant absorbs heat in the refrigeration heat exchanger (111) and the refrigeration heat exchanger (131), and dissipates heat in the air conditioning heat exchanger (101). Then, the interior of the store is heated by utilizing the heat of the refrigerant that has absorbed heat from the air in the refrigerator in the refrigeration heat exchanger (111) and the freezing heat exchanger (131).
  • the first fixed displacement compressor (42) may be operated. Whether to operate the first fixed capacity compressor (42) is determined according to the cooling load in the refrigerated showcase (13) and the refrigerated showcase (14). In this case, the third four-way switching valve (53) is set to the second state. Then, a part of the refrigerant flowing into the first suction pipe (61) passes through the first branch pipe (61a) and is sucked into the variable displacement compressor (41), and the rest flows into the second branch pipe (61b). The air is sucked into the first fixed displacement compressor (42) through the third four-way switching valve (53) and the second suction pipe (62) in order.
  • the second heating operation is an operation for heating the inside of the store similarly to the first heating operation.
  • the second heating operation is performed when the heating capacity is insufficient in the first heating operation.
  • the first four-way switching valve (51) is in the second state
  • the second four-way switching valve (52) is in the first state
  • the third four-way switching valve (52) is in the third state.
  • the path switching valves (53) are set to the first state, respectively.
  • the opening degrees of the outdoor expansion valve (46), the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted.
  • the variable capacity compressor (41), the second fixed capacity compressor (43), and the booster compressor (141) are operated, and the first fixed capacity compressor (42) is stopped.
  • the subcooling unit (200) is in a stopped state.
  • the refrigerant discharged from the variable capacity compressor (41) and the second fixed capacity compressor (43) passes through the first four-way switching valve and the second gas side communication pipe (24) in order, and is supplied to the air conditioning circuit. It is introduced into the air conditioning heat exchanger (101) of (100), and releases heat to indoor air to condense. In the air conditioning unit (12), the room air heated by the air conditioning heat exchanger (101) is supplied into the store. Condensed in the air conditioning heat exchanger (101) The cooled refrigerant flows into the second liquid side communication pipe (22). A part of the refrigerant flowing into the second liquid side communication pipe (22) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130), and the remainder is the refrigerant passage (205) of the supercooling unit (200). Is introduced to
  • the air in the refrigerator is cooled as in the cooling operation.
  • the refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas-side communication pipe (23).
  • the refrigerant flowing into the refrigeration circuit (130) evaporates in the refrigeration heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23). .
  • the refrigerant flowing into the first gas side communication pipe (23) is sucked into the variable capacity compressor (41) after passing through the first suction pipe (61), and is compressed.
  • the refrigerant flowing into the refrigerant passage (205) of the subcooling unit (200) passes through the first liquid side connection pipe (21) and the third liquid pipe (83) in order and flows into the receiver (45). Then, it flows into the fourth liquid pipe (84) through the second liquid pipe (82).
  • the refrigerant that has flowed into the fourth liquid pipe (84) is decompressed when passing through the outdoor expansion valve (46), is introduced into the outdoor heat exchanger (44), absorbs heat from outdoor air, and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (44) passes through the first four-way switching valve (51) and the second four-way switching valve (52) in order and flows into the second suction pipe (62). 2Suctioned into the fixed capacity compressor (43) and compressed.
  • the refrigerant absorbs heat in the refrigeration heat exchanger (111), the refrigerating heat exchanger (131), and the outdoor heat exchanger (44), and the air conditioning heat exchanger (101 ), The refrigerant radiates heat. Then, using the heat of the refrigerant absorbing heat from the indoor air in the refrigeration heat exchanger (111) and the freezing heat exchanger (131), and the heat of the refrigerant absorbing heat from the outdoor air in the outdoor heat exchanger (44). The inside of the store is heated.
  • the operation of the subcooling unit (200) will be described.
  • the supercooling compressor (221) is operated, and the opening of the subcooling expansion valve (223) is appropriately adjusted.
  • the supercooling refrigerant discharged from the supercooling compressor (221) radiates heat to outdoor air in the supercooling outdoor heat exchanger (222) to condense.
  • Subcooling outdoor heat exchanger (2
  • the subcooling refrigerant condensed in 22) is decompressed when passing through the subcooling expansion valve (223), and flows into the first flow path (211) of the power subcooling heat exchanger (210).
  • the supercooling refrigerant evaporates by absorbing the heat of the refrigerant in the second flow path (212).
  • the subcooling refrigerant evaporated in the subcooling heat exchanger (210) is drawn into the subcooling compressor (221) and compressed.
  • the controller (240) controls the start and stop of the subcooling compressor (221) based on the input detection value of the sensor.
  • the control operation of the controller (240) will be described with reference to FIG.
  • the control operation of the controller (240) is repeatedly performed at fixed time intervals (for example, at 10 second intervals).
  • step ST10 it is determined whether the subcooling compressor (221) is operating or stopped.
  • step ST10 If it is determined in step ST10 that the supercooling compressor (221) is operating, the process proceeds to step ST11.
  • step ST11 it is determined whether or not a predetermined time (for example, 2 minutes) has elapsed since the supercooling compressor (221) was started. Then, if the predetermined time has elapsed from the start of the supercooling compressor (221), the process proceeds to step ST12. On the other hand, if the predetermined time has not elapsed, the process proceeds to step ST14 to end the control operation and to continue the operation of the supercooling compressor (221).
  • a predetermined time for example, 2 minutes
  • step ST12 it is determined whether to stop the subcooling compressor (221). In this step ST12, it is determined whether or not the following four conditions are satisfied. If any one of these four conditions is satisfied, the process moves to step ST13 and stops the subcooling compressor (221). On the other hand, if all of these four conditions are not satisfied, the process proceeds to step ST14, where the control operation is temporarily ended, and the operation of the supercooling compressor (221) is continued.
  • the first condition in step ST12 will be described.
  • the first condition is a condition for determining whether or not the detected value of the refrigerant temperature sensor (236) decreases smoothly after the activation of the subcooling compressor (221).
  • the first requirement is that the detection value Ta of the outside air temperature sensor (231) is less than 20 ° C (Ta ⁇ 20). Things.
  • the second requirement is that the detected value Tout # 0 of the refrigerant temperature sensor (236) at the start of the subcooling compressor (221) and the refrigerant temperature one minute after the start of the subcooling compressor (221) The difference from the detection value Tout # l of the sensor (236) is 3 ° C or less (Tout # 0-Tout # l ⁇ 3).
  • the third requirement is that the detection value ToutttO of the refrigerant temperature sensor (236) at the time of starting the subcooling compressor (221) and the refrigerant temperature sensor (236) after two minutes from the start of the supercooling compressor (221). ) Is less than 5 ° C (Tout # 0_Tout # 2 ⁇ 5).
  • the fourth requirement is that the detected value ToutttO of the refrigerant temperature sensor (236) at the time of starting the subcooling compressor (221) and the refrigerant temperature sensor (236) after 3 minutes from the start of the subcooling compressor (221). ) Is 7 ° C or less (Tout # 0_Tout # 3 ⁇ 7).
  • the fifth requirement is that the starting point power of the subcooling compressor (221) has already passed for 3 minutes.
  • the sixth requirement is that the refrigerant temperature sensor (236) operates normally.
  • the controller (240) causes the refrigeration system (10) to operate the subcooling unit (20).
  • step ST12 The second condition in step ST12 will be described.
  • the second condition is that the subcooling compressor (22
  • the first requirement is that 5 minutes have already passed since the start of the supercooling compressor (221).
  • the second requirement is that the detection value Tout of the refrigerant temperature sensor (236) is larger than the value obtained by adding 15 to the evaporation temperature Tg of the supercooling refrigerant in the supercooling heat exchanger (210) (Tout> Tg + 15).
  • the third requirement is that the refrigerant temperature sensor (236) operates normally.
  • the fourth requirement is that the suction pressure sensor (234) is operating normally.
  • the saturation temperature of the subcooling refrigerant at the detection value LP of the suction pressure sensor (234) is regarded as the evaporation temperature Tg of the subcooling refrigerant. That is, in this embodiment, the evaporating temperature detecting means for detecting the evaporating temperature of the subcooling refrigerant is constituted by the suction pressure sensor (234).
  • the detection value of the refrigerant temperature sensor (236) is obtained despite the fact that the refrigeration cycle is being performed in the subcooling refrigerant circuit (220).
  • the difference between Tout and the evaporation temperature Tg of the supercooling refrigerant is larger than 15 ° C.
  • the third condition in Step ST12 will be described.
  • the third condition is satisfied when the detected value LP of the suction pressure sensor (234) is less than 0.2 MPa and the suction pressure sensor (234) is abnormal.
  • the controller (240) stops the subcooling compressor (221).
  • the fourth condition in step ST12 will be described.
  • the fourth condition is satisfied when the detection value LP of the suction pressure sensor (234) is less than 0.15 MPa.
  • the detection value of the suction pressure sensor (234) is a value that is possible in a normal operation state, that is, a value that is as low as possible. Therefore, when the fourth condition is satisfied, the controller (240) determines that some trouble has occurred and stops the supercooling compressor (221).
  • step ST10 If it is determined in step ST10 that the subcooling compressor (221) is stopped, the process proceeds to step ST15.
  • step ST15 a predetermined time has elapsed since the supercooling compressor (221) was stopped. It is determined whether or not it has passed.
  • the restart of the subcooling compressor (221) is restricted until the time elapses.
  • step ST15 if the predetermined time has not elapsed since the stop of the supercooling compressor (221), the process proceeds to step ST14, where the control operation is temporarily ended, and the supercooling compressor (221) is held in the stopped state. I do. On the other hand, if the predetermined time has elapsed since the supercooling compressor (221) was stopped, the process proceeds to Step ST16.
  • step ST16 it is determined whether to start the subcooling compressor (221).
  • step ST16 it is determined whether or not the following three conditions are satisfied. If any one of these three conditions is satisfied, the process moves to step ST17 to start the subcooling compressor (221). On the other hand, if all of these three conditions are not satisfied, the process proceeds to step ST14, where the control operation is temporarily ended, and the subcooling compressor (221) is kept stopped.
  • the first condition in step ST16 will be described.
  • the first condition is satisfied when the detected value Ta of the outside air temperature sensor (231) is equal to or higher than 25 ° C and one minute has already elapsed since the supercooling compressor (221) was stopped. is there. In this case, the supercooling compressor (221) has been stopped for more than one minute, even though the outdoor air is quite hot. Therefore, when the first condition is satisfied, the controller (240) starts the supercooling compressor (221) to cool the refrigerant in the refrigerant passage (205).
  • the second condition in step ST16 will be described.
  • the second condition is satisfied when the detection value Ta of the outside air temperature sensor (231) is equal to or higher than 20 ° C and three minutes have already elapsed since the stop of the supercooling compressor (221). is there. In this case, the supercooling compressor (221) has been in a stopped state for more than three minutes, even though the outdoor air is relatively hot.
  • the controller (240) starts the supercooling compressor (221) to cool the refrigerant in the refrigerant passage (205).
  • step ST16 The third condition in step ST16 will be described.
  • the third condition is satisfied when 10 minutes have already passed since the stop of the subcooling compressor (221). In this case, the supercooling compressor (221) has been stopped for a relatively long time. Therefore
  • the controller (240) activates the supercooling compressor (221) to cool the refrigerant in the refrigerant passage (205). As described above, the controller (240) always starts the subcooling compressor (221) when the stop time of the subcooling compressor (221) reaches 10 minutes or more.
  • the controller (240) controls the supercooling based only on information obtained in the subcooling unit (200), such as a detection value of a sensor provided in the subcooling unit (200). Controls the operation of the cooling compressor (221).
  • the supercooling compressor (221) can be operated in accordance with the operating state of the refrigeration system (10) without transmitting or receiving signals to or from the refrigeration system (10). Operation can be controlled. Therefore, when attaching the subcooling unit (200) to the refrigeration system (10), the supercooling unit (200) is connected to the first and second liquid side communication pipes (21, 22) of the refrigeration system (10). Just connecting the refrigerant passage (205) eliminates the need to lay communication wiring for transmitting and receiving signals between the refrigeration system (10) and the subcooling unit (200).
  • the supercooling unit (200) of the present embodiment does not require any signal exchange with the refrigeration apparatus (10), and is restricted by the refrigeration apparatus (10) to be attached. I can't. Therefore, according to the present embodiment, it is possible to eliminate restrictions on the model of the cooling device (10) to which the supercooling unit (200) is attached, and to greatly improve the usability of the supercooling unit (200). be able to.
  • a portion closer to the other end than the supercooling heat exchanger (210), ie, closer to the end connected to the second liquid side communication pipe (22). Is provided with a first refrigerant temperature sensor (237).
  • a second refrigerant temperature sensor is provided at a portion closer to one end than the supercooling heat exchanger (210), that is, a portion closer to the end connected to the first liquid side communication pipe (21).
  • the first refrigerant temperature sensor (237) constitutes first refrigerant temperature detection means
  • the second refrigerant temperature sensor (238) constitutes second refrigerant temperature detection means.
  • the detection value of the first refrigerant temperature sensor (237) and the detection value of the second refrigerant temperature sensor (238) are input to the controller (240) of the present modification.
  • the controller (240) compares the values detected by the two refrigerant temperature sensors (237, 238) during operation of the subcooling compressor (221), and controls the operation of the subcooling compressor (221) according to the result. It is configured to determine whether to continue or stop.
  • the refrigerant flows in the refrigerant passage (205) from the first liquid side communication pipe (21) to the second liquid side communication pipe (22), for example, during a cooling operation.
  • the controller (240) continues the operation of the subcooling compressor (221).
  • the subcooling is performed.
  • the temperature of the refrigerant cooled by the heat exchanger (210) is detected by the second refrigerant temperature sensor (238). Accordingly, in this case, for example, the refrigerant flows from the second liquid side communication pipe (22) side to the first liquid side communication pipe (21) side in the refrigerant passage (205) as in the second heating operation.
  • the controller (240) stops the operation of the subcooling compressor (221).
  • the difference between the detection value of the first refrigerant temperature sensor (237) and the detection value of the second refrigerant temperature sensor (238) is determined by the refrigerant in the refrigerant passage (205). May be used as a distribution status display value indicating the distribution status of the product. That is, if the value obtained by subtracting the detection value of the second refrigerant temperature sensor (238) from the detection value of the first refrigerant temperature sensor (237) is negative, the detection value of the first refrigerant temperature sensor (237) is Since it can be determined that the state is lower than the detection value of the temperature sensor (238), the controller (240) continues the operation of the subcooling compressor (221).
  • the controller (240) stops the subcooling compressor (221) because it is higher than the detection value of the refrigerant temperature sensor (238) or it can be determined that both are in the same state.
  • a flow meter (251) is provided in the refrigerant passage (205), and a subcooling compressor is provided based on a detection value of the flow meter (251). Operation control of (221) may be performed.
  • the detection value of the flow meter (251) is input to the controller (240).
  • the controller (240) determines the flow direction of the refrigerant in the refrigerant passage (205) and whether the refrigerant is flowing in the refrigerant passage (205) based on the detection value of the flow meter (251). I do. That is, the controller (240) uses the detection value of the flow meter (251) as a circulation state display value indicating the circulation state of the refrigerant in the refrigerant passage (205).
  • the refrigerant flows in the refrigerant passage (205) from the first liquid side communication pipe (21) to the second liquid side communication pipe (22). If the controller (240) determines that the subcooling compressor (221) is operating, the controller (240) continues to operate the supercooling compressor (221). During operation of the subcooling compressor (221), the refrigerant flows through the refrigerant passage (205) from the second liquid side communication pipe (22) to the first liquid side communication pipe (21). If it is determined that the compressor is If the controller (240) determines that the refrigerant is not flowing through the refrigerant passage (205) during the operation of ()), the controller (240) stops the operation of the subcooling compressor (221).
  • the controller (240) of the present embodiment may control the operation of the subcooling compressor (221) based only on the detection value of the outside air temperature sensor (231).
  • the controller (240) When the detected value of the outside air temperature sensor (231) exceeds a predetermined upper limit (for example, 30 ° C), the cooling load in the refrigerated showcase (13) or the refrigerated showcase (14) or the air conditioning unit (12). It can be inferred that the cooling load of the vehicle has increased. Therefore, in such a case, if the subcooling compressor (221) is stopped, the controller (240) starts the subcooling compressor (221) and operates the subcooling compressor (221). If it is, the operation of the supercooling compressor (221) is continued.
  • a predetermined upper limit for example, 30 ° C
  • the refrigerant flowing in the refrigerant passage (205) from the first liquid side communication pipe (21) to the second liquid side communication pipe (22) is cooled by the supercooling heat exchanger (210) and then refrigerated. It is supplied to the showcase (13) and the like.
  • the controller (240) keeps the subcooling compressor (221) stopped while the subcooling compressor (221) is stopped, and the subcooling compressor (221). If is operating, stop the subcooling compressor (221).
  • a predetermined lower limit for example, 20 ° C
  • the controller (240) keeps the subcooling compressor (221) stopped while the subcooling compressor (221) is stopped, and the subcooling compressor (221). If is operating, stop the subcooling compressor (221).
  • the controller (240) of the present embodiment may control the operation of the subcooling compressor (221) based only on a change in the detection value of the refrigerant temperature detection means (236).
  • the controller (240) of this modification uses the change in the detected value of the refrigerant temperature detecting means (236) as a flow state display value indicating the flow state of the refrigerant in the refrigerant passage (205).
  • the controller (240) stops the subcooling compressor (221).
  • the controller (240) restarts the subcooling compressor (221).
  • the controller (240) keeps the subcooling compressor (221) stopped.
  • the subcooling compressor (221) is based on the temperature difference between the subcooling refrigerant at the inlet and the outlet of the first flow path (211) of the subcooling heat exchanger (210). ) May be controlled.
  • the supercooling unit (200) of the present modification is provided with a first supercooling refrigerant temperature sensor (252), a second subcooling refrigerant temperature sensor (253), and a force S.
  • the first subcooling refrigerant temperature sensor (252) is provided immediately before the first flow path (211) of the subcooling heat exchanger (210). The temperature of the subcooling refrigerant flowing into the flow path (211) is detected.
  • the second subcooling refrigerant temperature sensor (253) is provided immediately after the first flow path (211) of the supercooling heat exchanger (210) and flows out of the first flow path (211).
  • the controller (240) of the present modified example compares the difference between the detection value of the first subcooling refrigerant temperature sensor (252) and the detection value of the second subcooling refrigerant temperature sensor (253) with the refrigerant passage (205). )) Use as a value.
  • the controller (240) will be described.
  • the detection value of the second subcooling refrigerant temperature sensor (253) is higher than the detection value of the first subcooling refrigerant temperature sensor (252) (i.e., (2) If the detected value of the supercooling refrigerant temperature sensor (253) is positive (+) after subtracting the detection value of the first supercooling refrigerant temperature sensor (252), the refrigerant passage (205) It can be determined that the refrigerant is flowing from the first liquid side communication pipe (21) toward the second liquid side communication pipe (22). Therefore, in such a case, the controller (240) continues the operation of the subcooling compressor (221).
  • the detection value of the second subcooling refrigerant temperature sensor (253) is larger than the detection value of the first subcooling refrigerant temperature sensor (252).
  • the temperature is low or when there is no difference between them (that is, when the value obtained by subtracting the value detected by the first supercooling refrigerant temperature sensor (252) from the value detected by the second subcooling refrigerant temperature sensor (253) is less than or equal to zero)
  • the controller (240) of the present embodiment may control the operation of the subcooling compressor (221) based only on the detection value of the suction pressure sensor (234).
  • the detection value of the suction pressure sensor (234) is substantially equal to the refrigerant pressure in the first flow path (211) of the subcooling heat exchanger (210), that is, the evaporation pressure of the subcooling refrigerant. Therefore, in this modified example, the suction pressure sensor (234) constitutes the evaporating pressure detecting means.
  • the controller (240) of the present modification uses the detection value of the suction pressure sensor (234) as a flow state display value indicating the flow state of the refrigerant in the refrigerant path (205).
  • the controller (240) will be described. If the detected value of the suction pressure sensor (234) exceeds a predetermined reference value (for example, 0.2 MPa) during the operation of the subcooling compressor (221), the first flow of the subcooling heat exchanger (210) This means that the supercooling refrigerant has evaporated in the path (211), and it can be determined that the refrigerant is flowing in the refrigerant passage (205). So, in such a case, the controller (240) Continues the operation of the subcooling compressor (221).
  • a predetermined reference value for example, 0.2 MPa
  • the controller (240) stops the subcooling compressor (221).
  • the controller (240) of the present embodiment controls the operation of the subcooling compressor (221) based only on the difference between the detected value Tout of the refrigerant temperature sensor (236) and the evaporation temperature Tg of the subcooling refrigerant. I'll do it.
  • the controller (240) according to the present modification uses the difference between the detected value Tout of the refrigerant temperature sensor (236) and the evaporation temperature Tg of the subcooling refrigerant as a distribution state display indicating the refrigerant distribution state in the refrigerant passage (205). Use as a value.
  • the controller (240) will be described.
  • the value obtained by subtracting the evaporation temperature Tg of the supercooling refrigerant from the detection value Tout of the refrigerant temperature sensor (236) becomes equal to or less than a predetermined reference value (for example, 15 ° C).
  • a predetermined reference value for example, 15 ° C.
  • a value obtained by subtracting the evaporation temperature Tg of the supercooling refrigerant from the detection value Tout of the refrigerant temperature sensor (236) is equal to or less than the reference value.
  • the force flowing through the refrigerant passage (205) from the second liquid-side communication pipe (22) toward the first liquid-side communication pipe (21), or the refrigerant passage (205) It can be determined that the refrigerant is not flowing inside. Therefore, in such a case, the controller (240) stops the subcooling compressor (221).
  • the controller (240) of the present embodiment may control the operation of the supercooling compressor (221) based only on the detected value of the refrigerant temperature detecting means (236).
  • the controller (240) of the present modified example converts the detected value of the refrigerant temperature detecting means (236) into the refrigerant flow state in the refrigerant passage (205). It is used as a distribution status display value indicating the status.
  • the controller (240) starts the subcooling compressor (221).
  • the outdoor unit (11) refrigerates the refrigerant. It can be assumed that the cooling capacity of the refrigerated showcase (13) or the like where the temperature of the refrigerant sent to the use side of the showcase (13) or the like is not so high can be sufficiently secured. Therefore, in such a case, the controller (240) keeps the subcooling compressor (221) stopped.
  • the controller (240) of the present embodiment controls the operation of the subcooling compressor (221) based on the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outside air temperature sensor (231). Even though.
  • the controller (240) of the present modification is configured to display a difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outside air temperature sensor (231) as a distribution state display indicating the refrigerant distribution state in the refrigerant passage (205). Use as a value.
  • the controller (240) When the refrigerant flows from the first liquid side communication pipe (21) side to the second liquid side communication pipe (22) side in the refrigerant passage (205), the refrigerant is discharged to the outdoor air by the outdoor heat exchanger (44). Although the refrigerant that has radiated heat and condensed flows into the refrigerant passage (205), the temperature of the refrigerant cannot be lower than the temperature of the outdoor air. For this reason, while the subcooling compressor (221) is stopped, the value obtained by subtracting the detection value of the outside air temperature sensor (231) from the detection value of the refrigerant temperature detection means (236) exceeds the predetermined reference value.
  • the controller (240) starts the subcooling compressor (221).
  • the controller (240) keeps the subcooling compressor (221) stopped.
  • the supercooling refrigerant circuit (220) is configured to allow natural circulation of the refrigerant.
  • the subcooling outdoor heat exchanger (222) is arranged above the subcooling heat exchanger (210). Have been. Further, a bypass pipe (224) is provided in the subcooling refrigerant circuit (220). One end of the bypass pipe (224) is connected to the suction side of the subcooling compressor (221), and the other end is connected to the discharge side of the subcooling compressor (221). Further, the non-pass pipe (224) is provided with a check valve (225) that allows only the flow of the refrigerant directed toward one end and the other end.
  • the supercooling refrigerant circulates by operating the outdoor fan (230) even while the subcooling compressor (221) is stopped. Specifically, when the outdoor fan (230) is operated, in the subcooling outdoor heat exchanger (222), the refrigerant radiates heat to outdoor air and condenses.
  • the subcooling refrigerant condensed in the subcooling outdoor heat exchanger (222) flows down due to gravity, passes through the subcooling expansion valve (223) that is set to the fully open state, and passes through the subcooling heat exchanger (210). ) To the first channel (211).
  • the supercooling refrigerant absorbs heat from the refrigerant in the second flow path (212) and evaporates.
  • the supercooling refrigerant evaporated in the supercooling heat exchanger (210) returns to the supercooling outdoor heat exchanger (222) through the bypass pipe (224), exchanges heat with outdoor air, and condenses again. .
  • the controller (240) of the present modification first starts the outdoor fan (230), and supercools while the outdoor fan (230) is operating. It is determined whether or not to start the compressor (221). That is, when the controller (240) determines that the refrigerant flowing in the refrigerant passage (205) needs to be cooled, only the outdoor fan (230) is started while the supercooling compressor (221) is stopped. I do.
  • the subcooling refrigerant naturally circulates in the refrigerant passage (205) and subcools in the subcooling heat exchanger (210). The refrigerant in the second flow path (212) is cooled by the refrigerant for use.
  • the controller (240) continues to operate only the outdoor fan (230) for a predetermined time (for example, 5 minutes), and thereafter, the cooling of the refrigerant flowing in the refrigerant passage (205) becomes insufficient. Is determined. Then, if the cooling of the refrigerant flowing in the refrigerant passage (205) is insufficient, the controller (240) activates the supercooling compressor (221).
  • the supercooling compressor (221) is started only when the cooling of the heat-source-side refrigerant is insufficient by simply circulating the supercooling refrigerant by the operation of the outdoor fan (230). Like that. For this reason, it is possible to avoid a situation in which the supercooling compressor (221) is started in spite of the fact that the supercooling compressor (221) does not need to be started. Can be reduced. As a result, the time during which the subcooling compressor (221) is operated in an unstable transient state can be reduced, and the reliability of the subcooling compressor (221) can be improved.
  • a chilled water circuit through which chilled water flows may be provided as a cooling fluid circuit instead of the subcooling refrigerant circuit (220).
  • this chilled water circuit relatively low-temperature water, for example, at about 5 ° C flows.
  • a chilled water circuit is connected to the first flow path (211), and the chilled water flowing in the first flow path (211) flows through the second flow path (212). Exchange heat with the refrigerant flowing through the heat exchanger.
  • the present invention is useful for a subcooling device that cools a refrigerant sent from a heat source unit of a refrigerating device to a use unit.

Abstract

A supercooling apparatus, comprising a supercooling unit (200). In the supercooling unit, a refrigerant passage (205) is connected to the liquid side communication pipes (21, 22) of a refrigerating device (10). When a supercooling compressor (221) is operated, a supercooling refrigerant is circulated in a supercooling refrigerant circuit (220), a refrigerating cycle is performed, and the refrigerant of the refrigerating device (10) flowing in the refrigerant passage (205) is cooled. The detected values of a suction pressure sensor (234) and a refrigerant temperature sensor (236) are inputted into the controller (240) of the supercooling unit (200). The controller (240) performs the operating control of the supercooling compressor (221) based on information obtained in the supercooling unit (200) by utilizing input signals from these sensors (234, 236). Thus, the controller can perform the operating control of the supercooling compressor (221) without exchanging signals with the refrigerating device to be installed.

Description

明 細 書  Specification
過冷却装置  Subcooling device
技術分野  Technical field
[0001] 熱源ユニットと利用ユニットとを備える冷凍装置に取り付けられ、液側の連絡配管を 通じて熱源ユニットから利用ユニットへ送られる冷媒を冷却する過冷却装置に関する  [0001] The present invention relates to a subcooling device that is attached to a refrigeration system having a heat source unit and a utilization unit and cools a refrigerant sent from the heat source unit to the utilization unit through a liquid-side communication pipe.
背景技術 Background art
[0002] 従来より、冷却能力の増大を目的として冷凍装置に取り付けられ、熱源ユニットから 利用ユニットへ送られる冷凍装置の冷媒を冷却する過冷却装置が知られている。  [0002] Conventionally, a subcooling device that is attached to a refrigeration system for the purpose of increasing the cooling capacity and cools a refrigerant of the refrigeration system sent from a heat source unit to a use unit is known.
[0003] 例えば、特許文献 1に開示された過冷却装置は、室外ユニットと室内ユニットとを備 えた空気調和機に取り付けられている。具体的に、この過冷却装置は、室外ユニット と室内ユニットを接続する液側の連絡配管の途中に設けられると共に、過冷却用冷 媒回路を備えている。この過冷却装置は、過冷却用冷媒回路で冷媒を循環させて冷 凍サイクルを行い、液側の連絡配管から送り込まれた空調機の冷媒を過冷却用冷媒 回路の蒸発器で冷却する。そして、この過冷却装置は、空調機の室外ユニットから室 内ユニットへ送られる液冷媒を冷却し、室内ユニットへ送られる液冷媒のェンタルピを 低下させることによって冷房能力を向上させている。  [0003] For example, the supercooling device disclosed in Patent Document 1 is attached to an air conditioner provided with an outdoor unit and an indoor unit. Specifically, the supercooling device is provided in the middle of the liquid-side connecting pipe connecting the outdoor unit and the indoor unit, and includes a supercooling refrigerant circuit. This supercooling device circulates a refrigerant in a subcooling refrigerant circuit to perform a cooling / freezing cycle, and cools the refrigerant of the air conditioner sent from the liquid-side communication pipe by an evaporator in the subcooling refrigerant circuit. The supercooling device cools the liquid refrigerant sent from the outdoor unit of the air conditioner to the indoor unit, and lowers the enthalpy of the liquid refrigerant sent to the indoor unit, thereby improving the cooling capacity.
[0004] 上述のように、上記過冷却装置は、空気調和機等の冷凍装置を補助してその冷却 能力を増大させるためのものである。このため、冷凍装置の停止中に過冷却装置だ けを運転しても無意味である。また、空気調和機の暖房運転のように冷凍装置がヒー トポンプとして動作する状態で過冷却装置を運転することも無意味である。このように[0004] As described above, the supercooling device is for increasing the cooling capacity of a refrigerating device such as an air conditioner by assisting the device. For this reason, it is meaningless to operate only the subcooling device while the refrigerating device is stopped. It is also meaningless to operate the supercooling device while the refrigeration device operates as a heat pump, as in the heating operation of an air conditioner. in this way
、過冷却装置を運転すべきか否かを決めるには、過冷却装置が取り付けられた冷凍 装置の運転状態を知る必要がある。 In order to determine whether or not to operate the supercooling device, it is necessary to know the operating state of the refrigeration system equipped with the supercooling device.
[0005] そこで、特許文献 1に開示された従来の過冷却装置では、過冷却装置の制御部を 空気調和機の制御部と接続して 1つの制御システムを構成している。この過冷却装 置の制御部へは、空気調和機の運転状態を示す信号が空気調和機の制御部から 入力される。そして、この過冷却装置では、空気調和機の制御部から入力された信 号に基づいて、その運転制御が行われる。 [0005] Therefore, in the conventional supercooling device disclosed in Patent Document 1, the control unit of the supercooling device is connected to the control unit of the air conditioner to constitute one control system. A signal indicating the operation state of the air conditioner is input to the control unit of the supercooling device from the control unit of the air conditioner. In this subcooling device, the signal input from the control unit of the air conditioner is The operation control is performed based on the signal.
特許文献 1 :特開平 10— 185333号公報  Patent Document 1: JP-A-10-185333
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 上述のように、従来の過冷却装置は、それが取り付けられる冷凍装置との間で信号 の授受を行っている。このため、過冷却装置を冷凍装置に取り付ける際には、両者間 で送受信される信号を伝送するための配線工事が必要となり、過冷却装置の設置作 業が繁雑であるという問題があった。また、過冷却装置を設置する際に誤配線が生じ る可能性もあり、このような設置作業のミスに起因するトラブルを招くおそれもあった。  [0006] As described above, the conventional supercooling device exchanges signals with the refrigerating device to which it is attached. For this reason, when attaching the subcooling device to the refrigeration unit, wiring work for transmitting signals transmitted and received between the two is required, and there has been a problem that the installation work of the supercooling device is complicated. In addition, there is a possibility that erroneous wiring may occur when the supercooling device is installed, and there is a possibility that a trouble due to such an error in the installation work may be caused.
[0007] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、取り付 け対象の冷凍装置との間で信号の授受を行うことなく過冷却装置の運転制御を可能 とし、過冷却装置の設置作業を簡素化すると共に、設置作業時の人的ミスによるトラ ブルを未然に防止することにある。  [0007] The present invention has been made in view of the advantages thereof, and an object of the present invention is to control the operation of a supercooling device without transmitting and receiving signals to and from a refrigeration device to be mounted. In addition to simplifying the installation work of the supercooling device, it aims to prevent troubles caused by human error during the installation work.
課題を解決するための手段  Means for solving the problem
[0008] 第 1の発明は、連絡配管により接続された熱源ユニット(11)と利用ユニット(12, 13, 1 4)の間で熱源側冷媒を循環させて冷凍サイクルを行う冷凍装置(10)に取り付けられ 、熱源ユニット(11)力 利用ユニット(12, 13, 14)へ送られる上記冷凍装置(10)の熱源 側冷媒を冷却する過冷却装置を対象としている。そして、上記冷凍装置(10)の液側 の連絡配管(21,22)に接続される冷媒通路 (205)と、冷却用流体が流通する冷却用 流体回路 (220)と、上記冷媒通路 (205)内の熱源側冷媒を上記冷却用流体と熱交換 させて冷却するための過冷却用熱交換器 (210)と、上記冷却用流体回路(220)での 冷却用流体の流通状態を上記冷媒通路 (205)内での熱源側冷媒の流通状態に応じ て制御する制御手段(240)とを備えるものである。  [0008] The first invention provides a refrigeration apparatus (10) that circulates a heat source-side refrigerant between a heat source unit (11) and a use unit (12, 13, 14) connected by a communication pipe to perform a refrigeration cycle. It is intended for a supercooling device which is attached to the heat source unit (11) and cools the refrigerant on the heat source side of the refrigerating device (10) sent to the power utilization units (12, 13, 14). A refrigerant passage (205) connected to the liquid-side communication pipe (21, 22) of the refrigeration system (10), a cooling fluid circuit (220) through which a cooling fluid flows, and the refrigerant passage (205) The supercooling heat exchanger (210) for exchanging the heat source side refrigerant in the cooling fluid with the cooling fluid for cooling, and the flow state of the cooling fluid in the cooling fluid circuit (220) are defined by the refrigerant. Control means (240) for controlling according to the flow state of the heat-source-side refrigerant in the passage (205).
[0009] 上記第 1の発明において、過冷却装置(200)が取り付けられる冷凍装置(10)では、 連絡配管を通って熱源ユニット(11)と利用ユニット(12,13,14)の間で冷媒が行き来す る。過冷却装置 (200)の冷媒通路(205)は、冷凍装置(10)の液側の連絡配管(21,22 )に接続され、その内部を冷凍装置(10)の熱源側冷媒が流通する。過冷却装置(200 )の冷却用流体回路 (220)では、冷却用流体が流通する。過冷却用熱交換器 (210) において、冷媒通路 (205)内を流れる熱源側冷媒は、冷却用流体と熱交換すること によって冷却される。 [0009] In the first aspect, in the refrigeration system (10) to which the subcooling device (200) is attached, the refrigerant flows between the heat source unit (11) and the utilization units (12, 13, 14) through the communication pipe. Come and go. The refrigerant passage (205) of the subcooling device (200) is connected to the liquid-side connection pipe (21, 22) of the refrigerating device (10), and the heat source-side refrigerant of the refrigerating device (10) flows through the inside. In the cooling fluid circuit (220) of the supercooling device (200), a cooling fluid flows. Subcooling heat exchangers (210) In, the heat source side refrigerant flowing in the refrigerant passage (205) is cooled by exchanging heat with the cooling fluid.
[0010] この発明の過冷却装置 (200)は、冷凍装置(10)の運転を補助するためのものであ る。このため、過冷却装置(200)の運転は冷凍装置(10)の運転中にだけ必要とされ [0010] The subcooling device (200) of the present invention is for assisting the operation of the refrigeration device (10). For this reason, the operation of the subcooling device (200) is required only while the refrigeration device (10) is operating
、冷凍装置(10)の停止中に過冷却装置(200)だけを運転しても無意味である。また、 この発明の過冷却装置 (200)は、利用ユニット(12,1314)での冷却能力を増大させる ためのものである。このため、例えば冷凍装置(10)がヒートポンプとして機能するよう な状態では、過冷却装置 (200)を運転しても実益は殆ど見込めない。このように、過 冷却装置(200)については、冷凍装置(10)の運転状態によって運転すべき場合と運 転すべきでなレ、場合とがある。 It is meaningless to operate only the subcooling device (200) while the refrigerating device (10) is stopped. Further, the supercooling device ( 200 ) of the present invention is for increasing the cooling capacity of the utilization units ( 12 , 13 , 14 ). For this reason, for example, in a state where the refrigeration unit (10) functions as a heat pump, even if the subcooling unit (200) is operated, almost no profit is expected. As described above, the subcooling device (200) may or may not be operated depending on the operation state of the refrigeration device (10).
[0011] これに対し、この発明の過冷却装置(200)では、制御手段(240)が冷却用流体回 路(220)における冷却用流体の流通状態を制御する。その際、制御手段(240)は、 冷却用流体の流通状態の制御を、冷媒通路 (205)内における熱源側冷媒の流通状 態に応じて行う。冷媒通路 (205)内では、液側の連絡配管(21,22)を通って熱源ュニ ット(11)と利用ユニット(12, 13, 14)の間を行き来する熱源側冷媒が流通している。この ため、冷媒通路(205)内における冷媒の流通状態に基づいて冷凍装置(10)の運転 状態を判断することが可能である。そこで、過冷却装置 (200)の制御手段 (240)は、 冷凍装置(10)の運転状態に関する信号を冷凍装置(10)から受けることなぐ冷媒通 路 (205)内における熱源側冷媒の流通状態に応じて、冷却用流体回路 (220)におけ る冷却用流体の流通状態を制御してレ、る。  [0011] In contrast, in the supercooling device (200) of the present invention, the control means (240) controls the flow state of the cooling fluid in the cooling fluid circuit (220). At this time, the control means (240) controls the flow state of the cooling fluid in accordance with the flow state of the heat source side refrigerant in the refrigerant passage (205). In the refrigerant passage (205), the heat-source-side refrigerant flowing between the heat-source unit (11) and the utilization unit (12, 13, 14) passes through the liquid-side connecting pipe (21, 22). ing. Therefore, it is possible to determine the operation state of the refrigeration system (10) based on the state of circulation of the refrigerant in the refrigerant passage (205). Therefore, the control means (240) of the subcooling device (200) determines the flow state of the heat source side refrigerant in the refrigerant passage (205) that does not receive a signal relating to the operation state of the refrigeration device (10) from the refrigeration device (10). The flow state of the cooling fluid in the cooling fluid circuit (220) is controlled according to the condition.
[0012] 第 2の発明は、上記第 1の発明において、上記冷却用流体回路は、過冷却用冷媒 回路 (220)により構成されており、上記過冷却用冷媒回路 (220)は、過冷却用圧縮機 (221)を備え、冷却用流体としての過冷却用冷媒を循環させて冷凍サイクルを行うも のである。  [0012] In a second aspect based on the first aspect, the cooling fluid circuit includes a subcooling refrigerant circuit (220), and the subcooling refrigerant circuit (220) includes a subcooling refrigerant circuit (220). And a refrigeration cycle by circulating a supercooling refrigerant as a cooling fluid.
[0013] 上記第 2の発明において、過冷却装置(200)の過冷却用冷媒回路 (220)では、過 冷却用冷媒を循環させることによって冷凍サイクルが行われる。過冷却用熱交換器( 210)では、冷媒通路 (205)内を流れる熱源側冷媒が過冷却用冷媒と熱交換する。こ の過冷却用熱交換器 (210)では、過冷却用冷媒が熱源側冷媒カも吸熱して蒸発し、 熱源側冷媒が冷却される。 [0013] In the second invention, in the subcooling refrigerant circuit (220) of the subcooling device (200), a refrigeration cycle is performed by circulating the subcooling refrigerant. In the subcooling heat exchanger (210), the heat source side refrigerant flowing in the refrigerant passage (205) exchanges heat with the subcooling refrigerant. In the supercooling heat exchanger (210), the supercooling refrigerant also absorbs heat from the heat source side refrigerant and evaporates. The heat source side refrigerant is cooled.
[0014] 第 3の発明は、上記第 2の発明において、上記制御手段(240)は、上記過冷却用 圧縮機 (221)の運転を制御することによって、上記過冷却用冷媒回路 (220)における 過冷却用冷媒の循環状態を制御するように構成されるものである。  [0014] In a third aspect based on the second aspect, the control means (240) controls the operation of the subcooling compressor (221) to thereby control the subcooling refrigerant circuit (220). It is configured to control the circulation state of the supercooling refrigerant in the above.
[0015] 上記第 3の発明において、上記制御手段(240)が過冷却用圧縮機 (221)の運転容 量を調節すると、過冷却用冷媒回路 (220)における過冷却用冷媒の循環量が変化 する。従って、上記過冷却用圧縮機 (221)の運転を制御すれば、それによつて過冷 却用冷媒回路 (220)における過冷却用冷媒の循環状態が制御される。  [0015] In the third invention, when the control means (240) adjusts the operating capacity of the subcooling compressor (221), the circulation amount of the subcooling refrigerant in the subcooling refrigerant circuit (220) is increased. Change. Accordingly, if the operation of the supercooling compressor (221) is controlled, the circulation state of the supercooling refrigerant in the supercooling refrigerant circuit (220) is thereby controlled.
[0016] 第 4の発明は、上記第 3の発明において、上記制御手段(240)は、過冷却用圧縮 機 (221)の運転中における冷媒通路 (205)内での熱源側冷媒の流通方向と該冷媒 通路 (205)内での熱源側冷媒の流通の有無とを熱源側冷媒の流通状態として検出し 、冷媒通路(205)内を熱源ユニット(11)力 利用ユニット(12, 13, 14)へ向けて熱源側 冷媒が流れる状態では過冷却用圧縮機 (221)の運転を継続し、上記冷媒通路 (205) 内を利用ユニット(12, 13, 14)から熱源ユニット(11)へ向けて熱源側冷媒が流れる状 態および上記冷媒通路 (205)内を熱源側冷媒が流れてレ、なレ、状態では過冷却用圧 縮機(221)を停止させるように構成されるものである。  [0016] In a fourth aspect based on the third aspect, the control means (240) is configured to control the flow direction of the heat-source-side refrigerant in the refrigerant passage (205) during operation of the subcooling compressor (221). The flow of the heat source side refrigerant in the refrigerant passage (205) is detected as the flow state of the heat source side refrigerant, and the heat source unit (11) power utilization unit (12, 13, 14) is detected in the refrigerant passage (205). )) When the refrigerant is flowing toward the heat source side, the operation of the subcooling compressor (221) is continued, and the inside of the refrigerant passage (205) is directed from the utilization units (12, 13, 14) to the heat source unit (11). When the heat source side refrigerant flows in the refrigerant passage (205) and the heat source side refrigerant flows in the refrigerant passage (205), the supercooling compressor (221) is stopped. .
[0017] 上記第 4の発明において、制御手段 (240)は、過冷却用圧縮機 (221)の運転中に おける冷媒の流通状態を検出する。具体的に、制御手段 (240)は、冷媒通路 (205) 内での冷媒の流通方向と該冷媒通路 (205)内での冷媒流通の有無とを、冷媒の流 通状態として検出する。  [0017] In the fourth aspect, the control means (240) detects the state of flow of the refrigerant during operation of the subcooling compressor (221). Specifically, the control means (240) detects the flow direction of the refrigerant in the refrigerant passage (205) and the presence or absence of the refrigerant flow in the refrigerant passage (205) as the refrigerant flow state.
[0018] この発明の制御手段(240)は、検出した冷媒の流通状態に基づいて過冷却用圧縮 機(221)の運転制御を行う。冷媒通路(205)内を熱源ユニット(11)力 利用ユニット( 12,13,14)へ向けて冷媒が流れている状態では、冷凍装置(10)が利用ユニット(12,1 3, 14)で対象物を冷却する動作を行っていると判断できる。そこで、この状態では、制 御手段(240)が過冷却用圧縮機 (221)の運転を継続させ、過冷却装置 (200)が熱源 ユニット(11)から利用ユニット(12,13,14)へ向力 冷媒を冷却する。一方、冷媒通路( 205)内を利用ユニット(12, 13, 14)から熱源ユニット(11)へ向けて冷媒が流れる状態 や、冷媒通路 (205)内を冷媒が流通していない状態では、冷凍装置(10)が利用ュニ ット(12, 13, 14)で対象物を冷却する動作を行っていないと判断できる。そこで、この状 態では、制御手段 (240)が過冷却用圧縮機 (221)の運転を停止させ、過冷却装置 (2 00)の無駄な運転を回避する。 [0018] The control means (240) of the present invention controls the operation of the subcooling compressor (221) based on the detected refrigerant flow state. In a state in which the refrigerant flows in the refrigerant passage (205) toward the heat source unit (11) and the use unit (12, 13, 14), the refrigeration unit (10) is operated by the use unit (12, 13, 14). It can be determined that the operation of cooling the object is being performed. Therefore, in this state, the control means (240) continues the operation of the subcooling compressor (221), and the subcooling device (200) moves from the heat source unit (11) to the utilization unit (12, 13, 14). Direction Cools the refrigerant. On the other hand, in a state where the refrigerant flows from the utilization units (12, 13, 14) to the heat source unit (11) in the refrigerant passage (205), or in a state where the refrigerant is not flowing in the refrigerant passage (205), the refrigeration is not performed. Equipment (10) used It can be determined that the operation of cooling the object is not performed in the units (12, 13, 14). Therefore, in this state, the control means (240) stops the operation of the subcooling compressor (221) and avoids useless operation of the subcooling device (200).
[0019] 第 5の発明は、上記第 4の発明において、上記制御手段(240)は、過冷却用圧縮 機 (221)を停止させた時点から所定時間が経過すると該過冷却用圧縮機 (221)を起 動するように構成されるものである。  [0019] In a fifth aspect based on the fourth aspect, the control means (240) is configured such that when a predetermined time elapses from the time when the supercooling compressor (221) is stopped, the supercooling compressor (240) 221).
[0020] 上記第 5の発明において、制御手段(240)は、過冷却用圧縮機 (221)を停止させた 時点からの経過時間を計時する。そして、制御手段(240)は、過冷却用圧縮機(221) の停止時点から所定時間が経過すると該過冷却用圧縮機 (221)を起動する。この制 御手段 (240)は、過冷却用圧縮機 (221)の起動後に冷媒通路 (205)内での冷媒の流 通状態を検出し、それに応じて過冷却用圧縮機 (221)の運転を継続させるか、過冷 却用圧縮機 (221)を停止させるかの判断を行う。  [0020] In the fifth aspect, the control means (240) measures an elapsed time from a point in time when the supercooling compressor (221) is stopped. Then, the control means (240) activates the subcooling compressor (221) when a predetermined time has elapsed since the supercooling compressor (221) was stopped. The control means (240) detects the flow state of the refrigerant in the refrigerant passage (205) after the activation of the subcooling compressor (221), and operates the subcooling compressor (221) accordingly. Is to be continued or the supercooling compressor (221) is stopped.
[0021] 第 6の発明は、上記第 3,第 4又は第 5の発明において、上記冷媒通路 (205)のうち 過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側冷 媒の温度を検出する冷媒温度検出手段 (236)を備える一方、上記制御手段 (240)は 、過冷却用圧縮機 (221)を起動させた時点からの上記冷媒温度検出手段 (236)の検 出値の変化に基づいて熱源側冷媒の流通状態を判断するように構成されるものであ る。  [0021] In a sixth aspect based on the third, fourth, or fifth aspect, the utilization unit (12, 13, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210). While a refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in the closer part is provided, the control means (240) controls the refrigerant temperature from the time when the supercooling compressor (221) is started. It is configured to determine the circulation state of the heat source side refrigerant based on a change in the detection value of the detection means (236).
[0022] 上記第 6の発明では、過冷却装置 (200)に冷媒温度検出手段 (236)が設けられる。  [0022] In the sixth aspect, the subcooling device (200) is provided with the refrigerant temperature detecting means (236).
冷媒温度検出手段 (236)は、冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利 用ユニット(12, 13, 14)寄りの部分において冷媒温度を検出する。  The refrigerant temperature detecting means (236) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the use unit (12, 13, 14) than the supercooling heat exchanger (210).
[0023] この発明の制御手段(240)は、過冷却用圧縮機(221)を起動させた時点からの上 記冷媒温度検出手段 (236)の検出値の変化に基づき、冷媒通路 (205)における冷媒 の流通状態を判断する。例えば、過冷却用圧縮機(221)の起動から時間が経過する につれて冷媒温度検出手段 (236)の検出値が低下してゆく状態では、過冷却用熱 交換器 (210)で冷却された冷媒の温度が冷媒温度検出手段 (236)によって検出され ていると判断でき、その結果、冷媒通路(205)では熱源ユニット(11)力も利用ユニット (12,13,14)へ向けて冷媒が流れていると判断できる。また、過冷却用圧縮機 (221)の 起動から時間が経過しても冷媒温度検出手段 (236)の検出値が変化しない状態で は、過冷却用熱交換器 (210)へ流入する前の冷媒の温度が冷媒温度検出手段 (236 )によって検出されているカ あるいは冷媒通路(205)内で冷媒が流通していないと 判断できる。 [0023] The control means (240) of the present invention controls the refrigerant passage (205) based on a change in the detected value of the refrigerant temperature detecting means (236) from the time when the subcooling compressor (221) is started. To determine the state of circulation of the refrigerant. For example, in a state where the detection value of the refrigerant temperature detecting means (236) decreases as time elapses from the start of the supercooling compressor (221), the refrigerant cooled by the supercooling heat exchanger (210) It can be determined that the temperature of the refrigerant is detected by the refrigerant temperature detecting means (236), and as a result, the refrigerant flows in the refrigerant passage (205) toward the utilization unit (12, 13, 14) due to the heat source unit (11). Can be determined to be. The subcooling compressor (221) In a state where the detected value of the refrigerant temperature detecting means (236) does not change even after a lapse of time from the start, the temperature of the refrigerant before flowing into the supercooling heat exchanger (210) is changed to the refrigerant temperature detecting means (236). It can be determined that no refrigerant is flowing in the refrigerant detected in the above or in the refrigerant passage (205).
[0024] 第 7の発明は、上記第 3,第 4又は第 5の発明において、上記冷媒通路 (205)のうち 過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側冷 媒の温度を検出する冷媒温度検出手段 (236)と、上記過冷却用熱交換器 (210)にお ける過冷却用冷媒の蒸発温度を検出する蒸発温度検出手段 (234)とを備える一方、 上記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値と上記蒸発温度検 出手段 (234)の検出値とに基づいて熱源側冷媒の流通状態を判断するように構成さ れるものである。  [0024] In a seventh aspect based on the third, fourth, or fifth aspect, the utilization unit (12, 13, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210). Refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in the closer part; and evaporating temperature detecting means (e.g., evaporating temperature of the subcooling refrigerant in the supercooling heat exchanger (210)). 234), while the control means (240) determines the circulation state of the heat source side refrigerant based on the detection value of the refrigerant temperature detection means (236) and the detection value of the evaporation temperature detection means (234). It is configured to make a decision.
[0025] 上記第 7の発明では、過冷却装置(200)に冷媒温度検出手段(236)と蒸発温度検 出手段 (234)とが設けられる。冷媒温度検出手段 (236)は、冷媒通路 (205)のうち過 冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分において冷媒温度を 検出する。蒸発温度検出手段 (234)は、過冷却用熱交換器 (210)における過冷却用 冷媒の蒸発温度を検出する。  [0025] In the seventh aspect, the subcooling device (200) is provided with the refrigerant temperature detecting means (236) and the evaporating temperature detecting means (234). The refrigerant temperature detecting means (236) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the use unit (12, 13, 14) than the supercooling heat exchanger (210). The evaporating temperature detecting means (234) detects an evaporating temperature of the subcooling refrigerant in the subcooling heat exchanger (210).
[0026] この発明の制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値と上記蒸発 温度検出手段 (234)の検出値とに基づき、冷媒通路 (205)における冷媒の流通状態 を判断する。例えば、冷媒温度検出手段 (236)の検出値が蒸発温度検出手段 (234) の検出値よりもやや高い程度であれば、過冷却用熱交換器 (210)で冷却された冷媒 の温度が冷媒温度検出手段 (236)によって検出されていると判断でき、その結果、冷 媒通路(205)では熱源ユニット(11)力 利用ユニット(12, 13, 14)へ向けて冷媒が流れ ていると判断できる。また、冷媒温度検出手段 (236)の検出値が蒸発温度検出手段( 234)の検出値よりも大幅に高い状態であれば、過冷却用熱交換器 (210)へ流入する 前の冷媒の温度が冷媒温度検出手段(236)によって検出されている力、、あるいは冷 媒通路(205)内で冷媒が流通していないと判断できる。  [0026] The control means (240) of the present invention, based on the detection value of the refrigerant temperature detection means (236) and the detection value of the evaporation temperature detection means (234), determines the state of flow of the refrigerant in the refrigerant passage (205). Judge. For example, if the detected value of the refrigerant temperature detecting means (236) is slightly higher than the detected value of the evaporating temperature detecting means (234), the temperature of the refrigerant cooled by the supercooling heat exchanger (210) becomes higher. It can be determined that the temperature is detected by the temperature detecting means (236). As a result, it is determined that the refrigerant is flowing in the refrigerant passage (205) toward the heat source unit (11) and the power utilization units (12, 13, 14). it can. If the detected value of the refrigerant temperature detecting means (236) is significantly higher than the detected value of the evaporating temperature detecting means (234), the temperature of the refrigerant before flowing into the supercooling heat exchanger (210) is increased. Can be determined as the force detected by the refrigerant temperature detecting means (236) or that the refrigerant is not flowing in the refrigerant passage (205).
[0027] 第 8の発明は、上記第 3,第 4又は第 5の発明において、上記冷媒通路 (205)のうち 過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側冷 媒の温度を検出する第 1冷媒温度検出手段 (237)と、上記冷媒通路 (205)のうち過 冷却用熱交換器 (210)よりも熱源ユニット(11)寄りの部分における熱源側冷媒の温 度を検出する第 2冷媒温度検出手段 (238)とを備える一方、上記制御手段 (240)は、 上記第 1冷媒温度検出手段 (237)の検出値と上記第 2冷媒温度検出手段 (238)の検 出値とに基づいて熱源側冷媒の流通状態を判断するように構成されるものである。 [0027] In an eighth aspect based on the third, fourth or fifth aspect, the utilization unit (12, 13, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210). Heat source side cooling in the closer part A first refrigerant temperature detecting means (237) for detecting the temperature of the medium; and a temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the heat source unit (11) than the supercooling heat exchanger (210). A second refrigerant temperature detecting means (238) for detecting the temperature, while the control means (240) includes a detection value of the first refrigerant temperature detecting means (237) and the second refrigerant temperature detecting means (238). The flow state of the heat-source-side refrigerant is determined based on the detected value.
[0028] 上記第 8の発明では、過冷却装置(200)に第 1冷媒温度検出手段(237)と第 2冷媒 温度検出手段 (238)とが設けられる。第 1冷媒温度検出手段 (237)は、冷媒通路 (20 5)のうち過冷却用熱交換器 (210)よりも利用ユニット(12,13,14)寄りの部分において 冷媒温度を検出する。第 2冷媒温度検出手段 (238)は、冷媒通路 (205)のうち過冷 却用熱交換器 (210)よりも熱源ユニット(11)寄りの部分において冷媒温度を検出する [0028] In the eighth aspect, the subcooling device (200) is provided with the first refrigerant temperature detecting means (237) and the second refrigerant temperature detecting means (238). The first refrigerant temperature detecting means (237) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the use unit (12, 13, 14) than the supercooling heat exchanger (210). The second refrigerant temperature detecting means (238) detects the refrigerant temperature in a portion of the refrigerant passage (205) closer to the heat source unit (11) than the subcooling heat exchanger (210).
[0029] この発明の制御手段(240)は、上記第 1冷媒温度検出手段(237)の検出値と上記 第 2冷媒温度検出手段 (238)の検出値とに基づき、冷媒通路 (205)における冷媒の 流通状態を判断する。例えば、第 1冷媒温度検出手段 (237)の検出値が第 2冷媒温 度検出手段 (238)の検出値よりも充分に低い状態では、熱源ユニット(11)から利用ュ ニット(12, 13, 14)へ向力う冷媒が過冷却用熱交換器 (210)で冷却されてレ、ると判断で きる。逆に、第 1冷媒温度検出手段 (237)の検出値が第 2冷媒温度検出手段 (238)の 検出値よりも高い状態では、利用ユニット(12, 13, 14)から熱源ユニット(11)へ向力 冷 媒が過冷却用熱交換器 (210)で冷却されていると判断できる。また、第 1冷媒温度検 出手段 (237)の検出値と第 2冷媒温度検出手段 (238)の検出値とが殆ど同じ状態で は、冷媒通路 (205)内で冷媒が流通していないと判断できる。 [0029] The control means (240) of the present invention controls the refrigerant passage (205) based on the detection value of the first refrigerant temperature detection means (237) and the detection value of the second refrigerant temperature detection means (238). Judge the state of refrigerant flow. For example, when the detected value of the first refrigerant temperature detecting means (237) is sufficiently lower than the detected value of the second refrigerant temperature detecting means (238), the utilization units (12, 13, 13) are transmitted from the heat source unit (11). It can be determined that the refrigerant working toward 14) is cooled by the supercooling heat exchanger (210). Conversely, when the detection value of the first refrigerant temperature detecting means (237) is higher than the detection value of the second refrigerant temperature detecting means (238), the usage unit (12, 13, 14) transfers to the heat source unit (11). It can be determined that the directional coolant is being cooled by the supercooling heat exchanger (210). In addition, in a state where the detection value of the first refrigerant temperature detecting means (237) and the detection value of the second refrigerant temperature detecting means (238) are almost the same, it is necessary that the refrigerant does not circulate in the refrigerant passage (205). I can judge.
[0030] 第 9の発明は、上記第 1 ,第 2又は第 3の発明において、上記冷媒通路 (205)には 熱源側冷媒の流量を検出する流量計 (251)が設けられる一方、上記制御手段 (240) は、上記流量計 (251)の検出値を熱源側冷媒の流通状態を示す流通状態表示値と して用い、上記冷却用流体回路 (220)で冷却用流体が流通している状態において、 該冷却用流体の流通を継続させるか停止させるかを上記流通状態表示値に基づい て決定するように構成されるものである。  [0030] In a ninth aspect based on the first, second or third aspect, the refrigerant passage (205) is provided with a flow meter (251) for detecting a flow rate of the heat source side refrigerant, The means (240) uses the detected value of the flow meter (251) as a flow state display value indicating the flow state of the heat source side refrigerant, and the cooling fluid is flowing in the cooling fluid circuit (220). In the state, whether to continue or stop the flow of the cooling fluid is determined based on the flow state display value.
[0031] 上記第 9の発明では、流量計(251)の検出値が制御手段(240)へ入力される。冷媒 通路(205)における熱源側冷媒の流通状態は、流量計 (251)の検出値から判断する こと力 Sできる。そこで、制御手段(240)は、上記流量計(251)の検出値を流通状態表 示値として用い、この流通状態表示値に基づいて冷却用流体回路(220)での冷却用 流体の流通状態を制御する。 [0031] In the ninth aspect, the detection value of the flow meter (251) is input to the control means (240). Refrigerant The flow state of the heat source side refrigerant in the passage (205) can be determined based on the detection value of the flow meter (251). Therefore, the control means (240) uses the detected value of the flow meter (251) as a flow state display value, and based on the flow state display value, the flow state of the cooling fluid in the cooling fluid circuit (220). Control.
[0032] 第 10の発明は、上記第 1,第 2又は第 3の発明において、上記冷媒通路 (205)のう ち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側 冷媒の温度を検出する第 1冷媒温度検出手段 (237)と、上記冷媒通路 (205)のうち 過冷却用熱交換器 (210)よりも熱源ユニット(11)寄りの部分における熱源側冷媒の 温度を検出する第 2冷媒温度検出手段 (238)とを備える一方、上記制御手段 (240) は、上記第 1冷媒温度検出手段 (237)の検出値と上記第 2冷媒温度検出手段 (238) の検出値との差を熱源側冷媒の流通状態を示す流通状態表示値として用い、上記 冷却用流体回路 (220)で冷却用流体が流通している状態において、該冷却用流体 の流通を継続させるか停止させるかを上記流通状態表示値に基づいて決定するよう に構成されるものである。  [0032] In a tenth aspect based on the first, second, or third aspect, the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is more than the supercooling heat exchanger (210). ) A first refrigerant temperature detecting means (237) for detecting the temperature of the refrigerant on the heat source side in a portion closer to the heat source unit (11) than the supercooling heat exchanger (210) in the refrigerant passage (205); A second refrigerant temperature detecting means (238) for detecting the temperature of the heat-source-side refrigerant in the portion, while the control means (240) is configured to detect the detected value of the first refrigerant temperature detecting means (237) and the second refrigerant temperature. The difference from the temperature detection means (238) is used as a flow state display value indicating the flow state of the heat source side refrigerant, and when the cooling fluid is flowing in the cooling fluid circuit (220), the cooling is performed. That is configured to determine whether to continue or stop the flow of the working fluid based on the above-mentioned flow state display value A.
[0033] 上記第 10の発明では、第 1冷媒温度検出手段 (237)と第 2冷媒温度検出手段 (238 )の検出値が制御手段 (240)へ入力される。第 1冷媒温度検出手段 (237)の検出値と 第 2冷媒温度検出手段 (238)の検出値とを比較すると、冷媒通路 (205)における熱源 側冷媒の流通状態を判断することができる。例えば、第 1冷媒温度検出手段 (237)の 検出値が第 2冷媒温度検出手段 (238)の検出値よりも低ければ、冷媒通路 (205)内 を熱源ユニット(11)力 利用ユニット(12, 13, 14)へ向けて熱源側冷媒が流通している と判断できる。また、そうでなければ、冷媒通路 (205)内を利用ユニット(12, 13, 14)か ら熱源ユニット(11)へ向けて熱願側冷媒が流れている力 あるいは熱願側冷媒が流 れていないと判断できる。そこで、制御手段(240)は、第 1冷媒温度検出手段(237) の検出値と第 2冷媒温度検出手段 (238)の検出値との差を流通状態表示値として用 レ、、この流通状態表示値に基づいて冷却用流体回路(220)での冷却用流体の流通 状態を制御する。  [0033] In the tenth aspect, the detection values of the first refrigerant temperature detecting means (237) and the second refrigerant temperature detecting means (238) are input to the control means (240). By comparing the detected value of the first refrigerant temperature detecting means (237) with the detected value of the second refrigerant temperature detecting means (238), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, if the detected value of the first refrigerant temperature detecting means (237) is lower than the detected value of the second refrigerant temperature detecting means (238), the heat source unit (11) and the power utilization unit (12, It can be determined that the heat source side refrigerant is circulating toward (13, 14). Otherwise, the force or heat of the heat application side refrigerant flows in the refrigerant passage (205) from the utilization units (12, 13, 14) to the heat source unit (11). You can judge that you have not. Therefore, the control means (240) uses the difference between the detection value of the first refrigerant temperature detection means (237) and the detection value of the second refrigerant temperature detection means (238) as a flow state display value. The circulation state of the cooling fluid in the cooling fluid circuit (220) is controlled based on the displayed value.
[0034] 第 11の発明は、上記第 1,第 2又は第 3の発明において、上記冷媒通路 (205)のう ち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側 冷媒の温度を検出する冷媒温度検出手段 (236)を備える一方、上記制御手段 (240) は、上記冷媒温度検出手段 (236)の検出値の変化を熱源側冷媒の流通状態を示す 流通状態表示値として用い、上記冷却用流体回路(220)で冷却用流体が流通して いる状態において、該冷却用流体の流通を継続させるか停止させるかを上記流通状 態表示値に基づいて決定するように構成されるものである。 According to an eleventh invention, in the first, second, or third invention, the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is replaced by the supercooling heat exchanger (210). ) Heat source side in the closer part While the refrigerant temperature detecting means (236) for detecting the temperature of the refrigerant is provided, the control means (240) displays a change in the value detected by the refrigerant temperature detecting means (236) in a flow state display indicating the flow state of the heat source side refrigerant. In the state where the cooling fluid is flowing in the cooling fluid circuit (220), whether to continue or stop the flow of the cooling fluid is determined based on the flow state display value. It is configured in.
[0035] 上記第 11の発明では、冷媒温度検出手段(236)の検出値が制御手段(240)へ入 力される。冷媒温度検出手段 (236)の検出値の変化を監視すると、冷媒通路 (205) における熱源側冷媒の流通状態を判断することができる。例えば、冷却用流体が流 通している状態で冷媒温度検出手段 (236)の検出値が低下してゆけば、冷媒通路 (2 05)内を熱源ユニット(11)力 利用ユニット(12, 13, 14)へ向けて熱源側冷媒が流通し ていると判断できる。また、そうでなければ、冷媒通路 (205)内を利用ユニット(12, 13, 14)力 熱源ユニット(11)へ向けて熱願側冷媒が流れてレ、る力、、あるいは熱願側冷 媒が流れていないと判断できる。そこで、制御手段(240)は、冷媒温度検出手段(236 )の検出値を流通状態表示値として用い、この流通状態表示値に基づいて冷却用流 体回路(220)での冷却用流体の流通状態を制御する。  [0035] In the eleventh aspect, the detection value of the refrigerant temperature detection means (236) is input to the control means (240). By monitoring the change in the detected value of the refrigerant temperature detecting means (236), the flow state of the heat source side refrigerant in the refrigerant passage (205) can be determined. For example, if the detected value of the refrigerant temperature detecting means (236) decreases while the cooling fluid is flowing, the heat source unit (11) and the power utilization units (12, 13, 13) It can be determined that the heat source side refrigerant is circulating toward 14). If not, the refrigerant on the refrigerant passage (205) flows toward the utilization unit (12, 13, 14) toward the heat source unit (11). It can be determined that the medium is not flowing. Therefore, the control means (240) uses the detected value of the refrigerant temperature detecting means (236) as the flow state display value, and based on the flow state display value, the flow of the cooling fluid in the cooling fluid circuit (220). Control the state.
[0036] 第 12の発明は、上記第 1,第 2又は第 3の発明において、上記冷却用流体回路 (22 0)には、過冷却用熱交換器 (210)の入口における冷却用流体の温度を検出する入 口側流体温度検出手段(252)と、該過冷却用熱交換器 (210)の出口における冷却 用流体の温度を検出する出口側流体温度検出手段(253)とが設けられる一方、上記 制御手段(240)は、上記入口側流体温度検出手段(252)の検出値と上記出口側流 体温度検出手段 (253)の検出値との差を熱源側冷媒の流通状態を示す流通状態表 示値として用い、上記冷却用流体回路(220)で冷却用流体が流通している状態にお いて、該冷却用流体の流通を継続させるか停止させるかを上記流通状態表示値に 基づレ、て決定するように構成されるものである。  [0036] In a twelfth aspect based on the first, second or third aspect, the cooling fluid circuit (220) is provided with a cooling fluid at an inlet of a supercooling heat exchanger (210). An inlet fluid temperature detecting means (252) for detecting the temperature and an outlet fluid temperature detecting means (253) for detecting the temperature of the cooling fluid at the outlet of the supercooling heat exchanger (210) are provided. On the other hand, the control means (240) indicates the difference between the detected value of the inlet-side fluid temperature detecting means (252) and the detected value of the outlet-side fluid temperature detecting means (253) to indicate the flow state of the heat source side refrigerant. The flow state display value is used as the flow state display value to determine whether to continue or stop the flow of the cooling fluid while the cooling fluid is flowing in the cooling fluid circuit (220). It is configured to be determined on the basis of this.
[0037] 上記第 12の発明では、入口側流体温度検出手段 (252)と出口側流体温度検出手 段(253)の検出値が制御手段(240)へ入力される。入口側流体温度検出手段(252) の検出値と入口側流体温度検出手段 (252)の検出値とを比較すると、冷媒通路 (205 )における熱源側冷媒の流通状態を判断することができる。例えば、入口側流体温度 検出手段(252)の検出値が入口側流体温度検出手段(252)の検出値よりも高ければ 、冷媒通路(205)内を熱源ユニット(11)力 利用ユニット(12, 13, 14)へ向けて熱源側 冷媒が流通していると判断できる。また、そうでなければ、冷媒通路(205)内を利用ュ ニット(12, 13, 14)から熱源ユニット(11)へ向けて熱願側冷媒が流れている力、、あるい は熱願側冷媒が流れていないと判断できる。そこで、制御手段(240)は、入口側流体 温度検出手段 (252)の検出値と出口側流体温度検出手段 (253)の検出値との差を 流通状態表示値として用い、この流通状態表示値に基づいて冷却用流体回路 (220 )での冷却用流体の流通状態を制御する。 [0037] In the twelfth aspect, the detected values of the inlet fluid temperature detecting means (252) and the outlet fluid temperature detecting means (253) are input to the control means (240). By comparing the detected value of the inlet fluid temperature detecting means (252) with the detected value of the inlet fluid temperature detecting means (252), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, inlet fluid temperature If the detected value of the detecting means (252) is higher than the detected value of the inlet-side fluid temperature detecting means (252), the inside of the refrigerant passage (205) is directed to the heat source unit (11) and the power utilization unit (12, 13, 14). Thus, it can be determined that the heat source side refrigerant is flowing. Otherwise, the force flowing through the refrigerant passage (205) from the utilization units (12, 13, 14) toward the heat source unit (11), or It can be determined that the refrigerant is not flowing. Therefore, the control means (240) uses the difference between the detected value of the inlet-side fluid temperature detecting means (252) and the detected value of the outlet-side fluid temperature detecting means (253) as the flow state display value. The flow state of the cooling fluid in the cooling fluid circuit (220) is controlled on the basis of the above.
[0038] 第 13の発明は、上記第 2又は第 3の発明において、上記過冷却用冷媒回路 (220) には、過冷却用熱交換器 (210)での過冷却用冷媒の蒸発圧力を検出する蒸発圧力 検出手段 (234)が設けられる一方、上記制御手段 (240)は、上記蒸発圧力検出手段 (234)の検出値を熱源側冷媒の流通状態を示す流通状態表示値として用い、上記 過冷却用冷媒回路(220)で過冷却用冷媒が循環している状態において、該過冷却 用冷媒の循環を継続させるか停止させるかを上記流通状態表示値に基づいて決定 するように構成されるものである。  [0038] In a thirteenth aspect based on the second or third aspect, the evaporating pressure of the subcooling refrigerant in the subcooling heat exchanger (210) is provided in the subcooling refrigerant circuit (220). While the evaporating pressure detecting means for detecting (234) is provided, the control means (240) uses the detected value of the evaporating pressure detecting means (234) as a flow state display value indicating the flow state of the heat source side refrigerant, In a state where the subcooling refrigerant is circulating in the subcooling refrigerant circuit (220), it is configured to determine whether to continue or stop the circulation of the supercooling refrigerant on the basis of the flow state display value. Things.
[0039] 上記第 13の発明では、蒸発圧力検出手段 (234)の検出値が制御手段 (240)へ入 力される。蒸発圧力検出手段 (234)の検出値の変化を監視すると、冷媒通路 (205) における熱源側冷媒の流通状態を判断することができる。例えば、過冷却用冷媒が 循環している状態で蒸発圧力検出手段(234)の検出値がある程度以上になってい れば、冷媒通路 (205)内を熱源側冷媒が流通していると判断できる。また、そうでなけ れば、冷媒通路 (205)内を熱願側冷媒が流れていないと判断できる。そこで、制御手 段 (240)は、蒸発圧力検出手段 (234)の検出値を流通状態表示値として用い、この 流通状態表示値に基づレ、て過冷却用冷媒回路 (220)での過冷却用冷媒の流通状 態を制御する。  [0039] In the thirteenth aspect, the detected value of the evaporating pressure detecting means (234) is input to the control means (240). By monitoring the change in the detected value of the evaporating pressure detecting means (234), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, if the detected value of the evaporating pressure detecting means (234) is more than a certain level while the subcooling refrigerant is circulating, it can be determined that the heat source side refrigerant is flowing in the refrigerant passage (205). . Otherwise, it can be determined that the enthusiasm-side refrigerant is not flowing in the refrigerant passage (205). Therefore, the control means (240) uses the detected value of the evaporating pressure detecting means (234) as the flow state display value, and based on the flow state display value, determines the excess in the subcooling refrigerant circuit (220). Controls the flow of the cooling refrigerant.
[0040] 第 14の発明は、上記第 2又は第 3の発明において、上記冷媒通路 (205)のうち過 冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側冷媒 の温度を検出する冷媒温度検出手段 (236)と、上記過冷却用熱交換器 (210)におけ る過冷却用冷媒の蒸発温度を検出する蒸発温度検出手段 (234)とを備える一方、上 記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値と上記蒸発温度検出 手段 (234)の検出値との差を熱源側冷媒の流通状態を示す流通状態表示値として 用レ、、上記過冷却用冷媒回路 (220)で過冷却用冷媒が循環している状態において、 該過冷却用冷媒の循環を継続させるか停止させるかを上記流通状態表示値に基づ レ、て決定するように構成されるものである。 [0040] A fourteenth invention is directed to the second or third invention, wherein a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210). A refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in (2), and an evaporating temperature detecting means (234) for detecting the evaporating temperature of the subcooling refrigerant in the subcooling heat exchanger (210). On the other hand The control means (240) uses the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the evaporation temperature detecting means (234) as a flow state display value indicating the flow state of the heat source side refrigerant. In a state where the subcooling refrigerant is circulating in the subcooling refrigerant circuit (220), whether to continue or stop the circulation of the supercooling refrigerant is determined based on the flow state display value. It is configured to determine.
[0041] 第 14の発明では、冷媒温度検出手段 (236)と蒸発温度検出手段 (234)の検出値 が制御手段 (240)へ入力される。冷媒温度検出手段 (236)の検出値と蒸発温度検出 手段 (234)の検出値とを比較すると、冷媒通路 (205)における熱源側冷媒の流通状 態を判断することができる。例えば、冷媒温度検出手段 (236)の検出値と蒸発温度検 出手段(234)の検出値の差が所定値 (例えば 10°C程度)以内であれば、冷媒通路 (2 05)内を熱源ユニット(11)力 利用ユニット(12, 13, 14)へ向けて熱源側冷媒が流通し ていると判断できる。また、そうでなければ、冷媒通路 (205)内を利用ユニット(12, 13, 14)力 熱源ユニット(11)へ向けて熱願側冷媒が流れてレ、る力、あるいは熱願側冷 媒が流れていないと判断できる。そこで、制御手段(240)は、冷媒温度検出手段(236 )の検出値と蒸発温度検出手段 (234)の検出値との差を流通状態表示値として用い 、この流通状態表示値に基づいて過冷却用冷媒回路 (220)での過冷却用冷媒の流 通状態を制御する。 [0041] In the fourteenth invention, the detected values of the refrigerant temperature detecting means (236) and the evaporation temperature detecting means (234) are input to the control means (240). By comparing the detection value of the refrigerant temperature detection means (236) with the detection value of the evaporation temperature detection means (234), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, if the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the evaporating temperature detecting means (234) is within a predetermined value (for example, about 10 ° C), the heat source in the refrigerant passage (205) is heated. Unit (11) power It can be determined that the heat source side refrigerant is circulating toward the utilization units (12, 13, 14). Otherwise, the refrigerant in the refrigerant passage (205) flows toward the utilization unit (12, 13, 14) toward the heat source unit (11). It can be determined that is not flowing. Therefore, the control means (240) uses the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the evaporating temperature detecting means (234) as the flow state display value, and based on the flow state display value, The state of flow of the supercooling refrigerant in the cooling refrigerant circuit (220) is controlled.
[0042] 第 15の発明は、上記第 1,第 2又は第 3の発明において、上記冷媒通路 (205)のう ち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側 冷媒の温度を検出する冷媒温度検出手段 (236)を備える一方、上記制御手段 (240) は、上記冷媒温度検出手段 (236)の検出値を熱源側冷媒の流通状態を示す流通状 態表示値として用い、上記冷却用流体回路(220)での冷却用流体の流通が停止し ている状態において、該冷却用流体の流通を開始させるか停止させ続けるかを上記 流通状態表示値に基づいて決定するように構成されるものである。  According to a fifteenth invention, in the first, second, or third invention, the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is replaced with the supercooling heat exchanger (210). The refrigerant temperature detection means (236) for detecting the temperature of the heat source side refrigerant in the nearer part, while the control means (240) determines the flow rate of the heat source side refrigerant by the detection value of the refrigerant temperature detection means (236). In the state where the flow of the cooling fluid in the cooling fluid circuit (220) is stopped, it is determined whether the flow of the cooling fluid is started or stopped. It is configured to be determined based on the state display value.
[0043] 上記第 15の発明では、冷媒温度検出手段(236)の検出値が制御手段(240)へ入 力される。冷媒温度検出手段 (236)の検出値を監視すると、冷媒通路 (205)における 熱源側冷媒の流通状態を判断することができる。例えば、冷却用流体の流通が停止 している状態で冷媒温度検出手段(236)の検出値がある程度以上の値になっていれ ば、冷媒通路(205)内を熱源ユニット(11)力も利用ユニット(12, 13, 14)へ向けて熱源 側冷媒が流通していると判断できる。また、そうでなければ、冷媒通路(205)内を利用 ユニット(12, 13, 14)から熱源ユニット(11)へ向けて熱願側冷媒が流れている力、ある いは熱願側冷媒が流れていないと判断できる。そこで、制御手段(240)は、冷媒温度 検出手段 (236)の検出値を流通状態表示値として用レ、この流通状態表示値に基づ いて冷却用流体回路 (220)での冷却用流体の流通状態を制御する。 [0043] In the fifteenth aspect, the detected value of the refrigerant temperature detecting means (236) is input to the control means (240). By monitoring the detected value of the refrigerant temperature detecting means (236), the flow state of the heat source side refrigerant in the refrigerant passage (205) can be determined. For example, if the detected value of the refrigerant temperature detecting means (236) is a certain value or more while the flow of the cooling fluid is stopped. For example, it can be determined that the heat source side refrigerant is circulating in the refrigerant passage (205) toward the use units (12, 13, 14) with the power of the heat source unit (11). Otherwise, the force of the heat application side refrigerant flowing from the utilization unit (12, 13, 14) to the heat source unit (11) in the refrigerant passage (205) or the heat application side refrigerant is It can be determined that it is not flowing. Therefore, the control means (240) uses the detected value of the refrigerant temperature detecting means (236) as the flow state display value, and based on the flow state display value, controls the cooling fluid in the cooling fluid circuit (220). Control the distribution status.
[0044] 第 16の発明は、上記第 1,第 2又は第 3の発明において、上記冷媒通路 (205)のう ち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14)寄りの部分における熱源側 冷媒の温度を検出する冷媒温度検出手段 (236)を備える一方、上記制御手段 (240) は、上記冷媒温度検出手段 (236)の検出値の変化を熱源側冷媒の流通状態を示す 流通状態表示値として用い、上記冷却用流体回路 (220)での冷却用流体の流通が 停止している状態において、該冷却用流体の流通を開始させるか停止させ続けるか を上記流通状態表示値に基づいて決定するように構成されるものである。  In a sixteenth aspect based on the first, second, or third aspect, the utilization unit (12, 13, 14, 14) of the refrigerant passage (205) is replaced by a subcooling heat exchanger (210). The refrigerant temperature detection means (236) for detecting the temperature of the heat source side refrigerant in the nearer part, while the control means (240) detects a change in the detection value of the refrigerant temperature detection means (236) of the heat source side refrigerant. It is used as a flow state display value indicating the flow state, and in the state where the flow of the cooling fluid in the cooling fluid circuit (220) is stopped, whether to start or continue to stop the flow of the cooling fluid is described above. It is configured to be determined based on the distribution state display value.
[0045] 上記第 16の発明では、冷媒温度検出手段 (236)の検出値が制御手段 (240)へ入 力される。冷媒温度検出手段 (236)の検出値の変化を監視すると、冷媒通路 (205) における熱源側冷媒の流通状態を判断することができる。例えば、冷却用流体の流 通が停止している状態で冷媒温度検出手段 (236)の検出値が上昇下してゆけば、冷 媒通路 (205)内を熱源ユニット(11)から利用ユニット(12, 13, 14)へ向けて熱源側冷媒 が流通していると判断できる。また、そうでなければ、冷媒通路(205)内を利用ュニッ ト(12, 13, 14)力 熱源ユニット(11)へ向けて熱願側冷媒が流れている力、あるいは熱 願側冷媒が流れていないと判断できる。そこで、制御手段 (240)は、冷媒温度検出手 段(236)の検出値の変化を流通状態表示値として用い、この流通状態表示値に基づ いて冷却用流体回路 (220)での冷却用流体の流通状態を制御する。  [0045] In the sixteenth aspect, the detected value of the refrigerant temperature detecting means (236) is input to the control means (240). By monitoring the change in the detected value of the refrigerant temperature detecting means (236), the flow state of the heat source side refrigerant in the refrigerant passage (205) can be determined. For example, if the detected value of the refrigerant temperature detecting means (236) rises and falls while the flow of the cooling fluid is stopped, the inside of the refrigerant passage (205) is moved from the heat source unit (11) to the utilization unit (11). It can be determined that the heat source side refrigerant is circulating toward 12, 13, 14). Otherwise, the unity (12, 13, 14) force in the refrigerant passage (205) is the force of the heat application side refrigerant flowing toward the heat source unit (11), or the heat application side refrigerant is flowing. You can judge that you have not. Accordingly, the control means (240) uses the change in the detected value of the refrigerant temperature detecting means (236) as a flow state display value, and based on the flow state display value, controls the cooling fluid circuit (220) for cooling. Controls the flow state of the fluid.
[0046] 第 17の発明は、上記第 2又は第 3の発明において、室外空気の温度を検出する室 外温度検出手段 (231)と、上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも 利用ユニット(12, 13, 14)寄りの部分における熱源側冷媒の温度を検出する冷媒温度 検出手段 (236)とを備える一方、上記制御手段 (240)は、上記冷媒温度検出手段 (2 36)の検出値と上記室外温度検出手段 (231)の検出値との差を熱源側冷媒の流通 状態を示す流通状態表示値として用い、上記過冷却用冷媒回路 (220)での過冷却 用冷媒の流通が停止している状態において、該過冷却用冷媒の流通を開始させる か停止させ続けるかを上記流通状態表示値に基づいて決定するように構成されるも のである。 In a seventeenth aspect based on the second or third aspect, an outdoor temperature detecting means (231) for detecting a temperature of outdoor air, and a subcooling heat exchanger in the refrigerant passage (205) are provided. A refrigerant temperature detecting means (236) for detecting the temperature of the heat-source-side refrigerant in a portion closer to the utilization unit (12, 13, 14) than the (210). The difference between the detection value of the means (236) and the detection value of the outdoor temperature detection means (231) It is used as a circulation state display value indicating the state, and in a state where the circulation of the supercooling refrigerant in the supercooling refrigerant circuit (220) is stopped, whether to start or continue to stop the circulation of the supercooling refrigerant. Is determined based on the distribution state display value.
[0047] 上記第 17の発明では、室外温度検出手段(231)と冷媒温度検出手段(236)の検 出値が制御手段 (240)へ入力される。冷媒温度検出手段 (236)の検出値と室外温度 検出手段 (231)の検出値とを比較すると、冷媒通路 (205)における熱源側冷媒の流 通状態を判断することができる。例えば、冷却用流体の流通が停止している状態で 冷媒温度検出手段 (236)の検出値と室外温度検出手段 (231)の検出値の差が所定 値以上であれば、冷媒通路 (205)内を熱源側冷媒が流通していると判断できる。また 、そうでなければ、冷媒通路(205)内を熱願側冷媒が流れていないと判断できる。そ こで、制御手段 (240)は、冷媒温度検出手段 (236)の検出値と室外温度検出手段 (2 31)の検出値の差を流通状態表示値として用い、この流通状態表示値に基づいて過 冷却用冷媒回路 (220)での過冷却用冷媒の流通状態を制御する。  [0047] In the seventeenth aspect, the detection values of the outdoor temperature detection means (231) and the refrigerant temperature detection means (236) are input to the control means (240). By comparing the detected value of the refrigerant temperature detecting means (236) with the detected value of the outdoor temperature detecting means (231), it is possible to determine the flow state of the heat source side refrigerant in the refrigerant passage (205). For example, if the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outdoor temperature detecting means (231) is equal to or more than a predetermined value while the circulation of the cooling fluid is stopped, the refrigerant passage (205) It can be determined that the heat source side refrigerant is circulating inside. Otherwise, it can be determined that the enthusiasm-side refrigerant is not flowing in the refrigerant passage (205). Therefore, the control means (240) uses a difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outdoor temperature detecting means (231) as a flow state display value, and based on the flow state display value. Controlling the flow state of the supercooling refrigerant in the subcooling refrigerant circuit (220).
[0048] 第 18の発明は、連絡配管により接続された熱源ユニット(11)と利用ユニット(12, 13, 14)の間で熱源側冷媒を循環させて冷凍サイクルを行う冷凍装置(10)に取り付けら れ、熱源ユニット(11)力 利用ユニット(12, 13, 14)へ送られる上記冷凍装置(10)の熱 源側冷媒を冷却する過冷却装置を対象とする。そして、上記冷凍装置(10)の熱源ュ ニット(11)が熱源側冷媒を室外空気と熱交換させるように構成される一方、上記冷凍 装置(10)の液側の連絡配管(21,22)に接続される冷媒通路 (205)と、冷却用流体が 流通する冷却用流体回路 (220)と、上記冷媒通路 (205)内の熱源側冷媒を上記冷 却用流体と熱交換させて冷却するための過冷却用熱交換器 (210)と、室外空気の温 度を検出する室外温度検出手段 (231)と、上記冷却用流体回路 (220)での冷却用流 体の流通状態を上記室外温度検出手段(231)の検出値に応じて制御する制御手段 (240)とを備えるものである。  [0048] The eighteenth invention provides a refrigeration apparatus (10) that circulates a heat source-side refrigerant between a heat source unit (11) and a use unit (12, 13, 14) connected by a communication pipe to perform a refrigeration cycle. It is intended for a supercooler that is attached and cools the heat source side refrigerant of the refrigeration unit (10) sent to the power utilization unit (12, 13, 14). The heat source unit (11) of the refrigerating device (10) is configured to exchange heat between the heat source side refrigerant and the outdoor air, while the connecting pipe (21, 22) on the liquid side of the refrigerating device (10) is provided. A refrigerant passage (205) connected to the cooling medium, a cooling fluid circuit (220) through which a cooling fluid flows, and a heat source-side refrigerant in the refrigerant passage (205) are cooled by exchanging heat with the cooling fluid. A supercooling heat exchanger (210), an outdoor temperature detecting means (231) for detecting the temperature of outdoor air, and a flow state of the cooling fluid in the cooling fluid circuit (220). Control means (240) for controlling according to the detection value of the temperature detection means (231).
[0049] 上記第 18の発明では、上記第 1の発明と同様に、冷媒通路 (205)内の熱源側冷媒 が冷却用流体によって冷却される。この発明の制御手段(240)へは、室外温度検出 手段 (231)の検出値が入力される。室外温度検出手段 (231)の検出値を監視すれば 、利用ユニット(12, 13, 14)での冷却負荷の大きさを推測でき、冷媒通路(205)内の熱 源側冷媒を冷却すべきかどうかを判断できる。そこで、制御手段 (240)は、室外温度 検出手段(231)の検出値に基づき、冷却用流体回路 (220)での冷却用流体の流通 状態を制御する。 [0049] In the eighteenth aspect, similarly to the first aspect, the heat-source-side refrigerant in the refrigerant passage (205) is cooled by the cooling fluid. The detection value of the outdoor temperature detection means (231) is input to the control means (240) of the present invention. By monitoring the detection value of the outdoor temperature detection means (231) In addition, the magnitude of the cooling load in the utilization unit (12, 13, 14) can be estimated, and it can be determined whether the heat source side refrigerant in the refrigerant passage (205) should be cooled. Therefore, the control means (240) controls the flow state of the cooling fluid in the cooling fluid circuit (220) based on the detection value of the outdoor temperature detecting means (231).
[0050] 第 19の発明は、上記第 18の発明において、上記冷却用流体回路は、過冷却用冷 媒回路 (220)により構成されており、上記過冷却用冷媒回路 (220)は、過冷却用圧縮 機 (221)を備え、冷却用流体としての過冷却用冷媒を循環させて冷凍サイクルを行う ものである。  [0050] In a nineteenth aspect based on the eighteenth aspect, the cooling fluid circuit includes a supercooling coolant circuit (220), and the supercooling coolant circuit (220) includes a supercooling coolant circuit (220). It is equipped with a cooling compressor (221) and performs a refrigeration cycle by circulating a supercooling refrigerant as a cooling fluid.
[0051] 第 19の発明において、過冷却装置(200)の過冷却用冷媒回路 (220)では、過冷却 用冷媒を循環させることによって冷凍サイクルが行われる。過冷却用熱交換器 (210) では、冷媒通路 (205)内を流れる熱源側冷媒が過冷却用冷媒と熱交換する。この過 冷却用熱交換器 (210)では、過冷却用冷媒が熱源側冷媒から吸熱して蒸発し、熱源 側冷媒が冷却される。  [0051] In the nineteenth aspect, in the subcooling refrigerant circuit (220) of the subcooling device (200), a refrigeration cycle is performed by circulating the subcooling refrigerant. In the subcooling heat exchanger (210), the heat source side refrigerant flowing in the refrigerant passage (205) exchanges heat with the subcooling refrigerant. In the supercooling heat exchanger (210), the supercooling refrigerant absorbs heat from the heat-source-side refrigerant and evaporates, and the heat-source-side refrigerant is cooled.
[0052] 第 20の発明は、上記第 18又は第 19の発明において、上記制御手段(240)は、 上 記冷却用流体回路(220)で冷却用流体が流通している状態において、該冷却用流 体の流通を継続させるか停止させるかを上記室外温度検出手段(231)の検出値に 基づレ、て決定するように構成されるものである。  [0052] In a twentieth aspect based on the eighteenth or nineteenth aspect, the control means (240) is arranged so that the cooling fluid flows in the cooling fluid circuit (220). Whether to continue or stop the flow of the working fluid is determined based on the detection value of the outdoor temperature detecting means (231).
[0053] 第 21の発明は、上記第 18又は第 19の発明において、上記制御手段(240)は、 上 記冷却用流体回路(220)での冷却用流体の流通が停止している状態において、該 冷却用流体の流通を開始させるか停止させ続けるかを上記室外温度検出手段(231 )の検出値に基づいて決定するように構成されるものである。  [0053] In a twenty-first aspect based on the eighteenth or nineteenth aspect, the control means (240) is configured to stop the flow of the cooling fluid in the cooling fluid circuit (220). The configuration is such that whether to start or stop the flow of the cooling fluid is determined based on the detection value of the outdoor temperature detecting means (231).
[0054] 上記第 20,第 21の発明では、制御手段(240)が室外温度検出手段(231)の検出 値を監視する。室外温度検出手段 (231)の検出値が所定の基準値 (例えば 25°C)を 超えていれば、利用ユニット(12, 13, 14)での冷却負荷が増していて冷媒通路 (205) 内の熱源側冷媒を冷却するべき状況にあると推測できる。また、そうでなければ、禾 IJ 用ユニット(12, 13, 14)での冷却負荷がさほど大きくなくて冷媒通路(205)内の熱源側 冷媒を冷却する必要性が低い状況にあると推測できる。そこで、これら発明の制御手 段(240)は、室外温度検出手段(231)の検出値に基づき、冷却用流体回路(220)で 冷却用流体を流通させるか否かを判断する。 [0054] In the twentieth and twenty-first inventions, the control means (240) monitors the detection value of the outdoor temperature detection means (231). If the detection value of the outdoor temperature detection means (231) exceeds a predetermined reference value (for example, 25 ° C), the cooling load on the utilization unit (12, 13, 14) is increased and the inside of the refrigerant passage (205) is increased. It can be assumed that the heat source side refrigerant is to be cooled. Otherwise, it can be guessed that the cooling load on the IJ IJ units (12, 13, 14) is not so large and the necessity to cool the heat source side refrigerant in the refrigerant passage (205) is low. . Therefore, the control means (240) of these inventions uses the cooling fluid circuit (220) based on the detection value of the outdoor temperature detection means (231). It is determined whether or not the cooling fluid is allowed to flow.
[0055] 第 22の発明は、上記第 2又は第 19の発明において、上記過冷却用冷媒回路 (220 )に接続されて過冷却用冷媒を室外空気と熱交換させる放熱用熱交換器 (222)と、 上記放熱用熱交換器 (222)へ室外空気を供給する室外ファン (230)とを備え、上記 過冷却用冷媒回路 (220)は、上記過冷却用圧縮機 (221)の停止中に上記室外ファ ン (230)を運転させることによって過冷却用冷媒を自然循環させる自然循環動作が 可能となっており、上記制御手段 (240)は、過冷却用冷媒の循環を開始させる際に は上記室外ファン (230)を起動して上記過冷却用冷媒回路 (220)に自然循環動作を 行わせ、該自然循環動作中における上記冷媒通路 (205)内での熱源側冷媒の流通 状態に応じて過冷却用圧縮機 (221)を起動するか停止させ続けるかを決定するよう に構成されるものである。  [0055] In a twenty-second aspect based on the second or nineteenth aspect, the radiating heat exchanger (222) is connected to the subcooling refrigerant circuit (220) to exchange heat between the supercooling refrigerant and outdoor air. ), And an outdoor fan (230) for supplying outdoor air to the heat-radiating heat exchanger (222), wherein the supercooling refrigerant circuit (220) is stopped while the supercooling compressor (221) is stopped. By operating the outdoor fan (230) at the same time, a natural circulation operation of naturally circulating the supercooling refrigerant is possible, and the control means (240) performs the operation when starting the circulation of the supercooling refrigerant. Activates the outdoor fan (230) to cause the supercooling refrigerant circuit (220) to perform a natural circulation operation, and makes the heat source side refrigerant flow in the refrigerant passage (205) during the natural circulation operation. And to determine whether to start or continue to stop the subcooling compressor (221) accordingly.
[0056] 第 22の発明において、過冷却用冷媒回路(220)では、室外ファン (230)を運転す ることによって過冷却用圧縮機(221)の停止中であっても過冷却用冷媒が循環する。 つまり、この過冷却用冷媒回路 (220)では、室外ファン (230)を運転するだけでも、過 冷却用熱交換器 (210)において熱源側冷媒を冷却することができる。過冷却用冷媒 の循環を開始させる場合、この発明の制御手段(240)は、先ず室外ファン (230)だけ を運転して過冷却用冷媒回路 (220)内で過冷却用冷媒を自然循環させ、自然循環 する過冷却用冷媒によって熱源側冷媒を冷却する。そして、制御手段 (240)は、この 状態で熱源側冷媒の冷却が充分かどうかを判断し、その判断に応じて過冷却用圧 縮機 (221)を起動させるか否力を決定する。つまり、制御手段 (240)は、熱源側冷媒 の冷却が充分であれば過冷却用圧縮機(221)を停止させたままとし、熱源側冷媒の 冷却が不充分であれば過冷却用圧縮機 (221)を起動して過冷却用冷媒回路 (220) での冷凍サイクルを開始させる。  [0056] In the twenty-second aspect, in the subcooling refrigerant circuit (220), the supercooling refrigerant is driven by the outdoor fan (230) even when the subcooling compressor (221) is stopped. Circulate. That is, in the subcooling refrigerant circuit (220), the heat source side refrigerant can be cooled in the subcooling heat exchanger (210) only by operating the outdoor fan (230). When the circulation of the subcooling refrigerant is started, the control means (240) of the present invention first operates only the outdoor fan (230) to naturally circulate the supercooling refrigerant in the subcooling refrigerant circuit (220). Then, the heat source side refrigerant is cooled by the subcooling refrigerant that circulates naturally. Then, the control means (240) determines whether the cooling of the heat source side refrigerant is sufficient in this state, and determines whether or not to activate the supercooling compressor (221) according to the determination. That is, the control means (240) keeps the subcooling compressor (221) stopped if the cooling of the heat source side refrigerant is sufficient, and if the cooling of the heat source side refrigerant is insufficient, the control means (240) (221) is started to start a refrigeration cycle in the subcooling refrigerant circuit (220).
発明の効果  The invention's effect
[0057] 本発明の過冷却装置 (200)において、制御手段(240)は、冷媒通路 (205)の内部 における冷媒の流通状態に応じて過冷却用圧縮機 (221)の運転を制御している。つ まり、この過冷却装置 (200)では、冷凍装置(10)との間で信号の授受などを行わなく ても、冷凍装置(10)の運転状態に応じて過冷却用圧縮機 (221)の運転を制御するこ とが可能となる。このため、本発明の過冷却装置(200)を冷凍装置(10)に取り付ける 際には、冷凍装置(10)の液側の連絡配管(21,22)に過冷却装置 (200)の冷媒通路 ( 205)を接続するだけでよく、冷凍装置(10)と過冷却装置 (200)の間で信号を授受す るための通信用配線を敷設する必要が無くなる。 [0057] In the subcooling device (200) of the present invention, the control means (240) controls the operation of the subcooling compressor (221) according to the state of circulation of the refrigerant inside the refrigerant passage (205). I have. In other words, in the subcooling device (200), even if signals are not exchanged with the refrigeration device (10), the subcooling compressor (221) can be used in accordance with the operation state of the refrigeration device (10). Control the operation of Is possible. Therefore, when attaching the subcooling device (200) of the present invention to the refrigeration system (10), the refrigerant passage of the subcooling device (200) is connected to the liquid-side communication pipes (21, 22) of the refrigeration system (10). (205), and there is no need to lay communication wiring for exchanging signals between the refrigeration system (10) and the subcooling system (200).
[0058] 従って、本発明によれば、過冷却装置(200)を冷凍装置(10)に取り付ける際の作 業工数を削減することができ、更には誤配線等の設置作業時の人的ミスに起因する トラブルを未然に防止することができる。 [0058] Therefore, according to the present invention, it is possible to reduce the number of man-hours required for attaching the supercooling device (200) to the refrigerating device (10), and to further reduce human error during installation work such as incorrect wiring. The trouble caused by the above can be prevented beforehand.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]過冷却ユニットを備えた冷凍システムの構成を示す配管系統図である。  FIG. 1 is a piping diagram showing a configuration of a refrigeration system including a supercooling unit.
[図 2]冷凍システムの冷房運転時の動作を示す配管系統図である。  FIG. 2 is a piping diagram showing an operation during a cooling operation of the refrigeration system.
[図 3]冷凍システムの第 1暖房運転時の動作を示す配管系統図である。  FIG. 3 is a piping diagram illustrating an operation of the refrigeration system during a first heating operation.
[図 4]冷凍システムの第 1暖房運転時の動作を示す配管系統図である。  FIG. 4 is a piping diagram showing an operation of the refrigeration system during a first heating operation.
[図 5]冷凍システムの第 2暖房運転時の動作を示す配管系統図である。  FIG. 5 is a piping diagram showing an operation during a second heating operation of the refrigeration system.
[図 6]過冷却ユニットにおけるコントローラの制御動作を示すフロー図である。  FIG. 6 is a flowchart showing a control operation of a controller in the supercooling unit.
[図 7]実施形態の変形例 1における冷凍システムの構成を示す配管系統図である。  FIG. 7 is a piping diagram showing a configuration of a refrigeration system according to a first modification of the embodiment.
[図 8]実施形態の変形例 2における冷凍システムの構成を示す配管系統図である。  FIG. 8 is a piping diagram illustrating a configuration of a refrigeration system according to a second modification of the embodiment.
[図 9]実施形態の変形例 5における冷凍システムの構成を示す配管系統図である。  FIG. 9 is a piping diagram illustrating a configuration of a refrigeration system according to Modification Example 5 of the embodiment.
[図 10]実施形態の変形例 10における過冷却ユニットの構成を示す配管系統図であ る。  FIG. 10 is a piping diagram showing a configuration of a subcooling unit in Modification 10 of the embodiment.
符号の説明  Explanation of symbols
10 冷凍装置  10 Refrigeration equipment
11 室外ユニット(熱源ユニット)  11 Outdoor unit (heat source unit)
12 空調ユニット (利用ユニット)  12 Air conditioning unit (Usage unit)
13 冷蔵ショーケース (利用ユニット)  13 Refrigerated showcase (Usage unit)
14 冷凍ショーケース (利用ユニット)  14 Frozen showcase (Usage unit)
21 第 1液側連絡配管 (液側の連絡配管)  21 1st liquid side connection pipe (liquid side connection pipe)
22 第 2液側連絡配管 (液側の連絡配管)  22 2nd liquid side connection pipe (liquid side connection pipe)
205 冷媒通路 210 過冷却用熱交換器 205 refrigerant passage 210 Subcooling heat exchanger
220 過冷却用冷媒回路 (冷却用流体回路)  220 Subcooling refrigerant circuit (Cooling fluid circuit)
221 過冷却用圧縮機  221 Subcooling compressor
200 過冷却ユニット (過冷却装置)  200 Subcooling unit (supercooling device)
230 室外ファン  230 outdoor fan
234 吸入圧力センサ (蒸発温度検出手段、蒸発圧力検出手段)  234 Suction pressure sensor (evaporation temperature detecting means, evaporating pressure detecting means)
236 冷媒温度センサ (冷媒温度検出手段)  236 Refrigerant temperature sensor (refrigerant temperature detecting means)
237 第 1冷媒温度センサ (第 1冷媒温度検出手段)  237 1st refrigerant temperature sensor (1st refrigerant temperature detecting means)
238 第 2冷媒温度センサ (第 2冷媒温度検出手段)  238 Second refrigerant temperature sensor (second refrigerant temperature detecting means)
240 コントローラ(制御手段)  240 controller (control means)
251 流量計  251 Flow meter
252 第 1過冷却用冷媒温度センサ (入口側流体温度検出手段)  252 1st subcooling refrigerant temperature sensor (inlet side fluid temperature detection means)
253 第 2過冷却用冷媒温度センサ(出口側流体温度検出手段)  253 Second subcooling refrigerant temperature sensor (outlet fluid temperature detecting means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0061] 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0062] 本実施形態の冷凍システムは、コンビニエンスストア等に設置されて、店内の空気 調和とショーケース内の冷却とを行うものである。この冷凍システムは、本発明に係る 過冷却装置としての過冷却ユニット(200)と、この過冷却ユニット(200)が取り付けら れた冷凍装置(10)とによって構成されている。 [0062] The refrigeration system of the present embodiment is installed in a convenience store or the like, and performs air conditioning in the store and cooling in the showcase. This refrigeration system includes a subcooling unit (200) as a subcooling device according to the present invention, and a refrigeration device (10) to which the subcooling unit (200) is attached.
[0063] 図 1に示すように、上記冷凍システムには、室外ユニット(11)と、空調ユニット(12)と 、冷蔵ショーケース(13)と、冷凍ショーケース(14)と、ブースタユニット(15)と、過冷却 ユニット(200)とが設けられている。そして、室外ユニット(11)と、空調ユニット(12)と、 冷蔵ショーケース(13)と、冷凍ショーケース(14)と、ブースタユニット (15)とが冷凍装 置(10)を構成している。この冷凍システムでは、室外ユニット(11)と過冷却ユニット(2 00)とが屋外に設置され、残りの空調ユニット(12)等がコンビニエンスストア等の店内 に設置される。 As shown in FIG. 1, the refrigeration system includes an outdoor unit (11), an air conditioning unit (12), a refrigerated showcase (13), a refrigerated showcase (14), and a booster unit (15). ) And a supercooling unit (200). The outdoor unit (11), the air conditioning unit (12), the refrigerated showcase (13), the refrigerated showcase (14), and the booster unit (15) constitute a refrigeration unit (10). . In this refrigeration system, the outdoor unit (11) and the subcooling unit (200) are installed outdoors, and the remaining air conditioning unit (12) is installed in a store such as a convenience store.
[0064] 室外ユニット(11)には室外回路 (40)力 空調ユニット(12)には空調回路(100)が、 冷蔵ショーケース(13)には冷蔵回路(110) 、冷凍ショーケース(14)には冷凍回路( 130)力 ブースタユニット(15)にはブースタ回路(140)がそれぞれ設けられている。ま た、過冷却ユニット(200)には、冷媒通路(205)が設けられている。冷凍システムでは 、これらの回路 (40, 100, · · ·)や過冷却ユニット (200)の冷媒通路(205)を配管で接続 することによって冷媒回路(20)が構成されている。この冷媒回路 (20)には、熱源側 冷媒が充填されている。 [0064] The outdoor unit (11) has an outdoor circuit (40) power. The air conditioning unit (12) has an air conditioning circuit (100), the refrigeration showcase (13) has a refrigeration circuit (110), and a refrigeration showcase (14). Has a refrigeration circuit ( 130) Power The booster unit (15) is provided with a booster circuit (140). The subcooling unit (200) is provided with a refrigerant passage (205). In the refrigeration system, a refrigerant circuit (20) is configured by connecting these circuits (40, 100,...) And the refrigerant passage (205) of the supercooling unit (200) with piping. This refrigerant circuit (20) is filled with a heat source side refrigerant.
[0065] 上記冷媒回路 (20)には、第 1液側連絡配管(21)と、第 2液側連絡配管(22)と、第 1 ガス側連絡配管(23)と、第 2ガス側連絡配管(24)とが設けられてレ、る。  [0065] The refrigerant circuit (20) includes a first liquid side communication pipe (21), a second liquid side communication pipe (22), a first gas side communication pipe (23), and a second gas side communication pipe. A pipe (24) is provided.
[0066] 第 1液側連絡配管(21)は、過冷却ユニット (200)の冷媒通路(205)の一端を室外回 路 (40)に接続してレ、る。第 2液側連絡配管(22)の一端は、冷媒通路 (205)の他端に 接続している。第 2液側連絡配管(22)の他端は、 3つに分岐して空調回路(100)と冷 蔵回路(110)と冷凍回路(130)とに接続してレ、る。第 2液側連絡配管(22)のうち冷凍 回路(130)に接続する分岐管には、液側閉鎖弁(25)が設けられている。  [0066] The first liquid side communication pipe (21) connects one end of the refrigerant passage (205) of the subcooling unit (200) to the outdoor circuit (40). One end of the second liquid side communication pipe (22) is connected to the other end of the refrigerant passage (205). The other end of the second liquid-side connecting pipe (22) branches into three and is connected to the air conditioning circuit (100), the refrigeration circuit (110), and the refrigeration circuit (130). The branch pipe connected to the refrigeration circuit (130) in the second liquid side connection pipe (22) is provided with a liquid side shutoff valve (25).
[0067] 第 1ガス側連絡配管(23)の一端は、 2つに分岐して冷蔵回路(110)とブースタ回路  [0067] One end of the first gas side communication pipe (23) is branched into two, and a refrigeration circuit (110) and a booster circuit.
(140)とに接続している。第 1ガス側連絡配管(23)のうちブースタ回路(140)に接続 する分岐管には、ガス側閉鎖弁(26)が設けられている。第 1ガス側連絡配管(23)の 他端は、室外回路 (40)に接続している。第 2ガス側連絡配管(24)は、空調回路(100 )を室外回路 (40)に接続してレ、る。  (140) and connected. The branch pipe connected to the booster circuit (140) in the first gas-side communication pipe (23) is provided with a gas-side shutoff valve (26). The other end of the first gas side communication pipe (23) is connected to the outdoor circuit (40). The second gas side communication pipe (24) connects the air conditioning circuit (100) to the outdoor circuit (40).
[0068] 〈室外ユニット〉  [0068] <Outdoor unit>
室外ユニット(11)は、冷凍装置(10)の熱源ユニットを構成している。この室外ュニッ ト(11)は、室外回路 (40)を備えている。  The outdoor unit (11) constitutes a heat source unit of the refrigeration system (10). The outdoor unit (11) includes an outdoor circuit (40).
[0069] 室外回路 (40)には、可変容量圧縮機 (41)と、第 1固定容量圧縮機 (42)と、第 2固 定容量圧縮機 (43)と、室外熱交換器 (44)と、レシーバ(45)と、室外膨張弁 (46)とが 設けられている。また、室外回路(40)には、 3つの吸入管(61,62,63)と、 2つの吐出 管(64,65)と、 4つの液管(81,82,83,84)と、 1つの高圧ガス管(66)とが設けられてレ、る 更に、室外回路 (40)には、 3つの四路切換弁(51,52,53)と、 1つの液側閉鎖弁(54 )と、 2つのガス側閉鎖弁(55,56)とが設けられている。  [0069] The outdoor circuit (40) includes a variable capacity compressor (41), a first fixed capacity compressor (42), a second fixed capacity compressor (43), and an outdoor heat exchanger (44). , A receiver (45), and an outdoor expansion valve (46). The outdoor circuit (40) has three suction pipes (61, 62, 63), two discharge pipes (64, 65), four liquid pipes (81, 82, 83, 84), and 1 In addition, the outdoor circuit (40) includes three four-way switching valves (51, 52, 53), one liquid-side shutoff valve (54), and two high-pressure gas pipes (66). And two gas side shut-off valves (55, 56).
[0070] この室外回路 (40)において、液側閉鎖弁(54)には第 1液側連絡配管(21)力 S、第 1 ガス側閉鎖弁(55)には第 1ガス側連絡配管(23)力 第 2ガス側閉鎖弁(56)には第 2 ガス側連絡配管(24)がそれぞれ接続されている。 [0070] In the outdoor circuit (40), the first liquid side connecting pipe (21) force S is connected to the liquid side closing valve (54), and the first gas side connecting pipe (55) is connected to the first gas side closing valve (55). 23) Force The second gas side shut-off valve (56) The gas side communication pipes (24) are respectively connected.
[0071] 可変容量圧縮機 (41)、第 1固定容量圧縮機 (42)、及び第 2固定容量圧縮機 (43) は、何れも全密閉型で高圧ドーム型のスクロール圧縮機である。可変容量圧縮機 (41 )には、インバータを介して電力が供給される。この可変容量圧縮機 (41)は、インバ ータの出力周波数を変化させて圧縮機モータの回転速度を変更することによって、 その容量が変更可能となっている。一方、第 1,第 2固定容量圧縮機 (42,43)は、圧 縮機モータが常に一定の回転速度で運転されるものであって、その容量が変更不能 となっている。 [0071] The variable displacement compressor (41), the first fixed displacement compressor (42), and the second fixed displacement compressor (43) are all hermetic, high pressure dome type scroll compressors. Electric power is supplied to the variable capacity compressor (41) via an inverter. The capacity of the variable capacity compressor (41) can be changed by changing the output frequency of the inverter and changing the rotation speed of the compressor motor. On the other hand, in the first and second fixed displacement compressors (42, 43), the compressor motor is always operated at a constant rotation speed, and the displacement thereof cannot be changed.
[0072] 第 1吸入管(61)は、その一端が第 1ガス側閉鎖弁(55)に接続されている。この第 1 吸入管(61)は、他端側で第 1分岐管(61a)と第 2分岐管(61b)とに分岐されており、 第 1分岐管(61a)が可変容量圧縮機 (41)の吸入側に、第 2分岐管(61b)が第 3四路 切換弁(53)にそれぞれ接続されてレ、る。第 1吸入管(61)の第 2分岐管(61b)には、 第 1ガス側閉鎖弁(55)から第 3四路切換弁(53)へ向力う冷媒の流通だけを許容する 逆止弁(CV-1)が設けられてレ、る。  [0072] One end of the first suction pipe (61) is connected to the first gas-side stop valve (55). The first suction pipe (61) is branched at the other end into a first branch pipe (61a) and a second branch pipe (61b), and the first branch pipe (61a) is connected to the variable displacement compressor (41). ), The second branch pipe (61b) is connected to the third four-way switching valve (53), respectively. In the second branch pipe (61b) of the first suction pipe (61), only the refrigerant flowing from the first gas side shut-off valve (55) to the third four-way switching valve (53) is allowed to flow. A valve (CV-1) is provided.
[0073] 第 2吸入管(62)は、その一端が第 3四路切換弁(53)に、他端が第 1固定容量圧縮 機 (42)の吸入側にそれぞれ接続されている。  [0073] The second suction pipe (62) has one end connected to the third four-way switching valve (53) and the other end connected to the suction side of the first fixed displacement compressor (42).
[0074] 第 3吸入管(63)は、その一端が第 2四路切換弁(52)に接続されている。この第 3吸 入管(63)は、他端側で第 1分岐管(63a)と第 2分岐管(63b)とに分岐されており、第 1 分岐管 (63a)が第 2固定容量圧縮機 (43)の吸入側に、第 2分岐管 (63b)が第 3四路 切換弁(53)にそれぞれ接続されてレ、る。第 3吸入管(63)の第 2分岐管(63b)には、 第 2四路切換弁(52)から第 3四路切換弁(53)へ向力う冷媒の流通だけを許容する 逆止弁(CV-2)が設けられてレ、る。  [0074] One end of the third suction pipe (63) is connected to the second four-way switching valve (52). The third suction pipe (63) is branched at the other end into a first branch pipe (63a) and a second branch pipe (63b), and the first branch pipe (63a) is connected to a second fixed capacity compressor. The second branch pipe (63b) is connected to the third four-way switching valve (53) on the suction side of (43). The second branch pipe (63b) of the third suction pipe (63) allows only the flow of the refrigerant flowing from the second four-way switching valve (52) to the third four-way switching valve (53). A valve (CV-2) is provided.
[0075] 第 1吐出管(64)は、一端側で第 1分岐管(64a)と第 2分岐管(64b)とに分岐されて おり、第 1分岐管(64a)が可変容量圧縮機 (41)の吐出側に、第 2分岐管(64b)が第 1 固定容量圧縮機 (42)の吐出側にそれぞれ接続されている。第 1吐出管(64)の他端 は、第 1四路切換弁(51)に接続されている。第 1吐出管(64)の第 2分岐管(64b)には 、第 1固定容量圧縮機 (42)から第 1四路切換弁(51)へ向かう冷媒の流通だけを許容 する逆止弁(CV-3)が設けられてレ、る。 [0076] 第 2吐出管(65)は、その一端が第 2固定容量圧縮機 (43)の吸入側に、他端が第 1 吐出管(64)における第 1四路切換弁(51)の直前にそれぞれ接続されている。第 2吐 出管 (65)には、第 2固定容量圧縮機 (43)から第 1四路切換弁 (51)へ向かう冷媒の 流通だけを許容する逆止弁(CV-4)が設けられている。 The first discharge pipe (64) is branched at one end into a first branch pipe (64a) and a second branch pipe (64b), and the first branch pipe (64a) is connected to the variable displacement compressor (64). The second branch pipe (64b) is connected to the discharge side of the first fixed displacement compressor (42) on the discharge side of 41). The other end of the first discharge pipe (64) is connected to the first four-way switching valve (51). The second branch pipe (64b) of the first discharge pipe (64) has a check valve (64) that allows only the flow of the refrigerant from the first fixed displacement compressor (42) to the first four-way switching valve (51). CV-3) is provided. [0076] The second discharge pipe (65) has one end on the suction side of the second fixed displacement compressor (43) and the other end on the first four-way switching valve (51) in the first discharge pipe (64). Each is connected immediately before. The second discharge pipe (65) is provided with a check valve (CV-4) that allows only refrigerant to flow from the second fixed displacement compressor (43) to the first four-way switching valve (51). ing.
[0077] 室外熱交換器 (44)は、クロスフィン式のフィン'アンド 'チューブ型熱交換器である。  [0077] The outdoor heat exchanger (44) is a cross-fin type fin-and-tube heat exchanger.
この室外熱交換器 (44)では、冷媒と室外空気の間で熱交換が行われる。室外熱交 換器 (44)の一端は、閉鎖弁(57)を介して第 1四路切換弁(51)に接続されている。一 方、室外熱交換器 (44)の他端は、第 1液管 (81)を介してレシーバ (45)の頂部に接 続されている。この第 1液管(81)には、室外熱交換器 (44)からレシーバ(45)へ向かう 冷媒の流通だけを許容する逆止弁(CV-5)が設けられてレ、る。  In the outdoor heat exchanger (44), heat is exchanged between the refrigerant and the outdoor air. One end of the outdoor heat exchanger (44) is connected to a first four-way switching valve (51) via a closing valve (57). On the other hand, the other end of the outdoor heat exchanger (44) is connected to the top of the receiver (45) via the first liquid pipe (81). The first liquid pipe (81) is provided with a check valve (CV-5) that allows only the flow of the refrigerant from the outdoor heat exchanger (44) to the receiver (45).
[0078] レシーバ(45)の底部には、閉鎖弁(58)を介して第 2液管(82)の一端が接続されて いる。第 2液管(82)の他端は、液側閉鎖弁(54)に接続されている。この第 2液管(82) には、レシーバ(45)から液側閉鎖弁(54)へ向かう冷媒の流通だけを許容する逆止 弁(CV-6)が設けられてレ、る。  [0078] One end of a second liquid pipe (82) is connected to the bottom of the receiver (45) via a closing valve (58). The other end of the second liquid pipe (82) is connected to the liquid-side stop valve (54). The second liquid pipe (82) is provided with a check valve (CV-6) that allows only the flow of the refrigerant from the receiver (45) to the liquid-side stop valve (54).
[0079] 第 2液管(82)における逆止弁(CV-6)と液側閉鎖弁(54)の間には、第 3液管(83) の一端が接続されている。第 3液管 (83)の他端は、第 1液管(81)を介してレシーバ( 45)の頂部に接続されている。また、第 3液管(83)には、その一端から他端へ向かう 冷媒の流通だけを許容する逆止弁(CV-7)が設けられてレ、る。  One end of the third liquid pipe (83) is connected between the check valve (CV-6) and the liquid side stop valve (54) in the second liquid pipe (82). The other end of the third liquid pipe (83) is connected to the top of the receiver (45) via the first liquid pipe (81). Further, the third liquid pipe (83) is provided with a check valve (CV-7) that allows only the flow of the refrigerant from one end to the other end.
[0080] 第 2液管 (82)における閉鎖弁(58)と逆止弁(CV-6)の間には、第 4液管(84)の一 端が接続されている。第 4液管 (84)の他端は、第 1液管 (81)における室外熱交換器 (44)と逆止弁(CV-5)の間に接続されている。また、第 4液管(84)には、その一端か ら他端へ向かって順に、逆止弁(CV-8)と室外膨張弁 (46)とが設けられている。この 逆止弁(CV-8)は、第 4液管(84)の一端力 他端へ向力 冷媒の流通だけを許容す る。また、室外膨張弁 (46)は、電子膨張弁により構成されている。  [0080] One end of the fourth liquid pipe (84) is connected between the close valve (58) and the check valve (CV-6) in the second liquid pipe (82). The other end of the fourth liquid pipe (84) is connected between the outdoor heat exchanger (44) and the check valve (CV-5) in the first liquid pipe (81). Further, the fourth liquid pipe (84) is provided with a check valve (CV-8) and an outdoor expansion valve (46) in order from one end to the other end. The check valve (CV-8) allows only one direction of the fourth liquid pipe (84) to flow to the other end of the fourth liquid pipe (84). The outdoor expansion valve (46) is formed by an electronic expansion valve.
[0081] 高圧ガス管(66)は、その一端が第 1吐出管(64)における第 1四路切換弁(51)の直 前に接続されている。高圧ガス管(66)は、他端側で第 1分岐管(66a)と第 2分岐管(6 6b)とに分岐されており、第 1分岐管(66a)が第 1液管(81)における逆止弁(CV-5)の 下流側に、第 2分岐管(66b)が第 3四路切換弁(53)にそれぞれ接続されている。高 圧ガス管(66)の第 1分岐管(66a)には、電磁弁(SV-7)と逆止弁(CV-9)と力 S設けられ ている。この逆止弁(CV-9)は、電磁弁(SV-7)の下流側に配置され、電磁弁(SV-7) から第 1液管(81)へ向かう冷媒の流通だけを許容する。 [0081] One end of the high-pressure gas pipe (66) is connected to the first discharge pipe (64) immediately before the first four-way switching valve (51). The high-pressure gas pipe (66) is branched at the other end into a first branch pipe (66a) and a second branch pipe (66b), and the first branch pipe (66a) is connected to the first liquid pipe (81). The second branch pipe (66b) is connected to the third four-way switching valve (53) downstream of the check valve (CV-5). High The first branch pipe (66a) of the compressed gas pipe (66) is provided with a solenoid valve (SV-7), a check valve (CV-9) and a force S. The check valve (CV-9) is arranged downstream of the solenoid valve (SV-7), and allows only the flow of the refrigerant from the solenoid valve (SV-7) to the first liquid pipe (81).
[0082] 第 1四路切換弁(51)は、第 1のポートが第 1吐出管(64)の終端に、第 2のポートが 第 2四路切換弁(52)に、第 3のポートが室外熱交換器 (44)に、第 4のポートが第 2ガ ス側閉鎖弁(56)にそれぞれ接続されている。この第 1四路切換弁(51)は、第 1のポ 一トと第 3のポートが互いに連通して第 2のポートと第 4のポートが互いに連通する第 1状態(図 1に実線で示す状態)と、第 1のポートと第 4のポートが互いに連通して第 2 のポートと第 3ポートが互いに連通する第 2状態(図 1に破線で示す状態)とに切り換 え可能となっている。 [0082] The first four-way switching valve (51) has a first port at the end of the first discharge pipe (64), a second port at the second four-way switching valve (52), and a third port. Is connected to the outdoor heat exchanger (44), and the fourth port is connected to the second gas side shut-off valve (56). The first four-way switching valve (51) is in a first state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (in FIG. 1, a solid line indicates a solid state). State), and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. Has become.
[0083] 第 2四路切換弁(52)は、第 1のポートが第 2吐出管(65)における逆止弁(CV-4)の 下流側に、第 2のポートが第 2吸入管(62)の始端に、第 4のポートが第 1四路切換弁 (51)の第 2のポートにそれぞれ接続されている。また、第 2四路切換弁(52)は、その 第 3のポートが封止されている。この第 2四路切換弁(52)は、第 1のポートと第 3のポ ートが互いに連通して第 2のポートと第 4のポートが互いに連通する第 1状態(図 1に 実線で示す状態)と、第 1のポートと第 4のポートが互いに連通して第 2のポートと第 3 ポートが互いに連通する第 2状態(図 1に破線で示す状態)とに切り換え可能となって いる。  [0083] In the second four-way switching valve (52), the first port is located downstream of the check valve (CV-4) in the second discharge pipe (65), and the second port is located in the second suction pipe ( At the beginning of 62), the fourth port is connected to the second port of the first four-way switching valve (51). The third port of the second four-way switching valve (52) is sealed. The second four-way switching valve (52) is in a first state where the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (in FIG. State), and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. I have.
[0084] 第 3四路切換弁(53)は、第 1のポートが高圧ガス管(66)の第 2分岐管(66b)の終端 に、第 2のポートが第 2吸入管(62)の始端に、第 3のポートが第 1吸入管(61)の第 2 分岐管(61b)の終端に、第 4のポートが第 3吸入管(63)の第 2分岐管(63b)の終端に それぞれ接続されている。この第 3四路切換弁(53)は、第 1のポートと第 3のポートが 互いに連通して第 2のポートと第 4のポートが互いに連通する第 1状態(図 1に実線で 示す状態)と、第 1のポートと第 4のポートが互いに連通して第 2のポートと第 3ポート が互いに連通する第 2状態(図 1に破線で示す状態)とに切り換え可能となっている。  [0084] The third four-way switching valve (53) has a first port at the end of the second branch pipe (66b) of the high-pressure gas pipe (66), and a second port at the end of the second suction pipe (62). At the beginning, the third port is at the end of the second branch pipe (61b) of the first suction pipe (61), and the fourth port is at the end of the second branch pipe (63b) of the third suction pipe (63). Each is connected. The third four-way switching valve (53) is in a first state in which the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (the state shown by the solid line in FIG. 1). ) And a second state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (the state shown by the broken line in FIG. 1).
[0085] 室外回路 (40)には、インジェクション管(85)、連通管(87)、油分離器 (75)、及び油 戻し管(76)が更に設けられている。また、室外回路 (40)には、 4つの均油管(71,72,7 3,74)も設けられている。 [0086] インジェクション管(85)は、いわゆる液インジェクションを行うためのものである。イン ジェクシヨン管(85)は、その一端が第 4液管(84)における逆止弁(CV-8)と室外膨張 弁(46)の間に、他端が第 1吸入管(61)にそれぞれ接続されている。このインジェクシ ヨン管(85)には、その一端から他端へ向かって順に、閉鎖弁(59)と流量調節弁(86) とが設けられている。流量調節弁(86)は、電子膨張弁により構成されている。 [0085] The outdoor circuit (40) is further provided with an injection pipe (85), a communication pipe (87), an oil separator (75), and an oil return pipe (76). The outdoor circuit (40) is also provided with four oil equalizing pipes (71, 72, 73, 74). [0086] The injection pipe (85) is for performing so-called liquid injection. One end of the injection pipe (85) is connected between the check valve (CV-8) and the outdoor expansion valve (46) in the fourth liquid pipe (84), and the other end is connected to the first suction pipe (61). It is connected. The injection pipe (85) is provided with a closing valve (59) and a flow control valve (86) in order from one end to the other end. The flow control valve (86) is formed by an electronic expansion valve.
[0087] 連通管(87)は、その一端がインジェクション管(85)における閉鎖弁(59)と流量調節 弁(86)の間に、他端が高圧ガス管(66)の第 1分岐管(66a)における電磁弁(SV-7) の上流側にそれぞれ接続されている。この連通管(87)には、その一端から他端へ向 力 冷媒の流通だけを許容する逆止弁(CV-10)が設けられてレ、る。  [0087] The communication pipe (87) has one end between the closing valve (59) and the flow control valve (86) in the injection pipe (85), and the other end having the first branch pipe (66) of the high-pressure gas pipe (66). They are connected upstream of the solenoid valve (SV-7) in 66a). The communication pipe (87) is provided with a check valve (CV-10) that allows only the flow of the directional refrigerant from one end to the other end.
[0088] 油分離器 (75)は、第 1吐出管(64)のうち第 2吐出管(65)及び高圧ガス管(66)の接 続位置よりも上流側に設けられている。この油分離器 (75)は、圧縮機 (41,42)の吐出 ガスから冷凍機油を分離するためのものである。  [0088] The oil separator (75) is provided upstream of the connection position of the second discharge pipe (65) and the high-pressure gas pipe (66) in the first discharge pipe (64). The oil separator (75) is for separating refrigeration oil from the gas discharged from the compressors (41, 42).
[0089] 油戻し管(76)は、その一端が油分離器 (75)に接続されてレ、る。油戻し管(76)は、 他端側で第 1分岐管(76a)と第 2分岐管(76b)とに分岐されており、第 1分岐管(76a) 力 Sインジェクション管(85)における流量調節弁(86)の下流側に、第 2分岐管(76b)が 第 2吸入管(62)にそれぞれ接続されている。また、油戻し管(76)の第 1分岐管(76a) と第 2分岐管(76b)とには、電磁弁(SV-5,SV-6)が 1つずつ設けられている。第 1分岐 管 (76a)の電磁弁 (SV-5)を開くと、油分離器 (75)で分離された冷凍機油がインジェ クシヨン管(85)を通じて第 1吸入管(61)へ送り返される。一方、第 2分岐管(76b)の電 磁弁 (SV-6)を開くと、油分離器 (75)で分離された冷凍機油が第 2吸入管 (62)へ送り 返される。  [0089] The oil return pipe (76) has one end connected to the oil separator (75). The oil return pipe (76) is branched at the other end into a first branch pipe (76a) and a second branch pipe (76b). The first branch pipe (76a) has a flow rate in the S injection pipe (85). Downstream of the control valve (86), second branch pipes (76b) are connected to the second suction pipes (62), respectively. Also, one solenoid valve (SV-5, SV-6) is provided in each of the first branch pipe (76a) and the second branch pipe (76b) of the oil return pipe (76). When the solenoid valve (SV-5) of the first branch pipe (76a) is opened, the refrigerating machine oil separated by the oil separator (75) is sent back to the first suction pipe (61) through the injection pipe (85). On the other hand, when the solenoid valve (SV-6) of the second branch pipe (76b) is opened, the refrigerating machine oil separated by the oil separator (75) is sent back to the second suction pipe (62).
[0090] 第 1均油管(71)は、その一端が可変容量圧縮機 (41)に接続され、他端が第 2吸入 管(62)に接続されている。この第 1均油管(71)には、電磁弁(SV-1)が設けられてい る。第 2均油管(72)は、その一端が第 1固定容量圧縮機 (42)に接続され、他端が第 3吸入管(63)の第 1分岐管(63a)に接続されている。この第 2均油管(72)には、電磁 弁(SV-2)が設けられている。第 3均油管(73)は、その一端が第 2固定容量圧縮機 (4 3)に接続され、他端が第 1吸入管(61)の第 1分岐管(61a)に接続されている。この第 3均油管(73)には、電磁弁(SV-3)が設けられている。第 4均油管(74)は、その一端 が第 2均油管(72)における電磁弁(SV-2)の上流側に接続され、他端が第 1吸入管( 61)の第 1分岐管(61a)に接続されている。この第 4均油管(74)には、電磁弁(SV-4) が設けられてレ、る。各均油管(71〜74)の電磁弁(SV-l〜SV-4)を適宜開閉すること により、各圧縮機 (41,42,43)における冷凍機油の貯留量が平均化される。 [0090] The first oil equalizing pipe (71) has one end connected to the variable displacement compressor (41) and the other end connected to the second suction pipe (62). The first oil level pipe (71) is provided with a solenoid valve (SV-1). One end of the second oil equalizing pipe (72) is connected to the first fixed displacement compressor (42), and the other end is connected to the first branch pipe (63a) of the third suction pipe (63). The second oil leveling pipe (72) is provided with a solenoid valve (SV-2). One end of the third oil equalizing pipe (73) is connected to the second fixed capacity compressor (43), and the other end is connected to the first branch pipe (61a) of the first suction pipe (61). The third oil level pipe (73) is provided with a solenoid valve (SV-3). The fourth equalizing pipe (74) has one end Is connected to the second oil equalizing pipe (72) on the upstream side of the solenoid valve (SV-2), and the other end is connected to the first branch pipe (61a) of the first suction pipe (61). The fourth oil leveling pipe (74) is provided with a solenoid valve (SV-4). By appropriately opening and closing the solenoid valves (SV-1 to SV-4) of the oil equalizing pipes (71 to 74), the amount of refrigerating machine oil stored in each compressor (41, 42, 43) is averaged.
[0091] 室外回路 (40)には、各種のセンサや圧力スィッチも設けられている。具体的に、第  [0091] The outdoor circuit (40) is also provided with various sensors and pressure switches. Specifically,
1吸入管(61)には、第 1吸入温度センサ (91)と第 1吸入圧力センサ(92)とが設けられ ている。第 2吸入管(62)には、第 2吸入圧力センサ(93)が設けられている。第 3吸入 管(63)には、第 3吸入温度センサ (94)と第 3吸入圧力センサ(95)とが設けられてレ、 る。第 1吐出管(64)には、第 1吐出温度センサ (97)と第 1吐出圧力センサ(98)とが設 けられている。第 1吐出管(64)の各分岐管(64a,64b)には、高圧圧力スィッチ(96)が 1つずつ設けられている。第 2吐出管(65)には、第 2吐出温度センサ (99)と高圧圧力 スィッチ(96)とが設けられてレ、る。  The first suction pipe (61) is provided with a first suction temperature sensor (91) and a first suction pressure sensor (92). The second suction pipe (62) is provided with a second suction pressure sensor (93). The third suction pipe (63) is provided with a third suction temperature sensor (94) and a third suction pressure sensor (95). The first discharge pipe (64) is provided with a first discharge temperature sensor (97) and a first discharge pressure sensor (98). Each branch pipe (64a, 64b) of the first discharge pipe (64) is provided with one high pressure switch (96). The second discharge pipe (65) is provided with a second discharge temperature sensor (99) and a high pressure switch (96).
[0092] また、室外ユニット(11)には、外気温センサ(90)と室外ファン (48)とが設けられてい る。室外熱交換器 (44)へは、この室外ファン (48)によって室外空気が送られる。  [0092] The outdoor unit (11) is provided with an outdoor temperature sensor (90) and an outdoor fan (48). Outdoor air is sent to the outdoor heat exchanger (44) by the outdoor fan (48).
[0093] 〈空調ユニット〉  [0093] <Air conditioning unit>
空調ユニット(12)は、利用ユニットを構成している。空調ユニット(12)は、空調回路( 100)を備えている。この空調回路(100)は、その液側端が第 2液側連絡配管(22)、ガ ス側端が第 2ガス側連絡配管(24)にそれぞれ接続されてレ、る。  The air conditioning unit (12) forms a use unit. The air conditioning unit (12) includes an air conditioning circuit (100). The air-conditioning circuit (100) has a liquid-side end connected to a second liquid-side connecting pipe (22) and a gas-side end connected to a second gas-side connecting pipe (24).
[0094] 空調回路(100)では、その液側端力 ガス側端へ向かって順に、空調膨張弁(102) と空調熱交換器(101)とが設けられている。空調熱交換器(101)は、クロスフィン式の フィン'アンド 'チューブ型熱交換器である。この空調熱交換器(101)では、冷媒と室 内空気の間で熱交換が行われる。一方、空調膨張弁(102)は、電子膨張弁によって 構成されている。  [0094] In the air conditioning circuit (100), an air conditioning expansion valve (102) and an air conditioning heat exchanger (101) are provided in that order toward the liquid end force gas end. The air conditioning heat exchanger (101) is a cross-fin type fin-and-tube heat exchanger. In this air-conditioning heat exchanger (101), heat is exchanged between the refrigerant and room air. On the other hand, the air conditioning expansion valve (102) is constituted by an electronic expansion valve.
[0095] 空調ユニット(12)には、熱交換器温度センサ(103)と冷媒温度センサ(104)とが設 けられている。熱交換器温度センサ(103)は、空調熱交換器(101)の伝熱管に取り付 けられている。冷媒温度センサ(104)は、空調回路(100)におけるガス側端の近傍に 取り付けられている。また、空調ユニット(12)には、内気温センサ(106)と空調ファン( 105)とが設けられている。空調熱交換器(101)へは、この空調ファン(105)によって店 内の室内空気が送られる。 [0095] The air conditioning unit (12) is provided with a heat exchanger temperature sensor (103) and a refrigerant temperature sensor (104). The heat exchanger temperature sensor (103) is attached to a heat transfer tube of the air conditioning heat exchanger (101). The refrigerant temperature sensor (104) is mounted near the gas side end of the air conditioning circuit (100). The air conditioning unit (12) is provided with an internal temperature sensor (106) and an air conditioning fan (105). The air conditioning heat exchanger (101) is supplied to the store by this air conditioning fan (105). The indoor air inside is sent.
[0096] 〈冷蔵ショーケース〉  [0096] <Refrigerated showcase>
冷蔵ショーケース(13)は、利用ユニットを構成している。冷蔵ショーケース(13)は、 冷蔵回路(110)を備えている。この冷蔵回路(110)は、その液側端が第 2液側連絡配 管(22)に、ガス側端が第 1ガス側連絡配管(23)にそれぞれ接続されている。  The refrigerated showcase (13) constitutes a use unit. The refrigerated showcase (13) includes a refrigerated circuit (110). The refrigeration circuit (110) has a liquid side end connected to the second liquid side connection pipe (22) and a gas side end connected to the first gas side connection pipe (23).
[0097] 冷蔵回路(110)では、その液側端からガス側端へ向かって順に、冷蔵電磁弁(114) と冷蔵膨張弁(112)と冷蔵熱交換器(111)とが設けられている。冷蔵熱交換器(111) は、クロスフィン式のフィン'アンド 'チューブ型熱交換器である。この冷蔵熱交換器(1 11)では、冷媒と庫内空気の間で熱交換が行われる。冷蔵膨張弁(112)は、温度自 動膨張弁によって構成されている。冷蔵膨張弁(112)の感温筒(113)は、冷蔵熱交 換器(111)の出口側の配管に取り付けられている。  [0097] The refrigeration circuit (110) is provided with a refrigeration solenoid valve (114), a refrigeration expansion valve (112), and a refrigeration heat exchanger (111) in order from the liquid side end to the gas side end. . The refrigeration heat exchanger (111) is a cross-fin type fin-and-tube heat exchanger. In the refrigeration heat exchanger (111), heat is exchanged between the refrigerant and the air in the refrigerator. The refrigeration expansion valve (112) is constituted by a temperature automatic expansion valve. The temperature sensing cylinder (113) of the refrigeration expansion valve (112) is attached to the outlet pipe of the refrigeration heat exchanger (111).
[0098] 冷蔵ショーケース(13)には、冷蔵庫内温度センサ(116)と冷蔵庫内ファン(115)と が設けられている。冷蔵熱交換器(111)へは、この冷蔵庫内ファン(115)によって冷 蔵ショーケース(13)の庫内空気が送られる。  [0098] The refrigerated showcase (13) is provided with a refrigerator temperature sensor (116) and a refrigerator fan (115). The air in the refrigerator showcase (13) is sent to the refrigerator heat exchanger (111) by the fan (115) in the refrigerator.
[0099] 〈冷凍ショーケース〉  [0099] <Frozen showcase>
冷凍ショーケース(14)は、利用ユニットを構成している。冷凍ショーケース(14)は、 冷凍回路(130)を備えている。この冷凍回路(130)は、その液側端が第 2液側連絡配 管(22)に接続されている。また、冷凍回路(130)のガス側端は、配管を介してブース タユニット(15)に接続されている。  The frozen showcase (14) constitutes a use unit. The refrigeration showcase (14) includes a refrigeration circuit (130). The refrigeration circuit (130) has a liquid-side end connected to the second liquid-side communication pipe (22). The gas side end of the refrigeration circuit (130) is connected to the booster unit (15) via a pipe.
[0100] 冷凍回路(130)では、その液側端からガス側端へ向かって順に、冷凍電磁弁(134) と冷凍膨張弁(132)と冷凍熱交換器(131)とが設けられている。冷凍熱交換器(131) は、クロスフィン式のフィン'アンド 'チューブ型熱交換器である。この冷凍熱交換器(1 31)では、冷媒と庫内空気の間で熱交換が行われる。冷凍膨張弁(132)は、温度自 動膨張弁によって構成されている。冷凍膨張弁(132)の感温筒(133)は、冷凍熱交 換器(131)の出口側の配管に取り付けられている。  [0100] In the refrigeration circuit (130), a refrigeration solenoid valve (134), a refrigeration expansion valve (132), and a refrigeration heat exchanger (131) are provided in order from the liquid side end to the gas side end. . The refrigeration heat exchanger (131) is a cross-fin type fin-and-tube heat exchanger. In the refrigeration heat exchanger (131), heat is exchanged between the refrigerant and the air in the refrigerator. The refrigeration expansion valve (132) is constituted by a temperature automatic expansion valve. The temperature sensing tube (133) of the refrigeration expansion valve (132) is attached to a pipe on the outlet side of the refrigeration heat exchanger (131).
[0101] 冷凍ショーケース(14)には、冷凍庫内温度センサ(136)と冷凍庫内ファン(135)と が設けられている。冷凍熱交換器(131)へは、この冷凍庫内ファン(135)によって冷 凍ショーケース(14)の庫内空気が送られる。 [0102] 〈ブースタユニット〉 [0101] The freezer showcase (14) is provided with a freezer temperature sensor (136) and a freezer fan (135). The air inside the refrigerator showcase (14) is sent to the refrigerator heat exchanger (131) by the refrigerator fan (135). [0102] <Booster unit>
ブースタユニット(15)は、ブースタ回路(140)を備えている。このブースタ回路(140) には、ブースタ圧縮機(141)と、吸入管(143)と、吐出管(144)と、バイパス管(150)と が設けられている。  The booster unit (15) includes a booster circuit (140). The booster circuit (140) is provided with a booster compressor (141), a suction pipe (143), a discharge pipe (144), and a bypass pipe (150).
[0103] ブースタ圧縮機(141)は、全密閉型で高圧ドーム型のスクロール圧縮機である。ブ ースタ圧縮機(141)には、インバータを介して電力が供給される。このブースタ圧縮 機(141)は、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更 することによって、その容量が変更可能となっている。  [0103] The booster compressor (141) is a hermetically sealed high-pressure dome-type scroll compressor. Power is supplied to the booster compressor (141) via an inverter. The capacity of the booster compressor (141) can be changed by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
[0104] 吸入管(143)は、その終端がブースタ圧縮機(141)の吸入側に接続されている。吸 入管(143)の始端は、配管を介して冷凍回路(130)のガス側端に接続されている。  [0104] The end of the suction pipe (143) is connected to the suction side of the booster compressor (141). The start end of the suction pipe (143) is connected to the gas side end of the refrigeration circuit (130) via a pipe.
[0105] 吐出管(144)は、その始端がブースタ圧縮機(141)の吐出側に、終端が第 1ガス側 連絡配管(23)にそれぞれ接続されている。この吐出管(144)には、その始端から終 端へ向かって順に、高圧圧力スィッチ(148)と、油分離器(145)と、吐出側逆止弁(14 9)とが設けられている。吐出側逆止弁(149)は、吐出管(144)の始端から終端へ向か う冷媒の流通だけを許容する。  [0105] The discharge pipe (144) has a start end connected to the discharge side of the booster compressor (141) and an end end connected to the first gas side communication pipe (23). The discharge pipe (144) is provided with a high pressure switch (148), an oil separator (145), and a discharge check valve (149) in order from the start end to the end end. . The discharge side check valve (149) allows only the flow of the refrigerant from the start end to the end of the discharge pipe (144).
[0106] 油分離器(145)は、ブースタ圧縮機(141)の吐出ガスから冷凍機油を分離するため のものである。油分離器(145)には、油戻し管(146)の一端が接続されている。油戻 し管(146)の他端は、吸入管(143)に接続されている。油戻し管(146)には、キヤビラ リチューブ(147)が設けられている。油分離器(145)で分離された冷凍機油は、油戻 し管(146)を通じてブースタ圧縮機(141)の吸入側へ送り返される。  [0106] The oil separator (145) is for separating refrigeration oil from the discharge gas of the booster compressor (141). One end of an oil return pipe (146) is connected to the oil separator (145). The other end of the oil return pipe (146) is connected to the suction pipe (143). The oil return pipe (146) is provided with a capillary tube (147). The refrigerating machine oil separated by the oil separator (145) is sent back to the suction side of the booster compressor (141) through the oil return pipe (146).
[0107] バイパス管(150)は、その始端が吸入管(143)に、終端が吐出管(64)における油分 離器(145)と吐出側逆止弁(149)の間にそれぞれ接続されている。このバイパス管(1 50)には、その始端から終端へ向力 冷媒の流通だけを許容するバイパス逆止弁(15 1)が設けられている。  [0107] The bypass pipe (150) has a start end connected to the suction pipe (143), and an end connected between the oil separator (145) and the discharge-side check valve (149) in the discharge pipe (64). I have. The bypass pipe (150) is provided with a bypass check valve (151) that allows only the flow of the directional refrigerant from the start end to the end.
[0108] 〈過冷却ユニット〉  [0108] <Supercooling unit>
過冷却装置としての過冷却ユニット(200)は、冷媒通路(205)と過冷却用冷媒回路 (220)と過冷却用熱交換器 (210)とコントローラ(240)とを備えてレ、る。  The subcooling unit (200) as a subcooling device includes a refrigerant passage (205), a subcooling refrigerant circuit (220), a supercooling heat exchanger (210), and a controller (240).
[0109] 冷媒通路 (205)は、その一端が第 1液側連絡配管(21)に、他端が第 2液側連絡配 管(22)にそれぞれ接続されてレ、る。 [0109] The refrigerant passage (205) has one end connected to the first liquid side connection pipe (21) and the other end connected to the second liquid side connection pipe. Each is connected to a pipe (22).
[0110] 過冷却用冷媒回路 (220)は、過冷却用圧縮機 (221)と、過冷却用室外熱交換器 (2 22)と、過冷却用膨張弁 (223)と、過冷却用熱交換器 (210)とを順に配管で接続して 構成された閉回路である。この過冷却用冷媒回路 (220)は、冷却用流体回路を構成 している。過冷却用冷媒回路 (220)には、冷却用流体としての過冷却用冷媒が充填 されている。この過冷却用冷媒としては、 R407C等のいわゆるフロン冷媒だけでなく 、二酸化炭素(CO )やアンモニア等の各種の冷媒を用いることができる。この過冷却 [0110] The subcooling refrigerant circuit (220) includes a subcooling compressor (221), a subcooling outdoor heat exchanger (2 22), a subcooling expansion valve (223), and a subcooling heat source. This is a closed circuit configured by connecting the exchanger (210) in sequence with piping. The supercooling refrigerant circuit (220) forms a cooling fluid circuit. The supercooling refrigerant circuit (220) is filled with a supercooling refrigerant as a cooling fluid. As the supercooling refrigerant, not only so-called chlorofluorocarbon refrigerant such as R407C but also various refrigerants such as carbon dioxide (CO 2) and ammonia can be used. This supercooling
2  2
用冷媒回路(220)では、充填された過冷却用冷媒を循環させることによって冷凍サイ クルが行われる。  In the refrigerant circuit (220), a refrigeration cycle is performed by circulating the filled subcooling refrigerant.
[0111] 過冷却用圧縮機(221)は、全密閉型で高圧ドーム型のスクロール圧縮機である。過 冷却用圧縮機 (221)には、インバータを介して電力が供給される。この過冷却用圧縮 機 (221)は、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更 することによって、その容量が変更可能となっている。過冷却用室外熱交換器 (222) は、クロスフィン式のフィン 'アンド'チューブ型熱交換器である。この過冷却用室外熱 交換器 (222)では、過冷却用冷媒と室外空気の間で熱交換が行われる。過冷却用 膨張弁(223)は、電子膨張弁によって構成されている。  [0111] The supercooling compressor (221) is an all-enclosed high-pressure dome-type scroll compressor. Power is supplied to the subcooling compressor (221) via an inverter. The capacity of the subcooling compressor (221) can be changed by changing the output frequency of the inverter to change the rotation speed of the compressor motor. The supercooling outdoor heat exchanger (222) is a cross-fin type fin 'and' tube type heat exchanger. In the subcooling outdoor heat exchanger (222), heat is exchanged between the subcooling refrigerant and the outdoor air. The subcooling expansion valve (223) is constituted by an electronic expansion valve.
[0112] 過冷却用熱交換器 (210)は、いわゆるプレート式熱交換器によって構成されている 。過冷却用熱交換器 (210)には、第 1流路 (211)と第 2流路 (212)とが複数ずつ形成 されている。第 1流路 (211)には過冷却用冷媒回路(220)が、第 2流路(212)には冷 媒通路(205)がそれぞれ接続されている。そして、この過冷却用熱交換器 (210)は、 第 1流路 (211)を流れる過冷却用冷媒と、第 2流路 (212)を流れる冷凍装置(10)の冷 媒とを熱交換させる。  [0112] The subcooling heat exchanger (210) is constituted by a so-called plate heat exchanger. The supercooling heat exchanger (210) has a plurality of first flow paths (211) and a plurality of second flow paths (212). A supercooling refrigerant circuit (220) is connected to the first flow path (211), and a refrigerant passage (205) is connected to the second flow path (212). The supercooling heat exchanger (210) exchanges heat between the supercooling refrigerant flowing through the first flow path (211) and the refrigerant of the refrigerating device (10) flowing through the second flow path (212). Let it.
[0113] 過冷却ユニット(200)には、各種のセンサや圧力スィッチも設けられている。具体的 に、過冷却用冷媒回路 (220)では、過冷却用圧縮機 (221)の吸入側に吸入温度セン サ(235)と吸入圧力センサ(234)とが設けられ、過冷却用圧縮機(221)の吐出側に吐 出温度センサ(233)と高圧圧力スィッチ(232)とが設けられてレ、る。冷媒通路(205)で は、過冷却用熱交換器 (210)よりも他端寄りの部分、即ち第 2液側連絡配管 (22)に 接続する端部寄りの部分に冷媒温度センサ (236)が設けられている。この冷媒温度 センサ(236)は、冷媒温度検出手段を構成している。 [0113] The subcooling unit (200) is also provided with various sensors and pressure switches. Specifically, in the subcooling refrigerant circuit (220), a suction temperature sensor (235) and a suction pressure sensor (234) are provided on the suction side of the subcooling compressor (221), and the subcooling compressor (221) is provided. A discharge temperature sensor (233) and a high pressure switch (232) are provided on the discharge side of (221). In the refrigerant passage (205), a refrigerant temperature sensor (236) is provided at a portion closer to the other end than the supercooling heat exchanger (210), that is, a portion closer to the end connected to the second liquid side communication pipe (22). Is provided. This refrigerant temperature The sensor (236) constitutes a refrigerant temperature detecting means.
[0114] また、過冷却ユニット(200)には、外気温センサ(231)と室外ファン (230)とが設けら れている。過冷却用室外熱交換器 (222)へは、この室外ファン (230)によって室外空 気が送られる。 [0114] The subcooling unit (200) is provided with an outside air temperature sensor (231) and an outdoor fan (230). Outdoor air is sent to the subcooling outdoor heat exchanger (222) by the outdoor fan (230).
[0115] コントローラ(240)は、制御手段を構成している。コントローラ(240)には、冷媒温度 センサ(236)の検出値と、吸入圧力センサ(234)の検出値と、外気温センサ(231)の 検出値とが入力されている。そして、このコントローラ(240)は、入力されたセンサの検 出値に基づき、過冷却用圧縮機(221)の起動と停止とを制御するように構成されてい る。このコントローラ(240)には、室外ユニット(11)や空調ユニット(12)などで構成され た冷凍装置(10)力 の信号は一切入力されていなレ、。つまり、コントローラ(240)は、 過冷却ユニット(200)に設けられたセンサの検出値など、過冷却ユニット(200)の内部 で得られた情報だけに基づレ、て過冷却用圧縮機(221)の運転制御を行う。  [0115] The controller (240) forms control means. The controller (240) receives the detection value of the refrigerant temperature sensor (236), the detection value of the suction pressure sensor (234), and the detection value of the outside air temperature sensor (231). The controller (240) is configured to control the start and stop of the subcooling compressor (221) based on the input detection value of the sensor. The controller (240) does not receive any power signal from the refrigeration system (10) composed of the outdoor unit (11) and the air conditioning unit (12). In other words, the controller (240) uses only the information obtained inside the subcooling unit (200), such as the detection value of the sensor provided in the subcooling unit (200), and The operation control of 221) is performed.
[0116] 冷凍システムの運転動作  [0116] Operation of refrigeration system
上記冷凍システムが行う運転動作のうち、主要なものについて説明する。  The main operation operations performed by the refrigeration system will be described.
[0117] 〈冷房運転〉  [0117] <Cooling operation>
冷房運転は、冷蔵ショーケース(13)及び冷凍ショーケース(14)において庫内空気 の冷却を行い、空調ユニット(12)で室内空気の冷却を行って店内を冷房する運転で ある。  The cooling operation is an operation for cooling the inside of the store by cooling the air in the refrigerator in the refrigerated showcase (13) and the freezing showcase (14), and cooling the room air in the air conditioning unit (12).
[0118] 図 2に示すように、冷房運転中は、第 1四路切換弁(51)、第 2四路切換弁(52)、及 び第 3四路切換弁(53)がそれぞれ第 1状態に設定される。また、室外膨張弁 (46)が 全閉される一方、空調膨張弁(102)、冷蔵膨張弁(112)、及び冷凍膨張弁(132)の 開度がそれぞれ適宜調節される。この状態において、可変容量圧縮機 (41)、第 1固 定容量圧縮機 (42)、第 2固定容量圧縮機 (43)、及びブースタ圧縮機(141)が運転さ れる。この冷房運転中には、過冷却ユニット(200)が運転状態となる。過冷却ユニット (200)の運転動作については後述する。  [0118] As shown in FIG. 2, during the cooling operation, the first four-way switching valve (51), the second four-way switching valve (52), and the third four-way switching valve (53) are each connected to the first four-way switching valve (53). Set to state. In addition, while the outdoor expansion valve (46) is fully closed, the opening degrees of the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted. In this state, the variable capacity compressor (41), the first fixed capacity compressor (42), the second fixed capacity compressor (43), and the booster compressor (141) are operated. During this cooling operation, the subcooling unit (200) is in an operating state. The operation of the subcooling unit (200) will be described later.
[0119] 可変容量圧縮機 (41)、第 1固定容量圧縮機 (42)、及び第 2固定容量圧縮機 (43) 力 吐出された冷媒は、第 1四路切換弁(51)を通過して室外熱交換器 (44)へ送られ る。室外熱交換器 (44)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器( 44)で凝縮した冷媒は、第 1液管 (81)とレシーバ (45)と第 2液管 (82)とを順に通過し て第 1液側連絡配管(21 )へ流入する。 [0119] Variable displacement compressor (41), first fixed displacement compressor (42), and second fixed displacement compressor (43) Force The discharged refrigerant passes through the first four-way switching valve (51). To the outdoor heat exchanger (44). In the outdoor heat exchanger (44), the refrigerant radiates heat to outdoor air and condenses. Outdoor heat exchanger ( The refrigerant condensed in 44) passes through the first liquid pipe (81), the receiver (45), and the second liquid pipe (82) in order, and flows into the first liquid side communication pipe (21).
[0120] 第 1液側連絡配管(21)へ流入した冷媒は、過冷却ユニット (200)の冷媒通路 (205) へ流入する。冷媒通路 (205)へ流入した冷媒は、過冷却用熱交換器 (210)の第 2流 路(212)を通過する間に冷却される。過冷却用熱交換器 (210)で冷却された過冷却 状態の液冷媒は、第 2液側連絡配管(22)を通って空調回路(100)と冷蔵回路(110) と冷凍回路(130)とに分配される。  [0120] The refrigerant flowing into the first liquid side communication pipe (21) flows into the refrigerant passage (205) of the subcooling unit (200). The refrigerant flowing into the refrigerant passage (205) is cooled while passing through the second flow passage (212) of the subcooling heat exchanger (210). The supercooled liquid refrigerant cooled by the supercooling heat exchanger (210) passes through the second liquid-side communication pipe (22), and passes through the air conditioning circuit (100), the refrigeration circuit (110), and the refrigeration circuit (130). And distributed to.
[0121] 空調回路(100)へ流入した冷媒は、空調膨張弁(102)を通過する際に減圧されて から空調熱交換器 (101)へ導入される。空調熱交換器 (101)では、冷媒が室内空気 力 吸熱して蒸発する。その際、空調熱交換器(101)では、冷媒の蒸発温度が例え ば 5°C程度に設定される。空調ユニット(12)では、空調熱交換器(101)で冷却された 室内空気が店内へ供給される。  [0121] The refrigerant flowing into the air conditioning circuit (100) is decompressed when passing through the air conditioning expansion valve (102), and is then introduced into the air conditioning heat exchanger (101). In the air-conditioning heat exchanger (101), the refrigerant absorbs indoor air power and evaporates. At that time, in the air-conditioning heat exchanger (101), the evaporation temperature of the refrigerant is set to, for example, about 5 ° C. In the air conditioning unit (12), room air cooled by the air conditioning heat exchanger (101) is supplied into the store.
[0122] 空調熱交換器(101)で蒸発した冷媒は、第 2ガス側連絡配管(24)を通って室外回 路 (40)へ流入し、その後、第 1四路切換弁(51)と第 2四路切換弁(52)を順に通過し て第 3吸入管(63)へ流入する。第 3吸入管(63)へ流入した冷媒は、その一部が第 1 分岐管(63a)を通って第 2固定容量圧縮機 (43)に吸入され、残りが第 2分岐管(63b) と第 3四路切換弁(53)と第 2吸入管(62)とを順に通過して第 1固定容量圧縮機 (42) に吸入される。  [0122] The refrigerant evaporated in the air-conditioning heat exchanger (101) flows into the outdoor circuit (40) through the second gas side communication pipe (24), and then flows to the first four-way switching valve (51). It passes through the second four-way switching valve (52) in order and flows into the third suction pipe (63). A part of the refrigerant flowing into the third suction pipe (63) passes through the first branch pipe (63a) and is sucked into the second fixed capacity compressor (43), and the remaining refrigerant flows into the second branch pipe (63b). The gas passes through the third four-way switching valve (53) and the second suction pipe (62) in order and is sucked into the first fixed displacement compressor (42).
[0123] 冷蔵回路(110)へ流入した冷媒は、冷蔵膨張弁(112)を通過する際に減圧されて 力 冷蔵熱交換器(111)へ導入される。冷蔵熱交換器(111)では、冷媒が庫内空気 力 吸熱して蒸発する。その際、冷蔵熱交換器(111)では、冷媒の蒸発温度が例え ば _ 5°C程度に設定される。冷蔵熱交換器(111)で蒸発した冷媒は、第 1ガス側連絡 配管(23)へ流入する。冷蔵ショーケース(13)では、冷蔵熱交換器(111)で冷却され た庫内空気が庫内へ供給され、庫内温度が例えば 5°C程度に保たれる。  [0123] The refrigerant that has flowed into the refrigeration circuit (110) is decompressed when passing through the refrigeration expansion valve (112), and is introduced into the power refrigeration heat exchanger (111). In the refrigeration heat exchanger (111), the refrigerant evaporates by absorbing heat inside the refrigerator. At that time, in the refrigeration heat exchanger (111), the evaporation temperature of the refrigerant is set to, for example, about −5 ° C. The refrigerant evaporated in the refrigeration heat exchanger (111) flows into the first gas side communication pipe (23). In the refrigerated showcase (13), the air in the refrigerator cooled by the refrigeration heat exchanger (111) is supplied into the refrigerator, and the temperature in the refrigerator is maintained at, for example, about 5 ° C.
[0124] 冷凍回路(130)へ流入した冷媒は、冷凍膨張弁(132)を通過する際に減圧されて 力 冷凍熱交換器 (131)へ導入される。冷凍熱交換器 (131)では、冷媒が庫内空気 力 吸熱して蒸発する。その際、冷凍熱交換器(131)では、冷媒の蒸発温度が例え ば _ 30°C程度に設定される。冷凍ショーケース(14)では、冷凍熱交換器(131)で冷 却された庫内空気が庫内へ供給され、庫内温度が例えば 20°C程度に保たれる。 [0124] The refrigerant flowing into the refrigeration circuit (130) is decompressed when passing through the refrigeration expansion valve (132), and is introduced into the power refrigeration heat exchanger (131). In the refrigeration heat exchanger (131), the refrigerant evaporates by absorbing heat inside the refrigerator. At that time, in the refrigeration heat exchanger (131), the evaporation temperature of the refrigerant is set to, for example, about -30 ° C. In the refrigeration showcase (14), the refrigeration heat exchanger (131) The rejected air in the refrigerator is supplied to the refrigerator, and the temperature in the refrigerator is kept at, for example, about 20 ° C.
[0125] 冷凍熱交換器(131)で蒸発した冷媒は、ブースタ回路(140)へ流入してブースタ圧 縮機(141)へ吸入される。ブースタ圧縮機(141)で圧縮された冷媒は、吐出管(144) を通って第 1ガス側連絡配管(23)へ流入する。 [0125] The refrigerant evaporated in the refrigeration heat exchanger (131) flows into the booster circuit (140) and is sucked into the booster compressor (141). The refrigerant compressed by the booster compressor (141) flows into the first gas side communication pipe (23) through the discharge pipe (144).
[0126] 第 1ガス側連絡配管(23)では、冷蔵回路(110)から送り込まれた冷媒と、ブースタ 回路(140)から送り込まれた冷媒とが合流する。そして、これらの冷媒は、第 1ガス側 連絡配管(23)を通過して室外回路 (40)の第 1吸入管(61)へ流入する。第 1吸入管([0126] In the first gas side communication pipe (23), the refrigerant sent from the refrigeration circuit (110) and the refrigerant sent from the booster circuit (140) merge. Then, these refrigerants pass through the first gas side communication pipe (23) and flow into the first suction pipe (61) of the outdoor circuit (40). 1st suction pipe (
61)へ流入した冷媒は、その第 1分岐管(61a)を通って可変容量圧縮機 (41)に吸入 される。 The refrigerant flowing into 61) is sucked into the variable displacement compressor (41) through the first branch pipe (61a).
[0127] 〈第 1暖房運転〉  [0127] <First heating operation>
第 1暖房運転は、冷蔵ショーケース(13)及び冷凍ショーケース(14)において庫内 空気の冷却を行い、空調ユニット(12)で室内空気の加熱を行って店内を暖房する運 転である。  The first heating operation is an operation in which the inside of the refrigerator is cooled in the refrigerated showcase (13) and the frozen showcase (14), and the room air is heated by the air conditioning unit (12) to heat the inside of the store.
[0128] 図 3に示すように、室外回路 (40)では、第 1四路切換弁(51)が第 2状態に、第 2四 路切換弁(52)が第 1状態に、第 3四路切換弁(53)が第 1状態にそれぞれ設定される 。また、室外膨張弁 (46)が全閉される一方、空調膨張弁(102)、冷蔵膨張弁(112)、 及び冷凍膨張弁(132)の開度が適宜調節される。この状態において、可変容量圧縮 機 (41)及びブースタ圧縮機(141)が運転され、第 1固定容量圧縮機 (42)及び第 2固 定容量圧縮機 (43)が休止する。また、室外熱交換器 (44)は、冷媒が送り込まれずに 休止状態となる。この第 1暖房運転中には、過冷却ユニット(200)が停止状態となる。  As shown in FIG. 3, in the outdoor circuit (40), the first four-way switching valve (51) is in the second state, the second four-way switching valve (52) is in the first state, and the third four-way switching valve (52) is in the third state. The path switching valves (53) are set to the first state, respectively. Further, while the outdoor expansion valve (46) is fully closed, the opening degree of the air-conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) is appropriately adjusted. In this state, the variable capacity compressor (41) and the booster compressor (141) are operated, and the first fixed capacity compressor (42) and the second fixed capacity compressor (43) are stopped. In addition, the outdoor heat exchanger (44) is in a stopped state without being supplied with the refrigerant. During this first heating operation, the subcooling unit (200) is in a stopped state.
[0129] 可変容量圧縮機 (41)から吐出された冷媒は、第 1四路切換弁(51)と第 2ガス側連 絡配管(24)と順に通って空調回路(100)の空調熱交換器(101)へ導入され、室内空 気へ放熱して凝縮する。空調ユニット(12)では、空調熱交換器(101)で加熱された 室内空気が店内へ供給される。空調熱交換器(101)で凝縮した冷媒は、第 2液側連 絡配管(22)を通って冷蔵回路(110)と冷凍回路(130)とに分配される。  [0129] The refrigerant discharged from the variable displacement compressor (41) passes through the first four-way switching valve (51) and the second gas side communication pipe (24) in order, and exchanges air conditioning heat in the air conditioning circuit (100). It is introduced into the vessel (101) and releases heat to indoor air to condense. In the air conditioning unit (12), the room air heated by the air conditioning heat exchanger (101) is supplied into the store. The refrigerant condensed in the air conditioning heat exchanger (101) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130) through the second liquid-side communication pipe (22).
[0130] 冷蔵ショーケース(13)及び冷凍ショーケース(14)では、上記冷房運転時と同様に、 庫内空気の冷却が行われる。冷蔵回路(110)へ流入した冷媒は、冷蔵熱交換器(11 1)で蒸発した後に第 1ガス側連絡配管(23)へ流入する。一方、冷凍回路(130)へ流 入した冷媒は、冷凍熱交換器(131)で蒸発した後にブースタ圧縮機(141)で圧縮さ れ、その後に第 1ガス側連絡配管(23)へ流入する。第 1ガス側連絡配管(23)へ流入 した冷媒は、第 1吸入管 (61)を通過後に可変容量圧縮機 (41)に吸入されて圧縮さ れる。 [0130] In the refrigerated showcase (13) and the frozen showcase (14), the air in the refrigerator is cooled as in the cooling operation. The refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas-side communication pipe (23). On the other hand, flow to the refrigeration circuit (130) The entered refrigerant evaporates in the refrigerating heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23). The refrigerant flowing into the first gas side communication pipe (23) is sucked into the variable capacity compressor (41) after passing through the first suction pipe (61) and is compressed.
[0131] このように、第 1暖房運転では、冷蔵熱交換器(111)及び冷凍熱交換器(131)にお いて冷媒が吸熱し、空調熱交換器(101)において冷媒が放熱する。そして、冷蔵熱 交換器(111)及び冷凍熱交換器(131)で冷媒が庫内空気から吸熱した熱を利用して 、店内の暖房が行われる。  [0131] As described above, in the first heating operation, the refrigerant absorbs heat in the refrigeration heat exchanger (111) and the refrigeration heat exchanger (131), and dissipates heat in the air conditioning heat exchanger (101). Then, the interior of the store is heated by utilizing the heat of the refrigerant that has absorbed heat from the air in the refrigerator in the refrigeration heat exchanger (111) and the freezing heat exchanger (131).
[0132] 尚、第 1暖房運転中には、図 4に示すように、第 1固定容量圧縮機 (42)を運転して もよレ、。第 1固定容量圧縮機 (42)を運転するか否かは、冷蔵ショーケース(13)及び 冷凍ショーケース(14)における冷却負荷に応じて決定される。この場合には、第 3四 路切換弁(53)が第 2状態に設定される。そして、第 1吸入管(61)へ流入した冷媒は、 その一部が第 1分岐管(61a)を通って可変容量圧縮機 (41)に吸入され、残りが第 2 分岐管(61b)と第 3四路切換弁(53)と第 2吸入管(62)とを順に通って第 1固定容量 圧縮機 (42)へ吸入される。  [0132] During the first heating operation, as shown in Fig. 4, the first fixed displacement compressor (42) may be operated. Whether to operate the first fixed capacity compressor (42) is determined according to the cooling load in the refrigerated showcase (13) and the refrigerated showcase (14). In this case, the third four-way switching valve (53) is set to the second state. Then, a part of the refrigerant flowing into the first suction pipe (61) passes through the first branch pipe (61a) and is sucked into the variable displacement compressor (41), and the rest flows into the second branch pipe (61b). The air is sucked into the first fixed displacement compressor (42) through the third four-way switching valve (53) and the second suction pipe (62) in order.
[0133] 〈第 2暖房運転〉  [0133] <Second heating operation>
第 2暖房運転は、上記第 1暖房運転と同様に店内の暖房を行う運転である。この第 2暖房運転は、上記第 1暖房運転では暖房能力が不足する場合に行われる。  The second heating operation is an operation for heating the inside of the store similarly to the first heating operation. The second heating operation is performed when the heating capacity is insufficient in the first heating operation.
[0134] 図 5に示すように、室外回路 (40)では、第 1四路切換弁(51)が第 2状態に、第 2四 路切換弁(52)が第 1状態に、第 3四路切換弁(53)が第 1状態にそれぞれ設定される 。また、室外膨張弁 (46)、空調膨張弁(102)、冷蔵膨張弁(112)、及び冷凍膨張弁( 132)の開度が適宜調節される。この状態において、可変容量圧縮機 (41)、第 2固定 容量圧縮機 (43)、及びブースタ圧縮機(141)が運転され、第 1固定容量圧縮機 (42) が休止する。この第 1暖房運転中には、過冷却ユニット(200)が停止状態となる。  As shown in FIG. 5, in the outdoor circuit (40), the first four-way switching valve (51) is in the second state, the second four-way switching valve (52) is in the first state, and the third four-way switching valve (52) is in the third state. The path switching valves (53) are set to the first state, respectively. Further, the opening degrees of the outdoor expansion valve (46), the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted. In this state, the variable capacity compressor (41), the second fixed capacity compressor (43), and the booster compressor (141) are operated, and the first fixed capacity compressor (42) is stopped. During this first heating operation, the subcooling unit (200) is in a stopped state.
[0135] 可変容量圧縮機 (41)及び第 2固定容量圧縮機 (43)から吐出された冷媒は、第 1四 路切換弁と第 2ガス側連絡配管(24)とを順に通って空調回路(100)の空調熱交換器 (101)へ導入され、室内空気へ放熱して凝縮する。空調ユニット(12)では、空調熱交 換器(101)で加熱された室内空気が店内へ供給される。空調熱交換器(101)で凝縮 した冷媒は、第 2液側連絡配管(22)へ流入する。第 2液側連絡配管(22)へ流入した 冷媒は、その一部が冷蔵回路(110)と冷凍回路(130)とに分配され、残りが過冷却ュ ニット (200)の冷媒通路(205)へ導入される。 [0135] The refrigerant discharged from the variable capacity compressor (41) and the second fixed capacity compressor (43) passes through the first four-way switching valve and the second gas side communication pipe (24) in order, and is supplied to the air conditioning circuit. It is introduced into the air conditioning heat exchanger (101) of (100), and releases heat to indoor air to condense. In the air conditioning unit (12), the room air heated by the air conditioning heat exchanger (101) is supplied into the store. Condensed in the air conditioning heat exchanger (101) The cooled refrigerant flows into the second liquid side communication pipe (22). A part of the refrigerant flowing into the second liquid side communication pipe (22) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130), and the remainder is the refrigerant passage (205) of the supercooling unit (200). Is introduced to
[0136] 冷蔵ショーケース(13)及び冷凍ショーケース(14)では、上記冷房運転時と同様に、 庫内空気の冷却が行われる。冷蔵回路(110)へ流入した冷媒は、冷蔵熱交換器(11 1)で蒸発した後に第 1ガス側連絡配管(23)へ流入する。一方、冷凍回路(130)へ流 入した冷媒は、冷凍熱交換器(131)で蒸発した後にブースタ圧縮機(141)で圧縮さ れ、その後に第 1ガス側連絡配管(23)へ流入する。そして、第 1ガス側連絡配管(23) へ流入した冷媒は、第 1吸入管(61)を通過後に可変容量圧縮機 (41)に吸入されて 圧縮される。 [0136] In the refrigerated showcase (13) and the frozen showcase (14), the air in the refrigerator is cooled as in the cooling operation. The refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas-side communication pipe (23). On the other hand, the refrigerant flowing into the refrigeration circuit (130) evaporates in the refrigeration heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23). . Then, the refrigerant flowing into the first gas side communication pipe (23) is sucked into the variable capacity compressor (41) after passing through the first suction pipe (61), and is compressed.
[0137] 過冷却ユニット (200)の冷媒通路 (205)へ流入した冷媒は、第 1液側連絡配管(21) と第 3液管(83)とを順に通過してレシーバ(45)へ流入し、その後に第 2液管(82)を通 つて第 4液管 (84)へ流入する。第 4液管(84)へ流入した冷媒は、室外膨張弁 (46)を 通過する際に減圧されてから室外熱交換器 (44)へ導入され、室外空気から吸熱して 蒸発する。室外熱交換器 (44)で蒸発した冷媒は、第 1四路切換弁(51)と第 2四路切 換弁(52)とを順に通過して第 2吸入管(62)へ流入し、第 2固定容量圧縮機 (43)へ吸 入されて圧縮される。  [0137] The refrigerant flowing into the refrigerant passage (205) of the subcooling unit (200) passes through the first liquid side connection pipe (21) and the third liquid pipe (83) in order and flows into the receiver (45). Then, it flows into the fourth liquid pipe (84) through the second liquid pipe (82). The refrigerant that has flowed into the fourth liquid pipe (84) is decompressed when passing through the outdoor expansion valve (46), is introduced into the outdoor heat exchanger (44), absorbs heat from outdoor air, and evaporates. The refrigerant evaporated in the outdoor heat exchanger (44) passes through the first four-way switching valve (51) and the second four-way switching valve (52) in order and flows into the second suction pipe (62). 2Suctioned into the fixed capacity compressor (43) and compressed.
[0138] このように、第 2暖房運転では、冷蔵熱交換器(111)、冷凍熱交換器(131)、及び室 外熱交換器 (44)において冷媒が吸熱し、空調熱交換器(101)において冷媒が放熱 する。そして、冷蔵熱交換器(111)及び冷凍熱交換器(131)で冷媒が庫内空気から 吸熱した熱と、室外熱交換器 (44)で冷媒が室外空気から吸熱した熱とを利用して、 店内の暖房が行われる。  [0138] As described above, in the second heating operation, the refrigerant absorbs heat in the refrigeration heat exchanger (111), the refrigerating heat exchanger (131), and the outdoor heat exchanger (44), and the air conditioning heat exchanger (101 ), The refrigerant radiates heat. Then, using the heat of the refrigerant absorbing heat from the indoor air in the refrigeration heat exchanger (111) and the freezing heat exchanger (131), and the heat of the refrigerant absorbing heat from the outdoor air in the outdoor heat exchanger (44). The inside of the store is heated.
[0139] 一過冷却ユニットの運転動作一  [0139] Operation of the subcooling unit 1
過冷却ユニット (200)の運転動作にっレ、て説明する。過冷却ユニット (200)の運転 状態では、過冷却用圧縮機 (221)が運転されると共に、過冷却用膨張弁 (223)の開 度が適宜調節される。  The operation of the subcooling unit (200) will be described. In the operating state of the subcooling unit (200), the supercooling compressor (221) is operated, and the opening of the subcooling expansion valve (223) is appropriately adjusted.
[0140] 図 1に示すように、過冷却用圧縮機 (221)から吐出された過冷却用冷媒は、過冷却 用室外熱交換器 (222)で室外空気へ放熱して凝縮する。過冷却用室外熱交換器 (2 22)で凝縮した過冷却用冷媒は、過冷却用膨張弁 (223)を通過する際に減圧されて 力 過冷却用熱交換器 (210)の第 1流路 (211)へ流入する。過冷却用熱交換器 (210 )の第 1流路 (211)では、過冷却用冷媒が第 2流路 (212)の冷媒カ 吸熱して蒸発す る。過冷却用熱交換器 (210)で蒸発した過冷却用冷媒は、過冷却用圧縮機 (221)へ 吸入されて圧縮される。 As shown in FIG. 1, the supercooling refrigerant discharged from the supercooling compressor (221) radiates heat to outdoor air in the supercooling outdoor heat exchanger (222) to condense. Subcooling outdoor heat exchanger (2 The subcooling refrigerant condensed in 22) is decompressed when passing through the subcooling expansion valve (223), and flows into the first flow path (211) of the power subcooling heat exchanger (210). In the first flow path (211) of the subcooling heat exchanger (210), the supercooling refrigerant evaporates by absorbing the heat of the refrigerant in the second flow path (212). The subcooling refrigerant evaporated in the subcooling heat exchanger (210) is drawn into the subcooling compressor (221) and compressed.
[0141] 上述したように、コントローラ(240)は、入力されたセンサの検出値に基づき、過冷 却用圧縮機(221)の起動と停止とを制御する。ここでは、コントローラ(240)の制御動 作について、図 6を参照しながら説明する。このコントローラ(240)の制御動作は、一 定の時間間隔(例えば 10秒間隔)で繰り返し行われる。  [0141] As described above, the controller (240) controls the start and stop of the subcooling compressor (221) based on the input detection value of the sensor. Here, the control operation of the controller (240) will be described with reference to FIG. The control operation of the controller (240) is repeatedly performed at fixed time intervals (for example, at 10 second intervals).
[0142] 最初に、ステップ ST10では、過冷却用圧縮機(221)が運転中か停止中かの判断が 行われる。  [0142] First, in step ST10, it is determined whether the subcooling compressor (221) is operating or stopped.
[0143] ステップ ST10で過冷却用圧縮機(221)が運転中であると判断されると、ステップ ST1 1へ移る。ステップ ST11では、過冷却用圧縮機 (221)が起動した時点から所定時間( 例えば 2分間)が経過しているか否かが判断される。そして、過冷却用圧縮機(221) の起動時点から所定時間が経過していればステップ ST12へ移る。一方、所定時間が 経過していなければステップ ST14へ移って制御動作をー且終了し、過冷却用圧縮 機(221)の運転を継続させる。  [0143] If it is determined in step ST10 that the supercooling compressor (221) is operating, the process proceeds to step ST11. In step ST11, it is determined whether or not a predetermined time (for example, 2 minutes) has elapsed since the supercooling compressor (221) was started. Then, if the predetermined time has elapsed from the start of the supercooling compressor (221), the process proceeds to step ST12. On the other hand, if the predetermined time has not elapsed, the process proceeds to step ST14 to end the control operation and to continue the operation of the supercooling compressor (221).
[0144] ステップ ST12では、過冷却用圧縮機(221)を停止させるかどうかの判断が行われる 。このステップ ST12では、以下に示す 4つの条件が満たされるか否かの判断が行わ れる。そして、これら 4つの条件の何れ力 1つでも満たされていれば、ステップ ST13へ 移って過冷却用圧縮機 (221)を停止させる。一方、これら 4つの条件が全て満たされ ていなければ、ステップ ST14へ移って制御動作を一旦終了し、過冷却用圧縮機(221 )の運転を継続させる。  In step ST12, it is determined whether to stop the subcooling compressor (221). In this step ST12, it is determined whether or not the following four conditions are satisfied. If any one of these four conditions is satisfied, the process moves to step ST13 and stops the subcooling compressor (221). On the other hand, if all of these four conditions are not satisfied, the process proceeds to step ST14, where the control operation is temporarily ended, and the operation of the supercooling compressor (221) is continued.
[0145] ステップ ST12の第 1条件について説明する。この第 1条件は、過冷却用圧縮機 (22 1)の起動後に冷媒温度センサ(236)の検出値が順調に低下してゆくかどうかを判断 するための条件である。  [0145] The first condition in step ST12 will be described. The first condition is a condition for determining whether or not the detected value of the refrigerant temperature sensor (236) decreases smoothly after the activation of the subcooling compressor (221).
[0146] ステップ ST12の第 1条件を満たすためには、次の 6つの要件を充足する必要がある 。第 1の要件は、外気温センサ(231)の検出値 Taが 20°C未満である(Taく 20)という ものである。第 2の要件は、過冷却用圧縮機(221)の起動時点における冷媒温度セ ンサ(236)の検出値 Tout#0と過冷却用圧縮機 (221)の起動から 1分経過後における 冷媒温度センサ(236)の検出値 Tout#lとの差が 3°C以下である(Tout#0—Tout#l≤ 3)というものである。第 3の要件は、過冷却用圧縮機(221)の起動時点における冷媒 温度センサ(236)の検出値 ToutttOと過冷却用圧縮機(221)の起動から 2分経過後に おける冷媒温度センサ(236)の検出値 Tout#2との差が 5°C以下である(Tout#0_To ut#2≤5)レ、うものである。第 4の要件は、過冷却用圧縮機 (221)の起動時点における 冷媒温度センサ(236)の検出値 ToutttOと過冷却用圧縮機(221)の起動から 3分経過 後における冷媒温度センサ(236)の検出値 Tout#3との差が 7°C以下である(Tout#0 _Tout#3≤7)というものである。第 5の要件は、過冷却用圧縮機 (221)の起動時点 力 既に 3分経過しているというものである。第 6の要件は、冷媒温度センサ(236)が 正常に作動してレ、るとレ、うものである。 [0146] In order to satisfy the first condition of Step ST12, the following six requirements must be satisfied. The first requirement is that the detection value Ta of the outside air temperature sensor (231) is less than 20 ° C (Ta <20). Things. The second requirement is that the detected value Tout # 0 of the refrigerant temperature sensor (236) at the start of the subcooling compressor (221) and the refrigerant temperature one minute after the start of the subcooling compressor (221) The difference from the detection value Tout # l of the sensor (236) is 3 ° C or less (Tout # 0-Tout # l≤3). The third requirement is that the detection value ToutttO of the refrigerant temperature sensor (236) at the time of starting the subcooling compressor (221) and the refrigerant temperature sensor (236) after two minutes from the start of the supercooling compressor (221). ) Is less than 5 ° C (Tout # 0_Tout # 2≤5). The fourth requirement is that the detected value ToutttO of the refrigerant temperature sensor (236) at the time of starting the subcooling compressor (221) and the refrigerant temperature sensor (236) after 3 minutes from the start of the subcooling compressor (221). ) Is 7 ° C or less (Tout # 0_Tout # 3≤7). The fifth requirement is that the starting point power of the subcooling compressor (221) has already passed for 3 minutes. The sixth requirement is that the refrigerant temperature sensor (236) operates normally.
[0147] これら第 1〜第 6の要件が全て満たされる場合には、室外空気の温度がさほど高く なくて過冷却用熱交換器 (210)での冷却能力が充分に得られているにも拘わらず、 冷媒温度センサ(236)の検出値 Toutがさほど低下してゆかない状態となっている。こ のため、ステップ ST12の第 1条件が満たされた場合には、第 1暖房運転中のように冷 媒通路 (205)内を冷媒が流れていない状態か、第 2暖房運転中のように冷媒通路 (2 05)内を室外ユニット(11)へ向けて冷媒が流れる状態であると判断できる。そこで、こ の第 1条件が満たされると、コントローラ(240)は、冷凍装置(10)が過冷却ユニット(20[0147] When all of the first to sixth requirements are satisfied, the temperature of the outdoor air is not so high and the cooling capacity of the supercooling heat exchanger (210) is sufficiently obtained. Regardless, the detected value Tout of the refrigerant temperature sensor (236) does not decrease so much. For this reason, when the first condition of step ST12 is satisfied, the refrigerant is not flowing through the refrigerant passage (205) as in the first heating operation, or is not in the second heating operation. It can be determined that the refrigerant flows in the refrigerant passage (205) toward the outdoor unit (11). Therefore, when the first condition is satisfied, the controller (240) causes the refrigeration system (10) to operate the subcooling unit (20).
0)の運転を必要としない運転状態にあると判断し、過冷却用圧縮機 (221)を停止さ せる。 It is determined that the operation state does not require the operation of 0), and the supercooling compressor (221) is stopped.
[0148] ステップ ST12の第 2条件にっレ、て説明する。この第 2条件は、過冷却用圧縮機 (22 [0148] The second condition in step ST12 will be described. The second condition is that the subcooling compressor (22
1)の運転中に冷媒温度センサ (236)の検出値が過冷却用冷媒の蒸発温度に対応し た妥当な値になっているかどうかを判断するための条件である。 This is a condition for determining whether or not the detected value of the refrigerant temperature sensor (236) during the operation of 1) is an appropriate value corresponding to the evaporation temperature of the subcooling refrigerant.
[0149] ステップ ST12の第 2条件を満たすためには、次の 4つの要件を充足する必要がある 。第 1の要件は、過冷却用圧縮機(221)の起動時点から既に 5分経過しているという ものである。第 2の要件は、冷媒温度センサ(236)の検出値 Toutが過冷却用熱交換 器 (210)における過冷却用冷媒の蒸発温度 Tgに 15を加えた値よりも大きい (Tout > Tg+ 15)というものである。第 3の要件は、冷媒温度センサ(236)が正常に作動して レ、るというものである。第 4の要件は、吸入圧力センサ(234)が正常に作動していると レ、うものである。 [0149] In order to satisfy the second condition of Step ST12, the following four requirements must be satisfied. The first requirement is that 5 minutes have already passed since the start of the supercooling compressor (221). The second requirement is that the detection value Tout of the refrigerant temperature sensor (236) is larger than the value obtained by adding 15 to the evaporation temperature Tg of the supercooling refrigerant in the supercooling heat exchanger (210) (Tout> Tg + 15). The third requirement is that the refrigerant temperature sensor (236) operates normally. The fourth requirement is that the suction pressure sensor (234) is operating normally.
[0150] 尚、このコントローラ(240)では、吸入圧力センサ(234)の検出値 LPにおける過冷 却用冷媒の飽和温度を、過冷却用冷媒の蒸発温度 Tgとみなしている。つまり、本実 施形態では、過冷却用冷媒の蒸発温度を検出する蒸発温度検出手段が、吸入圧力 センサ(234)によって構成されてレ、る。  [0150] In this controller (240), the saturation temperature of the subcooling refrigerant at the detection value LP of the suction pressure sensor (234) is regarded as the evaporation temperature Tg of the subcooling refrigerant. That is, in this embodiment, the evaporating temperature detecting means for detecting the evaporating temperature of the subcooling refrigerant is constituted by the suction pressure sensor (234).
[0151] これら第 1〜第 4の要件が全て満たされる場合には、過冷却用冷媒回路(220)で冷 凍サイクルが行われているにも拘わらず、冷媒温度センサ(236)の検出値 Toutと過 冷却用冷媒の蒸発温度 Tgとの差が 15°Cよりも大きい状態となっている。このため、ス テツプ ST12の第 2条件が満たされた場合も、第 1暖房運転中のように冷媒通路 (205) 内を冷媒が流れていない状態力、、第 2暖房運転中のように冷媒通路(205)内を室外 ユニット(11)へ向けて冷媒が流れる状態であると判断できる。そこで、この第 2条件が 満たされると、コントローラ(240)は、冷凍装置(10)が過冷却ユニット(200)の運転を 必要としない運転状態にあると判断し、過冷却用圧縮機 (221)を停止させる。  [0151] When all of the first to fourth requirements are satisfied, the detection value of the refrigerant temperature sensor (236) is obtained despite the fact that the refrigeration cycle is being performed in the subcooling refrigerant circuit (220). The difference between Tout and the evaporation temperature Tg of the supercooling refrigerant is larger than 15 ° C. For this reason, even when the second condition of step ST12 is satisfied, the state of the refrigerant not flowing in the refrigerant passage (205) as in the first heating operation, and the refrigerant as in the second heating operation. It can be determined that the refrigerant flows in the passage (205) toward the outdoor unit (11). Therefore, when the second condition is satisfied, the controller (240) determines that the refrigeration system (10) is in an operating state that does not require the operation of the subcooling unit (200), and the controller (221) ) To stop.
[0152] ステップ ST12の第 3条件について説明する。この第 3条件が満たされるのは、吸入 圧力センサ(234)の検出値 LPが 0.2MPa未満であり、且つ吸入圧力センサ(234)が 異常となっている場合である。この場合には、吸入圧力センサ(234)の検出値が正常 ではないため、それに基づいて過冷却用圧縮機 (221)の運転を適切に制御すること ができない。そこで、第 3条件が満たされると、コントローラ (240)は、過冷却用圧縮機 (221)を停止させる。  [0152] The third condition in Step ST12 will be described. The third condition is satisfied when the detected value LP of the suction pressure sensor (234) is less than 0.2 MPa and the suction pressure sensor (234) is abnormal. In this case, since the detection value of the suction pressure sensor (234) is not normal, the operation of the supercooling compressor (221) cannot be appropriately controlled based on the detected value. Therefore, when the third condition is satisfied, the controller (240) stops the subcooling compressor (221).
[0153] ステップ ST12の第 4条件について説明する。この第 4条件が満たされるのは、吸入 圧力センサ(234)の検出値 LPが 0.15MPa未満となってレ、る場合である。この場合に は、吸入圧力センサ(234)の検出値が通常の運転状態では有り得なレ、程の低レ、値と なっている。そこで、第 4条件が満たされると、コントローラ(240)は、何らかのトラブル が発生してレ、ると判断し、過冷却用圧縮機 (221)を停止させる。  [0153] The fourth condition in step ST12 will be described. The fourth condition is satisfied when the detection value LP of the suction pressure sensor (234) is less than 0.15 MPa. In this case, the detection value of the suction pressure sensor (234) is a value that is possible in a normal operation state, that is, a value that is as low as possible. Therefore, when the fourth condition is satisfied, the controller (240) determines that some trouble has occurred and stops the supercooling compressor (221).
[0154] ステップ ST10で過冷却用圧縮機 (221)が停止中であると判断されると、ステップ ST1 5へ移る。ステップ ST15では、過冷却用圧縮機(221)の停止時点から所定時間が経 過したか否かが判断される。過冷却用圧縮機 (221)の起動と停止が短時間の間に繰 り返されるのを回避するため、過冷却用圧縮機(221)がー且停止すると、その停止時 点からある程度の時間が経過するまでは過冷却用圧縮機(221)の再起動を制限する 。ステップ ST15において、過冷却用圧縮機(221)の停止時点から所定時間が経過し ていなければ、ステップ ST14へ移って制御動作を一旦終了し、過冷却用圧縮機(221 )を停止状態に保持する。一方、過冷却用圧縮機 (221)の停止時点から所定時間が 経過していれば、ステップ ST16へ移る。 [0154] If it is determined in step ST10 that the subcooling compressor (221) is stopped, the process proceeds to step ST15. In step ST15, a predetermined time has elapsed since the supercooling compressor (221) was stopped. It is determined whether or not it has passed. When the subcooling compressor (221) is stopped and stopped for a certain period of time to prevent the start and stop of the subcooling compressor (221) from being repeated in a short time. The restart of the subcooling compressor (221) is restricted until the time elapses. In step ST15, if the predetermined time has not elapsed since the stop of the supercooling compressor (221), the process proceeds to step ST14, where the control operation is temporarily ended, and the supercooling compressor (221) is held in the stopped state. I do. On the other hand, if the predetermined time has elapsed since the supercooling compressor (221) was stopped, the process proceeds to Step ST16.
[0155] ステップ ST16では、過冷却用圧縮機(221)を起動するかどうかの判断が行われる。 In step ST16, it is determined whether to start the subcooling compressor (221).
このステップ ST16では、以下に示す 3つの条件が満たされるか否かの判断が行われ る。そして、これら 3つの条件の何れ力、 1つでも満たされていれば、ステップ ST17へ移 つて過冷却用圧縮機 (221)を起動する。一方、これら 3つの条件が全て満たされてい なければ、ステップ ST14へ移って制御動作を一旦終了し、過冷却用圧縮機(221)を 停止状態に保持する。  In this step ST16, it is determined whether or not the following three conditions are satisfied. If any one of these three conditions is satisfied, the process moves to step ST17 to start the subcooling compressor (221). On the other hand, if all of these three conditions are not satisfied, the process proceeds to step ST14, where the control operation is temporarily ended, and the subcooling compressor (221) is kept stopped.
[0156] ステップ ST16の第 1条件について説明する。この第 1条件が満たされるのは、外気 温センサ(231)の検出値 Taが 25°C以上であり、且つ過冷却用圧縮機(221)の停止 時点から既に 1分経過している場合である。この場合には、室外空気がかなり高温で あるにも拘わらず、 1分以上に亘つて過冷却用圧縮機 (221)が停止した状態となって いる。そこで、第 1条件が満たされると、コントローラ(240)は、冷媒通路(205)内の冷 媒を冷却するために過冷却用圧縮機 (221)を起動する。  [0156] The first condition in step ST16 will be described. The first condition is satisfied when the detected value Ta of the outside air temperature sensor (231) is equal to or higher than 25 ° C and one minute has already elapsed since the supercooling compressor (221) was stopped. is there. In this case, the supercooling compressor (221) has been stopped for more than one minute, even though the outdoor air is quite hot. Therefore, when the first condition is satisfied, the controller (240) starts the supercooling compressor (221) to cool the refrigerant in the refrigerant passage (205).
[0157] ステップ ST16の第 2条件について説明する。この第 2条件が満たされるのは、外気 温センサ(231)の検出値 Taが 20°C以上であり、且つ過冷却用圧縮機(221)の停止 時点から既に 3分経過している場合である。この場合には、室外空気が比較的高温 であるにも拘わらず、 3分以上に亘つて過冷却用圧縮機 (221)が停止した状態となつ ている。そこで、第 2条件が満たされると、コントローラ(240)は、冷媒通路(205)内の 冷媒を冷却するために過冷却用圧縮機 (221)を起動する。  [0157] The second condition in step ST16 will be described. The second condition is satisfied when the detection value Ta of the outside air temperature sensor (231) is equal to or higher than 20 ° C and three minutes have already elapsed since the stop of the supercooling compressor (221). is there. In this case, the supercooling compressor (221) has been in a stopped state for more than three minutes, even though the outdoor air is relatively hot. Then, when the second condition is satisfied, the controller (240) starts the supercooling compressor (221) to cool the refrigerant in the refrigerant passage (205).
[0158] ステップ ST16の第 3条件について説明する。この第 3条件が満たされるのは、過冷 却用圧縮機(221)の停止時点から既に 10分経過している場合である。この場合には 、比較的長時間に亘つて過冷却用圧縮機 (221)が停止した状態となっている。そこで 、第 3条件が満たされると、コントローラ (240)は、冷媒通路 (205)内の冷媒を冷却す るために過冷却用圧縮機(221)を起動する。このように、コントローラ(240)は、過冷 却用圧縮機 (221)の停止時間が 10分間以上に達すると、必ず過冷却用圧縮機 (221 )の起動を行う。 [0158] The third condition in step ST16 will be described. The third condition is satisfied when 10 minutes have already passed since the stop of the subcooling compressor (221). In this case, the supercooling compressor (221) has been stopped for a relatively long time. Therefore When the third condition is satisfied, the controller (240) activates the supercooling compressor (221) to cool the refrigerant in the refrigerant passage (205). As described above, the controller (240) always starts the subcooling compressor (221) when the stop time of the subcooling compressor (221) reaches 10 minutes or more.
[0159] 一実施形態の効果一  [0159] Effect of one embodiment-
上記過冷却ユニット(200)において、コントローラ(240)は、過冷却ユニット(200)に 設けられたセンサの検出値など、過冷却ユニット(200)内で得られる情報だけに基づ レ、て過冷却用圧縮機 (221)の運転を制御している。つまり、この過冷却ユニット(200) では、冷凍装置(10)との間で信号の授受などを行わなくても、冷凍装置(10)の運転 状態に応じて過冷却用圧縮機 (221)の運転を制御することが可能となる。このため、 上記過冷却ユニット(200)を冷凍装置(10)に取り付ける際には、冷凍装置(10)の第 1 ,第 2液側連絡配管(21,22)に過冷却ユニット (200)の冷媒通路(205)を接続するだ けでよぐ冷凍装置(10)と過冷却ユニット(200)の間で信号を授受するための通信用 配線を敷設する必要が無くなる。  In the subcooling unit (200), the controller (240) controls the supercooling based only on information obtained in the subcooling unit (200), such as a detection value of a sensor provided in the subcooling unit (200). Controls the operation of the cooling compressor (221). In other words, in this subcooling unit (200), the supercooling compressor (221) can be operated in accordance with the operating state of the refrigeration system (10) without transmitting or receiving signals to or from the refrigeration system (10). Operation can be controlled. Therefore, when attaching the subcooling unit (200) to the refrigeration system (10), the supercooling unit (200) is connected to the first and second liquid side communication pipes (21, 22) of the refrigeration system (10). Just connecting the refrigerant passage (205) eliminates the need to lay communication wiring for transmitting and receiving signals between the refrigeration system (10) and the subcooling unit (200).
[0160] 従って、本実施形態によれば、過冷却ユニット(200)を冷凍装置(10)に取り付ける 際の作業工数を削減することができ、更には誤配線等の設置作業時の人的ミスに起 因するトラブルを未然に防止することができる。  [0160] Therefore, according to the present embodiment, it is possible to reduce the number of man-hours for attaching the supercooling unit (200) to the refrigeration system (10), and further to reduce human error during installation work such as incorrect wiring. The trouble caused by the above can be prevented beforehand.
[0161] ここで、過冷却ユニット(200)と冷凍装置(10)の間で信号を授受するためには、過 冷却ユニット(200)だけでなく冷凍装置(10)にも通信インターフェースが必要となる。 このため、運転制御に冷凍装置(10)からの信号入力が必要な過冷却ユニット(200) については、適用可能な冷凍装置(10)の機種が制限されることとなり、過冷却ュニッ ト(200)の使い勝手が良くないという問題もあった。  [0161] Here, in order to exchange signals between the subcooling unit (200) and the refrigerating device (10), a communication interface is required not only for the subcooling unit (200) but also for the refrigerating device (10). Become. For this reason, for the supercooling unit (200) that requires a signal input from the refrigeration unit (10) for operation control, applicable refrigeration unit (10) models are limited, and the subcooling unit (200) is limited. There was also a problem that usability was not good.
[0162] これに対し、本実施形態の過冷却ユニット(200)は、冷凍装置(10)との間における 信号の授受を全く必要とせず、取り付け対象となる冷凍装置(10)について制約を受 けない。従って、本実施形態によれば、過冷却ユニット(200)の取り付け対象となる冷 凍装置(10)の機種の制約をなくすことができ、過冷却ユニット(200)の使い勝手を大 幅に向上させることができる。  [0162] On the other hand, the supercooling unit (200) of the present embodiment does not require any signal exchange with the refrigeration apparatus (10), and is restricted by the refrigeration apparatus (10) to be attached. I can't. Therefore, according to the present embodiment, it is possible to eliminate restrictions on the model of the cooling device (10) to which the supercooling unit (200) is attached, and to greatly improve the usability of the supercooling unit (200). be able to.
[0163] 一実施形態の変形例 1一 本実施形態の過冷却ユニット (200)では、冷媒通路 (205)における過冷却用熱交 換器(210)の両側に温度センサ(237,238)を設け、これら温度センサ(237,238)の検 出値に基づいて過冷却用圧縮機(221)を運転制御するようにしてもよい。 [0163] Modification of one embodiment 11 In the subcooling unit (200) of the present embodiment, temperature sensors (237,238) are provided on both sides of the subcooling heat exchanger (210) in the refrigerant passage (205), and the detected values of these temperature sensors (237,238) are The operation of the subcooling compressor (221) may be controlled on the basis of the operation.
[0164] 図 7に示すように、冷媒通路 (205)では、過冷却用熱交換器 (210)よりも他端寄りの 部分、即ち第 2液側連絡配管(22)に接続する端部寄りの部分に第 1冷媒温度センサ (237)が設けられる。また、この冷媒通路(205)では、過冷却用熱交換器 (210)よりも 一端寄りの部分、即ち第 1液側連絡配管 (21)に接続する端部寄りの部分に第 2冷媒 温度センサ(238)が設けられる。この過冷却ユニット(200)では、第 1冷媒温度センサ (237)が第 1冷媒温度検出手段を、第 2冷媒温度センサ (238)が第 2冷媒温度検出 手段をそれぞれ構成してレ、る。  As shown in FIG. 7, in the refrigerant passage (205), a portion closer to the other end than the supercooling heat exchanger (210), ie, closer to the end connected to the second liquid side communication pipe (22). Is provided with a first refrigerant temperature sensor (237). In the refrigerant passage (205), a second refrigerant temperature sensor is provided at a portion closer to one end than the supercooling heat exchanger (210), that is, a portion closer to the end connected to the first liquid side communication pipe (21). (238) is provided. In this subcooling unit (200), the first refrigerant temperature sensor (237) constitutes first refrigerant temperature detection means, and the second refrigerant temperature sensor (238) constitutes second refrigerant temperature detection means.
[0165] 本変形例のコントローラ(240)には、第 1冷媒温度センサ(237)の検出値と第 2冷媒 温度センサ(238)の検出値とが入力される。このコントローラ(240)は、過冷却用圧縮 機(221)の運転中における 2つの冷媒温度センサ(237,238)の検出値を対比し、その 結果に応じて過冷却用圧縮機 (221)の運転を継続させるか停止させるかを決定する ように構成されている。  [0165] The detection value of the first refrigerant temperature sensor (237) and the detection value of the second refrigerant temperature sensor (238) are input to the controller (240) of the present modification. The controller (240) compares the values detected by the two refrigerant temperature sensors (237, 238) during operation of the subcooling compressor (221), and controls the operation of the subcooling compressor (221) according to the result. It is configured to determine whether to continue or stop.
[0166] このコントローラ(240)の制御動作にっレ、て説明する。  [0166] The control operation of the controller (240) will be described.
[0167] 先ず、過冷却用圧縮機 (221)の運転中に第 1冷媒温度センサ (237)の検出値が第 2冷媒温度センサ(238)の検出値よりも低くなつていれば、過冷却用熱交換器 (210) で冷却された冷媒の温度が第 1冷媒温度センサ(237)によって検出されてレ、ることと なる。従って、この場合には、例えば冷房運転中のように冷媒通路(205)内を第 1液 側連絡配管(21)側から第 2液側連絡配管(22)側へ向かって冷媒が流れていると判 断でき、コントローラ(240)は過冷却用圧縮機(221)の運転を継続させる。  First, if the detected value of the first refrigerant temperature sensor (237) is lower than the detected value of the second refrigerant temperature sensor (238) during the operation of the subcooling compressor (221), The temperature of the refrigerant cooled by the heat exchanger (210) is detected by the first refrigerant temperature sensor (237). Therefore, in this case, the refrigerant flows in the refrigerant passage (205) from the first liquid side communication pipe (21) to the second liquid side communication pipe (22), for example, during a cooling operation. The controller (240) continues the operation of the subcooling compressor (221).
[0168] 一方、過冷却用圧縮機 (221)の運転中に第 2冷媒温度センサ (238)の検出値が第 1冷媒温度センサ(237)の検出値よりも低くなつていれば、過冷却用熱交換器 (210) で冷却された冷媒の温度が第 2冷媒温度センサ(238)によって検出されてレ、ることと なる。従って、この場合には、例えば第 2暖房運転中のように冷媒通路(205)内を第 2 液側連絡配管(22)側から第 1液側連絡配管(21)側へ向かって冷媒が流れていると 判断でき、コントローラ(240)は過冷却用圧縮機(221)の運転を停止させる。 [0169] また、過冷却用圧縮機 (221)の運転中に第 1冷媒温度センサ (237)の検出値と第 2 冷媒温度センサ(238)の検出値とが殆ど同じになっていれば、例えば第 1暖房運転 中のように冷媒通路(205)内で冷媒が流通していないと判断でき、コントローラ(240) は過冷却用圧縮機 (221)の運転を停止させる。 [0168] On the other hand, if the detected value of the second refrigerant temperature sensor (238) is lower than the detected value of the first refrigerant temperature sensor (237) during the operation of the subcooling compressor (221), the subcooling is performed. The temperature of the refrigerant cooled by the heat exchanger (210) is detected by the second refrigerant temperature sensor (238). Accordingly, in this case, for example, the refrigerant flows from the second liquid side communication pipe (22) side to the first liquid side communication pipe (21) side in the refrigerant passage (205) as in the second heating operation. And the controller (240) stops the operation of the subcooling compressor (221). [0169] If the detection value of the first refrigerant temperature sensor (237) and the detection value of the second refrigerant temperature sensor (238) during the operation of the subcooling compressor (221) are almost the same, For example, it can be determined that the refrigerant is not flowing in the refrigerant passage (205) as in the first heating operation, and the controller (240) stops the operation of the supercooling compressor (221).
[0170] なお、本変形例のコントローラ(240)では、第 1冷媒温度センサ(237)の検出値が第 2冷媒温度センサ(238)の検出値との差を、冷媒通路(205)における冷媒の流通状 態を示す流通状態表示値として用いてもよい。つまり、第 1冷媒温度センサ(237)の 検出値から第 2冷媒温度センサ(238)の検出値を差し引いた値が負であれば、第 1 冷媒温度センサ(237)の検出値が第 2冷媒温度センサ(238)の検出値よりも低い状 態であると判断できるため、コントローラ(240)は過冷却用圧縮機(221)の運転を継続 させる。また、第 1冷媒温度センサ(237)の検出値から第 2冷媒温度センサ(238)の検 出値を差し引いた値がゼロ以上であれば、第 1冷媒温度センサ(237)の検出値が第 2冷媒温度センサ(238)の検出値よりも高いか或いは両者が同じ状態であると判断で きるため、コントローラ(240)は過冷却用圧縮機 (221)を停止させる。  [0170] In the controller (240) of the present modification, the difference between the detection value of the first refrigerant temperature sensor (237) and the detection value of the second refrigerant temperature sensor (238) is determined by the refrigerant in the refrigerant passage (205). May be used as a distribution status display value indicating the distribution status of the product. That is, if the value obtained by subtracting the detection value of the second refrigerant temperature sensor (238) from the detection value of the first refrigerant temperature sensor (237) is negative, the detection value of the first refrigerant temperature sensor (237) is Since it can be determined that the state is lower than the detection value of the temperature sensor (238), the controller (240) continues the operation of the subcooling compressor (221). If the value obtained by subtracting the detection value of the second refrigerant temperature sensor (238) from the detection value of the first refrigerant temperature sensor (237) is zero or more, the detection value of the first refrigerant temperature sensor (237) (2) The controller (240) stops the subcooling compressor (221) because it is higher than the detection value of the refrigerant temperature sensor (238) or it can be determined that both are in the same state.
[0171] 一実施形態の変形例 2—  [0171] Modification 2 of one embodiment
本実施形態の過冷却ユニット(200)では、図 8に示すように、冷媒通路(205)に流量 計(251)を設け、この流量計 (251)の検出値に基づいて過冷却用圧縮機(221)を運 転制御するようにしてもよい。  In the subcooling unit (200) of the present embodiment, as shown in FIG. 8, a flow meter (251) is provided in the refrigerant passage (205), and a subcooling compressor is provided based on a detection value of the flow meter (251). Operation control of (221) may be performed.
[0172] この過冷却ユニット(200)では、流量計(251)の検出値がコントローラ(240)に入力 される。コントローラ(240)は、冷媒通路(205)内における冷媒の流通方向と、冷媒通 路(205)内で冷媒が流通しているか否かとを、流量計(251)の検出値に基づいて判 断する。つまり、このコントローラ(240)は、流量計 (251)の検出値を、冷媒通路(205) における冷媒の流通状態を示す流通状態表示値として用いている。  [0172] In the supercooling unit (200), the detection value of the flow meter (251) is input to the controller (240). The controller (240) determines the flow direction of the refrigerant in the refrigerant passage (205) and whether the refrigerant is flowing in the refrigerant passage (205) based on the detection value of the flow meter (251). I do. That is, the controller (240) uses the detection value of the flow meter (251) as a circulation state display value indicating the circulation state of the refrigerant in the refrigerant passage (205).
[0173] 過冷却用圧縮機 (221)の運転中に冷媒通路 (205)内を第 1液側連絡配管(21)側 から第 2液側連絡配管(22)側へ向かって冷媒が流れていると判断した場合、コント口 ーラ(240)は、過冷却用圧縮機 (221)の運転を継続させる。また、過冷却用圧縮機(2 21)の運転中に冷媒通路 (205)内を第 2液側連絡配管(22)側から第 1液側連絡配管 (21)側へ向かって冷媒が流れていると判断した場合、あるいは過冷却用圧縮機 (221 )の運転中に冷媒通路 (205)内を冷媒が流通していないと判断した場合、コントロー ラ(240)は、過冷却用圧縮機 (221)の運転を停止させる。 [0173] During operation of the subcooling compressor (221), the refrigerant flows in the refrigerant passage (205) from the first liquid side communication pipe (21) to the second liquid side communication pipe (22). If the controller (240) determines that the subcooling compressor (221) is operating, the controller (240) continues to operate the supercooling compressor (221). During operation of the subcooling compressor (221), the refrigerant flows through the refrigerant passage (205) from the second liquid side communication pipe (22) to the first liquid side communication pipe (21). If it is determined that the compressor is If the controller (240) determines that the refrigerant is not flowing through the refrigerant passage (205) during the operation of ()), the controller (240) stops the operation of the subcooling compressor (221).
[0174] 一実施形態の変形例 3—  [0174] Modification 3 of one embodiment 3
本実施形態のコントローラ(240)では、外気温センサ(231)の検出値だけに基づい て、過冷却用圧縮機(221)の運転を制御してもよい。  The controller (240) of the present embodiment may control the operation of the subcooling compressor (221) based only on the detection value of the outside air temperature sensor (231).
[0175] コントローラ(240)の動作を説明する。外気温センサ(231)の検出値が所定の上限 値 (例えば 30°C)を上回ると、冷蔵ショーケース(13)や冷凍ショーケース(14)での冷 却負荷、あるいは空調ユニット(12)での冷房負荷が高くなつていると推測できる。そこ で、このような場合、コントローラ(240)は、過冷却用圧縮機(221)が停止中であれば 過冷却用圧縮機(221)を起動させ、過冷却用圧縮機 (221)が運転中であれば過冷 却用圧縮機 (221)の運転を継続させる。冷媒通路 (205)内を第 1液側連絡配管(21) 側から第 2液側連絡配管(22)側へ向かって流れる冷媒は、過冷却用熱交換器 (210) で冷却されてから冷蔵ショーケース(13)等へ供給される。  [0175] The operation of the controller (240) will be described. When the detected value of the outside air temperature sensor (231) exceeds a predetermined upper limit (for example, 30 ° C), the cooling load in the refrigerated showcase (13) or the refrigerated showcase (14) or the air conditioning unit (12). It can be inferred that the cooling load of the vehicle has increased. Therefore, in such a case, if the subcooling compressor (221) is stopped, the controller (240) starts the subcooling compressor (221) and operates the subcooling compressor (221). If it is, the operation of the supercooling compressor (221) is continued. The refrigerant flowing in the refrigerant passage (205) from the first liquid side communication pipe (21) to the second liquid side communication pipe (22) is cooled by the supercooling heat exchanger (210) and then refrigerated. It is supplied to the showcase (13) and the like.
[0176] 一方、外気温センサ(231)の検出値が所定の下限値 (例えば 20°C)を下回ると、冷 蔵ショーケース(13)や冷凍ショーケース(14)での冷却負荷、あるいは空調ユニット(1 2)での冷房負荷が低くなつてレ、ると推測でき、過冷却用圧縮機 (221)の運転が必要 ないと判断できる。そこで、このような場合、コントローラ(240)は、過冷却用圧縮機(2 21)が停止中であれば過冷却用圧縮機 (221)を停止したままとし、過冷却用圧縮機( 221)が運転中であれば過冷却用圧縮機 (221)を停止させる。  [0176] On the other hand, when the detection value of the outside air temperature sensor (231) falls below a predetermined lower limit (for example, 20 ° C), the cooling load in the refrigerated showcase (13) or the refrigerated showcase (14), or the air conditioning It can be estimated that the cooling load on the unit (12) is low, and it can be determined that the supercooling compressor (221) does not need to be operated. Therefore, in such a case, the controller (240) keeps the subcooling compressor (221) stopped while the subcooling compressor (221) is stopped, and the subcooling compressor (221). If is operating, stop the subcooling compressor (221).
[0177] 一実施形態の変形例 4  [0177] Modification Example 4 of One Embodiment
本実施形態のコントローラ (240)では、冷媒温度検出手段 (236)の検出値の変化だ けに基づいて、過冷却用圧縮機(221)の運転を制御してもよい。本変形例のコント口 ーラ (240)は、冷媒温度検出手段 (236)の検出値の変化を、冷媒通路 (205)におけ る冷媒の流通状態を示す流通状態表示値として用いる。  The controller (240) of the present embodiment may control the operation of the subcooling compressor (221) based only on a change in the detection value of the refrigerant temperature detection means (236). The controller (240) of this modification uses the change in the detected value of the refrigerant temperature detecting means (236) as a flow state display value indicating the flow state of the refrigerant in the refrigerant passage (205).
[0178] コントローラ(240)の動作を説明する。過冷却用圧縮機 (221)を起動させた時点から 冷媒温度検出手段 (236)の検出値が次第に低下してくる場合は、冷媒通路 (205)内 を第 1液側連絡配管(21)側から第 2液側連絡配管(22)側へ向かって冷媒が流れて レ、ると判断できる。そこで、このような場合、コントローラ(240)は、過冷却用圧縮機 (2 21)の運転を継続させる。 [0178] The operation of the controller (240) will be described. If the detected value of the refrigerant temperature detecting means (236) gradually decreases from the time when the supercooling compressor (221) is started, the inside of the refrigerant passage (205) is connected to the first liquid side communication pipe (21). It can be determined that the refrigerant flows from to the second liquid side communication pipe (22) side. Therefore, in such a case, the controller (240) operates the supercooling compressor (2 Continue the operation of 21).
[0179] 一方、過冷却用圧縮機 (221)の起動させても冷媒温度検出手段 (236)の検出値が 低下してこない場合は、冷媒通路 (205)内を第 2液側連絡配管(22)側から第 1液側 連絡配管(21)側へ向かって冷媒が流れている、あるいは冷媒通路(205)内を冷媒が 流れていないと判断できる。そこで、このような場合、コントローラ(240)は、過冷却用 圧縮機 (221)を停止させる。  [0179] On the other hand, if the detected value of the refrigerant temperature detecting means (236) does not decrease even when the subcooling compressor (221) is started, the inside of the refrigerant passage (205) is passed through the second liquid side communication pipe ( It can be determined that the refrigerant is flowing from the 22) side to the first liquid side communication pipe (21) side, or that the refrigerant is not flowing in the refrigerant passage (205). Therefore, in such a case, the controller (240) stops the subcooling compressor (221).
[0180] また、過冷却用圧縮機(221)を停止させた時点から冷媒温度検出手段(236)の検 出値が次第に上昇してくる場合は、冷媒通路 (205)内を第 1液側連絡配管(21)側か ら第 2液側連絡配管(22)側へ向かって冷媒が流れていると判断できる。そこで、この ような場合、コントローラ(240)は、過冷却用圧縮機 (221)を再起動させる。  [0180] If the detected value of the refrigerant temperature detecting means (236) gradually increases from the time when the subcooling compressor (221) is stopped, the first liquid side in the refrigerant passage (205) is moved. It can be determined that the refrigerant is flowing from the communication pipe (21) to the second liquid-side communication pipe (22). Therefore, in such a case, the controller (240) restarts the subcooling compressor (221).
[0181] 一方、過冷却用圧縮機 (221)の停止中でも冷媒温度検出手段 (236)の検出値が上 昇してこない場合は、冷媒通路 (205)内を第 2液側連絡配管(22)側から第 1液側連 絡配管(21)側へ向かって冷媒が流れている、あるいは冷媒通路(205)内を冷媒が流 れていないと判断できる。そこで、このような場合、コントローラ(240)は、過冷却用圧 縮機 (221)を停止させたままとする。  [0181] On the other hand, if the detected value of the refrigerant temperature detecting means (236) does not rise even when the subcooling compressor (221) is stopped, the refrigerant passage (205) passes through the second liquid side communication pipe (22). ) Side to the first liquid side communication pipe (21) side, or it can be determined that the refrigerant is not flowing in the refrigerant passage (205). Therefore, in such a case, the controller (240) keeps the subcooling compressor (221) stopped.
[0182] 一実施形態の変形例 5—  [0182] Modification 5 of one embodiment 5
本実施形態のコントローラ(240)では、過冷却用熱交換器 (210)の第 1流路 (211) の入口と出口における過冷却用冷媒の温度差に基づいて、過冷却用圧縮機(221) の運転を制御してもよい。  In the controller (240) of the present embodiment, the subcooling compressor (221) is based on the temperature difference between the subcooling refrigerant at the inlet and the outlet of the first flow path (211) of the subcooling heat exchanger (210). ) May be controlled.
[0183] 図 9に示すように、本変形例の過冷却ユニット(200)には、第 1過冷却用冷媒温度 センサ (252)と第 2過冷却用冷媒温度センサ (253)と力 S設けられる。過冷却用冷媒回 路(220)において、第 1過冷却用冷媒温度センサ(252)は、過冷却用熱交換器 (210 )の第 1流路 (211)の直前に設けられ、この第 1流路 (211)へ流入しょうとする過冷却 用冷媒の温度を検出する。一方、第 2過冷却用冷媒温度センサ (253)は、過冷却用 熱交換器 (210)の第 1流路 (211)の直後に設けられ、この第 1流路 (211)から流出し た直後の過冷却用冷媒の温度を検出する。そして、本変形例のコントローラ(240)は 、第 1過冷却用冷媒温度センサ(252)の検出値と第 2過冷却用冷媒温度センサ(253 )の検出値との差を、冷媒通路 (205)における冷媒の流通状態を示す流通状態表示 値として用いる。 [0183] As shown in Fig. 9, the supercooling unit (200) of the present modification is provided with a first supercooling refrigerant temperature sensor (252), a second subcooling refrigerant temperature sensor (253), and a force S. Can be In the subcooling refrigerant circuit (220), the first subcooling refrigerant temperature sensor (252) is provided immediately before the first flow path (211) of the subcooling heat exchanger (210). The temperature of the subcooling refrigerant flowing into the flow path (211) is detected. On the other hand, the second subcooling refrigerant temperature sensor (253) is provided immediately after the first flow path (211) of the supercooling heat exchanger (210) and flows out of the first flow path (211). The temperature of the immediately following subcooling refrigerant is detected. Then, the controller (240) of the present modified example compares the difference between the detection value of the first subcooling refrigerant temperature sensor (252) and the detection value of the second subcooling refrigerant temperature sensor (253) with the refrigerant passage (205). )) Use as a value.
[0184] コントローラ(240)の動作を説明する。過冷却用圧縮機 (221)の運転中において、 第 2過冷却用冷媒温度センサ (253)の検出値が第 1過冷却用冷媒温度センサ (252) の検出値よりも高い場合 (即ち、第 2過冷却用冷媒温度センサ (253)の検出値力も第 1過冷却用冷媒温度センサ(252)の検出値を差し引いた値が正 (+)の場合)には、冷 媒通路 (205)内を第 1液側連絡配管(21)側から第 2液側連絡配管(22)側へ向かつ て冷媒が流れていると判断できる。そこで、このような場合、コントローラ(240)は、過 冷却用圧縮機(221)の運転を継続させる。  [0184] The operation of the controller (240) will be described. During operation of the subcooling compressor (221), when the detection value of the second subcooling refrigerant temperature sensor (253) is higher than the detection value of the first subcooling refrigerant temperature sensor (252) (i.e., (2) If the detected value of the supercooling refrigerant temperature sensor (253) is positive (+) after subtracting the detection value of the first supercooling refrigerant temperature sensor (252), the refrigerant passage (205) It can be determined that the refrigerant is flowing from the first liquid side communication pipe (21) toward the second liquid side communication pipe (22). Therefore, in such a case, the controller (240) continues the operation of the subcooling compressor (221).
[0185] 一方、過冷却用圧縮機 (221)の運転中において、第 2過冷却用冷媒温度センサ (2 53)の検出値が第 1過冷却用冷媒温度センサ(252)の検出値よりも低い場合あるいは 両者に差がない場合 (即ち、第 2過冷却用冷媒温度センサ (253)の検出値から第 1 過冷却用冷媒温度センサ(252)の検出値を差し引いた値がゼロ以下の場合)には、 冷媒通路 (205)内を第 2液側連絡配管(22)側から第 1液側連絡配管(21)側へ向か つて冷媒が流れている力 \あるいは冷媒通路(205)内を冷媒が流れていないと判断 できる。そこで、このような場合、コントローラ(240)は、過冷却用圧縮機(221)を停止 させる。  [0185] On the other hand, during the operation of the subcooling compressor (221), the detection value of the second subcooling refrigerant temperature sensor (253) is larger than the detection value of the first subcooling refrigerant temperature sensor (252). When the temperature is low or when there is no difference between them (that is, when the value obtained by subtracting the value detected by the first supercooling refrigerant temperature sensor (252) from the value detected by the second subcooling refrigerant temperature sensor (253) is less than or equal to zero) ), The force flowing through the refrigerant passage (205) from the second liquid-side communication pipe (22) to the first liquid-side communication pipe (21), or the inside of the refrigerant passage (205). It can be determined that no refrigerant is flowing. Therefore, in such a case, the controller (240) stops the subcooling compressor (221).
[0186] 一実施形態の変形例 6—  [0186] Modification 6 of One Embodiment
本実施形態のコントローラ(240)では、吸入圧力センサ(234)の検出値だけに基づ いて、過冷却用圧縮機(221)の運転を制御してもよい。吸入圧力センサ(234)の検出 値は、過冷却用熱交換器 (210)の第 1流路 (211)における冷媒圧力、即ち過冷却用 冷媒の蒸発圧力とほぼ等しくなる。このため、本変形例では、吸入圧力センサ(234) が蒸発圧力検出手段を構成している。そして、本変形例のコントローラ(240)は、吸 入圧力センサ (234)の検出値を、冷媒通路 (205)における冷媒の流通状態を示す流 通状態表示値として用いる。  The controller (240) of the present embodiment may control the operation of the subcooling compressor (221) based only on the detection value of the suction pressure sensor (234). The detection value of the suction pressure sensor (234) is substantially equal to the refrigerant pressure in the first flow path (211) of the subcooling heat exchanger (210), that is, the evaporation pressure of the subcooling refrigerant. Therefore, in this modified example, the suction pressure sensor (234) constitutes the evaporating pressure detecting means. Then, the controller (240) of the present modification uses the detection value of the suction pressure sensor (234) as a flow state display value indicating the flow state of the refrigerant in the refrigerant path (205).
[0187] コントローラ(240)の動作を説明する。過冷却用圧縮機 (221)の運転中に吸入圧力 センサ(234)の検出値が所定の基準値 (例えば 0.2MPa)を上回っていれば、過冷却 用熱交換器 (210)の第 1流路 (211)で過冷却用冷媒が蒸発していることになり、冷媒 通路(205)内を冷媒が流れていると判断できる。そこで、このような場合、コントローラ (240)は、過冷却用圧縮機 (221)の運転を継続させる。 [0187] The operation of the controller (240) will be described. If the detected value of the suction pressure sensor (234) exceeds a predetermined reference value (for example, 0.2 MPa) during the operation of the subcooling compressor (221), the first flow of the subcooling heat exchanger (210) This means that the supercooling refrigerant has evaporated in the path (211), and it can be determined that the refrigerant is flowing in the refrigerant passage (205). So, in such a case, the controller (240) Continues the operation of the subcooling compressor (221).
[0188] 一方、過冷却用圧縮機 (221)の運転中に吸入圧力センサ (234)の検出値が上記基 準値以下になっていれば、過冷却用熱交換器 (210)の第 1流路 (211)で過冷却用冷 媒が殆ど蒸発していないことになり、冷媒通路 (205)内を冷媒が流れていないと判断 できる。そこで、このような場合、コントローラ(240)は、過冷却用圧縮機(221)を停止 させる。 [0188] On the other hand, if the detected value of the suction pressure sensor (234) is less than or equal to the reference value during the operation of the subcooling compressor (221), the first subcooling heat exchanger (210) This means that the supercooling refrigerant has hardly evaporated in the flow path (211), and it can be determined that the refrigerant is not flowing in the refrigerant path (205). Therefore, in such a case, the controller (240) stops the subcooling compressor (221).
[0189] 一実施形態の変形例 7—  [0189] Modification 7 of One Embodiment
本実施形態のコントローラ(240)では、冷媒温度センサ(236)の検出値 Toutと過冷 却用冷媒の蒸発温度 Tgとの差だけに基づいて、過冷却用圧縮機 (221)の運転を制 御してもよレ、。本変形例のコントローラ(240)は、冷媒温度センサ(236)の検出値 Tou tと過冷却用冷媒の蒸発温度 Tgとの差を、冷媒通路 (205)における冷媒の流通状態 を示す流通状態表示値として用いる。  The controller (240) of the present embodiment controls the operation of the subcooling compressor (221) based only on the difference between the detected value Tout of the refrigerant temperature sensor (236) and the evaporation temperature Tg of the subcooling refrigerant. I'll do it. The controller (240) according to the present modification uses the difference between the detected value Tout of the refrigerant temperature sensor (236) and the evaporation temperature Tg of the subcooling refrigerant as a distribution state display indicating the refrigerant distribution state in the refrigerant passage (205). Use as a value.
[0190] コントローラ(240)の動作を説明する。過冷却用圧縮機 (221)の運転中において、 冷媒温度センサ (236)の検出値 Toutから過冷却用冷媒の蒸発温度 Tgを差し引いた 値が所定の基準値 (例えば 15°C)以下となっている場合には、冷媒通路(205)内を 第 1液側連絡配管(21)側から第 2液側連絡配管(22)側へ向かって冷媒が流れてい ると判断できる。そこで、このような場合、コントローラ(240)は、過冷却用圧縮機 (221 )の運転を継続させる。  [0190] The operation of the controller (240) will be described. During the operation of the supercooling compressor (221), the value obtained by subtracting the evaporation temperature Tg of the supercooling refrigerant from the detection value Tout of the refrigerant temperature sensor (236) becomes equal to or less than a predetermined reference value (for example, 15 ° C). In this case, it can be determined that the refrigerant is flowing in the refrigerant passage (205) from the first liquid side communication pipe (21) toward the second liquid side communication pipe (22). Therefore, in such a case, the controller (240) continues the operation of the subcooling compressor (221).
[0191] 一方、過冷却用圧縮機 (221)の運転中において、冷媒温度センサ(236)の検出値 Toutから過冷却用冷媒の蒸発温度 Tgを差し引いた値が上記基準値以下となってい る場合には、冷媒通路 (205)内を第 2液側連絡配管(22)側から第 1液側連絡配管(2 1)側へ向かって冷媒が流れている力、、あるいは冷媒通路(205)内を冷媒が流れてい ないと判断できる。そこで、このような場合、コントローラ(240)は、過冷却用圧縮機(2 21)を停止させる。  [0191] On the other hand, during operation of the subcooling compressor (221), a value obtained by subtracting the evaporation temperature Tg of the supercooling refrigerant from the detection value Tout of the refrigerant temperature sensor (236) is equal to or less than the reference value. In this case, the force flowing through the refrigerant passage (205) from the second liquid-side communication pipe (22) toward the first liquid-side communication pipe (21), or the refrigerant passage (205) It can be determined that the refrigerant is not flowing inside. Therefore, in such a case, the controller (240) stops the subcooling compressor (221).
[0192] 一実施形態の変形例 8—  [0192] Modification 8 of One Embodiment
本実施形態のコントローラ(240)では、冷媒温度検出手段(236)の検出値だけに基 づいて、過冷却用圧縮機(221)の運転を制御してもよい。本変形例のコントローラ(24 0)は、冷媒温度検出手段 (236)の検出値を、冷媒通路 (205)における冷媒の流通状 態を示す流通状態表示値として用いる。 The controller (240) of the present embodiment may control the operation of the supercooling compressor (221) based only on the detected value of the refrigerant temperature detecting means (236). The controller (240) of the present modified example converts the detected value of the refrigerant temperature detecting means (236) into the refrigerant flow state in the refrigerant passage (205). It is used as a distribution status display value indicating the status.
[0193] コントローラ(240)の動作を説明する。過冷却用圧縮機 (221)の停止中に冷媒温度 検出手段 (236)の検出値が所定の基準値を上回っている場合は、室外ユニット(11) 力 冷蔵ショーケース(13)等の利用側へ送られる冷媒の温度が高くなつていて、冷 蔵ショーケース(13)等での冷却能力が不足気味になっていると推測できる。そこで、 このような場合、コントローラ(240)は、過冷却用圧縮機 (221)を起動させる。  [0193] The operation of the controller (240) will be described. If the detected value of the refrigerant temperature detecting means (236) is higher than a predetermined reference value while the subcooling compressor (221) is stopped, the outdoor unit (11) is operated on the side of use of the refrigerated showcase (13) or the like. It can be guessed that the temperature of the refrigerant sent to the refrigeration system is increasing, and that the cooling capacity of the refrigerated showcase (13) and the like is becoming insufficient. Therefore, in such a case, the controller (240) starts the subcooling compressor (221).
[0194] 一方、過冷却用圧縮機 (221)の停止中に冷媒温度検出手段 (236)の検出値が所 定の基準値以下となってレ、る場合は、室外ユニット(11)から冷蔵ショーケース(13)等 の利用側へ送られる冷媒の温度がさほど高くなぐ冷蔵ショーケース(13)等での冷却 能力を充分に確保できていると推測できる。そこで、このような場合、コントローラ(240 )は、過冷却用圧縮機 (221)を停止させたままとする。  [0194] On the other hand, if the detected value of the refrigerant temperature detecting means (236) becomes lower than the predetermined reference value while the subcooling compressor (221) is stopped, the outdoor unit (11) refrigerates the refrigerant. It can be assumed that the cooling capacity of the refrigerated showcase (13) or the like where the temperature of the refrigerant sent to the use side of the showcase (13) or the like is not so high can be sufficiently secured. Therefore, in such a case, the controller (240) keeps the subcooling compressor (221) stopped.
[0195] 一実施形態の変形例 9一  [0195] Modification of one embodiment 91
本実施形態のコントローラ(240)では、冷媒温度検出手段(236)の検出値と外気温 センサ(231)の検出値との差に基づいて、過冷却用圧縮機 (221)の運転を制御して もよレ、。本変形例のコントローラ(240)は、冷媒温度検出手段(236)の検出値と外気 温センサ (231)の検出値との差を、冷媒通路 (205)における冷媒の流通状態を示す 流通状態表示値として用いる。  The controller (240) of the present embodiment controls the operation of the subcooling compressor (221) based on the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outside air temperature sensor (231). Even though. The controller (240) of the present modification is configured to display a difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outside air temperature sensor (231) as a distribution state display indicating the refrigerant distribution state in the refrigerant passage (205). Use as a value.
[0196] コントローラ(240)の動作を説明する。冷媒通路 (205)内を第 1液側連絡配管(21) 側から第 2液側連絡配管(22)側へ向かって冷媒が流れているときは、室外熱交換器 (44)で室外空気へ放熱して凝縮した冷媒が冷媒通路 (205)へ流入することになるが 、この冷媒の温度が室外空気の温度を下回ることは有り得ない。このため、過冷却用 圧縮機 (221)の停止中において、冷媒温度検出手段 (236)の検出値力も外気温セン サ (231)の検出値を差し引いた値が所定の基準値を上回っている場合には、冷媒通 路(205)内を第 1液側連絡配管(21)側から第 2液側連絡配管(22)側へ向かって冷 媒が流れていると判断できる。そこで、このような場合、コントローラ(240)は、過冷却 用圧縮機 (221)を起動させる。  [0196] The operation of the controller (240) will be described. When the refrigerant flows from the first liquid side communication pipe (21) side to the second liquid side communication pipe (22) side in the refrigerant passage (205), the refrigerant is discharged to the outdoor air by the outdoor heat exchanger (44). Although the refrigerant that has radiated heat and condensed flows into the refrigerant passage (205), the temperature of the refrigerant cannot be lower than the temperature of the outdoor air. For this reason, while the subcooling compressor (221) is stopped, the value obtained by subtracting the detection value of the outside air temperature sensor (231) from the detection value of the refrigerant temperature detection means (236) exceeds the predetermined reference value. In this case, it can be determined that the refrigerant flows from the first liquid-side communication pipe (21) toward the second liquid-side communication pipe (22) in the refrigerant passage (205). Therefore, in such a case, the controller (240) starts the subcooling compressor (221).
[0197] 一方、過冷却用圧縮機 (221)の停止中において、冷媒温度検出手段 (236)の検出 値から外気温センサ(231)の検出値を差し引いた値が所定の基準値以下となってい る場合には、冷媒通路 (205)内を第 2液側連絡配管(22)側から第 1液側連絡配管(2 1)側へ向かって冷媒が流れている力 \あるいは冷媒通路(205)内を冷媒が流れてい ないと判断できる。そこで、このような場合、コントローラ(240)は、過冷却用圧縮機(2 21)を停止したままにする。 On the other hand, while the subcooling compressor (221) is stopped, the value obtained by subtracting the detection value of the outside air temperature sensor (231) from the detection value of the refrigerant temperature detection means (236) becomes equal to or less than a predetermined reference value. And When the refrigerant flows in the refrigerant passage (205) from the second liquid-side communication pipe (22) toward the first liquid-side communication pipe (21), It can be determined that the refrigerant is not flowing inside. Therefore, in such a case, the controller (240) keeps the subcooling compressor (221) stopped.
[0198] -実施形態の変形例 10 - 本実施形態の過冷却ユニット(200)において、過冷却用冷媒回路 (220)は、冷媒を 自然循環させることができるように構成されてレ、てもよレ、。  [0198]-Modification 10 of Embodiment-In the supercooling unit (200) of the present embodiment, the supercooling refrigerant circuit (220) is configured to allow natural circulation of the refrigerant. Yeah.
[0199] 図 10に示すように、本変形例の過冷却用冷媒回路(220)では、過冷却用室外熱交 換器 (222)が過冷却用熱交換器 (210)よりも上方に配置されている。また、この過冷 却用冷媒回路(220)には、バイパス配管(224)が設けられている。このバイパス配管( 224)は、その一端が過冷却用圧縮機 (221)の吸入側に、他端が過冷却用圧縮機 (2 21)の吐出側にそれぞれ接続されている。また、ノ ィパス配管(224)には、その一端 力 他端へ向力う冷媒の流通だけを許容する逆止弁(225)が設けられている。  [0199] As shown in Fig. 10, in the subcooling refrigerant circuit (220) of this variation, the subcooling outdoor heat exchanger (222) is arranged above the subcooling heat exchanger (210). Have been. Further, a bypass pipe (224) is provided in the subcooling refrigerant circuit (220). One end of the bypass pipe (224) is connected to the suction side of the subcooling compressor (221), and the other end is connected to the discharge side of the subcooling compressor (221). Further, the non-pass pipe (224) is provided with a check valve (225) that allows only the flow of the refrigerant directed toward one end and the other end.
[0200] この過冷却用冷媒回路(220)では、過冷却用圧縮機(221)の停止中であっても、室 外ファン (230)を運転することで過冷却用冷媒が循環する。具体的に、室外ファン (2 30)を運転すると、過冷却用室外熱交換器 (222)では、冷媒が室外空気へ放熱して 凝縮する。過冷却用室外熱交換器 (222)で凝縮した過冷却用冷媒は、重力によって 流れ落ち、全開状態に設定された過冷却用膨張弁 (223)を通過して過冷却用熱交 換器 (210)の第 1流路 (211)へ流人する。過冷却用熱交換器 (210)の第 1流路 (211) では、過冷却用冷媒が第 2流路 (212)の冷媒から吸熱して蒸発する。過冷却用熱交 換器 (210)で蒸発した過冷却用冷媒は、バイパス配管(224)を通って過冷却用室外 熱交換器 (222)へ戻り、室外空気と熱交換して再び凝縮する。  [0200] In the subcooling refrigerant circuit (220), the supercooling refrigerant circulates by operating the outdoor fan (230) even while the subcooling compressor (221) is stopped. Specifically, when the outdoor fan (230) is operated, in the subcooling outdoor heat exchanger (222), the refrigerant radiates heat to outdoor air and condenses. The subcooling refrigerant condensed in the subcooling outdoor heat exchanger (222) flows down due to gravity, passes through the subcooling expansion valve (223) that is set to the fully open state, and passes through the subcooling heat exchanger (210). ) To the first channel (211). In the first flow path (211) of the subcooling heat exchanger (210), the supercooling refrigerant absorbs heat from the refrigerant in the second flow path (212) and evaporates. The supercooling refrigerant evaporated in the supercooling heat exchanger (210) returns to the supercooling outdoor heat exchanger (222) through the bypass pipe (224), exchanges heat with outdoor air, and condenses again. .
[0201] 過冷却ユニット (200)の起動時にぉレ、て、本変形例のコントローラ(240)は、先ず室 外ファン (230)を起動させ、室外ファン (230)を運転した状態で過冷却用圧縮機(221 )を起動させるか否力、を判断する。つまり、コントローラ(240)は、冷媒通路 (205)内を 流れる冷媒の冷却が必要な状態であると判断すると、過冷却用圧縮機 (221)を停止 させたままで室外ファン (230)だけを起動する。室外ファン (230)を起動すると、冷媒 通路 (205)では過冷却用冷媒が自然循環し、過冷却用熱交換器 (210)では過冷却 用冷媒によって第 2流路 (212)の冷媒が冷却される。コントローラ(240)は、この室外 ファン (230)だけを運転する状態を所定の時間(例えば 5分間)に亘つて継続させ、そ の後に冷媒通路(205)内を流れる冷媒の冷却が不足しているか否かを判定する。そ して、冷媒通路(205)内を流れる冷媒の冷却が不足していれば、コントローラ(240)が 過冷却用圧縮機 (221)を起動させる。 [0201] When starting the supercooling unit (200), the controller (240) of the present modification first starts the outdoor fan (230), and supercools while the outdoor fan (230) is operating. It is determined whether or not to start the compressor (221). That is, when the controller (240) determines that the refrigerant flowing in the refrigerant passage (205) needs to be cooled, only the outdoor fan (230) is started while the supercooling compressor (221) is stopped. I do. When the outdoor fan (230) is started, the subcooling refrigerant naturally circulates in the refrigerant passage (205) and subcools in the subcooling heat exchanger (210). The refrigerant in the second flow path (212) is cooled by the refrigerant for use. The controller (240) continues to operate only the outdoor fan (230) for a predetermined time (for example, 5 minutes), and thereafter, the cooling of the refrigerant flowing in the refrigerant passage (205) becomes insufficient. Is determined. Then, if the cooling of the refrigerant flowing in the refrigerant passage (205) is insufficient, the controller (240) activates the supercooling compressor (221).
過冷却用圧縮機 (221)が起動すると、過冷却用冷媒回路 (220)におレ、て冷凍サイク ルが行われる。一方、この冷媒の冷却が不足していなければ、コントローラ(240)は、 過冷却用圧縮機(221)を停止させたままで室外ファン (230)の運転だけを継続させる  When the subcooling compressor (221) is started, a refrigeration cycle is performed in the subcooling refrigerant circuit (220). On the other hand, if the cooling of the refrigerant is not insufficient, the controller (240) continues only the operation of the outdoor fan (230) with the subcooling compressor (221) stopped.
[0202] 本変形例では、室外ファン (230)の運転により過冷却用冷媒を自然循環させただけ では熱源側冷媒の冷却が不足する場合にだけ、過冷却用圧縮機 (221)を起動する ようにしている。このため、過冷却用圧縮機(221)の起動が不要であるにも拘わらず 過冷却用圧縮機 (221)を起動させてしまう事態を回避でき、過冷却用圧縮機 (221)の 起動回数を削減することができる。その結果、過冷却用圧縮機 (221)が不安定な過 渡状態で運転される時間を短縮でき、過冷却用圧縮機 (221)の信頼性を向上させる こと力 Sできる。 [0202] In this modification, the supercooling compressor (221) is started only when the cooling of the heat-source-side refrigerant is insufficient by simply circulating the supercooling refrigerant by the operation of the outdoor fan (230). Like that. For this reason, it is possible to avoid a situation in which the supercooling compressor (221) is started in spite of the fact that the supercooling compressor (221) does not need to be started. Can be reduced. As a result, the time during which the subcooling compressor (221) is operated in an unstable transient state can be reduced, and the reliability of the subcooling compressor (221) can be improved.
[0203] 一実施形態の変形例 11  [0203] Modification 11 of one embodiment
本実施形態の過冷却ユニット (200)は、過冷却用冷媒回路 (220)の代えて、冷水が 流通する冷水回路を冷却用流体回路として設けてもよい。この冷水回路では、例え ば 5°C程度の比較的低温の水が流通している。本変形例の過冷却用熱交換器 (210 )では、その第 1流路 (211)に冷水回路が接続され、第 1流路 (211)内を流れる冷水 が第 2流路 (212)内を流れる冷媒と熱交換する。  In the subcooling unit (200) of the present embodiment, a chilled water circuit through which chilled water flows may be provided as a cooling fluid circuit instead of the subcooling refrigerant circuit (220). In this chilled water circuit, relatively low-temperature water, for example, at about 5 ° C flows. In the supercooling heat exchanger (210) of the present modification, a chilled water circuit is connected to the first flow path (211), and the chilled water flowing in the first flow path (211) flows through the second flow path (212). Exchange heat with the refrigerant flowing through the heat exchanger.
[0204] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0204] The above embodiments are essentially preferred examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0205] 以上説明したように、本発明は、冷凍装置の熱源ユニットから利用ユニットへ送られ る冷媒を冷却する過冷却装置について有用である。 [0205] As described above, the present invention is useful for a subcooling device that cools a refrigerant sent from a heat source unit of a refrigerating device to a use unit.

Claims

請求の範囲 The scope of the claims
[1] 連絡配管により接続された熱源ユニット(11)と利用ユニット(12, 13, 14)の間で熱源 側冷媒を循環させて冷凍サイクルを行う冷凍装置(10)に取り付けられ、熱源ユニット (11)から利用ユニット(12, 13, 14)へ送られる上記冷凍装置(10)の熱源側冷媒を冷却 する過冷却装置であって、  [1] A refrigeration unit (10) that circulates the heat source side refrigerant between the heat source unit (11) and the utilization units (12, 13, 14) connected by the communication pipe to perform a refrigeration cycle, A supercooling device for cooling the heat source side refrigerant of the refrigerating device (10) sent from 11) to the use units (12, 13, 14),
上記冷凍装置(10)の液側の連絡配管(21,22)に接続される冷媒通路 (205)と、 冷却用流体が流通する冷却用流体回路(220)と、  A refrigerant passage (205) connected to the liquid-side communication pipe (21, 22) of the refrigeration system (10); a cooling fluid circuit (220) through which a cooling fluid flows;
上記冷媒通路 (205)内の熱源側冷媒を上記冷却用流体と熱交換させて冷却する ための過冷却用熱交換器 (210)と、  A supercooling heat exchanger (210) for cooling the heat source side refrigerant in the refrigerant passage (205) by exchanging heat with the cooling fluid, and
上記冷却用流体回路 (220)での冷却用流体の流通状態を上記冷媒通路 (205)内 での熱源側冷媒の流通状態に応じて制御する制御手段 (240)と  Control means (240) for controlling the flow state of the cooling fluid in the cooling fluid circuit (220) according to the flow state of the heat source side refrigerant in the refrigerant passage (205);
を備えてレ、ることを特徴とする過冷却装置。  A supercooling device comprising:
[2] 請求項 1において、 [2] In claim 1,
上記冷却用流体回路は、過冷却用冷媒回路 (220)により構成されており、 上記過冷却用冷媒回路 (220)は、過冷却用圧縮機 (221)を備え、冷却用流体とし ての過冷却用冷媒を循環させて冷凍サイクルを行う  The cooling fluid circuit includes a supercooling refrigerant circuit (220) .The supercooling refrigerant circuit (220) includes a supercooling compressor (221), and includes a supercooling compressor (221). Refrigeration cycle by circulating cooling refrigerant
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[3] 請求項 2において、 [3] In claim 2,
上記制御手段(240)は、上記過冷却用圧縮機 (221)の運転を制御することによって 、上記過冷却用冷媒回路 (220)における過冷却用冷媒の循環状態を制御するように 構成されている  The control means (240) is configured to control the operation of the subcooling compressor (221) to control the circulation state of the supercooling refrigerant in the subcooling refrigerant circuit (220). Is
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[4] 請求項 3において、 [4] In claim 3,
上記制御手段(240)は、過冷却用圧縮機 (221)の運転中における冷媒通路(205) 内での熱源側冷媒の流通方向と該冷媒通路 (205)内での熱源側冷媒の流通の有無 とを熱源側冷媒の流通状態として検出し、冷媒通路 (205)内を熱源ユニット(11)から 利用ユニット(12, 13, 14)へ向けて熱源側冷媒が流れる状態では過冷却用圧縮機 (22 1)の運転を継続し、上記冷媒通路(205)内を利用ユニット(12, 13, 14)から熱源ュニッ ト(11)へ向けて熱源側冷媒が流れる状態および上記冷媒通路 (205)内を熱源側冷 媒が流れていない状態では過冷却用圧縮機 (221)を停止させるように構成されてい る The control means (240) controls the flow direction of the heat source-side refrigerant in the refrigerant passage (205) and the flow of the heat source-side refrigerant in the refrigerant passage (205) during operation of the subcooling compressor (221). Is detected as the flow state of the heat source side refrigerant, and in the state where the heat source side refrigerant flows from the heat source unit (11) to the utilization unit (12, 13, 14) in the refrigerant passage (205), the subcooling compressor Continue the operation of (221), and use the heat source unit (12, 13, 14) from the utilization unit (12, 13, 14) in the refrigerant passage (205). The supercooling compressor (221) is configured to stop the supercooling compressor (221) in a state where the heat source side refrigerant flows toward the heat source (11) and a state where the heat source side refrigerant does not flow in the refrigerant passage (205).
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[5] 請求項 4において、 [5] In claim 4,
上記制御手段 (240)は、過冷却用圧縮機 (221)を停止させた時点から所定時間が 経過すると該過冷却用圧縮機 (221)を起動するように構成されてレ、る  The control means (240) is configured to start the subcooling compressor (221) when a predetermined time has elapsed from the time when the supercooling compressor (221) was stopped.
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[6] 請求項 3, 4又は 5において、 [6] In claim 3, 4 or 5,
上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する冷媒温度検出手段 (236)を備える 一方、  A refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210). ,
上記制御手段 (240)は、過冷却用圧縮機 (221)を起動させた時点からの上記冷媒 温度検出手段 (236)の検出値の変化に基づいて熱源側冷媒の流通状態を判断する ように構成されている  The control means (240) determines the flow state of the heat source side refrigerant based on a change in the detected value of the refrigerant temperature detecting means (236) from the time when the supercooling compressor (221) is started. It is configured
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[7] 請求項 3, 4又は 5において、 [7] In claim 3, 4 or 5,
上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する冷媒温度検出手段 (236)と、 上記過冷却用熱交換器 (210)における過冷却用冷媒の蒸発温度を検出する蒸発 温度検出手段 (234)とを備える一方、  Refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the supercooling heat exchanger (210); An evaporating temperature detecting means (234) for detecting an evaporating temperature of the subcooling refrigerant in the subcooling heat exchanger (210),
上記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値と上記蒸発温度検 出手段 (234)の検出値とに基づいて熱源側冷媒の流通状態を判断するように構成さ れている  The control means (240) is configured to determine the circulation state of the heat source side refrigerant based on the detection value of the refrigerant temperature detection means (236) and the detection value of the evaporation temperature detection means (234). ing
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[8] 請求項 3, 4又は 5において、 [8] In claim 3, 4 or 5,
上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する第 1冷媒温度検出手段 (237)と、 上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも熱源ユニット(11)寄りの 部分における熱源側冷媒の温度を検出する第 2冷媒温度検出手段 (238)とを備える 一方、 First refrigerant temperature detecting means (237) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210); , A second refrigerant temperature detecting means (238) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the heat source unit (11) than the supercooling heat exchanger (210).
上記制御手段 (240)は、上記第 1冷媒温度検出手段 (237)の検出値と上記第 2冷 媒温度検出手段 (238)の検出値とに基づいて熱源側冷媒の流通状態を判断するよう に構成されている  The control means (240) determines the circulation state of the heat source side refrigerant based on the detection value of the first refrigerant temperature detection means (237) and the detection value of the second refrigerant temperature detection means (238). Is configured to
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[9] 請求項 1 , 2又は 3において、 [9] In claim 1, 2 or 3,
上記冷媒通路(205)には熱源側冷媒の流量を検出する流量計 (251)が設けられる 一方、  The refrigerant passage (205) is provided with a flow meter (251) for detecting the flow rate of the heat source side refrigerant.
上記制御手段 (240)は、上記流量計 (251)の検出値を熱源側冷媒の流通状態を示 す流通状態表示値として用い、上記冷却用流体回路 (220)で冷却用流体が流通し ている状態において、該冷却用流体の流通を継続させるか停止させるかを上記流通 状態表示値に基づレ、て決定するように構成されてレ、る  The control means (240) uses the detected value of the flow meter (251) as a flow state display value indicating the flow state of the heat source side refrigerant, and the cooling fluid flows through the cooling fluid circuit (220). In this state, whether to continue or stop the flow of the cooling fluid is determined based on the flow state display value.
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[10] 請求項 1 , 2又は 3において、 [10] In claim 1, 2 or 3,
上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する第 1冷媒温度検出手段 (237)と、 上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも熱源ユニット(11)寄りの 部分における熱源側冷媒の温度を検出する第 2冷媒温度検出手段 (238)とを備える 一方、  First refrigerant temperature detecting means (237) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210); A second refrigerant temperature detecting means (238) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the heat source unit (11) than the supercooling heat exchanger (210). ,
上記制御手段 (240)は、上記第 1冷媒温度検出手段 (237)の検出値と上記第 2冷 媒温度検出手段 (238)の検出値との差を熱源側冷媒の流通状態を示す流通状態表 示値として用い、上記冷却用流体回路(220)で冷却用流体が流通している状態にお いて、該冷却用流体の流通を継続させるか停止させるかを上記流通状態表示値に 基づレ、て決定するように構成されてレ、る  The control means (240) determines a difference between the detection value of the first refrigerant temperature detection means (237) and the detection value of the second refrigerant temperature detection means (238) as a distribution state indicating the circulation state of the heat source side refrigerant. It is used as a display value, and in the state where the cooling fluid is flowing in the cooling fluid circuit (220), whether to continue or stop the flow of the cooling fluid is determined based on the flow state display value. It is composed to decide
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[11] 請求項 1 , 2又は 3において、 上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する冷媒温度検出手段 (236)を備える 一方、 [11] In claim 1, 2 or 3, A refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210). ,
上記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値の変化を熱源側 冷媒の流通状態を示す流通状態表示値として用い、上記冷却用流体回路 (220)で 冷却用流体が流通している状態において、該冷却用流体の流通を継続させるか停 止させるかを上記流通状態表示値に基づいて決定するように構成されている ことを特徴とする過冷却装置。  The control means (240) uses a change in the detected value of the refrigerant temperature detection means (236) as a flow state display value indicating a flow state of the heat source side refrigerant, and the cooling fluid is supplied to the cooling fluid circuit (220). A supercooling device characterized in that it is configured to determine whether to continue or stop the flow of the cooling fluid in the flowing state based on the flow state display value.
[12] 請求項 1 , 2又は 3において、 [12] In claim 1, 2 or 3,
上記冷却用流体回路 (220)には、過冷却用熱交換器 (210)の入口における冷却用 流体の温度を検出する入口側流体温度検出手段 (252)と、該過冷却用熱交換器 (2 10)の出口における冷却用流体の温度を検出する出口側流体温度検出手段(253)と が設けられる一方、  The cooling fluid circuit (220) includes an inlet-side fluid temperature detecting means (252) for detecting the temperature of the cooling fluid at the inlet of the subcooling heat exchanger (210), and the subcooling heat exchanger ( 2) An outlet fluid temperature detecting means (253) for detecting the temperature of the cooling fluid at the outlet of 10) is provided.
上記制御手段(240)は、上記入口側流体温度検出手段(252)の検出値と上記出口 側流体温度検出手段 (253)の検出値との差を熱源側冷媒の流通状態を示す流通状 態表示値として用い、上記冷却用流体回路(220)で冷却用流体が流通している状態 におレ、て、該冷却用流体の流通を継続させるか停止させるかを上記流通状態表示 値に基づレ、て決定するように構成されてレ、る  The control means (240) determines the difference between the detected value of the inlet-side fluid temperature detecting means (252) and the detected value of the outlet-side fluid temperature detecting means (253) as a flow state indicating the flow state of the heat source side refrigerant. In the state where the cooling fluid is flowing in the cooling fluid circuit (220), whether to continue or stop the flow of the cooling fluid is used as the display value based on the flow status display value. It is configured to determine
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[13] 請求項 2又は 3において、 [13] In claim 2 or 3,
上記過冷却用冷媒回路 (220)には、過冷却用熱交換器 (210)での過冷却用冷媒 の蒸発圧力を検出する蒸発圧力検出手段 (234)が設けられる一方、  The subcooling refrigerant circuit (220) is provided with evaporating pressure detecting means (234) for detecting the evaporating pressure of the subcooling refrigerant in the subcooling heat exchanger (210).
上記制御手段 (240)は、上記蒸発圧力検出手段 (234)の検出値を熱源側冷媒の 流通状態を示す流通状態表示値として用い、上記過冷却用冷媒回路 (220)で過冷 却用冷媒が循環している状態において、該過冷却用冷媒の循環を継続させるか停 止させるかを上記流通状態表示値に基づいて決定するように構成されている ことを特徴とする過冷却装置。  The control means (240) uses the detected value of the evaporating pressure detection means (234) as a flow state display value indicating the flow state of the heat source side refrigerant, and uses the supercooled refrigerant circuit (220) A supercooling device configured to determine whether to continue or stop the circulation of the subcooling refrigerant in a state where the refrigerant is circulating, based on the flow state display value.
[14] 請求項 2又は 3において、 上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する冷媒温度検出手段 (236)と、 上記過冷却用熱交換器 (210)における過冷却用冷媒の蒸発温度を検出する蒸発 温度検出手段 (234)とを備える一方、 [14] In claim 2 or 3, Refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the supercooling heat exchanger (210); An evaporating temperature detecting means (234) for detecting an evaporating temperature of the subcooling refrigerant in the subcooling heat exchanger (210),
上記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値と上記蒸発温度検 出手段 (234)の検出値との差を熱源側冷媒の流通状態を示す流通状態表示値とし て用い、上記過冷却用冷媒回路 (220)で過冷却用冷媒が循環している状態におい て、該過冷却用冷媒の循環を継続させるか停止させるかを上記流通状態表示値に 基づレ、て決定するように構成されてレ、る  The control means (240) uses the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the evaporation temperature detecting means (234) as a flow state display value indicating the flow state of the heat source side refrigerant. In the state where the subcooling refrigerant is circulating in the subcooling refrigerant circuit (220), whether to continue or stop the circulation of the subcooling refrigerant is determined based on the flow state display value, Is configured to determine
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[15] 請求項 1 , 2又は 3において、 [15] In claim 1, 2 or 3,
上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する冷媒温度検出手段 (236)を備える 一方、  A refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210). ,
上記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値を熱源側冷媒の 流通状態を示す流通状態表示値として用い、上記冷却用流体回路 (220)での冷却 用流体の流通が停止している状態において、該冷却用流体の流通を開始させるか 停止させ続けるかを上記流通状態表示値に基づレ、て決定するように構成されてレ、る ことを特徴とする過冷却装置。  The control means (240) uses the detected value of the refrigerant temperature detecting means (236) as a flow state display value indicating the flow state of the heat source side refrigerant, and controls the flow of the cooling fluid in the cooling fluid circuit (220). In a state in which the cooling fluid is stopped, it is configured to determine whether to start or stop the flow of the cooling fluid based on the flow state display value. Cooling system.
[16] 請求項 1 , 2又は 3において、 [16] In claim 1, 2 or 3,
上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する冷媒温度検出手段 (236)を備える 一方、  A refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in a portion of the refrigerant passage (205) closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210). ,
上記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値の変化を熱源側 冷媒の流通状態を示す流通状態表示値として用い、上記冷却用流体回路 (220)で の冷却用流体の流通が停止している状態において、該冷却用流体の流通を開始さ せるか停止させ続けるかを上記流通状態表示値に基づいて決定するように構成され ている ことを特徴とする過冷却装置。 The control means (240) uses a change in the detected value of the refrigerant temperature detection means (236) as a flow state display value indicating a flow state of the heat source side refrigerant, and uses the cooling fluid in the cooling fluid circuit (220). In the state where the circulation of the cooling fluid is stopped, it is configured to determine whether to start or stop the circulation of the cooling fluid based on the above-mentioned circulation state display value. A supercooling device characterized by the above-mentioned.
[17] 請求項 2又は 3において、  [17] In claim 2 or 3,
室外空気の温度を検出する室外温度検出手段(231)と、  Outdoor temperature detecting means (231) for detecting the temperature of outdoor air,
上記冷媒通路 (205)のうち過冷却用熱交換器 (210)よりも利用ユニット(12, 13, 14) 寄りの部分における熱源側冷媒の温度を検出する冷媒温度検出手段 (236)とを備え る一方、  Refrigerant temperature detecting means (236) for detecting the temperature of the heat source side refrigerant in a portion closer to the utilization unit (12, 13, 14) than the subcooling heat exchanger (210) in the refrigerant passage (205). While
上記制御手段 (240)は、上記冷媒温度検出手段 (236)の検出値と上記室外温度検 出手段 (231)の検出値との差を熱源側冷媒の流通状態を示す流通状態表示値とし て用い、上記過冷却用冷媒回路 (220)での過冷却用冷媒の流通が停止している状 態において、該過冷却用冷媒の流通を開始させるか停止させ続けるかを上記流通 状態表示値に基づレ、て決定するように構成されてレ、る  The control means (240) uses the difference between the detected value of the refrigerant temperature detecting means (236) and the detected value of the outdoor temperature detecting means (231) as a distribution state display value indicating the distribution state of the heat source side refrigerant. In the state where the circulation of the subcooling refrigerant is stopped in the subcooling refrigerant circuit (220), whether the circulation of the supercooling refrigerant is started or stopped is determined by the distribution state display value. It is configured to be determined on the basis of
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[18] 連絡配管により接続された熱源ユニット(11)と利用ユニット(12, 13, 14)の間で熱源 側冷媒を循環させて冷凍サイクルを行う冷凍装置(10)に取り付けられ、熱源ユニット (11)から利用ユニット(12, 13, 14)へ送られる上記冷凍装置(10)の熱源側冷媒を冷却 する過冷却装置であって、 [18] A refrigeration system (10) that circulates the heat source side refrigerant between the heat source unit (11) and the utilization units (12, 13, 14) connected by the communication pipe to perform a refrigeration cycle, A supercooling device for cooling the heat source side refrigerant of the refrigerating device (10) sent from 11) to the use units (12, 13, 14),
上記冷凍装置(10)の熱源ユニット(11)が熱源側冷媒を室外空気と熱交換させるよ うに構成される一方、  While the heat source unit (11) of the refrigerating device (10) is configured to exchange heat with the outdoor air at the heat source side,
上記冷凍装置(10)の液側の連絡配管(21,22)に接続される冷媒通路 (205)と、 冷却用流体が流通する冷却用流体回路(220)と、  A refrigerant passage (205) connected to the liquid-side communication pipe (21, 22) of the refrigeration system (10); a cooling fluid circuit (220) through which a cooling fluid flows;
上記冷媒通路 (205)内の熱源側冷媒を上記冷却用流体と熱交換させて冷却する ための過冷却用熱交換器 (210)と、  A supercooling heat exchanger (210) for cooling the heat source side refrigerant in the refrigerant passage (205) by exchanging heat with the cooling fluid, and
室外空気の温度を検出する室外温度検出手段(231)と、  Outdoor temperature detecting means (231) for detecting the temperature of outdoor air,
上記冷却用流体回路 (220)での冷却用流体の流通状態を上記室外温度検出手段 (231)の検出値に応じて制御する制御手段(240)と  Control means (240) for controlling a flow state of the cooling fluid in the cooling fluid circuit (220) in accordance with a detection value of the outdoor temperature detecting means (231);
を備えてレ、ることを特徴とする過冷却装置。  A supercooling device comprising:
[19] 請求項 18において、 [19] In claim 18,
上記冷却用流体回路は、過冷却用冷媒回路 (220)により構成されており、 上記過冷却用冷媒回路 (220)は、過冷却用圧縮機 (221)を備え、冷却用流体とし ての過冷却用冷媒を循環させて冷凍サイクルを行う The cooling fluid circuit is configured by a supercooling refrigerant circuit (220), The supercooling refrigerant circuit (220) includes a supercooling compressor (221), and performs a refrigeration cycle by circulating a supercooling refrigerant as a cooling fluid.
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[20] 請求項 18又は 19において、 [20] In claim 18 or 19,
上記制御手段(240)は、 上記冷却用流体回路(220)で冷却用流体が流通している 状態において、該冷却用流体の流通を継続させるか停止させるかを上記室外温度 検出手段(231)の検出値に基づいて決定するように構成されている  The controller (240) determines whether to continue or stop the flow of the cooling fluid while the cooling fluid is flowing in the cooling fluid circuit (220). Is configured to be determined based on the detection value of
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[21] 請求項 18又は 19において、 [21] In claim 18 or 19,
上記制御手段(240)は、 上記冷却用流体回路(220)での冷却用流体の流通が停 止している状態において、該冷却用流体の流通を開始させるか停止させ続けるかを 上記室外温度検出手段(231)の検出値に基づいて決定するように構成されている ことを特徴とする過冷却装置。  The control means (240) determines whether to start or stop the flow of the cooling fluid in a state where the flow of the cooling fluid in the cooling fluid circuit (220) is stopped. A supercooling device configured to be determined based on a detection value of a detection means (231).
[22] 請求項 2又は 19において、 [22] In claim 2 or 19,
上記過冷却用冷媒回路 (220)に接続されて過冷却用冷媒を室外空気と熱交換さ せる放熱用熱交換器 (222)と、  A heat-dissipating heat exchanger (222) connected to the supercooling refrigerant circuit (220) to exchange heat between the supercooling refrigerant and outdoor air;
上記放熱用熱交換器 (222)へ室外空気を供給する室外ファン (230)とを備え、 上記過冷却用冷媒回路 (220)は、上記過冷却用圧縮機 (221)の停止中に上記室 外ファン (230)を運転させることによって過冷却用冷媒を自然循環させる自然循環動 作が可能となっており、  An outdoor fan (230) for supplying outdoor air to the heat-radiating heat exchanger (222), wherein the subcooling refrigerant circuit (220) is connected to the subcooling compressor (221) while the subcooling compressor (221) is stopped. By operating the external fan (230), a natural circulation operation that allows the subcooling refrigerant to circulate naturally is possible,
上記制御手段 (240)は、過冷却用冷媒の循環を開始させる際には上記室外ファン (230)を起動して上記過冷却用冷媒回路 (220)に自然循環動作を行わせ、該自然循 環動作中における上記冷媒通路 (205)内での熱源側冷媒の流通状態に応じて過冷 却用圧縮機(221)を起動するか停止させ続けるかを決定するように構成されている ことを特徴とする過冷却装置。  When starting the circulation of the subcooling refrigerant, the control means (240) activates the outdoor fan (230) to cause the subcooling refrigerant circuit (220) to perform a natural circulation operation. It is configured to determine whether to start or keep stopping the subcooling compressor (221) according to the flow state of the heat source side refrigerant in the refrigerant passage (205) during the ring operation. Characterized subcooling device.
PCT/JP2005/010584 2004-06-11 2005-06-09 Supercooling apparatus WO2005121654A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005252958A AU2005252958B2 (en) 2004-06-11 2005-06-09 Subcooling apparatus
US10/570,879 US20070022777A1 (en) 2004-06-11 2005-06-09 Supercooling apparatus
EP05748863.7A EP1674806A4 (en) 2004-06-11 2005-06-09 Supercooling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004174288 2004-06-11
JP2004-174288 2004-06-11

Publications (1)

Publication Number Publication Date
WO2005121654A1 true WO2005121654A1 (en) 2005-12-22

Family

ID=35503161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010584 WO2005121654A1 (en) 2004-06-11 2005-06-09 Supercooling apparatus

Country Status (6)

Country Link
US (1) US20070022777A1 (en)
EP (1) EP1674806A4 (en)
KR (1) KR100764339B1 (en)
CN (1) CN100417875C (en)
AU (1) AU2005252958B2 (en)
WO (1) WO2005121654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225259A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800002B1 (en) * 2007-03-15 2008-01-31 엘지전자 주식회사 Air conditioning system
US20100043475A1 (en) * 2007-04-23 2010-02-25 Taras Michael F Co2 refrigerant system with booster circuit
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
CN102422100B (en) * 2009-05-13 2014-04-02 三菱电机株式会社 Air conditioning apparatus
US8011191B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
US9316420B2 (en) * 2009-10-28 2016-04-19 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101585943B1 (en) * 2010-02-08 2016-01-18 삼성전자 주식회사 Air conditioner and control method thereof
US20120055185A1 (en) * 2010-09-02 2012-03-08 Ran Luo Refrigeration apparatus
CN102486452A (en) * 2010-12-05 2012-06-06 西安中科麦特电子技术设备有限公司 Supercooled water generator
US9845981B2 (en) * 2011-04-19 2017-12-19 Liebert Corporation Load estimator for control of vapor compression cooling system with pumped refrigerant economization
JP5445569B2 (en) * 2011-12-09 2014-03-19 株式会社デンソー Air conditioner for vehicles
US11255580B2 (en) * 2015-08-20 2022-02-22 Lennox Industries Inc. Carbon dioxide cooling system with subcooling
US11175073B2 (en) * 2015-08-20 2021-11-16 Lennox Industries Inc. Carbon dioxide cooling system with subcooling
EP3614071B1 (en) * 2017-04-17 2021-12-22 Mitsubishi Electric Corporation Refrigeration cycle device
EP3643988B1 (en) * 2017-06-23 2022-03-30 Daikin Industries, Ltd. Heat transfer system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828984A (en) * 1994-07-14 1996-02-02 Toshiba Corp Air conditioner
JPH10185333A (en) * 1996-12-19 1998-07-14 Daikin Ind Ltd Air conditioning equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710586A (en) * 1971-02-16 1973-01-16 Borg Warner Refrigeration system with fluid transformer for controlling regrigerant flow
GB1544804A (en) * 1977-05-02 1979-04-25 Commercial Refrigeration Ltd Apparatus for and methods of transferring heat between bodies of fluid or other substance
JPS59120876U (en) * 1983-02-04 1984-08-15 三洋電機株式会社 Refrigeration equipment
JPH06201176A (en) * 1992-12-28 1994-07-19 Toshiba Corp Air-conditioner
JP3601134B2 (en) * 1995-09-28 2004-12-15 ダイキン工業株式会社 Refrigeration equipment
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
CN2572309Y (en) * 2002-06-18 2003-09-10 广东科龙电器股份有限公司 High supercooling degree vapour compression circulation supercooler set
KR100569547B1 (en) * 2002-08-02 2006-04-10 다이킨 고교 가부시키가이샤 Refrigeration equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828984A (en) * 1994-07-14 1996-02-02 Toshiba Corp Air conditioner
JPH10185333A (en) * 1996-12-19 1998-07-14 Daikin Ind Ltd Air conditioning equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1674806A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225259A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit
JP4542054B2 (en) * 2006-02-27 2010-09-08 三菱電機株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
EP1674806A1 (en) 2006-06-28
US20070022777A1 (en) 2007-02-01
KR100764339B1 (en) 2007-10-05
KR20060060734A (en) 2006-06-05
EP1674806A4 (en) 2014-02-26
CN100417875C (en) 2008-09-10
AU2005252958B2 (en) 2007-06-28
AU2005252958A1 (en) 2005-12-22
CN1842680A (en) 2006-10-04

Similar Documents

Publication Publication Date Title
WO2005121654A1 (en) Supercooling apparatus
JP5992089B2 (en) Air conditioner
JP3861912B2 (en) Refrigeration equipment
EP2669597B1 (en) Air conditioner
US7155928B2 (en) Refrigerating apparatus
JP4462387B1 (en) Refrigeration equipment
WO2006013861A1 (en) Refrigeration unit
AU2011380810B2 (en) Air-conditioning apparatus
JP4001171B2 (en) Refrigeration equipment
US9829224B2 (en) Air-conditioning apparatus
JP5992088B2 (en) Air conditioner
WO2005019742A1 (en) Freezing apparatus
KR100738780B1 (en) Subcooling apparatus
WO2005033593A1 (en) Freezer
WO2006025524A1 (en) Freezing apparatus
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
JP2006162240A (en) Refrigerating device
JP2006183987A (en) Refrigerating device
JP3966345B2 (en) Supercooling device
JP3824008B2 (en) Supercooling device
JP3824009B2 (en) Supercooling device
US20230304711A1 (en) Refrigeration cycle system
CN116601443A (en) Refrigeration cycle system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000937.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005252958

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007022777

Country of ref document: US

Ref document number: 10570879

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005748863

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005252958

Country of ref document: AU

Date of ref document: 20050609

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005252958

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067005983

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067005983

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005748863

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10570879

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005252958

Country of ref document: AU