WO2005120342A1 - Polarized xenon freezing and re-gasifying device and polarized xenon producing system - Google Patents

Polarized xenon freezing and re-gasifying device and polarized xenon producing system Download PDF

Info

Publication number
WO2005120342A1
WO2005120342A1 PCT/JP2005/010379 JP2005010379W WO2005120342A1 WO 2005120342 A1 WO2005120342 A1 WO 2005120342A1 JP 2005010379 W JP2005010379 W JP 2005010379W WO 2005120342 A1 WO2005120342 A1 WO 2005120342A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
xenon
polarized
polarized xenon
pipe
Prior art date
Application number
PCT/JP2005/010379
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Wakai
Kazuhiro Nakamura
Iwao Kanno
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2005120342A1 publication Critical patent/WO2005120342A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/282Means specially adapted for hyperpolarisation or for hyperpolarised contrast agents, e.g. for the generation of hyperpolarised gases using optical pumping cells, for storing hyperpolarised contrast agents or for the determination of the polarisation of a hyperpolarised contrast agent

Definitions

  • the present invention relates to an apparatus for freezing and regasifying polarized xenon and a system for producing polarized xenon.
  • the xenon 129 (129 Xe) is capable of 100,000 times or more of the enhancement of polarization of the thermal equilibrium state by the light bombing method of the alkali metal vapor.
  • the degree of polarization of the spin of this polarized 129 Xe (hereinafter, simply referred to as polarized xenon) is defined as the polarization rate.
  • Polarized xenon is attracting attention as a gas that improves the positional resolution of MR imaging of a human body.
  • improvement of the polarization rate of polarized xenon is important for improving the position resolution.
  • Polarized xenon is generated by the following method.
  • a polarizing cell composed of a non-magnetic material such as stainless steel has windows at both ends that can transmit circularly polarized light such as laser light, for example, quartz glass.
  • a piece of rubidium having a spin conversion function to xenon is put in the polarization cell and heated to generate, for example, about 100 ppm of rubidium vapor.
  • 129 Xe alone or 129 Xe gas diluted with helium or nitrogen is supplied into the polarization cell, and laser light is made to enter the polarization cell through one window and bombed in the polarization cell.
  • vapor-like rubidium is excited, and the excitation energy causes spin conversion between the xenon atoms in the cell and polarized xenon.
  • xenon gas having a high polarization rate is obtained by polarizing a mixed gas obtained by adding a small amount of nitrogen gas and a large amount of helium gas to xenon gas. It is possible to generate gas. In fact, the polarization process of a mixed gas consisting of 98% by volume of He gas, 0.6% by volume of 129 Xe gas, and the balance of N gas has resulted in more than 65% polarization.
  • xenon gas having a porosity can be obtained.
  • Such a high polarization rate Xenon gas can be obtained by adding a large amount of helium as a buffer gas, although the xenon atoms polarized during the polarization process of xenon atoms are scattered with each other to destroy the polarization. It is thought that this is to reduce the chance of this scattering.
  • Polarized xenon which can obtain a mixed gas power containing a large amount of helium gas together with xenon gas, has an extremely low concentration. Therefore, the helium gas is removed when applied to a predetermined application. Need to be concentrated.
  • FIG. 1 of "PHYSICAL REVIEW LETTERS" Volume 88, No 14, pp. 147602-1-4, 8 April 200 2 discloses an apparatus for freezing and regasification of polarized xenon.
  • This device is equipped with a superconducting magnet having a cylindrical cavity in the height direction to which a magnetic field is applied.
  • the accumulator whose upper and lower ends are sealed vertically, is placed in the cavity of the superconducting magnet.
  • This accumulator has a double cylinder structure having a glass outer cylinder and an inner cylinder whose upper and lower ends are sealed.
  • the upper end of the inner cylinder is connected to the upper end sealing plate of the outer cylinder, and the lower end is separated by a desired distance from the lower end sealing plate of the outer cylinder.
  • the introduction pipe of the helium dilution gas containing polarized xenon is connected to the upper end sealing plate corresponding to the inner cylinder of the accumulator.
  • the discharge pipe is connected to an upper end sealing plate between the inner cylinder and the outer cylinder of the accumulator.
  • a cylindrical low-temperature maintenance container having a bottom is disposed in the hollow portion, and the storage device is inserted into the container.
  • the cooling gas inlet pipe is connected to the bottom of the low temperature maintenance vessel.
  • the heater is wound on the outer peripheral surface near the bottom of the low temperature maintenance container.
  • a cooling gas obtained by evaporating liquid helium is introduced into the bottom of the low-temperature maintenance container through a cooling gas introduction pipe, and the accumulator in the container is cooled.
  • a predetermined strong magnetic field is applied to the disposed storage device.
  • a helium diluent gas containing polarized xenon is supplied to the inner cylinder through the introduction pipe, and flows out from the lower end of the inner cylinder to between the inner cylinder and the outer cylinder, and the cooling gas is discharged. And rises along the inner surface of the cooled outer cylinder made of glass to discharge the pipe. As the dilution gas rises and cools, the polarized xenon in the dilution gas is frozen near the bottom of the outer cylinder.
  • the re-gasification of ice-polarized xenon is achieved by stopping the introduction and cooling of a cooling gas in which liquid helium is vaporized, heating a heater wound near the bottom of the low-temperature maintaining vessel, and transferring the heat to the accumulator. This is accomplished by heating the frozen polarized xenon generated on the inner surface of the outer cylinder by transmitting it to the outer cylinder.
  • the regasification of the ice-polarized xenon heats a heater wound near the bottom of the cryostat, and the heat is passed through the cryostat and the air layer of the accumulator. Since the power is transmitted to the outer cylinder, the heating speed of the frozen polarized xenon generated on the inner surface of the outer cylinder becomes slower. As a result, the frozen polarized xenon melts and the transit time of the melting point during gasification becomes relatively long.
  • An object of the present invention is to provide an apparatus for freezing and regasifying polarized xenon that can suppress a decrease in the polarization rate during regasification of frozen polarized xenon.
  • the present invention includes polarized xenon by arranging a polarization cell of a xenon polarization device and an ice cell of a polarization xenon freeze / regasification device in the cavity of the same magnetic field generating means.
  • Polarization capable of suppressing a decrease in the polarization rate when the dilution gas is transported from the polarization cell to the frozen cell, and suppressing a decrease in the polarization rate during regasification of the frozen polarized xenon. It is an object to provide a xenon generation system.
  • a magnetic field generating means having a cavity to which a magnetic field is applied
  • a sealed container arranged in the cavity of the magnetic field generating means
  • a closed ice cell stored in the closed container A supply pipe and an exhaust pipe for a dilution gas containing polarized xenon, which are connected to the ice cell through the closed container;
  • a cooling pipe through which a cooling medium is wrapped in close contact with the icing cell A cooling pipe through which a cooling medium is wrapped in close contact with the icing cell.
  • the present invention provides an apparatus for freezing and regasifying polarized xenon, comprising:
  • a polarized xenon generation system including a xenon polarizing device and a polarized xenon freeze / regasification device,
  • the xenon polarization device is disposed in a cavity of a magnetic field generating means, and has a polarization cell having laser light transmission windows at both ends, and causes laser light to enter the polarization cell through the laser light transmission window. And a supply pipe for a dilution gas containing xenon connected to the polarization cell, and
  • the polarized xenon freezing and regasification apparatus comprises: a sealed container juxtaposed with the polarized cell in the cavity of the magnetic field generating means; and an introduction pipe and discharge of a heating medium connected to the sealed container.
  • a system for producing polarized xenon comprising: a supply pipe for a dilution gas containing polar xenon; an exhaust pipe connected to the icing cell; and a cooling pipe wound tightly around the icing cell and through which a cooling medium flows. Is provided.
  • FIG. 1 is a schematic diagram showing an apparatus for freezing and regasifying polarized xenon according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a sealed container incorporating the frozen cell of FIG.
  • FIG. 3 is a partially cutaway perspective view showing a sealed container incorporating the frozen cell of FIG. 1.
  • FIG. 4 is a schematic diagram showing a polarized xenon generation system according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the polarization cell of FIG. 4.
  • FIG. 1 is a schematic diagram showing a device for freezing and regasifying polarized xenon according to the first embodiment
  • FIG. 2 is a cross-sectional view showing a sealed container incorporating the ice cell of FIG. 1
  • FIG. FIG. 2 is a partially cutaway perspective view showing a closed container having a frozen cell therein.
  • the horizontally placed superconducting magnet 1 as a magnetic field generating means has, for example, a cylindrical hollow portion 2 to which a magnetic field is applied.
  • the closed container 3 is disposed horizontally in the hollow portion 2 of the superconducting magnet 1.
  • the closed container 3 has a structure in which disks 5a and 5b are hermetically attached to left and right ends of a cylindrical container body 4.
  • the container body 4 and the disks 5a and 5b that constitute the closed container 3 are made of a non-magnetic material, for example, SUS316 or copper.
  • a heating medium for example, a hot water inlet pipe 6 is connected to the container body 4 near the right circular plate 5b of the closed container 3.
  • the heating medium may be, for example, heated alcohol instead of hot water.
  • a valve 7 is interposed in the hot water introduction pipe 6.
  • the other end of the hot water inlet pipe 6 is connected to a hot water tank 8.
  • the discharge pipe 9 for hot water is connected to the vicinity of the bottom of the left circular plate 5a of the closed vessel 3 facing the inlet pipe 6 for hot water.
  • the hot water discharge pipe 9 is provided with a valve 10.
  • the other end of the hot water discharge pipe 9 is connected to a hot water recovery tank 11.
  • a branch pipe 13 is connected to a portion of the hot water discharge pipe 9 located between the valve 10 and the closed vessel 3.
  • the branch pipe 13 is provided with a knob 12.
  • the other end of the branch pipe 13 is connected to an exhaust means (not shown), for example, a vacuum pump.
  • the hot water inlet pipe 6, the discharge pipe 9, and the branch pipe 13 are made of stainless steel, for example.
  • the hot water inlet pipe 6 is arranged on the upper side of the horizontal sealed container 3 and the hot water discharge pipe 9 is arranged on the bottom side of the closed vessel 3, respectively.
  • the hot water is discharged from the discharge pipe 9 while being introduced into the closed vessel 3 through the introduction pipe 6.
  • the diameter of the hot water discharge pipe 9 is designed to be smaller than the diameter of the hot water inlet pipe 6 so that the hot water stays in the closed vessel 3 and is filled.
  • the hot water discharge pipe 9 is designed so that the hot water can stay in the closed container 3 with a discharge amount smaller than the supply amount of the hot water from the hot water inlet pipe 6.
  • the icing cell 14 is arranged coaxially and horizontally in the closed container 3. This The icing cell 14 has a structure in which disks 16a and 16b are hermetically attached to left and right ends of a cylindrical cell body 15.
  • the cell body 15 and the disks 16a, 16b constituting the frozen cell 14 are made of a non-magnetic material, for example, SUS316 or copper.
  • the cell body 15 and the disks 16a and 16b are plated with a highly heat-conductive metal, for example, gold on the inner and outer surfaces.
  • the inner surface of the cell body 15 is mirror-finished to have a smooth surface.
  • One end of the exhaust pipe 19 is connected to the right circular plate 16b of the frozen cell 14.
  • the other end of the exhaust pipe 19 passes through the right circular plate 5b of the closed vessel 3 and is connected to a gas bag 20 disposed outside.
  • a knurl 21 is interposed in an exhaust pipe 19 near the gas bag 20.
  • a branch pipe 23 is connected to a portion of the exhaust pipe 19 located between the valve 21 and the icing cell 14.
  • the branch pipe 23 is provided with a valve 22.
  • the other end of the branch pipe 23 is connected to an exhaust means (not shown), for example, a vacuum pump.
  • the supply pipe 18, the exhaust pipe 19, and the branch pipe 23 are made of, for example, stainless steel.
  • the cooling pipe 24 is wound around the outer peripheral surface of the cell body 15 of the frozen cell 14 at a desired pitch.
  • a cooling medium for example, liquid nitrogen of 77 K flows through the cooling pipe 24.
  • the cooling medium is not limited to liquid nitrogen, and liquid neon (23K) and liquid helium (4K) can be used.
  • the cooling pipe 24 is made of a material having high thermal conductivity, for example, copper.
  • the inner and outer surfaces of the cooling pipe 24 are plated with a high heat conductive metal, for example, gold.
  • the cooling pipe 24 has a perfect circular cross section, but may have a flat elliptical cross section in order to increase the contact area with the cell body 15.
  • the liquid nitrogen supply pipe 25 has one end penetrating through the left disk 5a of the closed vessel 3, and one end of the cooling pipe 24 located in the cell body 15 near the right disk 16b of the frozen cell 14. It is linked to In other words, the liquid nitrogen supply pipe 25 is connected to one end of the cooling pipe 24 located downstream of the flow of the diluent gas containing polarized xenon (flow from left to right in FIG. 2) flowing through the icing cell 14. Are linked.
  • a valve 26 is interposed in the liquid nitrogen supply pipe 25. The other end of the supply pipe 25 is connected to a liquid nitrogen tank 27.
  • the cooling pipe 24 is connected to the other end of the cooling pipe 24 located in the cell body 15 near the left circular plate 16a. That is, the liquid nitrogen exhaust pipe 28 is connected to the other end of the cooling pipe 24 located on the upstream side of the flow of the diluent gas containing polarized xenon flowing in the icing cell 14.
  • a valve 29 is interposed in the liquid nitrogen discharge pipe 28.
  • the other end of the discharge pipe 28 is connected to a liquid nitrogen recovery tank 30.
  • the liquid nitrogen supply pipe 25 and the discharge pipe 28 are made of, for example, stainless steel.
  • a plurality of ring-shaped baffles 31 are fitted on the outer peripheral surface of the cell body 15 of the frozen cell 14 at desired intervals in the length direction of the cell body 15. These baffles 31 are made of a material having high thermal conductivity, for example, copper. Each of the baffles 31 has a plurality of holes 32 in order to increase a contact area with a heating medium, for example, hot water. An insertion tube 33 for inserting a temperature sensor (not shown) into the closed container 3 is connected to the right circular plate 5b of the closed container 3.
  • the supplied liquid nitrogen flows from the downstream side to the upstream side of the flow of the diluent gas containing polarized xenon (flow from left to right in the drawing) in the cooling pipe 24, and
  • the freezing cell 14 is cooled during the distribution process.
  • the outer peripheral surface of the cell body 15 of the icing cell 14 is plated with high thermal conductivity, and the inner and outer surfaces of the cooling pipe 24 are plated with high thermal conductivity.
  • the cooling efficiency by the liquid nitrogen at the contact portion of the cooling pipe 24 is further improved. Therefore, the icing cell 14 can be cooled more efficiently.
  • the valve 12 of the branch pipe 13 connected to the hot water discharge pipe 9 is opened, and the vacuum pump connected to the branch pipe 13 is operated to exhaust the gas in the closed vessel 3 and to raise the inside of the closed vessel 3.
  • the cooling pipe 24 is vacuum-insulated with respect to the space of the closed vessel 3. Therefore, the frozen cell 14 can be more efficiently cooled by the liquid nitrogen flowing through the cooling pipe 24. become.
  • the valve 22 of the branch pipe 23 connected to the exhaust pipe 19 of the dilution gas containing polarized xenon is opened.
  • the gas (mainly air) in the icing cell 14 is exhausted by operating a vacuum pump connected to the branch pipe 23.
  • the valve 17 of the supply pipe 18 is opened, and the dilution gas containing polarized xenon is supplied into the ice cell 14 through the supply pipe 18.
  • the diluent gas for example, polarized xenon; 1-5 volume 0/0, N;
  • the liquid nitrogen is caused to flow from the downstream side to the upstream side of the flow of the diluent gas containing polarized xenon (the flow toward the left side and the flow toward the right side in the figure). . That is, the liquid nitrogen is circulated so as to cross the flow of the dilution gas.
  • the dilution gas is uniformly cooled in the entire lengthwise direction of the polarization cell 14 to efficiently freeze and accumulate polarized xenon on the entire inner surface of the frozen cell 14 (mainly, the inner surface of the cell body 15). It becomes possible.
  • the inside of the frozen cell 14 (mainly the inner surface of the cell body 15) is mirror-polished to a smooth surface, so that the spin of polarized xenon is applied to the inner surface of the frozen cell 14 (mainly the inner surface of the cell body 15). It is possible to suppress the adsorption of the disturbing impurity gas and suppress the decrease in the polarization rate more effectively.
  • the polarized xenon that has frozen and accumulated on the inner surface of the frozen cell 14 (mainly the inner surface of the cell body 15) is heated with warm water, regasified, and stored in the gas bag 20 through the exhaust pipe 19.
  • warm water is directly contacted with the frozen cell 14 in which the polarized xenon freezes and accumulates, and heat is transferred, so that the frozen xenon is quickly heated.
  • the frozen polarized xenon is melted, and the melting point at the time of gasification can be passed in a short time, and the polarization collapse in the process, that is, the relaxation of the polarization can be suppressed.
  • the outer peripheral surface of the cell body 15 of the frozen cell 14 is plated with high thermal conductivity, so that the frozen xenon inside the frozen cell 14 is heated more quickly and re-heated. It can be gasified.
  • a plurality of ring-shaped baffles 31 are fitted to the outer peripheral surface of the cell body 15 of the frozen cell 14 at a desired interval in the longitudinal direction of the cell body 15, thereby forming an inner surface of the frozen cell 14.
  • the frozen xenon that has been frozen can be heated and regasified more quickly.
  • opening a plurality of holes 32 in the baffles 31 to increase the contact area with hot water the heating rate of the frozen xenon frozen inside the freezing cell 14 is significantly increased, and regasification is performed. It is possible to do.
  • the frozen xenon can be quickly heated in the freezing of the frozen xenon in the freezing cell 14 and the regasification after accumulation.
  • the frozen polarized xenon is melted, and the melting point at the time of gasification can be passed in a short time.
  • polarization decay during the melting process that is, relaxation of polarization is suppressed, and it is possible to obtain regasified polarized xenon having a polarization rate close to that of frozen polarized xenon.
  • Xenon freezing and regasification equipment can be provided.
  • the re-gasified polarized xenon having such a high polarization rate can further improve the positional resolution when applied to MR imaging or the like of a human body.
  • the supply of liquid nitrogen is provided.
  • the supply pipe 25 By connecting the supply pipe 25 to one end of the cooling pipe 24 so that liquid nitrogen flows to the cooling pipe 24 so as to intersect with the flow of the diluent gas containing polarized xenon, the entire length of the polarized cell 14 in the longitudinal direction is changed.
  • polarized xenon By uniformly cooling the dilution gas, polarized xenon can be efficiently frozen and accumulated on the entire inner surface of the icing cell 14 (mainly the inner surface of the cell body 15).
  • the cooling pipe 24 through which the cooling medium flows is wound around the outer peripheral surface of the icing cell 14, and the icing cell 14 is housed in the closed container 3 so that the heating medium uniformly covers the entire icing cell 14. It has a structure that can be heated quickly. In other words, the structure does not involve any mechanical operation during heating and cooling. For this reason, it is possible to realize a small-sized frozen xenon regasification apparatus. Further, by forming the icing cell 14 and the sealed container 3 into a cylindrical shape with both ends sealed, it is possible to more easily reduce the size. As a result, the polarized xenon icing and regasification apparatus according to the first embodiment is economically limited in terms of its power to a space having a diameter of, for example, about 30 cm. It has the advantage that it can be adapted.
  • liquid nitrogen is supplied to the cooling pipe.
  • liquid nitrogen vapor having a higher cooling efficiency than the liquid nitrogen may be supplied to the icing cell. If liquid neon or liquid helium is used instead of liquid nitrogen, the frozen cell can be cooled more efficiently.
  • FIG. 4 is a schematic diagram showing a polarized xenon generation system according to the second embodiment
  • FIG. 5 is a cross-sectional view showing the polarized cell of FIG.
  • the same members as those in FIG. 1 the same members as those in FIG.
  • This polarized xenon generation system includes a xenon polarizing device and the above-described polarized xenon freezing / regasification device.
  • the xenon polarization device comprises a polarization cell 41 juxtaposed with a closed vessel 3 containing a frozen cell in a cylindrical cavity 2 to which a magnetic field of a common (identical) superconducting magnet 1 is applied.
  • the polarized cell 41 includes a non-magnetic material having flanges 42a and 42b at both ends, for example, a cylindrical cell body 43 made of SUS316 or copper. Quartz glass windows 44a, 44b are attached to the flanges 42a, 42b through O-rings 45a, 45b. A plurality of, for example, four clamp members 47a, 47b each having an abutment screw 46a, 46b are abutted, and are fixed.
  • a laser oscillation device for example, an array type semiconductor laser (not shown) is arranged so as to face, for example, a left window 44a of the polarization cell 41.
  • the mixed gas introduction pipe 48 is connected to the cell body 43 of the polarization cell 41.
  • a knurl 49 is inserted into the introduction pipe 48, and the other end is connected to a mixed gas generator 50.
  • One end of an exhaust pipe 18 of the dilution gas containing polarized xenon (also serving as a supply pipe) is connected to the cell body 43 of the polarized cell 41 approximately point symmetrically with the introduction pipe 48, and the other end of the closed vessel 3 is provided. It passes through the left disk and is connected to the left disk of the frozen cell.
  • the introduction tube 48 is made of, for example, stainless steel.
  • the spin conversion to xenon is performed in a nitrogen atmosphere. Put the rubidium pieces into the cell body 43.
  • the O-ring 45a and the window 44a are attached to the flange 42a again by the clamp member 47a, and the cell body 43 is sealed.
  • the polarized cell 41 having the cell body 43 is heated to generate, for example, about 100 ppm of rubidium vapor in the polarized cell 41.
  • the valve 49 of the mixed gas introduction pipe 48 is opened, the other valves are closed, and the mixed gas is supplied from the mixed gas generator 50 into the polarization cell 41 through the introduction pipe 48.
  • the mixed gas is, for example 129 Xe; l ⁇ 5 vol%, N; 129 Xe and Doryokakara 2 times
  • the array-type semiconductor laser Although not shown in the state where a magnetic field is applied to the polarization cell 41 by the superconducting magnet 1, the array-type semiconductor laser also emits laser light having a peak wavelength of 799.8 nm through one window (for example, the left window 44a). And bombed in the polarization cell 41. At this time, vapor-like rubidium is excited, and the excitation energy causes spin conversion between the xenon atoms in the polarization cell 41 to generate xenon (polarized xenon) having a high polarization rate. .
  • the inside of the frozen cell in the closed vessel 3 is evacuated in advance, and liquid nitrogen is allowed to flow through a cooling pipe wound around the outer peripheral surface of the cell body of the frozen cell.
  • the diluted gas containing polarized xenon in the polarized cell 41 is passed through the exhaust pipe (also serving as the supply pipe) 18 by opening the valve 17 of the exhaust pipe (also serving as the supply pipe) 18.
  • the xenon is supplied to the frozen cell and freezes and accumulates polarized xenon on the inner surface of the frozen cell (mainly the inner surface of the cell body).
  • the polarized xenon frozen and accumulated on the inner surface of the frozen cell is heated by the same method as in the first embodiment described above, such as introducing hot water into the closed vessel 3, re-gasified, and passed through the exhaust pipe 19. Store in gas bag 20.
  • the polarization cell 41 of the xenon polarization device and the ice cell of the polarization xenon freezing / regasification device are combined with the cavity of the superconducting magnet 1 as the same magnetic field generating means.
  • the magnetic field for example, a strong magnetic field of 3 T or more
  • the magnetic field is always diluted. Since it can be converted to gas, it is possible to suppress a decrease in the polarization rate.
  • the polarized xenon generated by the xenon polarizing device can be stored in the gas bag 20 or the like as re-gasified polarized xenon while suppressing a decrease in the polarization rate. It is possible to provide a polarized xenon generation system that can further increase the positional resolution when used for MR imaging of a living body or the like.
  • the closed vessel 3 containing the frozen cell and the polarized cell 41 are cylindrical and arranged in a magnetic field, and the polarization of the xenon gas in the polarized cell 41
  • the structure is such that there is no mechanical action during heating and cooling in the cell. For this reason, a small-sized polarized xenon generation system can be realized.
  • the system for generating polarized xenon according to the second embodiment is applied to a 4.7 T or 9 T high-field nuclear magnetic resonance apparatus whose diameter is limited to a space of, for example, about 30 cm from an economic viewpoint. It has the advantage that it becomes possible.
  • the superconducting magnet is used as the magnetic field generating means, but an electromagnet may be used.
  • the frozen cell is formed in a cylindrical shape, and the cooling pipe through which the cooling medium flows is wound around the outer peripheral surface, but the present invention is not limited to this.
  • a structure may be adopted in which the outer peripheral surfaces are closely adhered to each other by twisting the ice cell and the cooling pipe.
  • the superconducting magnet, the sealed container, and the force with the polarized cell placed horizontally may be placed vertically.
  • the apparatus for freezing and regasifying polarized xenon According to the apparatus for freezing and regasifying polarized xenon according to the present invention, it is necessary to regasify the frozen xenon when regasification is performed. In addition, it is possible to suppress a decrease in the polarization rate, and it is possible to further improve the positional resolution when regasified polarized xenon is used for MR imaging of a living body, etc. It can contribute to the diagnosis, especially to the application of the brain image to the diagnosis technology.
  • the polarization device power of the diluent gas xenon containing polarized xenon is controlled to suppress the decrease in the polarization rate when transported to the icing / regasification device.
  • the position of the xenon can be reduced. The resolution can be further improved, and it can contribute to the application of MR imaging, especially brain imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

A polarized xenon freezing and re-gasifying device comprising a magnetic field generating means (1) having a cavity having a magnetic field applied thereto, a sealed vessel (3) disposed in the cavity of the magnetic field generating means (1), an introduction tube (6) and a discharge tube (9) for a warmed medium which are connected to the sealed vessel (3), a sealed type freezing cell (14) stored in the sealed vessel (3), a supply tube (18) and an exhaust tube (19) for diluted gas including polarized xenon which pass through the sealed vessel (3) and are connected to the freezing cell (14), and a cooling tube (24) which is closely wound around the freezing cell (14) and through which a cooling medium is passed.

Description

明 細 書  Specification
偏極キセノンの氷結 ·再ガス化装置および偏極キセノンの生成システム 技術分野  Polarized xenon freezing and regasification equipment and polarized xenon generation system
[0001] 本発明は、偏極キセノンの氷結 ·再ガス化装置および偏極キセノンの生成システム に関する。  The present invention relates to an apparatus for freezing and regasifying polarized xenon and a system for producing polarized xenon.
背景技術  Background art
[0002] キセノン 129 (129Xe)は、アルカリ金属蒸気の光ボンビング法により熱平衡状態の偏 極の 10万倍以上の増強が可能である。この偏極された129 Xe (以下、単に偏極キセノ ンと称す)のスピンの偏光度合が偏極率として定義される。 [0002] The xenon 129 (129 Xe) is capable of 100,000 times or more of the enhancement of polarization of the thermal equilibrium state by the light bombing method of the alkali metal vapor. The degree of polarization of the spin of this polarized 129 Xe (hereinafter, simply referred to as polarized xenon) is defined as the polarization rate.
[0003] 偏極キセノンは、人の生体の MR撮像の位置分解能を高めるガスとして注目されて いる。特に偏極キセノンの偏極率の向上は、その位置分解能を向上させる上で重要 である。このような偏極キセノンの MR撮像への適用によっては、将来的に人の脳組 織の酸素飽和度分布、温度分布、血流分布の計測が可能になる。  [0003] Polarized xenon is attracting attention as a gas that improves the positional resolution of MR imaging of a human body. In particular, improvement of the polarization rate of polarized xenon is important for improving the position resolution. By applying such polarized xenon to MR imaging, it will be possible to measure the oxygen saturation distribution, temperature distribution, and blood flow distribution of human brain tissue in the future.
[0004] 偏極キセノンは、次のような方法により生成されている。まず、両端にレーザ光のよう な円偏光が透過可能な例えば石英ガラス力もなる窓を有し、ステンレスのような非磁 性材料カゝら構成される偏極セルを例えば数百ガウスの磁場中に配置する。この偏極 セル内にキセノンへのスピン変換作用をなすルビジウム片を入れ、加熱して例えば 1 OOppm程度のルビジウム蒸気を発生させる。 129Xe単体、またはヘリウムもしくは窒素 で希釈した129 Xeガスを偏極セル内に供給し、レーザ光を一方の窓を通して偏極セル 内に入射させて偏極セル内でボンビングさせる。このとき、蒸気状のルビジウムが励 起され、この励起エネルギーによりセル内のキセノン原子との間で、スピン変換が生 じて偏極キセノンが生成される。 [0004] Polarized xenon is generated by the following method. First, a polarizing cell composed of a non-magnetic material such as stainless steel has windows at both ends that can transmit circularly polarized light such as laser light, for example, quartz glass. To place. A piece of rubidium having a spin conversion function to xenon is put in the polarization cell and heated to generate, for example, about 100 ppm of rubidium vapor. 129 Xe alone or 129 Xe gas diluted with helium or nitrogen is supplied into the polarization cell, and laser light is made to enter the polarization cell through one window and bombed in the polarization cell. At this time, vapor-like rubidium is excited, and the excitation energy causes spin conversion between the xenon atoms in the cell and polarized xenon.
[0005] ここで、偏極キセノンガスの偏極率に着目すると、キセノンガスに少量の窒素ガスと 多量のヘリウムガスを添加した混合ガスを偏極させることによって、高い偏極率を有 するキセノンガスを生成することが可能になる。実際、 Heガス 98体積%、 129Xeガス 0 . 6体積%、残部 Nガスからなる混合ガスを偏極処理することにより、 65%以上の偏 [0005] Here, focusing on the polarization rate of the polarized xenon gas, xenon gas having a high polarization rate is obtained by polarizing a mixed gas obtained by adding a small amount of nitrogen gas and a large amount of helium gas to xenon gas. It is possible to generate gas. In fact, the polarization process of a mixed gas consisting of 98% by volume of He gas, 0.6% by volume of 129 Xe gas, and the balance of N gas has resulted in more than 65% polarization.
2  2
極率を有するキセノンガスが得られることが報告されて 、る。このような高 、偏極率を 有するキセノンガスが得られるのは、キセノン原子の偏極過程にぉ ヽて偏極したキセ ノン原子が互いに散乱することにより偏極を崩壊されるものの、多量のヘリウムを緩衝 用ガスとして添加することによりこの散乱の機会を低減させるためであると考えられて いる。 It has been reported that xenon gas having a porosity can be obtained. Such a high polarization rate Xenon gas can be obtained by adding a large amount of helium as a buffer gas, although the xenon atoms polarized during the polarization process of xenon atoms are scattered with each other to destroy the polarization. It is thought that this is to reduce the chance of this scattering.
[0006] し力しながら、キセノンガスと共に多量のヘリウムガスを含有する混合ガス力も得ら れる偏極キセノンはその濃度が極めて低 、ために、所定の用途への適用にあたって はヘリウムガスを除去して濃縮することが必要がある。  [0006] Polarized xenon, which can obtain a mixed gas power containing a large amount of helium gas together with xenon gas, has an extremely low concentration. Therefore, the helium gas is removed when applied to a predetermined application. Need to be concentrated.
[0007] このようなことから、偏極キセノンを氷結、蓄積してヘリウムガスを除去する手法が採 用されている。この方法は、偏極キセノンガス (融点: 166K)をヘリウム (融点: 4K)等 の緩衝用ガスと共に含有する混合ガスを液体窒素トラップに通して偏極キセノンガス のみを氷結させることにより捕捉するものである。液体窒素トラップに十分な量の偏極 キセノンが氷結して捕捉されると、加熱してその氷結偏極キセノンを再ガス化する。  [0007] For these reasons, a method of freezing and accumulating polarized xenon to remove helium gas has been adopted. In this method, a mixed gas containing polarized xenon gas (melting point: 166K) together with a buffer gas such as helium (melting point: 4K) is passed through a liquid nitrogen trap to freeze only the polarized xenon gas. It is. When a sufficient amount of polarized xenon is frozen and trapped in the liquid nitrogen trap, heating is performed to regasify the frozen polarized xenon.
[0008] "PHYSICAL REVIEW LETTERS "Volume 88, No 14, pp. 147602-1-4, 8 April 200 2の FIG. 1には、偏極キセノンの氷結、再ガス化のための装置が開示されている。この 装置は、磁場が加わる円筒状の空洞部を高さ方向に有する超電導マグネットを備え ている。縦置きの上下端が封じられた蓄積器は、超電導マグネットの空洞部内に配 置されている。この蓄積器は、上下端が封じられたガラス製の外筒体と内筒体とを有 する二重筒構造をなしている。この内筒体は、その上端が外筒体の上端封止板に連 結され、下端が外筒体の下端封止板力 所望の距離を開けて離間している。偏極キ セノンを含むヘリウム希釈ガスの導入管は、前記蓄積器の内筒体に対応する上端封 止板に連結されている。排出管は、前記蓄積器の内筒体と外筒体の間に対応する 上端封止板に連結されている。有底円筒状の低温維持容器は、前記空洞部内に配 置され、この容器内に前記蓄積器が挿入されている。冷却ガス導入管は、低温維持 容器の底部に連結されている。ヒータは、低温維持容器の底部付近の外周面に卷装 されている。  [0008] FIG. 1 of "PHYSICAL REVIEW LETTERS" Volume 88, No 14, pp. 147602-1-4, 8 April 200 2 discloses an apparatus for freezing and regasification of polarized xenon. I have. This device is equipped with a superconducting magnet having a cylindrical cavity in the height direction to which a magnetic field is applied. The accumulator, whose upper and lower ends are sealed vertically, is placed in the cavity of the superconducting magnet. This accumulator has a double cylinder structure having a glass outer cylinder and an inner cylinder whose upper and lower ends are sealed. The upper end of the inner cylinder is connected to the upper end sealing plate of the outer cylinder, and the lower end is separated by a desired distance from the lower end sealing plate of the outer cylinder. The introduction pipe of the helium dilution gas containing polarized xenon is connected to the upper end sealing plate corresponding to the inner cylinder of the accumulator. The discharge pipe is connected to an upper end sealing plate between the inner cylinder and the outer cylinder of the accumulator. A cylindrical low-temperature maintenance container having a bottom is disposed in the hollow portion, and the storage device is inserted into the container. The cooling gas inlet pipe is connected to the bottom of the low temperature maintenance vessel. The heater is wound on the outer peripheral surface near the bottom of the low temperature maintenance container.
[0009] このような構造の偏極キセノンの氷結、再ガス化のための装置の動作を説明する。  The operation of the apparatus for freezing and regasifying polarized xenon having such a structure will be described.
[0010] 液体へリウムを気化した冷却ガスを冷却ガス導入管を通して低温維持容器の底部 に導入し、その容器内の蓄積器を冷却する。超電導マグネットによりその空洞部内に 配置された蓄積器に所定の強磁場を付与する。蓄積器が十分に冷却された後に偏 極キセノンを含むヘリウム希釈ガスをその導入管を通して内筒体に供給し、その内筒 体下端から内筒体と外筒体の間に流出させ、冷却ガスと接して冷却されたガラス製の 外筒体内面に沿って上昇させ、排出管力 排出する。この希釈ガスが上昇、冷却す る過程で、希釈ガス中の偏極キセノンが外筒体の底部付近に氷結される。 [0010] A cooling gas obtained by evaporating liquid helium is introduced into the bottom of the low-temperature maintenance container through a cooling gas introduction pipe, and the accumulator in the container is cooled. In the cavity by superconducting magnet A predetermined strong magnetic field is applied to the disposed storage device. After the accumulator is sufficiently cooled, a helium diluent gas containing polarized xenon is supplied to the inner cylinder through the introduction pipe, and flows out from the lower end of the inner cylinder to between the inner cylinder and the outer cylinder, and the cooling gas is discharged. And rises along the inner surface of the cooled outer cylinder made of glass to discharge the pipe. As the dilution gas rises and cools, the polarized xenon in the dilution gas is frozen near the bottom of the outer cylinder.
[0011] 氷結偏極キセノンの再ガス化は、液体へリウムを気化した冷却ガスの導入、冷却を 停止し、低温維持容器の底部付近に卷装したヒータを加熱し、その熱を蓄積器の外 筒体に伝達して外筒体内面に生成された氷結偏極キセノンを加温することによりなさ れる。  [0011] The re-gasification of ice-polarized xenon is achieved by stopping the introduction and cooling of a cooling gas in which liquid helium is vaporized, heating a heater wound near the bottom of the low-temperature maintaining vessel, and transferring the heat to the accumulator. This is accomplished by heating the frozen polarized xenon generated on the inner surface of the outer cylinder by transmitting it to the outer cylinder.
[0012] し力しながら、前述した装置において氷結偏極キセノンの再ガス化は低温維持容 器の底部付近に卷装したヒータを加熱し、その熱を低温維持容器と蓄積器の空気層 を通して外筒体に伝達するため、外筒体内面に生成された氷結偏極キセノンの加温 速度が緩慢になる。その結果、氷結偏極キセノンが融解され、ガス化する際の融点の 通過時間が比較的長くなる。このため、融解過程で偏極崩壊、つまり偏極の緩和が 起こって氷結偏極キセノンに比べて再ガス化した偏極キセノンの偏極率が相当低下 する問題があった。  [0012] Meanwhile, in the above-described apparatus, the regasification of the ice-polarized xenon heats a heater wound near the bottom of the cryostat, and the heat is passed through the cryostat and the air layer of the accumulator. Since the power is transmitted to the outer cylinder, the heating speed of the frozen polarized xenon generated on the inner surface of the outer cylinder becomes slower. As a result, the frozen polarized xenon melts and the transit time of the melting point during gasification becomes relatively long. For this reason, there was a problem in that polarization collapse, that is, relaxation of polarization occurred during the melting process, and the polarization rate of regasified polarized xenon was considerably reduced as compared with frozen polarized xenon.
発明の開示  Disclosure of the invention
[0013] 本発明は、氷結偏極キセノンの再ガス化時において偏極率の低下を抑制すること が可能な偏極キセノンの氷結 ·再ガス化装置を提供することを目的とする。  [0013] An object of the present invention is to provide an apparatus for freezing and regasifying polarized xenon that can suppress a decrease in the polarization rate during regasification of frozen polarized xenon.
[0014] 本発明は、キセノンの偏極装置の偏極セルおよび偏極キセノンの氷結 ·再ガス化装 置の氷結セルを同一の磁場発生手段の空洞部内に並設して、偏極キセノンを含む 希釈ガスを前記偏極セルから氷結セルに輸送する際の偏極率の低下を抑制し、か つ氷結偏極キセノンの再ガス化時において偏極率の低下を抑制することが可能な偏 極キセノンの生成システムを提供することを目的とする。 [0014] The present invention includes polarized xenon by arranging a polarization cell of a xenon polarization device and an ice cell of a polarization xenon freeze / regasification device in the cavity of the same magnetic field generating means. Polarization capable of suppressing a decrease in the polarization rate when the dilution gas is transported from the polarization cell to the frozen cell, and suppressing a decrease in the polarization rate during regasification of the frozen polarized xenon. It is an object to provide a xenon generation system.
[0015] 本発明によると、磁場が加わる空洞部を有する磁場発生手段と、 According to the present invention, a magnetic field generating means having a cavity to which a magnetic field is applied,
前記磁場発生手段の空洞部内に配置された密閉容器と、  A sealed container arranged in the cavity of the magnetic field generating means,
前記密閉容器に連結された加温媒体の導入管および排出管と、  An inlet tube and an outlet tube of the heating medium connected to the closed container,
前記密閉容器内に収納された密閉型の氷結セルと、 前記氷結セルに前記密閉容器を貫通して連結された偏極キセノンを含む希釈ガス の供給管および排気管と、 A closed ice cell stored in the closed container, A supply pipe and an exhaust pipe for a dilution gas containing polarized xenon, which are connected to the ice cell through the closed container;
前記氷結セルに密着して捲回され、冷却媒体が流通される冷却管と  A cooling pipe through which a cooling medium is wrapped in close contact with the icing cell.
を具備した偏極キセノンの氷結 ·再ガス化装置が提供される。  The present invention provides an apparatus for freezing and regasifying polarized xenon, comprising:
[0016] また本発明によると、キセノンの偏極装置と偏極キセノンの氷結 ·再ガス化装置とを 具備した偏極キセノンの生成システムであって、  [0016] Further, according to the present invention, there is provided a polarized xenon generation system including a xenon polarizing device and a polarized xenon freeze / regasification device,
前記キセノンの偏極装置は、磁場発生手段の空洞部内に配置され、両端にレーザ 光透過窓を有する偏極セルと、この偏極セルにレーザ光をそのレーザ光透過窓を通 して入射させるためのレーザ光発生手段と、前記偏極セルに連結されたキセノンを含 む希釈ガスの供給管を備え、かつ  The xenon polarization device is disposed in a cavity of a magnetic field generating means, and has a polarization cell having laser light transmission windows at both ends, and causes laser light to enter the polarization cell through the laser light transmission window. And a supply pipe for a dilution gas containing xenon connected to the polarization cell, and
前記偏極キセノンの氷結 ·再ガス化装置は、前記磁場発生手段の空洞部内に前記 偏極セルと並設された密閉容器と、この密閉容器に連結された加温媒体の導入管お よび排出管と、前記密閉容器内に収納される密閉型の氷結セルと、一端が前記偏極 セルの排気管に連結され、他端が前記氷結セルに前記密閉容器を貫通して連結さ れた偏極キセノンを含む希釈ガスの供給管と、前記氷結セルに連結された排気管と 、前記氷結セルに密着して捲回され、冷却媒体が流通される冷却管とを備える偏極 キセノンの生成システムが提供される。  The polarized xenon freezing and regasification apparatus comprises: a sealed container juxtaposed with the polarized cell in the cavity of the magnetic field generating means; and an introduction pipe and discharge of a heating medium connected to the sealed container. A tube, a closed type icing cell housed in the closed container, and one end connected to the exhaust pipe of the polarized cell, and the other end connected to the icing cell through the closed container. A system for producing polarized xenon, comprising: a supply pipe for a dilution gas containing polar xenon; an exhaust pipe connected to the icing cell; and a cooling pipe wound tightly around the icing cell and through which a cooling medium flows. Is provided.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、本発明の第 1実施形態に係る偏極キセノンの氷結 ·再ガス化装置を示 す概略図である。  FIG. 1 is a schematic diagram showing an apparatus for freezing and regasifying polarized xenon according to a first embodiment of the present invention.
[図 2]図 2は、図 1の氷結セルを内蔵した密閉容器を示す断面図である。  [FIG. 2] FIG. 2 is a cross-sectional view showing a sealed container incorporating the frozen cell of FIG.
[図 3]図 3は、図 1の氷結セルを内蔵した密閉容器を示す部分切欠斜視図である。  [FIG. 3] FIG. 3 is a partially cutaway perspective view showing a sealed container incorporating the frozen cell of FIG. 1.
[図 4]図 4は、本発明の第 2実施形態に係る偏極キセノンの生成システムを示す概略 図である。  FIG. 4 is a schematic diagram showing a polarized xenon generation system according to a second embodiment of the present invention.
[図 5]図 5は、図 4の偏極セルを示す断面図である。  FIG. 5 is a cross-sectional view showing the polarization cell of FIG. 4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明に係る偏極キセノンの氷結 '再ガス化装置および偏極キセノンの生成 システムを図面を参照して詳細に説明する。 [0019] (第 1実施形態) Hereinafter, a polarized xenon freeze regasification apparatus and a polarized xenon generation system according to the present invention will be described in detail with reference to the drawings. (First Embodiment)
図 1は、この第 1実施形態に係る偏極キセノンの氷結 ·再ガス化装置を示す概略図 、図 2は図 1の氷結セルを内蔵した密閉容器を示す断面図、図 3は図 1の氷結セルを 内蔵した密閉容器を示す部分切欠斜視図である。  FIG. 1 is a schematic diagram showing a device for freezing and regasifying polarized xenon according to the first embodiment, FIG. 2 is a cross-sectional view showing a sealed container incorporating the ice cell of FIG. 1, and FIG. FIG. 2 is a partially cutaway perspective view showing a closed container having a frozen cell therein.
[0020] 磁場発生手段である横置きにされた超電導マグネット 1は、磁場が加わる例えば円 筒状の空洞部 2を有する。密閉容器 3は、前記超電導マグネット 1の空洞部 2内に横 置きに配置されている。この密閉容器 3は、図 2および図 3に示すように円筒状の容 器本体 4の左右両端に円板 5a, 5bを気密に取り付けた構造を有する。なお、密閉容 器 3を構成する容器本体 4および円板 5a, 5bは、非磁性材料、例えば SUS316また は銅により作られている。  The horizontally placed superconducting magnet 1 as a magnetic field generating means has, for example, a cylindrical hollow portion 2 to which a magnetic field is applied. The closed container 3 is disposed horizontally in the hollow portion 2 of the superconducting magnet 1. As shown in FIGS. 2 and 3, the closed container 3 has a structure in which disks 5a and 5b are hermetically attached to left and right ends of a cylindrical container body 4. The container body 4 and the disks 5a and 5b that constitute the closed container 3 are made of a non-magnetic material, for example, SUS316 or copper.
[0021] 加温媒体、例えば温水の導入管 6は、前記密閉容器 3の右側円板 5b近傍の容器 本体 4に連結されている。なお、加熱媒体は温水の代わりに例えば加温されたアルコ ールを用いることができる。この温水の導入管 6には、バルブ 7が介装されている。前 記温水の導入管 6の他端は、温水タンク 8に連結されている。温水の排出管 9は、前 記温水の導入管 6を対向する前記密閉容器 3の左側円板 5aの底部付近に連結され ている。温水の排出管 9には、バルブ 10が介装されている。前記温水排出管 9の他 端は、温水回収タンク 11に連結されている。前記バルブ 10と前記密閉容器 3の間に 位置する前記温水排出管 9部分には、分岐管 13が連結されている。この分岐管 13 には、ノ レブ 12が介装されている。前記分岐管 13の他端は、図示しない排気手段、 例えば真空ポンプが連結されている。なお、温水の導入管 6、排出管 9および分岐管 13は例えばステンレス力も作られている。また、前記温水の導入管 6は横置き密閉容 器 3の上部側、前記温水の排出管 9は密閉容器 3の底部側、にそれぞれ配置され、 後述する偏極セルを温める場合には温水を導入管 6を通して密閉容器 3内に導入し ながら温水の排出管 9から排出する。この際、温水が密閉容器 3内に滞留して満たさ れるようにするために、温水の排出管 9の径を温水の導入管 6の径より小さくなるよう に設計されている。すなわち、温水の排出管 9で温水の導入管 6からの温水の供給 量より少ない排出量に絞って温水が密閉容器 3内に滞留できる設計になっている。  A heating medium, for example, a hot water inlet pipe 6 is connected to the container body 4 near the right circular plate 5b of the closed container 3. The heating medium may be, for example, heated alcohol instead of hot water. A valve 7 is interposed in the hot water introduction pipe 6. The other end of the hot water inlet pipe 6 is connected to a hot water tank 8. The discharge pipe 9 for hot water is connected to the vicinity of the bottom of the left circular plate 5a of the closed vessel 3 facing the inlet pipe 6 for hot water. The hot water discharge pipe 9 is provided with a valve 10. The other end of the hot water discharge pipe 9 is connected to a hot water recovery tank 11. A branch pipe 13 is connected to a portion of the hot water discharge pipe 9 located between the valve 10 and the closed vessel 3. The branch pipe 13 is provided with a knob 12. The other end of the branch pipe 13 is connected to an exhaust means (not shown), for example, a vacuum pump. The hot water inlet pipe 6, the discharge pipe 9, and the branch pipe 13 are made of stainless steel, for example. The hot water inlet pipe 6 is arranged on the upper side of the horizontal sealed container 3 and the hot water discharge pipe 9 is arranged on the bottom side of the closed vessel 3, respectively. The hot water is discharged from the discharge pipe 9 while being introduced into the closed vessel 3 through the introduction pipe 6. At this time, the diameter of the hot water discharge pipe 9 is designed to be smaller than the diameter of the hot water inlet pipe 6 so that the hot water stays in the closed vessel 3 and is filled. In other words, the hot water discharge pipe 9 is designed so that the hot water can stay in the closed container 3 with a discharge amount smaller than the supply amount of the hot water from the hot water inlet pipe 6.
[0022] 氷結セル 14は、前記密閉容器 3内に同軸的にかつ横置きに配置されている。この 氷結セル 14は、円筒状のセル本体 15の左右両端に円板 16a, 16bを気密に取り付 けた構造を有する。なお、氷結セル 14を構成するセル本体 15および円板 16a, 16b は非磁性材料、例えば SUS316、銅により作られている。前記セル本体 15および円 板 16a, 16bは、内外面に高熱伝導性金属、例えば金のめっきが施されている。特に 、前記セル本体 15は内面を鏡面仕上げして平滑な面にすることが好ましい。 The icing cell 14 is arranged coaxially and horizontally in the closed container 3. this The icing cell 14 has a structure in which disks 16a and 16b are hermetically attached to left and right ends of a cylindrical cell body 15. The cell body 15 and the disks 16a, 16b constituting the frozen cell 14 are made of a non-magnetic material, for example, SUS316 or copper. The cell body 15 and the disks 16a and 16b are plated with a highly heat-conductive metal, for example, gold on the inner and outer surfaces. In particular, it is preferable that the inner surface of the cell body 15 is mirror-finished to have a smooth surface.
[0023] バルブ 17が介装された偏極キセノンを含む希釈ガスの供給管 18は、前記密閉容 器 3の左側円板 5aを貫通して氷結セル 14の左側円板 16aに連結されている。排気 管 19は、その一端が氷結セル 14の右側円板 16bに連結されている。前記排気管 19 の他端は、前記密閉容器 3の右側円板 5bを貫通して外部に配置されたガスバック 20 に連結されている。このガスバック 20近傍の排気管 19には、ノ レブ 21が介装されて いる。このバルブ 21と前記氷結セル 14の間に位置する排気管 19部分には、分岐管 23が連結されている。この分岐管 23には、バルブ 22が介装されている。前記分岐管 23の他端は、図示しない排気手段、例えば真空ポンプが連結されている。なお、供 給管 18、排気管 19および分岐管 23は、例えばステンレス力も作られている。  A supply pipe 18 for diluent gas containing polarized xenon, in which a valve 17 is interposed, penetrates through the left circular plate 5a of the closed container 3 and is connected to the left circular plate 16a of the frozen cell 14. . One end of the exhaust pipe 19 is connected to the right circular plate 16b of the frozen cell 14. The other end of the exhaust pipe 19 passes through the right circular plate 5b of the closed vessel 3 and is connected to a gas bag 20 disposed outside. A knurl 21 is interposed in an exhaust pipe 19 near the gas bag 20. A branch pipe 23 is connected to a portion of the exhaust pipe 19 located between the valve 21 and the icing cell 14. The branch pipe 23 is provided with a valve 22. The other end of the branch pipe 23 is connected to an exhaust means (not shown), for example, a vacuum pump. The supply pipe 18, the exhaust pipe 19, and the branch pipe 23 are made of, for example, stainless steel.
[0024] 冷却管 24は、前記氷結セル 14のセル本体 15の外周面に所望のピッチをあけて卷 装されている。この冷却管 24には、冷却媒体、例えば 77Kの液体窒素が流通される 。冷却媒体は、液体窒素に限らず、液体ネオン(23K)、液体ヘリウム (4K)を用いる ことができる。前記冷却管 24は、高熱伝導性材料、例えば銅カゝら作られている。前記 冷却管 24の内外面は、高熱伝導性金属、例えば金のめっきが施されている。前記冷 却管 24は、断面が真円形状であるが、セル本体 15との接触面積を大きくするために 断面が扁平楕円形状にしてもよい。  The cooling pipe 24 is wound around the outer peripheral surface of the cell body 15 of the frozen cell 14 at a desired pitch. A cooling medium, for example, liquid nitrogen of 77 K flows through the cooling pipe 24. The cooling medium is not limited to liquid nitrogen, and liquid neon (23K) and liquid helium (4K) can be used. The cooling pipe 24 is made of a material having high thermal conductivity, for example, copper. The inner and outer surfaces of the cooling pipe 24 are plated with a high heat conductive metal, for example, gold. The cooling pipe 24 has a perfect circular cross section, but may have a flat elliptical cross section in order to increase the contact area with the cell body 15.
[0025] 液体窒素の供給管 25は、その一端が密閉容器 3の左側円板 5aを貫通して前記氷 結セル 14の右側円板 16b近傍のセル本体 15部分に位置する冷却管 24の一端に連 結されている。つまり、液体窒素の供給管 25は氷結セル 14内を流通する偏極キセノ ンを含む希釈ガスの流れ(図 2中の左側から右側に向かう流れ)の下流側に位置する 冷却管 24の一端に連結されている。液体窒素の供給管 25には、バルブ 26が介装さ れている。この供給管 25の他端は、液体窒素タンク 27に連結されている。液体窒素 の排出管 28は、その一端が密閉容器 3の左側円板 5aを貫通して前記氷結セル 14 の左側円板 16a近傍のセル本体 15部分に位置する冷却管 24の他端に連結されて いる。つまり、液体窒素の排気管 28は氷結セル 14内を流通する偏極キセノンを含む 希釈ガスの流れの上流側に位置する冷却管 24の他端に連結されて 、る。液体窒素 の排出管 28には、バルブ 29が介装されている。この排出管 28の他端は、液体窒素 回収タンク 30に連結されている。なお、液体窒素の供給管 25および排出管 28は、 例えばステンレスから作られて 、る。 [0025] The liquid nitrogen supply pipe 25 has one end penetrating through the left disk 5a of the closed vessel 3, and one end of the cooling pipe 24 located in the cell body 15 near the right disk 16b of the frozen cell 14. It is linked to In other words, the liquid nitrogen supply pipe 25 is connected to one end of the cooling pipe 24 located downstream of the flow of the diluent gas containing polarized xenon (flow from left to right in FIG. 2) flowing through the icing cell 14. Are linked. A valve 26 is interposed in the liquid nitrogen supply pipe 25. The other end of the supply pipe 25 is connected to a liquid nitrogen tank 27. One end of the liquid nitrogen discharge pipe 28 passes through the left circular plate 5a of the The cooling pipe 24 is connected to the other end of the cooling pipe 24 located in the cell body 15 near the left circular plate 16a. That is, the liquid nitrogen exhaust pipe 28 is connected to the other end of the cooling pipe 24 located on the upstream side of the flow of the diluent gas containing polarized xenon flowing in the icing cell 14. A valve 29 is interposed in the liquid nitrogen discharge pipe 28. The other end of the discharge pipe 28 is connected to a liquid nitrogen recovery tank 30. The liquid nitrogen supply pipe 25 and the discharge pipe 28 are made of, for example, stainless steel.
[0026] 複数のリング状のバッフル 31は、前記氷結セル 14のセル本体 15外周面にそのセ ル本体 15の長さ方向に所望の間隔をあけて嵌着されている。これらのバッフル 31は 、高熱伝導性材料、例えば銅カゝら作られている。前記各バッフル 31には、加温媒体 、例えば温水との接触面積を増大させるために複数の穴 32が開口されている。なお 、図示しない温度センサを前記密閉容器 3内に挿入するための挿入管 33は、前記密 閉容器 3の右側円板 5bに連結されている。 A plurality of ring-shaped baffles 31 are fitted on the outer peripheral surface of the cell body 15 of the frozen cell 14 at desired intervals in the length direction of the cell body 15. These baffles 31 are made of a material having high thermal conductivity, for example, copper. Each of the baffles 31 has a plurality of holes 32 in order to increase a contact area with a heating medium, for example, hot water. An insertion tube 33 for inserting a temperature sensor (not shown) into the closed container 3 is connected to the right circular plate 5b of the closed container 3.
[0027] 次に、前述した偏極キセノンの氷結'再ガス化装置の動作を説明する。 [0027] Next, the operation of the above-described apparatus for refreezing and regasifying polarized xenon will be described.
[0028] 図 1に示す偏極キセノンを含む希釈ガスの供給管 18、排気管 19、分岐管 23、温水 の導入管 6、温水の排出管 9および分岐管 13のバルブ 17, 21、 22, 7, 11, 12を閉 じ、液体窒素供給ラインである液体窒素の供給管 25および排出管 28のバルブ 26, 29を開く。このような操作により、液体窒素タンク 27内の液体窒素を供給管 25を通し て氷結セル 14のセル本体 15外周面に卷装された冷却管 24内に供給する。供給さ れた液体窒素は、冷却管 24内を偏極キセノンを含む希釈ガスの流れ(図中の左側か ら右側に向力う流れ)の下流側からその上流側に向かって流通し、その流通過程で 氷結セル 14を冷却する。このとき、氷結セル 14のセル本体 15の外周面に高熱伝導 性の金めつきを施し、かつ冷却管 24の内外面に高熱伝導性の金めつきを施すことに より、それらセル本体 15と冷却管 24の接触部での液体窒素による冷却効率がより向 上される。このため、氷結セル 14をより効率的に冷却することが可能になる。また、温 水の排出管 9に繋がる分岐管 13のバルブ 12を開き、その分岐管 13に連結された真 空ポンプを作動して密閉容器 3内のガスを排気して密閉容器 3内を高真空状態にす ることによって、冷却管 24を密閉容器 3の空間に対して真空断熱される。そのため、 冷却管 24を流通する液体窒素により氷結セル 14をより効率的に冷却することが可能 になる。 [0028] The supply pipe 18, the exhaust pipe 19, the branch pipe 23, the hot water inlet pipe 6, the hot water discharge pipe 9, and the branch pipe 13 valves 17, 21, 22, 22, shown in Fig. 1, for the diluted gas containing polarized xenon. Close valves 7, 11, and 12, and open valves 26 and 29 of liquid nitrogen supply line 25 and discharge line 28 which are liquid nitrogen supply lines. With such an operation, the liquid nitrogen in the liquid nitrogen tank 27 is supplied through the supply pipe 25 into the cooling pipe 24 wound around the outer peripheral surface of the cell body 15 of the icing cell 14. The supplied liquid nitrogen flows from the downstream side to the upstream side of the flow of the diluent gas containing polarized xenon (flow from left to right in the drawing) in the cooling pipe 24, and The freezing cell 14 is cooled during the distribution process. At this time, the outer peripheral surface of the cell body 15 of the icing cell 14 is plated with high thermal conductivity, and the inner and outer surfaces of the cooling pipe 24 are plated with high thermal conductivity. The cooling efficiency by the liquid nitrogen at the contact portion of the cooling pipe 24 is further improved. Therefore, the icing cell 14 can be cooled more efficiently. In addition, the valve 12 of the branch pipe 13 connected to the hot water discharge pipe 9 is opened, and the vacuum pump connected to the branch pipe 13 is operated to exhaust the gas in the closed vessel 3 and to raise the inside of the closed vessel 3. By setting the vacuum state, the cooling pipe 24 is vacuum-insulated with respect to the space of the closed vessel 3. Therefore, the frozen cell 14 can be more efficiently cooled by the liquid nitrogen flowing through the cooling pipe 24. become.
[0029] 冷却管 24への液体窒素の供給を続行する過程で氷結セル 14が十分に冷却され た後、偏極キセノンを含む希釈ガスの排気管 19に繋がる分岐管 23のバルブ 22を開 き、分岐管 23に連結された真空ポンプを作動することにより氷結セル 14内のガス(主 に空気)を排気する。冷却管 24への液体窒素の供給および排気操作を続行しながら 、供給管 18のバルブ 17を開き、偏極キセノンを含む希釈ガスを供給管 18を通して氷 結セル 14内に供給する。この希釈ガスは、例えば偏極キセノン; 1〜5体積0 /0、 N ; [0029] After the icing cell 14 is sufficiently cooled in the process of continuing the supply of liquid nitrogen to the cooling pipe 24, the valve 22 of the branch pipe 23 connected to the exhaust pipe 19 of the dilution gas containing polarized xenon is opened. The gas (mainly air) in the icing cell 14 is exhausted by operating a vacuum pump connected to the branch pipe 23. While continuing to supply and exhaust liquid nitrogen to the cooling pipe 24, the valve 17 of the supply pipe 18 is opened, and the dilution gas containing polarized xenon is supplied into the ice cell 14 through the supply pipe 18. The diluent gas, for example, polarized xenon; 1-5 volume 0/0, N;
2 偏極キセノンと同量から 2倍量および残部 Heのガス組成を有する。希釈ガスは、氷 結セル 14内で冷却されることによりその中の偏極キセノンが選択的に氷結セル 14内 面(主にセル本体 15の内面)に氷結、蓄積される。このとき、氷結セル 14は超電導マ グネット 1により磁場が加えられて 、るため、偏極キセノンが氷結過程で偏極崩壊 (偏 極の緩和)されるのを抑え、偏極率の低下を抑制する。特に、超電導マグネット 1から 3T以上の強磁場を氷結セル 14に加えることによって、偏極率の低下を顕著に抑制 することが可能になる。また、液体窒素を冷却管 24内に流通させる際、偏極キセノン を含む希釈ガスの流れ(図中の左側力 右側に向力う流れ)の下流側から上流側に 向力うように流通させる。つまり、液体窒素を希釈ガスの流れに交差するように流通さ せる。これによつて、偏極セル 14の長手方向全体で前記希釈ガスを一様に冷却して 氷結セル 14内面(主にセル本体 15の内面)全体に偏極キセノンを効率的に氷結、 蓄積することが可能になる。さらに、氷結セル 14内面(主にセル本体 15の内面)を鏡 面仕上げして平滑な面にすることによって、氷結セル 14内面(主にセル本体 15の内 面)に偏極キセノンのスピンを乱す不純物ガスの吸着を抑制し、偏極率の低下をより 効果的に抑制することが可能である。  2 It has a gas composition of the same amount to twice that of polarized xenon and the balance He. As the dilution gas is cooled in the freezing cell 14, the polarized xenon therein is selectively frozen and accumulated on the inner surface of the freezing cell 14 (mainly the inner surface of the cell body 15). At this time, since a magnetic field is applied to the frozen cell 14 by the superconducting magnet 1, the polarized xenon is prevented from undergoing polarization collapse (relaxation of polarization) during the freezing process, and a decrease in the polarization rate is suppressed. I do. In particular, by applying a strong magnetic field of 3 T or more from the superconducting magnet 1 to the icing cell 14, it is possible to remarkably suppress a decrease in the polarization rate. Further, when flowing the liquid nitrogen through the cooling pipe 24, the liquid nitrogen is caused to flow from the downstream side to the upstream side of the flow of the diluent gas containing polarized xenon (the flow toward the left side and the flow toward the right side in the figure). . That is, the liquid nitrogen is circulated so as to cross the flow of the dilution gas. As a result, the dilution gas is uniformly cooled in the entire lengthwise direction of the polarization cell 14 to efficiently freeze and accumulate polarized xenon on the entire inner surface of the frozen cell 14 (mainly, the inner surface of the cell body 15). It becomes possible. In addition, the inside of the frozen cell 14 (mainly the inner surface of the cell body 15) is mirror-polished to a smooth surface, so that the spin of polarized xenon is applied to the inner surface of the frozen cell 14 (mainly the inner surface of the cell body 15). It is possible to suppress the adsorption of the disturbing impurity gas and suppress the decrease in the polarization rate more effectively.
[0030] 氷結セル 14での偏極キセノンの氷結、蓄積が十分になされた後、分岐管 23、 13に 連結された真空ポンプの作動を停止し、希釈ガスの供給管 18、液体窒素の供給管 2 5、排出管 28、排気管 19に繋がる分岐管 23および温水の排出管 9に繋がる分岐管 13のノ レブ 17, 26, 29, 22, 12を閉じ、温水供給ラインである温水の導入管 6、温 水の排出管 9および排気管 19のバルブ 7、 11、 21を開く。この操作により、温水タン ク 8内の温水を導入管 6を通して密閉容器 3内に導入する。導入された温水は、密閉 容器 3内に満たされながら、温水の排出管 9を通して排出されて温水回収タンク 11に 回収される。この間、氷結セル 14内面(主にセル本体 15の内面)に氷結、蓄積され た偏極キセノンが温水で加温され、再ガス化されて排気管 19を通してガスバッグ 20 に貯留される。このとき、偏極キセノンが氷結、蓄積された氷結セル 14に温水が直接 接触され、熱が伝達されるために、氷結された偏極キセノンを迅速に加温する。この ため、その氷結偏極キセノンが融解され、ガス化する際の融点を短時間で通過させる ことが可能になり、その過程での偏極崩壊、つまり偏極の緩和を抑制できる。その結 果、氷結偏極キセノンの状態に近似した偏極率を有する再ガス化した偏極キセノンを ガスバッグ 20に貯留することが可能になる。再ガス化された偏極キセノンは、ガスバッ ク 20毎取り外して使用される。 [0030] After the freezing and accumulation of the polarized xenon in the freezing cell 14 is sufficiently performed, the operation of the vacuum pumps connected to the branch pipes 23 and 13 is stopped, and the supply pipe 18 for the dilution gas and the supply of liquid nitrogen are supplied. Close pipes 25, 26, 29, 22, and 12 of pipe 25, discharge pipe 28, branch pipe 23 connected to exhaust pipe 19, and branch pipe 13 connected to hot water discharge pipe 9, and introduce hot water that is a hot water supply line. Open valves 7, 11, 21 of pipe 6, hot water discharge pipe 9 and exhaust pipe 19. By this operation, the warm water in the warm water tank 8 is introduced into the closed vessel 3 through the introduction pipe 6. The introduced hot water is sealed While being filled in the container 3, it is discharged through the hot water discharge pipe 9 and collected in the hot water recovery tank 11. During this time, the polarized xenon that has frozen and accumulated on the inner surface of the frozen cell 14 (mainly the inner surface of the cell body 15) is heated with warm water, regasified, and stored in the gas bag 20 through the exhaust pipe 19. At this time, warm water is directly contacted with the frozen cell 14 in which the polarized xenon freezes and accumulates, and heat is transferred, so that the frozen xenon is quickly heated. For this reason, the frozen polarized xenon is melted, and the melting point at the time of gasification can be passed in a short time, and the polarization collapse in the process, that is, the relaxation of the polarization can be suppressed. As a result, it becomes possible to store the regasified polarized xenon having a polarization rate close to the state of frozen polarized xenon in the gas bag 20. The regasified polarized xenon is removed and used every 20 gas bags.
[0031] 特に、氷結セル 14のセル本体 15の外周面に高熱伝導性の金めつきを施すこと〖こ よって、氷結セル 14内面の氷結された偏極キセノンをより迅速に加温して再ガス化 すること可能になる。 [0031] In particular, the outer peripheral surface of the cell body 15 of the frozen cell 14 is plated with high thermal conductivity, so that the frozen xenon inside the frozen cell 14 is heated more quickly and re-heated. It can be gasified.
[0032] また、複数のリング状のバッフル 31を記氷結セル 14のセル本体 15外周面にそのセ ル本体 15の長さ方向に所望の間隔をあけて嵌着することによって、氷結セル 14内面 の氷結された偏極キセノンをより一層迅速に加温して再ガス化すること可能になる。さ らに、それらのバッフル 31に複数の穴 32を開口して温水との接触面積を増大させる ことによって、氷結セル 14内面の氷結された偏極キセノンの加温速度を著しく高めて 再ガス化すること可能になる。  Further, a plurality of ring-shaped baffles 31 are fitted to the outer peripheral surface of the cell body 15 of the frozen cell 14 at a desired interval in the longitudinal direction of the cell body 15, thereby forming an inner surface of the frozen cell 14. The frozen xenon that has been frozen can be heated and regasified more quickly. Further, by opening a plurality of holes 32 in the baffles 31 to increase the contact area with hot water, the heating rate of the frozen xenon frozen inside the freezing cell 14 is significantly increased, and regasification is performed. It is possible to do.
[0033] 以上、第 1実施形態によれば氷結セル 14への偏極キセノンの氷結、蓄積後の再ガ ス化において、氷結された偏極キセノンを迅速に加温することができる。その結果、 氷結偏極キセノンが融解され、ガス化する際の融点を短時間で通過させることができ る。このため、融解過程での偏極崩壊、つまり偏極の緩和を抑制し、氷結偏極キセノ ンの状態に近似した偏極率を有する再ガス化した偏極キセノンを得ることが可能な偏 極キセノンの氷結 ·再ガス化装置を提供できる。このような高 ヽ偏極率を有する再ガ ス化偏極キセノンは、人の生体の MR撮像等への適用にお 、てその位置分解能をよ り一層高めることが可能になる。  As described above, according to the first embodiment, the frozen xenon can be quickly heated in the freezing of the frozen xenon in the freezing cell 14 and the regasification after accumulation. As a result, the frozen polarized xenon is melted, and the melting point at the time of gasification can be passed in a short time. For this reason, polarization decay during the melting process, that is, relaxation of polarization is suppressed, and it is possible to obtain regasified polarized xenon having a polarization rate close to that of frozen polarized xenon. Xenon freezing and regasification equipment can be provided. The re-gasified polarized xenon having such a high polarization rate can further improve the positional resolution when applied to MR imaging or the like of a human body.
[0034] また、冷却管 24を氷結セル 14の外周面に卷装する構造において、液体窒素の供 給管 25を冷却管 24の一端に液体窒素を冷却管 24に偏極キセノンを含む希釈ガス の流れに交差して流通するように連結させることによって、偏極セル 14の長手方向全 体で前記希釈ガスを一様に冷却して氷結セル 14内面(主にセル本体 15の内面)全 体に偏極キセノンを効率的に氷結、蓄積することができる。 [0034] Further, in a structure in which the cooling pipe 24 is wound around the outer peripheral surface of the icing cell 14, the supply of liquid nitrogen is provided. By connecting the supply pipe 25 to one end of the cooling pipe 24 so that liquid nitrogen flows to the cooling pipe 24 so as to intersect with the flow of the diluent gas containing polarized xenon, the entire length of the polarized cell 14 in the longitudinal direction is changed. By uniformly cooling the dilution gas, polarized xenon can be efficiently frozen and accumulated on the entire inner surface of the icing cell 14 (mainly the inner surface of the cell body 15).
[0035] さらに、冷却媒体が流通される冷却管 24は氷結セル 14の外周面に捲回され、かつ 氷結セル 14を密閉容器 3内に収納して加温媒体が氷結セル 14全体を均一、速やか に加温し得る構成を有する。換言すれば、加温および冷却の際に何ら機械的な動作 を伴わない構造になっている。このため、小型の偏極キセノンの氷結'再ガス化装置 を実現できる。また、これら氷結セル 14および密閉容器 3を両端封じ円筒状にするこ とによって、より容易に小型化することが可能になる。その結果、第 1実施形態に係る 偏極キセノンの氷結 ·再ガス化装置は経済的な観点力も直径が例えば 30cm程度の スペースに制限される 4. 7Tまたは 9Tの高磁場核磁気共鳴装置内に適応することが 可能になる利点を有する。  Further, the cooling pipe 24 through which the cooling medium flows is wound around the outer peripheral surface of the icing cell 14, and the icing cell 14 is housed in the closed container 3 so that the heating medium uniformly covers the entire icing cell 14. It has a structure that can be heated quickly. In other words, the structure does not involve any mechanical operation during heating and cooling. For this reason, it is possible to realize a small-sized frozen xenon regasification apparatus. Further, by forming the icing cell 14 and the sealed container 3 into a cylindrical shape with both ends sealed, it is possible to more easily reduce the size. As a result, the polarized xenon icing and regasification apparatus according to the first embodiment is economically limited in terms of its power to a space having a diameter of, for example, about 30 cm. It has the advantage that it can be adapted.
[0036] なお、第 1実施形態では冷却管に液体窒素を供給したが、液体窒素より氷結セル への冷却効率の高い液体窒素の蒸気を供給してもよい。また、液体窒素に代えて液 体ネオン、液体ヘリウムを用いれば氷結セルをより効率よく冷却することが可能になる  [0036] In the first embodiment, liquid nitrogen is supplied to the cooling pipe. However, liquid nitrogen vapor having a higher cooling efficiency than the liquid nitrogen may be supplied to the icing cell. If liquid neon or liquid helium is used instead of liquid nitrogen, the frozen cell can be cooled more efficiently.
[0037] (第 2実施形態) (Second Embodiment)
図 4は、この第 2実施形態に係る偏極キセノンの生成システムを示す概略図、図 5は 図 4の偏極セルを示す断面図である。なお、図 4において前述した図 1と同様な部材 は同符号を付して説明を省略する。  FIG. 4 is a schematic diagram showing a polarized xenon generation system according to the second embodiment, and FIG. 5 is a cross-sectional view showing the polarized cell of FIG. In FIG. 4, the same members as those in FIG.
[0038] この偏極キセノンの生成システムは、キセノンの偏極装置と前述した偏極キセノンの 氷結 ·再ガス化装置とを備えている。キセノンの偏極装置は、共通(同一)の超電導マ グネット 1の磁場が加えられる円筒状の空洞部 2に氷結セルを内蔵した密閉容器 3と 共に並置された偏極セル 41を備えている。 [0038] This polarized xenon generation system includes a xenon polarizing device and the above-described polarized xenon freezing / regasification device. The xenon polarization device comprises a polarization cell 41 juxtaposed with a closed vessel 3 containing a frozen cell in a cylindrical cavity 2 to which a magnetic field of a common (identical) superconducting magnet 1 is applied.
[0039] 前記偏極セル 41は、図 5に示すように両端にフランジ 42a, 42bを有する非磁性材 料、例えば SUS316、銅力 作られた円筒状のセル本体 43を備えている。石英ガラ ス製の窓 44a、 44bは、前記各フランジ 42a, 42bに Oリング 45a, 45bを介してそれ ぞれ当接され、抑えネジ 46a, 46bを有する複数、例えば 4つのクランプ部材 47a, 4 7bにより固定されている。レーザ発振装置、例えばアレイ型半導体レーザ(図示せず )は、偏極セル 41の例えば左側の窓 44aに対向するように配置されている。 As shown in FIG. 5, the polarized cell 41 includes a non-magnetic material having flanges 42a and 42b at both ends, for example, a cylindrical cell body 43 made of SUS316 or copper. Quartz glass windows 44a, 44b are attached to the flanges 42a, 42b through O-rings 45a, 45b. A plurality of, for example, four clamp members 47a, 47b each having an abutment screw 46a, 46b are abutted, and are fixed. A laser oscillation device, for example, an array type semiconductor laser (not shown) is arranged so as to face, for example, a left window 44a of the polarization cell 41.
[0040] 混合ガスの導入管 48は、前記偏極セル 41のセル本体 43に連結されている。この 導入管 48には、ノ レブ 49が介挿され、他端が混合ガス生成器 50に連結されている 。偏極キセノンを含む希釈ガスの排気管 (供給管を兼ねる) 18は、一端が導入管 48 と略点対称的に偏極セル 41のセル本体 43に連結され、他端が前記密閉容器 3の左 側円板を貫通して氷結セルの左側円板に連結されている。なお、導入管 48は例え ばステンレスから作られて 、る。 The mixed gas introduction pipe 48 is connected to the cell body 43 of the polarization cell 41. A knurl 49 is inserted into the introduction pipe 48, and the other end is connected to a mixed gas generator 50. One end of an exhaust pipe 18 of the dilution gas containing polarized xenon (also serving as a supply pipe) is connected to the cell body 43 of the polarized cell 41 approximately point symmetrically with the introduction pipe 48, and the other end of the closed vessel 3 is provided. It passes through the left disk and is connected to the left disk of the frozen cell. The introduction tube 48 is made of, for example, stainless steel.
[0041] 次に、前述した偏極キセノンの生成システムの動作を説明する。  Next, the operation of the above-described polarized xenon generation system will be described.
[0042] 偏極セル 41のセル本体 43の例えば左側のクランプ部材 47aを外して、窓 44aおよ び Oリング 45aをフランジ 42aから外した後、窒素雰囲気下でキセノンへのスピン変換 作用をなすルビジウム片をセル本体 43内に入れる。 Oリング 45aおよび窓 44aを再び クランプ部材 47aによりフランジ 42aに取り付けてセル本体 43を密閉する。このセル 本体 43を有する偏極セル 41を加熱して例えば 1 OOppm程度のルビジウム蒸気を偏 極セル 41内に発生させる。混合ガスの導入管 48のバルブ 49を開き、これ以外のバ ルブを閉じ、混合ガス生成器 50から混合ガスを導入管 48を通して偏極セル 41内に 供給する。前記混合ガスは、例えば129 Xe ; l〜5体積%、 N ; 129Xeと同量カゝら 2倍量 [0042] For example, after removing the clamp member 47a on the left side of the cell body 43 of the polarization cell 41 and removing the window 44a and the O-ring 45a from the flange 42a, the spin conversion to xenon is performed in a nitrogen atmosphere. Put the rubidium pieces into the cell body 43. The O-ring 45a and the window 44a are attached to the flange 42a again by the clamp member 47a, and the cell body 43 is sealed. The polarized cell 41 having the cell body 43 is heated to generate, for example, about 100 ppm of rubidium vapor in the polarized cell 41. The valve 49 of the mixed gas introduction pipe 48 is opened, the other valves are closed, and the mixed gas is supplied from the mixed gas generator 50 into the polarization cell 41 through the introduction pipe 48. The mixed gas is, for example 129 Xe; l~5 vol%, N; 129 Xe and Doryokakara 2 times
2  2
および残部 Heのガス組成を有する。超電導マグネット 1により偏極セル 41に磁場が 加えた状態で図示しな 、アレイ型半導体レーザ力も例えばピーク波長が 794. 8nm のレーザ光を一方の窓(例えば左側の窓 44a)を通して偏極セル 41内に入射させて 偏極セル 41内でボンビングさせる。このとき、蒸気状のルビジウムが励起され、この励 起エネルギーにより偏極セル 41内のキセノン原子との間で、スピン変換が生じて高い 偏極率を有するキセノン (偏極キセノン)が生成される。  And the balance is He gas composition. Although not shown in the state where a magnetic field is applied to the polarization cell 41 by the superconducting magnet 1, the array-type semiconductor laser also emits laser light having a peak wavelength of 799.8 nm through one window (for example, the left window 44a). And bombed in the polarization cell 41. At this time, vapor-like rubidium is excited, and the excitation energy causes spin conversion between the xenon atoms in the polarization cell 41 to generate xenon (polarized xenon) having a high polarization rate. .
[0043] 予め、前述した第 1実施形態のように密閉容器 3内の氷結セル内を真空排気し、さ らに氷結セルのセル本体の外周面に卷装した冷却管に液体窒素を流通させて氷結 セルを冷却した後、排気管 (供給管を兼ねる) 18のバルブ 17を開くことにより、偏極 セル 41内の偏極キセノンを含む希釈ガスを排気管 (供給管を兼ねる) 18を通して氷 結セルに供給し、氷結セル内面(主にセル本体の内面)に偏極キセノンを氷結、蓄積 する。この後、温水の密閉容器 3内への導入等、前述した第 1実施形態と同様な手法 により氷結セル内面に氷結、蓄積された偏極キセノンを加温し、再ガス化して排気管 19を通してガスバッグ 20に貯留する。 [0043] As in the first embodiment described above, the inside of the frozen cell in the closed vessel 3 is evacuated in advance, and liquid nitrogen is allowed to flow through a cooling pipe wound around the outer peripheral surface of the cell body of the frozen cell. After cooling the cell, the diluted gas containing polarized xenon in the polarized cell 41 is passed through the exhaust pipe (also serving as the supply pipe) 18 by opening the valve 17 of the exhaust pipe (also serving as the supply pipe) 18. The xenon is supplied to the frozen cell and freezes and accumulates polarized xenon on the inner surface of the frozen cell (mainly the inner surface of the cell body). After that, the polarized xenon frozen and accumulated on the inner surface of the frozen cell is heated by the same method as in the first embodiment described above, such as introducing hot water into the closed vessel 3, re-gasified, and passed through the exhaust pipe 19. Store in gas bag 20.
[0044] 以上、第 2実施形態によればキセノンの偏極装置の偏極セル 41および偏極キセノ ンの氷結 ·再ガス化装置の氷結セルを同一の磁場発生手段である超電導マグネット 1の空洞部 2内に並設することによって、偏極キセノンを含む希釈ガスを前記偏極セ ル 41から氷結セルに輸送する際、常に磁場 (例えば 3T以上の強磁場)を偏極キセノ ンを含む希釈ガスにカ卩えることができるため、偏極率の低下を抑制することが可能で ある。 As described above, according to the second embodiment, the polarization cell 41 of the xenon polarization device and the ice cell of the polarization xenon freezing / regasification device are combined with the cavity of the superconducting magnet 1 as the same magnetic field generating means. When the diluent gas containing polarized xenon is transported from the polarized cell 41 to the icing cell by arranging it in parallel in the part 2, the magnetic field (for example, a strong magnetic field of 3 T or more) containing the polarized xenon is always diluted. Since it can be converted to gas, it is possible to suppress a decrease in the polarization rate.
[0045] また、氷結偏極キセノンの再ガス化時にぉ 、て第 1実施形態で説明したように偏極 率の低下を抑制することが可能である。  [0045] Further, at the time of regasification of the frozen polarized xenon, it is possible to suppress a decrease in the polarization rate as described in the first embodiment.
[0046] したがって、キセノンの偏極装置で生成した偏極キセノンをその偏極率の低下を抑 えて再ガス化された偏極キセノンとしてガスバッグ 20等に貯留できるため、その偏極 キセノンを人の生体の MR撮像等に用いる際にその位置分解能をより一層高めること が可能な偏極キセノンの生成システムを提供できる。  [0046] Therefore, the polarized xenon generated by the xenon polarizing device can be stored in the gas bag 20 or the like as re-gasified polarized xenon while suppressing a decrease in the polarization rate. It is possible to provide a polarized xenon generation system that can further increase the positional resolution when used for MR imaging of a living body or the like.
[0047] さらに、氷結セルが収納された密閉容器 3および偏極セル 41を円筒状にして磁場 内に並設させた構成を有し、かつ偏極セル 41でのキセノンガスの偏極、氷結セルで の加温および冷却の際に何ら機械的な動作を伴わな 、構造になって 、る。このため 、小型の偏極キセノンの生成システムを実現できる。その結果、第 2実施形態に係る 偏極キセノンの生成システムを経済的な観点から直径が例えば 30cm程度のスぺー スに制限される 4. 7Tまたは 9Tの高磁場核磁気共鳴装置内に適応することが可能 になる利点を有する。  Further, it has a configuration in which the closed vessel 3 containing the frozen cell and the polarized cell 41 are cylindrical and arranged in a magnetic field, and the polarization of the xenon gas in the polarized cell 41 The structure is such that there is no mechanical action during heating and cooling in the cell. For this reason, a small-sized polarized xenon generation system can be realized. As a result, the system for generating polarized xenon according to the second embodiment is applied to a 4.7 T or 9 T high-field nuclear magnetic resonance apparatus whose diameter is limited to a space of, for example, about 30 cm from an economic viewpoint. It has the advantage that it becomes possible.
[0048] なお、第 1、第 2の実施形態では磁場発生手段として超電導マグネットを用いたが、 電磁石を用いてもよい。  In the first and second embodiments, the superconducting magnet is used as the magnetic field generating means, but an electromagnet may be used.
[0049] 第 1、第 2の実施形態では、氷結セルを円筒状にし、この外周面に冷却媒体が流通 する冷却管を捲回したが、これに限定されない。例えば、氷結セルと冷却管を捩り合 わせて外周面同士を互いに密着させた構造にしてもょ 、。 [0050] 第 1、第 2の実施形態では、超電導マグネット、密閉容器、偏極セルを横置きにした 力 それら部材を縦置きにしてもよい。 [0049] In the first and second embodiments, the frozen cell is formed in a cylindrical shape, and the cooling pipe through which the cooling medium flows is wound around the outer peripheral surface, but the present invention is not limited to this. For example, a structure may be adopted in which the outer peripheral surfaces are closely adhered to each other by twisting the ice cell and the cooling pipe. In the first and second embodiments, the superconducting magnet, the sealed container, and the force with the polarized cell placed horizontally may be placed vertically.
産業上の利用可能性  Industrial applicability
[0051] 本発明に係る偏極キセノンの氷結 ·再ガス化装置によれば、氷結偏極キセノンの再 ガス化時にお!ヽて偏極率の低下を抑制することが可能で、再ガス化された偏極キセ ノンを人の生体の MR撮像等に用いる際にその位置分解能をより一層高めることがで き、 MR画像診断、特に脳画像の診断技術への応用に貢献できる。  [0051] According to the apparatus for freezing and regasifying polarized xenon according to the present invention, it is necessary to regasify the frozen xenon when regasification is performed. In addition, it is possible to suppress a decrease in the polarization rate, and it is possible to further improve the positional resolution when regasified polarized xenon is used for MR imaging of a living body, etc. It can contribute to the diagnosis, especially to the application of the brain image to the diagnosis technology.
[0052] 本発明に係る偏極キセノンの生成システムによれば、偏極キセノンを含む希釈ガス キセノンの偏極装置力 氷結 ·再ガス化装置に輸送する際の偏極率の低下を抑制し 、かつ氷結偏極キセノンの再ガス化時にお!、て偏極率の低下を抑制することが可能 で、再ガス化された偏極キセノンを人の生体の MR撮像等に用いる際にその位置分 解能をより一層高めることができ、 MR画像診断、特に脳画像の診断技術への応用 に貢献できる。  [0052] According to the polarized xenon generation system of the present invention, the polarization device power of the diluent gas xenon containing polarized xenon is controlled to suppress the decrease in the polarization rate when transported to the icing / regasification device. In addition, when re-gasifying frozen polarized xenon, it is possible to suppress the decrease in polarization rate, and when re-gasified polarized xenon is used for MR imaging of a human body, the position of the xenon can be reduced. The resolution can be further improved, and it can contribute to the application of MR imaging, especially brain imaging.

Claims

請求の範囲 The scope of the claims
[1] 磁場が加わる空洞部を有する磁場発生手段と、  [1] magnetic field generating means having a cavity to which a magnetic field is applied;
前記磁場発生手段の空洞部内に配置された密閉容器と、  A sealed container arranged in the cavity of the magnetic field generating means,
前記密閉容器に連結された加温媒体の導入管および排出管と、  An inlet tube and an outlet tube of the heating medium connected to the closed container,
前記密閉容器内に収納された密閉型の氷結セルと、  A closed ice cell stored in the closed container,
前記氷結セルに前記密閉容器を貫通して連結された偏極キセノンを含む希釈ガス の供給管および排気管と、  A supply pipe and an exhaust pipe for a dilution gas containing polarized xenon, which are connected to the ice cell through the closed container;
前記氷結セルに密着して捲回され、冷却媒体が流通される冷却管と  A cooling pipe through which a cooling medium is wrapped in close contact with the icing cell.
を具備した偏極キセノンの氷結 ·再ガス化装置。  Xenon freezing and regasification equipment equipped with
[2] 前記磁場発生手段は、超電導マグネットである請求項 1記載の偏極キセノンの氷結 •再ガス化装置。  2. The apparatus for freezing and regasifying polarized xenon according to claim 1, wherein the magnetic field generating means is a superconducting magnet.
[3] 前記加温媒体の排出管は、氷結操作時に排気管を兼ね、その他端に排気手段が 取り付けられる請求項 1記載の偏極キセノンの氷結 ·再ガス化装置。  3. The apparatus for freezing and regasifying polarized xenon according to claim 1, wherein the discharge pipe of the heating medium also functions as an exhaust pipe during a freezing operation, and an exhaust means is attached to the other end.
[4] 前記氷結セルは、外面にそのセル素材より高熱伝導性の金属が被覆されている請 求項 1記載の偏極キセノンの氷結 ·再ガス化装置。  4. The apparatus for freezing and regasifying polarized xenon according to claim 1, wherein the freeze cell has an outer surface coated with a metal having higher thermal conductivity than the cell material.
[5] 前記氷結セルは、内面が平滑な鏡面を有する請求項 1記載の偏極キセノンの氷結 •再ガス化装置。  5. The frozen xenon freeze / regasifier according to claim 1, wherein the freeze cell has a smooth mirror surface on an inner surface.
[6] 前記冷却管は、銅から作られ、かつ内外面に銅より高熱伝導性の金属が被覆され て 、る請求項 1記載の偏極キセノンの氷結 ·再ガス化装置。  6. The apparatus for freezing and regasifying polarized xenon according to claim 1, wherein the cooling pipe is made of copper, and the inner and outer surfaces are coated with a metal having higher thermal conductivity than copper.
[7] 冷却媒体の供給管は、その一端が前記密閉容器を貫通して偏極キセノンを含む希 釈ガスの流れの下流側に位置する前記冷却管の一端に連結され、かつ冷却媒体の 排出管は前記希釈ガスの流れの上流側に位置する前記冷却管の一端に連結される 請求項 1記載の偏極キセノンの氷結 ·再ガス化装置。 [7] The cooling medium supply pipe has one end connected to one end of the cooling pipe located downstream of the flow of the diluent gas containing polarized xenon through the closed vessel, and discharging the cooling medium. 2. The apparatus for freezing and regasifying polarized xenon according to claim 1, wherein the pipe is connected to one end of the cooling pipe located on the upstream side of the flow of the dilution gas.
[8] 複数のリング状のバッフルは、前記氷結セルにそのセルの長さ方向に所望の間隔 をあけてさらに設けられる請求項 1記載の偏極キセノンの氷結 ·再ガス化装置。 8. The polarized xenon icing / regasification apparatus according to claim 1, wherein a plurality of ring-shaped baffles are further provided on the icing cell at desired intervals in a length direction of the cell.
[9] 前記リング状の各バッフルは、さらに複数の穴がそれぞれ開口されている請求項 8 記載の偏極キセノンの氷結 ·再ガス化装置。 [9] The apparatus for freezing and regasifying polarized xenon according to claim 8, wherein each of the ring-shaped baffles is further provided with a plurality of holes.
[10] キセノンの偏極装置と偏極キセノンの氷結 ·再ガス化装置とを具備した偏極キセノン の生成システムであって、 [10] Polarized xenon equipped with xenon polarizer and polarized xenon freeze / regasifier A generation system,
前記キセノンの偏極装置は、磁場発生手段の空洞部内に配置され、両端にレーザ 光透過窓を有する偏極セルと、この偏極セルにレーザ光をそのレーザ光透過窓を通 して入射させるためのレーザ光発生手段と、前記偏極セルに連結されたキセノンを含 む希釈ガスの供給管を備え、かつ  The xenon polarization device is disposed in a cavity of a magnetic field generating means, and has a polarization cell having laser light transmission windows at both ends, and causes laser light to enter the polarization cell through the laser light transmission window. And a supply pipe for a dilution gas containing xenon connected to the polarization cell, and
前記偏極キセノンの氷結 ·再ガス化装置は、前記磁場発生手段の空洞部内に前記 偏極セルと並設された密閉容器と、この密閉容器に連結された加温媒体の導入管お よび排出管と、前記密閉容器内に収納される密閉型の氷結セルと、一端が前記偏極 セルの排気管に連結され、他端が前記氷結セルに前記密閉容器を貫通して連結さ れた偏極キセノンを含む希釈ガスの供給管と、前記氷結セルに連結された排気管と 、前記氷結セルに密着して捲回され、冷却媒体が流通される冷却管とを備える偏極 キセノンの生成システム。  The polarized xenon freezing and regasification apparatus comprises: a sealed container juxtaposed with the polarized cell in the cavity of the magnetic field generating means; and an introduction pipe and discharge of a heating medium connected to the sealed container. A tube, a closed type icing cell housed in the closed container, and one end connected to the exhaust pipe of the polarized cell, and the other end connected to the icing cell through the closed container. A system for producing polarized xenon, comprising: a supply pipe for a dilution gas containing polar xenon; an exhaust pipe connected to the icing cell; and a cooling pipe wound tightly around the icing cell and through which a cooling medium flows. .
[11] 前記磁場発生手段は、超電導マグネットである請求項 10記載の偏極キセノンの生 成システム。  11. The polarized xenon generation system according to claim 10, wherein the magnetic field generation means is a superconducting magnet.
[12] 前記氷結,再ガス化装置の前記加温媒体の排出管は、氷結操作時に排気管を兼 ね、その他端に排気手段が取り付けられる請求項 10記載の偏極キセノンの生成シス テム。  12. The polarized xenon generation system according to claim 10, wherein a discharge pipe of the heating medium of the freeze / regasifier serves also as an exhaust pipe at the time of the freeze operation, and an exhaust means is attached to the other end.
[13] 前記氷結'再ガス化装置の前記氷結セルは、外面にそのセル素材より高熱伝導性 の金属が被覆されている請求項 10記載の偏極キセノンの生成システム。  13. The polarized xenon generation system according to claim 10, wherein the icing cell of the icing / regasification apparatus has an outer surface coated with a metal having higher thermal conductivity than the cell material.
[14] 前記氷結'再ガス化装置の前記氷結セルは、内面が平滑な鏡面を有する請求項 1 0記載の偏極キセノンの生成システム。  14. The system for producing polarized xenon according to claim 10, wherein the freeze cell of the freeze 'regasifier has a smooth mirror surface on an inner surface.
[15] 前記氷結 ·再ガス化装置の前記冷却管は、銅から作られ、かつ内外面に銅より高熱 伝導性の金属が被覆されている請求項 10記載の偏極キセノンの生成システム。  15. The system for producing polarized xenon according to claim 10, wherein the cooling tube of the freeze / regasifier is made of copper, and the inner and outer surfaces are coated with a metal having higher heat conductivity than copper.
[16] 冷却媒体の供給管は、その一端が前記密閉容器を貫通して偏極キセノンを含む希 釈ガスの流れの下流側に位置する前記冷却管の一端に連結され、かつ冷却媒体の 排出管は前記希釈ガスの流れの上流側に位置する前記冷却管の一端に連結される 請求項 10記載の偏極キセノンの生成システム。  [16] The cooling medium supply pipe has one end connected to one end of the cooling pipe located at the downstream side of the flow of the diluent gas containing polarized xenon through the closed vessel, and discharging the cooling medium. 11. The system for producing polarized xenon according to claim 10, wherein a pipe is connected to one end of the cooling pipe located upstream of the flow of the dilution gas.
[17] 複数のリング状のバッフルは、前記氷結セルにそのセルの長さ方向に所望の間隔 をあけてさらに設けられる請求項 10記載の偏極キセノンの生成システム。 前記リング状の各バッフルは、さらに複数の穴がそれぞれ開口されている[17] A plurality of ring-shaped baffles are provided on the frozen cell at desired intervals in the length direction of the cell. 11. The polarized xenon generation system according to claim 10, further provided with a gap. Each of the ring-shaped baffles further has a plurality of holes respectively opened.
7記載の偏極キセノンの生成システム。 7. A system for producing polarized xenon according to 7.
PCT/JP2005/010379 2004-06-07 2005-06-06 Polarized xenon freezing and re-gasifying device and polarized xenon producing system WO2005120342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-168684 2004-06-07
JP2004168684A JP3863154B2 (en) 2004-06-07 2004-06-07 Freezing and regasification equipment for polarized xenon and generation system for polarized xenon

Publications (1)

Publication Number Publication Date
WO2005120342A1 true WO2005120342A1 (en) 2005-12-22

Family

ID=35495309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010379 WO2005120342A1 (en) 2004-06-07 2005-06-06 Polarized xenon freezing and re-gasifying device and polarized xenon producing system

Country Status (2)

Country Link
JP (1) JP3863154B2 (en)
WO (1) WO2005120342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678966B (en) * 2018-07-13 2019-12-11 薩摩亞商Scl生物科技有限公司 Cell dispensing and storage device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173317A (en) * 1995-09-27 1997-07-08 General Electric Co <Ge> Method for acquiring magnetic resonance image from body to be examined, magnetic resonance image preparation system, integrated type polarizing magnet and low magnetic field magnet to be used for magnetic resonance detection system
JP2000507689A (en) * 1996-03-29 2000-06-20 ザ・トラスティーズ・オヴ・プリンストン・ユニヴァーシティ High capacity hyperpolarizer for producing spin-polarized noble gases
JP2002500337A (en) * 1997-12-12 2002-01-08 マグネティック・イメイジング・テクノロジーズ・インコーポレイテッド Polarized gas accumulators and heating jackets and associated gas recovery and melting methods and polarized gas products
JP2003506173A (en) * 1999-08-09 2003-02-18 フォルシュングスツェントルム ユーリッヒ ゲーエムベーハー High-pressure polarizer for hyperpolarizing nuclear spins of rare gases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173317A (en) * 1995-09-27 1997-07-08 General Electric Co <Ge> Method for acquiring magnetic resonance image from body to be examined, magnetic resonance image preparation system, integrated type polarizing magnet and low magnetic field magnet to be used for magnetic resonance detection system
JP2000507689A (en) * 1996-03-29 2000-06-20 ザ・トラスティーズ・オヴ・プリンストン・ユニヴァーシティ High capacity hyperpolarizer for producing spin-polarized noble gases
JP2002500337A (en) * 1997-12-12 2002-01-08 マグネティック・イメイジング・テクノロジーズ・インコーポレイテッド Polarized gas accumulators and heating jackets and associated gas recovery and melting methods and polarized gas products
JP2003506173A (en) * 1999-08-09 2003-02-18 フォルシュングスツェントルム ユーリッヒ ゲーエムベーハー High-pressure polarizer for hyperpolarizing nuclear spins of rare gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678966B (en) * 2018-07-13 2019-12-11 薩摩亞商Scl生物科技有限公司 Cell dispensing and storage device and method

Also Published As

Publication number Publication date
JP2005342426A (en) 2005-12-15
JP3863154B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP5713671B2 (en) Method and apparatus for hyperpolarizing materials for advanced MR techniques
CA2250167C (en) Cryogenic accumulator for spin-polarized xenon-129
CA2313480C (en) Polarized gas accumulators and heating jackets and associated gas collection and thaw methods and polarized gas products
US6332324B1 (en) Cryostat and magnetism measurement apparatus using the cryostat
US6666047B1 (en) High pressure polarizer for hyperpolarizing the nuclear spin of noble gases
US20140123681A1 (en) Method and apparatus to hyperpolarize materials for enhanced mr techniques
US6651459B2 (en) Hyperpolarization of a gas
US7281393B2 (en) Method and apparatus for accumulating hyperpolarized xenon
WO2005120342A1 (en) Polarized xenon freezing and re-gasifying device and polarized xenon producing system
WO1999034189A2 (en) Process and device to solidify and thaw a polarized gas comprising xenon
EP1279912B1 (en) Methods of collecting and thawing polarised gases, associated accumulators and heating jackets
CA2349069C (en) Cryogenic accumulator for spin-polarized xenon-129
JP2004113317A (en) Noble gas polarizer apparatus and magnetic-resonance imaging apparatus
AU2003203796B2 (en) Polarized gas accumulators and heating jackets and associated gas collection and thaw methods and polarized gas products

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase