WO2005119702A1 - Huile dielectrique de haute performance et son utilisation dans des equipements electriques a haute tension - Google Patents

Huile dielectrique de haute performance et son utilisation dans des equipements electriques a haute tension Download PDF

Info

Publication number
WO2005119702A1
WO2005119702A1 PCT/FR2005/050356 FR2005050356W WO2005119702A1 WO 2005119702 A1 WO2005119702 A1 WO 2005119702A1 FR 2005050356 W FR2005050356 W FR 2005050356W WO 2005119702 A1 WO2005119702 A1 WO 2005119702A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
naphthenic
dielectric
oils
ester
Prior art date
Application number
PCT/FR2005/050356
Other languages
English (en)
Inventor
Jean-Luc Bessede
Christophe Perrier
Abderrahmane Beroual
Original Assignee
Areva T & D Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva T & D Sa filed Critical Areva T & D Sa
Priority to BRPI0511289-3A priority Critical patent/BRPI0511289A/pt
Priority to US11/597,272 priority patent/US7833440B2/en
Priority to CA002568426A priority patent/CA2568426A1/fr
Priority to AU2005248992A priority patent/AU2005248992B2/en
Priority to DE602005007892T priority patent/DE602005007892D1/de
Priority to EP05766695A priority patent/EP1754236B1/fr
Priority to PL05766695T priority patent/PL1754236T3/pl
Publication of WO2005119702A1 publication Critical patent/WO2005119702A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/28Anti-static
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/125Cooling by synthetic insulating and incombustible liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/321Insulating of coils, windings, or parts thereof using a fluid for insulating purposes only

Definitions

  • the present invention relates to a high performance dielectric oil and its use in high voltage electrical equipment.
  • This equipment can be power transformers, measuring, distribution or traction, as well as tap changers, bushings, distributors, oil bath circuit breakers, power capacitors or cables.
  • Power transformers are among the most strategic and expensive components of the transmission and distribution networks of electrical energy. It is therefore essential that they work properly as long as possible. Most of these transformers are filled with a liquid that plays the role of both electrical insulation and heat transfer fluid. This liquid is almost always a mineral oil, resulting from the fractional distillation of crude oil. This preponderance of mineral oils can be explained in particular by their low cost compared to that of synthetic insulating liquids likely to be used in electro ⁇ technique such as alkylbenzenes. Ester and silicone oils are used in distribution transformers, but are rarely, because of their high cost, in power transformers.
  • the inventors have also set themselves the goal of providing an oil which, while having these advantages, has a manufacturing cost compatible with use in power transformers, knowing that a power transformer can contain more than 40,000 liters. oil.
  • a dielectric oil comprising from about 75 to about 95 volume percent of a naphthenic oil and from about 5 to about 25 percent by volume of an oil. ester.
  • the inventors have indeed found that, surprisingly, the addition of an ester oil to a naphthenic oil in the proportions indicated above results in a very clear improvement of the dielectric properties of this naphthenic oil, as well as its aging resistance, without affecting its viscosity and, therefore, its ability to ensure heat transfer. This gives an oil performance far superior to those of mineral oils currently used in power transformers, as well as those of silicone oils.
  • the naphthenic oil is an oil or a mixture of oils which has (s) an aromatic carbon content (C a ) of approximately 10 to 15%, a content of paraffinic carbon (C p ) of about 40 to 45% and a naphthenic carbon content (C n ) of about 45 to 50%.
  • aromatic carbon content C a
  • C p paraffinic carbon
  • C n naphthenic carbon content
  • the ester oil may be a vegetable or synthetic oil, or a mixture of several vegetable and / or synthetic oils.
  • a synthetic oil or a mixture of synthetic oils because these oils generally have a pour point lower than that of vegetable oils and close to that of naphthenic mineral oils, so that they remain liquids at temperatures at which vegetable oils tend to solidify.
  • synthetic ester oils oxidize less rapidly than vegetable ester oils.
  • the ester oil is therefore a synthetic ester oil or a mixture of oils containing at least one synthetic ester oil.
  • this synthetic ester oil is from the polyolefin family, and is more particularly a pentaerythritol tetraester oil.
  • this pentaerythritol tetraester-based oil has formula (I) below:
  • R represents an alkyl group ranging from C 5 H 11 to C 9 H 19 .
  • Such an oil is in particular available from M & I under the trade name Midel 7131.
  • ester oils may also be used, for example synthetic oils ProEco TR3746 from COGNIS or Envirotemp 200 from CPS or Biotemp vegetable oils from ABB or Envirotemp FR3 from CPS.
  • the dielectric oil comprises a naphthenic oil having an aromatic carbon content (C a ) of about 14%, a paraffinic carbon content (C p ) of about 41% and a content of naphthenic carbon (C n ) of about 45%, and a pentaerythritol tetraester oil of formula (I) above.
  • the volume ratio between these two oils ranges from 75:25 to 85:15, a ratio of Particularly preferred volume is about 80:20.
  • the oil according to the invention also has the advantage of being economically attractive, insofar as it consists mainly of mineral oil.
  • high voltage means any voltage greater than 1000 V AC and 1500 V DC, in accordance with the specifications of the International Electrotechnical Commission (IEC).
  • IEC International Electrotechnical Commission
  • the oil according to the invention is likely to be advantageously used in power transformers, measuring, distribution or traction, and in particular in power distributors.
  • the invention will be better understood in the light of the additional description, which refers to an embodiment of an oil according to the invention and to demonstrate its properties.
  • this example is given as an illustration of the subject of the invention and does not constitute a limitation of this object.
  • FIG. 1 represents the evolution of the viscosity (in mm 2 / s) of a naphthenic oil (curve A), an oil according to the invention composed of this naphthenic oil and an ester oil synthetic in a volume ratio of 80:20 (curve B), and an oil composed of this same naphthenic oil and a silicone oil in a volume ratio of 80:20 (curve C), depending on the temperature (in ° C). VS) .
  • FIG. 2 represents the cumulative Gaussian probabilities of occurrence of a breakdown for a naphthenic oil (curve A), for an oil according to the invention composed of this naphthenic oil and of a synthetic ester oil in an 80:20 volume ratio.
  • FIG. 3 represents the acidity (in mg of KOH / g of oil) of a naphthenic oil (curve A), an oil according to the invention composed of this naphthenic oil and a synthetic ester oil in a volume ratio of 80:20 (curve B), and an oil composed of this same naphthenic oil and a silicone oil in a volume ratio of 80:20 (curve C), before aging (point 0 of the axis abscissas) and after aging without a metal catalyst (point 1 of the x-axis), in the presence of a metal catalyst (point 2 of the abscissa axis) and in the presence of a cellulose insulation called Kraft paper (point 3 of the x-axis).
  • FIG. 4 represents the dissipation factor (or tan ⁇ ) of a naphthenic oil (curve A), an oil according to the invention comprising this naphthenic oil and a synthetic ester oil in a volume ratio of 80:20 (curve B), and an oil composed of the same naphthenic oil and a silicone oil in a volume ratio of 80:20 (curve C), before aging (point 0 of the abscissa axis) and after aging without a metal catalyst (point 1 of the abscissa axis), in the presence of a catalyst metal (point 2 of the abscissa axis) and in the presence of a cellulose insulation called Kraft paper (point 3 of the abscissa axis).
  • FIG. 5 represents the charge density of a naphthenic oil (point 1 of the abscissa axis), of a synthetic ester oil (point 2 of the abscissa axis), of an oil according to the compound invention of this naphthenic oil and of this synthetic ester oil in a volume ratio of 80:20 (point 3 of the abscissa axis), and of an oil composed of this same naphthenic oil and a silicone oil in a volume ratio 80:20 (point 4 of the abscissa) before and after filtration, under a vacuum of 3 bar, on a sintered glass 11-16 microns porosity.
  • the oil thus obtained is subjected to four series of tests intended to assess respectively the evolution of its viscosity as a function of temperature, its dielectric strength, its resistance to aging and its tendency to be electrically charged.
  • Viscosity tests The viscosity of the oils is determined according to IEC 60296 / ISO 3104.
  • the inter-electrode gap is set to 2.5 ⁇ 0.05 mm.
  • the voltage is steadily increased (2.0 ⁇ 0.2 kV / sec) until breakdown and each test oil sample is shaken throughout the test.
  • the oil samples Prior to each test, the oil samples are filtered on a sintered glass 11 to 16 microns in porosity, under a vacuum of 3 bar. Their water content is determined according to IEC 60814 (coulometric Karl Fischer titration); the number of particles is counted according to the IEC 60970 standard and particulate contamination of the samples is classified from 1 to 12 according to the German standard NAS 1638.
  • x is the value of the breakdown voltage (in kV)
  • u is the average breakdown voltage (in kV)
  • (7 is the coefficient of variation)
  • Aging Tests The resistance to aging of the oils is assessed according to ASTM D1934-95 (2000) which proposes two oxidative aging procedures, one without a metal catalyst, the other in the presence of a metal catalyst, namely a copper wire.
  • Static Electricity Tests The tendency of oils to charge electrically is appreciated by means of a device called a "ministerial charge tester". This test consists in forcing the tested oil to pass through a filter consisting of a cellulose film to cause separation of the charges. The charges remaining on the filter are measured using an electrometer and the results are expressed in terms of charge density, that is to say the amount of charges generated per unit volume of oil in the flow. .
  • the charge density is determined by the following formula:
  • i the current (in amperes)
  • t the oil flow (in seconds)
  • v the volume of oil (in ml).
  • FIGS. 1 to 5 represent: FIG. 1: the evolution of the viscosity, expressed in mm 2 / s, of the naphthenic oil (curve A), of the oil according to FIG. invention (curve B) and oil to
  • FIG. 2 the cumulative Gaussian probabilities of occurrence of a breakdown as obtained for the naphthenic oil (curve A), for the oil according to the invention (curve B) and for the oil at 20% oil silicone (curve C); 3: the acidity, expressed in mg of KOH / g of oil, of the naphthenic oil (curve A), of the oil according to the invention (curve B) and of the oil at 20% d silicone oil (curve C), before aging (point 0 of the abscissa axis) and after aging without a metal catalyst (point 1 of the abscissa axis), in the presence of the metal catalyst (point 2 of the axis of the abscissa) and on Kraft paper (point 3 of the abscissa);
  • Figure 4 the tan ⁇ of the naphthenic oil
  • curve A the oil according to the invention (curve B) and the oil at 20% of silicone oil (curve C), before aging (point 0 of the abscissa axis) and after aging without metal catalyst (point 1 of the abscissa axis), in the presence of the metal catalyst (point 2 of the abscissa axis) and on Kraft paper (point 3 of the abscissa axis).
  • the oil according to the invention has a viscosity that is almost identical to that of the naphthenic oil which constitutes it, over the entire range of temperatures studied. Oil with 20% silicone oil it has a viscosity which, of course, is lower at low temperatures but is higher at the usual operating temperatures of power transformers (80-90 ° C). 2. Of the three oils tested, the oil according to the invention is the one which has the most interesting dielectric strength properties, with mean values of breakdown voltage and a safety factor significantly higher than those obtained for the oil naphthenic and for oil with 20% silicone.
  • the safety factor is, in fact, 86 kV for the oil according to the invention (for a water content of 66 ppm and a particulate pollution of 5), whereas it is only 50 kV for l naphthenic oil (for a water content of 10 ppm and particulate pollution of 6) and 72 kV for oil with 20% silicone oil (for a water content of 12 ppm and particulate pollution of 5) .
  • This can be explained by the fact that the resistance to breakdown depends strongly on the water content of an oil, and that for the synthetic ester oils, the solubility of the water in the oil is much higher than for the mineral oils. 3.
  • the oil according to the invention is also the one with the most interesting aging behavior, its acidity and its tan ⁇ increasing less under aging conditions than those of the naphthenic oil and the oil with 20% silicone oil. 4.
  • the oil according to the invention has a tendency to be electrically charged higher than those of the naphthenic oil which constitutes it or the oil with 20% of silicone oil and this, whatever its water content .
  • the charge density values obtained for the oil according to the invention remain perfectly compatible with use as electrical insulation in power transformers, and are significantly lower than for the synthetic ester oil alone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

L'invention se rapporte à une huile diélectrique de haute performance qui comprend de 75 à 95% environ en volume d'une huile naphténique et de 5 à 25% environ en volume d'une huile ester, en particulier une huile ester synthétique et, plus préférentiellement, une huile de la famille des polyolesters. Applications: équipements électriques à haute tension, notamment transformateurs de puissance, de mesure, de distribution ou de traction, changeurs de prise, traversées, répartiteurs, disjoncteurs à bain d'huile, condensateurs de puissance, câbles, …

Description

HUILE DIELECTRIQUE DE HAUTE PERFORMANCE ET SON UTILISATION DANS DES EQUIPEMENTS ELECTRIQUES A HAUTE TENSION
DESCRIPTION
DOMAINE TECHNIQUE La présente invention se rapporte à une huile diélectrique de haute performance et à son utilisation dans des équipements électriques à haute tension . Ces équipements peuvent notamment être des transformateurs de puissance, de mesure, de distribution ou de traction, mais aussi des changeurs de prise, des traversées, des répartiteurs, des disjoncteurs à bain d'huile, des condensateurs de puissance ou encore des câbles.
ÉTAT DE LA TECHNIQUE ANTERIEURE Les transformateurs de puissance font partie des composants les plus stratégiques et les plus coûteux des réseaux de transport et de distribution de l'énergie électrique. Il est donc essentiel qu'ils fonctionnent correctement le plus longtemps possible. La plupart de ces transformateurs sont remplis d'un liquide qui joue le rôle à la fois d'isolant électrique et de fluide caloporteur. Ce liquide est quasiment toujours une huile minérale, issue de la distillation fractionnée des bruts de pétrole. Cette prépondérance des huiles minérales s'explique notamment par leur faible coût comparativement à celui des liquides isolants de synthèse susceptibles d'être employés en électro¬ technique comme les alkylbenzènes . Des huiles esters et silicones sont utilisées dans les transformateurs de distribution, mais le sont rarement, du fait de leur côut élevé, dans les transformateurs de puissance. Les progrès réalisés ces dernières années dans le domaine des matériaux ont permis de réduire significativement les dimensions des transformateurs de puissance avec, pour conséquences, une diminution de la taille des intervalles isolants et une augmentation des densités de chaleur nécessitant d'être évacuées. Les huiles minérales présentes dans ces transformateurs sont donc amenées à exercer leur rôle d'isolant électrique dans des intervalles plus réduits pour des tensions de fonctionnement équivalentes, voire plus élevées, et à assurer parallèlement l'évacuation de densités de chaleur plus importantes. Il est à craindre, bien que cela n'ait pas été expressément démontré, que l'utilisation des huiles minérales dans ces conditions se traduise par une défaillance des transformateurs ou bien par une diminution de leur durée de vie, notamment en raison d'une dégradation prématurée de ces huiles. Les Inventeurs se sont donc fixés pour but de fournir une huile qui soit plus performante que les huiles minérales actuellement utilisées dans les transformateurs de puissance, en particulier en termes de rigidité diélectrique et de tenue au vieillissement, de manière à garantir un fonctionnement de ces transformateurs dans les meilleures conditions de fiabilité et de sécurité, à leur conférer une durée de vie satisfaisante et à offrir la possibilité de les rendre encore plus compacts. Les Inventeurs se sont de plus fixés pour but de fournir une huile qui, tout en présentant ces avantages, ait un coût de fabrication compatible avec une utilisation dans des transformateurs de puissance, sachant qu'un transformateur de puissance peut contenir plus de 40 000 litres d'huile.
EXPOSÉ DE L'INVENTION Ce but et d'autres encore sont atteints par l'invention qui propose une huile diélectrique comprenant de 75 à 95% environ en volume d'une huile naphténique et de 5 à 25% environ en volume d'une huile ester. Les Inventeurs ont, en effet, constaté que, de manière surprenante, l'addition d'une huile ester à une huile naphténique dans les proportions indiquées ci-dessus se traduit par une amélioration très nette des propriétés diélectriques de cette huile naphténique, ainsi que de sa tenue au vieillissement, sans affecter pour autant sa viscosité et, donc, son aptitude à assurer un transfert de chaleur. On obtient ainsi une huile aux performances bien supérieures à celles des huiles minérales actuellement utilisées dans les transformateurs de puissance, ainsi qu'à celles des huiles silicones. Selon une première disposition préférée de l'invention, l'huile naphténique est une huile ou un mélange d'huiles qui présente (nt) une teneur en carbone aromatique (Ca) de 10 à 15% environ, une teneur en carbone paraffinique (Cp) de 40 à 45% environ et une teneur en carbone naphténique (Cn) de 45 à 50% environ. A titre d'exemples d'huiles naphteniques présentant ce type de composition, on peut citer les huiles Nytro 10GBN, Nytro 3000 et Nytro 10X de la société NINAS, l'huile Poweroil TO-10 de la société APAR, les huiles Univolt 60 et Voltesso 35 de la société ESSO, ainsi que les huiles Diala A et Diala M de la société SHELL. Conformément à l'invention, l'huile ester peut être une huile végétale ou synthétique, ou un mélange de plusieurs huiles végétales et/ou synthétiques. Toutefois, on préfère utiliser une huile synthétique ou un mélange d'huiles synthétiques en raison de ce que ces huiles présentent généralement un point d'écoulement inférieur à celui des huiles végétales et proche de celui des huiles minérales naphteniques, en sorte qu'elles restent liquides à des températures auxquelles les huiles végétales tendent à solidifier. De plus les huiles esters synthétiques s'oxydent moins rapidement que les huiles esters végétales . Selon une autre disposition préférée de l'invention, l'huile ester est donc une huile ester synthétique ou un mélange d'huiles contenant au moins une huile ester synthétique. De préférence, cette huile ester synthétique est de la famille des polyolesters, et est plus particulièrement une huile à base de tetraester de pentaérythritol . Avantageusement, cette huile à base de tetraester de pentaérythritol répond à la formule (I) ci-après :
O O CH, O — C — R O R C — o CH, CH-; R CH, O — C — R
dans laquelle R représente un groupe alkyle allant de C5H11 à C9H19. Une telle huile est notamment disponible auprès de la société M&I sous la référence commerciale Midel 7131. Toutefois, d'autres huiles esters peuvent également être utilisées comme, par exemple, les huiles synthétiques ProEco TR3746 de la société COGNIS ou Envirotemp 200 de la société CPS, ou les huiles végétales Biotemp de la société ABB ou Envirotemp FR3 de la société CPS. Selon une disposition particulièrement préférée de l'invention, l'huile diélectrique comprend une huile naphténique présentant une teneur en carbone aromatique (Ca) de 14% environ, une teneur en carbone paraffinique (Cp) de 41% environ et une teneur en carbone naphténique (Cn) de 45% environ, et une huile à base de tetraester de pentaérythritol répondant à la formule (I) ci-avant. De préférence, le rapport volumique entre ces deux huiles va de 75:25 à 85:15, un rapport volumique particulièrement préféré étant d'environ 80:20. Outre de présenter les avantages précités, l'huile selon l'invention présente encore celui d'être économiquement intéressante, dans la mesure où elle est principalement constituée d'huile minérale. Elle est donc particulièrement adaptée à servir d'isolant électrique et de fluide caloporteur dans des équipements électriques à haute tension. Au sens de la présente invention, on entend par "haute tension", toute tension supérieure à 1000 V en courant alternatif et à 1500 V en courant continu, conformément aux spécifications de la Commission Electrotechnique Internationale (CEI) . En particulier, l'huile selon l'invention est susceptible d'être avantageusement utilisée dans des transformateurs de puissance, de mesure, de distribution ou de traction, et notamment dans des distributeurs de puissance. L'invention sera mieux comprise à la lumière du complément de description, qui se réfère à un exemple de réalisation d'une huile selon l'invention et de démonstration de ses propriétés. Bien entendu, cet exemple n'est donné qu'à titre d'illustration de l'objet de l'invention et ne constitue en aucun cas une limitation de cet objet.
BRÈVE DESCRIPTION DES DESSINS La figure 1 représente l'évolution de la viscosité (en mm2/s) d'une huile naphténique (courbe A), d'une huile selon l'invention composée de cette huile naphténique et d'une huile ester synthétique dans un rapport volumique de 80:20 (courbe B) , et d'une huile composée de cette même huile naphténique et d'une huile silicone dans un rapport volumique de 80:20 (courbe C) , en fonction de la température (en °C) . La figure 2 représente les probabilités gaussiennes cumulatives de survenue d'un claquage pour une huile naphténique (courbe A) , pour une huile selon l'invention composée de cette huile naphténique et d'une huile ester synthétique dans un rapport volumique de 80:20 (courbe B) , et pour une huile composée de cette même huile naphténique et d'une huile silicone dans un rapport volumique de 80:20 (courbe C) . La figure 3 représente l'acidité (en mg de KOH/g d'huile) d'une huile naphténique (courbe A), d'une huile selon l'invention composée de cette huile naphténique et d'une huile ester synthétique dans un rapport volumique de 80:20 (courbe B) , et d'une huile composée de cette même huile naphténique et d'une huile silicone dans un rapport volumique de 80:20 (courbe C) , avant vieillissement (point 0 de l'axe des abscisses) et après vieillissement sans catalyseur métallique (point 1 de l'axe des abscisses), en présence d'un catalyseur métallique (point 2 de l'axe des abscisses) et en présence d'un isolant cellulosique appelé papier Kraft (point 3 de l'axe des abscisses) . La figure 4 représente le facteur de dissipation (ou tan δ) d'une huile naphténique (courbe A), d'une huile selon l'invention comprenant cette huile naphténique et une huile ester synthétique dans un rapport volumique de 80:20 (courbe B) , et d'une huile composée de cette même huile naphténique et d'une huile silicone dans un rapport volumique de 80:20 (courbe C) , avant vieillissement (point 0 de l'axe des abscisses) et après vieillissement sans catalyseur métallique (point 1 de l'axe des abscisses), en présence d'un catalyseur métallique (point 2 de l'axe des abscisses) et en présence d'un isolant cellulosique appelé papier Kraft (point 3 de l'axe des abscisses) . La figure 5 représente la densité de charges d'une huile naphténique (point 1 de l'axe des abscisses), d'une huile ester synthétique (point 2 de l'axe des abscisses), d'une huile selon l'invention composée de cette huile naphténique et de cette huile ester synthétique dans un rapport volumique de 80:20 (point 3 de l'axe des abscisses), et d'une huile composée de cette même huile naphténique et d'une huile silicone dans un rapport volumique de 80:20 (point 4 de l'axe des abscisses) avant et après filtration, sous un vide de 103 bar, sur un verre fritte de 11-16 microns de porosité.
EXPOSÉ DÉTAILLÉ D'UN MODE DE MISE EN OEUVRE PARTICULIER On prépare une huile selon l'invention en mélangeant : * 80 parties en volume de l'huile naphténique commercialisée par la société NYNAS sous la référence commerciale Nytro 10GBN (Ca = 14% ; Cp = 41% ; Cn = 45%) , et * 20 parties en volume de l'huile tetraester de pentaérythritol de formule (I) ci-avant, commercialisée par la société M&I sous la référence commerciale Midel 7131, jusqu'à obtention d'un mélange homogène. L'huile ainsi obtenue est soumise à quatre séries de tests destinés à apprécier respectivement l'évolution de sa viscosité en fonction de la température, sa rigidité diélectrique, sa tenue au vieillissement et sa tendance à se charger électriquement . A des fins comparatives, sont soumises à ces quatre mêmes séries de tests, d'une part, l'huile naphténique NYNAS Nytro 10GBN seule et, d'autre part, une huile constituée d'un mélange de cette même huile naphténique et de l'huile silicone Rhodorsil 604V50
(société RHODIA) , également dans un rapport volumique de 80:20. Ces huiles sont respectivement désignées ci-après "huile naphténique" et "huile à 20% d'huile silicone" . On teste également la tendance à se charger électriquement de l'huile ester synthétique Midel 7131 seule. Cette huile est appelée dans ce qui suit "huile ester synthétique".
Tests de viscosité : La viscosité des huiles est déterminée selon la norme CEI 60296 / ISO 3104.
Tests de rigidité diélectrique : La rigidité diélectrique des huiles est étudiée à température ambiante selon la norme CEI
60156, c'est-à-dire sous un champ électrique quasiment uniforme, obtenu avec des électrodes spheriques, d'axe horizontal. L'espace inter-électrodes est réglé à 2,5 ± 0,05 mm. La tension est augmentée de façon régulière (2,0 ± 0,2 kV/sec) jusqu'au claquage et chaque échantillon d'huile testée est agité pendant toute la durée du test. Préalablement à chaque test, les échantillons d'huile sont filtrés sur un verre fritte de 11 à 16 microns de porosité, sous un vide de 103 bar. Leur teneur en eau est déterminée selon la norme CEI 60814 (titrage coulométrique de Karl Fischer) ; le nombre de particules est compté selon la norme CEI 60970 et la pollution particulaire des échantillons est classifiée de 1 à 12 selon la norme allemande NAS 1638. Les tensions de claquage sont mesurées au moyen d'un dieltest BAUR (100 kV-50 Hz) sur 32 échantillons pour chaque huile testée et les mesures sont analysées par la loi de Laplace-Gauss ou loi normale, représentée par la formule suivante : f (x, u, σ) = [1/ ( fÏPÎ σ) ] . exp - [ (χ-u) 2/2σ2] )
dans laquelle x représente la valeur de la tension de claquage (en kV) , u représente la tension de claquage moyenne (en kV) et (7 représente le coefficient de variation . Le coefficient de sécurité, qui correspond à la valeur minimale de tension de claquage d'une huile, est déterminé pour f (x, u, σ) = 0,001, c'est-à- dire pour une probabilité de 99,9%. Tests de vieillissement : La tenue au vieillissement des huiles est appréciée selon la norme ASTM D1934-95 (2000) qui propose deux procédures de vieillissement oxydatif, l'une sans catalyseur métallique, l'autre en présence d'un catalyseur métallique, à savoir un fil de cuivre.
Dans cette dernière procédure, afin de rendre l'essai plus sévère que l'ASTM D1934-95 (2000) (qui préconise
15 cm2 de cuivre pour 300 ml d'huile), nous avons suivi les recommandations de la norme CEI 61125 (qui préconise 9.7 cm2 de cuivre pour 25g d'huile), ce qui représente 8,8% du poids de l'huile. La tenue au vieillissement des huiles est également testée après imprégnation de papier Kraft et séchage du papier ainsi imprégné dans des conditions analogues à celles utilisées pour préparer les papiers huilés employés dans les transformateurs. Dans tous les cas, le vieillissement est réalisé en laissant les échantillons pendant 96 heures dans un four à circulation d'air réglé à une température de 115°C. L'acidité et le facteur de dissipation (ou tan δ) des huiles sont mesurés avant et après vieillissement .
Tests d' électrisation statique : La tendance des huiles à se charger électriquement est appréciée au moyen d'un dispositif appelé "testeur ministatique de charge" ("ministatic charge tester") . Ce test consiste à forcer l'huile testée à passer au travers d'un filtre constitué d'une feuille de cellulose pour provoquer une séparation des charges. Les charges restées sur le filtre sont mesurées à l'aide d'un électromètre et les résultats sont exprimés en termes de densité de charges, c'est-à- dire la quantité de charges générées par unité de volume d'huile dans le flux. La densité de charges est déterminée par la formule suivante :
Densité de charge (μC/πf) = (i . t . l 0 ) /v
dans laquelle i représente le courant (en ampères) , t représente le flux d'huile (en secondes) et v représente le volume d'huile (en ml) . Chaque huile est testée avant et après filtration sur un verre fritte présentant une porosité de 11 à 16 microns, sous un vide de 103 bar.
Résultats : Les résultats des tests sont illustrés sur les figures 1 à 5 qui représentent : Figure 1 : l'évolution de la viscosité, exprimée en mm2/s, de l'huile naphténique (courbe A), de l'huile selon l'invention (courbe B) et de l'huile à
20% d'huile silicone (courbe C) , en fonction de la température, exprimée en °C) ; Figure 2 : les probabilités gaussiennes cumulatives de survenue d'un claquage telles qu'obtenues pour l'huile naphténique (courbe A), pour l'huile selon l'invention (courbe B) et pour l'huile à 20% d'huile silicone (courbe C) ; Figure 3 : l'acidité, exprimée en mg de KOH/g d'huile, de l'huile naphténique (courbe A), de l'huile selon l'invention, (courbe B) et de l'huile à 20% d'huile silicone (courbe C) , avant vieillissement (point 0 de l'axe des abscisses) et après vieillissement sans catalyseur métallique (point 1 de l'axe des abscisses), en présence du catalyseur métallique (point 2 de l'axe des abscisses) et sur papier Kraft (point 3 de l'axe des abscisses) ; Figure 4 : le tan δ de l'huile naphténique
(courbe A), de l'huile selon l'invention (courbe B) et de l'huile à 20% d'huile silicone (courbe C) , avant vieillissement (point 0 de l'axe des abscisses) et après vieillissement sans catalyseur métallique (point 1 de l'axe des abscisses), en présence du catalyseur métallique (point 2 de l'axe des abscisses) et sur papier Kraft (point 3 de l'axe des abscisses) . Figure 5 : la densité de charges, exprimée en μC/m3 et en valeur absolue, de l'huile naphténique (point 1 de l'axe des abscisses), de l'huile ester synthétique (point 2 de l'axe des abscisses), de l'huile selon l'invention (point 3 de l'axe des abscisses), de l'huile à 20% d'huile silicone (point 4 de l'axe des abscisses) avant et après filtration sur le verre fritte.
Ces figures montrent que : 1. L'huile selon l'invention présente une viscosité quasiment identique à celle de l'huile naphténique qui la constitue, sur toute la gamme des températures étudiées. L'huile à 20% d'huile silicone présente, elle, une viscosité qui, certes, est plus faible aux basses températures mais qui est plus élevée aux températures habituelles de fonctionnement des transformateurs de puissance (80-90°C). 2. Des trois huiles testées, l'huile selon l'invention est celle qui présente les propriétés de rigidité diélectrique les plus intéressantes, avec des valeurs moyennes de tension de claquage et un coefficient de sécurité nettement plus élevés que ceux obtenus pour l'huile naphténique et pour l'huile à 20% de silicone. Le coefficient de sécurité est, en effet, de 86 kV pour l'huile selon l'invention (pour une teneur en eau de 66 ppm et une pollution particulaire de 5), alors qu'il n'est que de 50 kV pour l'huile naphténique (pour une teneur en eau de 10 ppm et une pollution particulaire de 6) et de 72 kV pour l'huile à 20% d'huile silicone (pour une teneur en eau de 12 ppm et une pollution particulaire de 5) . Ceci peut s'expliquer par le fait que la tenue au claquage dépend fortement de la teneur en eau d'une huile, et que pour les huiles esters synthétiques, la solubilité de l'eau dans l'huile est beaucoup plus élevée que pour les huiles minérales. 3. Des trois huiles testées, l'huile selon l'invention est également celle qui présente la tenue au vieillissement la plus intéressante, son acidité et son tan δ augmentant moins en situation de vieillissement que ceux de l'huile naphténique et de l'huile à 20% d'huile silicone. 4. L'huile selon l'invention a une tendance à se charger électriquement plus élevée que celles de l'huile naphténique qui la constitue ou de l'huile à 20% d'huile silicone et ce, quelle que soit sa teneur en eau. Toutefois, les valeurs de densité de charges obtenues pour l'huile selon l'invention restent parfaitement compatibles avec une utilisation comme isolant électrique dans des transformateurs de puissance, et sont nettement moins élevées que pour l'huile ester synthétique seule.

Claims

REVENDICATIONS
1. Huile diélectrique comprenant de 75 à 95% environ en volume d'une huile naphténique et de 5 à 25% environ en volume d'une huile ester.
2. Huile diélectrique selon la revendication 1, dans laquelle l'huile naphténique est une huile ou un mélange d'huiles qui présente (nt) une teneur en carbone aromatique de 10 à 15% environ, une teneur en carbone paraffinique de 40 à 45% environ et une teneur en carbone naphténique de 45 à 50% environ.
3. Huile diélectrique selon l'une quelconque des revendications précédentes, dans laquelle l'huile ester est une huile ester synthétique ou un mélange d'huiles contenant au moins une huile ester synthétique.
4. Huile diélectrique selon la revendication 3, dans laquelle l'huile ester synthétique est une huile de la famille des polyolesters .
5. Huile diélectrique selon la revendication 4, dans laquelle l'huile de la famille des polyolesters est à base de tetraester de pentaérythritol .
6. Huile diélectrique selon la revendication 5, dans laquelle l'huile à base de tetraester de pentaérythritol répond à la formule ci-après : O O CH2 — O - C R C — O — CH2 —- C — CH2 _©____ CH2 — O - C — O
dans laquelle R représente un groupe alkyle allant de
Figure imgf000018_0001
7. Huile diélectrique selon la revendication 5, qui comprend une huile naphténique présentant une teneur en carbone aromatique de 14% environ, une teneur en carbone paraffinique de 41% environ et une teneur en carbone naphténique de 45% environ, et une huile à base de tetraester de pentaérythritol de formule (I) .
8. Huile diélectrique selon l'une quelconque des revendications précédentes, dans laquelle le rapport volumique de l'huile naphténique à l'huile ester va de 75:25 à 85:15.
9. Huile diélectrique selon la revendication 8, dans laquelle le rapport volumique de l'huile napthenique à l'huile ester est d'environ 80:20.
10. Utilisation d'une huile diélectrique selon l'une quelconque des revendications 1 à 9 dans des équipements électriques à haute tension.
11. Utilisation selon la revendication 10, dans laquelle les équipements électriques sont des transformateurs de puissance, de mesure, de distribution ou de traction, et en particulier des transformateurs de puissance.
PCT/FR2005/050356 2004-05-28 2005-05-24 Huile dielectrique de haute performance et son utilisation dans des equipements electriques a haute tension WO2005119702A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0511289-3A BRPI0511289A (pt) 2004-05-28 2005-05-24 óleo dielétrico e utilização do mesmo
US11/597,272 US7833440B2 (en) 2004-05-28 2005-05-24 High performance dielectric oil and the use thereof in high voltage electrical equipment
CA002568426A CA2568426A1 (fr) 2004-05-28 2005-05-24 Huile dielectrique de haute performance et son utilisation dans des equipements electriques a haute tension
AU2005248992A AU2005248992B2 (en) 2004-05-28 2005-05-24 High performance dielectric oil and the use thereof in high voltage electrical equipment
DE602005007892T DE602005007892D1 (de) 2004-05-28 2005-05-24 Verwendung von dielektrisches hochleistungsöl für hochspannungselektrogeräte
EP05766695A EP1754236B1 (fr) 2004-05-28 2005-05-24 Utilisation d'huile dielectrique de haute performance dans des equipements electriques a haute tension
PL05766695T PL1754236T3 (pl) 2004-05-28 2005-05-24 Stosowanie oleju dielektrycznego o wysokiej skuteczności w urządzeniach elektrycznych wysokiego napięcia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0451069 2004-05-28
FR0451069A FR2870983A1 (fr) 2004-05-28 2004-05-28 Huile dielectrique de haute performance et son utilisation dans des equipements electriques a haute tension

Publications (1)

Publication Number Publication Date
WO2005119702A1 true WO2005119702A1 (fr) 2005-12-15

Family

ID=34946565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050356 WO2005119702A1 (fr) 2004-05-28 2005-05-24 Huile dielectrique de haute performance et son utilisation dans des equipements electriques a haute tension

Country Status (12)

Country Link
US (1) US7833440B2 (fr)
EP (1) EP1754236B1 (fr)
CN (1) CN100583308C (fr)
AT (1) ATE400057T1 (fr)
AU (1) AU2005248992B2 (fr)
BR (1) BRPI0511289A (fr)
CA (1) CA2568426A1 (fr)
DE (1) DE602005007892D1 (fr)
ES (1) ES2309777T3 (fr)
FR (1) FR2870983A1 (fr)
PL (1) PL1754236T3 (fr)
WO (1) WO2005119702A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524440B2 (en) 2003-10-02 2009-04-28 Cooper Industries, Inc. Method comprising additive for dielectric fluid
US20100279904A1 (en) * 2007-07-31 2010-11-04 Chevron U.S.A. Inc. Electrical insulating oil compositions and preparation thereof
US20100255288A1 (en) * 2009-04-06 2010-10-07 Golner Thomas M Solid dielectric material for fluid-filled transformer
US9028727B2 (en) 2011-09-23 2015-05-12 E I Du Pont De Nemours And Company Dielectric fluids comprising polyol esters
GB2541929B (en) * 2015-09-04 2018-05-09 M&I Mat Limited Ester compositions for dielectric fluids
EP3473991B1 (fr) * 2016-06-15 2021-01-13 Mitsubishi Electric Corporation Procédé d'estimation de la température de surchauffe d'un dispositif électrique rempli d'huile
CN108630401B (zh) * 2018-04-12 2020-05-22 西安交通大学 一种基于用合成酯油部分替代原变压器油的滤油机滤油方法
CN115960652B (zh) * 2023-02-08 2024-07-12 广东电网有限责任公司 一种复合纳米材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2107938A1 (fr) * 1970-09-24 1972-05-12 Hitachi Ltd
JPS5163499A (ja) * 1974-11-29 1976-06-01 Hitachi Ltd Ekitaijudensoseibutsuo funyushita denkisochi
EP0292025A2 (fr) * 1987-01-30 1988-11-23 Nippon Oil Co. Ltd. Dispositif électrique ignifugé

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766517A (en) * 1995-12-21 1998-06-16 Cooper Industries, Inc. Dielectric fluid for use in power distribution equipment
DE19946641A1 (de) 1999-09-14 2000-04-20 Hossein Borsi Verfahren zur Verbesserung der elektrischen und Alterungseigenschaften von mineralölgefüllten Hochspannungsgeräten durch Beimischung einer hygroskopischen Isolierflüssigkeit
MXPA03000964A (es) * 2000-08-02 2004-02-17 Mj Res & Dev L P Sistema de aceite lubricante y refrigerante.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2107938A1 (fr) * 1970-09-24 1972-05-12 Hitachi Ltd
JPS5163499A (ja) * 1974-11-29 1976-06-01 Hitachi Ltd Ekitaijudensoseibutsuo funyushita denkisochi
EP0292025A2 (fr) * 1987-01-30 1988-11-23 Nippon Oil Co. Ltd. Dispositif électrique ignifugé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197629, Derwent World Patents Index; Class H08, AN 1976-55020X, XP002322162 *

Also Published As

Publication number Publication date
US7833440B2 (en) 2010-11-16
AU2005248992A1 (en) 2005-12-15
CN1961383A (zh) 2007-05-09
CA2568426A1 (fr) 2005-12-15
AU2005248992B2 (en) 2011-08-11
US20070222546A1 (en) 2007-09-27
PL1754236T3 (pl) 2008-12-31
ATE400057T1 (de) 2008-07-15
ES2309777T3 (es) 2008-12-16
EP1754236A1 (fr) 2007-02-21
EP1754236B1 (fr) 2008-07-02
FR2870983A1 (fr) 2005-12-02
CN100583308C (zh) 2010-01-20
DE602005007892D1 (de) 2008-08-14
BRPI0511289A (pt) 2007-12-04

Similar Documents

Publication Publication Date Title
EP1754236B1 (fr) Utilisation d'huile dielectrique de haute performance dans des equipements electriques a haute tension
Mahanta et al. Electrical insulating liquid: A review
Oommen Vegetable oils for liquid-filled transformers
EP1128395B1 (fr) Câble d'énergie haute et très haute tension à courant continu
Oommen et al. A new vegetable oil based transformer fluid: development and verification
KR20080045254A (ko) 미네랄 절연유, 미네랄 절연유의 제조방법, 및 미네랄절연유의 사용방법
JP2007220468A (ja) 電気絶縁油
CA2826187C (fr) Fluide dielectrique vegetal pour transformateurs electriques
WO2019171001A1 (fr) Utilisation d'un mélange en tant que fluide diélectrique
Walker et al. M/DBT, new alternative dielectric liquids for transformers
AU747711B2 (en) Food grade dielectric fluid
CN102473477B (zh) 包含芥酸介电油的电气设备
Garg et al. Compatibility of ester oil with transformer components and comparison with mineral oil
CA1334787C (fr) Composition, son application comme isolant electrique et son procede de fabrication
EP0536019B1 (fr) Transformateur immergé non explosif haute/basse tension en régime de surcharge permanente
Singh et al. Effects of Thermal Aging on Blended Oil Characteristics in Comparison to Mineral Oil and Synthetic Esters
Dung et al. Influence of vegetable oils on breakdown voltages of enamel insulation of transformer wire
Mao et al. Effect of Insulating Oil on Space Charge Characteristics of Oil-impregnated Paper Under DC Voltage
EP2783372A1 (fr) Cable electrique haute tension adapte aux conditions extremes
Vishwakarma et al. Experimental Analysis of Some Natural Esters and Their Mixtures for Transformer Application
Karthik et al. Characteristics of Dielectric Fluids in Power Transformer Applications A Review
WO2024062207A1 (fr) Appareil électrique comprenant au moins un matériau gélifié
CA2068467A1 (fr) Materiau synthetique d'isolation electrique pour cable d'energie haute tension
CA1192036A (fr) Appareil electrique a charge de liquide dielectrique ameliore
Frotscher Tap-changer know-how: Insulating liquids–Part I: Mineral oils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005766695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005248992

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11597272

Country of ref document: US

Ref document number: 2007222546

Country of ref document: US

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580017195.X

Country of ref document: CN

Ref document number: 2568426

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4380/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2005248992

Country of ref document: AU

Date of ref document: 20050524

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005248992

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005766695

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11597272

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0511289

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2005766695

Country of ref document: EP