明 細 誊 明
エアパッグの内圧制御方法及ぴエアパッグ装置 技術分野 Method of controlling internal pressure of air bag and air bag device
本発明は、 エアパッグの内圧制御方法及びエアパッグの内圧制 P装置を備えたェ ァバッグ装置に関する。 背景技術 The present invention relates to an air bag internal pressure control method and an air bag apparatus provided with an air bag internal pressure control device. Background art
エアパッグ装置のエアパッグの内圧制御方法としては、 例えば、 米国特許第 6 5 As a method for controlling the internal pressure of the air bag of the air bag device, for example, US Pat.
4 7 2 7 6号公報に開示されているように、 エアバッグ装置を構成するインフレータ 一の力パーキャップの側面に形成された開口穴をノ レブにより、 エアバッグ展開中の どこかの時点で開閉する技術が知られている。 また、 乗員の着座位置、 # ^差を検知するシート位置センサ、 乗員体重センサ、 及 び前記センサで検知された情報を処理する E CU (電子 御ユニット) を用いて、 2 段ィンフレーターによりエアバッグの内圧制 HP、 エアパッグのポリユーム制 ¾Jなどを 行うようにしたエアバッグ装置が知られている。 しかしながら、 前記従来のエアバッグの内圧制御方法は、 単にエアバッグの内圧が 一定の圧力以上になったらパルプを開いて內圧を低下させるものであり、乗員の 差がある^^、 個々に適正なエアバッグ内圧保持は難しく結果的には、 トレードオフ の関係で、 中庸を狙って設定せざる得ない状況にあった。 また、 前記従来のエアパ、ッ グ装置も 2段インフレ一ターを使用するため、 コストアップの要因となっていた。 発明の開示
本発明は、 このような従来のエアバッグの内圧制御方法及ぴエアパッグ装置の問 題点を鑑みてなされたものであり、 エアバッグの内圧変動に対して高速に応答する内 圧制御方法を するとともに、 乗員が急激にエアバッグにつつこむ状況をモニター して、 内圧を適正に制御することでエアバッグの硬さを変えることができる低コスト のエアバッグ装置を»することを とする。 そのために、 本発明のエアバッグの内圧制御方法は、 展開時のエアバッグの内圧を ベントホールを通過するガス流量を変化させて制御するエアパッグの内圧制御方法で あって、 予め乗員臉データを取得し、 謂己エアバッグ展開時に、 少なくとも tiff己ェ アバッグの展開体積または前記エアパッグ展開開始からの経過時間のレヽずれかをモ- ターし、 ttrt己エアパッグが、 少なくとも嫌己乗員 データに応じて予め決められた 展開体積以上または觸己乗員 "データに応じて予め決められた経過時間を経過後の いずれかの に、 前記乗員膽データに応じて前記ベントホールを通過するガス流 量を変化させることを特徴とする。 また、 本発明の他のエアバッグの内圧制御方法は、 展開時のエアバッグの内圧をべ ントホールを通過するガス流量を変化させて制御するエアパッグの内圧制御方法であ つて、 予め乗員体格データを取得し、 前記エアバッグ展開時に、 当該エアバッグの内 圧をモニターし、 且つ少なくとも前記エアパッグの展開体積または前記エアパッグ展 開開始からの経過時間のいずれかをモニターし、 tii?己エアバッグが、 少なくとも前記 乗員 データに応じて予め決められた展開体積以上または ΙίίΙ己乗員 データに応 じて予め決められた経過時間を経過後のレヽずれかの^であって、 且つ tiff己エアパッ グの内圧が前記乗員 データに応じて予め決められた内圧以上に達したら、 少なく とも前記乗員 データまたは前記予め決められた内 のいずれかに応じて ΙΐίΙ己ベン トホールを通過するガス流量を変ィ匕させることを糊敷とする。
そして、 本発明のさらに他のエアパッグの内圧制御方法は、 前記ベントホールを閉 じることができる開閉部材を,的なばね力により前記ベントホールを閉じる方向に 付勢し、 且つ当該ばね力の一部をその付勢方向で吸収し当該ばね力を可変とすること により、 前記エアバッグの同一展開状態に対する前記開閉部材の動きに変ィ匕を与え前 記ベントホールのガス通過面積を変ィヒさせ当該ベントホールを通過するガス流量を変 ィ匕させることを樹敫とする。 本発明のエアノ ッグ装置は、 ベントホールのガス通過流量可変装置を有するエアバッ グ装置であって、 前記ベントホールのガス通過流量可変装置は、 ベントホールを通過 するガス流量を可変とするための駆動装置と、 乗員の を検出する乗員 # ^検出装 置または乗員自身が乗員 データを入力する乗員体格データ入力装置と、 肅5¾員 検出装置から出力された、 または前記乗員 #¾デ一タ入力装置に入力された乗員 データが一時的に記憶される記憶装置と、 少なくとも前記エアバッグの展開体積 を検出する展開体積検出装置またはエアバッグ展開開始指示信号が入力された時から 予め決められた経過時間を計測するタイマーのいずれかと、前記記憶装置のデータと、 前記記憶装置のデータに基づき決められる少なくとも前記展開体積検出装置または前 記タイマーの!/ヽずれかの出力信号とを用 ヽて前記駆動装置の制御信号が演算される演 算装置と、 前記制御信号が前記駆動装置に出力される出力装置とを備えたことを糊敷 とする。 また、 本発明の他のエアバッグ装置は、 ベントホールのガス通過流量可変装置を有 するエアバッグ装置であって、 前記ベントホールのガス通過流量可変装置は、 ベント ホールを通過するガス流量を可変とするための層隱装置と、 乗員の体格を検出する乗 員#¾検出装置または乗員自身が乗員 データを入力する乗員 データ入力装置 と、 前記乗員!^検出装置から出力された、 または前記乗員 ί«データ入力装置に入 力された乗員 データが一時的に記憶される記憶装置と、 嫌己エアバッグ展開時の
エアバッグの内圧を検出する内圧検出装置と、 少なくとも嫌己エアバッグの展開体積 を検出する展開体積検出装置またはエアパッグ展開開始指示信号が入力された時から 予め決められた経過時間を計測するタィマーのいずれかと、 ΙίίΙ己記憶装置のデータと、 少なくとも前記展開体積検出装置または tin己タイマーのいずれかの出力信号と、 内圧 検出装置の出力信号とを用いて前記駆動装置の制御信号が演算される演算 ¾置と、 前 記制御信号が前記駆動装置に出力される出力装置とを備えたことを特徴とする。 なお、 前記駆動装置は、 前記ベントホールを閉じることができる開閉部材と、 前記 開閉部材に前記ベントホールを閉じる方向に付勢されたばねと、 当該ばねの付勢方向 に抵抗力を発生させ且つ当該ばねと連結して設けられる可変抵抗力発 置とを更に 備えることが好ましい。 さらに、 前記駆動装置は、 前記ベントホールが形成されたシリンダーと、 当該シリ ンダー内を往復動し前記ベントホールを開閉するピストンと、 前記ビストンに前記べ ントホールを閉じる方向に付勢されたばねと、 当該ばねの付勢方向に抵抗力を発生さ せ且つ当該ビストンと連結して設けられる可変抵抗力発^ ¾置とを更に備えることが 好ましい。 そして、 前記シリンダーは、 エアバッグに連通する開閉穴部と、 ベントホールが形 成された本体部よりなり、 前記ビストンは、 前記ばねが揷着され、 ばね力により前記 開閉穴部に押し付けられるヘッド部と、 ラックが形成されたロッド部よりなり、 前記 可変抵抗力発 置は、 ダンパー付ピ-オンを備え、 編己ラックと前記ダンパー付ピ 二オンとが嚙み合わなレ、姿勢から嚙み合う姿勢へと回動可能に軸支されたアームと、 歯己アームに形成されたフックに掛止され、 前記制御信号をトリガーとして前記フッ タカ ら外れるように回動可能に軸支されたトリガーアームと、 前記ダンパー付ピニォ ンが前記ラックに嚙み合う方向に前記アームを付勢するうず巻きスプリングとを備え
ることが好ましい, また、 本発明のさらに他のエアバッグの内圧制御方法は、 展開時のエアバッグの内 圧をベントホールを通過するガス流量を変ィ匕させて制御するエアバッグの内圧制御方 法であって、 衝突事故時からの経過時間をタイマーによりモ-ターし、 ftilSエアパッ グ展開開始時から所定の遅延時間経過後に、 前記ベントホールを通過するガス流量を 変ィ匕させるようにしたことを糊敫とする。 この^、 予め乗員体格データを取得して おき、 前記所定の遅延時間経過後に、 前記乗員勝データに応じて前記ベントホール を通過するガス流量を変ィ匕させるようにしても良い。 また、 本発明のさらに他のエアバッグの内圧制御方法は、 展開時のエアバッグの内 圧をベントホールを通過するガス流量を変ィ匕させて制御するエアバッグの内圧制御方 法であって、 ガス通過流量可変装置の内圧検出口を塞ぐ弾 '(·生膜により、 前記エアバッ グ展開開始時から内圧がピーク状態に旨るまでガス流を Plihし、 内圧がピーク状態 に達したら前記弾' «が破られ、 前記ベントホールを通過するガス流量を変ィ匕させる ようにしたことを特徴とする。 また、 本発明のさらに他のエアパッグ装置は、 ベントホーノレのガス通過流量可変装 置を有するエアバッグ装置であって、 ttif己ベントホールのガス通過流量可変装置は、 ベントホールを通過するガス流量を可変とするための駆動装置と、 衝突事故時からの 経過時間をモ-ターし、 前記エアパッグ展開開始時から所定の遅延時間を計測するタ イマ一と、 前記タイマーの出力信号を用いて前記駆動装置の制御信号が演算される演 算装置と、 前記制御信号が前記駆動装置に出力される出力装置とを備えたことを ί敷 とする。 この齢、 歸 βベントホールのガス通過流量可変装置は、 更に乗員の赚を検出す
る乗員 # ^検出装置または乗員自身が乗員 データを入力する乗員 データ入力 装置と、 廳己乗員腿検出装置から出力された、 または IB乗員 データ入力装置 に入力された乗員雌データが一時的に記憶される記憶装置とを備え、 lift己演算装置 は、 前記記憶装置のデータと、 前記タイマーの出力信号を用いて ΙΪΠ己駆動装置の制御 信号が演算することを特徴としても良い。 また、 前記駆動装置は、 前記ベントホールが形成されたシリンダーと、 当該シリン ダー内を往復動し |&|己ベントホーノレを開閉するピストンと、 前記ビストンに前記ベン トホールを閉じる方向に付勢されたばねと、 前記エアバッグに連通する前記シリンダ 一の開閉穴部を塞ぐ弾性膜と、 前記エアバッグの内圧がピーク状態に達した時に、 前 記弾性膜を破るように前記開閉穴部に配設された膨皮りプレートと、 を備えたことを 赚とする力 \ または、 前記駆動装置は、 前記ベントホールが形成されたシリンダー と、 当該シリンダー内を往復動し前記ベントホールを開閉するピストンと、 tin己ビス トンに前記ベントホールを閉じる方向に付勢されたばねと、 前記ビストンの往復動を ロックし、 前記ビストンと連結して設けられるロック装置と、 前記制御信号をトリガ 一として前記ロック装置を解^るァクチユエータと、 備えることを糊敷とするのが 好ましい。 さらに、 前記シリンダーは、 エアバッグに連通する開閉穴部と、 ベントホールが形 成された本体部よりなり、 前記ビストンは、 前記ばねが挿着され、 ばね力により前記 開閉穴部に押し付けられるヘッド部と、 ラックが形成されたロッド部よりなり、 前記 口ック装置は、 ロックピ-オンを備え、 ttifSラックと Ιΐίΐ己口ックピエオンとが嚙み合 う姿勢から嚙み合わなレ、姿勢へと回動可能に軸支されたロックアームと、 前記ロック アームに形成されたフックに掛止され、 ΙίίΙΒァクチユエータにより前記フックカゝら外 れるように回動可能に軸支されたトリガーアームと、 鍵己口ックピ-オンが漏ラッ クに嚙み合わない方向に前記口ックアームを付勢するうず卷きスプリングとを備える
、 または、 l己シリンダーは、 エアバッグに連通する開閉穴部と、 ベントホ一ノレが 形成された本体部よりなり、 前記ピストンは、 前記ばねが揷着され、 ばね力により前 記開閉穴部に押し付けられるへッド部と、 第 1ラックと第 2ラックが形成された口ッ ド部よりなり、 前記ロック装置は、 ロックピニオンを備え、 l己第 1ラックと前記口 ックピユオンとが嚙み合う姿勢から嚙み合わない姿勢へと回動可能に軸支された口ッ クアームと、 ダンパー付ピニオンを備え、 前記第 2ラックと前記ダンパー付ピエオン とが嚙み合わない から嚙み合う姿勢へと回動可能に軸支された第 2アームと、 前 記ロックアームに形成された第 1フックに掛止され、 tfff己ァクチユエータにより前記 第 1フックから外れるように回動可能に軸支された第 1トリガーアームと、 嫌己第 2 アーム 形成された第 2フックに掛止され、 歸己ァクチユエータにより前記第 2フッ クから外れるように回動可能に軸支された第 2トリガーアームと、 前記ロックピ-ォ ンが前記第 1ラックに嚙み合わない方向に前記ロックアームを付勢する第 1うず巻き スプリングと、 前記ダンパー付ピ-オンが前記第 2ラックに嚙み合う方向に前記第 2 アームを付勢する第 2うず卷きスプリングと、 を備えることが好ましい。 一般的にエアバッグは展開開始から数 1 0 msec以内に全工程で最大となる第一の圧 力ピークがあり、 それより後のおよそ 1 0 0msecまでの間に第一のピークより低い第 二の圧力ピークがある (図 1及ぴ図 2参照)。本発明のエアバッグの內圧制御方法は、 上記のような方法であるので、 この第一の圧力ピーク時にはベントホーノレが閉じてい る。すなわち、展開初期ではエアバッグ自体が膨らむ途中で体積的にも小さいために、 ここでは内圧が高くても問題とならないが、 第二のピークでは、 ほぼ展開が完了し、 エアパッグの も最大に近づいてレ、るために、ここでの圧力の上昇力 S適正でなレ、と、 乗員に対してダメージとなる。 本発明のエアバッグの内圧制御方法は、 この第二の圧 力ピークを適正化することができる。 また、 本発明のエアバッグ装置は、 上記のような構成であるので、 の大きい乗
員と小さい乗員に応じて、 ベントホールを通過するガス流量の変化のモードを選択で きる。 つまり、 乗員の体格に応じたエアバッグ内圧、 硬さを選択できる。 As disclosed in Japanese Patent Publication No. 4 7 2 7 6, an opening hole formed in the side surface of one of the inflators constituting the airbag device is formed by a knurl at some point during the deployment of the airbag. Techniques for opening and closing are known. In addition, a two-stage inflator uses a seat position sensor that detects the occupant's seating position, a seat position sensor that detects the difference, an occupant weight sensor, and an ECU (electronic control unit) that processes the information detected by the sensor. There are known airbag devices that perform internal pressure control HP and airpack poly-um control ¾J. However, the conventional method of controlling the internal pressure of an airbag simply opens the pulp and lowers the internal pressure when the internal pressure of the airbag exceeds a certain pressure, and there is a difference in occupants. It was difficult to maintain the airbag internal pressure, and as a result, due to trade-offs, the situation had to be set with a medium aim. In addition, the conventional air pad and dog device also use a two-stage inflator, which has been a factor of cost increase. Disclosure of the invention The present invention has been made in view of the problems of the conventional airbag internal pressure control method and the airbag device described above, and provides an internal pressure control method that responds quickly to an internal pressure fluctuation of the airbag. In addition, a low-cost airbag device capable of changing the hardness of the airbag by appropriately controlling the internal pressure by monitoring the situation in which the occupant suddenly enters the airbag is provided. For this purpose, the airbag internal pressure control method of the present invention is an airbag internal pressure control method for controlling the internal pressure of the airbag at the time of deployment by changing the gas flow rate passing through the vent hole. At the time of deployment of the so-called self airbag, at least the deployment volume of the tiff self-bag or the time elapsed from the start of the deployment of the air bag is monitored, and the ttrt own air bag is determined in advance according to at least the occupant data. Changing the gas flow rate passing through the vent hole according to the crew data, either at a time equal to or greater than the determined deployment volume or after a lapse of a predetermined elapsed time according to the occupant data. Another aspect of the present invention is a method of controlling the internal pressure of an airbag, comprising: controlling the internal pressure of the airbag during deployment to a gas flow rate passing through a vent hole. A method for controlling the internal pressure of an air bag which is changed and controlled, wherein occupant physique data is acquired in advance, and when the air bag is deployed, the internal pressure of the air bag is monitored, and at least the deployed volume of the air bag or the air bag deployment. Monitor any of the elapsed time from the start, tii? Even if the airbag is longer than the predetermined deployment volume according to the occupant data or ΙίίΙthe predetermined time according to the occupant data If it is a later error and the internal pressure of the tiff's own air bag reaches or exceeds a predetermined internal pressure according to the occupant data, at least one of the occupant data or the predetermined one is used. In order to change the flow rate of gas passing through the vent hole according to the conditions, it is assumed that the size of the paste is changed. And still another method of controlling the internal pressure of the air bag of the present invention is to urge an opening / closing member capable of closing the vent hole in a direction in which the vent hole is closed by a proper spring force. By absorbing a part of the airbag in the biasing direction and making the spring force variable, the movement of the opening / closing member with respect to the same deployed state of the airbag is changed to change the gas passage area of the vent hole. It is defined that the flow rate of the gas passing through the vent hole is changed. An airbag device according to the present invention is an airbag device having a gas passage flow rate variable device for a vent hole, wherein the gas passage flow rate variable device for the vent hole is for varying the gas flow rate passing through the vent hole. A drive unit, an occupant that detects the occupant # ^ An occupant physique data input device that detects occupant data or an occupant physique data input device that inputs occupant data, and an output of the occupant 5¾ member detection device A storage device for temporarily storing occupant data input to the device, and a predetermined amount of time elapsed from when an expansion volume detection device for detecting at least the expansion volume of the airbag or an airbag expansion start instruction signal is input. Any of a timer for measuring time, data of the storage device, and at least the developed volume detection determined based on the data of the storage device An arithmetic unit for calculating a control signal of the driving device using an output signal of the timer or the timer, and an output device for outputting the control signal to the driving device. This is referred to as glue. Further, another airbag device of the present invention is an airbag device having a gas passage flow rate variable device of a vent hole, wherein the gas passage flow rate variable device of the vent hole varies a gas flow rate passing through the vent hole. A layer concealing device for detecting the occupant's physique, an occupant # ¾ detecting device or an occupant data input device for inputting occupant data by the occupant itself, and an output from the occupant! ^ Detecting device or the occupant. ί «A storage device that temporarily stores the occupant data input to the data input device, An internal pressure detection device that detects the internal pressure of the airbag, and a deployment volume detection device that detects at least the deployment volume of the disgusting airbag or a timer that measures a predetermined elapsed time from when the airbag deployment start instruction signal is input An operation in which a control signal of the driving device is calculated using any one of the data of the self-storage device, at least an output signal of the developed volume detection device or the tin self-timer, and an output signal of the internal pressure detection device. And an output device for outputting the control signal to the driving device. The driving device includes an opening / closing member capable of closing the vent hole, a spring biased in the opening / closing member in a direction to close the vent hole, and a resistance force generated in a biasing direction of the spring. It is preferable to further include a variable resistance force device provided in connection with the spring. Further, the driving device includes: a cylinder having the vent hole formed therein; a piston reciprocating in the cylinder to open and close the vent hole; a spring biased by the biston in a direction to close the vent hole; It is preferable that the apparatus further comprises a variable resistance generator that generates a resistance in the biasing direction of the spring and is provided in connection with the biston. The cylinder includes an opening / closing hole communicating with the airbag, and a main body having a vent hole formed therein. The piston is attached to the biston, and the head is pressed against the opening / closing hole by a spring force. And a rod portion on which a rack is formed. The variable resistance device includes a pin with a damper, and the knitting rack and the pinion with a damper are combined with each other. An arm rotatably supported to a mating posture and a hook formed on the toothed arm, and rotatably supported so as to be detached from the footer by using the control signal as a trigger. A trigger arm; and a spiral spring for urging the arm in a direction in which the pinion with a damper engages with the rack. Further, still another method of controlling the internal pressure of an airbag according to the present invention is to control the internal pressure of the airbag at the time of deployment by changing the gas flow rate passing through the vent hole. A method in which the time elapsed from the time of the collision accident is monitored by a timer, and the flow rate of the gas passing through the vent hole is changed after a predetermined delay time has elapsed from the start of the deployment of the ftilS air package. What you did is called glue. Alternatively, the occupant physique data may be obtained in advance, and after the predetermined delay time elapses, the gas flow rate passing through the vent hole may be changed according to the occupant win data. Further, still another method of controlling the internal pressure of an airbag according to the present invention is a method of controlling the internal pressure of an airbag at the time of deployment by changing the flow rate of gas passing through a vent hole. A gas that blocks the internal pressure detection port of the gas flow rate variable device (Plih the gas flow from the start of deployment of the airbag until the internal pressure reaches a peak state from the start of deployment of the airbag, and when the internal pressure reaches the peak state, It is characterized in that the air flow is broken and the gas flow rate passing through the vent hole is changed.Further, another air bag device of the present invention has a variable gas flow rate device of a vent horn. The airbag device is a device for varying the flow rate of gas passing through the vent hole, and a drive device for varying the flow rate of gas passing through the vent hole, and a motor that monitors the time elapsed since the collision accident. A timer for measuring a predetermined delay time from the start of the deployment of the air bag; a computing device for calculating a control signal of the driving device using an output signal of the timer; and a driving device for controlling the driving signal. At this age, the variable gas passage flow rate device at the β venthole further detects the occupant's 赚. Crew # ^ The crew data input device that the crew data is input by the crew detection device or the crew itself, and the crew female data output from the cabin crew thigh detection device or the IB crew data input device are temporarily stored. The lift self-calculating device may calculate the control signal of the self-drive device using the data of the storage device and the output signal of the timer. In addition, the drive device includes a cylinder having the vent hole formed therein, a piston reciprocating in the cylinder to open and close the vent hole, and a spring biased by the biston in a direction to close the vent hole. An elastic film that closes the open / close hole of the cylinder communicating with the airbag; and an elastic film disposed in the open / close hole so as to break the elastic film when the internal pressure of the airbag reaches a peak state. Or a driving device comprising: a cylinder having the vent hole formed therein; and a piston reciprocating in the cylinder to open and close the vent hole. a spring urged in a direction to close the vent hole by the tin biston, and a lock provided in connection with the biston to lock the reciprocation of the biston. And click device, said locking device solutions ^ Ru Akuchiyueta said control signal as triggers, it is preferable that a Norishiki a provided. Further, the cylinder includes an opening and closing hole communicating with the airbag, and a main body having a vent hole formed therein. The piston is inserted into the piston and the head is pressed against the opening and closing hole by a spring force. And a rod portion having a rack formed thereon. The buckling device includes a lock pin, and shifts from a position where the ttifS rack and the self-portion pierced mating to a matching position. A lock arm rotatably supported by a lock, a trigger arm hung on a hook formed on the lock arm, and rotatably supported so as to be disengaged from the hook cover by a actuator; A spiral spring for urging the mouthpiece arm in a direction in which the mouthpiece does not engage with the leakage rack. The self-cylinder comprises an opening / closing hole communicating with the airbag, and a main body having a vent hole formed therein. The piston is attached with the spring, and the opening / closing hole is formed by the spring force. The locking device comprises a head portion to be pressed, a mouth portion formed with a first rack and a second rack, and the locking device has a lock pinion, and the first rack and the mouth pinion engage with each other. A mouth arm pivotally supported to be rotatable from a posture to a posture in which it does not engage, and a pinion with a damper, and the second rack and the piston with a damper do not engage with each other; A second arm rotatably supported by the first arm and a first hook formed on the lock arm, and the second arm rotatably supported by the tfff actuator so as to be detachable from the first hook. 1 bird A gar arm, a disgusting second arm, a second trigger arm hung on a second hook formed and rotatably supported by a return actuator so as to be disengaged from the second hook, and the lock pin A first spiral spring for urging the lock arm in a direction in which the lock arm does not engage with the first rack; and a second spiral arm for urging the second arm in a direction in which the damped pinion engages with the second rack. And a second spiral spring. Generally, an airbag has a first pressure peak that is maximum in all processes within a few 10 msec from the start of deployment, and a second pressure peak that is lower than the first peak until about 100 msec thereafter. Pressure peak (see Figures 1 and 2). Since the method for controlling the air pressure of the airbag of the present invention is as described above, the vent horn is closed at the first pressure peak. In other words, since the volume of the airbag itself is small during the inflation in the early stage of deployment, even if the internal pressure is high, there is no problem here, but at the second peak, deployment is almost completed and the airbag approaches its maximum. In order to do this, the pressure increasing force here is not appropriate, and damage to the occupants will occur. The internal pressure control method for an airbag according to the present invention can optimize the second pressure peak. Further, since the airbag device of the present invention is configured as described above, Depending on the crew and the small crew, the mode of change of the gas flow rate through the vent hole can be selected. In other words, the airbag internal pressure and hardness can be selected according to the occupant's physique.
さらに、 本発明の他のエアバッグ装置によれば、 衝突事故によりインフレ一ターが 点火してガスが噴出し、 エアバッグの内圧が急激に上昇し、 内圧がピークに ¾1 "るま での P h a s e— 1にあっても、 ベントホールは弾性膜により塞がれるので、 ガスの 流出を最小限にとどめることができる。 その結果、 乗員拘束のェアバッグの展開が早 くなり、 もしくは小型のインフレ一ターを採用することができるメリットがある。 図面の簡単な説明 Further, according to the other airbag device of the present invention, the inflator ignites due to a collision accident and gas is ejected, the internal pressure of the airbag rises rapidly, and the internal pressure of the airbag reaches a peak ¾1 ". Even in the case of hase-1, the vent hole is closed by an elastic membrane, minimizing gas outflow, resulting in faster deployment of the occupant restraint airbag or small inflation. There is an advantage that it is possible to adopt a printer.
図 1は本発明のエアバッグの内圧制御方法を説明するエアバッグの内圧変化を 示すグラフ (乗員力 M、柄な成人女性である であり、 図 2は同じくエアバッグの 内圧変化を示すグラフ (乗員が平均的な成人男性である であり、 図 3の (A) は本発明の実施の形態に係るガス通過流量可変装置の断面図、 (B) は駆動装置の斜 視図であり、 図 4は図 3のガス通過流量可変装置のベントホールの開閉動作 (乗員が 小柄な成人女性の場合) を説明する断面図であり、 図 5は図 3のガス通過流量可変装 置のベントホールの開閉動作 (乗員;^小柄な成人女性の: ^) を説明する断面図であ り、 図 6は図 3のガス通過流量可変装置のベントホールの開閉動作 (乗員が平均的な 成人男性の^) を説明する断面図であり、 図 7は図 3のガス通過流量可変装置のベ ントホールの開閉動作 (乗員が平均的な成人男性の^) を説明する断面図であり、 図 8は図 3のガス通過流量可変装置のスプリングとダンパーの関係を説明する概念図 であり、 図 9は本発明の他の実施の形態に係るエアバッグの內圧制御方法のフロー図 であり、 図 1 0は本発明の他の実施の形態に係るガス流量可変装置の断面図であり、 図 1 1は本発明の他の実施の形態に係る駆動装置の断面図であり、 図 1 2は図 1 1の 駆動装置の弾'隱と薩りプレートの関係を示し、 (A) はエアバッグが働してい ない状態の断面図、 (B) は内圧がピーク状態に達した時の断面図、 (C) は概略斜 視図である。
発明を実施するための最良の形態 Fig. 1 is a graph showing the change in the internal pressure of the airbag, which explains the method of controlling the internal pressure of the airbag of the present invention. The occupant is an average adult male. FIG. 3 (A) is a cross-sectional view of the variable gas passage flow rate device according to the embodiment of the present invention, and FIG. 3 (B) is a perspective view of the driving device. 4 is a cross-sectional view for explaining the opening / closing operation of the vent hole of the variable gas passage flow rate device shown in FIG. 3 (when the occupant is a small adult woman). FIG. 5 is a cross-sectional view of the vent hole of the variable gas passage flow rate device shown in FIG. Fig. 6 is a cross-sectional view illustrating the opening / closing operation (occupant; ^ for a small adult woman: ^). Fig. 6 shows the opening / closing operation of the vent hole of the gas flow rate variable device in Fig. 3 (^ FIG. 7 is a cross-sectional view illustrating the gas flow rate variable device of FIG. FIG. 8 is a cross-sectional view illustrating the opening and closing operation of the towel (^ an average male occupant). FIG. 8 is a conceptual diagram illustrating the relationship between the spring and the damper of the variable gas passage flow rate device in FIG. FIG. 10 is a flow chart of a method for controlling air pressure of an airbag according to another embodiment of the present invention. FIG. 10 is a cross-sectional view of a gas flow variable device according to another embodiment of the present invention. 1 is a cross-sectional view of a driving device according to another embodiment of the present invention, FIG. 12 shows the relationship between the bullet and the plate of the driving device in FIG. 11, and FIG. (B) is a cross-sectional view when the internal pressure reaches a peak state, and (C) is a schematic perspective view. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態を図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明のエアバッグの内圧制御^去を説明するエアバッグの内圧変ィ匕を示す グラフ (乗員力 S小柄な成人女性である:!^) であり、 図 2は同じくエアバッグの内圧 変化を示すグラフ 凍員が平均的な成人男性である ) であり、 図 3 (A) は本発 明の実施の形態の一例に係るベントホールのガス通過流量可変装置の断面図、 図 3 FIG. 1 is a graph showing an internal pressure change of an airbag (an occupant force S is a small adult woman:! ^) Illustrating an internal pressure control of the airbag according to the present invention, and FIG. FIG. 3 (A) is a cross-sectional view of a variable gas passage flow rate device of a vent hole according to an embodiment of the present invention.
(B) はその駆動装置の斜視図であり、 図 4〜図 7は図 3のベントホールのガス通過 流量可変装置のベントホールの開閉動作を説明する断面図であり、 図 8は図 3のベン トホールのガス通過流量可変装置のスプリングとダンパーの関係を説明する概念図で める。 まず、 図 1及ぴ図 2において、 展開時のエアバッグの内圧をベントホールを通過す るガス流量を変化させて制御するエアパッグの内圧制御方法について詳細に説明する。 図 1はエアバッグの内圧変ィ匕を示すグラフ (乗員が小柄な成人女性である ^[A F 5 % (Adult Female 5 %=身長が 1 5 O cm程度の小柄な成人女性) ]) である。 図 中、太線 (Current)は従来の方法で内圧を制御していなレ、 の内圧変ィ匕曲線であり、 細線 (Improved)は本発明の方法で内圧を制御した の内圧変ィ匕曲線である。 横軸は 衝突事故時からエアバッグ展開開始 (TTFポイント) 、 Phase - 1、 Phase- 2と経過して いく S 時間 (msec)、 縦軸はエアバッグの内圧 (KPa)である。 本発明の内圧制御方法によれば、 エアバッグの展開初期においては、 内圧を高め、 エアパッグの乗員拘束力を高めることが第一であるので、 ベントホールを通過するガ ス流量をゼロ、 すなわち、 ベントホー ま閉じたままにしておく。 そして、 エアパッ グ展開時に、 少なくともエアバッグの展開体積または前記エアバッグ展開開始 (TTF)
力らの経過時間をモニターする。 衝突直後から展開初期 (0- 15msec)において、 内圧は 1 2 O KPa程度のピークに達した後、急激に内圧が低下し (Phase- 1)、その後再び 40msec あたりで内圧が上昇に転ずる (Phase - 2) 。 前記ェアバッグ力 少なくとも予め取得しておいた tfrf己乗員^ ^データに応じて予 め決められた展開体積以上、 または t!if己乗員 データ (この は、 A F 5 %) に 応じて予め決められた経過時間 (この^^は、 約 4 5 msec) を経過後のいずれかの場 合に、 前記乗員赚データ (AF 5 %) に応じて前記ベントホールを通過するガス流 量を変ィヒさせる。 具体的には、 ベントホーノレが開いて、 アバッグ内のガスがベントホーノレより出て 行く。 エアバッグの内圧が下がるとベントホールが閉じるように前記ベントホールを 通過するガス流量が制御される。 そして、 ベントホールは、 以上の開閉動作を繰り返 す。 これにより、図 1に示すように、展開初期には内圧が上がり、乗員拘束力が向上し、 その後一旦内圧力 S低下し、 再び上昇に転じた後、 所定のポイント (Activate MVCと 記載されたボイント) で前記ベントホールを通過するガス流量を変化させることで、 身長が 1 5 0 cm程度の小柄な成人女性という乗員の体格に応じた: なエアパッグ内 圧 (20KPa弱) 、 すなわち比較的やわら力いエアバッグの硬さとすることができる。 上記の制御方法では、 前記ベントホールを通過するガス流量の制御を開始する所定 のポイント (Activate MVCと記載されたポイント) は、 Ιϋΐ己エアバッグ展開時に、 少なくとも前記エアバッグの展開 または前記エアバッグ展開開始からの経過時間 のいずれかをモニターし、 前記エアバッグが、 少なくとも予め取得しておいた前記乗 員体格データ (AF 5 %) に応じて予め決められた展開体積以上または前記乗員体格
データ (AF 5%) に応じて予め決められた経過時間 (約 45msec) を経過後のいず れかの に、 編己乗員 データ (AF5%) に応じて決定される。 ここで Ϊ己の' 所定ボイント (Activate AAVCと記載されたボイント) は、前記ェアバッグ展開時に、 当該エアバッグの内圧をモニターし、 且つ少なくとも前記エアバッグの展開体積また は前記エアパッグ展開開始からの経過時間のいずれかをモニタ一し、 前記エアパッグ 1 少なくとも編己乗員! ^データ (AF5°/0) に応じて予め決められた展開体積以 上または前記乗員 データ (AF5%) に応じて予め決められた経過時間 (約 45 msec) を経過後のいずれかの場合であって、 且つ前記エアバッグの内圧が前記乗員体 格データ (AF5%) に応じて予め決められた内圧 (この^は、 約 15KPa) 以上 に達したら、 少なくとも前記乗員 データ (AF5%) または前記予め決められた 内圧 (約 15KPa) のいずれかに応じて決定されるようにしても良い。 前記ベントホールは、 ガスの流れる方向に対して垂直断面積を変ィ匕させるものであ ればよい。 具体的には、 前記ベントホールを閉じる方向に付勢された«的なばね力 により、 例えば、 シリンダ一に形成されたベントホールをビストンゃ開閉板等の開閉 部材により開閉することにより、 ベントホールの開口面積を変ィ匕させることによるも のが、 より好ましい。 次に図 2に示す乗員が平均的な成人男性である AM 50 % (Adult Male 50 % 二身長が 175 cm, 体重が 75 kg程度の平均的な成人男性) ]について説明する。 図 1と同じように、 太線 (Current)は従来の方法で内圧を制御しなレ、 の内圧変ィヒ曲 線であり、 細線 (Improved)は本発明の方法で内圧を制御した の内圧変ィ匕曲線であ る。 横軸は衝突事故時からエアバッグ展開開始 (TTFポイント) 、 Phase - 1、 Phase- 2と 経過してレヽく経過時間 (msec)、 縦軸はエアパッグの内圧 (KPa)である。 図 1の場合と同じように、 エアバッグの展開初期においては、 内圧を高め、 エアパ
ッグの乗員拘束力を高めることが第一であるので、 ベントホーノレを通過するガス流量 をゼロ、 すなわち、 ベントホー ま閉じたままにしておく。 そして、 エアバッグ展開 時に、 少なくともエアバッグの展開 または前記エアバッグ展開開始 (TTF) 力 の経過時間をモニターする。 衝突直後から展開初期 (0- 15msec)において、 内圧は 1 2 OKPa程度のピークに達した後、 急激に内圧が低下し (Phase- 1) 、 その後再ぴ 30msec あたりで内圧が上昇に転ずる (Phase - 2) 。 前記エアバッグが、 少なくとも予め取得しておいた前記乗員体格データに応じて予 め決められた展開体積以上、 または嫌己乗員 データ (この は、 AM 5 0 %) に応じて予め決められた経過時間 (この^は、 約 6 0 msec) を経過後のいずれかの ^に、 前記乗員^ &データ (AM 5 0 %) に応じて前記ベントホールを通過するガ ス流量を変化させる。 具体的には、 前記ベントホールが開こうとする際に可変抵抗力を生じさせる可変抵 抗カ発生装置 (詳細は後述する) が^ ftすることにより、 乗員が平均的な成人男性の よりも見かけ上強いパネ定数でベントホールが開いて、 エアバッグ内のガスがベ ントホーノレより出て行く。 エアバッグの内圧が下がると見かけ上強くなったパネ定数 によりベントホールが AM 5 0 %の場合よりも高い内圧で閉じるように前記ベントホ ールを通過するガス流量が制御される。 これにより、図 2に示すように、展開初期には内圧が上がり、乗員拘束力が向上し、 その後ー且内圧が低下し、 再び上昇に転じた後、 所定のポイント (Activate MVCと 記載されたボイント) で前記ベントホールを通過するガス流量を変ィ匕させることで、 身長が 1 7 5 cm程度、 体重が 7 5 kg程度の平均的な成人男性という乗員の ί裕に応じ た: なエアバッグ内圧 (3 OKPa強) 、 すなわち比較的硬いエアバッグの硬さとす ることができる。
上記の制御方法では、 前記ベントホーノレを通過するガス流量の制御を開始する所定 のポイント (Activate MVCと記載されたポイント) は、 前記エアバッグ展開時に、 少なくとも前記エアバッグの展開体積または前記エアバッグ展開開始からの経過時間 のいずれかをモニターし、 前記エアバッグが、 少なくとも予め取得しておいた前記乗 員体格データ (AM 5 0 %) に応じて予め決められた展開体積以上または前記乗員体 格データ (AM 5 0 %) に応じて予め決められた経過時間 (約 6 0msec) を経過後の いずれかの に、 編己乗員 データ (AM 5 0 %) に応じて決定される。 ここで 廳己の所定のポイント (Activate MVCと記載されたポイント) は、 前記エアバッグ 展開時に、 当該エアバッグの内圧をモニターし、 且つ少なくとも前記エアバッグの展 開体積または前記エアバッグ展開開始からの経過時間のレヽずれかをモ二ターし、 前記 エアバッグ力 少なくとも前記乗員 データ (AM 5 0 %) に応じて予め決められ た展開体積以上または前記乗員体格データ (AM 5 0 %) に応じて予め決められた経 過時間 (約 6 0msec) を経過後のいずれかの場合であって、 且つ前記エアバッグの内 圧が前記乗員 データ (AM 5 0 %) に応じて予め決められた内圧 (この は、 約 3 0KPa) 以上に達したら、 少なくとも前記乗員 #¾·データ (AM5 0 %) または 前記予め決められた内圧 (約 3 0KPa) のいずれカゝに応じて決定されるようにしても 良い。 前記ベントホールを通過するガス流量は、 灘的なばね力により前記ベントホール を閉じる方向に付勢し且つ当該ばね力の一部をその付勢方向で吸収し当該ばね力を可 変とし、 例えば、 シリンダ一に形成されたベントホールをピストンや開閉板等により 開閉することにより、 変ィ匕させることが好ましい。 次に、 上記エアバッグの内圧制御方法を実現するエアバッグ装置の構成の一例につ いて図 3を参照して詳細に説明する。 図 3 (A) に示すように、 エアパック'装置はべ
ントホールのガス通過流量可変装置 1を有する。 該ガス通過流量可変装置 1は、 ベン トホールを通過するガス流量を可変とするための駆動装置 を備える。 そして、 該 駆動装置 B ,は、 ピストン 1 0の往復動により、 シリンダー 2 0に形成されたベント ホーノレ 2 1を開閉させて、 前記シリンダー 2 0に連通するエアバッグ (図示せず) の 内圧を制御する。 前記シリンダー 2 0は、 エアバッグに連通する開閉穴部 2 0 aと前記ベントホーノレ 2 1が形成された本体部 2 0 bよりなる。 前記開閉穴部 2 0 aには開口穴 2 2が形成 され、 この開口穴 2 2に前記エアバッグが連通される。 また、 前記ベントホール 2 1 は、 前記本体部 2 0 bの側面に 1個所又は複数個膨成され、 図 3 (B) のように複 数個所形成される ^は、 方形状のベントホールが環状に配置されることが好ま しい。 前記ピストン 1 0は、 ばね 1 1が挿着され、 ばね力により前記開閉穴部 2 0 aの内 側開口端部に押し付けられるへッド部 1 2と、 ロッド部 1 3よりなる。 前記口ッド部 1 3には、 ラック 1 4が形成される。 そして、 前記シリンダー 2 0の本体部 2 0 bに おいて、 開閉穴咅 2 0 aと反対側の端部にプシュ 1 5力 S嵌着される。 ftilEばね 1 1は 前記プシュ 1 5の環状溝部 1 5 aに嵌め込まれるとともに、 前記口ッド部 1 3は前記 プシュ 1 5により、 シリンダー軸方向に摺動可能に軸支される。 したがって、 前記ピ ストン 1 0は前記ばね 1 1により、藤己ベントホール 2 1が閉じる方向に付勢される。 また、 前記ピストン 1 0の口ッド部 1 3には、 前記ばね 1 1の付勢方向に抵抗力を 発生させる可変抵抗力発 置 3 0が連結される。 さらに、 嫌己ガス通過流量可変装 置 1は、 乗員の体格を検出する乗員体格検出装置 1 1 0又は乗員自身が乗員体格デー タを入力する乗員 ί稀データ入力装置 1 1 0, と、 前記乗員 検出装置 1 1 0力ら 出力された、 又は前記乗員! ^データ入力装置 1 1 0 , に入力された乗員体格データ
が一時的に記憶される記憶装置 1 2 0と、 前記エアバッグの展開体積を検出する展開 検出装置 1 3 0と、 エアバッグ展開時のエアバッグの内圧を検出する内圧検出装 置 1 4 0と、 エアバッグ展開開始信号が入力された時から予め決められた経過時間を 計測するタイマー 1 5 0とを備える。 前記乗員体格検出装置 1 1 0は、 例えばシート座席内に設置される重量センサ、 そ して超音波センサによる距離検知等により構成される。 廳己乗員雌データ入力装置 1 1 0 ' は、 例えば ¾fe席横に設置されるテンキー入力装置等により構成される。 展開体積検出装置 1 3 0は、例えば前記エアバッグ内に引き出し可能な紐を用意し、 その紐の引き出し量でエアバッグの展開体積検知するようにする。 また内圧検出装置(B) is a perspective view of the driving device, FIGS. 4 to 7 are cross-sectional views for explaining the opening / closing operation of the vent hole of the gas passage flow rate variable device in FIG. 3, and FIG. 8 is FIG. FIG. 3 is a conceptual diagram illustrating a relationship between a spring and a damper of a gas flow rate variable device in a vent hole. First, referring to FIGS. 1 and 2, a method of controlling the internal pressure of the air bag, which controls the internal pressure of the air bag during deployment by changing the gas flow rate passing through the vent hole, will be described in detail. Figure 1 is a graph showing the internal pressure change of an airbag (the occupant is a small adult woman ^ [AF 5% (Adult Female 5% = small adult woman with a height of about 15 Ocm)]). . In the figure, the bold line (Current) is the internal pressure change curve of the internal pressure not controlled by the conventional method, and the thin line (Improved) is the internal pressure change curve of the internal pressure controlled by the method of the present invention. is there. The horizontal axis is the airbag deployment start (TTF point) from the time of the collision accident, the S time (msec) that elapses from Phase-1 and Phase-2, and the vertical axis is the airbag internal pressure (KPa). According to the internal pressure control method of the present invention, in the initial stage of the deployment of the airbag, it is the first priority to increase the internal pressure and to increase the occupant restraining force of the air bag, so that the gas flow rate passing through the vent hole is zero, that is, Venthoe Keep closed. Then, when deploying the airbag, at least the deployment volume of the airbag or the deployment of the airbag (TTF) Monitor the power elapsed time. Immediately after the collision, at the initial stage of deployment (0-15 msec), the internal pressure reaches a peak of about 12 O KPa, then drops rapidly (Phase-1), and then starts to increase again around 40 msec (Phase-1) -2). The airbag force is at least a predetermined deployment volume according to the tfrf own occupant data obtained in advance ^ ^ or the t! If own occupant data (this is AF 5%). In any case after the elapsed time (this ^^ is about 45 msec), the gas flow rate passing through the vent hole is changed according to the occupant 赚 data (AF 5%). . Specifically, the venthorn opens, and the gas in the bag exits from the venthorn. The gas flow rate passing through the vent hole is controlled so that the vent hole closes when the internal pressure of the airbag decreases. Then, the vent hole repeats the above opening and closing operations. As a result, as shown in Fig. 1, the internal pressure increases in the initial stage of deployment, the occupant restraining force increases, then the internal pressure S decreases once, and then starts increasing again. By changing the gas flow passing through the vent hole at the point, the size of the small adult female of about 150 cm in height was adjusted according to the occupant's physique: Airpak internal pressure (less than 20 KPa), that is, relatively The hardness of the airbag can be as strong as that of a straw. In the above control method, a predetermined point at which the control of the gas flow rate passing through the vent hole is started (a point described as Activate MVC) is at least when the airbag is deployed, at least when the airbag is deployed or when the airbag is deployed. Either the time elapsed since the start of deployment is monitored, and the airbag is at least the deployment volume or the occupant physique determined in advance in accordance with at least the previously acquired occupant physique data (AF 5%). Any time after a predetermined elapsed time (approximately 45 msec) has elapsed according to the data (AF 5%), it is determined according to the occupant data (AF5%). Here, the predetermined point of “myself” (point described as “Activate AAVC”) monitors the internal pressure of the airbag when the airbag is deployed, and at least the deployment volume of the airbag or the progress from the start of deployment of the airbag. Monitor any of the time, and said Air Pag 1 at least your own crew! ^ Either above the predetermined deployment volume according to the data (AF5 ° / 0 ) or after the predetermined elapsed time (approximately 45 msec) according to the occupant data (AF5%). And if the internal pressure of the airbag reaches or exceeds a predetermined internal pressure (where ^ is about 15 KPa) according to the occupant physique data (AF5%), at least the occupant data (AF5%) or the It may be determined according to any of the predetermined internal pressures (about 15 KPa). The vent hole may be one that changes the cross-sectional area perpendicular to the gas flow direction. Specifically, for example, the vent hole formed in the cylinder is opened and closed by an opening / closing member such as a Viston II opening / closing plate by a specific spring force urged in a direction to close the vent hole. It is more preferable that the opening area is changed. Next, a description will be given of AM 50% (Adult Male 50%, an average adult male with a height of 175 cm and a weight of about 75 kg) whose average occupant shown in Fig. 2 is an adult male. As in Fig. 1, the bold line (Current) is the curve of the internal pressure change without controlling the internal pressure by the conventional method, and the thin line (Improved) is the curve of the internal pressure change by controlling the internal pressure by the method of the present invention. It is a dagger curve. The horizontal axis is the airbag deployment start (TTF point) from the time of the collision accident, the elapsed time (msec) after passing Phase-1 and Phase-2, and the vertical axis is the internal pressure of the air bag (KPa). As in the case of Fig. 1, in the initial stage of airbag deployment, the internal pressure is increased and the airbag is opened. Since the first priority is to increase the occupant restraint of the vehicle, the gas flow through the vent horn is zero, that is, the vent hoe is kept closed. When the airbag is deployed, at least the elapsed time of the deployment of the airbag or the airbag deployment start (TTF) force is monitored. Immediately after the collision, in the initial stage of deployment (0-15 msec), the internal pressure reaches a peak of about 12 OKPa, then drops sharply (Phase-1), and then starts to rise around 30 msec (Phase-1) -2). The airbag has a deployment volume equal to or greater than a predetermined deployment volume based on at least the previously acquired occupant physique data, or a predetermined progress based on unpleasant occupant data (AM is 50%). The gas flow rate passing through the vent hole is changed in accordance with the occupant data (AM 50%) at any time after a lapse of time (this is about 60 msec). Specifically, the variable resistance generator (described later in detail), which generates a variable resistance force when the vent hole tries to open, turns ^ ft so that the occupant is more than an average adult male. A vent hole opens with an apparently strong panel constant, and gas in the airbag goes out of the vent vent. As the internal pressure of the airbag decreases, the apparently stronger panel constant controls the gas flow rate passing through the venthole so that the venthole closes at a higher internal pressure than at 50% AM. As a result, as shown in FIG. 2, the internal pressure increases in the initial stage of deployment, the occupant restraining force improves, and then the internal pressure decreases, and the internal pressure starts to increase again. By changing the gas flow passing through the vent hole at the point, the average occupant, who is about 17.5 cm tall and weighs about 75 kg, was able to meet the occupant's margin: The internal pressure of the bag (more than 3 OKPa), that is, the hardness of a relatively hard airbag can be achieved. In the above control method, the predetermined point (the point described as Activate MVC) at which the control of the gas flow rate passing through the vent chamber is started is at least the deployment volume of the airbag or the deployment of the airbag when the airbag is deployed. Elapsed time from the start is monitored, and the airbag is at least a predetermined deployment volume or the occupant physique according to the occupant physique data (AM 50%) acquired at least in advance. Any time after a predetermined elapsed time (approximately 60 msec) has elapsed according to the data (AM 50%), it will be determined according to the occupant data (AM 50%). Here, the predetermined point of the cafeteria (the point described as Activate MVC) is to monitor the internal pressure of the airbag when the airbag is deployed, and at least from the deployment volume of the airbag or the start of deployment of the airbag. The airbag force is at least equal to or greater than a predetermined deployment volume according to the occupant data (AM 50%) or according to the occupant physique data (AM 50%). The predetermined time (approximately 60 msec) has elapsed, and the internal pressure of the airbag is determined in accordance with the occupant data (AM 50%). (This is about 30KPa) When it reaches more than 30KPa, it should be determined according to at least the crew # ¾ data (AM50%) or the predetermined internal pressure (about 30KPa). Is also good. The gas flow rate passing through the vent hole urges the vent hole in a direction to close the vent hole by a spring force and absorbs a part of the spring force in the urging direction to change the spring force. Preferably, the vent hole formed in the cylinder is opened and closed by a piston, an opening / closing plate, or the like to change the shape. Next, an example of the configuration of an airbag device that realizes the above-described method of controlling the internal pressure of the airbag will be described in detail with reference to FIG. As shown in Fig. 3 (A), the air pack It has a variable gas passage flow rate device 1 for the hall. The gas flow rate variable device 1 includes a drive device for varying the gas flow rate passing through the vent hole. The driving device B, by reciprocating the piston 10, opens and closes a vent horn 21 formed in the cylinder 20 to reduce the internal pressure of an airbag (not shown) communicating with the cylinder 20. Control. The cylinder 20 includes an opening / closing hole 20a communicating with the airbag and a main body 20b in which the vent horn 21 is formed. An opening 22 is formed in the opening / closing hole 20a, and the airbag communicates with the opening 22. In addition, the vent hole 21 is formed at one or a plurality of locations on the side surface of the main body 20b, and is formed at a plurality of locations as shown in FIG. 3 (B). Preferably, they are arranged in a ring. The piston 10 includes a head portion 12 into which a spring 11 is inserted and pressed against an inner opening end of the opening / closing hole portion 20a by a spring force, and a rod portion 13. A rack 14 is formed in the opening 13. Then, in the main body portion 20b of the cylinder 20, a push 15 force S is fitted to the end opposite to the opening / closing hole # 20a. The ftilE spring 11 is fitted in the annular groove 15 a of the push 15, and the opening 13 is supported by the push 15 so as to be slidable in the cylinder axial direction. Therefore, the piston 10 is urged by the spring 11 in a direction in which the Fujimi vent hole 21 is closed. Further, a variable resistance device 30 that generates a resistance force in the biasing direction of the spring 11 is connected to the mouth portion 13 of the piston 10. Further, the apparatus for varying the amount of passage of aversion gas 1 includes an occupant physique detecting device 110 for detecting the occupant's physique or an occupant ί rare data input device 110 for inputting occupant physique data by the occupant itself. The occupant detection device 1 1 0 output or the occupant! ^ The occupant physique data input to the data input device 1 1 10, Storage device 120 in which the airbag is temporarily stored, a deployment detection device 130 for detecting the deployment volume of the airbag, and an internal pressure detection device 140 for detecting the internal pressure of the airbag when the airbag is deployed. And a timer 150 that measures a predetermined elapsed time from when the airbag deployment start signal is input. The occupant physique detecting device 110 is configured by, for example, a weight sensor installed in a seat, a distance detection by an ultrasonic sensor, and the like. The data input device 1 110 'for the cabin occupant is constituted by, for example, a ten-key input device installed beside the ¾fe seat. The deployment volume detection device 130 prepares, for example, a drawable string in the airbag, and detects the deployment volume of the airbag based on the amount of the drawn string. Also internal pressure detection device
1 4 0は、 例えば圧力センサ、 歪ゲージなどを設ける。 The 140 is provided with, for example, a pressure sensor and a strain gauge.
1 0 0は演算装置であり、 前記記憶装置 1 2 0のデータと前記記憶装置 1 2 0のデ ータに基づき決められる少なくとも前記展開 検出装置 1 3 0または Ml己タイマーReference numeral 100 denotes an arithmetic unit, and at least the expansion detection device 130 or the M1 timer determined based on the data of the storage device 120 and the data of the storage device 120.
1 5 0のいずれかの出力信号とを用いて前記駆動装置 B の制御信号を演算する。 な お、 前記制御信号は、 出力装置 1 6 0により前記駆動装置に出力されるが、 この出力 装置 1 6 0と廳己記憶装置 1 2 0は、 前記演算装置 1 0 0に含まれるように構成する ことが好ましい。 また、 前記演算装置 1 0 0は、 ΙίίΙ己記憶装置 1 2 0のデータと、 少なくとも前記展 開体積検出装置 1 3 0または前記タイマー 1 5 0のいずれかの出力信号と、 tiff己内圧 検出装置 1 4 0の出力信号とを用いて嫌己駆動装置 の制御信号を演算する構成と しても良い。 前記可変抵抗力発 ^置 3 0は、 ダンパー付ピ-オン 3 1を備え、 ttif己ラック 1 4
と前記ダンパー付ピニオン 3 1とが嚙み合わない姿勢から嚙み合う姿勢へと回動可能 に軸支されたアーム 3 2と、 廳己アーム 3 2のフック 3 2 aに掛止され、 l己制御信 号をトリガ一として肅己フック 3 2 aから外れるように回動可能に軸支されたトリガ 一アーム 3 3と、 歸己ダンパー付ピニオン 3 1が前記ラック 1 4に嚙み合う方向に前 記アーム 3 2を付勢するうず巻きスプリング 3 4とを備える。 前記ダンパー付ピ-オン 3 1は、 図 3 ( a ) に示すように、 前記ラック 1 4と嚙み 合って回転するピ-オン部 3 1 aと it己アーム 3 2に固定されたダンパー部 3 2 か らなる。 tinsダンパー部 3 2 bは、 トルクダンパー又¾¾性のトルクダンパーにより 構成される。 次に図 4〜図 7に図示された例により図 3のベントホーノレ通過流量可変装置のベン トホールの開閉動作について説明する。 乗員が小柄な成人女性の場合は、 図 4及ぴ図 5のように前記可変抵抗力発生装置 3 0は作動せず、 前記ばね 1 1のパネ定数のみで 前記ベントホール 2 1が開閉される。 前記ビストン 1 0は、 通常は前記ばね 1 1のばね力により前記シリンダー 2 0の開 閉穴部 2 0 aに押し付けられ前記ベントホール 2 1を塞いでいる。 この時、 前記ビス トン 1 0のロッド部 1 3に形成されたラック 1 4と前記ダンパー付ピニオン 3 1は嚙 み合っていない (図 4) 。 前記エアバッグが展開し、前記演算装置 1 0 0により制御信号が演算され、前記 A c t i V a t e AAV C のポイント (図 1参照) に^ Tるまで、 図示されていな い口ック機構力 s働きベントホールは開かない。 この口ック機構は « ^的にピンを抜く 方式などがある。 次に当該ポイントに達した後、 そのロック機構は解除され、 lift己ピ ストン 1 0はその内圧に押され、 前記ばね 1 1を潰しながら (図の右方向に) スライ
ドする。 同時に前記ベントホール 2 1が開いて、 前記エアバッグ内のガスが前記ベン トホール 2 1より出て行く (図 5 ) 。 前記エアバッグの内圧が下がると、 前記ピスト ン 1 0は前記ばね 1 1のばね力で l己開閉穴部 2 0 aに押し付けられて l己ベントホ ール 2 1を塞ぐ。 そして、 前記ピストン 1 0は、 前記ばね 1 1のパネ定数で上記の動 きを繰り返す往復動を行う (図 8 ( a ) 参照) 。 乗員が平均的な成人男性の は、 図 6及び図 7のように廳己可変抵抗力発 置 3 0がィ權し、 tiff己ダンパー付ピニオン 3 1の持つ抵抗力と嫌己ばね 1 1のパネ定数 を組み合わせたノ ネ定数 (見かけ上強いパネ定数) で tin己ベントホール 2 1が開閉さ れる。 前記演算装置 1 0 0力らの制御信号をトリガーとして、 ΙίίΙΒトリガーアーム 3 3が ¾¾し、 回動することで前記アーム 3 2のフック 3 2 aが外される。 この時、 前記ァ ーム 3 2はうず卷きスプリング 3 4により前記ラック 1 4に嚙み合う方向に付勢され ているので、 前記フック 3 2 aが外れたことで、 前記ダンパー付ピニオン 3 1と前記 ラック 1 4が嚙み合う (図 6 ) 。 前記エアバッグが展開し、前記演算装置 1 0 0により制御信号が演算され、前記 前 記 A c t i v a t e AAV C のポイント (図 2参照) に達するまで、 図示され ていないロック機構力 S働きベントホールは開かない。 このロック機構は ¾^的にピン を抜く方式などがある。 次に当該ポイントに達した後、 そのロック機構は解除され、 前記ピストン 1 0はその内圧に押され、 前記ばね 1 1を潰しながら (図の右方向に) スライドする。 同時に前記ベントホール 2 1が開いて、 前記エアバッグ内のガスが前 記ベントホーノレ 2 1より出て行く (図 7 ) 。 前記エアバッグの内圧が下がると、 前記 ピストン 1 0は前記ばね 1 1のばね力で前記開閉穴部 2 0 aに押し付けられて前記べ ントホーノレ 2 1を塞ぐ。 そして、 前記ピストン 1 0は、 前記ダンパー付ピニオン 3 1
の持つパネ定数と l己ばね 11のパネ定数を組み合わせたパネ定数 (強いパネ定数) で上記の動きを繰り返す往復動を行う (図 8 (b) 参照) 。 次に本発明の他の実施の形態について図 9〜図 11を参照して説明する。 The control signal of the driving device B is calculated using any one of the output signals 150. The control signal is output to the driving device by an output device 160, and the output device 160 and the storage device 120 are arranged so as to be included in the arithmetic device 100. It is preferable to configure. Further, the arithmetic unit 100 is configured to output data of the self-storage device 120, at least an output signal of the expanded volume detecting device 130 or the timer 150, and a tiff internal pressure detecting device. A configuration may be used in which the control signal of the obscene driving device is calculated using the 140 output signal. The variable resistance source 30 includes a pion 31 with a damper, and a ttif rack 1 4 And an arm 3 2 rotatably supported from a position in which the pinion 31 with the damper does not fit to a position in which the pinion 3 has a fit, and a hook 3 2 a of the arm 3 2. A direction in which the trigger arm 33, which is pivotally supported so as to be disengaged from the selfie hook 3 2a with the self-control signal as the trigger, and the pinion 31 with return damper, engage with the rack 14 And a spiral spring 34 for urging the arm 32. As shown in FIG. 3 (a), the pinion with damper 31 is composed of a pinion part 31 a rotating with the rack 14 and a damper part fixed to the it arm 32. It consists of 32. The tins damper part 32b is constituted by a torque damper or a humid torque damper. Next, the opening / closing operation of the vent hole of the vent flow filter of FIG. 3 will be described with reference to the examples shown in FIGS. If the occupant is a small adult female, the variable resistance generator 30 does not operate as shown in FIGS. 4 and 5, and the vent hole 21 is opened and closed only by the panel constant of the spring 11. . The biston 10 is normally pressed against the opening / closing hole 20a of the cylinder 20 by the spring force of the spring 11 to close the vent hole 21. At this time, the rack 14 formed on the rod 13 of the biston 10 and the pinion 31 with the damper do not match (FIG. 4). Until the airbag is deployed, the control signal is calculated by the arithmetic unit 100, and the lock mechanism force (not shown) is reached until the point of the Activate AAV C (see FIG. 1) is reached. s Working vent hole does not open. There is a method of removing the pin for the lip mechanism. Next, after reaching the point, the lock mechanism is released, the lift piston 10 is pushed by its internal pressure, and the spring 11 is slid (to the right in the figure) while crushing the spring 11. Do. At the same time, the vent hole 21 is opened, and the gas in the airbag exits from the vent hole 21 (FIG. 5). When the internal pressure of the airbag decreases, the piston 10 is pressed against the self-opening / closing hole 20a by the spring force of the spring 11, and closes the self-vent hole 21. Then, the piston 10 reciprocates by repeating the above-described movement with the panel constant of the spring 11 (see FIG. 8 (a)). As shown in Figures 6 and 7, the average occupant of the adult male is controlled by the self-adjustable variable resistance device 30 and the tiff own pinion with damper 31 and the resistance and disgusting spring 1 1 The tin constant vent hole 21 is opened and closed by the None constant (appearance strong panel constant) that combines the panel constant. With the control signal from the arithmetic unit 100 as a trigger, the trigger arm 33 is turned and the hook 32 a of the arm 32 is released. At this time, since the arm 32 is urged by the spiral spring 34 in a direction in which the arm 32 engages with the rack 14, the hook 32 a is disengaged, and the pinion with damper 3 is released. 1 and the rack 14 interlock (Fig. 6). Until the airbag is deployed, a control signal is calculated by the arithmetic unit 100, and the lock mechanism force S (not shown) and the working vent hole are not shown until the point of the above-mentioned Activate AAV C (see FIG. 2) is reached. will not open. For this lock mechanism, there is a method of pulling out the pin. Next, after reaching the point, the lock mechanism is released, and the piston 10 is pushed by the internal pressure and slides (to the right in the drawing) while crushing the spring 11. At the same time, the vent hole 21 is opened, and the gas in the airbag flows out of the vent hole 21 (FIG. 7). When the internal pressure of the airbag decreases, the piston 10 is pressed against the opening / closing hole portion 20a by the spring force of the spring 11, and closes the vent hole 21. The piston 10 is provided with a pinion 3 1 with a damper. A reciprocating motion that repeats the above movements is performed by a panel constant (strong panel constant) that combines the panel constant of the device and the panel constant of the self-spring 11 (see Fig. 8 (b)). Next, another embodiment of the present invention will be described with reference to FIGS.
図 9は本発明の他の実施の形態に係るエアバッグの内圧制御方法のフロー図であり、 図 10は本発明の他の実施の形態に係るガス通過流量可変装置の断面図である。 図 1、 2に既に示してあるように、 エアバッグ展開時の内圧は、 時間の経過ととも に変化するが、 その状態は、 インフレ一ターが点火してエアバッグが展開している P h a s e— 1と、 エアバッグで乗員を拘束している P h a s e— 2の 2つに大別され る。 エアバッグが点火して展開している Ph a s e_lは、 倉、激にインフレ一ターか らガスが嘖出されている状況にあり、 エアバッグの内圧は急激に上がる。 その後、 ェ ァバッグがフル展開になるにつれて、 内圧は急激に下がる。 より詳細に述べると、 エアバッグで乗員を拘束している Ph a s e— 2では、 乗員 がエアバッグに対して、 その慣性力でエアバッグを押しつぶしている (逆に言えば、 エアバッグにより乗員を拘束している)。その時、内圧は乗員の慣性力により増加し、 ガスの一部はベントホールより出て行くが、 乗員の慣性力の差、 すなわち乗員の体格 差により、 Pha s e— 2における内圧の増加具合は異なる。 ェアバッグの展開時のガスの圧力に応じて機動的にベントホーノレの開口広さを変ィ匕 させて、 内部のガスの圧力を制御する AAVC (Ad a p t i v e I nne r— P r e s s u r e Ac t i v e Ve n t Con t r o l) は、 乗員^ !§·差に応じ て、 異なるパネ定数でベントホールを開閉し、 内圧を最適化することが目的である。 ところがエアパッグが展開して!/ヽる時は、 急激にィンフレーターよりガスが噴出し内 圧が上がっている (Pha s e— l) ので、 AAVCが^ ¾を開始するポイント (P
ha s e— 2において、 Ac t i v a t e AAV Cと記載されたポイント) の内圧 (図 2の場合、 約 30KPa) を Pha s e— 1で超えてしまう。 そこで、 衝突事故時 (T=0) 力、らの経過時間をタイマーによりモニターし、 エア バッグの点火が決定され (T = T\) 、 MISエアバッグ展開開始時 (エアバッグの点 火時であり、 図 9では T = T2、 図 1及び図 2では TTFのポイント) から所定の遅 延時間経過後 (T-T に、 前記ベントホールを通過するガス流量を変ィ匕させるよ うにする。 この 、 遅延時間は ΔΤ = Τ4— Τ2となる。 また、 予め乗員 データ を取得している にあって、乗員 # ^が大きいと判断された # ^には(Τ二 Τ5)、 後述するようにダンパー付ピ-オンを第 2ラックに嚙み合わせることにより (: Γ二 Τ e) 、 高いパネ定数で前記ベントホールを通過するガス流量を変ィ匕させるようにして もよい。 図 2 [AM 50%] では、 T2=15ms e c、 T4=30ms e c, T6 = 60ms e cであり、 Δ T = T4— T2= 15 m s e cである。 具体的には、 エアバッグの展開開始後 15ms e c遅延後、 ロック装置を角军除され てベントホールが開き、 エアバッグ内のガスがベントホールより出て行く。 エアバッ グの内圧が下がるとベントホールが閉じるように前記ベントホールを通過するガス流 量が制御される。 そして、 ベントホールは、 乗員 が大きいと判断された^には 高いパネ定数で、そうでない^^には通常のパネ定数で、以上の開閉動作を繰り返す。 前記ベントホールは、 ガスの流れる方向に対して垂直断面積を変化させるものであ ればよレヽ。 具体的には、 灘的なばね力により前記ベントホールを閉じる方向に付勢 し、且つ当該ばね力の一部をふの付勢方向で吸収して当該ばね力を可変とし、例えば、 シリンダ一に形成されたベントホールをビストンや開閉板等により開閉することによ り、 ベントホールの開口面積を変ィヒさせることが好ましい。
また、 衝突事故時からの経過時間をタイマーによりモニターする代わりに、 ガス通 過流量可変装置の内圧検出口を塞ぐ弾性膜により、 前記エアバッグ展開開始時から内 圧がピーク状態に ¾1 "るまで (P h a s e— 1 ) ガス流を IfflJLhし、 内圧がピーク状態 に達したら前記弾' 1«が破られ、 前記ベントホールを通過するガス流量を変ィ匕させる ようにしてもよい。 具体的には、 内圧がピーク状態に達したら、 前記弾性膜が変形した位置で、 待ち受 けていた I»りプレートにより弾' i«力 s破られ、 ガス流がピストンまたは開閉板等に 当たりベントホールが開き、 エアバッグ内のガスがベントホーノレより出て行く。 エア バッグの内圧が下がるとベントホールが閉じる。 このような開閉動作を繰り返すこと で、 l己ベントホーノレを通過するガス流量が制御される。 そして、ベントホーノレは、乗員 ^^が大きいと判断された には高いバネ定数で、 そうでなレヽ場合には通常のパネ定数で、 以上の開閉動作を繰り返す。 前記ベントホー ルは、 ガスの流れる方向に対して垂直断面積を変化させるものであればよい。 具体的 には、機械的なばね力により前記ベントホールを閉じる方向に付勢し、 且つ当該ばね 力の一部を負の付勢方向で吸収して当該ばね力を可変とし、 例えば、 シリンダーに形 成されたベントホールをビストンゃ開閉板等により開閉することにより、 ベントホー ルの開口面積を変ィヒさせることが好ましい。 次に、 上記エアパッグの内圧制御方法を実現するェアバッグ装置の構成の一例につ いて図 1 0〜 1 2を参照して詳細に説明する。 図 1 0に示すように、 エアバッグ装置 はベントホールのガス通過流量可変装置 2 0 1を有する。 該ガス通過流量可変装置 2 0 1は、ベントホールを通過するガス流量を可変とするための駆動装置 B 2を備える。 そして、 該,駆動装置 B 2は、 ピストン 2 1 0の往復動により、 シリンダー 2 2 0に形 成されたベントホール 2 2 1を開閉させて、 前記シリンダー 2 2 0に連通するエアパ
ッグ (図示せず) の内圧を制御する。 前記シリンダー 2 2 0は、 エアバッグに連通する開閉穴部 2 2 0 aと前記ベントホ ール 2 2 1が形成された本体部 2 2 0 bよりなる。 前記開閉穴部 2 2 0 aには開口穴 2 2 2が形成され、 この開口穴 2 2 2に tiff己エアバッグが連通される。 また、 ftTt己べ ントホール 2 2 1は、 前記本体部 2 2 0 bの側面に 1個所又は複数個所形成される。 前記ビストン 2 1 0は、 ばね 2 1 1が揷着され、 ばね力により前記開閉穴部 2 2 0 aの内側開口端部に押し付けられるへッド部 2 1 2と、 ロッド部 2 1 3よりなる。 前 記ロッド部 2 1 3には、 第 1ラック 2 1 4 aと第 2ラック 2 1 4 bが形成される。 そ して、 前記シリンダー 2 2 0の本体部 2 2 0 bにおいて、 開閉穴部 2 2 0 aと反対側 の端部にプシュ 2 1 5が嵌着される。 前記ばね 2 1 1は前記プシュ 2 1 5の環 溝部 2 1 5 aに嵌め込まれるとともに、 廳3口ッド部 2 1 3は Ιίίϊ己プシュ 2 1 5により、 シリンダー軸方向に摺動可能に軸支される。 したがって、 前記ピストン 2 1 0は前記 ばね 2 1 1により、 tilt己ベントホール 2 2 1が閉じる方向に付勢される。 また、 前記ピストン 2 1 0のロッド部 2 1 3には、 前記ビストンの往復動を口ック するロック装置 2 3 0と、 前記ばね 2 1 1の付勢方向に抵抗力を発生させる可変抵抗 力発^ ¾置 2 6 0とが並列的に連結される。 さらに、 前記ガス通過流量可変装置 2 0 1は、 乗員の ^を検出する乗員赚検出装置 1 1 0又は乗員自身が乗員 データ を入力する乗員 データ入力装置 1 1 0 ' と、 前記乗員 # ^検出装置 1 1 0力 ら出 力された、 又は編己乗員 データ入力装置 1 1 0 ' に入力された乗員 データが 一時的に記憶される記憶装置 1 2 0と、 衝突事故時からの経過時間をモニターし、 ェ ァバッグ展開開始時からの所定の遅延時間を計測するタイマー 1 5 0とを備える。 前記乗員体格検出装置 1 1 0は、 例えばシート座席内に設置される重量センサ、 そ
して超音波センサによる距離検知等により構成される。 歸己乗員贿データ入力装置 1 1 0 ' は、 例えは 席横に設置されるテンキー入力装置等により構成される。 FIG. 9 is a flow chart of a method for controlling the internal pressure of an airbag according to another embodiment of the present invention, and FIG. 10 is a cross-sectional view of a gas passage flow varying device according to another embodiment of the present invention. As already shown in Figs. 1 and 2, the internal pressure at the time of deployment of the airbag changes with the passage of time, but the condition is that the inflator ignites and the airbag is deployed. — 1 and P hase — 2 that restrains the occupant with airbags. Ph as e_l, in which the airbag is ignited and deployed, is in a situation where gas is being released from the warehouse and the inflator, and the internal pressure of the airbag rises sharply. Then, as the bag becomes fully deployed, the internal pressure drops sharply. More specifically, in Phase-2, where an occupant is restrained by an airbag, the occupant crushes the airbag with its inertia against the airbag (in other words, the occupant is restrained by the airbag). Restrained). At that time, the internal pressure increases due to the occupant's inertial force, and some of the gas exits the vent hole.However, the degree of increase in the internal pressure in Phase-2 differs depending on the difference in the occupant's inertial force, that is, the occupant's physique . AAVC (Ad aptive Inner—Pressure Active Vent Control) that controls the internal gas pressure by flexibly changing the opening width of the vent horn hole according to the gas pressure when the air bag is deployed. The purpose of) is to optimize the internal pressure by opening and closing the vent holes with different panel constants according to the difference of the occupants. However, when the air bag is deployed! / ヽ, the point at which the AAVC starts ^ の because the gas is rapidly ejected from the inflator and the internal pressure is rising (Phase-l) In the case of ha se-2, the internal pressure (about 30 KPa in the case of Fig. 2) of Ac tivate AAV C exceeds the internal pressure in the case of ha se-1. Therefore, at the time of a collision (T = 0), the elapsed time of the force and the like is monitored by a timer, the ignition of the airbag is determined (T = T \), and the deployment of the MIS airbag starts (when the airbag is ignited). Yes, T = T 2 in FIG. 9, TTF point in FIGS. 1 and 2, and after a lapse of a predetermined delay time (TT), the flow rate of gas passing through the vent hole is changed. , The delay time is ΔΤ = — 4 — ま た2. Also, in the case where the occupant data has been acquired in advance, and the occupant # ^ is determined to be large (# 2 Τ 5 ), In this way, by combining the pions with dampers with the second rack (2nd e), the gas flow rate passing through the vent hole may be changed with a high panel constant. in [AM 50%], T 2 = 15ms ec, T 4 = 30ms ec, a T 6 = 60ms ec, Δ T = T 4 - T 2 = 15 msec Specifically, after a delay of 15 ms ec from the start of deployment of the airbag, the lock device is cut off, the vent hole opens, and the gas in the airbag goes out of the vent hole. The gas flow rate passing through the vent hole is controlled so that the vent hole is closed, and the vent hole has a high panel constant when ^ the occupant is determined to be large, and a normal panel constant when ^ is not determined. The above-mentioned opening and closing operations are repeated with the panel constant, as long as the vent hole changes the cross-sectional area perpendicular to the gas flow direction. The spring is biased in a direction to close the hole, and a part of the spring force is absorbed in the biasing direction of the cover to make the spring force variable. Ri by the opening and closing by, it is preferable to varying I inhibit the opening area of the vent hole. Also, instead of monitoring the elapsed time from the time of the collision accident using a timer, the internal pressure from the start of deployment of the airbag until the internal pressure reaches a peak state ¾1 "by an elastic membrane that closes the internal pressure detection port of the gas flow rate variable device (P hase-1) The gas flow may be IfflJLh, and when the internal pressure reaches a peak state, the bullets may be broken and the gas flow rate passing through the vent hole may be changed. When the internal pressure reaches a peak state, the elastic film is deformed at the position where the elastic film is deformed, and the I »plate is awaited. Opens and the gas in the airbag exits through the venthole.The venthole closes when the internal pressure of the airbag drops.By repeating this opening and closing operation, the airbag passes through the venthole. The vent flow is repeated with the high spring constant when the occupant is determined to be large, and with the normal panel constant when the occupant is not large. As long as it changes the cross-sectional area perpendicular to the direction in which the gas flows, specifically, it urges the vent hole in a direction to close the vent hole by a mechanical spring force. The opening area of the vent hole is changed by opening and closing the vent hole formed in the cylinder with a Viston II open / close plate, for example, by absorbing the part in the negative biasing direction and making the spring force variable. Next, an example of the configuration of an air bag device that realizes the above-described method for controlling the internal pressure of the air bag will be described in detail with reference to FIGS. 10 to 12. As shown in FIG. Bag system. The gas flow rate passing through variator 2 0 1 having a gas flow rate passing through variator 2 0 1 of the vent hole is provided with a driving device B 2 for varying the gas flow rate through the vent hole. Then, The driving device B 2 opens and closes a vent hole 221 formed in the cylinder 220 by reciprocating motion of the piston 210, and an air passage communicating with the cylinder 220. To control the internal pressure of the housing (not shown). The cylinder 220 includes an opening / closing hole 220a communicating with the airbag and a main body 220b having the vent hole 222 formed therein. An opening hole 222 is formed in the opening / closing hole 220a, and the tiff airbag communicates with the opening hole 222. Further, one or more ftTt self-vent holes 22 1 are formed on the side surface of the main body 220 b. The piston 211 is provided with a spring 211 attached thereto, and a head 211, which is pressed against the inner opening end of the opening / closing hole 2200a by a spring force, and a rod 213. Become. The rod portion 2 13 has a first rack 2 14 a and a second rack 2 14 b. In the main body 220b of the cylinder 220, a push 215 is fitted to the end opposite to the opening / closing hole 220a. The spring 2 11 is fitted into the ring groove 2 15 a of the push 2 15, and the door 3 2 13 is slidable in the cylinder axial direction by the push 2 15. Supported. Therefore, the piston 2 10 is urged by the spring 2 1 1 in a direction in which the tilt self vent hole 2 2 1 is closed. The rod portion 21 of the piston 210 has a locking device 230 for reciprocating the piston and a variable resistor for generating a resistance in the biasing direction of the spring 211. The force generator 260 is connected in parallel. Further, the gas passage flow rate variable device 201 includes an occupant 赚 detecting device 110 for detecting the occupant ^ or an occupant data input device 110 for inputting occupant data by the occupant itself, and the occupant # ^ detection. The storage device 120 that temporarily stores the occupant data output from the device 110 or the occupant data input device 110 ′, and the elapsed time from the collision accident A timer 150 for monitoring and measuring a predetermined delay time from the start of the development of the bag is provided. The occupant physique detecting device 110 is, for example, a weight sensor installed in a seat. The distance is detected by an ultrasonic sensor. The return crew member 贿 data input device 110 ′ is composed of, for example, a ten-key input device installed beside a seat.
1 0 0は演算装置であり、 前記記憶装置 1 2 0のデータと tiff己タイマー 1 5 0のい ずれかの出力信号とを用いて前記駆動装置 Β 2の制御信号を演算する。 なお、 前記制 御信号は、 出力装置 1 6 0により前記駆動装置のァクチユエータ 2 5 0に出力される 力 S、 この出力装置 1 6 0と前記記憶装置 1 2 0は、 前記演算装置 1 0 0に含まれるよ うに構成することが好ましい。 前記ロック装置 2 3 0は、 ロックピニオン 2 3 1を備え、 歸己第 1ラック 2 1 4 a と前記ロックピニオン 2 3 1とが嚙み合う姿勢から嚙み合わない姿勢へと回動可能に 軸支されたロックアーム 2 3 2と、 前記ロックアーム 2 3 2のフック 2 3 2 aに掛止 され、 前記ァクチユエータ 2 5 0の第 1 ,垂部 2 5 1により前記フック 2 3 2 aから 外れるように回動可能に軸支された第 1トリガーアーム 2 3 3と、 前記口ックピニォ ン 2 3 1が前記第 1ラック 2 1 4 aに嚙み合わない方向に lift己口ックアーム 2 3 2を 付勢する第 1うず卷きスプリング 2 3 4とを備える。 前記可変抵抗力発生装置 2 6 0は、 ダンパー付ピ-オン 2 6 1を備え、 前記第 2ラ ック 2 1 4 bと前記ダンパー付ピニオン 2 6 1とが嚙み合わない姿勢から嚙み合う姿 勢へと回動可能に軸支された第 2アーム 2 6 2と、 前記第 2アーム 2 6 2のフック 2 6 2 aに挂ト止され、 前記ァクチユエータ 2 5 0の第 2聽部 2 5 2により前記フック 2 6 2 aから外れるように回動可能に軸支された第 2トリガーアーム 2 6 3と、 前記 ダンパー付ピニオン 2 6 1が前記第 2ラック 2 1 4 bに嚙み合う方向に前記第 2ァー ム 2 6 2を付勢するうず巻きスプリング 2 6 4とを備える。 前記ダンパー付ピニオン 2 6 1は、 図 3 (B) に同じょうに、 前記第 2ラック 2 1
4 bと嚙み合って回転するピニオン部と tirf己第 2アーム 2 6 2に固定されたダンパー 部からなる。 l己ダンパー部は、 トルクダンパー又は粘性のトルクダンパーにより構 成される。 本発明によるガス通過流量可変装置を有するエアバッグ装置は、 前記エアバッグの 展開開始時から所定の遅延時間経過後に、 ァクチユエータ 2 5 0に出力された制御信 号をトリガーとして、 第 1駆動部 2 5 1により第 1トリガーアーム 2 3 3が M)し、 ロックアーム 2 3 2の口ックビニオン 2 3 1と第 1ラック 2 1 4 aの嚙み合わせを外 す。 その結果、 ピストン 2 1 0は、 ばね 2 1 1のパネ定数でベントホーノレ 2 2 1の開 閉動作を繰り返す。 乗員 検出装置 1 1 0により、 乗員体格が大きいと判断された は、 ァクチュ エータ 2 5 0に出力された制御信号をトリガーとして、 第 2駆動部 2 5 2により第 2 トリガーアーム 2 6 3が作動し、 第 2アーム 2 6 2のダンパー付ピニオン 2 6 1を第 2ラック 2 1 4 bに嚙み合わせることで、 ピストン 2 1 0は、 ダンパー付ピニオン 2 6 1の持つ抵抗力とばね 2 1 1のパネ定数を組み合わせた高いパネ定数で、 ベントホ ール 2 2 1の開閉動作を繰り返す。 次に、 別の形態の瞧装置 B 3を有する他の実施形態に係るエアバッグ装置につい て図 1 1〜図 1 2を参照して説明する。 Reference numeral 100 denotes an arithmetic unit, which calculates a control signal of the drive unit 2 using the data of the storage unit 120 and one of the output signals of the tiff self-timer 150. Note that the control signal is a force S output to an actuator 250 of the driving device by an output device 160, the output device 160 and the storage device 120 are connected to the arithmetic device 100 It is preferable to configure so as to be included. The lock device 230 includes a lock pinion 231, and is configured to be rotatable from a position where the first rack 2 14a and the lock pinion 231 are engaged with each other to a position where they cannot be engaged. The lock arm 2 32 supported by the shaft and the hook 2 32 a of the lock arm 2 32 are hooked on the hook 2 32 a by the first and second vertical portions 2 51 of the actuator 250. The first trigger arm 2 3 3 rotatably supported so as to be disengaged and the mouth pin 2 3 1 lift in a direction in which the pin pin 2 3 1 does not fit into the first rack 2 14 a. And a first spiral spring 2 3 4 for urging the spring. The variable resistance generator 260 includes a damper-attached pinion 261, and the second rack 2114b and the damper pinion 261 are moved from a position where they do not engage with each other. A second arm 262 pivotally supported so as to be rotatable to a suitable posture; and a hook 26a of the second arm 262, and a second listening portion of the actuator 250. The second trigger arm 261, which is rotatably supported so as to be disengaged from the hook 26a by 2 52, and the pinion with damper 261, are inserted into the second rack 214b. A spiral spring (264) for urging the second arm (262) in a matching direction. The pinion with damper 26 1 is the same as that shown in FIG. It consists of a pinion that rotates in mesh with 4b and a damper that is fixed to the tirf second arm 26. The self-damper part is composed of a torque damper or a viscous torque damper. The airbag device having the variable gas passage flow rate device according to the present invention is characterized in that, after a lapse of a predetermined delay time from the start of deployment of the airbag, the control signal output to the actuator 250 is used as a trigger to trigger the first drive unit 2 5 1) The first trigger arm 2 3 3 is set to M), and the lock vinyl 2 3 2 of the lock bin 2 3 1 and the first rack 2 1 4a are disengaged. As a result, the piston 210 repeats the opening / closing operation of the vent horn 21 2 with the panel constant of the spring 21 1. When the occupant detection device 110 determines that the occupant physique is large, the second drive arm 252 activates the second trigger arm 263 using the control signal output to the actuator 250 as a trigger. By connecting the pinion 2 61 with damper of the second arm 2 62 to the second rack 2 1 4 b, the piston 210 becomes the resistance and spring 2 1 of the pinion 2 61 with damper. The opening and closing operation of the vent hole 2 21 is repeated with a high panel constant combining the panel constant of 1. It will now be described with reference to FIG. 1. 1 to FIG. 1 2 with the airbag apparatus according to another embodiment having a瞧device B 3 of another form.
前記駆動装置 B 3は、 ピストン 3 1 0の往復運動により、 シリンダー 3 2 0に形成 されたベントホーノレ 3 2 1を開閉させて、 前記シリンダー 3 2 0に連通するエアパッ グ (図示せず) の内圧を制御する。 前記シリンダ一 3 2 0は、 エアパッグに連通する開閉穴部 3 2 0 aと前記ベントホ 一ノレ 3 2 1が形成された本体部 3 2 0 bよりなる。 前記開閉穴部 3 2 0 aには開口穴
3 2 2が形成され、 編己エアバッグが連通されるが、 この開口穴 3 2 2を塞ぐように 弾性膜 3 2 3力 S取り付けられる。 また、 膽己ベントホール 3 2 1は、 嫌己本体部 3 2 0 bの側面に 1個所又は複数個所形成される。 そして、 前記エアバッグの内圧がピー ク状態に達した時に、 前記弾'隨 3 2 3を破るように廳己開閉穴部 3 2 0 aに纖り プレート 3 2 4が配設される。 前記弾性膜 3 2 3は、 シリコンラバー製の膜とするのが好ましい。 また、 ttif己 « りプレート 3 2 4は、 前記弾' (« 3 2 3側に鋭い頂部 3 2 4 aを有し、 エアバッグ内 圧のピーク時に、 廳己弾 '«3 2 3が変形した位置で、 この弾性膜 3 2 3を破るよう な間隔 Dを有する位置に配設される (図 1 2参照) 。 前記ピストン 3 1 0は、 ばね 3 1 1が揷着され、 ばね力により前記開閉穴部 3 2 0 aの内側開口端部に押し付けられるへッド部 3 1 2と、 ロッド部 3 1 3よりなる。 前 記口ッド部 3 1 3には、 ラック 3 1 4が形成される。 そして、 前記シリンダー 3 2 0 の本体部 3 2 0 bにおいて、 開閉穴部 3 2 0 aと反対側の端部にブシュ 3 1 5力 S嵌着 される。 前記ばね 3 1 1は前記ブシュ 3 1 5の環 溝部 3 1 5 aに嵌め込まれるとと もに、 前記口ッド部 3 1 3は前記ブシュ 3 1 5により、 シリンダー軸方向に搢動可能 に軸支される。 したがって、 前記ピストン 3 1 0は前記ばね 3 1 1により、 前記ベン トホール 3 2 1が閉じる方向に付勢される。 前記弾性膜 3 2 3により、 P h a s e— U 、 急激にインフレ一ターよりガスが噴 出して内圧が上がったピーク状態まで該弾性膜 3 2 3がガス流を する。 ピーク時 で、 該弾'隨 3 2 3が変形した位置で、 待ち受けていた Ιίίϊ己赚りプレート 3 2 4が 膜を破り、 ガス流がピストン 3 1 0面に当たり、 ピストン 3 1 0は、 ばね 3 1 1のパ ネ定数でベントホール 3 2 1の開閉動作を繰り返し、 振動運動しガスの流出を制御す る。
以上、 本発明の実施例について説明したが、 本発明はこれらに何ら限定されるもの でもなく、特許請求の範囲に示された技術的思想において変更可能である。たとえば、 経過時間と展開体積は、 時間の経過とともに大きくなるので、 それぞれ設定値を規定 できれば、 それ戦虫でそれぞれがモニターとして使用できる。
The driving device B 3 is the reciprocating motion of the piston 3 1 0, the internal pressure of the Bentohonore 3 2 1 formed in the cylinder 3 2 0 by closing, Eapa' grayed communicating with the cylinder 3 2 0 (not shown) Control. The cylinder 132 is composed of an opening / closing hole 320 a communicating with the air bag and a main body 320 b formed with the vent hole 320. Opening hole in the opening / closing hole 3 2 0a 3 2 2 is formed, and the knitting airbag is communicated. The elastic membrane 3 2 3 force S is attached so as to close the opening 3 22. In addition, one or more of the venomous vent holes 321 are formed on the side surface of the disgusting body part 320b. Then, when the internal pressure of the airbag reaches a peak state, a fiber plate 324 is disposed in the opening / closing hole portion 320a so as to break the bullet 332. Preferably, the elastic film 32 3 is a film made of silicon rubber. Also, the ttif plate 324 has a sharp top portion 324 a on the side of the bullet ((3 2 2 、 、 時 に 、 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に 時 に. (See FIG. 12) at a position where the elastic membrane 3 23 is broken by the spring D. The spring 311 is attached to the piston 310 by the spring force. It comprises a head portion 312 pressed against the inner opening end of the opening / closing hole portion 320a, and a rod portion 313. The rack 314 is provided in the opening portion 313. Then, in the main body 3200b of the cylinder 320, a bush 315 force S is fitted to an end opposite to the opening / closing hole 320a. Is fitted in the annular groove 315 a of the bush 3 15, and the opening 3 13 is rotatably supported by the bush 3 15 in the cylinder axial direction. Therefore, the The stone 3110 is urged in the direction in which the bent hole 3221 is closed by the spring 3111. The elastic membrane 3233 causes gas to suddenly blow out from the inflator. The gas flows through the elastic membrane 3 2 3 until the internal pressure rises to the peak state At the peak, the elastic plate 3 2 4 is waiting at the position where the elastic 3 2 3 is deformed. The gas flow hits the piston 310 surface, and the piston 310 repeats the opening and closing operations of the vent hole 321 with the panel constant of the spring 311, and vibrates to control the gas outflow. As described above, the embodiments of the present invention have been described. However, the present invention is not limited to these embodiments, and can be changed in the technical idea shown in the claims. For example, the elapsed time and the deployed volume increase over time, so if you can specify the set values for each, you can use them as monitors for each insect.