WO2005121554A1 - Variable displacement swash plate-type hydraulic rotating machine - Google Patents

Variable displacement swash plate-type hydraulic rotating machine Download PDF

Info

Publication number
WO2005121554A1
WO2005121554A1 PCT/JP2005/009503 JP2005009503W WO2005121554A1 WO 2005121554 A1 WO2005121554 A1 WO 2005121554A1 JP 2005009503 W JP2005009503 W JP 2005009503W WO 2005121554 A1 WO2005121554 A1 WO 2005121554A1
Authority
WO
WIPO (PCT)
Prior art keywords
static pressure
swash plate
pressure bearing
bearing portion
main
Prior art date
Application number
PCT/JP2005/009503
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Niidome
Yoshitomo Yabuuchi
Takeshi Kobayashi
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP05743472A priority Critical patent/EP1760313A1/en
Priority to US10/588,497 priority patent/US20070180986A1/en
Publication of WO2005121554A1 publication Critical patent/WO2005121554A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2092Means for connecting rotating cylinder barrels and rotating inclined swash plates

Definitions

  • the present invention can be applied, for example, as a hydraulic pump or hydraulic motor to a work vehicle such as a wheel loader, a wheel-type hydraulic shaft bell, a hydraulic crane or hydraulic hydraulic shovel, or a hydraulic crane.
  • a work vehicle such as a wheel loader, a wheel-type hydraulic shaft bell, a hydraulic crane or hydraulic hydraulic shovel, or a hydraulic crane.
  • the present invention relates to a variable displacement swash plate type hydraulic rotating machine suitably used.
  • variable displacement swash plate type hydraulic rotating machine is used as a variable displacement swash plate type hydraulic pump constituting a hydraulic pressure source, for example, in a working vehicle such as a wheel ⁇ -dau hydraulic shovel.
  • This variable displacement swash plate type hydraulic rotating machine is also used as a hydraulic motor for turning or hydraulic motor for traveling etc.
  • a variable displacement swash plate type hydraulic rotary machine of this type includes a cylindrical casing, a rotary shaft rotatably provided on the casing, and a rotary shaft integrally rotating with the rotary shaft. And a plurality of cylinders provided in the casing and having a plurality of cylinders extending in the circumferential direction at intervals, and the cylinders are reciprocably engaged with the cylinders of the cylinders.
  • the plurality of pierced pins, the plurality of shoes mounted on the projecting end side of the respective bistons projecting from the respective cylinders, and the surface side serve as smooth surfaces for slidably guiding the respective sheets.
  • a swash plate whose back side is supported rotatably in the casing
  • the swash plate is roughly constituted by a tilt drive which drives the swash plate to tilt.
  • the casing is provided with a swash plate support portion formed in a concave curved shape corresponding to the pair of leg portions, and the swash plate support portion includes the swash plate via the respective leg portions. It supports to be able to tilt.
  • the casing is provided with a pair of supply and discharge passages for supplying and discharging pressurized oil in each cylinder of the cylinder block.
  • a static pressure bearing is provided between each leg of the swash plate and the swash plate support portion (hereinafter referred to as a first prior art).
  • first hydrostatic bearing and the second hydrostatic bearing which are independent of each other are provided between a pair of legs formed on the swash plate and the swash plate supporting portion, and the casing is Of the pair of supply and discharge passages provided, a variable displacement type diagonal line in which one of the supply and discharge passages is in communication with the first static pressure bearing and the other is in communication with the second static pressure bearing.
  • Plate-type hydraulic rotary machines are also known (see, for example, US Pat. Nos. 6, 0 4 8 and 1 7 6).
  • a hydraulic closed loop hydraulic power transmission mechanism Hydrostatic Transmission or less
  • a variable displacement swash plate type hydraulic rotating machine used for s ⁇
  • the variable displacement swash plate type hydraulic rotating machine includes a swash plate and a tilting lever for driving the swash plate. Then, in the tilting operation, the swash plate is driven to tilt from the neutral position at the zero tilt angle in the forward direction and the reverse direction, for example, the discharge direction of the pressure oil discharged from the hydraulic pump is reverse to the forward direction. Switch to both sides of the
  • one of the supply and discharge passages of the pair of supply and discharge passages is provided. Since the pressure oil is introduced from the piston, the hydraulic reaction force received by the piston from each piston (pressure on the swash plate due to the piston reaction force) and the separation force generated by the static pressure bearing There is a possibility that it may become a lance or lance due to pressure fluctuation on the side.
  • the third prior art variable displacement swash plate described above In order to use it for HST, etc., the hydraulic pump is configured to drive the swash plate in a forward direction and a reverse direction from a neutral position of zero tilt angle in a single direction. And, since such a variable displacement hydraulic type swash plate type hydraulic pump is switched between the high pressure side and the low pressure side of the pair of supply / discharge passage depending on the tilt direction of the swash plate, the first type The same problem occurs even if M static bearings are used according to the prior art.
  • the first hydrostatic bearing and the first hydrostatic bearing which are independent of each other are disposed between the pair of legs and the pair of tilt support surfaces formed on the swash plate support.
  • Two hydrostatic bearings are provided, and one of the pair of water supply and discharge passages is communicated with the first hydrostatic bearing, and the other is communicated with the second hydrostatic bearing. .
  • the hydraulic rotating machine according to the second prior art has the left and right sides of the rotation shaft, for example, against the pressing force of the swash plate where the separation force from the first and second static pressure bearings is the reaction force.
  • each leg of the swash plate may be inclined or separated so as to be lifted from the swash plate support.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a good balance between the pressing force of the swash plate by the screw reaction and the separation force by the static pressure bearing.
  • Another object of the present invention is to provide a hydraulic motor whose rotary shaft rotates in the forward or reverse direction, or a variable displacement swash plate type hydraulic pump used for HST etc. It is an object of the present invention to provide a variable displacement swash plate type hydraulic rotating machine capable of improving productivity and reducing cost etc. .
  • a cylindrical casing provided with a swash plate support on one side and a pair of supply and discharge passages on the other side;
  • a shaft having a rotatable shaft and a plurality of cylinders provided in the casing so as to rotate integrally with the rotating shaft and axially spaced apart in the circumferential direction.
  • a plurality of pistons reciprocably fitted to each cylinder of the cylinder block and a protruding end side of each of the pistons projecting from the cylinders are attached.
  • a plurality of shells and a surface side serve as a smooth surface for slidably guiding the respective shells, and a back surface side serves as a pair of leg portions and is rotatably supported on the swash plate support portion.
  • a swash plate to be held a tilt plate for driving the swash plate to tilt by displacing the swash plate by being provided in the marking and externally supplied with a tilt control pressure, and each of the swash plate Provided between the leg portion and the swash plate support portion and in communication with the supply and discharge passage to contact the two.
  • the present invention is applied to a variable displacement swash plate type hydraulic rotating machine including a hydrostatic bearing that holds a contact surface in a lubricated state and a PL.
  • the static pressure bearing is a first main static pressure bearing portion provided on one leg side of the pair of legs, A second main hydrostatic bearing provided on the other leg of the pair of legs and a second main hydrostatic bearing provided on the other leg apart from the second main hydrostatic bearing.
  • an auxiliary static pressure bearing portion according to a first aspect of the present invention, and a second auxiliary static pressure bearing portion provided on the one leg portion side apart from the first main static pressure bearing portion.
  • the space between each leg of the swash plate and the swash plate support portion can generate a separation force, and against the hydraulic reaction force (the pressing force of the swash plate due to the piston reaction force) the swash plate receives from each piston, the main static
  • the balance between the pressure bearing and the auxiliary static pressure bearing can be well balanced to provide stable performance as a static pressure bearing.
  • variable displacement swash plate type hydraulic rotating machine in which a pair of supply and discharge passages are reversibly switched to high pressure or low pressure (for example, the rotating shaft rotates in forward and reverse directions).
  • the present invention can be easily applied to a hydraulic motor or a variable displacement swash plate type hydraulic pump used for HST etc.). Generality can be improved, productivity can be improved, and costs can be reduced.
  • the first main static pressure bearing portion is located at a position close to the combined force application point of the hydraulic reaction force that the swash plate receives from each screw on one side in the radial direction of the rotating shaft.
  • Place in The second main static pressure bearing portion is disposed at a position near the resultant force application point of hydraulic reaction forces received by the swash plate from the respective pistons on the other side in the radial direction of the rotation shaft.
  • the swash plate can be made into the cylinder-bore by placing the first and second main static pressure bearing portions at a position close to the resultant force application point of the hydraulic reaction force received by the swash plate from each screw. It is possible to bring the resultant force acting point of the hydraulic reaction force (piston's reaction force) received from each piston on the rack side closer to the acting point of the separation force of the swash plate by each main static pressure bearing section. Become. As a result, it is possible to reduce the moment acting on the swash plate by the hydraulic reaction force and the separating force (for example, the moment around the axis based on the resultant force application point).
  • the effective bearing area of the first and second auxiliary static pressure bearing portions can be reduced, and the entire hydraulic rotary machine can be miniaturized, including the swash plate.
  • the swash plate is provided with a through hole located between the pair of legs and through which the rotary shaft is inserted with a gap, and the first and second main static pressures
  • the bearing portion is disposed at a position closer to the through hole than the first and second auxiliary static pressure bearing portions and has an effective bearing area larger than the first and second auxiliary static pressure bearing portions. It is set as having composition.
  • the first and second slide bearing portions are provided at positions radially separated from the rotation shaft from the first and second main static pressure bearing portions and the first and second auxiliary static pressure bearing portions, respectively. There is.
  • the first main static pressure bearing portion and the first auxiliary static pressure bearing portion may be formed by
  • the second main static pressure bearing portion and the second auxiliary static pressure bearing portion are in communication with one of the supply and discharge passages through an oil passage, and the other of the supply and discharge passages is provided with the second main static pressure bearing portion and the second auxiliary static pressure bearing portion. It is configured to communicate with the discharge passage via another oil passage.
  • the one main leg side of the swash plate is connected to the first main static pressure bearing portion.
  • the high pressure hydraulic oil can be introduced, and on the other leg side, the high pressure hydraulic oil can be introduced to the first auxiliary static pressure bearing.
  • the high pressure oil is introduced to the second auxiliary static bearing on the leg side of one side of the swash plate. In the other leg side, high pressure oil can be introduced to the second main static pressure bearing.
  • the main static pressure bearing portion and the auxiliary static pressure bearing portion may be disposed between each leg portion of the swash plate and the swash plate support portion even when any of the supply and discharge passages of the pair of 'suction and discharge passages becomes high pressure.
  • the first main static pressure bearing portion and the first auxiliary static pressure bearing portion have an oil passage in one of the supply and discharge passages of the respective supply and discharge passages.
  • a throttle for adjusting the amount of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion in common.
  • the second main static pressure bearing portion and the second auxiliary static pressure bearing portion communicate with the other supply / discharge passage of the respective supply / discharge passages via another oil passage,
  • another throttle is provided to adjust in common the amount of pressure oil supplied to the second main static pressure bearing portion and the second auxiliary static pressure bearing portion.
  • the first main static pressure bearing portion and the first auxiliary static pressure bearing portion are provided with a throttle in the middle of the oil passage communicating with the one discharge passage.
  • the amount of pressure oil supplied to the static pressure bearing portion and the first auxiliary static pressure bearing portion is adjusted in common to increase or decrease the separation force of the swash plate by these static pressure bearing portions according to the amount of pressure oil. be able to.
  • the second main static pressure bearing portion is also provided in the middle of the oil passage which connects the second main static pressure bearing portion and the second auxiliary static pressure bearing portion to the other supply / discharge passage. It is possible to adjust the amount of pressure oil supplied to the second and second auxiliary static pressure bearings in common, and to increase or decrease the separation force of the swash plate by these static pressure bearings according to the amount of pressure oil. .
  • the first main static pressure bearing portion and the first auxiliary static pressure bearing portion have an oil passage in one of the supply and discharge passages of the respective supply and discharge passages.
  • an individual throttle for adjusting the amount of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion independently of each other.
  • the pressure bearing portion and the second auxiliary static pressure bearing portion are configured to communicate with the other a discharge passage of the respective supply and discharge passages via another oil passage, during the passage of the other oil passage.
  • Another separate throttle is provided to adjust the amount of pressure oil supplied to the second main static pressure bearing and the second auxiliary static pressure bearing independently of each other.
  • the first throttle is provided in the middle of the oil passage connecting the first main static pressure bearing portion and the first auxiliary static pressure bearing portion to one of the supply and discharge passages.
  • the amount of pressure oil supplied to the auxiliary static pressure bearing portion 1 can be adjusted independently of each other, and the separation force of the swash plate between the main static pressure bearing portion and the auxiliary static pressure bearing portion It can be increased or decreased accordingly.
  • the second main static pressure may also be applied to another individual throttle provided in the middle of the oil passage connecting the second main static pressure bearing portion and the second auxiliary static pressure bearing portion to the other supply / discharge passage.
  • the amount of pressure oil supplied to the bearing portion and the second auxiliary static pressure bearing portion can be adjusted independently of each other, and the separation force of the swash plate between these main static pressure bearing portion and the auxiliary static pressure bearing portion can be It can be increased or decreased according to the amount of pressure oil.
  • the moment acting on the swash plate can be balanced by the hydraulic reaction force and the separating force from each piston, and the stability of the swash plate can be improved, and as a swash plate type hydraulic rotating machine Can increase the reliability and life of the
  • one side of the first main static pressure bearing portion, the first auxiliary static pressure bearing portion and the one supply / discharge passage is the one of the one supply / discharge passage.
  • a common oil passage communicating with the other side extending toward the static pressure bearing portion, and the other side of the common oil passage A branched oil passage is provided which is branched to each other and is separately connected to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion.
  • the first main static pressure bearing portion, the first auxiliary static pressure bearing portion, and an i Zt oil passage and a branched oil passage are provided between the first main static pressure bearing portion and the second main static pressure. Since another common oil passage and another branch oil passage are also provided between the bearing, the second auxiliary static pressure bearing and the other supply / discharge passage, each static pressure bearing, for example, is separately provided. Compared to the case of providing separate oil passages, it is possible to reduce the number of oil passages provided in the housing of the hydraulic rotary machine, etc., and realize a small and simple structure. It is possible to improve productivity and reduce costs.
  • pressure is supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion from one of the supply and discharge passages in the middle of the common oil passage.
  • a common throttle for adjusting the amount of oil is provided, and in the middle of the branch oil passage, the amounts of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion are mutually independent.
  • the individual throttles to be adjusted are provided respectively.
  • Another common throttle for adjusting the amount of oil is provided, and the amount of pressure oil supplied to the second main static pressure bearing portion and the second auxiliary static pressure bearing portion in the middle of the other branch oil passage Adjust independently of each other The other individual diaphragms are provided.
  • the common throttle is provided in the middle of the common oil passage located upstream of each branch oil passage, and the individual throttle is provided in the middle of each branch oil passage.
  • the hole diameter (throttle diameter) of the throttle is made relatively large, the amount of pressure oil supplied to the main static pressure bearing portion and the auxiliary static pressure bearing portion through the common throttle can be adjusted well, and dust etc. It is possible to reduce the possibility of clogging (clogging) of the common throttle due to foreign matter and improve the reliability of the device. Even if a minute gap exists around each static pressure bearing, these may be eliminated.
  • the effect of suppressing the leakage of pressure oil through a gap can be obtained by common throttling, the processability of the entire device can be improved, the productivity can be improved, and the reduction of waste etc. can be achieved o
  • the swash plate is configured to be driven to tilt from the neutral position of zero tilt angle in the forward direction and the reverse direction by the tilt actuator.
  • the hydraulic rotary machine according to the present invention is applied to a variable displacement swash plate type hydraulic pump used for HST etc. and this hydraulic pump is connected to a hydraulic circuit using a hydraulic closed circuit,
  • the discharge direction of pressure oil can be reversibly switched and controlled according to the direction of plate tilt (forward direction or reverse direction).
  • the tilt operation of the swash plate can be stabilized and the space between the swash plate support portion can be maintained in a good lubrication state. . .
  • the casing comprises a relief valve having a spool in a control sleeve, and the tilt valve for supplying and discharging the relief valve.
  • the control pressure is controlled in accordance with the command signal from the outside, and the control procedure of the adjustment procedure is followed following the tilting operation of the swash plate.
  • a feedback mechanism for feedback control of the rib is provided, and the feedback mechanism is set to an initial position on the axial side along the rotation axis when the swash plate is in the neutral position. If the swash plate is driven to tilt in the forward or reverse direction, the tilting motion of the swash plate is converted into axial displacement so that the swash plate is displaced from the initial position toward the other side in the axial direction.
  • a displacement transmission unit that transmits to the
  • FIG. 1 is a hydraulic circuit diagram for traveling of a wheel type working vehicle provided with a variable displacement swash plate type hydraulic pump according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the hydraulic pump shown in FIG. Fig. 3 is a longitudinal sectional view of the hydraulic pump as viewed in the direction of arrows in Fig. 2.
  • FIG. 4 is an enlarged sectional view of the hydraulic pump shown in FIG.
  • FIG. 5 is an enlarged sectional view showing the swash plate support and the swash plate in FIG. 4 together with the static pressure bearing portion and the like.
  • Fig. 6 shows the condition where the swash plate is in the neutral position, as indicated by arrows in Fig.
  • -It is an expanded sectional view seen from the direction of VI.
  • Fig. 7 is a cross-sectional view at the same position as in Fig. 6, showing the swash plate in a normal direction.
  • FIG. 8 is an enlarged perspective view of the swash plate in FIG. Fig. 9 is a rear view of the swash plate of Fig. 8 viewed from the back side.
  • FIG. 10 is a circuit diagram showing a tilt control device for a swash plate according to the first embodiment.
  • Fig. 1 1 is a front view showing the swash plate in Fig. 10 with a tilting piston.
  • Fig. 1 2 is a front view showing the swash plate in Fig. 1 1 tilted forward.
  • Fig. 13 is a front view showing the swash plate in Fig. 11 tilted in the reverse direction.
  • FIG. 14 is a longitudinal sectional view at the same position as FIG. 3, showing a hydraulic pump according to a second embodiment.
  • Figure 15 is an enlarged perspective view of the swash plate in Figure 14.
  • Fig. 16 is a rear view of the swash plate in Fig. 15 viewed from the back side.
  • variable displacement swash plate type hydraulic rotating machine is applied to a traveling hydraulic circuit in a wheel type work vehicle such as a wheel loader, for example.
  • FIGS. 1 to 13 are the forms of one embodiment of the present invention.
  • 3 shows a variable displacement swash plate type hydraulic rotating machine according to the embodiment.
  • reference numeral 1 denotes a swash plate type hydraulic pump as a variable displacement swash plate type hydraulic rotary machine, and the hydraulic pump 1 is a case described later.
  • a rotary shaft 13 is rotationally driven by a prime mover 2 such as a diesel engine serving as a drive source, and as shown in FIG. It distributes pressure oil.
  • the hydraulic pump 1 is connected to a hydraulic motor 5 described later via the main pipelines 3 A and 3 B to constitute a so-called hydraulic closed circuit 4.
  • Reference numeral 5 denotes a traveling hydraulic motor as a hydraulic actuator, and the hydraulic motor 5 is connected to wheels 7 and 7 of a wheeled work vehicle via, for example, a reduction gear 6. And, the hydraulic motor 5 has the pressure oil from the hydraulic pump 1 as the main line 3 A 3
  • the work vehicle By being supplied and discharged through B, the work vehicle is driven by driving the table 1 ⁇ 4 ff1 1 to rotate.
  • 1 1 is a cylindrical casing serving as an outer shell of the hydraulic pump 1, and the casing 1 1 has a cylindrical casing main body 1 1 A as shown in FIGS. 2 to 4 and the casing main body 1 It consists of a fluorocarbon sheeting 1 1 B and a plugging sheet 1 1 C, with both ends of 1 A blocked.
  • an opening 1 1 D and a drain passage 1 1 E are formed on the outer peripheral side of the casing main body 1 1 A, and these opening 1 1 D and the lens passage 1 1 E are , Kashin
  • the main body 1 1 A is always in communication with the inside of the regulator 3 4 valve Hung 3 5 which will be described later. And the casing In the opening 1 ID of the main body 1 1 A, a translation bar 4 4 described later is slidably mounted via a guide member 45 or the like. The inside of the casing 1 1 is a so-called drain chamber and is connected to a tank 4 7 described later.
  • a swash plate support 20 described later is provided on the swash plate 2 1 as shown in FIG. 2 to FIG.
  • a pair of supply and discharge passages are provided to the back side 1 1 C, which is provided opposite to the back side and is located on the other side of the casing main body 1 1 A.
  • the rotary shaft 1 3 is a rotary shaft rotatably provided in the casing 1 1, and the rotary shaft 1 3 is provided with bearings for the front casing 1 1 B and the heating casing 1 1 C respectively.
  • the rotary shaft 13 is rotatably supported by the motor 2 shown in FIG. 1 at the projecting end 13 A side that protrudes in the axial direction from the front bearing 1 1 B.
  • Reference numeral 14 denotes a cylinder block provided in the casing 1 1 so as to rotate integrally with the rotary shaft 13.
  • the cylinder block 1 4 is spaced apart in the circumferential direction thereof.
  • Each piston 16 is a piston which is slidably inserted in each of the pistons 5.
  • the pistons 16 may be cylinders. It reciprocates in cylinder 1 5 along with rotation of 1 4 and returns suction and discharge strokes.
  • each shoe 1 7 is rocked to one end side (protruding end side) of a screw tongue 16 which protrudes in the axial direction of the rotary shaft 13 from the cylinder 1 5 of the cylinder block 1 4. It is mounted to be movable.
  • Reference numeral 18 denotes an annular clamp which holds each shoe 17 against the swash plate 21.
  • the clamp 18 is a smooth surface of the swash plate 21 which will be described later as shown in FIG. 3 to FIG. It is intended to compensate for the displacement of each shell 1 7 in an annular path on the smooth surface 2 1 C of the swash plate 2 1 by pressing the shell 1 7 toward 1 C respectively. S.
  • valve plate 19 is formed with a pair of feeding and discharging ports 1 9 A and 19 B in a bowl shape. And these supply and discharge ports 1 9 A, 1
  • the supply and discharge ports 1 9 A and 1 9 B of the valve plate 1 9 intermittently communicate with the cylinders 1 5 when the cylinder block 1 4 rotates.
  • the supply and discharge ports 1 9 A and 1 9 B are provided with hydraulic oil drawn from the side of one supply and discharge passage 1 2 A (or 1 2 B) into each cylinder 1 5 as a piston 1
  • it has a function to discharge pressurized oil that has become high pressure in each cylinder 15 from the other supply / discharge passage 12 B (or 12 A).
  • Reference numeral 20 denotes a swash plate support as a swash plate support, and the swash plate support 20 is located around the rotation shaft 13. It is provided in one sing 1 IB. And, as shown in FIG. 4, the swash plate support 20 has a pair of tilting support surfaces 20 A and 20 B at positions on both the left and right sides sandwiching the rotation shaft 13, for example. It supports 21 so that it can tilt.
  • the tilt support surfaces 20 A and 20 B of the swash plate support 20 are formed in a concave curve corresponding to the legs 21 A and 2 IB of the swash plate 2 1 described later. It guides 21 so that it can tilt (slide) in the directions of arrows A and B around the center of tilt C illustrated in FIG. 6 and FIG. Further, in the swash plate support 20, a part of branched oil passages 24B, 24C25B, 25C described later is bored.
  • reference numeral 21 denotes a swash plate used in the present embodiment, and the swash plate 21 is provided in the casing 1 1 so as to be able to be tilted via the swash plate support 20.
  • the left of the swash plate support 20 projects in a convexly curved shape toward the tilting support surfaces 2 OA and 20 B .
  • the right pair of legs 2 1 A, 2 1 B are provided.
  • the legs 2 1 A 2 1 B of the swash plate 2 1 are spaced apart, for example, in the left and right directions with the rotary shaft 1 3 interposed therebetween, and have a concave-curved swash plate support 20 tilt support It is slidably fitted on the surface 20 A 20 B.
  • the surface side of the swash plate 21 is a smooth surface 21 which slidably guides each plate 17.
  • the swash plate 2 1 is provided with a through hole 21 D extending in the thickness direction.
  • the rotary shaft 13 is inserted between the legs 2 1 A and 2 1 B in the through hole 21 D with a gap.
  • the legs 2 1 A 2 1 B of the swash plate 2 1 are, as shown in FIG. 6 or FIG.
  • the tilt center C is disposed on the axis O- 0 of the rotation axis 1 3.
  • the swash plate 2 1 is shifted from the neutral position of zero tilt angle shown in FIG. 6 and FIG. 1 1 to a positive direction (arrow A direction) and a reverse direction (arrow B direction) as described later. It is driven to tilt using evenings 2 and 3 3.
  • the capacity (discharge amount of hydraulic oil) of the hydraulic pressure pump 1 is variably controlled according to the tilt angle 0 of the swash plate 2 1.
  • the swash plate 21 receives hydraulic reaction force (piston reaction force) from each screw 16 which rotates integrally with the cylinder dovetail 14 around the rotation shaft 13.
  • the combined forces f 1 and f 2 of the hydraulic reaction force are illustrated in FIG. 9 as the action points (hereinafter referred to as combined action points k 1 and k 2) rotate as cylinder block 1 4. It fluctuates to draw the letter “ ⁇ ” as shown.
  • the swash plate 2 1 when the swash plate 2 1 is tilted in the positive direction from the neutral position, it receives a hydraulic reaction force at the position of the resultant force application point kl, and when it is tilted in the reverse direction from the neutral position The hydraulic reaction is received at the point k 2.
  • Denoted at 2 2 is a hydrostatic bearing provided between the tilt support surfaces 20 A and 20 B of the swash plate support 20 and the legs 21 A and 21 B of the swash plate 2 1.
  • the static pressure bearing 22 is inclined, for example, by the pressure oil being introduced as described later from a pair of supply and discharge passages 12 A and 12 B provided in the rear cover 11 C. While generating a separation force (hydraulic force) between the support surfaces 20 A and 2 08 and the legs 2 1 and 2 1 B, the contact surfaces of both are maintained in a lubricated state.
  • the hydrostatic bearing 2 2 is provided on the convex curved surface side of one leg 21 A at a position close to the through hole 21 D of the swash plate 2 1 as shown in FIGS. 5, 8 and 9.
  • the second main static pressure bearing portion 22 B provided on the curved surface side and the second main static pressure bearing portion 22 B are provided on the convex curved surface side of the leg portion 21 B so as to be separated in the radial direction.
  • the second auxiliary static hydrostatic bearing 2 2 provided on the convex curved surface side of the leg 2 1 A at a distance from the first main hydrostatic bearing 2 2 A in the radial direction. It is configured by the auxiliary static pressure bearing 2 2 D.
  • the first main static pressure bearing portion 22A and the first auxiliary static pressure bearing portion 22C are provided with oil passages 24 described later. It is connected to one supply / discharge passage 1 2 A via. Further, the second main static pressure bearing portion 22 B and the second auxiliary static pressure bearing portion 22 D are connected to the other supply / discharge passage 12 B via an oil passage 25 which will be described later. It is
  • first and second main hydrostatic bearings 22 A and 22 B are shown by arrows in the directions of arrows A and B along the convexly curved surfaces of the legs 21 A and 2 IB as shown in FIG.
  • the planar shape is an elongated rectangular shape as shown in FIG.
  • the first and second auxiliary static pressure bearings 2 2 C and 2 2 D are the first and second main static pressure bearings 2 2 A with reference to the through hole 21 D of the swash plate 2 1.
  • 2 2 B is located at the outer side in the left and right direction (radial direction).
  • the first and second auxiliary static pressure bearings 2 2 C and 2 2 D are also connected to the first and second main static pressure bearings 2 2 along the convexly curved surfaces of the legs 2 IB and 2 1 A. It is formed as a groove extending substantially parallel to A and 22 B (directions of arrows A and B in Fig. 8), and its planar shape is an elongated rectangular shape as shown in Fig. 9. However, the first and second auxiliary static pressure bearings 2 2 C, 2 2 D have groove lengths (ditch lengths in the directions of arrows A and B) and groove widths in the left and right directions. It is smaller than the first and second main static pressure bearings 2 2 A and 2 2 B.
  • the swash plate 21 receives the hydraulic reaction force received from each screw 1 6 at one radial side (right side in FIG. 9) of the through hole 21D. It is arranged at a position near the resultant action point k 1 and at a distance La from the action point k 1. Also, the second main static pressure bearing portion 2 2 B has a through hole 2
  • the swash plate 21 is a piston on the other side of the through hole 21D in the radial direction (the left side in Fig. 9).
  • the second auxiliary static pressure bearing 22 D is the hydraulic reaction force that the swash plate 21 receives from each piston 16 at one radial direction side (right side in FIG. 9) of the through hole 21 D. Is located at a distance L d (L d> L b) from the resultant force action point k 2 of
  • the first and second main static pressure bearings 2 2 A and 2 2 B are shown in FIGS. 5 and 9 as the first and second auxiliary static pressure bearings 2.
  • the holes are arranged closer to the through holes 21 D than 2 C and 2 2 D.
  • the effective bearing areas S a and S b of the main static pressure bearing portions 2 2 A and 2 2 B are auxiliary static pressure bearing portions 2 2 C so as to satisfy the relationship according to the following equations (4) and (8).
  • 22 D is formed larger than the effective axial bearing area S c, S d.
  • the effective bearing areas S a, S b, S c, and S d are equivalent to the pressure receiving areas of the bearing portions 2 2 A, 2 2 B, 2 2 C, and 2 2 D, respectively.
  • Reference numerals 2 3 A and 2 3 B denote first and second sliding bearings provided on the legs 2 1 A and 2 1 B of the swash plate 2 1, respectively.
  • the main bearing for static pressure bearings 2 2 A, 2 2 B and 2 3 A, 2 3 B are located on the left and right sides of the through hole 21 1D. It is located at a position radially away from the through hole 21 D from the auxiliary static pressure bearing 2 2 C, 22 D. That is, as shown in FIG. 8, the slide bearing portions 2 3 A and 2 3 B are formed in a convexly curved shape at positions that become ridges on the left and right sides of the legs 2 1 A and 2 IB. It is
  • the slide bearing portions 2 3 A and 2 3 B are slidably in contact with the tilt support surfaces 2 OA and 20 B of the swash plate support 20 with a small surface pressure. As a result, the slide bearings 2 3 A and 2 3 B can smoothly rotate the legs 2 1 A and 2 IB of the swash plate 2 1 along the swash plate support 20. It compensates with the static pressure bearing part 2 2A to 2 2D.
  • Reference numeral 24 denotes an oil introduction passage for guiding pressure oil to the first main static pressure bearing portion 22A of the static pressure bearing 22 and the first auxiliary static pressure bearing portion 22C. As shown in Fig. 4 and Fig. 5, 4 is the supply and discharge passage 1 2
  • the oil guiding passage 24 is provided in the casing 1 1, the side is in communication with the supply and discharge passage 1 2 A, and the other side is the first main static pressure bearing portion 2 2 A, the first auxiliary static pressure Common oil passage 24 A extending toward the pressure bearing portion 2 2 C, and 2 branch passages 2 4 branched from each other on the other side of the common oil passage 2 4 A
  • the branched oil passages 2 4 B and 2 4 C of the oil introduction passage 2 4 are branched from each other toward the swash plate support 20 from the front casing 1 1 B side of the casing 1 1 and extend. ing. And The extension end of the branched oil passage 24 B is opened to the first main static pressure bearing portion 22 A on the tilt support surface 2 OA side of the swash plate support 20. Further, the extension end of the branched oil passage 24 C is opened to the first auxiliary static pressure bearing portion 22 C on the tilt support surface 20 B side of the swash plate support 20.
  • Reference numeral 2 5 denotes another oil introduction passage for introducing pressure oil to the second main static pressure bearing portion 2 2 B of the static pressure bearing 2 2 and the second auxiliary static pressure bearing portion 2 2 D. As shown in FIG. 4 and FIG. 5, it is provided between the supply / discharge passage 12 B and the second main static pressure bearing portion 22 B and the second auxiliary static pressure bearing portion 22 D.
  • the oil guiding passage 2 5 is provided in the casing 1 1 and one side communicates with the supply and discharge passage 1 2 B, and the other side is the second main static pressure bearing portion 2 2 B, the second auxiliary static pressure bearing It comprises a common oil passage 25A extending toward the part 22D and two branched oil passages 25B and 25C branched from each other on the other side of the common oil passage 25A. There is. And, one branch oil passage 25 B is connected to the second main static pressure bearing 22 B, and the other branch oil passage 25 C is connected to the second auxiliary static pressure bearing 22 D It is done.
  • the branched oil passages 25 B and 25 C of the oil guiding passage 25 are branched from each other toward the inside of the swash plate support 20 from the side of the flowing side 1 1 B of the casing 1 1. It extends.
  • the extension end of the branch oil passage 25 B is opened to the second main static pressure bearing portion 2 2 B on the side of the tilt support surface 2 0 B of the swash plate support 20.
  • the extension end of the branch oil passage 25 C is opened to the second auxiliary static pressure bearing portion 22 D on the tilt support surface 2 OA side of the swash plate support 20.
  • Reference numeral 2 6 denotes a common throttle provided in the middle of the common oil passage 2 4 A
  • 2 7 denotes another common throttle provided in the middle of the common oil passage 2 5 A.
  • One of these common apertures 2 6, 2 7 As shown in Fig. 4 and Fig. 5, the common throttle 2 6 is common to the first main static pressure bearing section 2 2 A and the first auxiliary static pressure bearing section 2 2 C from the supply / discharge passage 12A. The amount of pressure oil to be supplied is adjusted according to the reduction diameter (pore diameter).
  • the other common throttle 2 7 is a pressure oil that is commonly supplied from the supply and discharge passage 12 B to the second main static pressure bearing portion 2 2 B and the second auxiliary static pressure bearing portion 2 2 D. The amount is adjusted according to the diameter of the aperture (hole diameter).
  • the common throttles 2 6 and 2 7 have throttle diameters larger than the individual throttles 2 8 to 3 1 described later, and supply and discharge passages 12 A and 12 B to the main static pressure bearing portion 2 2 A Roughly adjust the amount of pressure oil supplied to H, 2 2 B and auxiliary static pressure bearings 2 2 C, 2 2 D.
  • throttles 2 and 2 9 are throttles (hereinafter referred to as individual throttles 2 8 and 2 9) provided in the middle of the branch oil passages 2 4 8 and 2 5 B, respectively
  • Reference numerals 30 and 31 denote other throttles (hereinafter referred to as individual throttles 30 and 31) provided in the middle of the branch oil passages 24 C and 25 C, respectively.
  • these individual apertures 28 to 31 have smaller aperture diameters than the common apertures 26 and 27.
  • the static pressure is supplied to the hydrostatic bearing 2 2 A to 2 2 D via the branched oil passages 2 4 B, 2 5 B, 2 4 C, 2 5 C.
  • the amounts of pressure oil to be added are fine-tuned independently of each other by the individual throttles 2 8 to 3 1.
  • the individual throttle 2 8 finely adjusts the amount of pressure oil supplied to the first main static pressure bearing portion 2 2 A via the branch oil passage 2 4 B individually.
  • the individual throttle 2 9 finely adjusts the amount of pressure oil supplied to the second main static pressure bearing 2 2 B via the branch oil passage 2 5 B individually.
  • the individual throttle 30 finely adjusts the amount of pressure oil supplied to the first auxiliary static pressure bearing portion 2 2 C via the branch oil passage 2 4 C, and the individual throttle 3 1 makes the branch oil passage
  • the amount of pressure oil supplied to the second auxiliary static pressure bearing section 2 2 D via 2 5 C is finely adjusted individually.
  • Reference numerals 3 2 and 3 3 denote a pair of tilting actuators for driving the swash plate 2 1 to tilt.
  • one tilting condenser 32 is located radially outward of the cylinder D 14 and The cylinder hole 32 A formed in the main body 1 1 A and the cylinder hole 32 2 A are slidably inserted into the cylinder hole 32 A, and the cylinder hole 3 2
  • a tilting piston 3 2 C defining a hydraulic pressure chamber 3 2 ⁇ ⁇ between A and A, and disposed in the hydraulic pressure chamber 3 2 B, the tilting pistine h It consists of a spring 3 2 D and a constant bias toward one side ⁇
  • the other tilting aperture 33 3 also has the cylinder hole 33 A formed in the casing main body 1 1 A in substantially the same manner as the one tilting aperture 31 2 described above, and Hydraulic piston 3 3 A defining a hydraulic chamber 3 3 A in the cylinder hole 3 3 A
  • each of the tilting arms 3 2 and 3 3 is disposed at a position opposite to each other in the radial direction of the cylinder block 1 4 with respect to the casing main body 1 1 A.
  • the swash plate 21 is driven to tilt in the directions of arrows A and B by pistons 3 2 C and 3 3 C, respectively. That is, as shown in FIG. 3 and FIG. 10, the hydraulic pressure chamber 32 B of the tilting valve 32 is connected to a control line 50 B described later, A tilt control pressure is supplied and discharged from the control line 50 B.
  • the fluid pressure chamber 33 B of the tilting valve 33 is connected to a control line 5 OA described later, and a tilting control pressure is supplied and discharged from the control line 50 A.
  • the tilting piston 3 3 C is contracted toward the inside of the cylinder hole 3 3 A.
  • the reference numeral 3 4 is a regulation tube as a volume control valve that discharges a tilting control pressure to the tilting needle valve 2, 3 3. As shown in Fig. 3, this Regu-yu 1 34 is a casing body.
  • valve housing 1 1 A located on the outside of the valve housing 1 5 provided with a valve housing 3 5, a control sleeve 3 6 described later, a spool
  • the regu- lator tube 3 4 is constituted by a hydraulic servo valve for tilt control having a spool 3 7 in a control sleeve 3 6.
  • the supply and discharge ports 35A, 35B, etc. of the displacement control pressure are provided in the valve housing 35 of the regi-yu 34.
  • the supply / discharge port 35 A was connected to the discharge side of the pilot pump 46 via the control line 4 8 A described later.
  • the supply / discharge port 35 B is W is connected to the control line 4 8 B described above and the valve housing 3 5 of the regulator 3 4 is provided so as to be liquid-tightly fixed to the outer side surface of the casing 1 1
  • control sleeve 3 6 is a cylindrical control sleeve slidably inserted into the valve housing 3 5, and the control sleeve 3 6 has a plurality of translation bars 4 4 described later on its outer periphery in the axial direction.
  • the control sleeve 3 6 is integrally connected using a set screw and the like, and the control sleeve 3 6 follows the movement of the translation bar 4 4 (translational movement along the axial direction of the rotation axis 1 3) and the valve 8 kunung It slides in the axial direction (direction of arrow DE in Fig. 6) in 5 5.
  • Reference numeral 3 7 denotes a spool slidably fitted in the control sleeve 3 6.
  • the spool 3 7 is a control sleeve 3
  • the sprue 3 7 selectively supplies 3 ⁇ 4 to the 3 1 ⁇ or 5 1 ⁇ or 1 ⁇ aisle for the 3 5
  • Reference numeral 3 8 denotes a hydraulic pilot section located on the axial side of the spool 3 7 and provided in the valve housing 3 5.
  • the hydraulic pilot section 3 8 is opposed to a valve spring 3 9 described later. It has a plunger 3 8 ⁇ for driving the spool 3 7 in the axial direction, and a command pressure is supplied via a command pressure line 5 3 5 described later.
  • the plunger 38 of the hydraulic pilot section 38 is pressured by using the command pressure from the command pressure line 53 as the pilot pressure, so that the pressure is applied to this pilot pressure. Accordingly, the spool 3 7 is axially displaced in the valve housing 3 5. This As a result, the plunger 3 8 A of the hydraulic pilot section 3 8 changes the regulator 3 4 shown in Fig. 10 from the neutral position (I) to the switching position (11), (III) It is what changes.
  • Reference numeral 3 9 denotes a valve spring disposed between the other axial side of the spool 3 7 and the valve housing 3 5, and the valve spring 3 9 is a hydraulic pilot portion 3 of the spool 3 7. Always bias toward the 8 side, for example, the regi
  • This feedback mechanism 40 has the side surface of the swash plate 21 and the regi- tal tube 3 as shown in Figs. 3 to 13.
  • a conversion unit which will be described later, provided between the control sleeve 4 and the control sleeve 3 6
  • the converting part 4 1 is composed of a cam groove 4 2 and a force follower 4 3 which will be described later. And, converter 4
  • Reference numeral 4 2 denotes a cam groove having a cam surface for converting the tilting movement of the swash plate 2 1 into axial displacement of the cam follower 4 3.
  • the swash plate 2 is a concave formed by bending in a substantially “V” shape or “U” shape on the side surface of the swash plate 2 1 (the side surface of the other leg 21 B) as shown in FIGS. 3 to 8 It is composed of grooves.
  • the force groove 4 2 is disposed at a position away from the center C of tilting of the swash plate 2 1.
  • the cam groove 4 2 corresponds to the outer diameter of the roller portion 4 3 A so that the roller portion 4 3 A of the force lower 4 3 described later can be slidably (rotated) fitted. Groove width.
  • the middle groove portion 4 2 A is the axis O- O of the rotation axis 13 from the center of rotation C when the swash plate 21 is in the neutral position.
  • the lower inclined groove 4 2 B is disposed at the position of the largest size ⁇ spaced apart dimension R a (R a ⁇ R) along the center from the position of the intermediate groove 4 2 A to the rotational center C
  • the upper inclined groove portion 4 2 C is formed so as to extend obliquely upward from the intermediate groove portion 4 2 A in a direction approaching the inclination center C from the middle groove portion 4 2 A.
  • the cam groove 4 2 is an intermediate groove 4 2 on the side surface of the swash plate 2 1.
  • the lower inclined groove 4 2 B and the upper inclined groove are formed as a concave groove bent in a substantially ⁇ V shape or “U” shape at the position A.
  • 4 2 C is a shape symmetrical to each other so as to expand downward and upward from the position of the intermediate groove portion 4 2 A based on the axis O-O.
  • the lower inclined groove portion 4 2 B and the upper inclined groove portion 4 2 C have their tip sides extending to the positions of points G 1 and H 1 described later shown in FIG. 11 and these points G 1 and H 1 are Tilting center of swash plate 2 1
  • the dimension R b in the case is set to a dimension smaller than the dimension R a from the center of tilt C to the intermediate groove portion 4 2 A (R b less R a ⁇ R)
  • Reference numeral 4 3 denotes a force mousse roll provided in sliding contact with the cam groove 4 2.
  • This cam face 4 3 is integrally formed on one side in the longitudinal direction of a translational bar 4 4 described later as shown in FIG. 3. It has a roller section 43 A that can be rotated (autorotated) along the wall surface (force surface) in the force groove 4 2.
  • cam follower 4 3 is a roller unit 4 3 A is a swash plate
  • roller portion 4 3 A of the force lower 4 3 engaged with the cam groove 4 2 on the swash plate 2 1 side is in the initial position shown in FIG. 11 when the swash plate 2 1 is in the neutral position.
  • the swash plate 2 1 has the same tilt angle in the forward or reverse direction.
  • Reference numeral 4 4 denotes a translation bar as a translation member that constitutes the displacement transfer part of the feedback mechanism 4 0, and the translation bar 4 4 is an illustration of FIG.
  • the translational bar 4 4 is provided with a cam follower 4 3 on one side in the longitudinal direction, and is integrated with the cam follower 4 3 A translational movement is given along the axis O-O of the rotation axis 1 3. Further, as shown in FIGS. 3 and 4, the other side of the translational bar 4 4 is a bifurcated fixing portion 4 4 A sandwiching the control sleeve 3 6 from the outside in the radial direction, the fixing portion 4 4 A is fixed to the outer peripheral side of the control sleeve 3 6 by fixing means such as a plurality of fixing screws or rivets.
  • the translational bar 44 is held fixed at a fixed angle (for example, 90 degrees perpendicular to the control sleeve 3 6).
  • the translational valve 4 4 4 is such that the roller portion 4 3 A of the cam follower 4 3 is axially displaced along the axis O-O of the rotation shaft 1 3.
  • 4 5 shows the opening 1 1 1 of the casing 1 1 as shown in FIG.
  • the guide member 4 5 which is a guy F member provided so as to cover the D, movably or slidably supports the lengthwise middle portion of the translation bar 4 4, and the translation bar 4 4 Swinging in the upper or lower direction (for example, circumferential direction of the cylinder jack 14) or vibration by gausse or the like is suppressed.
  • the guide member 4 5 is in translation, and 4 4 is in rotation.
  • Reference numeral 4 6 denotes a pilot pump which generates displacement control pressure.
  • the pilot pump 4 6 is driven to rotate together with the hydraulic pump 1 by the prime mover 2 shown in FIG. Figure
  • the hydraulic oil is drawn from inside the tank 4 7 shown in 3 and the pressure oil for displacement control is discharged into the control pipe 4 8 A.
  • the control line 4 8 B is for Reguire 34 3 supply and discharge port 3 5
  • OA and 50 B are other control lines for supplying and discharging the tilt control pressure to the fluid pressure chambers 32 B and 33 B of the tilt ovens 32 and 33, respectively.
  • a and 50 B are connected to the control line 4 8 through the back and forth switching valve 51 as described later.
  • 5 1 is control line 4 8 A, 4 8 B and control line 5 0 A, 5
  • This forward and reverse switching valve 51 has left and right solenoid parts 51 A and 51 B as shown in FIG. 3 and FIG. 10, and for example, a switching lever (not shown) in the driver's cab The operator can manually switch the vehicle from the stop position (a) to the forward position (b) or the reverse position (c).
  • the operator moves the pilot pedal 5 2 A described later and the pilot pump is operated.
  • the control pressure of 4 6 force, etc. is supplied to the hydraulic pressure chamber 3 3 B of the tilt angle 3 3 through the control line 4 8 A, 5 OA.
  • the tilting piston 3 3 C of the tilting actuator 3 3 drives the swash plate 2 1 to tilt in the direction of arrow A in FIG.
  • the hydraulic pressure chamber 33 of the tilting valve 3 3 3 B has a control pipe 5 0 A, 4
  • the tilt control pressure is tanked via 8 B, regulator 34 and so on.
  • the forward / backward switching valve 51 is provided between the register 31 4 and the tilting lever 32 3 3 3 to move forward from the vehicle stop position (a) to the forward position (b)
  • the reverse drive position (c) the direction of supply and discharge of the tilt control pressure to the tilt actuator 3 2 and 3 3 is switched, and the swash plate 2 1 is switched according to the tilt control pressure. It is driven to tilt from the neutral position in the forward and reverse directions.
  • 5 2 denotes a travel operation valve as a command means provided on the cab side of the wheel type vehicle, and a travel pedal 5 2 A corresponding to an accelerator pedal of the vehicle is attached to the travel operation valve 5 2. It is done. And, the operator of the vehicle is traveling pedal
  • the traveling hydraulic circuit of the wheel type working vehicle provided with the variable displacement swash plate type hydraulic pump 1 according to the present embodiment has the configuration as described above, and its operation will be described next.
  • each piston 16 reciprocates within each cylinder 1 5 of cylinder block 1 4 even if the prime mover 2 rotationally drives the rotary shaft 1 3 and rotates the cylinder head 1 4.
  • the supply and discharge passages 1 2 A and 1 2 B of the hydraulic pump 1 are in the same pressure state, and the pressure through the main lines 3 A and 3 B to the hydraulic motor 5 shown in FIG. 1 does not move. Oil supply and discharge will be suspended
  • the mouth pressure is supplied toward the end 3 8. This depends on the valve housing 3 5 of the valve 1 3 4
  • the spool 37 is slidingly displaced in the axial direction according to the pilot pressure, and the regi- cal valve 34 is switched from the neutral position (I) shown in Fig. 10 to the switching position (II).
  • control line 4 8 B is connected to the tank 4 7 through the drain chamber in the register 1 34 3 and the casing 1 1, and the tilting line 3 2 3 2
  • the pressure oil in the fluid pressure chamber 32 B is discharged to the tank 4 7 side through the control pipelines 50 B and 48 B, the regu- lator 34 and so on.
  • the tilting piston 3 3 C of the tilting lever 3 3 tilts and drives the swash plate 2 1 in the direction of arrow A in FIG. 10.
  • each piston 16 is tilted as the cylinder block 14 rotates integrally with the rotary shaft 13.
  • the reciprocating motion is repeated in each cylinder 1 5 of the cylinder block 1 4 with a stack amount (displacement volume) corresponding to the angle 0. Therefore, for example, the hydraulic pump 1 discharges the pressure oil from the supply / discharge passage 12 A while drawing oil from the supply / discharge passage 12 B into the cylinders 15.
  • the pressure oil flows in the main pipelines 3 A, 3 B along the direction of arrow A 1, and the hydraulic motor 5 for traveling is It can be driven to rotate by supplying and discharging pressure oil. Then, the rotational output of the hydraulic motor 5 is transmitted to the wheels 7 and 7 of the wheeled working vehicle via the reduction gear 6 and rotationally drives each of the wheels 7, for example, in the forward direction. Can be driven at a speed corresponding to a tilt angle of 0.
  • the pressure oil in the hydraulic pressure chamber 3 3 B of the tilting gear 1 3 3 is discharged to the tank 4 7 side via the control pipelines 5 0 A, 4 8 B, the regi Be
  • the swash plate 21 can be driven to tilt in the direction of arrow B in FIG. 10 by the tilting piston 32 C of the tilting plate 32.
  • pressure oil can be circulated along the direction of arrow B1 in the closed hydraulic circuit 4 for traveling shown in FIG. 1, and the hydraulic motor 5 for traveling is rotationally driven in the same direction.
  • the rotational output of the hydraulic motor 5 is transmitted to the wheels 7 and 7 of the wheeled working vehicle via the reduction gear 6, for example, a speed corresponding to a tilt angle 0 of the working vehicle in the reverse direction. It can drive and drive.
  • the swash plate 2 1 when the swash plate 2 1 is tilted in the positive direction (direction A) from the neutral position, one of the pair of supply and discharge passages 12 A and 12 B has high pressure. Thus, the swash plate 2 1 receives the resultant force fl of the hydraulic reaction force from each piston 16 at the position of the resultant force application point k 1 shown in FIG.
  • the first main static pressure bearing portion 2 2 A provided on the leg portion 2 1 A of the swash plate 2 1 and the first auxiliary static pressure bearing portion 2 2 C provided on the leg portion 2 1 B
  • the high pressure oil is led from the supply and discharge passage 1 '2 A through the common oil passage 24' of the oil guiding passage 24 'and the branched oil passage 24' B and 24 C.
  • the first main static pressure bearing portion is disposed between the tilt support surfaces 20 A and 20 B of the swash plate support 20 and the legs 2 1 A and 2 1 B of the swash plate 2 1.
  • a separation force fa is generated by the 2 2 A
  • a separation force fc is generated by the first auxiliary static pressure bearing portion 2 2 C. Occurs.
  • the first main static pressure bearing portion 22 A is positioned at a distance L a from the resultant force acting point k 1 of the hydraulic reaction force received by the swash plate 21 from each piston 16 as shown in FIG.
  • the first auxiliary static pressure bearing portion 22C is disposed at a position where the distance Lc (Lc> La) from the combined force application point kl.
  • the separation force fl of the hydraulic reaction force that the swash plate 2 1 receives from each piston 16 is set to satisfy the following equations (1) to (4).
  • the resultant force fl of the hydraulic reaction force is balanced with the separating forces fa and fc, and the tilt support surfaces 20 0 A and 20 B of the swash plate support 20 and the legs 2 of the swash plate 2 1
  • the contact surface between 1 A and 2 1 B can be maintained in a lubricated state.
  • the separation force fa due to the first main static pressure bearing 22 A and the separation force fc due to the first auxiliary static pressure bearing 22 C are, for example, swash plates tilted in the positive direction from the neutral position. It is set so that the following relationship is satisfied for the resultant force fl of the hydraulic reaction force received from each of the pistons 21 by 2 1. .
  • the resultant force f 1 received by the swash plate 2 1 at this time is expressed by the following equation from the relationship between the pressure P due to the hydraulic reaction force and the pressure receiving area S 1.
  • the main static pressure bearing 22 A is Since the auxiliary bearing 2 2 C has an effective bearing area S a and an effective bearing area S c (S c ⁇ S a), the following equations (1) and (2) are obtained. Seki The person in charge will be guided.
  • the separation force fa (effective bearing area S a) due to the first main static pressure bearing portion 22 A acts on the position from the combined force application point k 1 to the distance L a
  • the separation force fc (effective bearing area S c) due to the bearing portion 2 2 C acts on a position where the distance L c is from the combined force application point kl. For this reason, the moments of the separation forces f a and f c with respect to the combined working point k l are set to satisfy the following relationship.
  • the separation force fa of the main static pressure bearing portion 2 2 A and the auxiliary static pressure bearing portion 2 2 C The balance force with the separation force fc of the swash plate 2 1 can be balanced, and the legs 2 1 A and 2 1 B of the swash plate 2 1 are lifted from the tilt support surfaces 2 OA and 20 B of the swash plate support 20. As a result, it is possible to prevent tilting and separation.
  • the pressure oil introduced into the hydrostatic bearing 2 2 A, 2 2 C can be prevented from leaking to the outside, and the legs 2 1 A, 2 1 B of the swash plate 2 1 and the swash plate support 2 Lubrication can be maintained between 0 and the tilt bearing surfaces 2 0 A and 2 0 B. And, the tilting movement of the swash plate 21 can be stabilized, and the tilting drive force by the tilting actuators 32 and 33 can be reduced.
  • the swash plate 2 1 when the swash plate 2 1 is tilted in the reverse direction (direction B) from the neutral position, the swash plate 2 1 is located at the position of the resultant force application point k 2 shown in FIG. It receives the resultant force f 2 of the hydraulic reaction force from. Then, with respect to the resultant force f 2 at this time, the separation force f b and the second auxiliary static pressure by the second main static pressure bearing portion 2 2 B.
  • the separation force fd due to bearing 2 2 D is set to satisfy the following relationship.
  • the resultant force f 2 received by the swash plate 2 1 at this time is expressed by the following equation from the relationship between the pressure P due to the hydraulic reaction force and the pressure receiving area S 2.
  • the main static pressure bearing 22 B is Since the auxiliary static pressure bearing portion 2 2 D has an effective bearing area S b and an effective bearing area S d (S d ⁇ S b), the following relationship is derived from the above equation (5) .
  • the separation force fb (effective bearing area S b) due to the second main static pressure bearing portion 2 2 B acts at a distance L b from the force application point k 2
  • the separation force fd (effective bearing area S d) due to the pressure bearing portion 2 2 D acts on a position at a distance L d from the combined force application point k 2.
  • the separation force f b of the main 'static pressure bearing portion 2 2 B and the auxiliary static pressure bearing portion 2 2D can be balanced with the separation force fd, and the legs 2 1 A and 2 1 B of the swash plate 2 1 float from the tilt support surfaces 2 OA and 2 OB of the swash plate support 20. Can be prevented from tilting or separating.
  • the pressure oil introduced into the static pressure bearing portions 2 2 B and 2 2 D can be prevented from leaking to the outside, and The legs of the board 2 1 2 1 A
  • the traveling speed of the vehicle when the vehicle moves forward or backward is determined by the discharge amount (flow rate) of the pressure oil from the hydraulic pump 1, and this discharge amount is determined according to the tilt angle ⁇ of the swash plate 21. It is increased and decreased. And, unless feedback control is performed on the capacity control valve, Reg. 3 4 according to the tilt angle 0 of the swash plate 2 1, the tilt angle 6 of the swash plate 2 1> (ie, It is difficult to control the running speed of the vehicle stably only by stepping on the running pedal 5 2 A
  • the feedback mechanism 40 is provided between the control slip 36 of the control panel 34 and the side surface of the swash plate 21. This feedback mechanism When the swash plate 2 1 is driven to tilt in either the positive direction or the reverse direction from the neutral position at a tilt angle of 0, the regulation action of the swash plate 2 1 is performed. Let's follow
  • -E3 34 is configured to perform feedback control.
  • this fid-no, 'cucking mechanism 40 is formed on the side surface of the swash plate 2 1 (the side surface of the leg 21 B) and is approximately' V 'based on the axis 0-0 of the rotation shaft 13
  • cam groove 4 2 having a U-shaped curved groove or a U U-shaped concave groove, and a roller portion 4 3 A in sliding contact with the cam groove 4 2
  • the cam follower 4 3 converted into and extracted, and the axial displacement of the rotating shaft 1 3 due to the axial displacement taken out by the cam follower 4 3 It consists of a translation bar 4 4 which translates in the direction of arrow.
  • this translational valve 4 4 is configured to transmit the axial displacement due to the force transfer force 3 3 3 to the fixing portion 4 4 A on the tip side to the control slide 3 6
  • the cam groove 4 2 on the swash plate 2 1 side extends from the center of rotation to the axis O— O of the rotation shaft 13.
  • An intermediate groove portion 4 2 A disposed at the position of the dimension R a (R a ⁇ R) which is most widely separated, and an oblique downward direction toward the tilting center C from the position of the intermediate groove portion 4 2 A
  • an upper inclined groove 4 2 C extending obliquely from the middle groove 4 2 A toward the inclination center C.
  • the entire cam groove 42 is formed on the side surface of the swash plate 2 1 as a concave groove bent in a substantially "V" shape or "U” shape at the position of the intermediate groove portion 42A.
  • the swash plate 2 1 is tilted from the neutral position in the direction of arrow B (reverse direction) as shown in FIG. 13, and the tilt angle ⁇ is the angle ⁇
  • the cam groove 4 3 has a rib 4 3 and the cam groove 4 2 has a point along the upper inclined groove 4 2 C of the cam groove 4 2.
  • the roller portion 4 3 A of the cam shaft D 3 3 sliding contact with the force groove 4 2 on the swash plate 2 1 side has the swash plate 2 1 with the cam groove
  • the tilting movement of 2 1 can be taken out by converting it into a translation along the axis O-O of the rotation axis 1 3, an axial displacement of 14 4 (for example, a displacement of a dimension a b). And, the translational bar 4 4 can transmit the axial displacement at the same time to the control sleeve 3 6 as the same axial displacement by means of the fixed part 4 4 A.
  • variable displacement swash plate type hydraulic pump 1 is connected to the hydraulic motor 5 using the hydraulic pressure closed circuit 4 illustrated in FIG.
  • the swash plate 2 1 can be tilted from the neutral position in the forward and reverse directions, respectively, to control the discharge amount (flow rate) of the pressure oil in both directions, and the swash plate 2 1 can be used during forward or reverse travel of the vehicle. Speed control can be performed smoothly according to the tilt angle of the motor.
  • the regu- lator valve 34 which functions as a displacement control valve, can be configured by a hydraulic servo valve of a simple structure having a spool 3 7 in the control sleeve 3 6.
  • the tilt control device consisting of the tilt control valves 32 and 33, the regulator 34 and the feedback mechanism 40 can simplify the whole structure. The number of parts can be reduced to improve the workability at the time of assembly, etc.
  • the tilt control device of the hydraulic pump 1 is not limited to the hydraulic closed circuit 4 illustrated in FIG. 1, and even if it is applied to a so-called hydraulic open circuit, pressure oil is supplied to the hydraulic motor such as hydraulic motor. can do . Therefore, the tilt control device of hydraulic pump 1 can be applied to both hydraulic closed circuit and open circuit, and it can improve versatility, improve productivity, reduce cost and so on. It is possible to
  • a hydrostatic bearing 2 2 (hydrostatic bearing 2 2 A 2 2 D) is provided between B and B, and the hydrostatic bearing 2 2 A 2 2 D is provided with a pair of supply and discharge passages 1 2 A, 1 2 B force is used to guide the high pressure hydraulic oil. Therefore, the tilt support surface 20 0 2 0 B and the legs
  • a separation force (for example, separation force fafb, fc, fd in FIG. 5) is generated by the static pressure bearing part 2 2 A 2 2 D between 2 1 A and 2 1 B, and the tilt support surface 2 0 A, 2 0 B and leg
  • the contact surface between 2 1 A and 2 1 B can be maintained in a lubricated state
  • the application of the present invention is limited to the variable displacement swash plate type hydraulic pump 1 used for HST etc.
  • a hydraulic motor etc. in which the rotation shaft rotates in the forward or reverse direction
  • the present invention can be easily applied to a hydraulic rotary machine or the like in which a pair of supply and discharge passages are reversibly switched to high and low pressure, so that the versatility as a hydraulic rotary machine can be enhanced and productivity can be improved. Cost reduction can be achieved.
  • the first and second main static pressure bearing portions 22 A and 22 B are received by the swash plate 21 from the respective pistons 16. , K 2 are placed close to the position. For this reason, it is possible to bring the resultant force acting point k l, k 2 close to the acting point of the separating force f a, f b by the main static pressure bearing portions 2 2 A, 2 2 B.
  • the first and second auxiliary static pressure bearing units 2 2 C 2 2 D can reduce their effective bearing areas S c and S d. It is possible to reduce the size of the entire hydraulic pump 1 including the swash plate 2 1.
  • leg portions 21A and 21B of the swash plate 21 are separated from the rotary shaft 13 in the radial direction from the auxiliary static pressure bearing portions 22D and 22C, respectively.
  • the second slide bearing 2 3 A 2 3 B is provided. For this reason, the first and second sliding bearings 2 3 A,
  • 2 3 B is the stability of the swash plate 2 1 even when the lance plate or the lance changes due to pressure fluctuation on the supply / discharge passage 1 2 A, 12 B side, etc.
  • the first and second slide bearings 2 3 A 2 3 B slide with a small surface pressure on the tilt support surfaces 2 OA and 20 B of the swash plate support 20.
  • the sliding bearing parts 2 3 A, 2 3 B are in contact with the leg parts 2 1 A, 2 1 of the swash plate 2 1. B and tilt support surface 2 swash plate support 2 0 OA,
  • the contact pressure can be reduced, and wear and the like on the contact surface between the two can be suppressed, and reliability and life can be improved.
  • a common oil path 24 A and a branch oil are provided between the first main static bearing 2 2 A, the first auxiliary static pressure bearing 2 2 C and one of the supply and discharge passages 12 A.
  • Routes 2 4 B and 2 4 C are provided between the second main static pressure bearing 22 B and the second auxiliary static pressure bearing 22 D and the other supply / discharge passage 12 B.
  • Oil passages 2 5 B and 2 5 C are provided and common oil passages 2 4 A and 25 A in the middle are a common throttle
  • the auxiliary static pressure bearing portions 2 2 A and 2 2 B and the auxiliary The amount of pressure oil supplied to the hydrostatic bearing 2 2 C, 2 2 D can be well adjusted, and there is a possibility that the common throttle 2 6, 2 7 may be blocked (heavy clogging) by foreign matter such as dust and the like. To improve the reliability of the equipment.
  • throttles 2, 8, 29 and 3 0 3 1 independent of each other are provided in the middle of each branched oil passage 2 4 B, 2 4 C, 2 5 B and 2 5 C, respectively.
  • the individual throttles 2, 2 9, 3 0 3 1 are pressure oil to be supplied to the main static pressure bearing portions 2 2 A and 2 2 B and the auxiliary static pressure bearing portions 2 2 C and 2 2 D.
  • the amounts can be adjusted independently of one another, and the separation force fa, fb, fc, fd of the swash plate 2 1 by these static pressure bearing portions 2 2 A to 2 2 D These can be easily increased or decreased according to the amount of pressure oil flowing through the individual throttles 2 8 to 3 1.
  • the balance of the moment acting on the swash plate 21 can be enhanced, and the tilt operability of the swash plate 2 1
  • the stability can be improved, and the reliability and life of the swash plate type hydraulic pump 1 can be improved.
  • FIGS. 14 to 16 show a second embodiment of the present invention.
  • a feature of the present embodiment is that the main static pressure bearing portion and the auxiliary static pressure bearing portion provided on the leg portion of the swash plate are mutually separated in the circumferential direction along the convex curved surface of the leg portion; It consists of a configuration in which an oil passage for introducing pressure oil to the receiving part is bored inside the swash plate.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • reference numeral 61 denotes a variable displacement swash plate type hydraulic pump employed in the present embodiment, and the hydraulic pump 61 is substantially the same as the hydraulic pump 1 described in the first embodiment.
  • Rotary shaft 1 3, Cylinder block 1 4, Multiple cylinders 1 5, Pistons 1 6, Screws 1 7, Valve plates 1 9, Swash plate supports 20 and Swash plates 2 1 etc. It is composed of
  • the static pressure bearing 6 2 is a static pressure bearing employed in the present embodiment, and the static pressure bearing 6 2 is a tilt support surface 2 OA, 20 B of the swash plate support 20 and a leg portion 2 of the swash plate 2 1 It is provided between 1 A and 2 1 B.
  • pressure oil is led from the pair of supply and discharge passages 12 A and 12 B in substantially the same manner as the hydrostatic bearing 2 2 described in the first embodiment.
  • the tilt support surface 20 A separation force (hydraulic force) is generated between A and 20 B and the legs 21 A and 2 IB, and the contact surface between the two is maintained in a lubricated state.
  • the hydrostatic bearing 6 2 is located on the convex curved surface side of one leg 21 A at a position close to the through hole 21 D of the swash plate 21
  • the first main static pressure bearing part 6 2 A which is also formed, and the other leg 2 1 at a position close to the through hole 2 1 D
  • a second main static pressure bearing portion 6 2 B provided on the convex curved surface side of B and a leg spaced from the second main static pressure bearing portion 6 2 B in the circumferential direction of the leg portion 2 1 B
  • the first and second main static pressure bearings 6 2 A and 6 2 B are shown by arrows in the directions A and B along the convexly curved surfaces of the legs 2 1 A and 2 1 B as shown in FIG.
  • the planar shape is rectangular as shown in FIG. 16.
  • the first auxiliary static pressure bearing portions 6 2 C and 6 2 C are formed from the both sides of the second main static pressure bearing portion 6 2 B along the convex curved surface of the leg portion 2 1 B in the circumferential direction. They are disposed so as to be sandwiched, and are formed as oval-shaped concave grooves which thinly extend in the left and right directions on the convex curved surface of the legs 21 B.
  • the second auxiliary static pressure bearing portions 6 2 D and 6 2 D sandwich the first main static pressure bearing portion 6 2 A from both sides in the circumferential direction along the convexly curved surface of the leg portion 2 1 A As shown, each is formed as an oval-shaped concave groove which thins in the left and right directions on the convex curved surface of the leg 21A.
  • the first main static pressure bearing portion 62 A is a hydraulic pressure that the swash plate 21 receives each piston 1 6 on one side in the radial direction of the through hole 21 D (right side in FIG. 16). It is placed at a position close to the resultant force action point k 1 of the reaction force.
  • the second main static pressure bearing portion 6 2 B is a swash plate 2 on the other side (left side in FIG. 1 6) of the through hole 2 1 D in the radial direction.
  • the effective bearing area of the auxiliary static pressure bearing portion 6 2 C, 6 2 D is the main static pressure bearing portion 2 2 A, 2 described in the first embodiment.
  • Reference numerals 6 3 A and 6 3 B denote first and second slide bearings provided on the legs 2 1 A and 2 1 B of the swash plate 2 1, and the first and second slide bearings 6 3A and 6 3 B are configured substantially the same as the slide bearing portions 2 3 A and 2 3 B described in the first embodiment.
  • 6 4 is an oil passage for introducing pressure oil to the static pressure bearing portion 6 2 A, 6 2 C of the static pressure bearing 6 2, and 6 5 is a static pressure bearing portion 6 2 B, 6 2 of the static pressure bearing 6 2
  • the other oil introduction channel which leads pressure oil to D is shown.
  • static electricity bearings 6 2 A to 6 2 D are connected to a pair of water supply and discharge passages 1.
  • one of the oil passages 64 is one of the supply and discharge passages 12 A and the main static pressure bearing portion 62.
  • A, It is provided between the auxiliary static pressure bearing portion 6 2 C.
  • the other oil guiding passage 65 is provided between the other water supply and discharge passage 12 B, the main static pressure bearing portion 62 B, and the auxiliary static pressure bearing portion 62 D.
  • one oil passage 64 is in communication with the supply / discharge passage 12 A on the side, and the first oil passage 64 A extends on the other side to the first main static pressure bearing portion 62 A (Fig. 1 4) and 2nd oil passage 6 4 B 3rd oil passage 6 4 C and the second oil passage drilled in the swash plate 2 1
  • oil passages 6 4 D 6 4 D and these second oil passages 6 4 B, third oil passages 6 4 C and fourth oil passages 6 4 D, 64 D is the first main hydrostatic bearing 6
  • the second oil passage 64 B is opened in the first main static pressure bearing portion 62 A at one side as shown in Figs. 15 and 16, and the other side is the third.
  • the D 64 D is branched in a “V” shape, and its tip end side is opened to the first auxiliary static pressure bearing portion 6 2 C 6 2 C.
  • the other oil passage 65 is in fluid communication with the supply and discharge passage 12B on the side and the other side is directed to the second main static pressure bearing portion 62B.
  • 6 6 is a diaphragm provided in the middle of the first oil passage 6 4 A, 6
  • ⁇ one throttle 6 6 is the first main static pressure bearing 6
  • the amount of pressure oil supplied to 2A and the first auxiliary static pressure bearing portion 6 2 C 6 2 C is adjusted in common.
  • the other throttle 6 7 is used to adjust the amount of pressure oil supplied to the second main static pressure bearing portion 62 B and the second auxiliary static pressure bearing portion 6 2 D, 6 2 D in common. is there.
  • the legs 2 of the swash plate 2 1 are used.
  • main static pressure bearings 2 2 A and 2 2 B and auxiliary static pressure bearings 2 2 C 2 2 D are provided in 1 A and 2 1 B has been described by way of example ⁇ .
  • the present invention is not limited to this, and the first and second main static pressure bearing portions and the first and second auxiliary static pressure bearing portions may be used, for example, the tilt bearing surface 2 0 A 2 of the swash plate support 20. It may be provided at 0 B
  • first and second main static pressure shaft portions and the first and second auxiliary static pressure bearing portions are the tilt support surface 20 0 A, of the swash plate support 20.
  • the feedback unit of feedback mechanism 40 that performs feedback control of the regu- lation track 34 by following the tilting operation of the swash plate 21 in the first embodiment.
  • the conversion unit of the feedback mechanism may be configured using a mechanism other than the feedback mechanism.
  • the travel control valve 52 is used as an external command means, and a pilot pressure corresponding to the amount of stepping operation of the travel pedal 52 A is used as a command signal.
  • the case of supply to the regulator was described as an example. However, the present invention is not limited to this.
  • hydraulic piping section 3 8 is composed of electromagnetic proportional solenoid H etc. From the external command means, an electric signal corresponding to the amount of stepping operation of the traveling pedal 5 2 A is used as the command signal. Output It may be configured to
  • variable displacement swash plate type hydraulic pressure pumps 1 and 6 1 are applied to a traveling hydraulic circuit in a wheeled work vehicle such as a wheel loader is described as an example. did.
  • the present invention is applicable not only to the hydraulic circuit for traveling but also to a hydraulic closed circuit for various applications such as a hydraulic circuit for turning, for example.
  • variable displacement swash plate type hydraulic fluid rotating machine is applied to the swash plate type hydraulic pump 1 or 6 1
  • the application object of the present invention is not limited to the variable displacement swash plate type hydraulic pump, and may be applied to, for example, a variable displacement swash plate type hydraulic motor and the like.
  • the working vehicle to which the present invention is applied is not limited to the wheel loader.
  • a working vehicle called a wheel hydraulic shovel, a wheel hydraulic crane, a bulldozer, or a lift truck It can also be applied to work vehicles such as crawler hydraulic hydraulic shovels.

Abstract

A pair of leg sections (21A, 21B) is provided on a swash plate (21). A main static pressure bearing section (22A) communicating with one supply/discharge path (12A) through an oil guide path (24) is provided on one (21A) of the leg sections, and an auxiliary static pressure bearing section (22C) communicating with the oil guide path (24) is provided on the other leg section (21B). Further, on the other leg section (21B), there is provided the other main static pressure bearing section (22B) communicating with the other supply/discharge path (12B) through an oil guide path (25), and on the one leg section (21A), there is provided the other auxiliary static pressure bearing section (22D) communicating with the oil guide path (25). A separation force is produced between the leg sections (21A, 21B) of the swash plate (21) and a swash plate support body (20) by the main static pressure bearing sections (22A, 22B) and the auxiliary static pressure bearing sections (22C, 22D). The separation force balances with a pressing force of the swash plate (21).

Description

明 細 書 可変容量型斜板式液圧回転機 技術分野  Description Variable displacement swash plate type hydraulic rotating machine Technical field
本発明は、 例えばホイールローダ、 ホイ一ル式の油圧 シ Ξ ベル 、 油圧ク レーンまたはク ロ一ラ式の油圧ショ べ ル 、 油圧ク レーン等の作業車両に油圧ボンプまたは油圧 モ ―タ等として好適に用いられる可変容量型斜板式液圧 回転機に関する。 m  The present invention can be applied, for example, as a hydraulic pump or hydraulic motor to a work vehicle such as a wheel loader, a wheel-type hydraulic shaft bell, a hydraulic crane or hydraulic hydraulic shovel, or a hydraulic crane. The present invention relates to a variable displacement swash plate type hydraulic rotating machine suitably used. m
技術  Technology
一般に 、 可変容量型斜板式液圧回転機は 例えばホイ ル π―ダゃ油圧ショ ベル等の作業車両において、 その 油圧源を構成する可変容量型斜板式の油圧ポンプと して 用いられている また、 この可変容量型斜板式液圧回転 機は、 旋回用の油圧モー夕または走行用の油圧モー夕等 としても用いられるものであ Ό  In general, a variable displacement swash plate type hydraulic rotating machine is used as a variable displacement swash plate type hydraulic pump constituting a hydraulic pressure source, for example, in a working vehicle such as a wheel π-dau hydraulic shovel. This variable displacement swash plate type hydraulic rotating machine is also used as a hydraulic motor for turning or hydraulic motor for traveling etc.
そして、 この種の従来技術による可変容量型斜板式液 圧回転機は、 筒状のケ一シングと、 該ケ一シングに回転 可能に設けられた回転軸と、 該回転軸と一体に回転する う に前記ケ一シング内に設けられ周方向に離間して軸 方向に延びる複数のシリ ンダを有したシリ ンダブロ ッ ク と 、 該シリ ンダブ D ックの各シリ ンダに往復動可能に揷 嵌された複数の ピス 卜 ンと、 前記各シリ ンダから突出す る該各ビス ト ンの突出端側に装着された複数のシユーと 表面側が該各シ ―を摺動可能に案内する平滑面となり 裏面側が前記ケ一シングに傾転可能に支持される斜板と A variable displacement swash plate type hydraulic rotary machine of this type according to the prior art includes a cylindrical casing, a rotary shaft rotatably provided on the casing, and a rotary shaft integrally rotating with the rotary shaft. And a plurality of cylinders provided in the casing and having a plurality of cylinders extending in the circumferential direction at intervals, and the cylinders are reciprocably engaged with the cylinders of the cylinders. The plurality of pierced pins, the plurality of shoes mounted on the projecting end side of the respective bistons projecting from the respective cylinders, and the surface side serve as smooth surfaces for slidably guiding the respective sheets. A swash plate whose back side is supported rotatably in the casing
,
§ ゲーシングに設けられ外部から傾転制御圧が給排さ れる こ とによ り該斜板を傾転駆動する傾転ァクチユエ一 夕とによ り大略構成されている。 Tilting control pressure of the supply and discharge externally provided刖§ Geshingu The swash plate is roughly constituted by a tilt drive which drives the swash plate to tilt.
この場合、 前記斜板の裏面側には、 前記回転軸を挟ん で互いに離間し凸湾曲状に突出する一対の脚部が設けら れている。 一方、 前記ケ一シングには、 該一対の脚部に 対応して凹湾曲状に形成された斜板支持部が設けられ、 この斜板支持部は、 前記斜板を各脚部を介して傾転可能 に支持するものである。  In this case, on the back surface side of the swash plate, there are provided a pair of leg portions which are separated from each other with respect to the rotation shaft and which project in a convex curved shape. On the other hand, the casing is provided with a swash plate support portion formed in a concave curved shape corresponding to the pair of leg portions, and the swash plate support portion includes the swash plate via the respective leg portions. It supports to be able to tilt.
また、 前記ケーシングには、 シリ ンダブロ ッ クの各シ リ ンダ内に圧油を給排するために一対の給排通路が設け られている。 また、 前記斜板の各脚部と前記斜板支持部 との間には、 静圧軸受を設ける構成と している (以下、 第 1 の従来技術という)。  Further, the casing is provided with a pair of supply and discharge passages for supplying and discharging pressurized oil in each cylinder of the cylinder block. In addition, a static pressure bearing is provided between each leg of the swash plate and the swash plate support portion (hereinafter referred to as a first prior art).
そして、 第 1 の従来技術による静圧軸受は、 前記一対 の給排通路のうち高圧側の給排通路から圧油の一部が導 かれる ことによ り 、 圧油の圧力を利用 して両者の接触面 (脚部の凸湾曲面と傾転支持面との間) に乖離力を生じ させつつ、 この接触面を潤滑状態に保持するものである (例えば、 特開平 9 一 1 6 6 0 7 4号公報参照)。  In the first prior art static pressure bearing, a part of the pressure oil is led from the high pressure side supply / discharge passage of the pair of supply / discharge passages, so that the pressure oil can be used to utilize the pressure oil. The contact surface (between the convex curved surface of the leg portion and the tilt support surface) is kept in a lubricated state while generating a separating force (for example, JP-A-H09-1106). 7 4)).
また、 第 2 の従来技術として、 斜板に形成した一対の 脚部と斜板支持部との間に、 それぞれ独立した第 1 の静 圧軸受と第 2 の静圧軸受とを設け、 ケーシングに設けた 一対の給排通路のう ち、 一方の給排通路を第 1 の静圧軸 受に連通させ、 他方の給排通路を第 2 の静圧軸受に連通 させる構成と した可変容量型斜板式液圧回転機も知られ ている (例えば、 米国特許第 6 , 0 4 8 , 1 7 6 号明細 書参照)。  In addition, as a second prior art, the first hydrostatic bearing and the second hydrostatic bearing which are independent of each other are provided between a pair of legs formed on the swash plate and the swash plate supporting portion, and the casing is Of the pair of supply and discharge passages provided, a variable displacement type diagonal line in which one of the supply and discharge passages is in communication with the first static pressure bearing and the other is in communication with the second static pressure bearing. Plate-type hydraulic rotary machines are also known (see, for example, US Pat. Nos. 6, 0 4 8 and 1 7 6).
また、 第 3 の従来技術と して、 油圧閉回路方式の油圧 動力伝達機構 (Hydrostatic Transmission 以下、 「 H s τ」 という) 等に用いる可変容量型斜板式液圧回転機 が知られている 。 この可変容量型斜板式液圧回転機は、 斜板と、 該斜板を駆動する傾転ァクチユエ一夕を備えて いる。 そして、 傾転ァクチユエ —夕は、 斜板を傾転角零 の中立位置から正方向と逆方向とに傾転駆動し、 例えば 油圧ポンプから吐出する圧油の吐出方向を正方向と逆方 向の両カ冋に切換える構成と している (例えば、 特開昭As a third prior art, a hydraulic closed loop hydraulic power transmission mechanism (Hydrostatic Transmission or less, There is known a variable displacement swash plate type hydraulic rotating machine used for s τ) and the like. The variable displacement swash plate type hydraulic rotating machine includes a swash plate and a tilting lever for driving the swash plate. Then, in the tilting operation, the swash plate is driven to tilt from the neutral position at the zero tilt angle in the forward direction and the reverse direction, for example, the discharge direction of the pressure oil discharged from the hydraulic pump is reverse to the forward direction. Switch to both sides of the
6 3 - 2 5 9 1 8 2号公報参照)。 6 3-2 5 9 1 8 2).
ところで 上述した第 1 の従来技術では、 斜板の各脚 部とケ——ンングの斜板支持部との間に設けた静圧軸受に 対し 、 一対の給排通路のうち一方の給排通路から圧油を 導ぐ構成であるため、 斜板が各ピス ト ンから受ける油圧 反力 (ピス 卜ン反力による斜板の押付力) と静圧軸受に よる乖離力とが、 給排通路側での圧力変動等に伴つてァ ンハ、ラ ンスになる ことがある。  In the first prior art described above, with respect to the hydrostatic bearings provided between the legs of the swash plate and the swash plate support of the casing, one of the supply and discharge passages of the pair of supply and discharge passages is provided. Since the pressure oil is introduced from the piston, the hydraulic reaction force received by the piston from each piston (pressure on the swash plate due to the piston reaction force) and the separation force generated by the static pressure bearing There is a possibility that it may become a lance or lance due to pressure fluctuation on the side.
そして、 のようなアンバランスな状態では、 斜板の 各脚部が斜板支持部から浮き上がるよう に傾いたり、 離 間した り して 、 静圧軸受内に導いた圧油が外部に漏洩易 And in an unbalanced state, the legs of the swash plate are inclined so as to rise above the swash plate support, or the pressure oil introduced into the static pressure bearing is easily leaked to the outside.
< なる の結果、 静圧軸受は、 斜板の脚部と斜板支持 部との間を潤滑状態に保持する こ とができなく なる とい ラ問題がある As a result, static pressure bearings have a problem that they can not maintain the lubrication between the swash plate legs and the swash plate support in a lubricated state.
また、 例えば油圧モータの場合には、 その回転軸が正 方向と逆方向とに回転され、 回転軸の回転方向が変わる 度毎に、 一対の給排通路が高圧.側と低圧側とに順次切換 えられる。 このため、 第 1 の従来技術では、 回転軸の回 転方向が変わる度毎に、 静圧軸受内の圧力が急激に変動 し 静圧軸 と して本来の機能を保つことができなく な る  Also, for example, in the case of a hydraulic motor, its rotary shaft is rotated in the forward direction and the reverse direction, and each time the rotation direction of the rotary shaft changes, the pair of supply and discharge passages sequentially goes to the high pressure side and the low pressure side. It can be switched. For this reason, in the first prior art, the pressure in the static pressure bearing rapidly changes every time the rotational direction of the rotating shaft changes, and it becomes impossible to maintain the original function as the static pressure shaft.
前述した第 3 の従来技術による可変容量型斜板 式油圧ポンプは、 H S T等に用いるために、 傾転ァクチ ユエ一夕に り、 斜板を傾転角零の中立位置から正方向 と逆方向とに傾転駆動する構成と している。 そして、 こ のような可久亦容量型斜.板式油圧ポンプは、 斜板の傾転方 向によ り 、 ―対の給排通路が高圧側と低圧側とに切換え られるため 、 第 1 の従来技術による静圧軸受を M用 して も、 同様な問題が生じるものである。 The third prior art variable displacement swash plate described above In order to use it for HST, etc., the hydraulic pump is configured to drive the swash plate in a forward direction and a reverse direction from a neutral position of zero tilt angle in a single direction. And, since such a variable displacement hydraulic type swash plate type hydraulic pump is switched between the high pressure side and the low pressure side of the pair of supply / discharge passage depending on the tilt direction of the swash plate, the first type The same problem occurs even if M static bearings are used according to the prior art.
一方、 第 2 の従来技術の液圧回転機は、 一対の脚部と 斜板支持部に形成した一対の傾転支持面との間に 、 それ ぞれ独立した第 1 の静圧軸受と第 2 の静圧軸受とを設け 一対の給排通路のうち一方の給排通路を第 1 の静圧軸受 に連通させ 、 他方の給排通路を第 2 の静圧軸受に連通さ せる構成としている。  On the other hand, in the second related art hydraulic rotary machine, the first hydrostatic bearing and the first hydrostatic bearing which are independent of each other are disposed between the pair of legs and the pair of tilt support surfaces formed on the swash plate support. Two hydrostatic bearings are provided, and one of the pair of water supply and discharge passages is communicated with the first hydrostatic bearing, and the other is communicated with the second hydrostatic bearing. .
このため 、 第 2 の従来技術による液圧回転機を 、 回転 軸が正方向と逆方向とに回転する油圧モー夕に迴用する ことは可能であ り、 H S T等に用いる可変容量型斜板式 の油圧ボンプ等に適用する ことも可能である。  For this reason, it is possible to use the hydraulic rotating machine according to the second prior art to a hydraulic motor in which the rotating shaft rotates in the forward direction and the reverse direction, and a variable displacement swash plate type used for HST etc. It is also possible to apply to hydraulic pumps etc.
しかし、 第 2 の従来技術による液圧回転機は 、 第 1 , 第 2 の静圧軸受による乖離力をビス ト ン反力に る斜板 の押付力 に対して、 例えば回転軸を挟んで左, 右方向 However, the hydraulic rotating machine according to the second prior art has the left and right sides of the rotation shaft, for example, against the pressing force of the swash plate where the separation force from the first and second static pressure bearings is the reaction force. , Right
(径方向の両側となる位置) でバラ ンスさせるのが難し い 。 この結果、 斜板の各脚部が斜板支持部から浮さ上が るよう に傾いた り、 離間したりする虞れがある It is difficult to balance at (positions on both sides in the radial direction). As a result, there is a possibility that each leg of the swash plate may be inclined or separated so as to be lifted from the swash plate support.
このために、 第 2 の従来技術による液圧回転機でも 、 第 1 , 第 2 の静圧軸受内に導いた圧油が外部に漏洩し易 For this reason, even in the second related art hydraulic rotary machine, the pressure oil introduced into the first and second hydrostatic bearings is easily leaked to the outside.
< なる。 そして、 圧油が漏洩したときには、 斜板の各脚 部と斜板支持部との間を潤滑状態に保持する こ とが困難 となる。 発明の開示 < Then, when the pressure oil leaks, it becomes difficult to keep the space between the legs of the swash plate and the swash plate support in a lubricated state. Disclosure of the invention
本発明は上述した従来技術の問 に鑑みなされたもの で 、 本発明の目的は、 ビス 卜 ン反力による斜板の押付力 と静圧軸受による乖離力とを良好にバラ ンスさせる こ と ができ、 静圧軸受と して安定した性能を発揮でさるよう にした可変容量型斜板式液圧回転機を提供する し と にあ る。  The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a good balance between the pressing force of the swash plate by the screw reaction and the separation force by the static pressure bearing. To provide a variable displacement swash plate type hydraulic rotating machine capable of producing stable performance as a static pressure bearing.
また、 本発明の他の目的は、 回転軸が正方向または逆 方向に回転する油圧モータ 、 または H S T等に用いる可 変容量型斜板式の油圧ポンプ等にち容易に 用する と ができ 、 汎用性を高める とがでさると共に 、 生産性を 向上する ことができ、 コス 卜の低減化等を図る しとがで きるよう にした可変容量型斜板式液圧回転機を提供する こ とにある。  Another object of the present invention is to provide a hydraulic motor whose rotary shaft rotates in the forward or reverse direction, or a variable displacement swash plate type hydraulic pump used for HST etc. It is an object of the present invention to provide a variable displacement swash plate type hydraulic rotating machine capable of improving productivity and reducing cost etc. .
( 1 ) . 上述した課題を解決するために、 本発明は、 一 側に斜板支持部がき ftけられ他側に一対の給排通路が設け られた筒状のケーシングと、 該ケ ―シングに回転可能に き又 ftけられた回転軸と 、 該回転軸と一体に回転するよう に 前記ケーシング内に設けられ周方向に離間して軸方向に 延びる複数のシリ ンダを有したシ U ンダブ □ッ ク と、 該 シリ ンダブロ ックの各シリ ンダに往復動可能に揷嵌され た複数のピス ト ンと 、 前記各シリ ンダから突出する該各 ピス ト ンの突出端側に装着された複数のシユ ーと、 表面 側が該各シユ ーを摺動可能に案内する平滑面となり裏面 側がー対の脚部となつて 記斜板支持部に傾転可能に支  (1) In order to solve the problems described above, according to the present invention, there is provided a cylindrical casing provided with a swash plate support on one side and a pair of supply and discharge passages on the other side; A shaft having a rotatable shaft and a plurality of cylinders provided in the casing so as to rotate integrally with the rotating shaft and axially spaced apart in the circumferential direction. □ A plurality of pistons reciprocably fitted to each cylinder of the cylinder block and a protruding end side of each of the pistons projecting from the cylinders are attached. A plurality of shells and a surface side serve as a smooth surface for slidably guiding the respective shells, and a back surface side serves as a pair of leg portions and is rotatably supported on the swash plate support portion.
 ,
持される斜板と 、 記ケ一シングに設けられ外部から傾 転制御圧が給排される こ とによ り該斜板を傾転駆動する 傾転ァクチユエ一夕 と、 前記斜板の各脚部と前記斜板支 持部との間に設けられ前記給排通路に連通して両者の接 触面を潤滑状態に保持する静圧軸受とを備 PLてなる可変 容量型斜板式液圧回転機に ¾用される。 A swash plate to be held, a tilt plate for driving the swash plate to tilt by displacing the swash plate by being provided in the marking and externally supplied with a tilt control pressure, and each of the swash plate Provided between the leg portion and the swash plate support portion and in communication with the supply and discharge passage to contact the two. The present invention is applied to a variable displacement swash plate type hydraulic rotating machine including a hydrostatic bearing that holds a contact surface in a lubricated state and a PL.
、 /- そして、 本発明が採用する構成の特徴は 、 刖記静圧軸 受は 、 刖記一対の脚部のうち一方の脚部側に設けられた 第 1 の主静圧軸受部と、 対の脚部の ち他方の脚 部側に設けられた第 2 の主静圧軸受部と、 該第 2 の主静 圧軸受部から離間して前記他方の脚部側に設けられた第 And / or And, the feature of the configuration adopted by the present invention is that the static pressure bearing is a first main static pressure bearing portion provided on one leg side of the pair of legs, A second main hydrostatic bearing provided on the other leg of the pair of legs and a second main hydrostatic bearing provided on the other leg apart from the second main hydrostatic bearing.
1 の補助静圧軸受部と、 前記第 1 の主静圧軸受部から離 間して前記一方の脚部側に設けられた第 2 の補助静圧軸 受部とによ り構成したことにあAccording to another aspect of the present invention, there is provided an auxiliary static pressure bearing portion according to a first aspect of the present invention, and a second auxiliary static pressure bearing portion provided on the one leg portion side apart from the first main static pressure bearing portion. Ah
u r  u r
本発明によれば、 上述の如く構成しているので、 一対 の給排通路のうちいずれの給排通路が高圧となる ときで も、 斜板の各脚部と斜板支持部との間には主静圧軸受部 と補助静圧軸受部とによって乖離力を発生でき、 斜板が 各ピス ト ンから受ける油圧反力 (ピス ト ン反力による斜 板の押付力) に対し、 主静圧軸受部と補助静圧軸受部と による乖離力を良好にバランスさせ 、 静圧軸受と して安 定した性能を発揮することができる  According to the present invention, since it is configured as described above, even when any of the pair of supply and discharge passages becomes high in pressure, the space between each leg of the swash plate and the swash plate support portion. The main static pressure bearing portion and the auxiliary static pressure bearing portion can generate a separation force, and against the hydraulic reaction force (the pressing force of the swash plate due to the piston reaction force) the swash plate receives from each piston, the main static The balance between the pressure bearing and the auxiliary static pressure bearing can be well balanced to provide stable performance as a static pressure bearing.
従つて、 本発明による可変容量型斜板式液圧回転機は 一対の給排通路が高圧または低圧に可逆的に切換わる液 圧回転機 (例えば、 回転軸が正方向と逆方向とに回転す る油圧モータ、 または H S T等に用いる可変容量型斜板 式の油圧ポンプ等) にも容易に適用する こ とができる れによ り、 本発明による可変容量型斜板式液圧回転機 は 、 その汎用性を高める こ とができ 、 生産性を向上でき ると共に、 コス 卜の低減化等を図る ことができる。  Therefore, in the variable displacement swash plate type hydraulic rotating machine according to the present invention, a hydraulic rotating machine in which a pair of supply and discharge passages are reversibly switched to high pressure or low pressure (for example, the rotating shaft rotates in forward and reverse directions). The present invention can be easily applied to a hydraulic motor or a variable displacement swash plate type hydraulic pump used for HST etc.). Generality can be improved, productivity can be improved, and costs can be reduced.
( 2 ) . また、 本発明による と、 前記第 1 の主静圧軸受 部は 前記回転軸の径方向一側で前記斜板が各ビス 卜 ン から受ける油圧反力の合力作用点に近い位置に配置し、 前記第 2 の主静圧軸受部は、 前記回転軸の径方向他側で 前記斜板が各ビス ト ンから受ける油圧反力の合力作用点 に近い位置に配置する構成と している。 (2) Further, according to the present invention, the first main static pressure bearing portion is located at a position close to the combined force application point of the hydraulic reaction force that the swash plate receives from each screw on one side in the radial direction of the rotating shaft. Place in The second main static pressure bearing portion is disposed at a position near the resultant force application point of hydraulic reaction forces received by the swash plate from the respective pistons on the other side in the radial direction of the rotation shaft.
このよう に、 第 1 , 第 2 の主静圧軸受部を、 斜板が各 ビス ト ンから受ける油圧反力の合力作用点に近い位置に 配置する こ とによ り、 斜板がシリ ンダブロ ック側の各ピ ス ト ンから受ける油圧反力 (ピス ト ン反力) の合力作用 点と、 各主静圧軸受部による斜板の乖離力の作用点とを 近付ける こ とが可能となる。 この結果、 前記油圧反力と 乖離力とによって斜板に作用するモーメ ン ト (例えば、 前記合力作用点を基準と した軸廻り のモーメ ン ト) を小 さ くする こ とができる。 これによ り 、 第 1 , 第 2 の補助 静圧軸受部の有効軸受面積を小さ く する こ とができ、 斜 板を含めて液圧回転機全体の小型化を図る ことができる。 ( 3 ) . また、 本発明による と、 前記斜板には一対の脚 部間に位置して前記回転軸が隙間をもって挿通される貫 通穴を設け、 前記第 1 , 第 2 の主静圧軸受部は、 前記第 1 , 第 2 の補助静圧軸受部よ り も前記貫通穴に近い位置 に配置されると共に該第 1 , 第 2 の補助静圧軸受部よ り も大なる有効軸受面積を有する構成としている。  In this manner, the swash plate can be made into the cylinder-bore by placing the first and second main static pressure bearing portions at a position close to the resultant force application point of the hydraulic reaction force received by the swash plate from each screw. It is possible to bring the resultant force acting point of the hydraulic reaction force (piston's reaction force) received from each piston on the rack side closer to the acting point of the separation force of the swash plate by each main static pressure bearing section. Become. As a result, it is possible to reduce the moment acting on the swash plate by the hydraulic reaction force and the separating force (for example, the moment around the axis based on the resultant force application point). As a result, the effective bearing area of the first and second auxiliary static pressure bearing portions can be reduced, and the entire hydraulic rotary machine can be miniaturized, including the swash plate. (3) Further, according to the present invention, the swash plate is provided with a through hole located between the pair of legs and through which the rotary shaft is inserted with a gap, and the first and second main static pressures The bearing portion is disposed at a position closer to the through hole than the first and second auxiliary static pressure bearing portions and has an effective bearing area larger than the first and second auxiliary static pressure bearing portions. It is set as having composition.
このよう に構成した場合でも、 斜板が各ビス ト ンから 受ける油圧反力の合力作用点と、 各主静圧軸受部による 斜板の乖離力の作用点とを近付ける こ とが可能となる。 このため、 前記油圧反力と乖離力とによって斜板に作用 するモーメ ン トを小さ く する こ とができ、 第 1 , 第 2 の 補助静圧軸受部の有効軸受面積を小さ く できる と共に、 斜板を含めて液圧回転機全体の小型化を図ることができ る。  Even with this configuration, it is possible to bring the force acting point of the hydraulic reaction force that the swash plate receives from each screw close to the acting point of the swash plate distraction force by each main static pressure bearing portion. . Therefore, the moment acting on the swash plate by the hydraulic reaction force and the separating force can be reduced, and the effective bearing area of the first and second auxiliary static pressure bearing portions can be reduced. The entire hydraulic rotating machine can be miniaturized, including the swash plate.
( 4 ) . また、 本発明は、 前記一対の脚部には、 前記第 1 , 第 2 の主静圧軸受部および第 1 , 第 2 の補助静圧軸 受部よ り も前記回転軸から径方向に離れた位置に第 1 , 第 2 の滑り軸受部を設ける構成としている。 (4) Further, according to the present invention, in the pair of legs, The first and second slide bearing portions are provided at positions radially separated from the rotation shaft from the first and second main static pressure bearing portions and the first and second auxiliary static pressure bearing portions, respectively. There is.
の場合には 、 糸口排通路側での圧力変動等によつて斜 板に作用するモ一メ ン のバランスが変化した場合でも 第 1 , 第 2 の滑り軸受部によ り斜板の安定性を確保する とができる しかち 、 第 1 , 第 2 の滑り軸受部を設け る ことによ Ό 、 斜板の各脚部と斜板支持部の各傾転支持 面との間の面圧を低減するこ とができ、 両者の接触面に おける摩耗等を抑え 、 信頼性や寿命を向上する ことがで さる。  In this case, even if the balance of the moment acting on the swash plate is changed due to pressure fluctuation on the thread discharge side, the stability of the swash plate by the first and second slide bearings. By providing the first and second slide bearings, the surface pressure between each leg of the swash plate and each tilt support surface of the swash plate support can be secured. It is possible to reduce wear and the like at the contact surface of both, and to improve the reliability and life.
( 5 ) . 一方、 本発明による と、 前記第 1 の主静圧軸受 部と第 1 の補助静圧軸受部とは、 前記各給排通路のラち  (5) On the other hand, according to the present invention, the first main static pressure bearing portion and the first auxiliary static pressure bearing portion may be formed by
、 一方の給排通路に油路を介して連通する構成と し、 刖記 第 2 の主静圧軸受部と第 2 の補助静圧軸受部とは、 記 各給排通路のうち他方の給排通路に他の油路を介して連 通する構成としている。  The second main static pressure bearing portion and the second auxiliary static pressure bearing portion are in communication with one of the supply and discharge passages through an oil passage, and the other of the supply and discharge passages is provided with the second main static pressure bearing portion and the second auxiliary static pressure bearing portion. It is configured to communicate with the discharge passage via another oil passage.
これによ り 、 一対の給排通路のうち一方の給排通路が 他方の給排通路よ り も高圧となる ときに、 斜板の一方の 脚部側では第 1 の主静圧軸受部に高圧の圧油を導く と ができ 、 他方の脚部側では第 1 の補助静圧軸受部に高圧 の圧油を導く こ とができる。 また 、 前記他方の給排通路 がー方の給排通路よ り も高圧となるときには、 斜板の一 方の脚部側では第 2 の補助静压軸受部に高圧の圧油を導 ぐ こ とができ 、 他方の脚部側では第 2 の主静圧軸受部に 高圧の圧油を導く こ とができる。 この結果、 一対の '口排 通路のうちいずれの給排通路が高圧となるときでも 、 斜 板の各脚部と斜板支持部との間には主静圧軸受部と補助 静圧軸受部とによ り乖離力を発生でき、 斜板が各ピス 卜 ンから受ける油圧反力に対し、 このときの乖離力を良好 にバラ ンスさせ、 静圧軸受と して安定した性能を発揮す ることができる。 As a result, when one of the pair of supply and discharge passages becomes higher in pressure than the other, the one main leg side of the swash plate is connected to the first main static pressure bearing portion. The high pressure hydraulic oil can be introduced, and on the other leg side, the high pressure hydraulic oil can be introduced to the first auxiliary static pressure bearing. In addition, when the other supply / discharge passage is at a higher pressure than the other supply / discharge passage, the high pressure oil is introduced to the second auxiliary static bearing on the leg side of one side of the swash plate. In the other leg side, high pressure oil can be introduced to the second main static pressure bearing. As a result, the main static pressure bearing portion and the auxiliary static pressure bearing portion may be disposed between each leg portion of the swash plate and the swash plate support portion even when any of the supply and discharge passages of the pair of 'suction and discharge passages becomes high pressure. Can generate a separation force, and the swash plate With respect to the hydraulic reaction force received from the engine, the separation force at this time can be well balanced, and stable performance can be exhibited as a static pressure bearing.
( 6 ) . また、 本発明による と、 前記第 1 の主静圧軸受 部と第 1 の補助静圧軸受部とは、 前記各給排通路のう ち 一方の給排通路に油路を介して連通する構成と し、 該油 路の途中には、 前記第 1 の主静圧軸受部と第 1 の補助静 圧軸受部とに供給する圧油量を共通して調整する絞り を 設け 、 刖 第 2 の主静圧軸受部と第 2 の補助静圧軸受部 とは 、 前記各給排通路のうち他方の給排通路に他の油路 を介して連通する構成と し、 該他の油路の途中には、 前 目己第 2 の主静圧軸受部と第 2 の補助静圧軸受部とに供給 する圧油量を共通し 調整する他の絞り を設ける構成と している  (6) Further, according to the present invention, the first main static pressure bearing portion and the first auxiliary static pressure bearing portion have an oil passage in one of the supply and discharge passages of the respective supply and discharge passages. In the middle of the oil passage, there is provided a throttle for adjusting the amount of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion in common. The second main static pressure bearing portion and the second auxiliary static pressure bearing portion communicate with the other supply / discharge passage of the respective supply / discharge passages via another oil passage, In the middle of the oil passage, another throttle is provided to adjust in common the amount of pressure oil supplied to the second main static pressure bearing portion and the second auxiliary static pressure bearing portion.
のよう に、 第 1 の主静圧軸受部と第 1 の補助静圧軸 受部とを一方の 排通路に連通させる油路の途中に絞り を設ける こ とによ り、 前記第 1 の主静圧軸受部と第 1 の 補助静圧軸受部とに供給する圧油量を共通して調整でさ これらの静圧軸受部による斜板の乖離力を圧油量に応じ て増加または減少させる ことができる。 また、 第 2 の主 静圧軸受部と第 2 の補助静圧軸受部とを他方の給排通路 に連通させる油路の途中に設けた他の絞り でも、 前記第 2 の主静圧軸受部と第 2 の補助静圧軸受部とに供給する 圧油量を共通して調整でき、 これらの静圧軸受部による 斜板の乖離力を圧油量に応じて増加または減少させる こ とができる。  As described above, the first main static pressure bearing portion and the first auxiliary static pressure bearing portion are provided with a throttle in the middle of the oil passage communicating with the one discharge passage. The amount of pressure oil supplied to the static pressure bearing portion and the first auxiliary static pressure bearing portion is adjusted in common to increase or decrease the separation force of the swash plate by these static pressure bearing portions according to the amount of pressure oil. be able to. In addition, the second main static pressure bearing portion is also provided in the middle of the oil passage which connects the second main static pressure bearing portion and the second auxiliary static pressure bearing portion to the other supply / discharge passage. It is possible to adjust the amount of pressure oil supplied to the second and second auxiliary static pressure bearings in common, and to increase or decrease the separation force of the swash plate by these static pressure bearings according to the amount of pressure oil. .
( 7 ) . また、 本発明による と、 前記第 1 の主静圧軸受 部と第 1 の補助静圧軸受部とは、 前記各給排通路のう ち 一方の給排通路に油路を介して連通する構成と し、 該油 、 (7) Further, according to the present invention, the first main static pressure bearing portion and the first auxiliary static pressure bearing portion have an oil passage in one of the supply and discharge passages of the respective supply and discharge passages. To communicate with each other ,
路の途中には 、 刖記第 1 の主静圧軸受部と第 1 の補助静 圧軸受部とに供給する圧油量を互いに独立して 整する 個別絞り を設け、 前記第 2 の主静圧軸受部と第 2 の補助 静圧軸受部とは、 前記各給排通路のうち他方の a排通路 に他の油路を介して連通する構成と し 、 該他の油路の途 中には 、 刖記第 2 の主静圧軸受部と第 2 の補助静圧軸受 部とに供給する圧油量を互いに独立して調整する他の個 別絞り を設ける構成としている In the middle of the passage, there is provided an individual throttle for adjusting the amount of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion independently of each other. The pressure bearing portion and the second auxiliary static pressure bearing portion are configured to communicate with the other a discharge passage of the respective supply and discharge passages via another oil passage, during the passage of the other oil passage. Another separate throttle is provided to adjust the amount of pressure oil supplied to the second main static pressure bearing and the second auxiliary static pressure bearing independently of each other.
このよう に、 第 1 の主静圧軸受部と第 1 の補助静圧軸 受部とを一方の給排通路に連通させる油路の途中に個別 絞り を設ける こ とによ り 、 前記第 1 の主静圧軸受部と第 As described above, the first throttle is provided in the middle of the oil passage connecting the first main static pressure bearing portion and the first auxiliary static pressure bearing portion to one of the supply and discharge passages. Main static pressure bearing and
1 の補助静圧軸受部とに供給する圧油量を互いに独立し て 整でき、 これらの主静圧軸受部と補助静圧軸受部と に る斜板の乖離力をそれぞれの圧油量に応じて増加ま たは減少させる こ とができる。 また、 第 2 の主静圧軸受 部と第 2 の補助静圧軸受部とを他方の給排通路に連通さ せる油路の途中に設けた他の個別絞りでも、 前記第 2 の 主静圧軸受部と第 2 の補助静圧軸受部とに供給する圧油 量を互いに独立して調整でき、 れらの主静圧軸受部と 補助静圧軸受部とによる斜板の乖離力をそれぞれの圧油 量に応じて増加または減少させる ことができる。 これに よ Ό 、 各ピス ト ンからの油圧反力と乖離力とによって斜 板に作用するモーメ ン トをバランスさせ、 斜板の安定性 を向上できると共に、 斜板式液圧回転機と しての信頼性 や寿命を高める ことができる。 The amount of pressure oil supplied to the auxiliary static pressure bearing portion 1 can be adjusted independently of each other, and the separation force of the swash plate between the main static pressure bearing portion and the auxiliary static pressure bearing portion It can be increased or decreased accordingly. The second main static pressure may also be applied to another individual throttle provided in the middle of the oil passage connecting the second main static pressure bearing portion and the second auxiliary static pressure bearing portion to the other supply / discharge passage. The amount of pressure oil supplied to the bearing portion and the second auxiliary static pressure bearing portion can be adjusted independently of each other, and the separation force of the swash plate between these main static pressure bearing portion and the auxiliary static pressure bearing portion can be It can be increased or decreased according to the amount of pressure oil. As a result, the moment acting on the swash plate can be balanced by the hydraulic reaction force and the separating force from each piston, and the stability of the swash plate can be improved, and as a swash plate type hydraulic rotating machine Can increase the reliability and life of the
( 8 ) . また、 本発明による と . 前記第 1 の主静圧軸受 部 、 第 1 の補助静圧軸受部と前記一方の給排通路との間 には 、 一側が該一方の給排通路に連通し他側が前記静圧 軸受部に向けて延びた共通油路と 、 該共通油路の他側で 互いに分岐し前記第 1 の主静圧軸受部と第 1 の補助静圧 軸受部とに個別に接続される分岐油路とを設け HIJ ed第(8) Also, according to the present invention, one side of the first main static pressure bearing portion, the first auxiliary static pressure bearing portion and the one supply / discharge passage is the one of the one supply / discharge passage. A common oil passage communicating with the other side extending toward the static pressure bearing portion, and the other side of the common oil passage A branched oil passage is provided which is branched to each other and is separately connected to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion.
2 の主静圧軸受部、 第 2 の補助静圧軸受部と 記他方の 給排通路との間には、 一側が該他方の給排通路に連通し 他側が前記静圧軸受部に向けて延びた他の共通油路と、 該共通油路の他側で互いに分岐し前 し ^ 2 の主静圧軸受 部と第 2 の補助静圧軸受部とに個別に接 される他の分 岐油路とを設ける構成としている 0 One of the two main static pressure bearing portions, the second auxiliary static pressure bearing portion, and the other supply / discharge passage communicate with the other feed / discharge passage, and the other side is directed to the static pressure bearing portion. Another common oil passage that extends and another branch that branches off on the other side of the common oil passage and is separately connected to the main static pressure bearing portion of ^ 2 and the second auxiliary static pressure bearing portion. It is considered to be provided with an oil passage 0
の o には 、 第 1 の主静圧軸受部 、 第 1 の補助静圧 軸受部と一方の給排通路との間に i Zt通油路と分岐油路と を設け 第 2 の主静圧軸受部、 第 2 の補助静圧軸受部と 他方の給排通路との間にも他の共通油路と他の分岐油路 とを ける構成としているので、 例えば各静圧軸受部毎 にそれぞれ別々な油路を設ける場合に比較して液圧回転 機のケ —シング内等に設ける油路の本数を減らす とが でき、 小型でシンプルな構造を実現する こ どがでさる o これによって、 生産性の向上、 コス トの低減化等を図る ことができる。  The first main static pressure bearing portion, the first auxiliary static pressure bearing portion, and an i Zt oil passage and a branched oil passage are provided between the first main static pressure bearing portion and the second main static pressure. Since another common oil passage and another branch oil passage are also provided between the bearing, the second auxiliary static pressure bearing and the other supply / discharge passage, each static pressure bearing, for example, is separately provided. Compared to the case of providing separate oil passages, it is possible to reduce the number of oil passages provided in the housing of the hydraulic rotary machine, etc., and realize a small and simple structure. It is possible to improve productivity and reduce costs.
( 9 ) . また、 本発明による と、 前記共通油路の途中に は 刖記一方の給排通路から前記第 1 の主静圧軸受部と 第 1 の補助静圧軸受部とに供給する圧油量を調整する共 通絞り を設け、 前記分岐油路の途中には、 前記第 1 の主 静圧軸受部と第 1 の補助静圧軸受部とに供給する圧油量 を互いに独立して調整する個別絞り をそれぞれ設け 前 記他の共通油路の途中には、 前記他方の給排通路から前 記第 2 の主静圧軸受部と第 2 の補助静圧軸受部とに供給 する圧油量を調整する他の共通絞り を設け、 前記他の分 岐油路の途中には、 前記第 2 の主静圧軸受部と第 2 の補 助静圧軸受部とに供給する圧油量を互いに独立して調整 する他の個別絞り をそれぞれ設ける構成と している。 (9) Further, according to the present invention, pressure is supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion from one of the supply and discharge passages in the middle of the common oil passage. A common throttle for adjusting the amount of oil is provided, and in the middle of the branch oil passage, the amounts of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion are mutually independent. The individual throttles to be adjusted are provided respectively. The pressure supplied from the other supply / discharge passage to the second main static pressure bearing and the second auxiliary static pressure bearing in the middle of the other common oil passage. Another common throttle for adjusting the amount of oil is provided, and the amount of pressure oil supplied to the second main static pressure bearing portion and the second auxiliary static pressure bearing portion in the middle of the other branch oil passage Adjust independently of each other The other individual diaphragms are provided.
このよう に、 各分岐油路よ り も上流側に位置する共通 油路の途中には共通絞り を設け、 各分岐油路の途中には それぞれ個別絞り を設ける構成とする ことによ り、 共通 絞りの孔径 (絞り径) を比較的大きく 形成しても、 共通 絞り を介して主静圧軸受部と補助静圧軸受部とに供給す る圧油量を良好に調 でき、 ダス ト等の異物によ り共通 絞りが閉塞 (目詰ま り ) する可能性を減ら し 装置の信 頼性を向上できる o § た 、 各静圧軸受部の周囲に微小な 隙間が存在する場合でも 、 これらの隙間を介した圧油の 漏れを共通絞り によつて抑制する効果が得られ、 装置全 体の加工性を高め、 生産性を向上でき 、 二ス 卜の低減化 等を図ることができる o  As described above, the common throttle is provided in the middle of the common oil passage located upstream of each branch oil passage, and the individual throttle is provided in the middle of each branch oil passage. Even if the hole diameter (throttle diameter) of the throttle is made relatively large, the amount of pressure oil supplied to the main static pressure bearing portion and the auxiliary static pressure bearing portion through the common throttle can be adjusted well, and dust etc. It is possible to reduce the possibility of clogging (clogging) of the common throttle due to foreign matter and improve the reliability of the device. Even if a minute gap exists around each static pressure bearing, these may be eliminated. The effect of suppressing the leakage of pressure oil through a gap can be obtained by common throttling, the processability of the entire device can be improved, the productivity can be improved, and the reduction of waste etc. can be achieved o
( 1 0 ) . また、 本発明による と、 前記斜板は、 前記傾 転ァクチユエ一タによ り傾転角零の中立位置から正方向 と逆方向とに傾転駆動する構成している。 の結果、 本 発明による液圧回転機を H S T等に用いる可変容量型斜 板式の油圧ボンプに適用 し、 この油圧ボンプを油圧ァク チユエ一夕に対し油圧閉回路を用いて接続した場合でも 斜板の傾転方向 (正方向または逆方向) に応じて圧油の 吐出方向を可逆的に切換えて制御できる。 そして、 斜板 が正方向と逆方向のいずれの方向に傾転される ときにも、 斜板の傾転動作を安定させ、 斜板支持部との間を良好な 潤滑状態に保つことができる。 .  Further, according to the present invention, the swash plate is configured to be driven to tilt from the neutral position of zero tilt angle in the forward direction and the reverse direction by the tilt actuator. As a result, even if the hydraulic rotary machine according to the present invention is applied to a variable displacement swash plate type hydraulic pump used for HST etc. and this hydraulic pump is connected to a hydraulic circuit using a hydraulic closed circuit, The discharge direction of pressure oil can be reversibly switched and controlled according to the direction of plate tilt (forward direction or reverse direction). And, even when the swash plate is tilted in either the forward direction or the reverse direction, the tilt operation of the swash plate can be stabilized and the space between the swash plate support portion can be maintained in a good lubrication state. . .
( 1 1 ) . さ ら に、 本発明による と、 前記ケ一シングに は、 制御ス リーブ内にスプールを有したサ一ポ弁からな り前記傾転ァクチユエ一夕に給排する前記傾転制御圧を 外部からの指令信号に従って制御する レギユ レ一夕と、 前記斜板の傾転動作に追従して該レギユ レ一夕の制御ス リ ブをフイ ー ドバック制御するフィ ー ドバッ ク機構と を設け 該フィ ー ドバッ ク機構は、 前記斜板が中立位置 にあるとさに前記回転軸に沿った軸方向 側の初期位置 とな り 前記斜板が正方向または逆方向に傾転駆動され るとさには前記初期位置から軸方向他側に向けて変位す るよ に刖記斜板の傾転動作を軸方向変位に変換して取 出す変換部と、 該変換部と前記レギユ レ一夕の制御ス リ ーブとの間に設けられ該変換部で取出した軸方向変位を 刖 e己レギュ レー夕の制御ス リ ーブに伝える変位伝達部と によ 構成している。 (11) Further, according to the present invention, the casing comprises a relief valve having a spool in a control sleeve, and the tilt valve for supplying and discharging the relief valve. The control pressure is controlled in accordance with the command signal from the outside, and the control procedure of the adjustment procedure is followed following the tilting operation of the swash plate. A feedback mechanism for feedback control of the rib is provided, and the feedback mechanism is set to an initial position on the axial side along the rotation axis when the swash plate is in the neutral position. If the swash plate is driven to tilt in the forward or reverse direction, the tilting motion of the swash plate is converted into axial displacement so that the swash plate is displaced from the initial position toward the other side in the axial direction. Of the axial displacement taken out by the converting unit, provided between the converting unit, the converting unit, and the control sleeve of the regu And a displacement transmission unit that transmits to the
のよ に構成する こ とによ り 、 斜板が傾転ァクチュ ェ タに り正方向または逆方向に傾転駆動される とき には レギユ レ一夕の制御ス リーブをスプールと同方向 に摺動変位させるよう にレギユ レ一夕をフィ ー ドバッ ク 制御する とができ、 斜板が正方向と逆方向いずれの方 向に傾転されるときにも レギユ レ一夕のフィ ー ドバッ ク 制御を円滑に行う こ とができる。 そして、 制御ス リーブ 内にスプ ルを有したサーポ弁によ り レギユ レ一夕を構 成でさるので、 斜板の傾転制御を行う可変容量型液圧回 転機全体の構造を簡素化する ことができる。 図面の簡単な説明  When the swash plate is driven to rotate in the forward or reverse direction by the tilt actuator, the control sleeve of the shutter is slid in the same direction as the spool. Feedback control can be performed on the register so as to cause dynamic displacement, and feedback control on the register can be performed even when the swash plate is tilted in either the forward or reverse direction. Can be done smoothly. And, since the refueling valve is constructed by the servo valve having a spring in the control sleeve, the structure of the entire variable displacement hydraulic rotating machine for controlling the inclination of the swash plate is simplified. be able to. Brief description of the drawings
図 1 は、 本発明の第 1 の実施の.形態による可変容量型 の斜板式油圧ポンプが設けられたホイール式作業車両の 走行用油圧回路図である。  FIG. 1 is a hydraulic circuit diagram for traveling of a wheel type working vehicle provided with a variable displacement swash plate type hydraulic pump according to a first embodiment of the present invention.
図 2 は、 図 1 に示す油圧ポンプの縦断面図である。 図 3 は、 油圧ポンプを図 2 中の矢示 I I I一 I I I方向から みた縦断面図である。  FIG. 2 is a longitudinal sectional view of the hydraulic pump shown in FIG. Fig. 3 is a longitudinal sectional view of the hydraulic pump as viewed in the direction of arrows in Fig. 2.
図 4は、 図 3 に示す油圧ポンプの拡大断面図である。 図 5 は、 図 4 中の斜板支持体および斜板を静圧軸受部 等と共に拡大して示す断面図である。 FIG. 4 is an enlarged sectional view of the hydraulic pump shown in FIG. FIG. 5 is an enlarged sectional view showing the swash plate support and the swash plate in FIG. 4 together with the static pressure bearing portion and the like.
図 6 は、 斜板が中立位置にある状態を図 4 中の矢示 V I Fig. 6 shows the condition where the swash plate is in the neutral position, as indicated by arrows in Fig.
—V I方向からみた拡大断面図である。 -It is an expanded sectional view seen from the direction of VI.
図 7 は、 斜板が正方向に傾転した状態を示す図 6 と同 様位置での断面図である。  Fig. 7 is a cross-sectional view at the same position as in Fig. 6, showing the swash plate in a normal direction.
図 8 は、 図 3 中の斜板を拡大して示す斜視図である。 図 9 は、 図 8 の斜板を裏面側からみた背面図である。 図 1 0 は、 第 1 の実施の形態による斜板の傾転制御装 置を示す回路構成図である。  FIG. 8 is an enlarged perspective view of the swash plate in FIG. Fig. 9 is a rear view of the swash plate of Fig. 8 viewed from the back side. FIG. 10 is a circuit diagram showing a tilt control device for a swash plate according to the first embodiment.
図 1 1 は、 図 1 0 中の斜板を傾転ピス ト ンと共に示す 正面図である  Fig. 1 1 is a front view showing the swash plate in Fig. 10 with a tilting piston.
図 1 2 は、 図 1 1 中の斜板を正方向に傾転した状態を 示す正面図である  Fig. 1 2 is a front view showing the swash plate in Fig. 1 1 tilted forward.
図 1 3 は、 図 1 1 中の斜板を逆方向に傾転した状態を 示す正面図である  Fig. 13 is a front view showing the swash plate in Fig. 11 tilted in the reverse direction.
図 1 4 は、 第 2 の実施の形態による油圧ポンプを示す 図 3 と同様位置での縦断面図である。  FIG. 14 is a longitudinal sectional view at the same position as FIG. 3, showing a hydraulic pump according to a second embodiment.
図 1 5 は、 図 1 4 中の斜板を拡大して示す斜視図であ る。  Figure 15 is an enlarged perspective view of the swash plate in Figure 14.
図 1 6 は、 図 1 5 の斜板を裏面側からみた背面図であ る。 発明を実施するための最良の形態  Fig. 16 is a rear view of the swash plate in Fig. 15 viewed from the back side. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態による可変容量型斜板式液 圧回転機を 、 例えばホイールローダ等のホィ一ル式作業 車両における走行用油圧回路に適用 した場 を例に挙げ 添付図面に従って詳細に説明する  Hereinafter, the variable displacement swash plate type hydraulic rotating machine according to the embodiment of the present invention is applied to a traveling hydraulic circuit in a wheel type work vehicle such as a wheel loader, for example. Do
こ こで 、 図 1 ないし図 1 3 は本発明の 1 の実施の形 態に係る可変容量型斜板式液圧回転機を示している。 Here, FIGS. 1 to 13 are the forms of one embodiment of the present invention. 3 shows a variable displacement swash plate type hydraulic rotating machine according to the embodiment.
図中、 1 は可変容量型斜板式液圧回転機としての斜板 式油圧ポンプで 、 該油圧ポンプ 1 は 、 後述のケ ―シング In the figure, reference numeral 1 denotes a swash plate type hydraulic pump as a variable displacement swash plate type hydraulic rotary machine, and the hydraulic pump 1 is a case described later.
1 1 、 回転軸 1 3 、 シリ ンダブロ ッ ク 1 4、 複数のシリ ンダ 1 5 、 ピス ト ン 1 6 、 シユー 1 7 、 弁板 1 9、 斜板 支持体 2 0 および斜板 2 1 等によつて 成されるもので ある。 1 1, rotary shaft 1 3, cylinder block 1 4, multiple cylinders 1 5, piston 1 6, sieve 1 7, valve plate 1 9, swash plate support 20 and swash plate 2 1 etc. It is something that will be
また、 油圧ポンプ 1 は 、 例えば駆動源となるディ一ゼ ルエンジン等の原動機 2 によ り回転軸 1 3 が回転駆動さ れ、 図 1 に示す如く一対の主管路 3 A , 3 B内に圧油を 流通させるものである。 そして、 油圧ボンプ 1 は、 主管 路 3 A , 3 B を介して後述の油圧モータ 5 に接続され 、 所謂油圧閉回路 4 を構成しているものである  Further, in the hydraulic pump 1, for example, a rotary shaft 13 is rotationally driven by a prime mover 2 such as a diesel engine serving as a drive source, and as shown in FIG. It distributes pressure oil. The hydraulic pump 1 is connected to a hydraulic motor 5 described later via the main pipelines 3 A and 3 B to constitute a so-called hydraulic closed circuit 4.
5 は油圧ァクチユエ一タと しての走行用油圧モー夕で、 該油圧モータ 5 は、 例えば減速機 6 を介してホイ一ル式 作業車両の車輪 7, 7 に連結されている。 そして、 油圧 モー夕 5 は、 油圧ポンプ 1 からの圧油が主管路 3 A 3 Reference numeral 5 denotes a traveling hydraulic motor as a hydraulic actuator, and the hydraulic motor 5 is connected to wheels 7 and 7 of a wheeled work vehicle via, for example, a reduction gear 6. And, the hydraulic motor 5 has the pressure oil from the hydraulic pump 1 as the main line 3 A 3
B を介して給排される こ とによ り 、 卓 ¾ffl 1 を回転駆動し て作業車両を走行駆動するものである。 By being supplied and discharged through B, the work vehicle is driven by driving the table 1⁄4 ff1 1 to rotate.
1 1 は油圧ポンプ 1 の外殻となる筒状のケーシングで、 該ケーシング 1 1 は、 図 2 ないし図 4 に示すよう に筒状 のケ一シング本体 1 1 Aと 、 該ケ一シング本体 1 1 Aの 両端側を閉塞したフロン 卜ケ一シング 1 1 B、 リャケ一 シング 1 1 C とから構成されている。  1 1 is a cylindrical casing serving as an outer shell of the hydraulic pump 1, and the casing 1 1 has a cylindrical casing main body 1 1 A as shown in FIGS. 2 to 4 and the casing main body 1 It consists of a fluorocarbon sheeting 1 1 B and a plugging sheet 1 1 C, with both ends of 1 A blocked.
また、 ケーシング本体 1 1 Aの外周側には、 図 3 に示 す如く 開口部 1 1 D と ド レン通路 1 1 E とが形成され 、 これらの開口部 1 1 Dと レン通路 1 1 Eは、 ケーシン  Further, as shown in FIG. 3, an opening 1 1 D and a drain passage 1 1 E are formed on the outer peripheral side of the casing main body 1 1 A, and these opening 1 1 D and the lens passage 1 1 E are , Kashin
、 * グ本体 1 1 A内を後述する レギュ レー夕 3 4の弁八クン ング 3 5 内に常時連通させている 。 そして 、 ケ—シング 本体 1 1 Aの開口部 1 I D内には、 後述の並進バー 4 4 がガイ ド部材 4 5等を介してスライ ド可能に取付けられ るものである。 また、 ケ一シング 1 1 内は所謂 ド レン室 となって後述のタンク 4 7 に接続されている。 * * The main body 1 1 A is always in communication with the inside of the regulator 3 4 valve Hung 3 5 which will be described later. And the casing In the opening 1 ID of the main body 1 1 A, a translation bar 4 4 described later is slidably mounted via a guide member 45 or the like. The inside of the casing 1 1 is a so-called drain chamber and is connected to a tank 4 7 described later.
こ こで、 ケーシング本体 1 1 Aの一側に位置するフロ ン 卜ケ —シング 1 1 B には、 図 2 ないし図 4 に示すよう に後述の斜板支持体 2 0 が斜板 2 1 の裏面側に対向して 設けられている また 、 ケ一シング本体 1 1 Aの他側に 位置する リ ャケ一シング 1 1 Cには、 一対の給排通路 1 Here, as shown in FIG. 2 to FIG. 4, a swash plate support 20 described later is provided on the swash plate 2 1 as shown in FIG. 2 to FIG. A pair of supply and discharge passages are provided to the back side 1 1 C, which is provided opposite to the back side and is located on the other side of the casing main body 1 1 A.
2 A 1 2 Bが設けられ 、 該給排通路 1 2 A, 1 2 Bは 図 1 に示す主管路 3 A 3 Bに接続されるものである。 2 A 1 2 B is provided, and the supply and discharge passages 1 2 A and 1 2 B are connected to the main pipeline 3 A 3 B shown in FIG.
1 3 はケ一シング 1 1 内に回転可能に設けられた回転 軸で 、 該回転軸 1 3 は 、 フロ ン トケーシング 1 1 B と リ ャケ一シング 1 1 C とにそれぞれ軸受を介して回転可能 に支持されている そして、 回転軸 1 3 は、 フロン トケ 一シング 1 1 Bから軸方向に突出する突出端 1 3 A側が 図 1 に示す原動機 2 に り回転駆動されるものである。  1 3 is a rotary shaft rotatably provided in the casing 1 1, and the rotary shaft 1 3 is provided with bearings for the front casing 1 1 B and the heating casing 1 1 C respectively. The rotary shaft 13 is rotatably supported by the motor 2 shown in FIG. 1 at the projecting end 13 A side that protrudes in the axial direction from the front bearing 1 1 B.
1 4 は回転軸 1 3 と一体的に回転するよう にケ一シン グ 1 1 内に設けられたシリ ンダブロ ックで、 該シリ ンダ ブ D ック 1 4 には 、 その周方向に離間する と共に軸方向 に延びる複数のシ ■J ンダ 1 5, 1 5 , …が設けられてい る。  Reference numeral 14 denotes a cylinder block provided in the casing 1 1 so as to rotate integrally with the rotary shaft 13. The cylinder block 1 4 is spaced apart in the circumferential direction thereof. There are also a plurality of cylinders J 1, 15 1,... Extending in the axial direction.
1 6 , 1 6 , …はシ •J ンダブ口 ソ ク 1 4 の各シリ ンダ 1 6, 1 6, ... are series • 4 of each series
1 5 内にそれぞれ摺動可能に挿嵌されたピス ト ンで、 該 各ピス 卜 ン 1 6 は、 後述の斜板 2 1 が正方向または逆方 向に傾転されたときに 、 シリ ンダブロ ック 1 4 の回転に 伴 てシリ ンダ 1 5 内を往復動し 、 吸入行程と吐出行程 とを 返すものである Each piston 16 is a piston which is slidably inserted in each of the pistons 5. When the swash plate 21, which will be described later, is tilted in the forward direction or in the reverse direction, the pistons 16 may be cylinders. It reciprocates in cylinder 1 5 along with rotation of 1 4 and returns suction and discharge strokes.
1 7 , 1 7 , …は各ピス 卜 ン 1 6 にそれぞれ設けられ たシュ一で、 該各シユー 1 7 は、 シリ ンダブロ ック 1 4 のシリ ンダ 1 5 から回転軸 1 3 の軸方向に突出する ビス ト ン 1 6 の一端側 (突出端側) にそれぞれ揺動可能に取 付けられているものである。 1 7, 1 7, ... are provided in each of the pisins 1 In each case, each shoe 1 7 is rocked to one end side (protruding end side) of a screw tongue 16 which protrudes in the axial direction of the rotary shaft 13 from the cylinder 1 5 of the cylinder block 1 4. It is mounted to be movable.
1 8 は各シユー 1 7 を斜板 2 1 に対して保持する環状 のシュ一押えで、 該シュ一押え 1 8 は、 図 3 ないし図 7 に示す如く後述する斜板 2 1 の平滑面 2 1 Cに向けてシ ユー 1 7 をそれぞれ押圧し、 斜板 2 1 の平滑面 2 1 C上 で各シュ一 1 7 が環状軌跡を描く よう に摺動変位するの を補償するものであ •S 。  Reference numeral 18 denotes an annular clamp which holds each shoe 17 against the swash plate 21. The clamp 18 is a smooth surface of the swash plate 21 which will be described later as shown in FIG. 3 to FIG. It is intended to compensate for the displacement of each shell 1 7 in an annular path on the smooth surface 2 1 C of the swash plate 2 1 by pressing the shell 1 7 toward 1 C respectively. S.
1 9 はケ一シング 1 1 内に位置してリャケーシング 1 1 9 is located in the case 1 1
1 C とシリ ンダブ口 ック 1 4 との間に設けられた弁板で 該弁板 1 9 は、 シリ ンダブロ ック 1 4の端面に摺接し、 シリ ンダブロ ック 1 4 を回転軸 1 3 と一緒に回転可能に 支持している。 また 、 弁板 1 9 には 、 図 3 、 図 4 に示す 如く 眉形状をなす一対の給排ポー ト 1 9 A , 1 9 Bが形 成されている。 そして、 これらの給排ポ一 卜 1 9 A, 1A valve plate provided between 1 C and the cylinder dovetail 14 4 makes sliding contact with the end face of the cylinder block 14 so that the cylinder block 1 4 can be rotated about its axis of rotation 1 3 It is rotatably supported together with Further, as shown in FIGS. 3 and 4, the valve plate 19 is formed with a pair of feeding and discharging ports 1 9 A and 19 B in a bowl shape. And these supply and discharge ports 1 9 A, 1
9 Bは、 リャケーシング 1 1 Cの給排通路 1 2 A , 1 29 B is the supply and discharge passage of Lyacasing 1 1 C 1 2 A, 1 2
B と常時連通しているものである。 It is in constant communication with B.
こ こで、 弁板 1 9 の給排ポー ト 1 9 A , 1 9 Bは、 シ リ ンダブロ ッ ク 1 4が回転するときに各シリ ンダ 1 5 と 間欠的に連通する。 そして、 給排ポ一 卜 1 9 A, 1 9 B は、 一方の給排通路 1 2 A (または 1 2 B ) 側から各シ リ ンダ 1 5 内に吸込まれた作動油をピス 卜 ン 1 6 によ り 加圧させると共に、 各シリ ンダ 1 5 内で高圧状態となつ た圧油を他方の給排通路 1 2 B (または 1 2 A ) から吐 出させる機能を有している。  Here, the supply and discharge ports 1 9 A and 1 9 B of the valve plate 1 9 intermittently communicate with the cylinders 1 5 when the cylinder block 1 4 rotates. The supply and discharge ports 1 9 A and 1 9 B are provided with hydraulic oil drawn from the side of one supply and discharge passage 1 2 A (or 1 2 B) into each cylinder 1 5 as a piston 1 In addition to pressurizing by 6, it has a function to discharge pressurized oil that has become high pressure in each cylinder 15 from the other supply / discharge passage 12 B (or 12 A).
2 0 は斜板支持部としての斜板支持体を示し、 該斜板 支持体 2 0 は、 回転軸 1 3 の周囲に位置してフロ ン 卜ケ 一シング 1 I B に設けられている。 そして、 斜板支持体 2 0 は、 図 4 に示す如く 回転軸 1 3 を挟んで例えば左, 右両側となる位置に一対の傾転支持面 2 0 A, 2 0 B を 有し、 斜板 2 1 を傾転可能に支持するものである。 Reference numeral 20 denotes a swash plate support as a swash plate support, and the swash plate support 20 is located around the rotation shaft 13. It is provided in one sing 1 IB. And, as shown in FIG. 4, the swash plate support 20 has a pair of tilting support surfaces 20 A and 20 B at positions on both the left and right sides sandwiching the rotation shaft 13, for example. It supports 21 so that it can tilt.
そして、 斜板支持体 2 0 の傾転支持面 2 0 A , 2 0 B は、 後述する斜板 2 1 の脚部 2 1 A , 2 I Bに対応して 凹湾曲状に形成され、 斜板 2 1 を図 6 、 図 7 に例示する 傾転中心 Cの回りで矢示 A, B方向に傾転 (摺動) 可能 に案内する ものである。 また、 斜板支持体 2 0 には、 後 述する分岐油路 2 4 B , 2 4 C 2 5 B , 2 5 Cの一部 が穿設されている  And, the tilt support surfaces 20 A and 20 B of the swash plate support 20 are formed in a concave curve corresponding to the legs 21 A and 2 IB of the swash plate 2 1 described later. It guides 21 so that it can tilt (slide) in the directions of arrows A and B around the center of tilt C illustrated in FIG. 6 and FIG. Further, in the swash plate support 20, a part of branched oil passages 24B, 24C25B, 25C described later is bored.
次に、 2 1 は本実施の形態に用いられる斜板を示し、 該斜板 2 1 は、 ケ —シング 1 1 内に斜板支持体 2 0 を介 して傾転可能に設けられている しの斜板 2 1 の裏面側- には、 図 2 ないし図 7 に示すよう に斜板支持体 2 0 の各 傾転支持面 2 O A , 2 0 B に向けて凸湾曲状に突出した 左, 右一対の脚部 2 1 A, 2 1 Bが設けられている。 そ して、 斜板 2 1 の脚部 2 1 A 2 1 B は、 回転軸 1 3 を 挟んで例えば左, 右方向に離間し 、 凹湾曲状をなす斜板 支持体 2 0 の傾転支持面 2 0 A 2 0 Bに摺動可能に嵌 合されるものである。  Next, reference numeral 21 denotes a swash plate used in the present embodiment, and the swash plate 21 is provided in the casing 1 1 so as to be able to be tilted via the swash plate support 20. On the back side of the swash plate 2 1 of the bridge, as shown in FIG. 2 to FIG. 7, the left of the swash plate support 20 projects in a convexly curved shape toward the tilting support surfaces 2 OA and 20 B , The right pair of legs 2 1 A, 2 1 B are provided. Then, the legs 2 1 A 2 1 B of the swash plate 2 1 are spaced apart, for example, in the left and right directions with the rotary shaft 1 3 interposed therebetween, and have a concave-curved swash plate support 20 tilt support It is slidably fitted on the surface 20 A 20 B.
一方、 斜板 2 1 の表面側は 、 図 2 ないし図 7 に示すよ う に各シュ一 1 7 を摺動可能に案内する平滑面 2 1 じ と なっている。 また 、 斜板 2 1 には 、 その板厚方向に貫通 して延びる貫通穴 2 1 Dが設けられている。 そして、 こ の貫通穴 2 1 D内には、 脚部 2 1 A , 2 1 B間に位置し て回転軸 1 3が隙間をもって揷通されるものである。  On the other hand, as shown in FIG. 2 to FIG. 7, the surface side of the swash plate 21 is a smooth surface 21 which slidably guides each plate 17. As shown in FIG. The swash plate 2 1 is provided with a through hole 21 D extending in the thickness direction. The rotary shaft 13 is inserted between the legs 2 1 A and 2 1 B in the through hole 21 D with a gap.
こ こで、 斜板 2 1 の脚部 2 1 A 2 1 Bは、 図 6 ない し図 1 0 に示すよう に傾転中心 Cから半径 Rの円弧面と して形成され、 傾転中心 Cは、 回転軸 1 3 の軸線 O— 0 上に配置されるものである。 そして、 斜板 2 1 は、 図 6 、 図 1 1 に示す傾転角零の中立位置から正方向 (矢示 A方 向) と逆方向 (矢示 B方向) とに後述の傾転ァクチユエ 一夕 3 2 , 3 3 を用いて傾転駆動される。 このとき、 油 圧ポンプ 1 の容量 (圧油の吐出量) は、 斜板 2 1 の傾転 角 0 に応じて可変に制御されるものである。 Here, the legs 2 1 A 2 1 B of the swash plate 2 1 are, as shown in FIG. 6 or FIG. The tilt center C is disposed on the axis O- 0 of the rotation axis 1 3. And, the swash plate 2 1 is shifted from the neutral position of zero tilt angle shown in FIG. 6 and FIG. 1 1 to a positive direction (arrow A direction) and a reverse direction (arrow B direction) as described later. It is driven to tilt using evenings 2 and 3 3. At this time, the capacity (discharge amount of hydraulic oil) of the hydraulic pressure pump 1 is variably controlled according to the tilt angle 0 of the swash plate 2 1.
また、 斜板 2 1 は、 回転軸 1 3 の周囲でシリ ンダブ口 ック 1 4 と一体に回転する各ビス ト ン 1 6 から油圧反力 (ピス トン反力) を受ける。 そして、 この油圧反力の合 力 f 1 , f 2は、 その作用点 (以下、 合力作用点 k 1, k 2 という) がシリ ンダブロ ッ ク 1 4 の回転に伴って図 9 中 に例示する如く 「∞」 の字を描く よう に変動する。 この 場合、 斜板 2 1 は、 中立位置から正方向に傾転されてい る ときに合力作用点 k lの位置で油圧反力を受け、 中立 位置か ら逆方向に傾転されたときには、 合力作用点 k 2 の位置で油圧反力を受けるものである。  In addition, the swash plate 21 receives hydraulic reaction force (piston reaction force) from each screw 16 which rotates integrally with the cylinder dovetail 14 around the rotation shaft 13. The combined forces f 1 and f 2 of the hydraulic reaction force are illustrated in FIG. 9 as the action points (hereinafter referred to as combined action points k 1 and k 2) rotate as cylinder block 1 4. It fluctuates to draw the letter “字” as shown. In this case, when the swash plate 2 1 is tilted in the positive direction from the neutral position, it receives a hydraulic reaction force at the position of the resultant force application point kl, and when it is tilted in the reverse direction from the neutral position The hydraulic reaction is received at the point k 2.
2 2 は斜板支持体 2 0 の傾転支持面 2 0 A , 2 0 B と 斜板 2 1 の脚部 2 1 A , 2 1 B との間に設けた静圧軸受 を示している。 この静圧軸受 2 2 は、 例えばリ ャケ一シ ング 1 1 C に設けた一対の給排通路 1 2 A, 1 2 Bから 後述の如く 圧油が導かれる こ とによ り 、 傾転支持面 2 0 A, 2 0 8 と脚部 2 1 , 2 1 B との間に乖離力 (油圧 力) を発生させる と共に、 両者の接触面を潤滑状態に保 持するものである。  Denoted at 2 2 is a hydrostatic bearing provided between the tilt support surfaces 20 A and 20 B of the swash plate support 20 and the legs 21 A and 21 B of the swash plate 2 1. The static pressure bearing 22 is inclined, for example, by the pressure oil being introduced as described later from a pair of supply and discharge passages 12 A and 12 B provided in the rear cover 11 C. While generating a separation force (hydraulic force) between the support surfaces 20 A and 2 08 and the legs 2 1 and 2 1 B, the contact surfaces of both are maintained in a lubricated state.
そして、 静圧軸受 2 2 は、 図 5 、 図 8 、 図 9 に示す如 く斜板 2 1 の貫通穴 2 1 Dに近い位置で一方の脚部 2 1 Aの凸湾曲面側に設けられた第 1 の主静圧軸受部 2 2 A と、 貫通穴 2 1 Dに近い位置で他方の脚部 2 1 Bの凸湾 曲面側に設けられた第 2 の主静圧軸受部 2 2 Bと、 該第 2の主静圧軸受部 2 2 Bから径方向に離間して脚部 2 1 Bの凸湾曲面側に設けられた第 1 の補助静圧軸受部 2 2 じ と、 第 1 の主静圧軸受部 2 2 Aから径方向に離間して 脚部 2 1 Aの凸湾曲面側に設けられた第 2 の補助静圧軸 受部 2 2 Dとによ り構成されている。 The hydrostatic bearing 2 2 is provided on the convex curved surface side of one leg 21 A at a position close to the through hole 21 D of the swash plate 2 1 as shown in FIGS. 5, 8 and 9. The first main hydrostatic bearing part 2 2 A, and the other side of the leg 2 1 B in a position close to the through hole 2 1 D The second main static pressure bearing portion 22 B provided on the curved surface side and the second main static pressure bearing portion 22 B are provided on the convex curved surface side of the leg portion 21 B so as to be separated in the radial direction. The second auxiliary static hydrostatic bearing 2 2 provided on the convex curved surface side of the leg 2 1 A at a distance from the first main hydrostatic bearing 2 2 A in the radial direction. It is configured by the auxiliary static pressure bearing 2 2 D.
また、 これらの静圧軸受部 2 2 A〜 2 2 Dのうち第 1 の主静圧軸受部 2 2 Aと第 1 の補助静圧軸受部 2 2 Cと は、 後述の導油路 2 4を介して一方の給排通路 1 2 Aに 接続されている。 また、 第 2 の主静圧軸受部 2 2 Bと第 2の補助静圧軸受部 2 2 Dとは、 後述の導油路 2 5 を介 して他方の給排通路 1 2 Bに接続されるものである。  Further, among the static pressure bearing portions 22A to 22D, the first main static pressure bearing portion 22A and the first auxiliary static pressure bearing portion 22C are provided with oil passages 24 described later. It is connected to one supply / discharge passage 1 2 A via. Further, the second main static pressure bearing portion 22 B and the second auxiliary static pressure bearing portion 22 D are connected to the other supply / discharge passage 12 B via an oil passage 25 which will be described later. It is
この場合、 第 1 , 第 2 の主静圧軸受部 2 2 A, 2 2 B は、 図 8 に示すよう に脚部 2 1 A, 2 I Bの凸湾曲面に 沿って矢示 A, B方向に延びる凹溝として形成され、 そ の平面形状は図 9 に示す如く細長い長方形状をなしてい る。 また、 第 1 , 第 2の補助静圧軸受部 2 2 C, 2 2 D は、 斜板 2 1 の貫通穴 2 1 Dを基準として第 1 , 第 2 の 主.静圧軸受部 2 2 A, 2 2 Bよ り も左, 右方向 (径方 向) の外側となる位置に配置されている。  In this case, the first and second main hydrostatic bearings 22 A and 22 B are shown by arrows in the directions of arrows A and B along the convexly curved surfaces of the legs 21 A and 2 IB as shown in FIG. The planar shape is an elongated rectangular shape as shown in FIG. The first and second auxiliary static pressure bearings 2 2 C and 2 2 D are the first and second main static pressure bearings 2 2 A with reference to the through hole 21 D of the swash plate 2 1. , 2 2 B is located at the outer side in the left and right direction (radial direction).
そして、 第 1 , 第 2の補助静圧軸受部 2 2 C, 2 2 D も、 脚部 2 I B, 2 1 Aの凸湾曲面に沿って第 1 , 第 2 の主静圧軸受部 2 2 A, 2 2 Bとほぼ平行 (図 8 中の矢 示 A, B方向) に延びる凹溝として形成され、 その平面 形状は図 9 に示す如く細長い長方形状をなしている。 し かし、 第 1 , 第 2 の補助静圧軸受部 2 2 C, 2 2 Dは、 その溝長さ (矢示 A, B方向の溝長さ) と左, 右方向の 溝幅とが第 1 , 第 2の主静圧軸受部 2 2 A, 2 2 Bよ り も小さ く形成されている。 即ち、 第 1 の主静圧軸受部 2 2 Aは、 貫通穴 2 1 Dの 径方向一側 (図 9 中の右側) において斜板 2 1 が各ビス ト ン 1 6 から受ける油圧反力の合力作用点 k 1に近い位 置で、 この作用点 k 1から距離 L aとなる位置に配置され ている。 また、 第 2の主静圧軸受部 2 2 Bは、 貫通穴 2The first and second auxiliary static pressure bearings 2 2 C and 2 2 D are also connected to the first and second main static pressure bearings 2 2 along the convexly curved surfaces of the legs 2 IB and 2 1 A. It is formed as a groove extending substantially parallel to A and 22 B (directions of arrows A and B in Fig. 8), and its planar shape is an elongated rectangular shape as shown in Fig. 9. However, the first and second auxiliary static pressure bearings 2 2 C, 2 2 D have groove lengths (ditch lengths in the directions of arrows A and B) and groove widths in the left and right directions. It is smaller than the first and second main static pressure bearings 2 2 A and 2 2 B. That is, in the first main hydrostatic bearing portion 22A, the swash plate 21 receives the hydraulic reaction force received from each screw 1 6 at one radial side (right side in FIG. 9) of the through hole 21D. It is arranged at a position near the resultant action point k 1 and at a distance La from the action point k 1. Also, the second main static pressure bearing portion 2 2 B has a through hole 2
1 Dの径方向他側 (図 9 中の左側) において斜板 2 1 が 各ピス 卜 ン 1 6から受ける油圧反力の合力作用点 k 2に 近い位置で、 この作用点 k 2から距離 L bとなる位置に配 置されている。 A distance L from the action point k 2 at a position close to the resultant force action point k 2 of the hydraulic reaction force that the swash plate 2 1 receives from each piston 16 on the other side of the radial direction 1 D (left side in FIG. 9). It is placed at the position b.
また、 第 1 の補助静圧軸受部 2 2 Cは、 貫通穴 2 1 D の径方向他側 (図 9 中の左側) で斜板 2 1 が各ピス ト ン In the first auxiliary static pressure bearing 22C, the swash plate 21 is a piston on the other side of the through hole 21D in the radial direction (the left side in Fig. 9).
1 6 か ら受ける油圧反力の合力作用点 k 1か ら距離 L cThe distance L c from the resultant force action point k 1 of the hydraulic reaction force received from 1 6
( L c > L a) となる位置に配置されている。 また、 第 2 の補助静圧軸受部 2 2 Dは、 貫通穴 2 1 Dの径方向一側 (図 9 中の右側) で斜板 2 1 が各ピス ト ン 1 6から受け る油圧反力の合力作用点 k 2から距離 L d ( L d> L b) と なる位置に配置されている。 It is arranged at the position where (L c> L a). Also, the second auxiliary static pressure bearing 22 D is the hydraulic reaction force that the swash plate 21 receives from each piston 16 at one radial direction side (right side in FIG. 9) of the through hole 21 D. Is located at a distance L d (L d> L b) from the resultant force action point k 2 of
そして 、 第 1 , 第 2の主静圧軸受部 2 2 A , 2 2 Bは 図 5、 図 9 に示すよう に第 1 , 第 2 の補助静圧軸受部 2 The first and second main static pressure bearings 2 2 A and 2 2 B are shown in FIGS. 5 and 9 as the first and second auxiliary static pressure bearings 2.
2 C , 2 2 Dよ り も貫通穴 2 1 Dに近い位置に配置され ている。 また、 主静圧軸受部 2 2 A, 2 2 Bの有効軸受 面積 S a, S bは、 下記の ( 4 ) 式、 ( 8 ) 式による関係 を満たすよう に補助静圧軸受部 2 2 C , 2 2 Dの有効軸 受面積 S c, S dよ り も大きく 形成されているものである。 なお、 有効軸受面積 S a, S b, S c, S dとは、 それぞれ 軸受部 2 2 A, 2 2 B , 2 2 C, 2 2 Dの受圧面積と等 価なものである。 The holes are arranged closer to the through holes 21 D than 2 C and 2 2 D. In addition, the effective bearing areas S a and S b of the main static pressure bearing portions 2 2 A and 2 2 B are auxiliary static pressure bearing portions 2 2 C so as to satisfy the relationship according to the following equations (4) and (8). , 22 D is formed larger than the effective axial bearing area S c, S d. The effective bearing areas S a, S b, S c, and S d are equivalent to the pressure receiving areas of the bearing portions 2 2 A, 2 2 B, 2 2 C, and 2 2 D, respectively.
2 3 A , 2 3 Bは斜板 2 1 の脚部 2 1 A, 2 1 Bに設 けられた第 1 , 第 2の滑り軸受部で、 該第 1 , 第 2 の滑 り軸受部 2 3 A, 2 3 Bは、 図 5 、 図 8、 図 9 に示すよ う に貫通穴 2 1 Dの左, 右両側で、 主静圧軸受部 2 2 A, 2 2 Bおよび補助静圧軸受部 2 2 C, 2 2 Dよ り も貫通 穴 2 1 Dから径方向に離れた位置に配置されている。 即 ち、 滑り軸受部 2 3 A, 2 3 Bは、 図 8 に示す如く脚部 2 1 A , 2 I Bの左, 右方向外側で緣部となる位置に凸 湾曲状をなして形成されているものである。 Reference numerals 2 3 A and 2 3 B denote first and second sliding bearings provided on the legs 2 1 A and 2 1 B of the swash plate 2 1, respectively. As shown in Fig.5, Fig.8 and Fig.9, the main bearing for static pressure bearings 2 2 A, 2 2 B and 2 3 A, 2 3 B are located on the left and right sides of the through hole 21 1D. It is located at a position radially away from the through hole 21 D from the auxiliary static pressure bearing 2 2 C, 22 D. That is, as shown in FIG. 8, the slide bearing portions 2 3 A and 2 3 B are formed in a convexly curved shape at positions that become ridges on the left and right sides of the legs 2 1 A and 2 IB. It is
そして、 滑り軸受部 2 3 A, 2 3 Bは、 斜板支持体 2 0の傾転支持面 2 O A, 2 0 Bに小さな面圧をもって摺 動可能に接触している。 これによつて、 滑り軸受部 2 3 A , 2 3 Bは、 斜板 2 1 の脚部 2 1 A, 2 I Bが斜板支 持体 2 0 に沿って円滑に傾転されるのを、 静圧軸受部 2 2 A〜 2 2 Dと共に補償するものである。  The slide bearing portions 2 3 A and 2 3 B are slidably in contact with the tilt support surfaces 2 OA and 20 B of the swash plate support 20 with a small surface pressure. As a result, the slide bearings 2 3 A and 2 3 B can smoothly rotate the legs 2 1 A and 2 IB of the swash plate 2 1 along the swash plate support 20. It compensates with the static pressure bearing part 2 2A to 2 2D.
2 4は静圧軸受 2 2の第 1 の主静圧軸受部 2 2 A、 第 1 の補助静圧軸受部 2 2 Cに圧油を導 <ための導油路で、 該導油路 2 4は、 図 4、 図 5 に示すよ に給排通路 1 2 Reference numeral 24 denotes an oil introduction passage for guiding pressure oil to the first main static pressure bearing portion 22A of the static pressure bearing 22 and the first auxiliary static pressure bearing portion 22C. As shown in Fig. 4 and Fig. 5, 4 is the supply and discharge passage 1 2
Aと第 1 の主静圧軸受部 2 2 A、 第 1 の補助静圧軸受部A and 1st main static pressure bearing 2 2 A, 1st auxiliary static pressure bearing
2 2 Cとの間に設けられている。 こ こで 、 導油路 2 4は、 ケ一シング 1 1 内に設けられー側が給排通路 1 2 Aに連 通し他側が第 1 の主静圧軸受部 2 2 A 、 第 1 の補助静圧 軸受部 2 2 Cに向けて延びた共通油路 2 4 Aと、 該共通 油路 2 4 Aの他側で互いに分岐した 2 の分岐通路 2 4It is provided between 2 2 C and Here, the oil guiding passage 24 is provided in the casing 1 1, the side is in communication with the supply and discharge passage 1 2 A, and the other side is the first main static pressure bearing portion 2 2 A, the first auxiliary static pressure Common oil passage 24 A extending toward the pressure bearing portion 2 2 C, and 2 branch passages 2 4 branched from each other on the other side of the common oil passage 2 4 A
B , 2 4 C とによ り構成されている。 そして、 一方の分 岐油路 2 4 Bは、 第 1 の主静圧軸受部 2 2 Aに接続され、 他方の分岐油路 2 4 Cは、 第 1 の補助静圧軸受部 2 2 C に接続されている。 It is composed of B and 24 C. And one branch oil passage 24 B is connected to the first main static pressure bearing portion 22 A, and the other branch oil passage 24 C is connected to the first auxiliary static pressure bearing portion 22 C It is connected.
そして、 導油路 2 4の分岐油路 2 4 B , 2 4 Cは、 ケ 一シング 1 1 のフロン トケーシング 1 1 B側から斜板支 持体 2 0内に向けて互いに分岐して延びている。 そして、 分岐油路 2 4 Bの延長端は、 斜板支持体 2 0 の傾転支持 面 2 O A側で第 1 の主静圧軸受部 2 2 Aに開口 している。 また、 分岐油路 2 4 Cの延長端は、 斜板支持体 2 0 の傾 転支持面 2 0 B側で第 1 の補助静圧軸受部 2 2 Cに開口 しているものである。 The branched oil passages 2 4 B and 2 4 C of the oil introduction passage 2 4 are branched from each other toward the swash plate support 20 from the front casing 1 1 B side of the casing 1 1 and extend. ing. And The extension end of the branched oil passage 24 B is opened to the first main static pressure bearing portion 22 A on the tilt support surface 2 OA side of the swash plate support 20. Further, the extension end of the branched oil passage 24 C is opened to the first auxiliary static pressure bearing portion 22 C on the tilt support surface 20 B side of the swash plate support 20.
2 5 は静圧軸受 2 2 の第 2 の主静圧軸受部 2 2 B、 第 2 の補助静圧軸受部 2 2 Dに圧油を導く他の導油路で、 この導油路 2 5 は、 図 4 、 図 5 に示すよう に給排通路 1 2 B と第 2 の主静圧軸受部 2 2 B、 第 2 の補助静圧軸受 部 2 2 Dとの間に設けられている。 こ こで、 導油路 2 5 は、 ケーシング 1 1 内に設けられ一側が給排通路 1 2 B に連通し他側が第 2 の主静圧軸受部 2 2 B、 第 2 の補助 静圧軸受部 2 2 Dに向けて延びた共通油路 2 5 Aと、 該 共通油路 2 5 Aの他側で互いに分岐した 2 つの分岐油路 2 5 B , 2 5 C とによ り構成されている。 そして、 一方 の分岐油路 2 5 Bは、 第 2 の主静圧軸受部 2 2 Bに接続 され、 他方の分岐油路 2 5 Cは、 第 2 の補助静圧軸受部 2 2 Dに接続されている。  Reference numeral 2 5 denotes another oil introduction passage for introducing pressure oil to the second main static pressure bearing portion 2 2 B of the static pressure bearing 2 2 and the second auxiliary static pressure bearing portion 2 2 D. As shown in FIG. 4 and FIG. 5, it is provided between the supply / discharge passage 12 B and the second main static pressure bearing portion 22 B and the second auxiliary static pressure bearing portion 22 D. Here, the oil guiding passage 2 5 is provided in the casing 1 1 and one side communicates with the supply and discharge passage 1 2 B, and the other side is the second main static pressure bearing portion 2 2 B, the second auxiliary static pressure bearing It comprises a common oil passage 25A extending toward the part 22D and two branched oil passages 25B and 25C branched from each other on the other side of the common oil passage 25A. There is. And, one branch oil passage 25 B is connected to the second main static pressure bearing 22 B, and the other branch oil passage 25 C is connected to the second auxiliary static pressure bearing 22 D It is done.
そして、 導油路 2 5 の分岐油路 2 5 B , 2 5 Cは、 ケ 一シング 1 1 のフロ ン トケ一シング 1 1 B側から斜板支 持体 2 0 内に向けて互いに分岐して延びている。 そして、 分岐油路 2 5 Bの延長端は、 斜板支持体 2 0 の傾転支持 面 2 0 B側で第 2 の主静圧軸受部 2 2 Bに開口 している。 また、 分岐油路 2 5 Cの延長端は、 斜板支持体 2 0 の傾 転支持面 2 O A側で第 2 の補助静圧軸受部 2 2 Dに開口 しているものである。  And, the branched oil passages 25 B and 25 C of the oil guiding passage 25 are branched from each other toward the inside of the swash plate support 20 from the side of the flowing side 1 1 B of the casing 1 1. It extends. The extension end of the branch oil passage 25 B is opened to the second main static pressure bearing portion 2 2 B on the side of the tilt support surface 2 0 B of the swash plate support 20. Further, the extension end of the branch oil passage 25 C is opened to the second auxiliary static pressure bearing portion 22 D on the tilt support surface 2 OA side of the swash plate support 20.
2 6 は共通油路 2 4 Aの途中に設けられた共通絞り、 2 7 は共通油路 2 5 Aの途中に設けられた他の共通絞り を示している。 これらの共通絞り 2 6 , 2 7 のうち一方 の共通絞り 2 6 は、 図 4、 図 5 に示す如く給排通路 1 2 Aから第 1 の主静圧軸受部 2 2 Aと第 1 の補助静圧軸受 部 2 2 C と に共通して供給する圧油量を、 その絞 り径 (孔径) に応じて調整するものである。 また、 他方の共 通絞り 2 7 は、 給排通路 1 2 Bから第 2 の主静圧軸受部 2 2 B と第 2 の補助静圧軸受部 2 2 Dとに共通して供給 する圧油量を、 その絞り径 (孔径) に応じて調整するも のである。 Reference numeral 2 6 denotes a common throttle provided in the middle of the common oil passage 2 4 A, and 2 7 denotes another common throttle provided in the middle of the common oil passage 2 5 A. One of these common apertures 2 6, 2 7 As shown in Fig. 4 and Fig. 5, the common throttle 2 6 is common to the first main static pressure bearing section 2 2 A and the first auxiliary static pressure bearing section 2 2 C from the supply / discharge passage 12A. The amount of pressure oil to be supplied is adjusted according to the reduction diameter (pore diameter). The other common throttle 2 7 is a pressure oil that is commonly supplied from the supply and discharge passage 12 B to the second main static pressure bearing portion 2 2 B and the second auxiliary static pressure bearing portion 2 2 D. The amount is adjusted according to the diameter of the aperture (hole diameter).
そして、 共通絞り 2 6 , 2 7 は、 後述の個別絞り 2 8 〜 3 1 よ り も大なる絞り径を有し、 給排通路 1 2 A, 1 2 Bから主静圧軸受部 2 2 A , 2 2 B と補助静圧軸受部 2 2 C , 2 2 D とに供給する圧油量を粗調整する。 これ によ り、 主静圧軸受部 2 2 A , 2 2 B と補助静圧軸受部 The common throttles 2 6 and 2 7 have throttle diameters larger than the individual throttles 2 8 to 3 1 described later, and supply and discharge passages 12 A and 12 B to the main static pressure bearing portion 2 2 A Roughly adjust the amount of pressure oil supplied to H, 2 2 B and auxiliary static pressure bearings 2 2 C, 2 2 D. As a result, the main static pressure bearings 2 2 A and 2 2 B and the auxiliary static pressure bearings
2 2 C, 2 2 D とは、 圧油の供給量に大きなバラツキ等 が生じるのを共通絞り 2 6, 2 7 によって抑えられる も のである。 With 2 2 C and 2 2 D, it is possible to suppress the occurrence of large variations in the amount of pressure oil supplied by means of the common throttles 26, 27.
2 8, 2 9 は分岐油路 2 4 8, 2 5 Bの途中にそれぞ れ設けられた絞り (以下、 個別絞り 2 8 , 2 9 という)、 2 and 2 9 are throttles (hereinafter referred to as individual throttles 2 8 and 2 9) provided in the middle of the branch oil passages 2 4 8 and 2 5 B, respectively
3 0 , 3 1 は分岐油路 2 4 C, 2 5 Cの途中にそれぞれ 設け られた他の絞 り (以下、 個別絞 り 3 0 , 3 1 とレ う) を示している。 こ こで、 これらの個別絞り 2 8〜 3 1 は、 共通絞り 2 6, 2 7 よ り も小さな絞り径を有して いる。 そして、 共通絞り 2 6 , 2. 7 で粗調整された後に 分岐油路 2 4 B, 2 5 B , 2 4 C, 2 5 Cを介して静圧 軸受部 2 2 A〜 2 2 Dに供給される圧油量は、 個別絞り 2 8〜 3 1 によ り互いに独立して微調整されるものであ る。 Reference numerals 30 and 31 denote other throttles (hereinafter referred to as individual throttles 30 and 31) provided in the middle of the branch oil passages 24 C and 25 C, respectively. Here, these individual apertures 28 to 31 have smaller aperture diameters than the common apertures 26 and 27. Then, after being roughly adjusted with the common throttle 2 6, 2. 7, the static pressure is supplied to the hydrostatic bearing 2 2 A to 2 2 D via the branched oil passages 2 4 B, 2 5 B, 2 4 C, 2 5 C. The amounts of pressure oil to be added are fine-tuned independently of each other by the individual throttles 2 8 to 3 1.
即ち、 個別絞り 2 8 は、 分岐油路 2 4 B を介して第 1 の主静圧軸受部 2 2 Aに供給する圧油量を個別に微調整 し、 個別絞り 2 9 は、 分岐油路 2 5 Bを介して第 2 の主 静圧軸受部 2 2 B に供給する圧油量を個別に微調整する。 また、 個別絞り 3 0 は、 分岐油路 2 4 Cを介して第 1 の 補助静圧軸受部 2 2 Cに供給する圧油量を個別に微調整 し、 個別絞り 3 1 は、 分岐油路 2 5 C を介して第 2 の補 助静圧軸受部 2 2 Dに供給する圧油量を個別に微調整す るものである。 That is, the individual throttle 2 8 finely adjusts the amount of pressure oil supplied to the first main static pressure bearing portion 2 2 A via the branch oil passage 2 4 B individually The individual throttle 2 9 finely adjusts the amount of pressure oil supplied to the second main static pressure bearing 2 2 B via the branch oil passage 2 5 B individually. Also, the individual throttle 30 finely adjusts the amount of pressure oil supplied to the first auxiliary static pressure bearing portion 2 2 C via the branch oil passage 2 4 C, and the individual throttle 3 1 makes the branch oil passage The amount of pressure oil supplied to the second auxiliary static pressure bearing section 2 2 D via 2 5 C is finely adjusted individually.
3 2 , 3 3 は斜板 2 1 を傾転駆動する一対の傾転ァク チユエ一夕を示している。 こ こで、 一方の傾転ァクチュ ェ一タ 3 2 は、 図 2 、 図 3 、 図 6 、 図 7 に示すよう にシ リ ンダブ D ッ ク 1 4 の径方向外側に位置してケ ―シング 本体 1 1 Aに形成されたシリ ンダ穴 3 2 Aと 、 該シリ ン ダ穴 3 2 A内に摺動可能 ίこ挿嵌され、 該シ U ンダ穴 3 2 Reference numerals 3 2 and 3 3 denote a pair of tilting actuators for driving the swash plate 2 1 to tilt. Here, as shown in Fig. 2, Fig. 3, Fig. 6, Fig. 7 and Fig. 7, one tilting condenser 32 is located radially outward of the cylinder D 14 and The cylinder hole 32 A formed in the main body 1 1 A and the cylinder hole 32 2 A are slidably inserted into the cylinder hole 32 A, and the cylinder hole 3 2
Aとの間に液圧室 3 2 Β を画成した傾転ピス h ン 3 2 C と、 液圧室 3 2 B内に配設され、 該傾転ピス h ン 3 2 C を斜板 2 1 側に向けて常時付勢したスプ U ング 3 2 D と によ り構成されてい ο A tilting piston 3 2 C defining a hydraulic pressure chamber 3 2 間 に between A and A, and disposed in the hydraulic pressure chamber 3 2 B, the tilting pistine h It consists of a spring 3 2 D and a constant bias toward one side ο
,、./_  ,, ./_
また、 他方の傾転ァクチユエ一夕 3 3 も 、 述した一 方の傾転ァクチユエ一夕 3 2 とほぼ同様に 、 ケ一シング 本体 1 1 Aに形成されたシリ ンダ穴 3 3 Aと 、 該シリ ン ダ穴 3 3 A内に液圧室 3 3 Β を画成した傾転ピス 卜 ン 3 In addition, the other tilting aperture 33 3 also has the cylinder hole 33 A formed in the casing main body 1 1 A in substantially the same manner as the one tilting aperture 31 2 described above, and Hydraulic piston 3 3 A defining a hydraulic chamber 3 3 A in the cylinder hole 3 3 A
3 C と、 該傾転ビス トン 3 3 Cを斜板 2 1 側に向けて常 時付勢したスプリ ング 3 3 Dとによ り構成されている。 It is constituted by 3 C and a spring 3 3 D in which the tilting biston 3 3 C is always biased with the side facing the swash plate 2 1.
こ こで、 傾転ァクチユエ一タ. 3 2 , 3 3 は、 ケ一シン グ本体 1 1 Aに対しシリ ンダブロ ッ ク 1 4 の径方向で互 いに対向する位置に配設され、 傾転ピス ト ン 3 2 C , 3 3 Cによって斜板 2 1 を矢示 A, B方向に傾転駆動する。 即ち、 傾転ァクチユエ一夕 3 2 の液圧室 3 2 Bは、 図 3 、 図 1 0 に示すよう に後述の制御管路 5 0 B に接続され、 この制御管路 5 0 Bから傾転制御圧が給排される。 また 傾転ァクチユエ一夕 3 3 の液圧室 3 3 Bは 、 後述の制御 管路 5 O Aに接続され、 この制御管路 5 0 Aから傾転制 御圧が給排される。 Here, each of the tilting arms 3 2 and 3 3 is disposed at a position opposite to each other in the radial direction of the cylinder block 1 4 with respect to the casing main body 1 1 A. The swash plate 21 is driven to tilt in the directions of arrows A and B by pistons 3 2 C and 3 3 C, respectively. That is, as shown in FIG. 3 and FIG. 10, the hydraulic pressure chamber 32 B of the tilting valve 32 is connected to a control line 50 B described later, A tilt control pressure is supplied and discharged from the control line 50 B. The fluid pressure chamber 33 B of the tilting valve 33 is connected to a control line 5 OA described later, and a tilting control pressure is supplied and discharged from the control line 50 A.
そして、 この傾転制御圧で傾転ビス 卜ン 3 3 Cが図 7 に示す如く シリ ンダ穴 3 3 A内から伸長するときには、 斜板 2 1 が傾転ピス ト ン 3 3 Cによって矢示 A方向 (正 方向) に傾転駆動される。 このときには、 傾転ビス 卜 ン Then, when the tilting screw 3 3 C is extended from the inside of the cylinder hole 3 3 A as shown in FIG. 7 by this tilting control pressure, the swash plate 2 1 is shown by an arrow by the tilting piston 3 3 C. It is driven to tilt in the A direction (positive direction). At this time, tilt screw
3 2 Cは、 シリ ンダ穴 3 2 A内に向けて縮小する た 傾転ピス ト ン 3 2 C力 シリ ンダ穴 3 2 A内から伸長する ときには、 斜板 2 1 が傾転ビス 卜 ン 3 2 C に つて矢示When 2 2 C is extended from inside the cylinder hole 32 2 C when the cylinder 2 2 C is contracted from inside the cylinder hole 3 2 A, the swash plate 2 1 is inclined screw screw 3 3 2 C arrow
B方向 (逆方向) に傾転駆動される。 このとさには、 傾 転ピス ト ン 3 3 Cは 、 シリ ンダ穴 3 3 A内に向けて縮小 するものである。 It is driven to tilt in the B direction (reverse direction). In this case, the tilting piston 3 3 C is contracted toward the inside of the cylinder hole 3 3 A.
3 4 は傾転ァクチユエ一夕 3 2 , 3 3 に傾転制御圧を 糸'口排する容量制御弁としてのレギユ レ一夕である。 この レギユ レ一夕 3 4 は 、 図 3 に示すよう にケ一シング本体 The reference numeral 3 4 is a regulation tube as a volume control valve that discharges a tilting control pressure to the tilting needle valve 2, 3 3. As shown in Fig. 3, this Regu-yu 1 34 is a casing body.
1 1 Aの外側に位置してケ一シング 1 1 に設けられた弁 ハウジング 3 5 と、 後述の制御ス リーブ 3 6 、 スプール1 1 A located on the outside of the valve housing 1 5 provided with a valve housing 3 5, a control sleeve 3 6 described later, a spool
3 7 、 油圧パイ ロ ッ 卜部 3 8 および弁ばね 3 9等とから 構成されている。 そして、 レギユ レ一夕 3 4 は 、 図 1 0 に示す如く制御ス リ —ブ 3 6 内にスプール 3 7 を有した 傾転制御用の油圧サーボ弁によつて構成されるものであ る It is composed of 3 7, hydraulic piping 3 8 and valve spring 3 9 mag. And, as shown in FIG. 10, the regu- lator tube 3 4 is constituted by a hydraulic servo valve for tilt control having a spool 3 7 in a control sleeve 3 6.
こ こで、 レギユ レ —夕 3 4 の弁ハウジング 3 5 には、 図 3 に示す如く 傾転制御圧の給排ポー ト 3 5 A , 3 5 B 等が設けられている 。 そして、 給排ポー 卜 3 5 Aは、 後 述の制御管路 4 8 Aを介してパイ ロ ッ 卜ポンプ 4 6 の吐 出側に接続されてい た、 給排ポー ト 3 5 Bは、 後 W 述の制御管路 4 8 B に接続されている そして、 レギュ レー夕 3 4 の弁ハウンング 3 5 は ケ ―シング 1 1 の外 側面に液密に固定して設けられている また 、 制御ス リHere, as shown in Fig. 3, the supply and discharge ports 35A, 35B, etc. of the displacement control pressure are provided in the valve housing 35 of the regi-yu 34. As shown in FIG. And, the supply / discharge port 35 A was connected to the discharge side of the pilot pump 46 via the control line 4 8 A described later. The supply / discharge port 35 B is W is connected to the control line 4 8 B described above and the valve housing 3 5 of the regulator 3 4 is provided so as to be liquid-tightly fixed to the outer side surface of the casing 1 1 The
—ブ 3 6およびスプ ル 3 7 等は 回転軸 1 3 (図 1 0 に示す軸線 O— O ) と平行に延びる う に配設されてい ス —Bub 6 and sprue 3 7 etc. are arranged so as to extend in parallel with the rotation axis 1 3 (axis O— O shown in FIG. 10)
3 6 は弁ハウジング 3 5 内に摺動可能に挿嵌された筒 状の制御ス リーブで 該制御ス リ ―ブ 3 6 は 、 その軸方 向 側の外周に後述の並進バ 4 4が複数の固定ねじ等 を用いて一体的に連結されている そして 制御ス リー ブ 3 6 は、 並進バー 4 4 の動き (回転軸 1 3 の軸方向に 沿った並進運動) に追従して弁八クンング 3 5 内を軸方 向 (図 6 中の矢示 D E方向) に摺動亦位するものであ る。 3 6 is a cylindrical control sleeve slidably inserted into the valve housing 3 5, and the control sleeve 3 6 has a plurality of translation bars 4 4 described later on its outer periphery in the axial direction. The control sleeve 3 6 is integrally connected using a set screw and the like, and the control sleeve 3 6 follows the movement of the translation bar 4 4 (translational movement along the axial direction of the rotation axis 1 3) and the valve 8 kunung It slides in the axial direction (direction of arrow DE in Fig. 6) in 5 5.
3 7 は制御ス リ ―ブ 3 6 内に摺動可能に揷嵌して設け られたスプールで 該スプール 3 7 は、 制御ス リーブ 3 Reference numeral 3 7 denotes a spool slidably fitted in the control sleeve 3 6. The spool 3 7 is a control sleeve 3
6 の内周側で弁ハヴンング 3 5 の軸方向に摺動変位する。 のときに、 スプ ル 3 7 は、 給排ポー 卜 3 5 Βを給排 ポ 卜 3 5 Αまたは レン通路 1 1 Ε に選択的に ¾通,Slidingly displaces in the axial direction of the valve having 3 5 on the inner side of 6. At the time, the sprue 3 7 selectively supplies 3⁄4 to the 3 1 Α or 5 1 通路 or 1 通路 aisle for the 3 5
2 0 遮断するものである。 2 0 Block it.
3 8 はスプール 3 7 の軸方向 側に位置して弁ハウジ ング 3 5 に設けられた油圧パイ ロ ッ ト部で、 該油圧パイ ロ ッ ト部 3 8 は、 後述の弁ばね 3 9 に抗してスプール 3 7 を軸方向に駆動するためのプラ ンジャ 3 8 Αを有し、 2 5 後述の指令圧管路 5 3 を介して指令圧が供給される。  Reference numeral 3 8 denotes a hydraulic pilot section located on the axial side of the spool 3 7 and provided in the valve housing 3 5. The hydraulic pilot section 3 8 is opposed to a valve spring 3 9 described later. It has a plunger 3 8 Α for driving the spool 3 7 in the axial direction, and a command pressure is supplied via a command pressure line 5 3 5 described later.
そして、 油圧パイ ロ ッ ト部 3 8 のプランジャ 3 8 Αは、 指令圧管路 5 3 からの指令圧をパイ ロ ッ 卜圧と して受圧 する こ とによ り、 このパイ ロ ッ ト圧に応じてスプール 3 7 を弁ハウジング 3 5 内で軸方向に摺動変位させる。 こ れに り、 油圧パイ ロ ッ ト部 3 8 のプラ ンジャ 3 8 Aは、 図 1 0 に示すレギユ レ一タ 3 4 を中立位置 ( I ) から切 換位置 ( 1 1 ), (I I I )に切換えるものである。 Then, the plunger 38 of the hydraulic pilot section 38 is pressured by using the command pressure from the command pressure line 53 as the pilot pressure, so that the pressure is applied to this pilot pressure. Accordingly, the spool 3 7 is axially displaced in the valve housing 3 5. This As a result, the plunger 3 8 A of the hydraulic pilot section 3 8 changes the regulator 3 4 shown in Fig. 10 from the neutral position (I) to the switching position (11), (III) It is what changes.
3 9 はスプール 3 7 の軸方向他側と弁ハウジング 3 5 との間に配設された弁ばねを示し、 該弁ばね 3 9 は、 ス プ一ル 3 7 を油圧パイ ロ ッ ト部 3 8側に向けて常時付勢 し 、 例えば図 1 0 に示すレギユ レ一夕 3 4 を中立位置 Reference numeral 3 9 denotes a valve spring disposed between the other axial side of the spool 3 7 and the valve housing 3 5, and the valve spring 3 9 is a hydraulic pilot portion 3 of the spool 3 7. Always bias toward the 8 side, for example, the regi
( I ) に復帰させるものである。 It is intended to return to (I).
4 0 は斜板 2 1 の傾転動作に追従させてレギユ レ一夕 4 0 follows the tilting movement of the swash plate 2 1
3 4 をフィ ー ドバック制御するフィ ー ドバック機構を示 している。 このフィ ー ドバッ ク機構 4 0 は、 図 3 ないし 図 1 3 に示すよう に、 斜板 2 1 の側面と レギユ レ一夕 33 Feedback mechanism for feedback control of 4 is shown. This feedback mechanism 40 has the side surface of the swash plate 21 and the regi- tal tube 3 as shown in Figs. 3 to 13.
4の制御ス リーブ 3 6 との間に設けられた後述の変換部A conversion unit, which will be described later, provided between the control sleeve 4 and the control sleeve 3 6
4 1 と並進バー 4 4等とによ り構成されている。 It consists of 4 1 and a translation bar 4 4 etc.
4 1 は斜板 2 1 の傾転動作を軸方向変位に変換して取 出す亦  4 1 converts the tilting motion of the swash plate 2 1 into axial displacement and removes it
久換部で、 該変換部 4 1 は、 後述のカム溝 4 2 と力 ムフォ ロア 4 3 とにより構成される。 そして、 変換部 4 In the changing part, the converting part 4 1 is composed of a cam groove 4 2 and a force follower 4 3 which will be described later. And, converter 4
1 は 、 斜板 2 1 の傾転動作を後述の如く軸方向変位に変 換し 、 回転軸 1 3 の軸線 O— Oに沿った並進運動 (平行 移動 ) を後述の並進バー 4 4 に発生させるものである。 1 converts the tilting movement of the swash plate 2 1 into axial displacement as described later, and generates translational movement (parallel movement) along the axis O-O of the rotation axis 1 3 in the translational bar 4 4 described later It is
4 2 は斜板 2 1 の傾転動作をカムフォ ロア 4 3 の軸方 向変位に変換するカム面を有したカム溝で、 該カム溝 4 Reference numeral 4 2 denotes a cam groove having a cam surface for converting the tilting movement of the swash plate 2 1 into axial displacement of the cam follower 4 3.
2 は 、 図 3 ないし図 8 に示す如ぐ斜板 2 1 の側面 (他方 の脚部 2 1 Bの側面) に略 「 V」 字状または 「 U」 字状 に屈曲して設けられた凹溝によ り構成されている。 また、 力ム溝 4 2 は、 斜板 2 1 の傾転中心 Cから離間した位置 に配設されている。 そして、 カム溝 4 2 は、 後述する力 ムフ才 ロア 4 3 のローラ部 4 3 Aが摺動 (回転) 可能に 挿嵌されるよう に、 ローラ部 4 3 Aの外径寸法に対応し た溝幅を有しているものである。 2 is a concave formed by bending in a substantially “V” shape or “U” shape on the side surface of the swash plate 2 1 (the side surface of the other leg 21 B) as shown in FIGS. 3 to 8 It is composed of grooves. In addition, the force groove 4 2 is disposed at a position away from the center C of tilting of the swash plate 2 1. And, the cam groove 4 2 corresponds to the outer diameter of the roller portion 4 3 A so that the roller portion 4 3 A of the force lower 4 3 described later can be slidably (rotated) fitted. Groove width.
こ こで、 カム溝 4 2 は、 図 1 0 、 図 1 1 に示すよう に 斜板 2 1 が傾転角零の中立位置にあるときにカムフォ ロ ァ 4 3 のローラ部 4 3 Aが摺接する中立位置摺接部と し ての中間溝部 4 2 Aと、 斜板 2 1 が中立位置から矢示 A 方向 (正方向) に傾転されるときにローラ部 4 3 Aが摺 接する正方向摺接部としての下側傾斜溝部 4 2 B と、 斜 板 2 1 が中立位置から矢示 B方向 (逆方向) に傾転され るときにローラ部 4 3 Aが摺接する逆方向摺接部と して の上側傾斜溝部 4 2 C とによ り構成されている。  Here, as shown in Fig. 10 and Fig. 1 1, when the swash plate 2 1 is in the neutral position with zero tilt angle, the cam groove 4 2 slides on the roller portion 4 3 A of the cam follower 4 3. When the intermediate groove 4 2 A as the neutral position sliding contact portion and the swash plate 2 1 are tilted from the neutral position in the arrow A direction (forward direction), the roller portion 4 3 A is in sliding contact with the neutral position. A reverse direction sliding contact portion in which the roller portion 4 3 A is in sliding contact when the lower inclined groove portion 4 2 B as sliding contact portion and the swash plate 2 1 are tilted in the arrow B direction (reverse direction) from the neutral position. It is composed of the upper inclined groove 4 2 C as an example.
そして、 カム溝 4 2 の各溝部 4 2 A 4 2 Cのうち中 間溝部 4 2 Aは、 斜板 2 1 が中立位置にあるときに傾転 中心 Cから回転軸 1 3 の軸線 O— Oに沿って最も大さ < 離間した寸法 R a ( R a < R ) の位置に配置されている また、 下側傾斜溝部 4 2 Bは、 中間溝部 4 2 Aの位置か ら傾転中心 C に近付く方向へと斜め下向きに傾いて延び、 上側傾斜溝部 4 2 Cは、 中間溝部 4 2 Aから傾転中心 C に近付く方向へと斜め上向きに傾いて延びるよう に形成 されている。  And, among the groove portions 4 2 A 4 2 C of the cam groove 4 2, the middle groove portion 4 2 A is the axis O- O of the rotation axis 13 from the center of rotation C when the swash plate 21 is in the neutral position. The lower inclined groove 4 2 B is disposed at the position of the largest size <spaced apart dimension R a (R a <R) along the center from the position of the intermediate groove 4 2 A to the rotational center C The upper inclined groove portion 4 2 C is formed so as to extend obliquely upward from the intermediate groove portion 4 2 A in a direction approaching the inclination center C from the middle groove portion 4 2 A.
即ち 、 カム溝 4 2 は、 斜板 2 1 の側面に中間溝部 4 2 That is, the cam groove 4 2 is an intermediate groove 4 2 on the side surface of the swash plate 2 1.
Aの位置で略 Γ V 」 字状または 「 U」 字状に屈曲した凹 溝と して形成され 、 下側傾斜溝部 4 2 B と上側傾斜溝部The lower inclined groove 4 2 B and the upper inclined groove are formed as a concave groove bent in a substantially Γ V shape or “U” shape at the position A.
4 2 C とは、 中間溝部 4 2 Aの位置から軸線 O— Oを基 と して下, 上に拡開するよう に互いに対称な形状をな しているものであ 4 2 C is a shape symmetrical to each other so as to expand downward and upward from the position of the intermediate groove portion 4 2 A based on the axis O-O.
そして、 下側傾斜溝部 4 2 B と上側傾斜溝部 4 2 C と は 、 その先端側が図 1 1 に示す後述の点 G 1 , H 1の位置 まで延び、 これらの点 G 1 , H 1は、 斜板 2 1 の傾転中心 The lower inclined groove portion 4 2 B and the upper inclined groove portion 4 2 C have their tip sides extending to the positions of points G 1 and H 1 described later shown in FIG. 11 and these points G 1 and H 1 are Tilting center of swash plate 2 1
Cから寸法 R bだけ離れた位置に配置されている。 の 場合の寸法 R b は、 傾転中心 Cから中間溝部 4 2 Aまで の寸法 R a よ り も小さい寸法 ( R b く R a < R ) に設定 されるものである It is disposed at a position separated from C by a dimension R b. of The dimension R b in the case is set to a dimension smaller than the dimension R a from the center of tilt C to the intermediate groove portion 4 2 A (R b less R a <R)
4 3 はカム溝 4 2 内に摺接して設けられた力ムフ才 ロ ァで、 このカムフ才 口ァ 4 3 は 図 3 に示す に後述 する並進バ一 4 4 の長さ方向一側に一体化して設けられ 力ム溝 4 2 内の壁面 (力ム面) に沿つて回転 (自転) 可 能となったローラ部 4 3 Aを有している。  Reference numeral 4 3 denotes a force mousse roll provided in sliding contact with the cam groove 4 2. This cam face 4 3 is integrally formed on one side in the longitudinal direction of a translational bar 4 4 described later as shown in FIG. 3. It has a roller section 43 A that can be rotated (autorotated) along the wall surface (force surface) in the force groove 4 2.
そして、 カムフォ ロア 4 3 は、 ローラ部 4 3 Aが斜板 And the cam follower 4 3 is a roller unit 4 3 A is a swash plate
2 1 側のカム溝 4 2 と摺動可能に係合する ことによ Ό 、 斜板 2 1 の傾転動作を後述の如く軸方向変位に変換し、 回転軸 1 3 の軸線 O— Oに沿った並進運動 (平行移動) を並進バー 4 4 に発生させるものである。 By sliding engagement with the cam groove 4 2 on the 1 1 side, the tilting movement of the swash plate 2 1 is converted into axial displacement as described later, and the axis O-O of the rotating shaft 1 3 is obtained. It generates translational movement (translation) along translational bar 4 4.
この場合、 斜板 2 1 側のカム溝 4 2 に係合する力ムフ ォ ロア 4 3 のローラ部 4 3 Aは、 斜板 2 1 が中立位置に あるときに図 1 1 に示す初期位置に並進バ一 4 4 と一緒 に配置され、 回転軸 1 3 の軸線 O— Oと直交する線 F - In this case, the roller portion 4 3 A of the force lower 4 3 engaged with the cam groove 4 2 on the swash plate 2 1 side is in the initial position shown in FIG. 11 when the swash plate 2 1 is in the neutral position. A line F-which is arranged together with the translational bar 4 4 and which is orthogonal to the axis O-O of the rotation axis 1 3
F上に位置する。 このとき、 カムフォ ロア 4 3 の D ―ラ 部 4 3 Aは、 回転軸 1 3 の軸線 O— Oに沿つて最ち後退Located on F. At this time, the D-roller portion 4 3 A of the cam follower 4 3 is retracted along the axis O-O of the rotary shaft 1 3.
(図 1 0 中の矢示 E方向に後退) した位置に配置される ものである。 (Retracted in the direction of arrow E in Fig. 10).
また、 斜板 2 1 が、 中立位置から図 7 、 図 1 2 に示す よう に矢示 A方向 (正方向) に傾転されたとする そし て、 斜板 2 1 の.傾転角 0 が角度 α Θ = QL ) となつたと きには、 カムフォ ロア 4 3 のローラ部 4 3 Αは 力ム溝 Also, assuming that the swash plate 2 1 is tilted from the neutral position in the direction of arrow A (positive direction) as shown in FIG. 7 and FIG. 12, the tilt angle 0 of the swash plate 2 1 is an angle When (α α = QL), the roller portion 4 3 of the cam follower 4 3 is a force groove.
4 2 の下側傾斜溝部 4 2 Β に沿って摺接し -Dつ 、 図 1 2 に示す点 G 1の位置まで移動される。 これによ り 、 力ム フォ ロア 4 3 のローラ部 4 3 Αは、 並進バ一 4 4 と一緒 に線 G— Gの位置まで平行移動 (並進運動 ) され 、 刖述 した初期位置の線 F — F に対して寸法 aだけ回転軸 1 3 の軸方向に変位するものであ 。 4 2 Slide along lower slope groove 4 2 Β and move to the position of point G 1 shown in Fig. 1 2. As a result, the roller portion 4 3 of the force follower 4 3 is translated (translationally moved) to the position of the line G-G together with the translation lever 4 4. It is displaced in the axial direction of axis of rotation 13 by a dimension a with respect to the initial position line F — F.
一方、 斜板 2 1 が中立位置から図 1 3 に示す う に矢 示 B方向 (逆方向) に傾転されたとする そして 、 斜板 On the other hand, it is assumed that the swash plate 21 is tilted from the neutral position in the direction of arrow B (reverse direction) as shown in FIG. 13 and the swash plate
2 1 の傾転角 6> が角度 0 ( Θ = β ) となつたとさには、 力ムフォ ロア 4 3 のローラ部 4 3 Αは 、 力ム溝 4 2 の上 側傾斜溝部 4 2 C に沿って摺接しつつ 、 図 1 3 に示す点If the tilt angle 6> of 2 1 is equal to the angle 0 (Θ = β), the roller portion 4 3 of the force follower 4 3 is the upper side of the force groove 4 2 4 2 C While sliding along the points shown in Figure 1 3
H Iの位置まで移動される。 これによ り、 カムフォ ロア 4 3 の口一ラ部 4 3 Aは、 並進バー 4 4 と一緒に線 H — Hの位置まで平行移動され、 初期位置の線 F — Fに対し て寸法 bだけ回転軸 1 3 の軸方向に変位される。 It is moved to the position of HI. As a result, the camber 4 3 mouth part 4 3 A is translated along with the translation bar 4 4 to the position of the line H-H and by the dimension b with respect to the initial position line F-F It is displaced in the axial direction of the rotary shaft 1 3.
なお 、 斜板 2 1 が正方向または逆方向に同一の傾転角 The swash plate 2 1 has the same tilt angle in the forward or reverse direction.
Θ (例えば、 角度ひ, β ) をもって傾転される ときには、 斜板 2 1 の傾転角 0 に相当する角度 α, β が互いに逆向 きの等しい角度 ( α = /3 ) となり、 このとさの軸方向変When it is tilted with Θ (for example, the angle β, β), the angles α and β corresponding to the tilt angle 0 of the swash plate 2 1 become equal angles (α = / 3) opposite to each other, Axial variation of
,
位に相当する刖記寸法 a, b は同一の値 ( a = b ) に設 定されるものである。 The dimensions a and b corresponding to the scale are set to the same value (a = b).
4 4 はフィ — ドバック機構 4 0 の変位伝達部を構成す る並進部材と しての並進バーで 、 該並進バー 4 4 は、 図 Reference numeral 4 4 denotes a translation bar as a translation member that constitutes the displacement transfer part of the feedback mechanism 4 0, and the translation bar 4 4 is an illustration of FIG.
3 に示す如 <後述のガイ ド部材 4 5 を介してケーシング 本体 1 1 Aの開口部 1 1 D内にスライ ド可能に取付けら れ、 回転軸 1 3 の軸方向 (図 1 0 に示す軸線 O - O ) に 沿った並進運動を行う ものである 。 そして、 並進バ一 4As shown in Fig. 3, it is slidably mounted in the opening 1 1 D of the casing main body 1 1 A via a guide member 4 5 described later, and the axial direction of the rotary shaft 1 3 (the axis shown in FIG. A translational movement along O-O) is performed. And the translation bar 4
4 は、 図 3 に示すよう にケーシング 1 1 内を回転軸 1 3 の径方向に延びると共に、 制御ス リーブ 3 6 に対しても 径方向外側に向けて延び、 斜板 2 1 の側面と制御ス リ一 ブ 3 6 との間に配設されている 4, as shown in FIG. 3, radially extend in the casing 1 1 in the radial direction of the rotating shaft 1 3 and also radially outward with respect to the control sleeve 3 6 and control the side surface of the swash plate 2 1 and control It is disposed between the sleeve 3 and 6
し 乙、 並進バー 4 4 は、 長さ方向の一側にカムフォ ロア 4 3 が設けられ、 カムフォ Pァ 4 3 と一体となって 回転軸 1 3 の軸線 O— Oに沿った並進運動が与えられる ものである。 また、 並進バー 4 4 は、 図 3 、 図 4 に示す 如く長さ方向の他側が制御ス リーブ 3 6 を径方向外側か ら挟む二又状の固定部 4 4 Aとな り、 該固定部 4 4 Aは、 複数の固定ねじまたはリ ベッ ト等の固定手段によ り制御 ス リーブ 3 6 の外周側に固定されている。 The translational bar 4 4 is provided with a cam follower 4 3 on one side in the longitudinal direction, and is integrated with the cam follower 4 3 A translational movement is given along the axis O-O of the rotation axis 1 3. Further, as shown in FIGS. 3 and 4, the other side of the translational bar 4 4 is a bifurcated fixing portion 4 4 A sandwiching the control sleeve 3 6 from the outside in the radial direction, the fixing portion 4 4 A is fixed to the outer peripheral side of the control sleeve 3 6 by fixing means such as a plurality of fixing screws or rivets.
即ち、 並進バー 4 4は、 制御ス リーブ 3 6 に対し一定 の角度 (例えば、 垂直となる 9 0 度) で固定された状態 に保持されている。 そして、 並進バ一 4 4 は、 カムフォ ロア 4 3 のローラ部 4 3 Aが回転軸 1 3 の軸線 O— Oに 沿って軸方向に変位するものである。  That is, the translational bar 44 is held fixed at a fixed angle (for example, 90 degrees perpendicular to the control sleeve 3 6). And, the translational valve 4 4 4 is such that the roller portion 4 3 A of the cam follower 4 3 is axially displaced along the axis O-O of the rotation shaft 1 3.
このよう に、 斜板 2 1 が図 2 中の矢示 A Β方向に傾 転されるときには、 斜板 2 1 の傾転'動作に従って図 3 に 示す並進バ一 4 4がカムフォ ロァ 4 3 と 緒に回転軸 1 Thus, when the swash plate 2 1 is tilted in the direction of arrow A in FIG. 2, the translation bar 4 4 shown in FIG. 3 and the cam follower 4 3 shown in FIG. A rotating shaft 1
3 の軸方向に平行移動する。 そして、 並進バー 4 4 の平 行移動は、 固定部 4 4 A側でレギュ レ ―夕 3 4 の制御ス リーブ 3 6 にそのまま伝え られ 制御ス ーブ 3 6 を図Translate in the axial direction of 3 Then, the parallel movement of the translation bar 4 4 is directly transmitted to the control sleeve 3 6 at the fixed part 4 4 A side of the fixed part 4 4 A, and the control sleeve 3 6 is illustrated.
6 中の矢示 D , E方向に回転軸 1 3 の軸線 Ο _ Οに沿つ て変位させる。 これによ り、 並進バ 4 4 は、 レギユ レ 一夕 3 4 に対するフィ ー ドバック制御を行う ものである。 6 Move in the directions of arrows D and E in 6 along the axis line Ο _ 回 転 of rotary shaft 1 3. As a result, the translational bar 4 4 performs feedback control for the regible track 3 4.
4 5 は図 3 に示すよう にケーシング 1 1 の開口部 1 1 4 5 shows the opening 1 1 1 of the casing 1 1 as shown in FIG.
Dを覆うよう に設けられたガイ F部材である 、 該ガイ ド部材 4 5 は、 並進バー 4 4 の長さ方向中間部を 移動可能または摺動可能に支持'し 、 並進バ — 4 4が上, 下方向 (例えば、 シ リ ンダブ口 ッ ク 1 4 の周方向) 等に 揺動したり、 ガ夕等で振動した りするのを抑えている。 これによ り、 ガイ ド部材 4 5 は 並進ハ、 ― 4 4が回転軸The guide member 4 5, which is a guy F member provided so as to cover the D, movably or slidably supports the lengthwise middle portion of the translation bar 4 4, and the translation bar 4 4 Swinging in the upper or lower direction (for example, circumferential direction of the cylinder jack 14) or vibration by gausse or the like is suppressed. As a result, the guide member 4 5 is in translation, and 4 4 is in rotation.
1 3 の軸方向に滑らかに平行移動 (並進運動) するのを 補償するものである。 4 6 は傾転制御圧を発生させるパイ ロ ッ 卜ポンプで、 該パイ ロ ッ トポンプ 4 6 は 、 図 1 に示す原動機 2 で油圧 ポンプ 1 と一緒に回転駆動される こ とによ り 、 例えば図It compensates for the smooth translation (translational motion) in the 13 axis direction. Reference numeral 4 6 denotes a pilot pump which generates displacement control pressure. The pilot pump 4 6 is driven to rotate together with the hydraulic pump 1 by the prime mover 2 shown in FIG. Figure
3 に示すタ ンク 4 7 内から作動油を吸込みつ 、 制御管 路 4 8 A内に傾転制御用の圧油を吐出させるちのである。 The hydraulic oil is drawn from inside the tank 4 7 shown in 3 and the pressure oil for displacement control is discharged into the control pipe 4 8 A.
この場合、 パイ □ ッ 卜ポンプ 4 6 から吐出される圧油 の圧力は、 低圧リ リーフ弁 4 9 によ り油圧ポンプ 1 の吐 出圧よ り も十分に低い圧力に保たれるものである。 た、 制御管路 4 8 Bは、 レギユ レ一夕 3 4の給排ポー ト 3 5 In this case, the pressure of the pressure oil discharged from the piped pump 46 is maintained at a sufficiently lower pressure than the discharge pressure of the hydraulic pump 1 by the low pressure relief valve 4 9. . The control line 4 8 B is for Reguire 34 3 supply and discharge port 3 5
B と後述の前後進切換弁 5 1 との間に設けられている。 It is provided between B and a forward / reverse switching valve 5 1 described later.
5 O A , 5 0 Bは傾転ァクチユエ一夕 3 2 , 3 3 の液 圧室 3 2 B , 3 3 Bに傾転制御圧を給排する他の制御管 路で 、 該制御管路 5 0 A, 5 0 Bは、 図 3 、 図 1 0 に示 す う に後述の前後進切換弁 5 1 を通じて制御管路 4 8 5 OA and 50 B are other control lines for supplying and discharging the tilt control pressure to the fluid pressure chambers 32 B and 33 B of the tilt ovens 32 and 33, respectively. As shown in Fig. 3 and Fig. 10, A and 50 B are connected to the control line 4 8 through the back and forth switching valve 51 as described later.
A , 4 8 Bに切換え接続されるものである。 It is switched and connected to A and 4 8 B.
5 1 は制御管路 4 8 A, 4 8 B と制御管路 5 0 A, 5 5 1 is control line 4 8 A, 4 8 B and control line 5 0 A, 5
0 B との間に設けられた方向切換弁と しての前後進切換 弁である。 この前後進切換弁 5 1 は、 図 3 、 図 1 0 に示 すよう に左, 右のソ レノイ ド部 5 1 A , 5 1 B を有し、 例えば運転室内の切換レバー (図示せず) をオペレータ が手動操作する ことによって、 車両の停止位置 ( a ) か ら前進位置 ( b ) または後進位置 ( c ) に切換えられる ちのである。 It is a forward / reverse switching valve as a direction switching valve provided between 0 B and 10 B. This forward and reverse switching valve 51 has left and right solenoid parts 51 A and 51 B as shown in FIG. 3 and FIG. 10, and for example, a switching lever (not shown) in the driver's cab The operator can manually switch the vehicle from the stop position (a) to the forward position (b) or the reverse position (c).
そして、 前後進切換弁 5 1 を停止位置 ( a ) から前進 位置 ( b ) に切換えた状態では、 オペレータが後述の走 行ぺダル 5 2 Aを踏込み操作するに応じてパイ ロ ッ 卜ポ ンプ 4 6 力、らの傾転制御圧が制御管路 4 8 A , 5 O Aを 通じて傾転ァクチユエ一夕 3 3 の液圧室 3 3 B に供給さ れる また、 このときには傾転ァクチユエ一夕 3 2 の液圧室 3 2 Bから制御管路 5 0 B , 4 8 B、 レギユ レ一夕 3 4 等を介して傾転制御圧がタンク 4 7 側に排出される。 こ れによ り、 傾転ァクチュェ一タ 3 3 の傾転ピス ト ン 3 3 Cは、 斜板 2 1 を図 1 0 中の矢示 A方向に傾転駆動する ものである And, in the state where the forward / reverse switching valve 51 is switched from the stop position (a) to the forward position (b), the operator moves the pilot pedal 5 2 A described later and the pilot pump is operated. The control pressure of 4 6 force, etc. is supplied to the hydraulic pressure chamber 3 3 B of the tilt angle 3 3 through the control line 4 8 A, 5 OA. Also, at this time, from the fluid pressure chamber 32 B of the tilting actuator 32 to the tank 4 7 via the control pipelines 50 B and 4 8 B, etc. Exhausted. Thus, the tilting piston 3 3 C of the tilting actuator 3 3 drives the swash plate 2 1 to tilt in the direction of arrow A in FIG.
 ,
一方 、 刖後進切換弁 5 1 を停止位置 ( a ) から後進位 置 ( c ) に切換えたとさには、 走行ペダル 5 2 Aの踏込 み操作に応じてパイ 口 ッ 卜ポンプ 4 6 からの傾転制御圧 が制御管路 4 8 A, 5 0 Bを通じて傾転ァクチユエ一夕 On the other hand, when the reverse switching valve 51 is switched from the stop position (a) to the reverse position (c), the tilting from the pipe opening pump 46 in response to the depression operation of the traveling pedal 52A. The rolling control pressure is tilted through control lines 4 8 A, 5 0 B.
3 2 の液圧室 3 2 Bに供 haされる。 また、 傾転ァクチュ ェ一タ 3 3 の液圧室 3 3 Bカゝらは、 制御管路 5 0 A, 4It is supplied to 3 2 hydraulic pressure chambers 3 2 B. In addition, the hydraulic pressure chamber 33 of the tilting valve 3 3 3 B has a control pipe 5 0 A, 4
8 B、 レギュ レー夕 3 4等を介して傾転制御圧がタ ンクThe tilt control pressure is tanked via 8 B, regulator 34 and so on.
4 7側に排出される。 これによ り 、 傾転ァクチユエ一夕 3 2 の傾転ピス ト ン 3 2 Cは、 斜板 2 1 を図 1 0 中の矢 示 B方向に傾転駆動するものである。 4 Discharged to the 7 side. As a result, the tilting piston 3 2 C of the tilting gear 3 2 drives the swash plate 2 1 to tilt in the direction of arrow B in FIG. 10.
このよう に、 前後進切換弁 5 1 は、 レギユ レ一夕 3 4 と傾転ァクチユエ一夕 3 2 , 3 3 との間に設けられ、 車 両の停止位置 ( a ) から前進位置 ( b ) または後進位置 ( c ) に切換え られる こ とによ り、 傾転ァクチユエ一夕 3 2 , 3 3 に対する傾転制御圧の給排方向を切換えると 共に、 この傾転制御圧に従って斜板 2 1 を中立位置から 正方向と逆方向とに傾転駆動させるものである。  In this way, the forward / backward switching valve 51 is provided between the register 31 4 and the tilting lever 32 3 3 3 to move forward from the vehicle stop position (a) to the forward position (b) Alternatively, by switching to the reverse drive position (c), the direction of supply and discharge of the tilt control pressure to the tilt actuator 3 2 and 3 3 is switched, and the swash plate 2 1 is switched according to the tilt control pressure. It is driven to tilt from the neutral position in the forward and reverse directions.
5 2 はホイール式車両の運転室側に設けられる指令手 段と しての走行操作弁を示し、 該走行操作弁 5 2 には、 車両のアクセルペダルに相当する走行ペダル 5 2 Aが付 設されている。 そして、 車両のオペレータが走行ペダル 5 2 denotes a travel operation valve as a command means provided on the cab side of the wheel type vehicle, and a travel pedal 5 2 A corresponding to an accelerator pedal of the vehicle is attached to the travel operation valve 5 2. It is done. And, the operator of the vehicle is traveling pedal
5 2 Aを踏込み操作したときには、 指令圧管路 5 3 を通 じてレギユ レ一夕 3 4の油圧パイ ロ ッ 卜部 3 8 に指令信 号と してのパイ ロ ッ ト圧が供給され、 後述の如く 車両の 走行速度が可変に調整されるものである。 5 2 When stepping on A, pass the command pressure line 5 3 and send a command to the hydraulic piping section 3 8 of the register 3 4. The pilot pressure is supplied as the issue number, and the traveling speed of the vehicle is variably adjusted as described later.
本実施の形態による可変容量型の斜板式油圧ポンプ 1 を備えたホイール式作業車両の走行用油圧回路は、 上述 の如き構成を有するもので、 次にその作動について説明 する。  The traveling hydraulic circuit of the wheel type working vehicle provided with the variable displacement swash plate type hydraulic pump 1 according to the present embodiment has the configuration as described above, and its operation will be described next.
まず、 図 1 0 に示す前後進切換弁 5 1 を停止位置 First, stop the forward / reverse switching valve 5 1 shown in Figure 10
( a ) に配置した状態では、 制御管路 5 0 A , 5 0 Bが 共に制御管路 4 8 Αに接続され、 傾転ァクチユエ一タ 3In the state of (a), the control lines 5 0 A and 5 0 B are both connected to the control line 4 8, and the tilting angle 3
2 , 3 3 の液圧室 3 2 B , 3 3 Bは、 等しい圧力状態に 保たれるため 、 斜板 2 1 は傾転角零の中立位置に保持さ れる Since the 2 and 3 3 hydraulic chambers 3 2 B and 3 3 B are kept at the same pressure, the swash plate 2 1 is held at the zero tilt angle neutral position.
のため、 原動機 2 により 回転軸 1 3 を回転駆動して シリ ンダブ口 ッ ク 1 4 を回転させても、 各ピス ト ン 1 6 がシリ ンダブロ ッ ク 1 4 の各シリ ンダ 1 5 内で往復動す る ことはなく 、 油圧ポンプ 1 の給排通路 1 2 A , 1 2 B は互いに同圧状態となって、 図 1 に示す油圧モー夕 5へ の主管路 3 A , 3 Bを通じた圧油の給排は停止されたま まとなる  Therefore, each piston 16 reciprocates within each cylinder 1 5 of cylinder block 1 4 even if the prime mover 2 rotationally drives the rotary shaft 1 3 and rotates the cylinder head 1 4. The supply and discharge passages 1 2 A and 1 2 B of the hydraulic pump 1 are in the same pressure state, and the pressure through the main lines 3 A and 3 B to the hydraulic motor 5 shown in FIG. 1 does not move. Oil supply and discharge will be suspended
次に 、 車両のオペレータが前後進切換弁 5 1 を停止位 置 ( a ) から前進位置 ( b ) に切換えたとする。 この場 には 、 オペレ一夕が走行べダル 5 2 Aを踏込み操作し たとさに 、 パイ ロ ッ トポンプ 4 6 からの圧油が、 制御管 路 4 8 A , 5 O Aを通じて傾転ァクチユエ一夕 3 3 の液 圧室 3 3 Βに供給される。  Next, it is assumed that the vehicle operator switches the forward / reverse switching valve 51 from the stop position (a) to the forward position (b). On this occasion, when the Operel club stepped on the running pedestal 52 A, the pressure oil from the pilot pump 46 was inclined through the control pipelines 4 8 A, 5 OA. It is supplied to 3 3 pressure chambers 3 3.
また 、 このときには走行べダル 5 2 Aの踏込み操作に よ り 、 指令圧管路 5 3 から レギユ レ一夕 3 4 の油圧パイ Also, at this time, by the stepping operation of traveling rudder 5 2 A, the hydraulic pressure pipe 5 3 to the regu
□ ッ h部 3 8 に向けてパィ 口 ッ ト圧が供給される。 これ によ Ό レギユ レ一夕 3 4の弁ハウジング 3 5 内では、 スプール 3 7がパイ ロッ ト圧に応じて軸方向に摺動変位 され、 レギユ レ一夕 3 4は図 1 0 に示す中立位置 ( I ) から切換位置(II)に切換えられる。 □ The mouth pressure is supplied toward the end 3 8. This depends on the valve housing 3 5 of the valve 1 3 4 The spool 37 is slidingly displaced in the axial direction according to the pilot pressure, and the regi- cal valve 34 is switched from the neutral position (I) shown in Fig. 10 to the switching position (II).
このため、 制御管路 4 8 Bはレギユ レ一夕 3 4、 ケー シング 1 1 内の ド レン室等を介してタ ンク 4 7 に接続さ れるよう にな り、 傾転ァクチユエ一夕 3 2 の液圧室 3 2 B内の圧油は、 制御管路 5 0 B , 4 8 B、 レギユ レ一夕 3 4等を介してタ ンク 4 7側に排出される。 これによ り、 傾転ァクチユエ一夕 3 3の傾転ピス ト ン 3 3 Cは、 斜板 2 1 を図 1 0 中の矢示 A方向に傾転駆動する。  For this reason, the control line 4 8 B is connected to the tank 4 7 through the drain chamber in the register 1 34 3 and the casing 1 1, and the tilting line 3 2 3 2 The pressure oil in the fluid pressure chamber 32 B is discharged to the tank 4 7 side through the control pipelines 50 B and 48 B, the regu- lator 34 and so on. As a result, the tilting piston 3 3 C of the tilting lever 3 3 tilts and drives the swash plate 2 1 in the direction of arrow A in FIG. 10.
そして、 斜板 2 1 が矢示 A方向に傾転された状態では、 シリ ンダブロ ック 1 4が回転軸 1 3 と一体に回転する こ とによ り、 各ピス ト ン 1 6 は傾転角 0 に対応したス ト 口 —ク量 (押しのけ容積) をもってシリ ンダブロ ック 1 4 の各シリ ンダ 1 5 内で往復動を繰返すよう になる。 この ため油圧ポンプ 1 は、 例えば給排通路 1 2 B側から各シ リ ンダ 1 5内に油液を吸込みつつ、 給排通路 1 2 A側か ら圧油を吐出する。  Then, when the swash plate 21 is tilted in the direction of arrow A, each piston 16 is tilted as the cylinder block 14 rotates integrally with the rotary shaft 13. The reciprocating motion is repeated in each cylinder 1 5 of the cylinder block 1 4 with a stack amount (displacement volume) corresponding to the angle 0. Therefore, for example, the hydraulic pump 1 discharges the pressure oil from the supply / discharge passage 12 A while drawing oil from the supply / discharge passage 12 B into the cylinders 15.
これによ り 、 図 1 に示す走行用の油圧閉回路 4内では、 主管路 3 A, 3 B内を矢示 A 1方向に沿って圧油が流通 し、 走行用の油圧モー夕 5 を圧油の給排によって回転駆 動する ことができる。 そして、 油圧モー夕 5の回転出力 は、 減速機 6 を介してホイール式作業車両の車輪 7 , 7 に伝達され、 各.車輪 7 を回転駆動する ことによ り、 例え ば前進方向に作業車両を傾転角 0 に対応した速度で走行 駆動できる。  As a result, in the closed hydraulic circuit 4 for traveling shown in FIG. 1, the pressure oil flows in the main pipelines 3 A, 3 B along the direction of arrow A 1, and the hydraulic motor 5 for traveling is It can be driven to rotate by supplying and discharging pressure oil. Then, the rotational output of the hydraulic motor 5 is transmitted to the wheels 7 and 7 of the wheeled working vehicle via the reduction gear 6 and rotationally drives each of the wheels 7, for example, in the forward direction. Can be driven at a speed corresponding to a tilt angle of 0.
一方、 前後進切換弁 5 1 を停止位置 ( a ) から後進位 置 ( c ) に切換えたとする。 このときにも、 走行ペダル 5 2 Aを踏込み操作すると、 レギユ レ一夕 3 4は、 図 1 0 に示す中立位置 ( I ) から切換位置(II)に切換えられ る。 そして、 パイ ロ ッ トポンプ 4 6からの圧油は、 制御 管路 4 8 A , 5 O Bを通じて傾転ァクチユエ一夕 3 2 の 液圧室 3 2 Bに供給される。 また、 傾転ァクチユエ一夕 3 3の液圧室 3 3 B内の圧油は、 制御管路 5 0 A, 4 8 B、 レギユ レ一夕 3 4等を介してタンク 4 7側に排出さ れる。 この結果、 傾転ァクチユエ一夕 3 2 の傾転ピス ト ン 3 2 Cによ り斜板 2 1 を図 1 0 中の矢示 B方向に傾転 駆動する ことができる。 On the other hand, it is assumed that the forward / reverse switching valve 51 is switched from the stop position (a) to the reverse position (c). Also at this time, if you depress the traveling pedal 5 2 A and operate it, the Regiyu 1 34 will be shown in Figure 1 It is switched from the neutral position (I) shown in 0 to the switching position (II). Then, the pressure oil from the pilot pump 46 is supplied to the fluid pressure chamber 32 B of the tilting valve 32 through the control line 48 A, 5 OB. In addition, the pressure oil in the hydraulic pressure chamber 3 3 B of the tilting gear 1 3 3 is discharged to the tank 4 7 side via the control pipelines 5 0 A, 4 8 B, the regi Be As a result, the swash plate 21 can be driven to tilt in the direction of arrow B in FIG. 10 by the tilting piston 32 C of the tilting plate 32.
そして、 この場合には図 1 に示す走行用の油圧閉回路 4内で矢示 B 1方向に沿って圧油を流通する こ とができ、 走行用の油圧モータ 5 を同方向に回転駆動する ことによ り、 油圧モータ 5 の回転出力を減速機 6 を介してホイ一 ル式作業車両の車輪 7, 7 に伝達しつつ、 例えば後進方 向に作業車両を傾転角 0 に対応した速度で走行駆動でき る。  In this case, pressure oil can be circulated along the direction of arrow B1 in the closed hydraulic circuit 4 for traveling shown in FIG. 1, and the hydraulic motor 5 for traveling is rotationally driven in the same direction. Thus, for example, while the rotational output of the hydraulic motor 5 is transmitted to the wheels 7 and 7 of the wheeled working vehicle via the reduction gear 6, for example, a speed corresponding to a tilt angle 0 of the working vehicle in the reverse direction. It can drive and drive.
こ こで、 斜板 2 1 が中立位置から正方向 ( A方向) に 傾転している ときには、 一対の給排通路 1 2 A , 1 2 B のうち一方の給排通路 1 2 A側が高圧とな り、 斜板 2 1 は、 図 5 中に示す合力作用点 k 1の位置で各ピス ト ン 1 6から油圧反力の合力 f lを受ける。  Here, when the swash plate 2 1 is tilted in the positive direction (direction A) from the neutral position, one of the pair of supply and discharge passages 12 A and 12 B has high pressure. Thus, the swash plate 2 1 receives the resultant force fl of the hydraulic reaction force from each piston 16 at the position of the resultant force application point k 1 shown in FIG.
しかし、 斜板 2 1 の脚部 2 1 Aに設けた第 1 の主静圧 軸受部 2 2 Aと、 脚部 2 1 Bに設けた第 1 の補助静圧軸 受部 2 2 Cとには、 給排通路 1' 2 Aから導油路 2 4の共 通油路 2 4 A、 分岐油路 2 4 B, 2 4 Cを介して高圧の 圧油が導かれる。 このため、 斜板支持体 2 0の傾転支持 面 2 0 A, 2 0 B と斜板 2 1 の脚部 2 1 A, 2 1 B との 間には、 第 1 の主静圧軸受部 2 2 Aによ り 乖離力 f aが 発生し、 第 1 の補助静圧軸受部 2 2 Cによ り乖離力 f c が発生する。 However, for the first main static pressure bearing portion 2 2 A provided on the leg portion 2 1 A of the swash plate 2 1 and the first auxiliary static pressure bearing portion 2 2 C provided on the leg portion 2 1 B The high pressure oil is led from the supply and discharge passage 1 '2 A through the common oil passage 24' of the oil guiding passage 24 'and the branched oil passage 24' B and 24 C. For this reason, the first main static pressure bearing portion is disposed between the tilt support surfaces 20 A and 20 B of the swash plate support 20 and the legs 2 1 A and 2 1 B of the swash plate 2 1. A separation force fa is generated by the 2 2 A, and a separation force fc is generated by the first auxiliary static pressure bearing portion 2 2 C. Occurs.
そして、 第 1 の主静圧軸受部 2 2 Aは、 図 5 に示す如 く斜板 2 1 が各ピス トン 1 6から受ける油圧反力の合力 作用点 k 1から距離 L aとなる位置に配置され、 第 1 の補 助静圧軸受部 2 2 Cは、 合力作用点 k lから距離 L c ( L c> L a) となる位置に配置されている。  Then, as shown in FIG. 5, the first main static pressure bearing portion 22 A is positioned at a distance L a from the resultant force acting point k 1 of the hydraulic reaction force received by the swash plate 21 from each piston 16 as shown in FIG. The first auxiliary static pressure bearing portion 22C is disposed at a position where the distance Lc (Lc> La) from the combined force application point kl.
このため、 斜板 2 1 が各ピス ト ン 1 6から受ける油圧 反力の合力 f lに対し、 第 1 の主静圧軸受部 2 2 Aによ る乖離力 f aと第 1 の補助静圧軸受部 2 2 Cによる乖離 力 f cとを、 下記の ( 1 ) 〜 ( 4 ) 式を満たす関係に設 定する ものである。 これによ り 、 油圧反力の合力 f lは 乖離力 f a, f cとをバラ ンス し、 斜板支持体 2 0の傾転 支持面 2 0 A, 2 0 Bと斜板 2 1 の脚部 2 1 A, 2 1 B との間の接触面を潤滑状態に保持する ことができる。  Therefore, with respect to the resultant force fl of the hydraulic reaction force that the swash plate 2 1 receives from each piston 16, the separation force fa due to the first main static pressure bearing portion 2 2 A and the first auxiliary static pressure bearing The separation force fc of Part 22 C is set to satisfy the following equations (1) to (4). As a result, the resultant force fl of the hydraulic reaction force is balanced with the separating forces fa and fc, and the tilt support surfaces 20 0 A and 20 B of the swash plate support 20 and the legs 2 of the swash plate 2 1 The contact surface between 1 A and 2 1 B can be maintained in a lubricated state.
即ち、 第 1 の主静圧軸受部 2 2 Aによる乖離力 f aと 第 1 の補助静圧軸受部 2 2 Cによる乖離力 f cとは、 例 えば中立位置から正方向に傾転された斜板 2 1 が各ビス ト ン 1 6から受ける油圧反力の合力 f lに対し、 下記の 関係を満たすように設定される。 .  That is, the separation force fa due to the first main static pressure bearing 22 A and the separation force fc due to the first auxiliary static pressure bearing 22 C are, for example, swash plates tilted in the positive direction from the neutral position. It is set so that the following relationship is satisfied for the resultant force fl of the hydraulic reaction force received from each of the pistons 21 by 2 1. .
f 1 = f a+ f c ( 1 )  f 1 = f a + f c (1)
また、 このときに斜板 2 1 が受ける合力 f 1は、 油圧 反力による圧力 P と受圧面積 S 1との関係から、 下記の 式で表される。  Further, the resultant force f 1 received by the swash plate 2 1 at this time is expressed by the following equation from the relationship between the pressure P due to the hydraulic reaction force and the pressure receiving area S 1.
f 1 = S 1 X P ( 2 )  f 1 = S 1 X P (2)
そして、 第 1 の主静圧軸受部 2 2 Aと第 1 の補助静圧 軸受部 2 2 Cにも、 同様の圧力 Pが作用する場合を想定 する と、 主静圧軸受部 2 2 Aは有効軸受面積 S aを有 し、 補助静圧軸受部 2 2 Cは有効軸受面積 S c ( S c< S a) を有しているので、 前記 ( 1 )、 ( 2 ) の式から下記の関 係が導かれる。 And assuming that the same pressure P acts on the first main static pressure bearing 22 A and the first auxiliary static pressure bearing 22 C, the main static pressure bearing 22 A is Since the auxiliary bearing 2 2 C has an effective bearing area S a and an effective bearing area S c (S c <S a), the following equations (1) and (2) are obtained. Seki The person in charge will be guided.
S 1 = S a+ S c ( 3 )  S 1 = S a + S c (3)
また、 第 1 の主静圧軸受部 2 2 Aによ る乖離力 f a (有効軸受面積 S a) は、 合力作用点 k 1から距離 L aと なる位置に作用 し、 第 1 の補助静圧軸受部 2 2 Cによる 乖離力 f c (有効軸受面積 S c) は、 合力作用点 k lか ら 距離 L cとなる位置に作用 している。 このため、 合力作 用点 k lを基準と した乖離力 f a, f cのモーメ ン トは、 下記の関係を満たすよう に設定される。  Further, the separation force fa (effective bearing area S a) due to the first main static pressure bearing portion 22 A acts on the position from the combined force application point k 1 to the distance L a, and the first auxiliary static pressure The separation force fc (effective bearing area S c) due to the bearing portion 2 2 C acts on a position where the distance L c is from the combined force application point kl. For this reason, the moments of the separation forces f a and f c with respect to the combined working point k l are set to satisfy the following relationship.
L aX S a= L cX S c ( 4 )  L aX S a = L cX S c (4)
これによ り 、 斜板 2 1 が各ピス ト ン 1 6から受ける油 圧反力の合力 f lに対して、 主静圧軸受部 2 2 Aの乖離 力 f aと補助静圧軸受部 2 2 Cの乖離力 f cとをバランス させる こ とができ、 斜板 2 1 の脚部 2 1 A, 2 1 Bが斜 板支持体 2 0 の傾転支持面 2 O A, 2 0 Bから浮き上が るよう に傾いた り 、 離間した りするのを防止するこ とが できる。  As a result, against the resultant force fl of the hydraulic pressure reaction force that the swash plate 2 1 receives from each piston 16, the separation force fa of the main static pressure bearing portion 2 2 A and the auxiliary static pressure bearing portion 2 2 C The balance force with the separation force fc of the swash plate 2 1 can be balanced, and the legs 2 1 A and 2 1 B of the swash plate 2 1 are lifted from the tilt support surfaces 2 OA and 20 B of the swash plate support 20. As a result, it is possible to prevent tilting and separation.
この結果、 静圧軸受部 2 2 A, 2 2 C内に導いた圧油 が外部に漏洩するのを抑制でき、 斜板 2 1 の脚部 2 1 A, 2 1 B と斜板支持体 2 0の傾転支持面 2 0 A, 2 0 B と の間を潤滑状態に保持する こ とができる。 そして、 斜板 2 1 の傾転動作を安定させる ことができ、 傾転ァクチュ ェ一夕 3 2 , 3 3 による傾転駆動力も小さ くするこ とが できる。  As a result, the pressure oil introduced into the hydrostatic bearing 2 2 A, 2 2 C can be prevented from leaking to the outside, and the legs 2 1 A, 2 1 B of the swash plate 2 1 and the swash plate support 2 Lubrication can be maintained between 0 and the tilt bearing surfaces 2 0 A and 2 0 B. And, the tilting movement of the swash plate 21 can be stabilized, and the tilting drive force by the tilting actuators 32 and 33 can be reduced.
一方、 斜板 2 1 が中立位置から逆方向 ( B方向) に傾 転された場合には、 図 5 中に示す合力作用点 k 2となる 位置で斜板 2 1 が各ピス ト ン 1 6から油圧反力の合力 f 2を受ける。 そして、 このときの合力 f 2に対し、 第 2 の 主静圧軸受部 2 2 Bによる乖離力 f bと第 2 の補助静圧 軸受部 2 2 Dによる乖離力 f dとは、 下記の関係を満た すように設定される。 On the other hand, when the swash plate 2 1 is tilted in the reverse direction (direction B) from the neutral position, the swash plate 2 1 is located at the position of the resultant force application point k 2 shown in FIG. It receives the resultant force f 2 of the hydraulic reaction force from. Then, with respect to the resultant force f 2 at this time, the separation force f b and the second auxiliary static pressure by the second main static pressure bearing portion 2 2 B. The separation force fd due to bearing 2 2 D is set to satisfy the following relationship.
f 2= f b+ f d ( 5 )  f 2 = f b + f d (5)
また、 このときに斜板 2 1 が受ける合力 f 2は、 油圧 反力による圧力 P と受圧面積 S 2との関係か ら、 下記の 式で表される。  Further, the resultant force f 2 received by the swash plate 2 1 at this time is expressed by the following equation from the relationship between the pressure P due to the hydraulic reaction force and the pressure receiving area S 2.
f 2= S 2 X P ( 6 )  f 2 = S 2 X P (6)
そして、 第 2 の主静圧軸受部 2 2 B と第 2 の補助静圧 軸受部 2 2 Dにも、 同様の圧力 Pが作用する場合を想定 する と、 主静圧軸受部 2 2 Bは有効軸受面積 S bを有し、 補助静圧軸受部 2 2 Dは有効軸受面積 S d ( S d< S b) を有しているので、 前記 ( 5 ) の式から下記の関係が導 かれる。  And assuming that the same pressure P acts on the second main static pressure bearing 22 B and the second auxiliary static pressure bearing 22 D, the main static pressure bearing 22 B is Since the auxiliary static pressure bearing portion 2 2 D has an effective bearing area S b and an effective bearing area S d (S d <S b), the following relationship is derived from the above equation (5) .
S 2= S b+ S d ( 7 )  S 2 = S b + S d (7)
また、 第 2 の主静圧軸受部 2 2 B によ る乖離力 f b (有効軸受面積 S b) は、 合力作用点 k 2か ら距離 L bと なる位置に作用 し、 第 2 の補助静圧軸受部 2 2 Dによる 乖離力 f d (有効軸受面積 S d) は、 合力作用点 k 2か ら 距離 L dとなる位置に作用 している。 このため、 合力作 用点 k 2を基準と した乖離力 f b, f dのモーメ ン ト は、 下記の関係を満たすよう に設定される。  In addition, the separation force fb (effective bearing area S b) due to the second main static pressure bearing portion 2 2 B acts at a distance L b from the force application point k 2, and the second auxiliary static pressure The separation force fd (effective bearing area S d) due to the pressure bearing portion 2 2 D acts on a position at a distance L d from the combined force application point k 2. For this reason, the moments of the separation forces f b and f d with respect to the combined working point k 2 are set so as to satisfy the following relationship.
L bx S b= L dx S d ( 8 )  L bx S b = L dx S d (8)
これによ り、 斜板 2 1 が各ピス ト ン 1 6 から受ける油 圧反力の合力 f 2に対して、 主'静圧軸受部 2 2 Bの乖離 力 f bと補助静圧軸受部 2 2 Dの乖離力 f dとをバラ ンス させる ことができ、 斜板 2 1 の脚部 2 1 A , 2 1 Bが斜 板支持体 2 0 の傾転支持面 2 O A , 2 O Bから浮き上が るよう に傾いた り、 離間した りするのを防止する こ とが できる。 この結果、 斜板 2 1 が中立位置から逆方向に傾転され た場合にも、 静圧軸受部 2 2 B , 2 2 D内に導いた圧油 が外部に漏洩するのを抑制でき、 斜板 2 1 の脚部 2 1 AAs a result, with respect to the resultant force f 2 of the hydraulic pressure reaction force that the swash plate 2 1 receives from each piston 16, the separation force f b of the main 'static pressure bearing portion 2 2 B and the auxiliary static pressure bearing portion 2 2D can be balanced with the separation force fd, and the legs 2 1 A and 2 1 B of the swash plate 2 1 float from the tilt support surfaces 2 OA and 2 OB of the swash plate support 20. Can be prevented from tilting or separating. As a result, even when the swash plate 21 is tilted in the reverse direction from the neutral position, the pressure oil introduced into the static pressure bearing portions 2 2 B and 2 2 D can be prevented from leaking to the outside, and The legs of the board 2 1 2 1 A
2 1 B と斜板支持体 2 0 の傾転支持面 2 0 A 2 0 B と の間を潤滑状態に保持できる と共に、 斜板 2 1 の傾転動 作を安定させ、 傾転ァクチユエ一夕 3 2, 3 3 による傾 転駆動力も小さ くすることができる。 2 1 B and the tilt support surface 2 0 A 2 0 B of the swash plate support 2 0 can be maintained in a lubricated state, and the tilt operation of the swash plate 2 1 is stabilized, and the tilt motion can be maintained. The tilting drive force by 3 2 and 3 3 can also be reduced.
と ころで、 車両が前進または後進するとさの走行速度 は、 油圧ポンプ 1 による圧油の吐出量 (流量 ) によつて 決められ、 この吐出量は斜板 2 1 の傾転角 Θ に応じて増 減される。 そして、 容量制御弁である レギュ レ一夕 3 4 を斜板 2 1 の傾転角 0 に応じてフィ 一 ドバック制御しな い限 り は、 斜板 2 1 の傾転角 6> (即ち、 車両の走行速 度) を走行ぺダル 5 2 Aの踏込み操作だけで安定して制 御することは難しい  However, the traveling speed of the vehicle when the vehicle moves forward or backward is determined by the discharge amount (flow rate) of the pressure oil from the hydraulic pump 1, and this discharge amount is determined according to the tilt angle 斜 of the swash plate 21. It is increased and decreased. And, unless feedback control is performed on the capacity control valve, Reg. 3 4 according to the tilt angle 0 of the swash plate 2 1, the tilt angle 6 of the swash plate 2 1> (ie, It is difficult to control the running speed of the vehicle stably only by stepping on the running pedal 5 2 A
そこで、 本実施の形態では、 レギユレ一夕 3 4の制御 ス リ ——ブ 3 6 と斜板 2 1 の側面との間にフィ一ドバッ ク 機構 4 0 を設けている このフィ ―ドバッ ク機構 4 0 は、 斜板 2 1 が傾転角零の中立位置から正方向または逆方向 のいずれの方向に傾転駆動されるときにも 、 レギュ レー 夕 3 4 を斜板 2 1 の傾転動作に追従させ、 の レギユ レ Therefore, in the present embodiment, the feedback mechanism 40 is provided between the control slip 36 of the control panel 34 and the side surface of the swash plate 21. This feedback mechanism When the swash plate 2 1 is driven to tilt in either the positive direction or the reverse direction from the neutral position at a tilt angle of 0, the regulation action of the swash plate 2 1 is performed. Let's follow
—夕 3 4 をフィ ー ドバック制御する構成と している。 -E3 34 is configured to perform feedback control.
そして、 このフィ 一 ドノ、'ッ ク機構 4 0 は、 斜板 2 1 の 側面 (脚部 2 1 Bの側面) に形成され回転軸 1 3 の軸線 0— 0を基準として略 「 V」 字状または 「 U J 字状に屈 曲した凹溝からなるカム溝 4 2 と、 該カム溝 4 2 に摺接 するローラ部 4 3 Aを有し斜板 2 1 の傾 fe動作を軸方向 変位に変換して取出すカムフォ ロア 4 3 と、 該カムフォ ロア 4 3で取出した軸方向変位によ り回転軸 1 3 の軸方 向に平行移動する並進バー 4 4 とから構成されている。 そして、 この並進バ一 4 4 は、 力ムフォ □ァ 4 3 による 軸方向変位を先端側の固定部 4 4 Aに つて制御ス リ一 ブ 3 6 に伝える構成となっている And this fid-no, 'cucking mechanism 40 is formed on the side surface of the swash plate 2 1 (the side surface of the leg 21 B) and is approximately' V 'based on the axis 0-0 of the rotation shaft 13 A cam groove 4 2 having a U-shaped curved groove or a U U-shaped concave groove, and a roller portion 4 3 A in sliding contact with the cam groove 4 2 The cam follower 4 3 converted into and extracted, and the axial displacement of the rotating shaft 1 3 due to the axial displacement taken out by the cam follower 4 3 It consists of a translation bar 4 4 which translates in the direction of arrow. And, this translational valve 4 4 is configured to transmit the axial displacement due to the force transfer force 3 3 3 to the fixing portion 4 4 A on the tip side to the control slide 3 6
この場合、 斜板 2 1 側のカム溝 4 2 は 、 図 1 1 に示す よう に斜板 2 1 が中立位置にある とさに傾転中心じから 回転軸 1 3 の軸線 O— Oに沿って最も大さく離間した寸 法 R a ( R a < R ) の位置に配置される中間溝部 4 2 A と、 該中間溝部 4 2 Aの位置から傾転中心 Cに近付く 方 向へと斜め下向きに傾いて延びた下側傾斜溝部 4 2 B と、 中間溝部 4 2 Aから傾転中心 Cに近付く方向へと斜め上 向きに傾いて延びる上側傾斜溝部 4 2 C とによ り構成さ れている。 そして、 カム溝 4 2全体は、 斜板 2 1 の側面 に中間溝部 4 2 Aの位置で略 「V」 字状または 「 U」 字 状に屈曲した凹溝と して形成されている  In this case, when the swash plate 21 is in the neutral position as shown in FIG. 1 1, the cam groove 4 2 on the swash plate 2 1 side extends from the center of rotation to the axis O— O of the rotation shaft 13. An intermediate groove portion 4 2 A disposed at the position of the dimension R a (R a <R) which is most widely separated, and an oblique downward direction toward the tilting center C from the position of the intermediate groove portion 4 2 A And an upper inclined groove 4 2 C extending obliquely from the middle groove 4 2 A toward the inclination center C. There is. And, the entire cam groove 42 is formed on the side surface of the swash plate 2 1 as a concave groove bent in a substantially "V" shape or "U" shape at the position of the intermediate groove portion 42A.
また、 並進バー 4 4の固定部 4 4 Aと制御ス リーブ 3 In addition, the fixed part 4 4 A of the translation bar 4 4 and the control sleeve 3
6 とは、 例えば垂直に固定された状態に保持されている ので、 力ムフォ ロア 4 3 のローラ部 4 3 Aは、 回転軸 1 3 の軸線 O— Oと直交する方向に移動 (位置ずれ) する のが規制され、 軸線 O— Oに沿った軸方向変位のみが許 される構成となっている。 Since 6 is held, for example, in a vertically fixed state, the roller portion 4 3 A of the force follower 4 3 moves in the direction orthogonal to the axis O-O of the rotation shaft 1 3 (misalignment) The structure is regulated so that only axial displacement along the axis O-O is permitted.
そして 、 カムフォ ロア 4 3 のローラ部 4 3 Aは、 斜板 2 1 が傾転角零の中立位置にある ときに中間溝部 4 2 A と摺接する位置に配置されている。 そして、 ローラ部 4 3 Aは、 斜板 2 1 が中立位置から矢示 A方向 (正方向) に傾転される ときには、 下側傾斜溝部 4 2 Bに沿って摺 動し、 ―方、 斜板 2 1 が中立位置から矢示 B方向 (逆方 向) に傾転されるときには、 上側傾斜溝部 4 2 Cに沿つ て摺動する。 このため、 斜板 2 1 が中立位置から図 1 2 に示すよう に矢示 A方向 (正方向) に傾転され、 その傾転角 0 が角 度 α ( Θ = a ) のときには、 カムフォ ロア 4 3 の口一ラ 部 4 3 Aがカム溝 4 2 の下側傾斜溝部 4 2 B に沿つて点 G 1の位置まで摺動され、 並進バー 4 4 をカムフォ 口ァThe roller portion 4 3 A of the cam follower 4 3 is disposed at a position where the swash plate 2 1 is in sliding contact with the intermediate groove portion 4 2 A when the swash plate 2 1 is in the neutral position of zero tilt angle. And, when the swash plate 2 1 is tilted in the direction of arrow A (positive direction) from the neutral position, the roller portion 4 3 A slides along the lower side inclined groove portion 4 2 B, When the plate 21 is tilted from the neutral position in the direction of arrow B (reverse direction), it slides along the upper inclined groove portion 4 2 C. Therefore, when the swash plate 2 1 is tilted from the neutral position in the direction of arrow A (positive direction) as shown in FIG. 12 and the tilt angle 0 is the angle α (a = a), the cam follower 4 3 mouth part 4 3 A is slid to the position of point G 1 along the lower inclined groove 4 2 B of the cam groove 4 2, and the translation bar 4 4 is cam fo
4 3 と一緒に図 1 2 に示す線 G — Gの位置 移動Position of line G — G shown in Figure 1 2 together with 3 3
(並進運動 ) することができる。 (Translational movement)
そして、 の点 G 1を通る線 G 一 Gは 、 Cか ら寸法 R b の位置にある。 一方、 斜板 2 1 が中立位置の ときに、 並進バ一 4 4は線 F — Fに沿つた初期位置に配 置され、 このときの線 F — Fは、 斜板 2 1 の傾転中心 C から寸法 R a の位置にある。 これによ Ό 、 4 4 が初期位置の線 F _ Fから線 G — Gの位置 軸 1 And the line G 1 G passing through the point G 1 at is from C to the dimension R b. On the other hand, when the swash plate 2 1 is in the neutral position, the translation block 4 4 is disposed at the initial position along the line F-F, and the line F-F at this time is the center of tilt of the swash plate 2 1 From C to dimension R a. According to this, 4 4 is the initial position line F _ F from line G — G position Axis 1
3 の軸方向に変位する ときの軸方向変位量を、 下記のThe amount of axial displacement when displaced in the axial direction of 3
( 9 ) 式による寸法 a として求めることができる。 It can be determined as the dimension a by the equation (9).
a = R a - R b ( 9 )  a = R a-R b (9)
一方、 斜板 2 1 が中立位置から図 1 3 に示すよう に矢 示 B方向 (逆方向) に傾転され、 その傾転角 Θ が角度 β On the other hand, the swash plate 2 1 is tilted from the neutral position in the direction of arrow B (reverse direction) as shown in FIG. 13, and the tilt angle が is the angle β
( Θ = β ) となるときには、 カムフォ 口ァ 4 3 の口一ラ 部 4 3 Αがカム溝 4 2 の上側傾斜溝部 4 2 Cに沿って点When (Θ = β), the cam groove 4 3 has a rib 4 3 and the cam groove 4 2 has a point along the upper inclined groove 4 2 C of the cam groove 4 2.
H 1の位置まで摺動され、 並進バー 4 4 を力ムフォ ロァIt is slid to the H 1 position, and the translation bar 4
4 3 と一緒に図 1 3 に示す線 H — Hの位置まで平行移動 することができる。 It can be translated to the position of line H-H shown in Fig. 13 together with 4 3.
そして、 この場合の点 H 1を'通る線 H 一 Hについても、 傾転中心 Cから寸法 R b の位置にある しれによ り 、 並 進バ — 4 4が初期位置の線 F — Fから線 H 一 Hの位置ま で回転軸 1 3 の軸方向に変位するときの軸方向変位量を、 下記の ( 1 0 ) 式による寸法 b と して求める こ とがでさ る b = R a - R b ( 1 0 ) And also for the line H 1 H that passes through the point H 1 in this case, since the parallel bar 4 4 is at the initial position line F − F from the tilting center C to the position R b from the tilting center C The amount of axial displacement when displacing in the axial direction of the rotary shaft 13 up to the position of the line H 1 H can be determined as the dimension b by the following equation (10). b = R a-R b (1 0)
のよ に、 斜板 2 1 側の力ム溝 4 2 に摺接するカム フォ Dァ 4 3 のローラ部 4 3 Aは、 斜板 2 1 がカム溝 4 As shown in the figure, the roller portion 4 3 A of the cam shaft D 3 3 sliding contact with the force groove 4 2 on the swash plate 2 1 side has the swash plate 2 1 with the cam groove
2 と一緒に正方向または逆方向に傾転するときに、 斜板When tilting forward or backward with 2, swash plate
2 1 の傾転動作を回転軸 1 3 の軸線 O— Oに沿った並進 ハ、一 4 4の軸方向変位 (例えば 、 寸法 a b分の変位) に変換して取出すこ とができる 。 そして 、 並進バー 4 4 は 、 しのときの軸方向変位を固定部 4 4 Aによ り制御ス リ一ブ 3 6 に対し同様の軸方向変位として伝える こ とが できる。 The tilting movement of 2 1 can be taken out by converting it into a translation along the axis O-O of the rotation axis 1 3, an axial displacement of 14 4 (for example, a displacement of a dimension a b). And, the translational bar 4 4 can transmit the axial displacement at the same time to the control sleeve 3 6 as the same axial displacement by means of the fixed part 4 4 A.
従って、 本実施の形態によれば 、 可変容量型の斜板式 油圧ポンプ 1 を油圧モータ 5 に対し、 図 1 に例示した油 圧閉回路 4 を用いて接続した場合にも、 容量可変部とな る斜板 2 1 を中立位置から正方向と逆方向とにそれぞれ 傾転して圧油の吐出量 (流量) を両方向で制御でき、 車 両の前進走行時または後進走行時にも斜板 2 1 の傾転角 に応じた速度制御を円滑に行う ことができる。  Therefore, according to the present embodiment, even when the variable displacement swash plate type hydraulic pump 1 is connected to the hydraulic motor 5 using the hydraulic pressure closed circuit 4 illustrated in FIG. The swash plate 2 1 can be tilted from the neutral position in the forward and reverse directions, respectively, to control the discharge amount (flow rate) of the pressure oil in both directions, and the swash plate 2 1 can be used during forward or reverse travel of the vehicle. Speed control can be performed smoothly according to the tilt angle of the motor.
しかも、 容量制御弁と して機能する レギユ レ一夕 3 4 については、 制御ス リーブ 3 6 内にスプ —ル 3 7 を有し た簡単な構造の油圧サーポ弁によ り構成できる。 これに よ り、 傾転ァクチユエ一夕 3 2 , 3 3 、 レギュ レー夕 3 4およびフィ ― バッ ク機構 4 0等から構成される傾転 制御装置は その全体の構造を簡素化する ことができ、 部品点数を減ら して組立時の作業性等も向上する こ とが できる  In addition, the regu- lator valve 34, which functions as a displacement control valve, can be configured by a hydraulic servo valve of a simple structure having a spool 3 7 in the control sleeve 3 6. As a result, the tilt control device consisting of the tilt control valves 32 and 33, the regulator 34 and the feedback mechanism 40 can simplify the whole structure. The number of parts can be reduced to improve the workability at the time of assembly, etc.
また 、 レギュ レー夕 3 4 と傾転ァクチユエ一タ 3 2 , 3 3 との間には、 前後進切換弁 5 1 を設けているので、 レギ レ ―夕 3 4 を含めた傾転制御 は、 その全体の 構造を従来技術に比較して簡素化でさ、 生産性を向上で きると共に、 コス トの削減化等を図ることができる。 また、 油圧ポンプ 1 の傾転制御装置は、 図 1 に例示し た油圧閉回路 4に限らず、 所謂油圧開回路に適用 しても 油圧モー夕等の油圧ァクチユエ一夕に圧油を給排する こ とができる 。 このため、 油圧ボンプ 1 の傾転制御装置は 油圧閉回路と開回路との双方に適用でき、 汎用性を高め る こ とができる と共に、 生産性を向上でき、 コス 卜の削 減化等を図る ことができる。 In addition, since the forward and reverse switching valve 51 is provided between the regulator 34 and the tilting actuator 32 and 33, the tilting control including the regulation 34 is performed as follows. The entire structure is simplified compared to the prior art, and productivity is improved. It is possible to reduce costs etc. In addition, the tilt control device of the hydraulic pump 1 is not limited to the hydraulic closed circuit 4 illustrated in FIG. 1, and even if it is applied to a so-called hydraulic open circuit, pressure oil is supplied to the hydraulic motor such as hydraulic motor. can do . Therefore, the tilt control device of hydraulic pump 1 can be applied to both hydraulic closed circuit and open circuit, and it can improve versatility, improve productivity, reduce cost and so on. It is possible to
また、 本実施の形態にあっては 、 斜板支持体 2 0の傾 転支持面 2 0 A , 2 0 B と斜板 2 1 の脚部 2 1 A , 2 1 Also, in the present embodiment, the tilt support surfaces 20 A and 20 B of the swash plate support 20 and the legs 2 1 A and 21 of the swash plate 2 1.
Bとの間に静圧軸受 2 2 (静圧軸受部 2 2 A 2 2 D ) を設け、 れらの静圧軸受部 2 2 A 2 2 Dには、 一対 の給排通路 1 2 A , 1 2 B力 ら高圧の圧油を導く構成と している このため、 傾転支持面 2 0 2 0 Bと脚部A hydrostatic bearing 2 2 (hydrostatic bearing 2 2 A 2 2 D) is provided between B and B, and the hydrostatic bearing 2 2 A 2 2 D is provided with a pair of supply and discharge passages 1 2 A, 1 2 B force is used to guide the high pressure hydraulic oil. Therefore, the tilt support surface 20 0 2 0 B and the legs
2 1 A , 2 1 B との間には、 静圧軸受部 2 2 A 2 2 D によって乖離力 (例えば、 図 5 中の乖離力 f a f b, f c, f d) を発生させ、 傾転支持面 2 0 A , 2 0 Bと脚部A separation force (for example, separation force fafb, fc, fd in FIG. 5) is generated by the static pressure bearing part 2 2 A 2 2 D between 2 1 A and 2 1 B, and the tilt support surface 2 0 A, 2 0 B and leg
2 1 A , 2 1 Bとの間の接触面を潤滑状態に保持する こ とができる The contact surface between 2 1 A and 2 1 B can be maintained in a lubricated state
この結果 、 主静圧軸受部 2 2 A 2 2 B (補助静圧軸 受部 2 2 C 2 2 D ) による乖離力 f a, f c (乖離力 f b f d) は 、 斜板 2 1 が各ピス ト ン 1 6から受ける油圧 反力の合力 f 1 (合力 f 2) に対し 良好にバランスを保 つた状態とする こ とができ、 静圧軸受部 2 2 A 2 2 D からなる静圧軸受 2 2 は、 安定した軸受性能を発揮する ことができる。  As a result, the separation force fa, fc (separation force fbfd) due to the main static pressure bearing portion 2 2 A 2 2 B (auxiliary static pressure shaft receiving portion 2 2 C 2 2 D) is obtained for each swash plate 21 The static pressure bearing 22 composed of the static pressure bearing portion 2 2 A 2 2 D can be maintained in a well-balanced state with respect to the resultant force f 1 (the resultant force f 2) of the hydraulic reaction force received from 16. And stable bearing performance can be exhibited.
これによ り、 本発明の適用対象は H S T等に用いる 可変容量型の斜板式油圧ポンプ 1 に限る とな < 例え ば回転軸が正方向または逆方向に回転する油圧モ 夕等 一対の給排通路が可逆的に高, 低圧に切換わる液圧回転 機等にも容易に適用する ことができ、 液圧回転機と して の汎用性を高め、 生産性を向上できると共に、 コス トの 低減化等を図ることができる。 As a result, the application of the present invention is limited to the variable displacement swash plate type hydraulic pump 1 used for HST etc. <For example, a hydraulic motor etc. in which the rotation shaft rotates in the forward or reverse direction The present invention can be easily applied to a hydraulic rotary machine or the like in which a pair of supply and discharge passages are reversibly switched to high and low pressure, so that the versatility as a hydraulic rotary machine can be enhanced and productivity can be improved. Cost reduction can be achieved.
また、 第 1 , 第 2の主静圧軸受部 2 2 A, 2 2 Bを、 図 5 に示すよう に斜板 2 1が各ピス ト ン 1 6から受ける 油圧反力の合力作用点 k 1, k 2に近い位置に配置してい る。 このため、 この合力作用点 k l, k 2と、 主静圧軸受 部 2 2 A, 2 2 Bによる乖離力 f a, f bの作用点とを近 付ける ことができる。  Also, as shown in FIG. 5, the first and second main static pressure bearing portions 22 A and 22 B are received by the swash plate 21 from the respective pistons 16. , K 2 are placed close to the position. For this reason, it is possible to bring the resultant force acting point k l, k 2 close to the acting point of the separating force f a, f b by the main static pressure bearing portions 2 2 A, 2 2 B.
そして、 合力作用点 k l, k 2と乖離力 f a, f bの作用 点とを近付ける ことによ り、 斜板 2 1 に作用するモ一メ ン ト (例えば、 合力作用点 k l, k 2を基準と した軸廻り のモーメ ン ト) を小さ く する ことがでさる この結果、 第 1 , 第 2 の補助静圧軸受部 2 2 C 2 2 Dは 、 その有 効軸受面積 S c, S dを小さ くする ことがでさ 、 斜板 2 1 を含めて油圧ポンプ 1全体の小型化を図る こ とができる。  Then, by bringing the resultant point of action kl, k 2 close to the point of action of the separation force fa, fb, a moment acting on the swash plate 2 1 (for example, the reference point kl, k 2 is referred to As a result, the first and second auxiliary static pressure bearing units 2 2 C 2 2 D can reduce their effective bearing areas S c and S d. It is possible to reduce the size of the entire hydraulic pump 1 including the swash plate 2 1.
また、 斜板 2 1 の脚部 2 1 A, 2 1 Bには 、 補助静圧 軸受部 2 2 D , 2 2 Cよ り も回転軸 1 3から径方向に離 れた位置に第 1 , 第 2 の滑り軸受部 2 3 A 2 3 Bを設 けている。 このため、 第 1 , 第 2 の滑り軸受部 2 3 A , In addition, the leg portions 21A and 21B of the swash plate 21 are separated from the rotary shaft 13 in the radial direction from the auxiliary static pressure bearing portions 22D and 22C, respectively. The second slide bearing 2 3 A 2 3 B is provided. For this reason, the first and second sliding bearings 2 3 A,
2 3 Bは、 給排通路 1 2 A, 1 2 B側での圧力変動等に よって斜板 2 1 に作用するモーメ ン 卜のハ、ランスが変化 した場合でも、 斜板 2 1 の安定性を確保する し とができ しかも、 第 1 , 第 2 の滑り軸受部 2 3 A 2 3 Bは、 斜板支持体 2 0の傾転支持面 2 O A , 2 0 Bに小さな面 圧をもって摺動可能に接触している これによ り、 滑り 軸受部 2 3 A, 2 3 Bは、 斜板 2 1 の脚部 2 1 A, 2 1 B と斜板支持体 2 0 の傾転支持面 2 O A, 2 3 B is the stability of the swash plate 2 1 even when the lance plate or the lance changes due to pressure fluctuation on the supply / discharge passage 1 2 A, 12 B side, etc. In addition, the first and second slide bearings 2 3 A 2 3 B slide with a small surface pressure on the tilt support surfaces 2 OA and 20 B of the swash plate support 20. As a result, the sliding bearing parts 2 3 A, 2 3 B are in contact with the leg parts 2 1 A, 2 1 of the swash plate 2 1. B and tilt support surface 2 swash plate support 2 0 OA,
の面圧を低減する こ とができ、 両者の接触面における摩 耗等を抑え 、 信頼性や寿命を向上する ことができる。 The contact pressure can be reduced, and wear and the like on the contact surface between the two can be suppressed, and reliability and life can be improved.
一方 、 第 1 の主静圧軸受部 2 2 A、 第 1 の補助静圧軸 受部 2 2 C と一方の給排通路 1 2 Aとの間には、 共通油 路 2 4 Aおよび分岐油路 2 4 B , 2 4 Cを設けている。 また、 第 2 の主静圧軸受部 2 2 B、 第 2 の補助静圧軸受 部 2 2 D と他方の給排通路 1 2 B との間には、 他の共通 油路 2 5 Aおよび分岐油路 2 5 B , 2 5 Cを設けている そして 、 共通油路 2 4 A, 2 5 Aの途中には、 共通絞り On the other hand, between the first main static bearing 2 2 A, the first auxiliary static pressure bearing 2 2 C and one of the supply and discharge passages 12 A, a common oil path 24 A and a branch oil are provided. Routes 2 4 B and 2 4 C are provided. Also, another common oil path 25 A and a branch are provided between the second main static pressure bearing 22 B and the second auxiliary static pressure bearing 22 D and the other supply / discharge passage 12 B. Oil passages 2 5 B and 2 5 C are provided and common oil passages 2 4 A and 25 A in the middle are a common throttle
2 6, 2 7 を設ける構成と している。 It is assumed that 2 6 and 2 7 are provided.
このため、 共通絞り 2 6 , 2 7 の孔径 (絞り径 ) を比 較的大きく 形成しても、 共通絞り 2 6 , 2 7 を介して主 静圧軸受部 2 2 A , 2 2 B と補助静圧軸受部 2 2 C, 2 2 D とに供給する圧油量を良好に調整でさ 、 ダス 卜等の 異物によ り共通絞り 2 6 , 2 7 が閉塞 (巨詰ま り ) する 可能性を減ら し、 装置の信頼性を向上する ことができる。  Therefore, even if the hole diameter (diaphragm diameter) of the common throttles 2 6 and 2 7 is formed relatively large, the auxiliary static pressure bearing portions 2 2 A and 2 2 B and the auxiliary The amount of pressure oil supplied to the hydrostatic bearing 2 2 C, 2 2 D can be well adjusted, and there is a possibility that the common throttle 2 6, 2 7 may be blocked (heavy clogging) by foreign matter such as dust and the like. To improve the reliability of the equipment.
また、 静圧軸受部 2 2 A 〜 2 2 Dの周囲に微小な隙間 が存在する場合でち、 これらの隙間を介した圧油の漏れ を共通絞り 2 6 , 2 7 に つて抑制する効果が得られ、 装置全体の加工性を高める こ とができると共に、 生産性 を向上でき、 コス 卜の低減化等を図る ことができる。  Also, in the case where micro clearances exist around hydrostatic bearing 2 2 A to 2 2 D, the effect of suppressing leakage of pressure oil through these clearances by means of common throttles 2 6 and 2 7 is As a result, the processability of the entire apparatus can be improved, productivity can be improved, and cost reduction can be achieved.
しかも、 各分岐油路 2 4 B , 2 4 C , 2 5 B , 2 5 C の途中には、 互いに独立した個別絞り 2 8, 2 9, 3 0 3 1 をそれぞれ設けている。 このため、 個別絞り 2 8, 2 9 , 3 0, 3 1 は、 主静圧軸受部 2 2 A, 2 2 B と補 助静圧軸受部 2 2 C , 2 2 D とに供給する圧油量を互い に独立して調整でき、 これらの静圧軸受部 2 2 A〜 2 2 Dによる斜板 2 1 の乖離力 f a, f b, f c, f dを、 これ らの個別絞り 2 8 〜 3 1 を流れる圧油量に応じて容易に 増, 減させることができる。 In addition, separate throttles 2, 8, 29 and 3 0 3 1 independent of each other are provided in the middle of each branched oil passage 2 4 B, 2 4 C, 2 5 B and 2 5 C, respectively. For this reason, the individual throttles 2, 2 9, 3 0 3 1 are pressure oil to be supplied to the main static pressure bearing portions 2 2 A and 2 2 B and the auxiliary static pressure bearing portions 2 2 C and 2 2 D. The amounts can be adjusted independently of one another, and the separation force fa, fb, fc, fd of the swash plate 2 1 by these static pressure bearing portions 2 2 A to 2 2 D These can be easily increased or decreased according to the amount of pressure oil flowing through the individual throttles 2 8 to 3 1.
しれによ り、 斜板 2 1 が各ピス ト ン 1 6 から受ける油 圧反力の合力 f l, f 2と、 静圧軸受部 2 2 A , 2 2 B , Therefore, the resultant force f l, f 2 of the hydraulic pressure reaction force that the swash plate 2 1 receives from each piston 16 and the static pressure bearing portions 2 2 A, 2 2 B,
2 2 C , 2 2 Dによる乖離力 f a, f b, f c, f dとに従 つて 、 斜板 2 1 に作用するモーメ ン トのバランスを高め る ことができ、 斜板 2 1 の傾転操作性、 安定性を向上で さると共に、 斜板式油圧ポンプ 1 としての信頼性や寿命 を高めることができる。 According to the separation forces fa, fb, fc and fd by 2 C and 22 D, the balance of the moment acting on the swash plate 21 can be enhanced, and the tilt operability of the swash plate 2 1 The stability can be improved, and the reliability and life of the swash plate type hydraulic pump 1 can be improved.
次に 、 図 1 4ないし図 1 6 は本発明の第 2 の実施の形 態を示している。 本実施の形態の特徴は、 斜板の脚部に 設ける主静圧軸受部と補助静圧軸受部とを、 脚部の凸湾 曲面に沿って周方向で互いに離間させ、 前記補助静圧軸 受部に圧油を導く ための油路を斜板の内部に穿設する構 成と したこ とにある。 なお、 本実施の形態では、 前述し た第 1 の実施の形態と同一の構成要素に同一の符号を付 し、 その説明を省略するものとする。  Next, FIGS. 14 to 16 show a second embodiment of the present invention. A feature of the present embodiment is that the main static pressure bearing portion and the auxiliary static pressure bearing portion provided on the leg portion of the swash plate are mutually separated in the circumferential direction along the convex curved surface of the leg portion; It consists of a configuration in which an oil passage for introducing pressure oil to the receiving part is bored inside the swash plate. In this embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
図中 、 6 1 は本実施の形態で採用 した可変容量型の斜 板式油圧ポンプで、 該油圧ポンプ 6 1 は、 第 1 の実施の 形態で述べた油圧ポンプ 1 とほぼ同様に、 ケーシング 1 1 、 回転軸 1 3 、 シリ ンダブロ ッ ク 1 4、 複数のシリ ン ダ 1 5 、 ピス ト ン 1 6 、 シュ一 1 7 、 弁板 1 9 、 斜板支 持体 2 0および斜板 2 1 等によつて構成されている。  In the figure, reference numeral 61 denotes a variable displacement swash plate type hydraulic pump employed in the present embodiment, and the hydraulic pump 61 is substantially the same as the hydraulic pump 1 described in the first embodiment. , Rotary shaft 1 3, Cylinder block 1 4, Multiple cylinders 1 5, Pistons 1 6, Screws 1 7, Valve plates 1 9, Swash plate supports 20 and Swash plates 2 1 etc. It is composed of
6 2 は本実施の形態で採用される静圧軸受で、 該静圧 軸受 6 2 は、 斜板支持体 2 0 の傾転支持面 2 O A, 2 0 B と斜板 2 1 の脚部 2 1 A , 2 1 B との間に設けられて いる。 こ こで、 静圧軸受 6 2 は、 第 1 の実施の形態で述 ベた静圧軸受 2 2 とほぼ同様に、 一対の給排通路 1 2 A, 1 2 Bから圧油が導かれる こ とによ り、 傾転支持面 2 0 A , 2 0 B と脚部 2 1 A, 2 I Bとの間に乖離力 (油圧 力) を発生させると共に、 両者の接触面を潤滑状態に保 持するものである。 6 2 is a static pressure bearing employed in the present embodiment, and the static pressure bearing 6 2 is a tilt support surface 2 OA, 20 B of the swash plate support 20 and a leg portion 2 of the swash plate 2 1 It is provided between 1 A and 2 1 B. Here, in the hydrostatic bearing 6 2, pressure oil is led from the pair of supply and discharge passages 12 A and 12 B in substantially the same manner as the hydrostatic bearing 2 2 described in the first embodiment. According to the tilt support surface 20 A separation force (hydraulic force) is generated between A and 20 B and the legs 21 A and 2 IB, and the contact surface between the two is maintained in a lubricated state.
しかし、 この場合の静圧軸受 6 2 は、 図 1 5、 図 1 6 に示す如く斜板 2 1 の貫通穴 2 1 Dに近い位置で一方の 脚部 2 1 Aの凸湾曲面側に 5又けられた第 1 の主静圧軸受 部 6 2 Aと、 貫通穴 2 1 Dに近い位置で他方の脚部 2 1 However, as shown in Fig. 15 and Fig. 16 in this case, the hydrostatic bearing 6 2 is located on the convex curved surface side of one leg 21 A at a position close to the through hole 21 D of the swash plate 21 The first main static pressure bearing part 6 2 A which is also formed, and the other leg 2 1 at a position close to the through hole 2 1 D
Bの凸湾曲面側に設けられた第 2の主静圧軸受部 6 2 B と 、 該第 2 の主静圧軸受部 6 2 Bから脚部 2 1 Bの周方 向に離間して脚部 2 1 Bの凸湾曲面側に設けられた 2個 の第 1 の補助静圧軸受部 6 2 C , 6 2 Cと、 第 1 の主静 圧軸受部 6 2 Aから脚部 2 1 Bの周方向に離間.して脚部A second main static pressure bearing portion 6 2 B provided on the convex curved surface side of B and a leg spaced from the second main static pressure bearing portion 6 2 B in the circumferential direction of the leg portion 2 1 B Two first auxiliary static pressure bearing portions 6 2 C, 6 2 C and a first main static pressure bearing portion 6 2 A to a leg portion 2 1 B provided on the convex curved surface side of the portion 21 B. Spaced apart in the circumferential direction of the legs
2 1 Aの凸湾曲面側に設けられた 2個の第 2の補助静圧 軸受部 6 2 D, 6 2 Dとによ り構成されている , 2 second auxiliary static pressure bearing portions 6 2 D and 6 2 D provided on the convex curved surface side of 21 A,
そして 、 第 1 , 第 2の主静圧軸受部 6 2 A, 6 2 Bは 図 1 5 に示すよう に脚部 2 1 A , 2 1 Bの凸湾曲面に沿 つて矢示 A , B方向に延びる凹溝として形成され、 その 平面形状は図 1 6 に示す如く長方形状をなしている。 ま た、 第 1 の補助静圧軸受部 6 2 C, 6 2 Cは、 脚部 2 1 Bの凸湾曲面に沿って第 2 の主静圧軸受部 6 2 Bを周方 向の両側から挟むよう に配置され、 それぞれが脚部 2 1 Bの凸湾曲面上で左, 右方向に細く延びる長円形状の凹 溝と して形成されている。  The first and second main static pressure bearings 6 2 A and 6 2 B are shown by arrows in the directions A and B along the convexly curved surfaces of the legs 2 1 A and 2 1 B as shown in FIG. The planar shape is rectangular as shown in FIG. 16. Also, the first auxiliary static pressure bearing portions 6 2 C and 6 2 C are formed from the both sides of the second main static pressure bearing portion 6 2 B along the convex curved surface of the leg portion 2 1 B in the circumferential direction. They are disposed so as to be sandwiched, and are formed as oval-shaped concave grooves which thinly extend in the left and right directions on the convex curved surface of the legs 21 B.
また、 第 2の.補助静圧軸受部 6 2 D , 6 2 Dは、 脚部 2 1 Aの凸湾曲面に沿って第 1 の主静圧軸受部 6 2 Aを 周方向の両側から挟むよう に配置され、 それぞれが脚部 2 1 Aの凸湾曲面上で左, 右方向に細く延びる長円形状 の凹溝として形成されている。  In addition, the second auxiliary static pressure bearing portions 6 2 D and 6 2 D sandwich the first main static pressure bearing portion 6 2 A from both sides in the circumferential direction along the convexly curved surface of the leg portion 2 1 A As shown, each is formed as an oval-shaped concave groove which thins in the left and right directions on the convex curved surface of the leg 21A.
また、 これらの静圧軸受部 6 2 A〜 6 2 Dのうち第 1 の主静圧軸受部 6 2 Aと第 1 の補助静圧軸受部 6 2 C ,Also, the first of these hydrostatic bearings 62 A to 62 D Main static pressure bearing portion 6 2 A and the first auxiliary static pressure bearing portion 6 2 C,
6 2 C とは 後述の導油路 6 4 を介して一方の給排通路What is 6 2 C? One water supply and discharge passage via the oil guiding passage 6 4 described later
1 2 Aに接 Ireされている。 また、 第 2 の主静圧軸受部 6It is connected to 1 2 A. Also, the second main static pressure bearing 6
2 B と第 2 の補助静圧軸受部 6 2 D , 6 2 Dとは、 後述 の導油路 6 5 を介して他方の給排通路 1 2 Bに接続され るものである 2 B and the second auxiliary static pressure bearing portion 6 2 D, 6 2 D are connected to the other water supply and discharge passage 1 2 B via an oil passage 6 5 described later.
そして、 第 1 の主静圧軸受部 6 2 Aは、 貫通穴 2 1 D の径方向一側 (図 1 6 中の右側) で斜板 2 1 が各ピス ト ン 1 6 カゝら受ける油圧反力の合力作用点 k 1に近い位置 に配置されている。 また、 第 2 の主静圧軸受部 6 2 Bは、 貫通穴 2 1 Dの径方向他側 (図 1 6 中の左側) で斜板 2 And, the first main static pressure bearing portion 62 A is a hydraulic pressure that the swash plate 21 receives each piston 1 6 on one side in the radial direction of the through hole 21 D (right side in FIG. 16). It is placed at a position close to the resultant force action point k 1 of the reaction force. Also, the second main static pressure bearing portion 6 2 B is a swash plate 2 on the other side (left side in FIG. 1 6) of the through hole 2 1 D in the radial direction.
1 が各ビス 卜 ン 1 6 から受ける油圧反力の合力作用点 kReaction force acting point k of hydraulic reaction force that 1 receives from each screw 1 6
2\こ近い位置に配置されている。 It is located near 2 \.
なお、 本実施の形態にあっても、 主静圧軸受部 6 2 A , Even in the present embodiment, the main static pressure bearing portion 6 2 A,
6 2 B、 補助静圧軸受部 6 2 C , 6 2 Dの有効軸受面積 は 、 第 1 の実施の形態で述べた主静圧軸受部 2 2 A, 26 2 B, the effective bearing area of the auxiliary static pressure bearing portion 6 2 C, 6 2 D is the main static pressure bearing portion 2 2 A, 2 described in the first embodiment.
2 B、 補助静圧軸受部 2 2 C , 2 2 D とほぼ同様の面積 に設定されるものである 2 B, It is set to the area almost the same as the auxiliary static pressure bearings 2 2 C and 2 2 D
6 3 A , 6 3 Bは斜板 2 1 の脚部 2 1 A , 2 1 Bに設 けられた第 1 , 第 2 の滑り軸受部で 、 該第 1 , 第 2 の滑 り軸受部 6 3 A, 6 3 Bは、 第 1 の実施の形態で述べた 滑り軸受部 2 3 A , 2 3 B とほぼ同 に構成されている。  Reference numerals 6 3 A and 6 3 B denote first and second slide bearings provided on the legs 2 1 A and 2 1 B of the swash plate 2 1, and the first and second slide bearings 6 3A and 6 3 B are configured substantially the same as the slide bearing portions 2 3 A and 2 3 B described in the first embodiment.
6 4 は静圧軸受 6 2 の静圧軸受部 6 2 A , 6 2 C に圧 油を導く ための導油路、 6 5 は静圧軸受 6 2 の静圧軸受 部 6 2 B, 6 2 Dに圧油を導く他の導油路を示している。 しれらの導油路 6 4 , 6 5 は、 図 1 4ないし図 1 6 に示 すよう に静圧軸受部 6 2 A〜 6 2 Dを一対の給排通路 1 6 4 is an oil passage for introducing pressure oil to the static pressure bearing portion 6 2 A, 6 2 C of the static pressure bearing 6 2, and 6 5 is a static pressure bearing portion 6 2 B, 6 2 of the static pressure bearing 6 2 The other oil introduction channel which leads pressure oil to D is shown. As shown in Fig. 1 4 to Fig. 1 6, static electricity bearings 6 2 A to 6 2 D are connected to a pair of water supply and discharge passages 1.
2 A , 1 2 B に接続するものである そして、 一方の導 油路 6 4 は、 一方の給排通路 1 2 Aと主静圧軸受部 6 2 A、 補助静圧軸受部 6 2 C との間に設けられている。 ま た、 他方の導油路 6 5 は、 他方の給排通路 1 2 B と主静 圧軸受部 6 2 B、 補助静圧軸受部 6 2 Dとの間に設けら れている。 2 A and 1 2 B are connected to each other, and one of the oil passages 64 is one of the supply and discharge passages 12 A and the main static pressure bearing portion 62. A, It is provided between the auxiliary static pressure bearing portion 6 2 C. The other oil guiding passage 65 is provided between the other water supply and discharge passage 12 B, the main static pressure bearing portion 62 B, and the auxiliary static pressure bearing portion 62 D.
こで 、 一方の導油路 6 4 は 側が給排通路 1 2 A に連通し他側が第 1 の主静圧軸受部 6 2 Aに向けて延び た第 1 の油路 6 4 A (図 1 4参昭) と 斜板 2 1 内に穿 設された第 2 の油路 6 4 B 第 3 の油路 6 4 Cおよび第 Here, one oil passage 64 is in communication with the supply / discharge passage 12 A on the side, and the first oil passage 64 A extends on the other side to the first main static pressure bearing portion 62 A (Fig. 1 4) and 2nd oil passage 6 4 B 3rd oil passage 6 4 C and the second oil passage drilled in the swash plate 2 1
4の油路 6 4 D 6 4 D とによ り構成されている そし て、 これらの第 2 の油路 6 4 B 、 第 3 の油路 6 4 Cおよ び第 4 の油路 6 4 D , 6 4 Dは 、 第 1 の主静圧軸受部 64 oil passages 6 4 D 6 4 D and these second oil passages 6 4 B, third oil passages 6 4 C and fourth oil passages 6 4 D, 64 D is the first main hydrostatic bearing 6
2 Aを第 1 の補助静圧軸受部 6 2 C 6 2 Cに連 isさせ るものでの 。 2 A is linked to the first auxiliary static pressure bearing portion 6 2 C 6 2 C.
の場合、 第 2 の油路 6 4 Bは、 図 1 5 、 図 1 6 に示 す如 < 一側が第 1 の主静圧軸受部 6 2 A内に開口 し 、 そ の他側は第 3 の油路 6 4 C を介して第 4の油路 6 4 D In this case, the second oil passage 64 B is opened in the first main static pressure bearing portion 62 A at one side as shown in Figs. 15 and 16, and the other side is the third. The fourth oil passage 6 4 D through the oil passage 6 4 C
6 4 Dの 側に連通している そして 第 4の油路 6 4It is in communication with the 4 D side and the 4th oil passage 6 4
D 6 4 Dは、 「 V」 字状をな して互いに分岐し その 先端側が第 1 の補助静圧軸受部 6 2 C 6 2 Cに開口 し ている。 The D 64 D is branched in a “V” shape, and its tip end side is opened to the first auxiliary static pressure bearing portion 6 2 C 6 2 C.
また、 他方の導油路 6 5 は、 図 1 4ない し図 1 6 に示 すよう に 側が給排通路 1 2 B に連通し他側が第 2 の主 静圧軸受部 6 2 Bに向けて延びた第 1 の油路 6 5 Aと、 斜板 2 1 内に穿.設された第 2 の油路 6 5 B、 第 3 の油路 In addition, as shown in Fig.14 and Fig.16, the other oil passage 65 is in fluid communication with the supply and discharge passage 12B on the side and the other side is directed to the second main static pressure bearing portion 62B. The first oil passage 65 A which has been extended, and the second oil passage 65 B which is bored in the swash plate 2 1, the third oil passage
6 5 Cおよび第 4の油路 6 5 D , 6 5 Dとによ Ό構成さ れている 。 そして、 これらの第 2 の油路 6 5 B 第 3 の 油路 6 5 Cおよび第 4 の油路 6 5 D , 6 5 Dは 第 2 の 主静圧軸受部 6 2 Bを補助静圧軸受部 6 2 D , 6 2 Dに 連通させるものである。 この場合、 第 2 の油路 6 5 Bは、 図 1 5、 図 1 6 に示 す如く一側が第 2 の主静圧軸受部 6 2 B内に開口 し、 そ の他側は第 3の油路 6 5 Cを介して第 4の油路 6 5 D , 6 5 Dの一側に連通している。 そして、 第 4の油路 6 5 D , 6 5 Dは、 「 V」 字状をな して互いに分岐し、 その 先端側が第 2の補助静圧軸受部 6 2 D , 6 2 Dに開口 し ている。 It consists of 6 5 C and the 4th oil passage 6 5 D, 6 5 D. And these second oil passages 65 B third oil passages 65 C and fourth oil passages 65 D, 65 D are auxiliary static pressure bearings for the second main static pressure bearing portion 62 B. It communicates with parts 6 2 D and 6 2 D. In this case, one side of the second oil passage 65 B opens into the second main static pressure bearing portion 62 B as shown in FIGS. 15 and 16, and the other side is the third one. It is in communication with one side of the fourth oil passage 65 D, 65 D via an oil passage 65 C. And, the fourth oil passages 6 5 D, 6 5 D are branched in a “V” shape, and the tip end side is opened to the second auxiliary static pressure bearing portion 6 2 D, 6 2 D ing.
6 6 は第 1 の油路 6 4 Aの途中に設けられた絞 Ό、 6 6 6 is a diaphragm provided in the middle of the first oil passage 6 4 A, 6
7 は第 1 の油路 6 5 Aの途中に設けられた他の絞り を示 している。 これらの絞り 6 6, 6 7 のうち一方の絞り 67 shows another throttle provided in the middle of the first oil passage 65A. One of these apertures 6, 6 7 6
6 は 、 図 1 4に示す如く給排通路 1 2 Aから第 1 の主静 圧軸受部 6 2 Aに供給する圧油量を、 その絞り 径 (孔 径) に応じて調整するものである。 また、 他方の絞り 66 is to adjust the amount of pressure oil supplied from the supply and discharge passage 12 A to the first main static pressure bearing 6 2 A as shown in FIG. 14 in accordance with the diameter of the throttle (hole diameter). . Also, the other aperture 6
7 は 、 給排通路 1 2 Bから第 2 の主静圧軸受部 6 2 Bに 供給する圧油量を、 その絞り径 (孔径) に応じて調整す るものである 7 adjusts the amount of pressure oil supplied from the supply and discharge passage 12 B to the second main static pressure bearing portion 6 2 B in accordance with the diameter of the throttle (hole diameter).
この場 α 一方の絞り 6 6 は、 第 1 の主静圧軸受部 6 In this case α one throttle 6 6 is the first main static pressure bearing 6
2 Aと第 1 の補助静圧軸受部 6 2 C 6 2 Cとに供給す る圧油量を共通して調整するものである。 また、 他方の 絞り 6 7 は 第 2 の主静圧軸受部 6 2 B と第 2の補助静 圧軸受部 6 2 D , 6 2 Dとに供給する圧油量を共通して 調整するものである。 The amount of pressure oil supplied to 2A and the first auxiliary static pressure bearing portion 6 2 C 6 2 C is adjusted in common. The other throttle 6 7 is used to adjust the amount of pressure oil supplied to the second main static pressure bearing portion 62 B and the second auxiliary static pressure bearing portion 6 2 D, 6 2 D in common. is there.
かく して 、 このよラ に構成される本実施の形態でも、 斜板 2 1 の傾転,動作を安定させる とができ、 前記第 1 の実施の形態とほぼ同 の作用効果を得る ことができる しかし 、 本実施の形態にあっては 、 斜板 2 1 内に油路 Thus, even in the present embodiment configured as described above, it is possible to stabilize the tilt and movement of the swash plate 21 and to obtain substantially the same effect as that of the first embodiment. However, in the present embodiment, the oil passage in the swash plate 2 1
6 4 A 6 4 D、 油路 6 5 B〜 6 5 Dを設ける構成と し ている のため 、 ケ一シング 1 1 および斜板支持体 26 4 A 6 4 D, oil passages 6 5 B to 6 5 D are provided, so casing 1 1 and swash plate support 2
0 に設ける第 1 の油路 6 4 A , 6 5 Aの管路構造を簡素 化する ことができ、 製作、 加工時等の作業性を向上する ことがでさる Simplified the pipeline structure of the first oil passage 6 4 A, 65 A provided at 0 Can improve the workability at the time of production, processing, etc.
.、■/一  ., ■ / 1
なお、 刖記第 1 の実施の形態では 、 斜板 2 1 の脚部 2 In the first embodiment, the legs 2 of the swash plate 2 1 are used.
1 A, 2 1 B に主静圧軸受部 2 2 A , 2 2 B と補助静圧 軸受部 2 2 C 2 2 Dを設けた場 α を例に挙げて説明し た。 しかし 本発明はこれに限らず 、 第 1 第 2 の主静 圧軸受部と第 1 , 第 2 の補助静圧軸受部とを 、 例えば斜 板支持体 2 0 の傾転支持面 2 0 A 2 0 B に設ける構成 としてもよい The case where main static pressure bearings 2 2 A and 2 2 B and auxiliary static pressure bearings 2 2 C 2 2 D are provided in 1 A and 2 1 B has been described by way of example α. However, the present invention is not limited to this, and the first and second main static pressure bearing portions and the first and second auxiliary static pressure bearing portions may be used, for example, the tilt bearing surface 2 0 A 2 of the swash plate support 20. It may be provided at 0 B
また、 第 1 , 第 2 の主静圧軸 部と第 1 第 2 の補助 静圧軸受部とを、 斜板支持体 2 0 の傾転支持面 2 0 A, In addition, the first and second main static pressure shaft portions and the first and second auxiliary static pressure bearing portions are the tilt support surface 20 0 A, of the swash plate support 20.
2 0 B と斜板 2 1 の脚部 2 1 A , 2 1 B との双方にわた て設ける構成と してもよい。 そして、 この点は 、 第 2 の実施の形態についても同様である。 It may be configured to be provided over both of 20 B and the legs 21 A and 21 B of the swash plate 21. And this point is the same as in the second embodiment.
また、 刖 第 1 の実施の形態では、 斜板 2 1 の傾転動 作に追従させてレギユ レ一夕 3 4 をフィ 一 ドバック制御 するフィ ー ド ^ック機構 4 0 の変換部 4 1 を、 力ム溝 4 Also, in the first embodiment, the feedback unit of feedback mechanism 40 that performs feedback control of the regu- lation track 34 by following the tilting operation of the swash plate 21 in the first embodiment. The force groove 4
2 とカムフォ ロア 4 3 とによ り構成する場合を例に挙げ て説明した。 しかし、 本発明はこれに限る ものではなく フイ ー ドバック機構の変換部を 、 力ム以外の機構を用い て構成してもよいものである。 The case where it is configured by 2 and the cam follower 4 3 has been described as an example. However, the present invention is not limited to this, and the conversion unit of the feedback mechanism may be configured using a mechanism other than the feedback mechanism.
また、 刖 各実施の形態では 、 外部の指令手段と して 走行操作弁 5 2 を用い、 走行べダル 5 2 Aの踏込み操作 量に対応したパ.ィ ロ ッ ト圧を指令信号と してレギュ レ一 夕 3 4 に供給する場合を例に挙げて説明した。 しかし、 本発明はこれに限るものではなく 、 例えばレギュ レ一夕 In each of the embodiments, the travel control valve 52 is used as an external command means, and a pilot pressure corresponding to the amount of stepping operation of the travel pedal 52 A is used as a command signal. The case of supply to the regulator was described as an example. However, the present invention is not limited to this.
3 4 の油圧パイ 口 ッ ト部 3 8 を電磁比例ソ レノィ H等に よ り構成し、 外部の指令手段からは走行べダル 5 2 Aの 踏込み操作量に対応した電気信号を指令信号と して出力 する構成としてもよい。 3 4 hydraulic piping section 3 8 is composed of electromagnetic proportional solenoid H etc. From the external command means, an electric signal corresponding to the amount of stepping operation of the traveling pedal 5 2 A is used as the command signal. Output It may be configured to
また、 前記各実施の形態では、 可変容量型の斜板式油 圧ポンプ 1, 6 1 を、 例えばホイールローダ等のホイ一 ル式作業車両における走行用油圧回路に適用 した場合を 例に挙げて説明した。 しかし、 本発明は、 走行用の油圧 回路に限らず、 例えば旋回用の油圧回路等、 種々の用途 の油圧閉回路にも適用できるものである。  In each of the above-described embodiments, the case where the variable displacement swash plate type hydraulic pressure pumps 1 and 6 1 are applied to a traveling hydraulic circuit in a wheeled work vehicle such as a wheel loader is described as an example. did. However, the present invention is applicable not only to the hydraulic circuit for traveling but also to a hydraulic closed circuit for various applications such as a hydraulic circuit for turning, for example.
また、 前記各実施の形態では、 可変容量型斜板式液圧 回転機を斜板式油圧ポンプ 1, 6 1 に適用 した場合を例 に挙げて説明した。 しかし、 本発明の適用対象は可変容 量型の斜板式油圧ポンプに限らず、 例えば可変容量型の 斜板式油圧モータ等に適用してもよいものである。  Further, in each of the above-described embodiments, the case where the variable displacement swash plate type hydraulic fluid rotating machine is applied to the swash plate type hydraulic pump 1 or 6 1 has been described as an example. However, the application object of the present invention is not limited to the variable displacement swash plate type hydraulic pump, and may be applied to, for example, a variable displacement swash plate type hydraulic motor and the like.
また、 本発明の適用される作業車両と してはホイール ローダに限らず、 例えばホイール式油圧ショ ベル、 ホイ —ル式油圧ク レーン、 ブル ドーザ、 またはリ フ ト ト ラ ッ ク と呼ばれる作業車両、 またはク ローラ式油圧ショ ベル 等の作業車両にも適用できるものである。  Further, the working vehicle to which the present invention is applied is not limited to the wheel loader. For example, a working vehicle called a wheel hydraulic shovel, a wheel hydraulic crane, a bulldozer, or a lift truck It can also be applied to work vehicles such as crawler hydraulic hydraulic shovels.

Claims

1 . 一側に斜板支持部が設けられ他側に一対の給排通 路が設けられた筒状のケーシングと、 該ケーシングに回 転可能に設けられた回転軸と、 該回転軸と一体に回転す るよう に前記ケ一シング内に設けられ周方向に離間して 軸方向に延びる複数のシリ ンダを有したシリ ンダブ口 ッ 請 1. A cylindrical casing provided with a swash plate support on one side and a pair of supply and discharge passages on the other side, a rotary shaft rotatably provided on the casing, and an integral body with the rotary shaft The cylinder has a plurality of cylinders which are provided in the casing so as to rotate in the circumferential direction and which are axially spaced apart in the circumferential direction.
ク と、 該シリ ンダブロッ クの各シリ ンダに往復動可能に 揷嵌された複数のピス ト ンと、 前記各シリ ンダから突出 する該各ビス ト ンの突出端の側に装着された複数のシユ ー と、 表面側が該各シユ ーを摺動可能に案内する平滑面と なり裏面側が一対の脚部となって前記斜板支持部に傾転 囲 A plurality of pistons reciprocably fitted to each cylinder of the cylinder block, and a plurality of pistons mounted on the side of the projecting end of each of the pistons projecting from each of the cylinders. The surface side is a smooth surface for slidably guiding each of the shells, and the back side is a pair of leg portions.
可能に支持される斜板と、 前記ケ一シングに設けられ外 部から傾転制御圧が給排される ことによ り該斜板を傾転 駆動する傾転ァクチユエ一夕 と、 前記斜板の各脚部と前 記斜板支持部との間に設けられ前記給排通路に連通して 両者の接触面を潤滑状態に保持する静圧軸受とを備えて なる可変容量型斜板式液圧回転機において、 A swash plate capable of being supported; a tilt control system for driving the swash plate by driving the swash plate by being provided and discharged from an outer part of the casing; and the swash plate A variable displacement swash plate type fluid pressure provided between each leg of the swash plate and the swash plate supporting portion and having a hydrostatic bearing communicating with the supply and discharge passage to keep the contact surfaces of the two in a lubricated state In the rotating machine,
前記静圧軸受は 、 前記一対の脚部のうち一方の脚部側 に設けられた第 1 の主静圧軸受部と 、 対の脚部の うち他方の脚部側に設けられた第 2 の主静圧軸受部と、 該第 2 の主静圧軸受部から離間.して前記他方の脚部側に 設けられた第 1 の補助静圧軸受部と 、 前記第 1 の主静圧 軸受部から離間して前記一方の脚部側に設けられた第 2 の補助静圧軸受部とによ り構成したこ とを特徵とする可 変容量型斜板式液圧回転機。  The static pressure bearing includes a first main static pressure bearing portion provided on one leg side of the pair of legs and a second main static pressure bearing portion provided on the other leg side of the pair of legs. A main static pressure bearing portion, a first auxiliary static pressure bearing portion separated from the second main static pressure bearing portion and provided on the other leg side, and the first main static pressure bearing portion What is claimed is: 1. A variable displacement swash plate type hydraulic rotating machine characterized by comprising: a second auxiliary static pressure bearing portion provided on the side of the one leg portion apart from the second leg.
2 . 前記第 1 の主静圧軸受部は 、 記回転軸の径方向 一側で前記斜板が各ビス ト ンから受ける油圧反力の合力 作用点に近い位置に配置し 、 Wi §己第 2 の主静圧軸受部は、 前記回転軸の径方向他側で前記斜板が各ビス ト ンから受 ける油圧反力の合力作用点に近い位置に配置する構成と してなる請求項 1 に記載の可変容量型斜板式液圧回転機。 2. The first main static pressure bearing portion is disposed at a position close to the combined force action point of the hydraulic reaction force received by the swash plate from each screw at one side in the radial direction of the rotation shaft, and The main hydrostatic bearing of 2 is The variable displacement swash plate type liquid according to claim 1, wherein the swash plate is disposed at a position near the resultant force application point of the hydraulic reaction force received from each screw on the other side in the radial direction of the rotary shaft. Pressure rotary machine.
3 . 前記斜板には一対の脚部間に位置して前記回転軸 が隙間をもって揷通される貫通穴を設け、 前記第 1 , 第 2 の主静圧軸受部は、 前記第 1 , 第 2 の補助静圧軸受部 よ り ち 穴に近い位置に配置されると共に該第 1 , 第 2 の補助静庄軸受部よ り も大なる有効軸受面積を有す る構成と してなる請求項 1 に記載の可変容量型斜板式液 圧回転 Τ¾ ο 3. The swash plate is provided with a through hole located between a pair of legs and through which the rotary shaft is inserted with a gap, and the first and second main hydrostatic bearings include the first, second and third main static pressure bearings. The second invention is characterized in that it is disposed at a position closer to the hole than the auxiliary static pressure bearing section 2 and has an effective bearing area larger than that of the first and second auxiliary static bearing sections. Variable displacement swash plate type liquid pressure rotation 記載 3⁄4 ο described in 1
4 • 刖記一対の脚部には、 前記第 1 , 第 2 の主静圧軸 受部および第 1 第 2 の補助静圧軸受部よ Ό ち前記回転 軸から径方向に離れた位置に第 1 第 2 の滑 軸受部を ける構成と してな SH求項 1 に記載の可変容量型斜板 式液圧回転機。  4 • The pair of legs has the first and second main static pressure bearing portions and the first and second auxiliary static pressure bearing portions at positions radially away from the rotation axis. 1 A variable displacement swash plate type hydraulic rotating machine according to SH claim 1 which is configured to have a second slide bearing portion.
5 • 前記第 1 の主静圧軸受部と第 1 の補助静圧軸受部 とは、 前記各給排通路のラち一方の給排通路に油路を介  5 • The first main static pressure bearing portion and the first auxiliary static pressure bearing portion are connected to each other through one oil supply / discharge passage of each of the supply / discharge passages.
 ,
して連通する構成とし 、 Βϋ nd第 2 の主静圧軸受部と第 2 の補助静圧軸受部とは 、 刖記各 口排通路のうち他方の給 排通路に他の油路を介して連通する構成と してなる 求 項 1 に記載の可変容量型斜板式液圧回転機。 The second main static pressure bearing portion and the second auxiliary static pressure bearing portion are in fluid communication with each other through the other oil supply and discharge passages of the respective port discharge passages. The variable displacement swash plate type hydraulic rotating machine according to claim 1, which is configured to communicate with each other.
6 . 前記第 1 の主静圧軸受部と第 1 の補助静圧軸受部 とは、 前記各給排通路のうち一方の給排通路に油路を介  6. The first main static pressure bearing portion and the first auxiliary static pressure bearing portion are connected to each other through an oil passage in one of the supply and discharge passages.
、 '- して連通する構成とし、 該油路の途中には、 刖記第 1 の 主静圧軸受部と第 1 の補助静圧軸受部とに供 aする圧油 量を共通して 整する絞り を設け 、 刖記第 2 の主静圧軸 受部と第 2 の補助静圧軸受部とは 前記各給排通路のう ち他方の給排通路に他の油路を介して連通する構成と し、 該他の油路の途中には、 前記第 2 の主静圧軸受部と第 2 の補助静圧軸受部とに供給する圧油量を共通して調整す る他の絞り を設ける構成と してなる請求項 1 に記載の可 変容量型斜板式液圧回転機。 In the middle of the oil passage, the amount of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion is adjusted in common. The second main static pressure bearing portion and the second auxiliary static pressure bearing portion communicate with each other through the other supply and discharge passages of the respective supply and discharge passages through the other oil passage. In the middle of the other oil passage, the second main static pressure bearing portion and the second The variable displacement swash plate type hydraulic rotating machine according to claim 1, wherein another throttle is provided to commonly adjust the amount of pressure oil supplied to the auxiliary static pressure bearing portion of the second embodiment.
7 . 前記第 1 の主静圧軸受部と第 1 の補助静圧軸受部 とは、 前記各給排通路のうち一方の給排通路に油路を介 して連通する構成とし、 該油路の途中には、 刖記第 1 の 主静圧軸受部と第 1 の補助静圧軸受部とに供糸口する圧油 量を互いに独立して調整する個別絞 Ό を設け 、 HIJ Βΐί第 2 の主静圧軸受部と第 2 の補助静圧軸受部とは 、 前記各給 排通路のう ち他方の給排通路に他の油路を介して連通す る構成と し、 該他の油路の途中には 、 HU目し 2 の主静圧 軸受部と第 2 の補助静圧軸受部とに供給する圧油量を互 いに独立して調整する他の個別絞り を設ける構成と して なる請求項 1 に記載の可変容量型斜板式液圧回転機。  7. The first main static pressure bearing portion and the first auxiliary static pressure bearing portion communicate with one of the supply and discharge passages through the oil passage, the oil passage In the middle of this section, separate throttles are provided to adjust the amount of pressure oil supplied to the first main static pressure bearing section and the first auxiliary static pressure bearing section independently of each other. The main static pressure bearing portion and the second auxiliary static pressure bearing portion communicate with the other of the supply and discharge passages through the other oil passage, and the other oil passage In the middle of the above, another individual throttle is provided to independently adjust the amount of pressure oil supplied to the main static pressure bearing section of the HU eye 2 and the second auxiliary static pressure bearing section. A variable displacement swash plate type hydraulic rotating machine according to claim 1.
8 . 前記第 1 の主静圧軸受部、 第 1 の補助静圧軸受部 と前記一方の給排通路との間には、 一側が該一方の給排 通路に連通し他側が前記各静圧軸受部に向けて延びた共 通油路と、 該共通油路の他側で互いに分岐し前記第 1 の 主静圧軸受部と第 1 の補助静圧軸受部とに個別に接続さ れる分岐油路とを設け 、 前記第 2 の主静圧軸受部、 第 2 の補助静圧軸受部と 記他方の給排通路との間には、 一 側が該他方の給排通路に連通し他側が前記各静圧軸受部 に向けて延びた他の共通油路と、 該共通油路の他側で互 いに分岐し前記第 2 の主静圧軸受部と第 2 の補助静圧軸 受部とに個別に接 feeされる他の分岐油路とを設ける構成 としてなる請求項 1 に記載の可変容量型斜板式液圧回転 機。 8. Between the first main static pressure bearing portion, the first auxiliary static pressure bearing portion and the one supply / discharge passage, one side communicates with the one supply / discharge passage and the other side is each static pressure A common oil passage extending toward the bearing, and a branch branched to each other on the other side of the common oil passage and separately connected to the first main static pressure bearing and the first auxiliary static pressure bearing. An oil passage is provided, and one side communicates with the other supply / discharge passage between the second main static pressure bearing portion, the second auxiliary static pressure bearing portion and the other supply / discharge passage, and the other side is The other common oil passage extending toward each of the static pressure bearing portions, and the second main static pressure bearing portion and the second auxiliary static pressure bearing portion which are branched from each other on the other side of the common oil passage. The variable displacement swash plate type hydraulic rotating machine according to claim 1, wherein another branch oil passage is provided, which is separately connected to the face of the vehicle.
9 . 前記共通油路の途中には 前記一方の給排通路か ら前記第 1 の主静圧軸受部と第 の補助静圧軸受部とに 供給する圧油量を調整する共通絞り を設け、 前記分岐油 路の途中には、 前記第 1 の主静圧軸受部と第 1 の補助静 圧軸受部とに供給する圧油量を互いに独立して調整する 個別絞り をそれぞれ設け、 前記他の共通油路の途中には、 前記他方の給排通路から前記第 2 の主静圧軸受部と第 2 の補助静圧軸受部とに供給する圧油量を調整する他の共 通絞り を設け、 前記他の分岐油路の途中には、 前記第 2 の主静圧軸受部と第 2 の補助静圧軸受部とに供給する圧 油量を互いに独立して調整する他の個別絞り をそれぞれ 設ける構成と してなる請求項 8 に記載の可変容量型斜板 式液圧回転機。 9. In the middle of the common oil passage, from the one supply / discharge passage to the first main static pressure bearing portion and the second auxiliary static pressure bearing portion A common throttle for adjusting the amount of pressure oil supplied is provided, and the amounts of pressure oil supplied to the first main static pressure bearing portion and the first auxiliary static pressure bearing portion are independent of each other in the middle of the branch oil passage. Separate throttles are provided, and are supplied to the second main static pressure bearing portion and the second auxiliary static pressure bearing portion from the other supply / discharge passage in the middle of the other common oil passage. Another common throttle for adjusting the pressure oil amount is provided, and the pressure oil amount supplied to the second main static pressure bearing portion and the second auxiliary static pressure bearing portion in the middle of the other branch oil passage. The variable displacement swash plate type hydraulic rotating machine according to claim 10, wherein other individual throttling means are provided to adjust each independently of each other.
1 0 . 前記斜板は、 前記傾転ァクチユエ一夕によ り傾 転角零の中立位置から正方向と逆方向とに傾転駆動する 構成と してなる請求項 1 に記載の可変容量型斜板式液圧 回転機  1 0. The variable displacement type according to claim 1, wherein the swash plate is configured to be driven to tilt from the neutral position at a tilt angle of zero to a positive direction and a reverse direction according to the tilting angle. Swash plate type hydraulic rotating machine
1 1 . 前記ケーシングには、 制御ス リーブ内にスプ一 ルを有したサ一ポ弁からなり前記傾転ァクチユエ一夕に 給排する前記傾転制御圧を外部からの指令信号に従つて 制御する レギユ レ一夕と、 前記斜板の傾転動作に追従し て該レギユ レ一夕の制御ス リ ーブをフィ ー ドバック制御 するフイ ー ドバック機構とを設け、  1 1. The casing consists of a relief valve with a spring in the control sleeve and controls the displacement control pressure supplied to and discharged from the displacement electrode according to an external command signal. Providing a feedback mechanism for feedback control of the control sleeve of the regi- tal track following the tilting movement of the swash plate;
該フイ ー ドバック機構は、  The feedback mechanism
前記斜板が中立位置にある ときに前記回転軸に沿つた 軸方向一側の初期位置とな り 、■ 前記斜板が正方向または 逆方向に傾転駆動される ときには前記初期位置から軸方 向他側に向けて変位するよう に前記斜板の傾転動作を軸 方向変位に変換して取出す変換部と、  When the swash plate is in the neutral position, it is at the initial position on one side in the axial direction along the rotation axis. When the swash plate is driven in a forward direction or a reverse direction A converting unit for converting the tilting movement of the swash plate into axial displacement so as to displace toward the other side;
該変換部と前記レギユ レ一夕の制御ス リ ーブとの間に 設けられ該変換部で取出した軸方向変位を前記レギュ レ —夕の制御ス リ ーブに伝える変位伝達部とによ り構成し てなる請求項 9 に記載の可変容量型斜板式液圧回転機。 An axial displacement provided between the converting portion and the control sleeve of the regu 10. The variable displacement swash plate type hydraulic rotating machine according to claim 9, which is constituted by a displacement transmitting unit for transmitting to a control slip in the evening.
PCT/JP2005/009503 2004-06-09 2005-05-18 Variable displacement swash plate-type hydraulic rotating machine WO2005121554A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05743472A EP1760313A1 (en) 2004-06-09 2005-05-18 Variable displacement swash plate-type hydraulic rotating machine
US10/588,497 US20070180986A1 (en) 2004-06-09 2005-05-18 Swash plate type variable displacement hydraulic rotary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004171483A JP2005351140A (en) 2004-06-09 2004-06-09 Variable displacement type swash plate system hydraulic rotating machine
JP2004-171483 2004-06-09

Publications (1)

Publication Number Publication Date
WO2005121554A1 true WO2005121554A1 (en) 2005-12-22

Family

ID=35503123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009503 WO2005121554A1 (en) 2004-06-09 2005-05-18 Variable displacement swash plate-type hydraulic rotating machine

Country Status (4)

Country Link
US (1) US20070180986A1 (en)
EP (1) EP1760313A1 (en)
JP (1) JP2005351140A (en)
WO (1) WO2005121554A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777411B2 (en) * 2011-06-01 2015-09-09 油研工業株式会社 Bi-directional rotary type axial piston pump
CN103982387B (en) * 2014-05-08 2016-03-02 西安交通大学 A kind of end cam drive-type axial piston pump adopting rotary window to join oil
JP6495018B2 (en) * 2015-01-20 2019-04-03 日立建機株式会社 Variable displacement swash plate hydraulic pump
JP6206513B2 (en) * 2016-01-14 2017-10-04 株式会社豊田自動織機 Variable displacement swash plate type piston pump
JP7373271B2 (en) * 2018-08-31 2023-11-02 ナブテスコ株式会社 hydraulic system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447152B2 (en) * 1983-01-27 1992-08-03 Linde Ag
JPH08200208A (en) * 1995-01-30 1996-08-06 Hitachi Constr Mach Co Ltd Swash plate type piston pump motor device
JPH11351134A (en) * 1998-06-12 1999-12-21 Hitachi Constr Mach Co Ltd Variable displacement swash plate type hydraulic pump
JP2000205119A (en) * 1999-01-11 2000-07-25 Kayaba Ind Co Ltd Swash plate type piston pump motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761414B1 (en) * 1997-02-25 2002-09-06 Linde Ag ADJUSTMENT SYSTEM FOR A VOLUMETRIC HYDROSTATIC UNIT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447152B2 (en) * 1983-01-27 1992-08-03 Linde Ag
JPH08200208A (en) * 1995-01-30 1996-08-06 Hitachi Constr Mach Co Ltd Swash plate type piston pump motor device
JPH11351134A (en) * 1998-06-12 1999-12-21 Hitachi Constr Mach Co Ltd Variable displacement swash plate type hydraulic pump
JP2000205119A (en) * 1999-01-11 2000-07-25 Kayaba Ind Co Ltd Swash plate type piston pump motor

Also Published As

Publication number Publication date
EP1760313A1 (en) 2007-03-07
JP2005351140A (en) 2005-12-22
US20070180986A1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
WO2005121554A1 (en) Variable displacement swash plate-type hydraulic rotating machine
KR20120062613A (en) Hydraulically-powered working vehicle
JP2010255244A (en) Hydraulic drive device for working machine
KR20190132213A (en) Hydraulic pump
JP4460539B2 (en) Combined pump equipment
KR20120062612A (en) Pump unit
JP4308205B2 (en) Tilt control device for variable displacement hydraulic pump
JPH11280659A (en) Device and method for combining and linking multiple open circuit pumps
US20150240636A1 (en) Opposed swash plate type fluid pressure rotating machine
US20230136445A1 (en) Servoless motor
KR101123040B1 (en) Industrial electro hydraulic actuator system with single-rod double acting cylinder
KR100773987B1 (en) Swashplate type axial piston hydraulic pump with two pumps
KR101596560B1 (en) Servo regulator
JP2013221458A (en) Hydraulic pressure rotary machine
KR101837812B1 (en) Tilting actuator of swash plate and hydraulic power generation machine having the same
WO2017169550A1 (en) Tilt control device and hydraulic rotation device including same
JP2005201076A (en) Tilt-rotation control device of variable displacement hydraulic pump
JP2005201301A (en) Inclining and rolling controller of variable displacement hydraulic pump
JP4222842B2 (en) Cut-off valve with variable cut-off pressure
JPH0253634B2 (en)
KR100773988B1 (en) Swashplate structure of swashplate type axial piston hydraulic pump
JP2012255375A (en) Variable displacement swash plate hydraulic pump
US20040101417A1 (en) Volume control apparatus of radial piston pump or motor and positioning apparatus
JPH10274167A (en) Flow rate control device for volume variable type pump
JP4628568B2 (en) Transmission using hydraulic motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10588497

Country of ref document: US

Ref document number: 2007180986

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005743472

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005743472

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10588497

Country of ref document: US