組換えェンテロ トキシン Cおよびこれを用いたワ クチン Recombinant enterotoxin C and vaccine using it
技術分野 Technical field
本発明は、 無毒化されたタンパク質性ワ クチンに関し、 さ らに詳 しく は、 黄色ブ ドウ球菌 (Staphylococcus aureus) のェンテ ロ ト 明 The present invention relates to detoxified proteinaceous vaccines, and more particularly to enterotrophy of Staphylococcus aureus.
キシン (enterotoxin) Cの無毒性変異体、 及び当該変異体タ ンパ ク質を含んで成るワ クチンに関する。 The present invention relates to a non-toxic mutant of enterotoxin C, and a vaccine comprising the mutant protein.
書 背景技術 Background art
黄色ブ ドウ球菌 (Staphylococcus aureus) 、 特にメチシリ ン耐 性黄色ブ ドウ球菌 (MRSA) は、 病院感染及び日和見感染の重要な病 原菌である。 また、 生活習慣病のリ スクを上昇させる一因となって いる。 MRSAは生体表層部及び深部において常在性を示し、 他の多く の病原性細菌と比べて、 宿主感染防御が有効に働かず、 特に糖尿病 患者および高齢者において慢性化 · 反復感染しやすい。 MRSAに対す る治療のために抗生物質が使用されているが、 近年、 多剤耐性菌株 が続出し、 MRSAに対する治療はますます困難になっている。 Staphylococcus aureus, especially methicillin-resistant Staphylococcus aureus (MRSA), is an important pathogen of hospital and opportunistic infections. It also contributes to increasing the risk of lifestyle-related diseases. MRSA is resident in the surface and deep parts of living organisms, does not provide effective protection against host infection, and is more susceptible to chronic and recurrent infections, especially in diabetic patients and the elderly, than many other pathogenic bacteria. Antibiotics have been used to treat MRSA, but in recent years multidrug-resistant strains have emerged, making treatment for MRSA increasingly difficult.
これまで、 ブ ドウ球菌感染に対するワ クチンの開発については、 死菌ワ クチン、 トキソィ ドワクチン、 莢膜ワクチンなどについて研 究が行なわれてきた。 しかしながら、 死菌ワ クチンは十分な獲得防 御免疫を誘導せず、 トキソィ ドワクチンは化学的不活性化工程を介 して調製されるため生成物の特徴付けが困難である。 不活性化され た毒素は活性をもつ毒素に戻る可能性が否定できない。 また、 トキ ソィ ドの調製に使用する野生型毒素をブ ドウ球菌から精製するのは 非常に煩雑であり 、 収量が低く 、 そのう え、 不活性化のために使用
される化学物質の多く が毒性を示す。 これらの理由から、 今までの 研究は満足な成果が得られず、 ブ ドウ球菌に対するワクチンはまだ 、 実用化されていない。 So far, studies on vaccines against B. aureus infection have been conducted on killed bacterial vaccines, toxoid vaccines, and capsular vaccines. However, killed bacterial vaccines do not induce sufficient acquired protective immunity, and toxoid vaccines are prepared via a chemical inactivation step, making product characterization difficult. It is undeniable that inactivated toxins may revert to active toxins. Also, the purification of wild-type toxin used for the preparation of toxoid from Staphylococcus aureus is very complicated, the yield is low, and it is used for inactivation. Many of the chemicals used are toxic. For these reasons, previous studies have not yielded satisfactory results and vaccines against B. aureus have not yet been put to practical use.
黄色ブ ドウ球菌が産生する菌体外タンパク質毒素であるェンテロ トキシンはスーパー抗原活性を有し、 重要な病原因子であるこ とが 知られている。 黄色ブ ドウ球菌が産生するスーパー抗原は、 食中毒 、 毒素性ショ ック症候群、 炎症性疾患である川崎病症候群と関連が あるこ とが知られている。 MRSAの病院感染、 ゥシ乳房炎等の動物感 染症に対する無毒 · 安全なワ クチンの開発が、 特に臨床及び食料品 の生産現場において求められている。 Enterotoxin, an extracellular protein toxin produced by Staphylococcus aureus, has superantigenic activity and is known to be an important virulence factor. The superantigen produced by Staphylococcus aureus is known to be associated with food poisoning, toxic shock syndrome, and Kawasaki disease syndrome, which is an inflammatory disease. There is a need for the development of non-toxic and safe vaccines against animal infections such as hospital-acquired MRSA infections and pest mastitis, especially in clinical and food production sites.
しかしながら、 スーパ一抗原活性の喪失によ り上記の毒性を有さ ず、 且つブ ドウ球菌に対する免疫原性を十分に維持しているワクチ ンは知られていない。 発明の開示 However, there is no known vaccine which does not have the above-mentioned toxicity due to the loss of superantigen activity and sufficiently maintains immunogenicity against B. aureus. Disclosure of the invention
従って、 本発明は、 スーパー抗原活性の喪失によ り上記の毒性を 有さず、 且つブ ドウ球菌に対する免疫原性を十分に維持しているヮ クチンを提供しよ う とするものである。 課題を解決するための手段 Therefore, an object of the present invention is to provide an actin which does not have the above-mentioned toxicity due to the loss of superantigen activity and which sufficiently maintains immunogenicity against B. aureus. Means for solving the problem
本発明者は、 上記の課題を解決すべく種々検討の結果、 黄色ブ ド ゥ球菌のェンテロ トキシン Cの T細胞受容体結合部位および主要組 織適合性抗原複合体 (MHC) ク ラス I I結合部位に変異を導入するこ とによ りスーパー抗原活性を欠損または低下せしめるこ どが出来、 これによ りェンテロ トキシン Cの免疫原性を維持しながら、 ェンテ 口 トキシン Cの毒性を低減せしめるこ とが出来るこ とを見出し、 本 発明を完成した。
従って、 本発明は、 黄色ブ ドウ球菌 (Staphylococcus aureus) ェンテロ トキシン (enterotoxin) Cの変異体であって、 T一細胞 受容体結合部位及び主要組織適合性抗原ク ラス II結合部位に変異を 有し、 これによ りスーパ一抗原活性を欠損しており 、 且つェンテロ トキシン Cの免疫原性を維持しているタンパク質を提供する。 この よ うなタンパク質の具体例と して、 配列番号 : 1 に示すアミ ノ酸配 列を有するブ ドウ球菌のェンテロ トキシン Cの 23位の Asp及び 94位 の Tyrが他のアミ ノ酸によ り置換されており、 これによ りスーパ一 抗原活性を欠損しており、 且つェンテロ トキシン Cの免疫原性を維 持しているタンパク質が挙げられる。 As a result of various studies to solve the above problems, the present inventors have found that the T cell receptor binding site of enterotoxin C of Staphylococcus aureus and the major tissue-compatible antigen complex (MHC) class II binding site Introducing a mutation into the gene can result in loss or reduction of superantigen activity, thereby reducing the toxicity of enterotoxin C while maintaining the immunogenicity of enterotoxin C. And found that the present invention was completed. Therefore, the present invention relates to a mutant of Staphylococcus aureus enterotoxin C, which has a mutation in the T-cell receptor binding site and the major histocompatibility class II binding site. This provides a protein deficient in superantigen activity and maintaining the immunogenicity of enterotoxin C. As a specific example of such a protein, Asp at position 23 and Tyr at position 94 of enterotoxin C of the staphylococcus aureus having the amino acid sequence shown in SEQ ID NO: 1 are caused by another amino acid. Such proteins include those that have been substituted, thereby deficient in superantigen activity, and maintain the immunogenicity of enterotoxin C.
よ り具体的な例と して、 本発明は、 配列番号 : 2に示すァミ ノ酸 配列を有するブ ドウ球菌のェンテロ トキシン Cの 23位の Aspが Alaに よ り置換されており 、 且つ 94位の Tyrが Alaによ り置換されているェ ンテロ トキシン C免疫原性タンパク質を提供する。 As a more specific example, the present invention provides an amino acid sequence represented by SEQ ID NO: 2, wherein Asp at position 23 of enterotoxin C of Staphylococcus aureus is substituted with Ala; It provides an enterotoxin C immunogenic protein in which Tyr at position 94 has been replaced by Ala.
本発明は更に、 上記のタンパク質を含んで成るブ ドウ球菌に対す るワクチンを提供する。 The present invention further provides a vaccine against B. aureus comprising the above protein.
本発明は更に、 上記のタンパク質をコー ドする核酸を提供する。 本発明はまた、 上記の核酸を含んで成るベク ターを提供する。 本発 明はまた、 上記のベクターによ り形質転換された宿主細胞を提供す る。 The present invention further provides a nucleic acid encoding the above protein. The present invention also provides a vector comprising the above nucleic acid. The present invention also provides a host cell transformed with the above vector.
本発明は更に、 上記のタンパク質の製造方法において、 上記の宿 主細胞を培養し、 そして培養物から当該タンパク質を採取するこ と を特徴とする方法を提供する。 図面の簡単な説明 The present invention further provides a method for producing a protein as described above, wherein the host cell is cultured, and the protein is collected from the culture. Brief Description of Drawings
図 1 は、 脾細胞の培養における、 各種形態のェンテロ トキシン C の添加と、 産生される IFN- y (図 1 の A) 及び TNF- α (図 1 の Β )
との関係を示すグラフである。 Figure 1 shows the addition of various forms of enterotoxin C and the production of IFN-y (Fig. 1A) and TNF-α (Fig. 1 に お け る) in spleen cell culture. 6 is a graph showing the relationship between
図 2は、 各種被験体によ り免疫されたマウスに黄色ブ ドウ球菌を 接種した後のマウスの生存率の経過を示すグラフである。 FIG. 2 is a graph showing the progress of the survival rate of mice after inoculation of mice immunized with various subjects with Staphylococcus aureus.
図 3は、 各種被験体によ り免疫されたマウスに黄色ブ ドウ球菌を 接種した後に、 マウスの各器官に存在する黄色ブ ドウ球菌の数を示 すグラフである。 FIG. 3 is a graph showing the number of Staphylococcus aureus present in each organ of mice after inoculating mice immunized with various subjects with Staphylococcus aureus.
図 4は、 各種被験体によ り免疫されたマウスの血清に生成する各 種抗体の量を示すグラフである。 発明を実施するための最良の形態 FIG. 4 is a graph showing the amounts of various antibodies produced in the serum of mice immunized with various subjects. BEST MODE FOR CARRYING OUT THE INVENTION
黄色ブ ドウ球菌のェンテロ トキシンには、 A〜Rが知られており 、 本発明はェンテロ トキシン Cに関する。 本発明のェンテロ トキシ ン Cの無毒性変異体の基礎となる生来のェンテロ トキシン Cをコー ドする核酸、 例えば DNAは、 黄色ブドウ球菌、 例えば黄色ブ ドウ球 菌の FRI株 (Bergdoll博士. Bergdoll. MS. 1983. Enterotoxins , in C. S. F. Easton and C.Adlam(ed), Staphylococci and Staphyiococc al infections. Academic Press , United Kingdom. ) 力 ら、 常法 (こ 従ってク ローニングするこ とが出来る。 一例と して、 ェンテロ トキ シン Cは、 配列番号 : 2 に記載のアミ ノ酸配列を有し、 例えば配列 番号 : 1 に記載の塩基配列を有する核酸によ り コ ー ドされている。 A to R are known as enterotoxins of Staphylococcus aureus, and the present invention relates to enterotoxin C. The nucleic acid, eg, DNA, encoding native enterotoxin C that is the basis for the non-toxic variant of enterotoxin C of the present invention is a Staphylococcus aureus, eg, an FRI strain of Staphylococcus aureus (Dr. Bergdoll. MS. 1983. Enterotoxins, in CSF Easton and C. Adlam (ed), Staphylococci and Staphyiococcal infections. Academic Press, United Kingdom. Enterotoxin C has the amino acid sequence of SEQ ID NO: 2, and is coded by a nucleic acid having the base sequence of SEQ ID NO: 1, for example.
しかしながら、 本発明のェンテロ トキシン Cの無毒性変異体の元 になるェンテロ トキシン Cは、 配列番号 : 2に示すァミ ノ酸配列を 有するもののみならず、 対立遺伝子変異、 その他の天然変異、 ある いは人工的変異誘発によ り、 配列番号 : 2 に示すアミ ノ酸配列にお いて、 1〜数個のアミ ノ酸の欠失、 付加 · 挿入、 及び Z又は他のァ ミ ノ酸による置換によ り修飾されているアミ ノ酸配列を有し、 且つ 生来のェンテロ トキシン Cの活性を有するタンパク質も含む。
生来のェンテロ トキシン Cをコー ドする核酸はまた、 配列番号 : 1 に示す塩基は配列から設計されたプローブ、 又はプライマ一対を 用いて、 黄色ブ ドウ球菌の DNAからク ローニングするこ とが出来る 。 従って、 本願発明のェンテロ トキシン Cの無毒性変異体の基礎に なる生来のェンテロ トキシン Cには、 高ス ト リ ンジェン ト条件下で 、 配列番号 : 1 に記載の塩基配列を有する核酸又はその断片、 好ま しく は 15塩基以上の長さを有する断片にハイブリ ダィズする核酸に コー ドされており、 且つ生来のェンテロ トキシン Cの活性、 即ちス 一パー抗原活性及びェンテ口 トキシン C免疫原性を有するタンパク 質も含まれる。 However, enterotoxin C, which is the source of the non-toxic mutant of enterotoxin C of the present invention, has not only the amino acid sequence shown in SEQ ID NO: 2 but also allelic variations and other natural variations. Or one or several amino acids in the amino acid sequence shown in SEQ ID NO: 2 by deletion, addition or insertion, and by Z or other amino acids. It also includes proteins having an amino acid sequence modified by substitution and having native enterotoxin C activity. The nucleic acid encoding native enterotoxin C can also be cloned from the DNA of Staphylococcus aureus using a probe or primer pair designed from the sequence shown in SEQ ID NO: 1. Accordingly, the native enterotoxin C that forms the basis of the non-toxic mutant of enterotoxin C of the present invention includes, under high stringent conditions, a nucleic acid having the base sequence of SEQ ID NO: 1 or a fragment thereof. , Preferably encoded by a nucleic acid that hybridizes to a fragment having a length of at least 15 bases, and has native enterotoxin C activity, i.e., superantigen activity and enteromouth toxin C immunogenicity. It also includes proteins.
ェンテロ トキシン Cは、 その分子中に T細胞受容体に対する結合 部位 (配列番号 : 2に示すアミ ノ酸配列中、 アミ ノ酸番号 20及び 23 ) 及び主要組織適合性抗原ク ラス I Iに対する結合部位 (配列番号 : 2に示すアミ ノ酸配列中、 アミ ノ酸番号 90、 94及び 103) を含み、 これによ り T細胞受容体と主要組織適合性抗原ク ラス I Iとの間の相 互作用を介在し、 これによ り T細胞が腫瘍壊死因子一 α ( TNF- α ) 、 イ ンターフェ ロ ン一 γ ( I FN- y ) 、 イ ンタ一 ロイ キン一 2 ( I L-2 ) 、 イ ンターロイ キン一 6 ( I L-6) を分泌し、 ェンテ ロ トキシン C のスーパー抗原活性が惹起される。 Enterotoxin C has, in its molecule, a binding site for the T cell receptor (amino acid sequences 20 and 23 in the amino acid sequence shown in SEQ ID NO: 2) and a binding site for major histocompatibility class II. In the amino acid sequence shown in SEQ ID NO: 2, amino acid numbers 90, 94 and 103) are included, whereby the interaction between T cell receptor and major histocompatibility class II is recognized. Intermediates that cause T cells to become tumor necrosis factor-1α (TNF-α), interferon-1γ (IFN-y), interleukin-12 (IL-2), It secretes Kin-6 (IL-6) and induces superantigen activity of enterotoxin C.
本発明によれば、 ェンテロ トキシン C分子中の T細胞受容体に対 する結合部位及び主要組織適合性抗原ク ラス I Iに対する結合部位中 に変異を導入するこ とによ り、 ェンテロ トキシン Cの免疫原性を維 持しながら、 スーパ一抗原活性を欠損又は低下せしめるこ とが出来 る。 変異部位と しては、 上記の結合部位の範囲內で選択するこ とが 出来、 具体例と しては、 配列番号 : 2に記載のアミ ノ酸配列におい て、 T細胞に対する結合部位内に存在する 23位の Asp、 及び主要組 織適合性抗原ク ラス I Iに対する結合部位内に存在する 94位の Tyrが
挙げられる。 According to the present invention, immunization of enterotoxin C is achieved by introducing mutations into the binding site for the T cell receptor and the binding site for the major histocompatibility complex class II in the enterotoxin C molecule. It can delete or reduce superantigen activity while maintaining its originality. The mutation site can be selected in the range of the above-mentioned binding site (1). As a specific example, in the amino acid sequence of SEQ ID NO: 2, the mutation site is within the binding site for T cells. Asp at position 23 present and Tyr at position 94 present in the binding site for major tissue-compatible antigen class II No.
変異の種類と しては、 上記の特定の部位の欠失、 又は他のアミ ノ 酸による置換が挙げられる。 例えば、 配列番号 : 2における 23位の Aspは、 Asp以外のアミ ノ酸によ り置換するこ とが出来、 94位の Tyr は Tyr以外のァミ ノ酸によ り置換するこ とが出来る。 好ま しく は、 中性アミ ノ酸、 例えば Ala、 Val、 Leu、 I l eなどを挙げるこ とが出来 、 特に Alaが好ま しい。 変異の導入は、 常法に従って、 例えば部位 特定点変異誘発法によ り行なう こ とが出来る。 Examples of the type of mutation include deletion of the specific site described above, or substitution with another amino acid. For example, Asp at position 23 in SEQ ID NO: 2 can be substituted with an amino acid other than Asp, and Tyr at position 94 can be substituted with an amino acid other than Tyr. . Preferably, neutral amino acids such as Ala, Val, Leu, Ile and the like can be mentioned, and Ala is particularly preferable. The mutation can be introduced according to a conventional method, for example, by site-specific point mutagenesis.
本発明の、 黄色ブ ドウ球菌のェンテロ トキシン Cの無毒性変異体 は、 生来のェンテロ トキシン Cをコー ドする DNAに、 上記のよ う に した変異を導入した後、 変異した DNAを適当な発現用ベクターに挿 入し、 このベクターによ り宿主細胞を形質転換し、 形質転換体を培 養し、 培養物からェンテロ トキシン C無毒性変異体を採取するこ と によ り得るこ とができる。 宿主と しては、 原核生物細胞、 例えば細 菌細胞、 典型的には大腸菌細胞、 真核微生物細胞、 例えば真菌細胞 、 例えば酵母細胞又は糸状菌細胞、 などを使用するこ とが出来、 酵 母と してはサッカ ロ ミセス (Sac char omyc e s) 属酵母が挙げられ、 糸状菌と しては、 例えばァスペルギルス (Asperg i l lus) 属の糸状 菌が挙げられる。 更に、 高等真核細胞と して、 培養された植物細胞 や動物の培養細胞が挙げられる。 これらの宿主細胞に使用は常用技 術であり 、 本願発明の特徴を構成するものではない。 The non-toxic mutant of Staphylococcus aureus enterotoxin C of the present invention is obtained by introducing the above-described mutation into the DNA encoding native enterotoxin C, and then appropriately expressing the mutated DNA. By transfecting a host cell with this vector, culturing the transformant, and collecting a non-toxic enterotoxin C mutant from the culture. . As a host, prokaryotic cells, for example, bacterial cells, typically E. coli cells, eukaryotic microbial cells, for example, fungal cells, for example, yeast cells or filamentous fungal cells, can be used. Examples include yeast belonging to the genus Saccharomyces, and examples of the filamentous fungi include filamentous fungi belonging to the genus Aspergillus. Furthermore, examples of higher eukaryotic cells include cultured plant cells and animal cultured cells. Use for these host cells is a routine technique and does not constitute a feature of the present invention.
本発明の発現ベクターは、 少なく と も、 ェンテロ トキシン Cの無 毒性変異体をコ一 ドする DNA及び当該 DNAの発現を制御する制御配列 を含んで成る。 プロモーターなどの制御配列は、 宿主細胞に依存し て選択するこ とが出来、 常用のプロ モーターなどを適宜使用するこ とが出来る。 The expression vector of the present invention comprises at least a DNA encoding a nontoxic mutant of enterotoxin C and a control sequence for controlling the expression of the DNA. A control sequence such as a promoter can be selected depending on the host cell, and a conventional promoter or the like can be appropriately used.
また、 発現ベクターの構築、 発現ベクターによる宿主の形質転換
も常法に従って行なう こ とが出来る。 Construction of expression vector, transformation of host with expression vector Can also be carried out according to the usual method.
ェンテロ トキシン C無毒性変異体の製造のための宿主細胞の培養 は、 宿主の種類やプロモーターの種類等に依存して、 常法に従って 行なう こ とが出来る。 培養物からの、 目的ェンテロ トキシン c無毒 性変異体の採取は、 タンパク質の回収 . 精製に用いる常法に従って 行なう こ とができる。 例えば、 大腸菌宿主等の培養によ り生産され たェンテロ トキシン C無毒性変異体は、 宿主培養物から当該変異体 タンパク質を含む溶液を得た後、 SDS- PAGE、 および抗ェンテロ トキ シン C抗体とのゲル内沈降反応によ り、 高純度の、 免疫原性を有し 、 且つスーパー抗原活性が欠損し、 又は低下したェンテロ トキシン C無毒性変異体を得るこ とができる。 Culturing of host cells for production of a non-toxic enterotoxin C mutant can be carried out according to a conventional method, depending on the type of host, the type of promoter, and the like. The target enterotoxin c non-toxic mutant can be collected from the culture according to a conventional method used for protein recovery and purification. For example, a non-toxic enterotoxin C mutant produced by culturing an Escherichia coli host or the like can be obtained by obtaining a solution containing the mutant protein from the host culture and then using SDS-PAGE and anti-enterotoxin C antibody. By the in-gel precipitation reaction, a non-toxic enterotoxin C mutant having high purity, immunogenicity and lacking or reduced superantigen activity can be obtained.
本発明のェンテロ トキシン C無毒性変異体は、 スーパー抗原活性 が欠損または低下しており、 このこ とは、 当該変異体の存在下及び 非存在下で、 例えば脾細胞を培養し、 培養上清中のサイ トカイ ン、 例えば腫瘍壊死因子一 α ( TNF- α ) 、 イ ンタ一フ エロ ン— γ ( IFN- V ) 、 イ ンターロイキン一 2 ( IL-2) 、 イ ンターロイキン一 6 ( I い 6) 等を測定し、 ェンテロ トキシン Cの変異体の存否による上記 のサイ トカイ ンの差 (サイ トカイ ンの産生量が、 前記ェンテロ トキ シン C変異体の非存在下に比べて存在下において減少するこ と) に よ り確認するこ とが出来る。 実施例 2の結果を示す図 1 から明らか な通り、 本発明のェンテロ トキシン Cの変異体の存在下でイ ンター フエ ロ ン一 Τ 及び腫瘍壊死因子— α の産生が低下し、 スーパー抗原 活性の阻害が確認された。 The enterotoxin C non-toxic mutant of the present invention lacks or has reduced superantigen activity. This means that, for example, spleen cells are cultured in the presence and absence of the mutant, and the culture supernatant is Cytokins such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-V), interleukin-1 (IL-2), and interleukin-6 (I 6), etc., and the difference between the above cytokins depending on the presence or absence of the enterotoxin C mutant (the amount of cytokine production is greater in the presence than in the absence of the enterotoxin C variant). Can be confirmed. As is clear from FIG. 1 showing the results of Example 2, in the presence of the enterotoxin C mutant of the present invention, the production of interferon-1 and tumor necrosis factor-α was reduced, and the superantigen activity was reduced. Inhibition was confirmed.
本発明のェンテロ トキシン C無毒性変異体は、 ェンテロ トキシン Cの免疫原性を有し、 黄色ブ ドウ球菌の感染に対するワクチン効果 を有する。 このこ とを確認するため、 本発明のェンテロ トキシン C 無毒性変異体 (配列番号 : 2に記載のアミ ノ酸配列において、 23位
の Aspが Al aによ り置換されており、 且つ 94位の Tyrが Al aによ り置換 されているもの ; 本明細書、 特に実施例において、 「dmSECj と称 する場合がある) 、 23位の Aspのみを A l aによ り置換したエン ド トキ シン C変異体 (本明細書、 特に実施例において 「mSEC」 と称する) 、 組換え生産された生来のエン ド トキシン C (本明細書、 特に実施 例において、 「r SEC;」 と称する場合がある) 、 アジュバン ト と して 機能するコ レラ トキシン (CTと称する場合がある) のみ、 及びリ ン 酸緩衝液のみ (PBSと称する) 、 を用いて、 次の実験を行った。 The non-toxic enterotoxin C mutant of the present invention has the immunogenicity of enterotoxin C and has a vaccine effect against infection with Staphylococcus aureus. To confirm this, the non-toxic enterotoxin C mutant of the present invention (position 23 in the amino acid sequence of SEQ ID NO: 2) was used. Wherein Asp in the above is substituted by Ala and Tyr at position 94 is replaced by Ala; in the present specification, particularly in Examples, it may be referred to as “dmSECj”, 23 An endotoxin C mutant in which only Asp at position 1 is replaced by Ala (referred to as “mSEC” in the present specification, particularly in the Examples), a recombinant endogenous endotoxin C (refer to the present specification) In particular, in Examples, it may be referred to as "rSEC;"), only cholera toxin (which may be referred to as CT) that functions as an adjuvant, and only phosphate buffer (referred to as PBS) The following experiments were performed using and.
( A ) マウスの感染生存試験 (A) Infection survival test in mice
( a ) 20 μ g/マウスの dmSECのみ [ dmSEC] ; ( b ) 20 μ g/マウ スの draSECと、 アジュ ノ ン ト と しての CT [ dmSEC + CT] ; 及び ( c ) のみ、 を BALB/cマウスに経鼻投与し、 更に 2週間後及び 4週間後 に追加経鼻免疫を行なった。 2回目の追加免疫の 1週間後、 黄色ブ ドウ球菌 (MRSA臨床分離株、 SEC生産株) を致死量 (生菌と して 500 0万個/マウス) を経静脈感染させた。 実施例 3の Aの結果示す図 2 から明らかな通り、 コレラ トキシン ( CT) のみに比べて、 本発明の ェンテロ トキシン C ( dmSEC) の場合、 黄色ブ ドウ球菌に感染され たマウスの生存率が上昇し、 特にェンテロ トキシン C ( dmSEC) の アジュバン ト と してコ レラ トキシン (CT) を用いた場合 [ dmSEC + C T] 、 生存率は大き く上昇した。 (a) 20 μg / mouse dmSEC only [dmSEC]; (b) 20 μg / mouse draSEC and CT as adjuvant [dmSEC + CT]; and (c) only Nasal administration was performed to BALB / c mice, and booster immunization was performed 2 and 4 weeks later. One week after the second booster, Staphylococcus aureus (MRSA clinical isolate, SEC producing strain) was intravenously infected with a lethal dose (500,000 live mice / mouse). As is evident from FIG. 2 showing the results of A in Example 3, the survival rate of mice infected with Staphylococcus aureus in the case of enterotoxin C (dmSEC) of the present invention was lower than that of cholera toxin (CT) alone. Survival rates increased significantly, especially when cholera toxin (CT) was used as adjuvant for enterotoxin C (dmSEC) [dmSEC + CT].
( B ) 細菌残留試験 (B) Bacterial residue test
上記 (A ) の方法において、 黄色ブ ドウ球菌を感染させた後 3 日 目にマウスを失血死させ、 脾臓、 肝臓及び腎臓に存在する菌数を、 寒天平板上のコ ロ ニー数 (CFU) と して求めた。 実施例 3の Bの結 果を示す図 3から明らかな通り 、 本発明のェンテロ トキシン C無毒 性変異体 (draSEC) をコ レラ トキシン (CT) と と もに投与した場合 、 脾臓及び肝臓において、 黄色ブ ドウ球菌の数は有意に低下した。
(C) 各種抗体の生成 In the above method (A), mice are bled to death on the third day after infection with Staphylococcus aureus, and the number of bacteria present in the spleen, liver and kidney is determined by the number of colonies on agar plates (CFU). And asked. As is clear from FIG. 3 showing the results of Example 3B, when the enterotoxin C non-toxic mutant (draSEC) of the present invention was administered together with cholera toxin (CT), in the spleen and liver, The number of Staphylococcus aureus decreased significantly. (C) Production of various antibodies
上記の実験において、 5から 6週間後のマウスの血清中の各種の 抗ェンテロ トキシン C抗体を、 組換えェンテロ トキシン Cを抗原と して用いて、 ELISAによ り測定した。 実施例 3の Cの結果を示す図 4から明らかな通り 、 殆どの抗体について、 本発明のェンテロ トキ シン Cの無毒性変異体 (dmSEC) を投与した場合と、 生来の組換え ェンテロ トキシン Cを投与した場合とで、 抗体の産生レベルはほぼ 同じであり、 本発明のェンテロ トキシン Cの無毒性変異体において 、 ェンテロ トキシン Cに対する免疫原性が維持されているこ とが確 認された。 In the above experiment, various anti-enterotoxin C antibodies in the sera of the mice after 5 to 6 weeks were measured by ELISA using recombinant enterotoxin C as an antigen. As is clear from FIG. 4 showing the results of C in Example 3, most of the antibodies were treated with the nontoxic mutant of enterotoxin C of the present invention (dmSEC), and the native recombinant enterotoxin C was compared with the native recombinant enterotoxin C. The production levels of the antibodies were almost the same as in the case of administration, and it was confirmed that the immunogenicity for enterotoxin C was maintained in the nontoxic mutant of enterotoxin C of the present invention.
上記の通り 、 本発明のェンテロ トキシン Cの無毒性変異体は、 ス 一パー抗原活性が欠失又は低下しており、 そのため毒性が無く又は 低下しており 、 且つェンテロ トキシン Cの免疫原性を維持している ため黄色ブ ドウ球菌の感染に対してワクチン活性を有し、 従って、 MRSAの病院感染、 ゥシの乳房炎、 その他黄色ブドウ球菌の感染に関 する疾患の予防又は治療剤と して有用である。 As described above, the non-toxic mutant of enterotoxin C of the present invention lacks or reduces superantigen activity, and thus has no or reduced toxicity, and reduces the immunogenicity of enterotoxin C. Since it is maintained, it has vaccine activity against Staphylococcus aureus infection, and is therefore a prophylactic or therapeutic agent for MRSA hospital infection, red mastitis, and other diseases associated with Staphylococcus aureus infection. And useful.
本発明のェンテロ トキシン Cの無毒性変異体は、 常法に従って、 常用の医薬キヤ リ ヤーと配合するこ とによ り、 ワ クチン製剤に製剤 化するこ とが出来る。 ワクチン製剤は通常、 非経口的に、 例えば注 射によ り投与される。 実施例 The non-toxic mutant of enterotoxin C of the present invention can be formulated into a vaccine preparation by blending it with a commonly used pharmaceutical carrier according to a conventional method. Vaccine formulations are usually administered parenterally, for example, by injection. Example
次に、 本発明を実施例によ り更に具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.
実施例 1. ェンテロ トキシン Cの無毒性変異体の調製 Example 1. Preparation of a nontoxic mutant of enterotoxin C
1 . ェンテロ トキシン C (SEC) をコ一 ドする DNAのク ローニング 黄色ブ ドウ球菌 (Staphylococcus aureus) FRI 361株 (Bergdoll , MS. 1983 , Enterotoxins , in C. S. F. Eas t on and し. Adlam(ed), S
taphylococc i and Staphylococcal infect ions. Academic Press , United Kindom. ) 力、ら、 常法によ り (Betley. M. J. and Mekalanos, J.J. 1988. J. Bacteriol.170:34-41. ) sec 2遺伝子を含むゲノ ム DN Aを分離した。 遺伝子組換え SEC (rSEC) 発現ベクターを構築するた め、 sec2遺伝子を、 プライマー ( (プライマ一の塩基配列 5'_CCCCG GATTCGAGAGCCAACCAGACCCTACG (配歹 ϋ番号 : 3 ; 及び 5 ' - CCCCGAATTCT TATCCATTCTTTGTTGTAAGGTGG) (酉己歹 (J番号 : 4 ) を用レヽて PCR法(こよ り増幅し、 大腸菌ベク ター pGEM3Zf( + )にサブク ローニングした。 次 に、 sec2遺伝子を Bam HI及び Eco RIによ り切り 出し、 ダルタチオン S -ト ラ ンスフ ェラーゼ (glutation S- transferase ; GST) 発現べ クタ一 pGEX- 6P - 1に導入し、 発現ベク ター (pKC2Xl) を構築した。 . 2. ェンテロ トキシン C無毒性変異体 (dmSEC) の調製 1. Cloning of DNA coding for enterotoxin C (SEC) Staphylococcus aureus FRI 361 strain (Bergdoll, MS. 1983, Enterotoxins, in CSF East on and then Adlam (ed), S taphylococc i and Staphylococcal infect ions. Academic Press, United Kindom.) Force, et al. (Betley. MJ and Mekalanos, JJ 1988. J. Bacteriol. 170: 34-41.) The DNA was isolated. In order to construct a recombinant SEC (rSEC) expression vector, the sec2 gene was replaced with a primer ((primer sequence 5'_CCCCG GATTCGAGAGCCAACCAGACCCTACG (distribution ϋ number: 3; and 5'-CCCCGAATTCT TATCCATTCTTTGTTGTAAGGTGG) (J number: 4) and subcloned into the Escherichia coli vector pGEM3Zf (+) by PCR method.The sec2 gene was excised with BamHI and EcoRI, and daltathione S- The expression vector (pKC2Xl) was constructed by introducing it into pGEX-6P-1, an expression vector for glutation S-transferase (GST) .. 2. Preparation of enterotoxin C non-toxic mutant (dmSEC)
前記のベク タ一 PKC2X1から、 ェンテロ トキシン C分子の N末端か ら 23位の Asp (T細胞受容体への結合部位に含まれる) 及び 94位の T yr (MHCク ラス IIの結合部位に含まれる) をそれぞれ Alaで置換する ため、 23位の Aspのコ ドン ATTを Alaのコ ドン GCTに変え、 そして 94位 の Tyrのコ ドン TATを Alaのコ ドン GCTに変えた。 変異を導入した DNA 断片を含む発現ベクター (pGXmSECと pGXdmSEC) を構築した。 次に 、 この発現べクタ一によ り大腸菌 DH5a株を形質転換し、 形質転換 体 pGXmSEC/DH52と pGXdmSEC/DH52を得た。 From the vector PKC2X1, the Asp at position 23 (included in the binding site to the T cell receptor) and Tyr at position 94 from the N-terminus of the enterotoxin C molecule (included in the binding site of MHC class II) Was changed to Ala codon GCT at position 23 and the Tyr codon TAT at position 94 was changed to Ala codon GCT to replace each with Ala. Expression vectors (pGXmSEC and pGXdmSEC) containing the mutated DNA fragment were constructed. Next, Escherichia coli DH5a strain was transformed with this expression vector to obtain transformants pGXmSEC / DH52 and pGXdmSEC / DH52.
この形質転換体を、 アンピシリ ンを含む 2XYTA培地で培養し、 菌 体から抽出したタンパク質を、 GST精製モジュールによ り精製した 実施例 2. スーパー抗原活性の低下 This transformant was cultured in 2XYTA medium containing ampicillin, and the protein extracted from the cells was purified using a GST purification module. Example 2. Reduction of superantigen activity
BALB/cマウスの脾細胞を調製し、 100万個/ mlとなるよ うに、 10% ゥシ胎児血清を添加した RPMI1640培地に懸濁し、 これに、 ( a ) 本 発明のェンテロ トキシン C変異体 ( dmSEC) 、 ( b ) エン ド トキシ
ン Cの 23位の Aspを Alaに置換したのみの変異体 (mSEC) 、 及び組換 え産生された生来のェンテロ トキシン (rSEC) を、 種々の濃度で添 加し、 二酸化炭素培養装置中で 72時間イ ンキュベー ト し、 培養上清 中のイ ンターフェ ロ ン— γ ( IFN- γ ) 及び腫瘍壊死因子一 a ( TNF- α ) を EL I SAによ り測定した。 結果を図 1 に示す。 A splenocyte of a BALB / c mouse was prepared and suspended in RPMI1640 medium supplemented with 10% fetal bovine serum at a concentration of 1 million cells / ml, and (a) the enterotoxin C mutant of the present invention was added thereto. (DmSEC), (b) Endoxy A variant (mSEC) in which Asp at position 23 of protein C was replaced with Ala, and a naturally-occurring enterotoxin (rSEC) recombinantly produced were added at various concentrations, and then added in a carbon dioxide culture device. After incubation for 72 hours, interferon-γ (IFN-γ) and tumor necrosis factor-1a (TNF-α) in the culture supernatant were measured by ELISA. The results are shown in Figure 1.
この図から明らかな通り、 rSECは濃度依存的に I FN- γ の産生を誘 導するのに対して、 dmSECは IFN- γの産生を殆ど誘導しなかった。 また、 TNF- α の誘導量も、 rSECに比べて dmSECの方が有意に低かつ た。 脾細胞の培養における I FN- yや TNF- αなどのサイ トカイ ンの産 生誘導はスーパー抗原活性の指標となるので、 実施例 2の結果を示 す図 2は、 生来のェンテロ トキシン Cに比べて、 本発明のェンテロ トキシン C変異体のスーパー抗原活性は有意に低下しているこ とを 示している。 As it is apparent from this figure, RSEC whereas for induction the production of a concentration-dependent manner I FN- γ, dmSEC did not induce little production of IFN-gamma. In addition, the induction amount of TNF-α was significantly lower in dmSEC than in rSEC. Induction of the production of cytokins such as IFN-y and TNF-α in spleen cell cultures is an indicator of superantigen activity.The results of Example 2 show the results of Example 2 In comparison, it shows that the superantigen activity of the enterotoxin C mutant of the present invention is significantly reduced.
実施例 3 . ェンテロ トキシン Cの免疫原活性の維持 Example 3 Maintenance of Immunogenic Activity of Enterotoxin C
本発明のェンテロ トキシン C無毒性変異体は、 ェンテロ トキシン Cの免疫原性を有し、 黄色ブ ドウ球菌の感染に対するワ クチン効果 を有する。 このこ とを確認するため、 本発明のェンテロ トキシン C 無毒性変異体 (配列番号 : 2に記載のアミ ノ酸配列において、 23位 の Aspが Al aによ り置換されており 、 且つ 94位の Tyrが i aによ り置換 されておるもの ; 本明細書、 特に実施例において、 「dmSE (:」 と称 する場合がある) 、 23位の Aspのみを Alaによ り置換したェンテロ ト キシン C変異体 (本明細書、 特に実施例において 「mSEC」 と称する ) 、 組換え生産された生来のェンテロ トキシン C (本明細書、 特に 実施例において、 「rSEC」 と称する場合がある) 、 アジュバン ト と して機能するコ レラ トキシン (CTと称する場合がある) のみ、 及び リ ン酸緩衝液のみ (PBSと称する) 、 を用いて、 次の実験を行った
(A) マウスの感染生存試験 The non-toxic enterotoxin C mutant of the present invention has immunogenicity of enterotoxin C and has a vaccine effect on infection with Staphylococcus aureus. To confirm this, the non-toxic enterotoxin C mutant of the present invention (in the amino acid sequence of SEQ ID NO: 2, the Asp at position 23 was replaced by Ala, and In this specification, particularly in the examples, “dmSE (sometimes referred to as“: ”), an enterotoxin in which only Asp at position 23 has been substituted with Ala. C variant (referred to herein as "mSEC" in particular, in the Examples), recombinantly produced native enterotoxin C (referred to herein as "rSEC" in the Examples, particularly in the Examples), adjuvant The following experiments were performed using only cholera toxin (sometimes referred to as CT) and phosphate buffer alone (referred to as PBS), which function as (A) Infection survival test in mice
( a ) 20 μ gズマウ スの dmSECのみ [dmSEC] ; ( b ) 20 μ g/マウ スの dmSECと、 アジュバン ト と しての CT [dmSEC+CT] ; 及び ( c ) CTのみ、 を BALB/cマウスに経鼻投与し、 更に 2週間後及び 4週間後 に追加経鼻免疫を行なった。 2 回目の追加免疫の 1週間後、 黄色ブ ドウ球菌 (MRSA臨床分離株、 SEC産生株) を致死量 (生菌と して 500 0万個/マウス) を経尾静脈感染させ、 その後 15日間のマウスの生存 状態を観察した。 図 2から明らかな通り、 コ レラ トキシン (CT) の みに比べて、 本発明のェンテロ トキシン C (dmSEC) の場合、 黄色 ブ ドウ球菌に感染されたマウスの生存率が上昇し、 特にェンテロ ト キシン C ( dmSEC) のアジュバン ト と してコ レラ ト キシン (CT) を 用いた場合 [dmSEC+CT] 、 生存率は大き く上昇した。 これによ り 、 本発明のェンテロ トキシン Cの無毒性変異体が黄色ブ ドウ球菌に 対するワクチンと して有効であるこ とが確認された。 (a) 20 μg of dmSEC only in mouse [dmSEC]; (b) BALB of 20 μg / mouse of dmSEC and CT as adjuvant [dmSEC + CT]; and (c) CT only / c mice were intranasally administered, and booster nasal immunization was performed 2 and 4 weeks later. One week after the second booster immunization, a lethal dose of Staphylococcus aureus (MRSA clinical isolate, SEC-producing strain) was injected via the tail vein (500,000 viable cells / mouse) for 15 days. The survival state of the mice was observed. As is clear from FIG. 2, the survival rate of mice infected with Staphylococcus aureus increased in the case of enterotoxin C (dmSEC) of the present invention as compared to the case of cholera toxin (CT) alone. When cholera toxin (CT) was used as an adjuvant for toxin C (dmSEC) [dmSEC + CT], the survival rate was greatly increased. This confirmed that the non-toxic mutant of enterotoxin C of the present invention was effective as a vaccine against Staphylococcus aureus.
(B) 細菌残留試験 (B) Bacterial residue test
上記 (A) の方法において、 黄色ブ ドウ球菌を感染させた後 3 日 目にマウスを失血死させ、 脾臓、 肝臓及び腎臓に存在する菌数を、 寒天平板上のコ ロ ニー数 (CFU) と して求めた。 図 3から明らかな 通り、 本発明のェンテロ トキシン C無毒性変異体 (dmSEC) をコ レ ラ トキシン (CT) と と もに投与した場合、 脾臓及び肝臓において、 黄色ブ ドウ球菌の数は有意に低下した。 In the above method (A), mice are bled to death on day 3 after infection with Staphylococcus aureus, and the number of bacteria present in the spleen, liver and kidney is determined by the number of colonies (CFU) on agar plates. And asked. As is clear from FIG. 3, when the enterotoxin C non-toxic mutant (dmSEC) of the present invention was administered together with cholera toxin (CT), the number of Staphylococcus aureus in the spleen and liver significantly increased. Dropped.
( C ) 各種抗体の生成 (C) Production of various antibodies
上記の実験において、 5から 6週間後のマウスの血清中の各種の 抗ェンテロ トキシン C抗体を、 組換えェンテロ トキシン Cを抗原と して用いて、 ELISMこよ り測定した。 図 4から明らかな通り 、 測定 した殆どの抗体について、 本発明のェンテロ トキシン Cの無毒性変 異体 (dmSEC) を投与した場合と、 生来の組換えェンテロ トキシン
Cを投与した場合とで、 抗体の産生レベルはほぼ同じであり、 本発 明のェンテロ トキシン Cの無毒性変異体において、 ェンテロ トキシ ン Cに対する免疫原性が維持されているこ とが確認された。
In the above experiments, various anti-enterotoxin C antibodies in the sera of the mice after 5 to 6 weeks were measured by ELISM using recombinant enterotoxin C as an antigen. As is evident from FIG. 4, most of the measured antibodies were administered with the non-toxic variant of enterotoxin C of the present invention (dmSEC) and with the native recombinant enterotoxin. The antibody production level was almost the same as when C was administered, confirming that the nontoxic mutant of enterotoxin C of the present invention maintained immunogenicity for enterotoxin C. Was.