WO2005118230A1 - Quadruped robot for technological processes - Google Patents

Quadruped robot for technological processes Download PDF

Info

Publication number
WO2005118230A1
WO2005118230A1 PCT/ES2005/070075 ES2005070075W WO2005118230A1 WO 2005118230 A1 WO2005118230 A1 WO 2005118230A1 ES 2005070075 W ES2005070075 W ES 2005070075W WO 2005118230 A1 WO2005118230 A1 WO 2005118230A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
leg
legs
fixed
elastic element
Prior art date
Application number
PCT/ES2005/070075
Other languages
Spanish (es)
French (fr)
Inventor
Teodor Akinfiev
Manuel Angel Armada Rodriguez
Roemi Emilia Fernandez Saavedra
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2005118230A1 publication Critical patent/WO2005118230A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/123Linear actuators

Definitions

  • the invention pertains to mechanical engineering, and can be used particularly in robotics and automation devices.
  • a quadruped robot containing a body, four legs connected to the robot body is considered such that the legs (1) and (2) are fixed on one side of the body of the robot, the legs (3) and (4) are fixed on the opposite side of the robot body, and in addition, all of them have the possibility of moving in parallel paths and four electric motors connected to the control system, and kinematically connected with each of the robot's legs.
  • the drive motors must compensate both the friction forces and the inertia forces, which entails irrational energy costs and a low speed of action of the robot.
  • the present invention refers to a quadruped robot with lower energy consumption, greater speed without the risk of tipping over, and the ability to perform technological operations during the robot body movement process.
  • the robot is composed of a body (5), four legs (1), (2), (3), (4) connected to the body of the robot (5) such that the legs (1) and (2) are fixed on one side of the robot body (5), the legs (3) and (4) are fixed on the opposite side of the robot body (5), and in addition, all of them have the possibility of moving in parallel paths, four motors electrical (8), each of which is kinematically connected with the corresponding robot leg and connected to the control system (25), and two elastic elements (6) and (7), with one end of the first elastic element (6) connected to the leg (1), and the other end connected to the leg (2), and with one end of the second elastic element (7) connected to the leg (4) and the other end connected to the leg ( 3).
  • the equipment necessary to perform the required technological process is connected to the robot body (5).
  • the stiffness and length of the elastic elements (6), (7) is the same, and the length is chosen such that each of them is in a steady state without deformation when one of the legs to which it is connected the corresponding elastic element is in a position extreme and the other leg is in the middle position (26) of the distance between its extreme positions.
  • the operation of the quadruped robot is as follows (figure 2). First the movement of each of the legs (1), (2), (3) and (4) is performed consecutively, so that one leg moves while the other three and the body (5) are at rest. Thanks to the potential energy stored in the elastic elements, this movement is carried out at high speed, with a positive acceleration to the middle position (26) of the displacement, and with a negative acceleration from the middle position (26) to the final extreme position of the paw This movement in resonant regime allows not only to increase the speed of the robot's legs several times, which decreases the runtime, but also allows to significantly reduce energy consumption, using the electric motor (8) only to compensate for losses due to friction. Once the movement of the four legs has been carried out, the movement of the robot body (5) is carried out with the speed required to perform the chosen technological process, using the four electric motors (8). In this movement, the elastic elements store their potential elastic energy.
  • the quadruped robot can contain two additional elastic elements (13) and (14), connected with the legs (1), (2), and (3), (4) respectively.
  • one end of the additional elastic element (13) is connected to the leg (1) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) is connected to the leg (2) by means of another cable (15) and another turning roller (16).
  • one end of the additional elastic element (14) is connected to the leg (4) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) It is connected to the leg (3) by means of another cable (15) and another turning roller (16).
  • both the main elastic elements (6) and (7), as well as the additional elastic elements (13) and (14) work always stretched, even when the distance between the legs of the same side of the robot is minimal.
  • the main elastic elements (6) and (7) and the additional elastic elements (13) and (14) all have the same stiffness and the same length.
  • the diameter of all the rollers is the same and the fixing points of the axes of the rollers (16) are chosen such that all the cables (15) are placed parallel to the allowable paths of movement of the robot's legs.
  • the pair lengths of cables (15) connecting an additional elastic element with two legs on the same side are chosen in such a way as to ensure that both the main elastic element and the additional elastic element are stretched when the distance between the two legs of the same side is minimum, and that the stress of the main elastic element and the stress of the corresponding additional elastic element are equal when one of the legs is in the extreme position and the second leg is in the middle position (26).
  • All electric motors (8) can be fixed on the robot body (5).
  • the kinematic connection between each of the motors (8) with the corresponding leg is made with a spindle transmission system (9) - nut (10), such that the motor is kinematically connected with the spindle ( 9), the nut (10) is fixed on the leg, and the spindle (9) is fixed on the robot body (5) with the possibility of rotation and placed parallel to the permissible path of movement of the robot's legs.
  • a spindle transmission system (9) - nut (10) the kinematic connection between each of the motors (8) with the corresponding leg can be made with a rack-and-pinion transmission mechanism.
  • each of the electric motors (8) is fixed on the corresponding leg and kinematically connected with the nut (10) of the spindle transmission system (9) - nut (10), of so that the nut (10) is fixed on the robot's leg with the possibility of rotation but without the possibility of progressive displacement, and the spindle (9) is rigidly fixed on the robot body (5) and parallel to the permissible path of movement of the robot's legs.
  • the spindle (9) does not rotate, being able to perform movements of the leg at high speeds, even in large steps (which corresponds to spindles of great length).
  • each of the electric motors (8) must ensure two totally different types of movement.
  • the first is the movement of the robot's leg with respect to the body (5) at rest. This movement is resonant and is characterized by high travel speed and a small force applied to the robot's leg.
  • the second is the movement of the robot body (5) with the legs at rest. The latter is non-resonant and is characterized by a low travel speed with great force applied to the robot body (5).
  • the use in these conditions of the traditional actuator with a constant transmission ratio leads to low effectiveness of electric motors (8) and irrational energy costs.
  • a transmission system with two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the spindle (9) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the moving link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) to the motor shaft (8) and attached to the hinge by means of the finger (21 ) with the slide (22), such that the axes of rotation of the movable link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the movable link ( 23) and the axis of rotation of the crank (20) is greater than the length of the crank (20).
  • each of the electric motors (8) is fixed on the corresponding leg and kinematically connected with the nut (10) of a transmission system spindle (9) - nut (10), the aforementioned problem is solved by using a mechanism containing a reducer (24) attached to the kinematic connection between each of the electric motors (8) and its corresponding nut (10).
  • a movable link (23) connected to the input shaft of the reducer (24) and with the possibility of rotation around said connection point, a system of two pulleys (11), (12) and toothed belt (17 ), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the moving link (23) in radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the axes of rotation of the mobile link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the mobile link (23) and the axis of rotation of the crank (20) is greater than the length of the crank (20) (figure 4).
  • the kinematic connections described between each of the electric motors (8) and their corresponding spindle (9) or between each of the electric motors (8) and their corresponding nut (10) provide a variable transmission ratio K that depends on the angle ⁇ turn of the crank (20).
  • This dependence on the transmission ratio K has a periodic behavior ( Figure 7), with a period of 360 degrees, within which two parts can be distinguished: a part where the transmission ratio K has positive values (section A - B) and another part where the transmission ratio K has negative values (section B - C).
  • the negative value of the transmission ratio K means that the crank (20) and the mobile link (23) rotate in the opposite direction. At points A, B and C the transmission ratio K tends to be more or less infinite.
  • the transmission ratio K between the motor (8) and the spindle (9) or between the motor and the nut (10), will essentially depend on the movement of the crank (20) occurring within the limits of one or another angle. If the rotation occurs within the limits of the angle ⁇ , the absolute magnitude of the transmission ratio K will be less than in the case where the rotation occurs within the limits of the angle ⁇ . This allows the crank (20) to be moved within the limits of the angle ⁇ , when the movement of a leg is performed (and obtain high translation speeds) or within the limits of the angle ⁇ , when the movement of the body (and with this have lower speeds of translation). The passage from one working angle to another is done by moving the crank (20) through one of the critical points (A, B or C).
  • the control system (25) receives from the angle sensor between the mobile link (23) and the crank (20) (variants: from the engine position sensor (8), or from the mobile link position sensor (23), information on the position of the actuator elements and applies the corresponding voltage on the corresponding electric motor (8).
  • Figure 1 refers to the quadruped robot.
  • Said robot is composed of a body (5), four legs (1), (2), (3), (4) connected to the body of the robot (5), four electric motors (8) connected to the control system (25 ), and two elastic elements (6) and (7).
  • Each of the electric motors (8) is kinematically connected to the corresponding robot leg by means of a spindle transmission system (9) - nut (10).
  • the legs (1) and (2) are fixed on one side of the robot body (5), while the legs (3) and (4) are fixed on the opposite side of the robot body (5). In addition, all of them have the possibility of moving in parallel paths.
  • One end of the first elastic element (6) is connected to the leg (1) of the robot, while the other end is connected to the leg (2).
  • one end of the second elastic element (7) is connected to the leg (4) and the other end is connected to the leg (3).
  • the length of the elastic elements (6) and (7) is chosen such that each of them is in a state of equilibrium without deformation when one of the legs to which the corresponding elastic element is connected is in an extreme position and the other leg is in the middle position (26) of the distance between its extreme positions.
  • Figure 2 shows a complete cycle of movement of the quadruped robot. First the movement of each of the legs (2), (3), (1), (4) is performed consecutively with the body (5) at rest, and finally the movement of the robot body (5) is carried out ) with the legs at rest.
  • Figure 3 shows the configuration of the quadruped robot when each of the electric motors (8) is fixed on the corresponding leg and kinematically connected with the nut (10) of a spindle transmission system (9) - nut (10), of so that the nut (10) is fixed on the robot's leg with the possibility of turning, but without the possibility of progressive displacement, and the spindle (9) is rigidly fixed on the robot body (5) and parallel to the permissible trajectory of the movement of the legs of the robot.
  • the kinematic connection between the electric motor (8) with its corresponding nut (10) contains a system of two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the electric motor (8).
  • Figure 4 refers to the mechanism used to kinematically connect each of the electric motors (8) with its corresponding nut (10), in order to increase the effectiveness of the electric motor (8) and decrease energy costs.
  • Said mechanism contains a reducer (24) fixed to the corresponding robot's leg, a mobile link (23) connected to the input shaft of the reducer (24) and with the possibility of rotation around said connection point, a two pulley system ( 11), (12) and toothed belt (17), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) it slides along the mobile link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the axes of rotation of the mobile link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the mobile link (23) and The axis of rotation of the crank (20) is greater than the length of the crank (20).
  • Figure 5 refers to the quadruped robot with two additional elastic elements (13) and (14), connected with the legs (1), (2), and (3), (4) respectively.
  • one end of the additional elastic element (13) is connected to the leg (1) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) is connected to the leg (2) by means of another cable (15) and another turning roller (16).
  • one end of the additional elastic element (14) is connected with the leg (4) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) is connected to the leg (3) by means of another cable (15) and another turning roller (16 ).
  • both the main elastic elements (6) and (7), as well as the additional elastic elements (13) and (14) work always stretched, even when the distance between the legs of the same side of the robot is minimal.
  • Figure 6 refers to one of the two fasteners in the form of a mechanical latch that are used for securing the legs of the quadruped robot in the extreme positions.
  • Said fixative contains two interacting parts (18) and (19), so that part (18) is connected to one leg (1) or (3) and part (19) is connected to the other leg of the same side of the robot body (2) or (4).
  • Figure 7 shows the dependence of the transmission ratio K on the angle ⁇ of rotation of the crank (20). This dependence has a periodic behavior, with a period of 360 degrees, within which two parts can be distinguished: one part where the transmission ratio K has positive values (section A - B) and another part where the transmission ratio K has negative values (section B - C).
  • the negative value of the transmission ratio K means that the crank (20) and the mobile link (23) rotate in the opposite direction.
  • the transmission ratio K tends to be more or less infinite. These points correspond to the positions where there is a 90 degree angle between the crank (20) and the mobile link (23).
  • Figure 8 shows the extreme positions of the mobile link (23).
  • Each position of the movable link (23) within its translation limits corresponds to two positions of the crank (20), one within the limits of the angle ⁇ and another within the limits of the angle ⁇ . Therefore, the movement of the movable link (23) from one position to another can be done in two ways: by moving the crank (20) within the limits of the angle ⁇ or within the limits of the angle ⁇ .
  • List of designations 1. First leg of the robot 2. Second leg of the robot 3. Third leg of the robot 4. Fourth leg of the robot 5. Robot body 6. First elastic element 7. Second elastic element 8. Drive motor 9. Spindle 10. Nut 11. First pulley 12. Second pulley 13. First additional elastic element 14. Second additional elastic element 15. Cable 16. Swing roller 17. Timing belt 18. First part of the fixator 19. Second part of the fixator 20. Crank 21. Finger 22. Sliding 23. Mobile link 24. Reducer 25. Control system 26. Average position 27. Motor reducer EMBODIMENTS OF THE INVENTION
  • the quadruped robot is composed of a body (5) of 30 Kg., Four legs (1), (2), (3), (4) connected to the body of the robot (5), four electric motors (8) connected to the control system (25), two springs having a stiffness constant of 500N / m, and a length of 0.35 m., and two fasteners. Additionally, welding equipment is connected to the robot body (5).
  • the legs (1) and (2) are fixed on one side of the robot body (5), while the legs (3) and (4) are fixed on the opposite side of the robot body (5). In addition, each of them weighs 2 Kg., And they have the possibility of moving in parallel paths. The distance between the extreme positions of each leg is 0.2 m.
  • One end of the first spring is connected to the leg (1) of the robot, while the other end is connected to the leg (2).
  • one end of the second spring (7) is connected to the leg (4) and the other end is connected to the leg (3).
  • Each of the electric motors (8) is fixed on the robot body (5) and kinematically connected with the spindle (9) of a spindle (9) - nut (10) transmission system, such that the motor ( 8) is connected kinematically with the spindle (9), the nut (10) is fixed on the corresponding leg, and the spindle (9) is fixed on the robot body (5) with the possibility of rotation and placed parallel to the path permissible movement of the legs of the robot.
  • the kinematic connection between the electric motor (8) and its corresponding spindle (10) contains a system of two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the spindle (10) and the pulley (11) connected to the output shaft of the electric motor (8).
  • the fasteners are made in the form of mechanical latches with devices to deflect the connection.
  • Each of the fasteners has two fixing positions that correspond to the maximum and minimum distance between the two legs on the same side of the body (5) of the robot.
  • Each of the fixers has two interacting parts (18) and (19). The first part (18) of the first fixator is placed on the leg (1), and the second part (19) of the first fixator is placed on the leg (2).
  • the first part (18) of the second fixator is placed in the leg (3), and the second part (19) of the second fixator is placed in the leg (4).
  • the robot body moves at a speed of 0.02m / s, which is the speed required by the welding process.
  • the movement time of each of the legs which depends on the mass of the legs and the stiffness constant of the spring, is 0.2 s.
  • the speed of each of the legs is 1 m / s.
  • the quadruped robot is composed of a body (5), four legs (1), (2), (3), (4) connected to the robot body (5), four electric motors (8) connected to the control system ( 25) and two springs. Additionally, welding equipment is connected to the robot body (5).
  • the legs (1) and (2) are fixed on one side of the robot body (5), while the legs (3) and (4) are fixed on the opposite side of the robot body (5), and also, all of them have the possibility of moving in parallel paths.
  • One end of the first spring is connected to the leg (1) of the robot, while the other end is connected to the leg (2).
  • one end of the second spring (7) is connected to the leg (4) and the other end is connected to the leg (3).
  • Each of the electric motors (8) is fixed to its corresponding robot leg (5) and kinematically connected with the nut (10) of a spindle (9) - nut (10) transmission system, so that the nut ( 10) is fixed on the robot's leg with the possibility of rotation but without the possibility of progressive displacement, and the spindle (9) is rigidly fixed on the robot body (5) and parallel to the permissible path of movement of the robot's legs .
  • the kinematic connection between each of the electric motors (8) and its corresponding nut (10) is made with a mechanism containing a reducer (24) fixed to the corresponding robot's leg, a movable link (23) connected to the axis of input of the reducer (24) and with the possibility of rotation around said connection point, a system of two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the moving link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the axes of rotation of the movable link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the movable link (23) and the axis of rotation of the crank (20

Abstract

The invention relates to a quadruped robot which is intended for technological processes and which contains two elastic elements (6, 7). According to the invention, one end of the first elastic element (6) is connected to foot 1, while the other end thereof is connected to foot 2, and one end of the second elastic element (7) is connected to foot 4, while the other end of same is connected to foot 3. The elastic elements (6, 7) are provided with identical stiffnesses and lengths, the length being selected such that each of the elastic elements (6, 7) is in equilibrium without deformation when one of the legs to which the corresponding element is connected is in an end position and the other leg is in the central position (26) between the two end positions thereof.

Description

TITULOTITLE
ROBOT CUADRÚPEDO PARA PROCESOS TECNOLÓGICOSQUADRUPTED ROBOT FOR TECHNOLOGICAL PROCESSES
SECTOR DE LA TÉCNICA La invención pertenece a la ingeniería mecánica, y se puede utilizar particularmente en robótica y en dispositivos para la automatización.SECTOR OF THE TECHNIQUE The invention pertains to mechanical engineering, and can be used particularly in robotics and automation devices.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
En las soluciones técnicas conocidas (patente RU2163189, patente US2002134188) se considera un robot cuadrúpedo que contiene un cuerpo, cuatro patas conectadas al cuerpo del robot de tal manera que las patas (1) y (2) están fijadas en un lado del cuerpo del robot, las patas (3) y (4) están fijadas en el lado contrario del cuerpo del robot, y además, todas ellas tienen posibilidad de desplazarse en trayectorias paralelas y cuatro motores eléctricos conectados al sistema de control, y conectados cinemáticamente con cada una de las patas del robot. En estas soluciones, los motores de accionamiento deben compensar tanto las fuerzas de rozamiento como las fuerzas de inercia, lo que conlleva gastos energéticos irracionales y una baja velocidad de acción del robot.In the known technical solutions (patent RU2163189, patent US2002134188) a quadruped robot containing a body, four legs connected to the robot body is considered such that the legs (1) and (2) are fixed on one side of the body of the robot, the legs (3) and (4) are fixed on the opposite side of the robot body, and in addition, all of them have the possibility of moving in parallel paths and four electric motors connected to the control system, and kinematically connected with each of the robot's legs. In these solutions, the drive motors must compensate both the friction forces and the inertia forces, which entails irrational energy costs and a low speed of action of the robot.
Se conocen soluciones técnicas (patente SU1682160, patente SU1454685, patente SU1346419, patente SU1219341) en las que para compensar las fuerzas de inercia se utilizan elementos elásticos colocados entre el elemento de trabajo y su base (accionamientos resonantes). De esta forma, los elementos elásticos compensan las fuerzas de inercia, y el motor de pequeña potencia sirve sólo para compensar las pérdidas de energía durante el movimiento (y para compensar las fuerzas externas, si existen), lográndose un aumento considerable de la velocidad de acción y una disminución de los gastos energéticos. Un defecto de estas soluciones técnicas es que el carácter de movimiento del elemento de trabajo con la base fijada (y el carácter de movimiento de la base con el elemento de trabajo fijado) se define prácticamente en su totalidad por los elementos elásticos y sólo puede ser modificado con la ayuda del motor en una parte muy pequeña. Así, al utilizar estas soluciones técnicas en los robots caminantes aparecen problemas de estabilidad y la imposibilidad de utilizarlos para la realización de algunas operaciones tecnológicas durante el proceso de desplazamiento del cuerpo del robot, tales como, soldadura, tratamiento con láser o recubrimiento de superficies. DESCRIPCIÓN DE LA INVENCIÓN 1. Breve descripción de la invención. Robot cuadrúpedo para procesos tecnológicos que contiene dos elementos elásticos (6) y (7), con uno de los extremos del primer elemento elástico (6) conectado a la pata (1), y el otro extremo conectado a la pata (2), y con un extremo del segundo elemento elástico (7) conectado a la pata (4) y el otro extremo conectado a la pata (3). Tanto la rigidez como la longitud de los elementos elásticos (6) y (7) es la misma, y la longitud se elige de tal manera que cada uno de los elementos elásticos (6) y (7) esté en estado de equilibrio sin deformación cuando una de las patas a la que está conectado el correspondiente elemento elástico está en una posición extrema y la otra pata está en la posición media (26) de la distancia entre sus posiciones extremas.Technical solutions are known (SU1682160 patent, SU1454685 patent, SU1346419 patent, SU1219341 patent) in which elastic elements placed between the work element and its base (resonant drives) are used to compensate for inertial forces. In this way, the elastic elements compensate the forces of inertia, and the small power motor serves only to compensate for energy losses during movement (and to compensate for external forces, if they exist), achieving a considerable increase in the speed of action and a decrease in energy costs. A defect of these technical solutions is that the movement character of the work element with the fixed base (and the movement character of the base with the fixed work element) is defined almost entirely by the elastic elements and can only be modified with the help of the engine in a very small part. Thus, when using these technical solutions in the walking robots, stability problems appear and the impossibility of using them for the realization of some technological operations during the process of displacement of the robot body, such as welding, laser treatment or surface coating. DESCRIPTION OF THE INVENTION 1. Brief description of the invention. Quadruped robot for technological processes that contains two elastic elements (6) and (7), with one end of the first elastic element (6) connected to the leg (1), and the other end connected to the leg (2), and with one end of the second elastic element (7) connected to the leg (4) and the other end connected to the leg (3). Both the stiffness and the length of the elastic elements (6) and (7) are the same, and the length is chosen such that each of the elastic elements (6) and (7) is in a state of equilibrium without deformation. when one of the legs to which the corresponding elastic element is connected is in an extreme position and the other leg is in the middle position (26) of the distance between its extreme positions.
2. Descripción detallada de la invención La presente invención hace referencia a un robot cuadrúpedo de menor consumo energético, mayor velocidad sin riesgo de vuelco, y capacidad para realizar operaciones tecnológicas durante el proceso de movimiento del cuerpo del robot.2. DETAILED DESCRIPTION OF THE INVENTION The present invention refers to a quadruped robot with lower energy consumption, greater speed without the risk of tipping over, and the ability to perform technological operations during the robot body movement process.
El robot está compuesto por un cuerpo (5), cuatro patas (1), (2), (3), (4) conectadas al cuerpo del robot (5) de tal manera que las patas (1) y (2) están fijadas en un lado del cuerpo del robot (5), las patas (3) y (4) están fijadas en el lado contrario del cuerpo del robot (5), y además, todas ellas tienen posibilidad de desplazarse en trayectorias paralelas, cuatro motores eléctricos (8), cada uno de los cuales está conectado cinemáticamente con la correspondiente pata del robot y conectados al sistema de control (25), y dos elementos elásticos (6) y (7), con uno de los extremos del primer elemento elástico (6) conectado a la pata (1), y el otro extremo conectado a la pata (2), y con un extremo del segundo elemento elástico (7) conectado a la pata (4) y el otro extremo conectado a la pata (3). Al cuerpo del robot (5) va conectado el equipo necesario para desempeñar el proceso tecnológico requerido (soldadura, pintura, limpieza).The robot is composed of a body (5), four legs (1), (2), (3), (4) connected to the body of the robot (5) such that the legs (1) and (2) are fixed on one side of the robot body (5), the legs (3) and (4) are fixed on the opposite side of the robot body (5), and in addition, all of them have the possibility of moving in parallel paths, four motors electrical (8), each of which is kinematically connected with the corresponding robot leg and connected to the control system (25), and two elastic elements (6) and (7), with one end of the first elastic element (6) connected to the leg (1), and the other end connected to the leg (2), and with one end of the second elastic element (7) connected to the leg (4) and the other end connected to the leg ( 3). The equipment necessary to perform the required technological process (welding, painting, cleaning) is connected to the robot body (5).
La rigidez y la longitud de los elementos elásticos (6), (7) es la misma, y la longitud se elige de tal manera que cada uno de ellos esté en estado de equilibrio sin deformación cuando una de las patas a la que está conectado el correspondiente elemento elástico está en una posición extrema y la otra pata está en la posición media (26) de la distancia entre sus posiciones extremas.The stiffness and length of the elastic elements (6), (7) is the same, and the length is chosen such that each of them is in a steady state without deformation when one of the legs to which it is connected the corresponding elastic element is in a position extreme and the other leg is in the middle position (26) of the distance between its extreme positions.
El funcionamiento del robot cuadrúpedo es el siguiente (figura 2). Primero se realiza el movimiento de cada una de las pata (1), (2), (3) y (4) consecutivamente, de manera que se mueve una pata mientras las otras tres y el cuerpo (5) están en reposo. Gracias a la energía potencial almacenada en los elementos elásticos, este movimiento se realiza a alta velocidad, con una aceleración positiva hasta la posición media (26) del desplazamiento, y con una aceleración negativa desde la posición media (26) hasta la posición extrema final de la pata. Este movimiento en régimen resonante permite no sólo aumentar varias veces la velocidad de las patas del robot, lo que disminuye el tiempo de ejecución, sino que además permite reducir considerablemente el consumo energético, utilizándose el motor eléctrico (8) sólo para compensar las pérdidas por rozamiento. Una vez realizado el movimiento de las cuatro patas, se efectúa el movimiento del cuerpo del robot (5) con la velocidad requerida para desempeñar el proceso tecnológico elegido, usando para ello, los cuatro motores eléctricos (8). En este movimiento, los elementos elásticos almacenan su energía potencial elástica.The operation of the quadruped robot is as follows (figure 2). First the movement of each of the legs (1), (2), (3) and (4) is performed consecutively, so that one leg moves while the other three and the body (5) are at rest. Thanks to the potential energy stored in the elastic elements, this movement is carried out at high speed, with a positive acceleration to the middle position (26) of the displacement, and with a negative acceleration from the middle position (26) to the final extreme position of the paw This movement in resonant regime allows not only to increase the speed of the robot's legs several times, which decreases the runtime, but also allows to significantly reduce energy consumption, using the electric motor (8) only to compensate for losses due to friction. Once the movement of the four legs has been carried out, the movement of the robot body (5) is carried out with the speed required to perform the chosen technological process, using the four electric motors (8). In this movement, the elastic elements store their potential elastic energy.
El robot cuadrúpedo puede contener dos elementos elásticos adicionales (13) y (14), conectados con las patas (1), (2), y (3), (4) respectivamente. Así pues, uno de los extremos del elemento elástico adicional (13) está conectado con la pata (1) por medio de un cable (15) y un rodillo de giro (16) y el otro extremo del elemento elástico adicional (13) está conectado con la pata (2) por medio de otro cable (15) y otro rodillo de giro (16). Del mismo modo, uno de los extremos del elemento elástico adicional (14) está conectado con la pata (4) por medio de un cable (15) y un rodillo de giro (16) y el otro extremo del elemento elástico adicional (13) está conectado con la pata (3) por medio de otro cable (15) y otro rodillo de giro (16). De esta forma, tanto los elementos elásticos principales (6) y (7), como los elementos elásticos adicionales (13) y (14) trabajan estirados siempre, incluso cuando la distancia entre las patas del mismo lado del robot es mínima. Los elementos elásticos principales (6) y (7) y los elementos elásticos adicionales (13) y (14) tienen todos la misma rigidez y la misma longitud. El diámetro de todos los rodillos es el mismo y los puntos de fijación de los ejes de los rodillos (16) se eligen de tal forma que todos los cables (15) estén colocados paralelamente a las trayectorias admisibles del movimiento de las patas del robot. Las longitudes del par de cables (15) que conectan un elemento elástico adicional con dos patas de un mismo lado se eligen de tal manera que garanticen que tanto el elemento elástico principal como el elemento elástico adicional se encuentran estirados cuando la distancia entre las dos patas de un mismo lado es mínima, y que el esfuerzo del elemento elástico principal y el esfuerzo del elemento elástico adicional correspondiente son iguales cuando una de las patas está en la posición extrema y la segunda pata está en la posición media (26).The quadruped robot can contain two additional elastic elements (13) and (14), connected with the legs (1), (2), and (3), (4) respectively. Thus, one end of the additional elastic element (13) is connected to the leg (1) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) is connected to the leg (2) by means of another cable (15) and another turning roller (16). Similarly, one end of the additional elastic element (14) is connected to the leg (4) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) It is connected to the leg (3) by means of another cable (15) and another turning roller (16). In this way, both the main elastic elements (6) and (7), as well as the additional elastic elements (13) and (14) work always stretched, even when the distance between the legs of the same side of the robot is minimal. The main elastic elements (6) and (7) and the additional elastic elements (13) and (14) all have the same stiffness and the same length. The diameter of all the rollers is the same and the fixing points of the axes of the rollers (16) are chosen such that all the cables (15) are placed parallel to the allowable paths of movement of the robot's legs. The pair lengths of cables (15) connecting an additional elastic element with two legs on the same side are chosen in such a way as to ensure that both the main elastic element and the additional elastic element are stretched when the distance between the two legs of the same side is minimum, and that the stress of the main elastic element and the stress of the corresponding additional elastic element are equal when one of the legs is in the extreme position and the second leg is in the middle position (26).
Todos los motores eléctricos (8) pueden estar fijados en el cuerpo del robot (5). En este caso, la conexión cinemática entre cada uno de los motores (8) con la pata correspondiente está realizada con un sistema de transmisión husillo (9) - tuerca (10), de tal manera que el motor está conectado cinemáticamente con el husillo (9), la tuerca (10) está fijada en la pata, y el husillo (9) está fijado en el cuerpo del robot (5) con posibilidad de giro y colocado paralelamente a la trayectoria admisible del movimiento de las patas del robot. En lugar de un sistema de transmisión husillo (9) - tuerca (10), la conexión cinemática entre cada uno de los motores (8) con la pata correspondiente puede estar realizada con un mecanismo de transmisión piñón -cremallera.All electric motors (8) can be fixed on the robot body (5). In this case, the kinematic connection between each of the motors (8) with the corresponding leg is made with a spindle transmission system (9) - nut (10), such that the motor is kinematically connected with the spindle ( 9), the nut (10) is fixed on the leg, and the spindle (9) is fixed on the robot body (5) with the possibility of rotation and placed parallel to the permissible path of movement of the robot's legs. Instead of a spindle transmission system (9) - nut (10), the kinematic connection between each of the motors (8) with the corresponding leg can be made with a rack-and-pinion transmission mechanism.
Con altas revoluciones del husillo (9) en la transmisión husillo (9) - tuerca (10) es posible la aparición de vibraciones (especialmente en husillos largos), lo que conlleva un aumento del rozamiento y, en algunos casos, incluso, el deterioro del husillo (9). Por ello, se propone además otra variante en la que cada uno de los motores eléctricos (8) está fijado en la pata correspondiente y conectado cinemáticamente con la tuerca (10) del sistema de transmisión husillo (9) - tuerca (10), de forma que la tuerca (10) está fijada en la pata del robot con posibilidad de giro pero sin posibilidad de desplazamiento progresivo, y el husillo (9) está fijado rígidamente en el cuerpo del robot (5) y paralelamente a la trayectoria admisible del movimiento de las patas del robot. Con esta variante de realización el husillo (9) no gira, pudiéndose realizar movimientos de la pata a altas velocidades, incluso en pasos de gran dimensión (lo que corresponde a husillos de gran longitud).With high spindle revolutions (9) in the spindle transmission (9) - nut (10) it is possible the appearance of vibrations (especially in long spindles), which leads to increased friction and, in some cases, even deterioration of the spindle (9). Therefore, another variant is proposed in which each of the electric motors (8) is fixed on the corresponding leg and kinematically connected with the nut (10) of the spindle transmission system (9) - nut (10), of so that the nut (10) is fixed on the robot's leg with the possibility of rotation but without the possibility of progressive displacement, and the spindle (9) is rigidly fixed on the robot body (5) and parallel to the permissible path of movement of the robot's legs. With this variant embodiment, the spindle (9) does not rotate, being able to perform movements of the leg at high speeds, even in large steps (which corresponds to spindles of great length).
Debido a la presencia de elementos elásticos, se necesita que los motores eléctricos (8) apliquen una gran fuerza para la sujeción de las patas del robot en las posiciones extremas, lo que conduce a gastos energéticos irracionales. Para eliminar este defecto, la transmisión (por ejemplo, husillo (9) - tuerca (10)) entre el motor eléctrico (8) y la pata del robot correspondiente puede ser de auto-frenado. Otra forma de eliminar este defecto es mediante la utilización de fijadores, por ejemplo, en forma de pestillos mecánicos, con un dispositivo especial para desfijar la conexión (por ejemplo, en forma de electroimán). Una característica importante de estos fijadores es el hecho de que deben sujetar la pata de un desplazamiento relativo (en relación con la otra pata del mismo lado del robot), y no absoluto (es decir, en relación con el cuerpo del robot).Due to the presence of elastic elements, it is necessary that the electric motors (8) apply a great force to hold the robot's legs in the extreme positions, which leads to irrational energy costs. To eliminate this defect, the transmission (by For example, spindle (9) - nut (10)) between the electric motor (8) and the corresponding robot leg can be self-braking. Another way to eliminate this defect is by using fasteners, for example, in the form of mechanical latches, with a special device to deflect the connection (for example, in the form of an electromagnet). An important feature of these fasteners is the fact that they must hold the leg of a relative displacement (in relation to the other leg of the same side of the robot), and not absolute (that is, in relation to the body of the robot).
En este robot cuadrúpedo, cada uno de los motores eléctricos (8) debe asegurar dos tipos de movimiento totalmente diferentes. El primero es el movimiento de la pata del robot con respecto al cuerpo (5) en reposo. Este movimiento es resonante y se caracteriza por una alta velocidad de desplazamiento y una fuerza pequeña aplicada a la pata del robot. El segundo es el movimiento del cuerpo del robot (5) con las patas en reposo. Este último es no resonante y se caracteriza por una baja velocidad de desplazamiento con una gran fuerza aplicada al cuerpo del robot (5). La utilización en estas condiciones del actuador tradicional con una relación de transmisión constante conduce a una baja efectividad de los motores eléctricos (8) y a unos gastos energéticos irracionales. Si todos los motores eléctricos (8) están fijados en el cuerpo del robot (5), y la conexión cinemática entre cada uno de ellos con su pata correspondiente está realizada con un sistema de transmisión husillo (9) - tuerca (10), el problema mencionado se soluciona utilizando para la conexión cinemática entre cada uno de los motores eléctricos (8) y su correspondiente husillo (9), un mecanismo que contiene un reductor (24) fijado al cuerpo del robot (5), un eslabón móvil (23) conectado al eje de entrada del reductor (24) y con posibilidad de rotación alrededor de dicho punto de conexión, un sistema de transmisión de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada al husillo (9) y la polea (11) conectada al eje de salida del reductor (24), una corredera (22) que se desliza a lo largo del eslabón móvil (23) en dirección radial, y una manivela (20) conectada por medio de un reductor (27) con el eje del motor (8) y unida a charnela por medio del dedo (21) con la corredera (22), de tal manera que los ejes de rotación del eslabón móvil (23), de la manivela (20) y del dedo (21) son paralelos, y la distancia entre el eje de rotación del eslabón móvil (23) y el eje de rotación de la manivela (20) es mayor que la longitud de la manivela (20). Si por el contrario, cada uno de los motores eléctricos (8) está fijado en la pata correspondiente y conectado cinemáticamente con la tuerca (10) de un sistema de transmisión husillo (9) - tuerca (10), el problema mencionado se soluciona utilizando para la conexión cinemática entre cada uno de los motores eléctricos (8) y su correspondiente tuerca (10), un mecanismo que contiene un reductor (24) fijado a la pata del robot correspondiente, un eslabón móvil (23) conectado al eje de entrada del reductor (24) y con posibilidad de rotación alrededor de dicho punto de conexión, un sistema de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada a la tuerca (10) y la polea (11) conectada al eje de salida del reductor (24), una corredera (22) que se desliza a lo largo del eslabón móvil (23) en dirección radial, y una manivela (20) conectada por medio de un reductor (27) con el eje del motor (8) y unida a charnela por medio del dedo (21) con la corredera (22), de tal manera que los ejes de rotación del eslabón móvil (23), de la manivela (20) y del dedo (21) son paralelos, y la distancia entre el eje de rotación del eslabón móvil (23) y el eje de rotación de la manivela (20) es mayor que la longitud de la manivela (20) (figura 4).In this quadruped robot, each of the electric motors (8) must ensure two totally different types of movement. The first is the movement of the robot's leg with respect to the body (5) at rest. This movement is resonant and is characterized by high travel speed and a small force applied to the robot's leg. The second is the movement of the robot body (5) with the legs at rest. The latter is non-resonant and is characterized by a low travel speed with great force applied to the robot body (5). The use in these conditions of the traditional actuator with a constant transmission ratio leads to low effectiveness of electric motors (8) and irrational energy costs. If all the electric motors (8) are fixed in the body of the robot (5), and the kinematic connection between each of them with its corresponding leg is made with a spindle transmission system (9) - nut (10), the This problem is solved using a mechanism containing a reducer (24) attached to the robot body (5), a mobile link (23) for the kinematic connection between each of the electric motors (8) and its corresponding spindle (9). ) connected to the input shaft of the reducer (24) and with the possibility of rotation around said connection point, a transmission system with two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the spindle (9) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the moving link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) to the motor shaft (8) and attached to the hinge by means of the finger (21 ) with the slide (22), such that the axes of rotation of the movable link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the movable link ( 23) and the axis of rotation of the crank (20) is greater than the length of the crank (20). If, on the contrary, each of the electric motors (8) is fixed on the corresponding leg and kinematically connected with the nut (10) of a transmission system spindle (9) - nut (10), the aforementioned problem is solved by using a mechanism containing a reducer (24) attached to the kinematic connection between each of the electric motors (8) and its corresponding nut (10). corresponding robot leg, a movable link (23) connected to the input shaft of the reducer (24) and with the possibility of rotation around said connection point, a system of two pulleys (11), (12) and toothed belt (17 ), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the moving link (23) in radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the axes of rotation of the mobile link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the mobile link (23) and the axis of rotation of the crank (20) is greater than the length of the crank (20) (figure 4).
Las conexiones cinemáticas descritas entre cada uno de los motores eléctricos (8) y su correspondiente husillo (9) o entre cada uno de los motores eléctricos (8) y su correspondiente tuerca (10) proporcionan una relación de transmisión K variable que depende del ángulo φ de giro de la manivela (20). Esta dependencia de la relación de transmisión K tiene un comportamiento periódico (Figura 7), con un período de 360 grados, dentro del cual se pueden distinguir dos partes: una parte donde la relación de transmisión K tiene valores positivos (tramo A - B) y otra parte donde la relación de transmisión K tiene valores negativos (tramo B - C). El valor negativo de la relación de transmisión K significa que la manivela (20) y el eslabón móvil (23) giran en sentidos contrarios. En los puntos A, B y C la relación de transmisión K tiende a más o a menos infinito. Estos puntos corresponden a las posiciones en las que entre la manivela (20) y el eslabón móvil (23) hay un ángulo de 90 grados. En estos puntos, la desviación del eslabón móvil (5) de su posición media es máxima. A cada posición del eslabón móvil (23) dentro de sus límites de traslación (con excepción de los puntos extremos) le corresponden dos posiciones de la manivela (20), una dentro de los límites del ángulo α y otra dentro de los límites del ángulo β (Figura 8). Por tanto, el movimiento del eslabón móvil (23) de una posición a otra puede realizarse de dos maneras: moviendo la manivela (20) dentro de los límites del ángulo α o dentro de los límites del ángulo β . La relación de transmisión K entre el motor (8) y el husillo (9) o entre el motor y la tuerca (10), dependerá esencialmente de que el movimiento de la manivela (20) se produzca dentro de los límites de uno u otro ángulo. Si la rotación se produce dentro de los límites del ángulo α , la magnitud absoluta de la relación de transmisión K va a ser menor que en el caso en el que la rotación se produzca dentro de los límites del ángulo β . Esto permite mover la manivela (20) dentro de los límites del ángulo α , cuando se realiza el movimiento de una pata (y obtener altas velocidades de traslación) o dentro de los límites del ángulo β , cuando se efectúa el movimiento del cuerpo (y con esto tener velocidades menores de traslación). El paso de un ángulo de trabajo a otro se realiza moviendo la manivela (20) a través de uno de los puntos críticos (A, B o C). El sistema de control (25) recibe del sensor de ángulo entre el eslabón móvil (23) y la manivela (20) (variantes: del sensor de posición del motor (8), o del sensor de posición del eslabón móvil (23), información sobre la posición de los elementos del actuador y realiza la aplicación de la tensión correspondiente sobre el motor eléctrico (8) correspondiente.The kinematic connections described between each of the electric motors (8) and their corresponding spindle (9) or between each of the electric motors (8) and their corresponding nut (10) provide a variable transmission ratio K that depends on the angle φ turn of the crank (20). This dependence on the transmission ratio K has a periodic behavior (Figure 7), with a period of 360 degrees, within which two parts can be distinguished: a part where the transmission ratio K has positive values (section A - B) and another part where the transmission ratio K has negative values (section B - C). The negative value of the transmission ratio K means that the crank (20) and the mobile link (23) rotate in the opposite direction. At points A, B and C the transmission ratio K tends to be more or less infinite. These points correspond to the positions where there is a 90 degree angle between the crank (20) and the mobile link (23). At these points, the deviation of the mobile link (5) from its average position is maximum. Each position of the movable link (23) within its translation limits (with the exception of the extreme points) corresponds to two positions of the crank (20), one within the limits of the angle α and another within the limits of the angle β (Figure 8). Therefore, the movement of the movable link (23) from one position to another can be done in two ways: by moving the crank (20) within the limits of the angle α or within the limits of the angle β. The transmission ratio K between the motor (8) and the spindle (9) or between the motor and the nut (10), will essentially depend on the movement of the crank (20) occurring within the limits of one or another angle. If the rotation occurs within the limits of the angle α, the absolute magnitude of the transmission ratio K will be less than in the case where the rotation occurs within the limits of the angle β. This allows the crank (20) to be moved within the limits of the angle α, when the movement of a leg is performed (and obtain high translation speeds) or within the limits of the angle β, when the movement of the body (and with this have lower speeds of translation). The passage from one working angle to another is done by moving the crank (20) through one of the critical points (A, B or C). The control system (25) receives from the angle sensor between the mobile link (23) and the crank (20) (variants: from the engine position sensor (8), or from the mobile link position sensor (23), information on the position of the actuator elements and applies the corresponding voltage on the corresponding electric motor (8).
DESCRIPCIÓN DE LOS DIBUJOS Para la mejor comprensión de cuanto queda escrito en esta memoria, se acompañan unos dibujos en los que, tan sólo a título de ejemplo, se representan casos prácticos de realización del robot cuadrúpedo para procesos tecnológicos y de su funcionamiento. La figura 1 hace referencia al robot cuadrúpedo. Dicho robot está compuesto por un cuerpo (5), cuatro patas (1), (2), (3), (4) conectadas al cuerpo del robot (5), cuatro motores eléctricos (8) conectados al sistema de control (25), y dos elementos elásticos (6) y (7). Cada uno de los motores eléctricos (8) está conectado cinemáticamente con la correspondiente pata del robot mediante un sistema de transmisión husillo (9)-tuerca (10). Las patas (1) y (2) están fijadas en un lado del cuerpo del robot (5), mientras que las patas (3) y (4) están fijadas en el lado contrario del cuerpo del robot (5). Además, todas ellas tienen posibilidad de desplazarse en trayectorias paralelas. Uno de los extremos del primer elemento elástico (6) está conectado a la pata (1) del robot, mientras el otro extremo está conectado a la pata (2). Del mismo modo, un extremo del segundo elemento elástico (7) está conectado a la pata (4) y el otro extremo se encuentra conectado a la pata (3). La longitud de los elementos elásticos (6) y (7) se elige de tal manera que cada uno de ellos esté en estado de equilibrio sin deformación cuando una de las patas a la que está conectado el correspondiente elemento elástico está en una posición extrema y la otra pata está en la posición media (26) de la distancia entre sus posiciones extremas. La figura 2 muestra un ciclo completo de movimiento del robot cuadrúpedo. Primero se realiza el movimiento de cada una de las patas (2), (3), (1), (4) consecutivamente con el cuerpo (5) en reposo, y finalmente se lleva a cabo el movimiento del cuerpo del robot (5) con las patas en reposo. La figura 3 muestra la configuración del robot cuadrúpedo cuando cada uno de los motores eléctricos (8) está fijado en la pata correspondiente y conectado cinemáticamente con la tuerca (10) de un sistema de transmisión husillo (9) - tuerca (10), de forma que la tuerca (10) está fijada en la pata del robot con posibilidad de giro, pero sin posibilidad de desplazamiento progresivo, y el husillo (9) está fijado rígidamente en el cuerpo del robot (5) y paralelamente a la trayectoria admisible del movimiento de las patas del robot. La conexión cinemática entre el motor eléctrico (8) con su correspondiente tuerca (10) contiene un sistema de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada a la tuerca (10) y la polea (11) conectada al eje de salida del motor eléctrico (8). La figura 4 hace referencia al mecanismo utilizado para conectar cinemáticamente cada uno de los motores eléctricos (8) con su correspondiente tuerca (10), con el fin de incrementar la efectividad del motor eléctrico (8) y disminuir los gastos energéticos. Dicho mecanismo contiene un reductor (24) fijado a la pata del robot correspondiente, un eslabón móvil (23) conectado al eje de entrada del reductor (24) y con posibilidad de rotación alrededor de dicho punto de conexión, un sistema de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada a la tuerca (10) y la polea (11) conectada al eje de salida del reductor (24), una corredera (22) que se desliza a lo largo del eslabón móvil (23) en dirección radial, y una manivela (20) conectada por medio de un reductor (27) con el eje del motor (8) y unida a charnela por medio del dedo (21) con la corredera (22), de tal manera que los ejes de rotación del eslabón móvil (23), de la manivela (20) y del dedo (21) son paralelos, y la distancia entre el eje de rotación del eslabón móvil (23) y el eje de rotación de la manivela (20) es mayor que la longitud de la manivela (20).DESCRIPTION OF THE DRAWINGS For the best understanding of what is written in this report, some drawings are attached in which, just as an example, practical cases of realization of the quadruped robot for technological processes and its operation are represented. Figure 1 refers to the quadruped robot. Said robot is composed of a body (5), four legs (1), (2), (3), (4) connected to the body of the robot (5), four electric motors (8) connected to the control system (25 ), and two elastic elements (6) and (7). Each of the electric motors (8) is kinematically connected to the corresponding robot leg by means of a spindle transmission system (9) - nut (10). The legs (1) and (2) are fixed on one side of the robot body (5), while the legs (3) and (4) are fixed on the opposite side of the robot body (5). In addition, all of them have the possibility of moving in parallel paths. One end of the first elastic element (6) is connected to the leg (1) of the robot, while the other end is connected to the leg (2). Similarly, one end of the second elastic element (7) is connected to the leg (4) and the other end is connected to the leg (3). The length of the elastic elements (6) and (7) is chosen such that each of them is in a state of equilibrium without deformation when one of the legs to which the corresponding elastic element is connected is in an extreme position and the other leg is in the middle position (26) of the distance between its extreme positions. Figure 2 shows a complete cycle of movement of the quadruped robot. First the movement of each of the legs (2), (3), (1), (4) is performed consecutively with the body (5) at rest, and finally the movement of the robot body (5) is carried out ) with the legs at rest. Figure 3 shows the configuration of the quadruped robot when each of the electric motors (8) is fixed on the corresponding leg and kinematically connected with the nut (10) of a spindle transmission system (9) - nut (10), of so that the nut (10) is fixed on the robot's leg with the possibility of turning, but without the possibility of progressive displacement, and the spindle (9) is rigidly fixed on the robot body (5) and parallel to the permissible trajectory of the movement of the legs of the robot. The kinematic connection between the electric motor (8) with its corresponding nut (10) contains a system of two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the electric motor (8). Figure 4 refers to the mechanism used to kinematically connect each of the electric motors (8) with its corresponding nut (10), in order to increase the effectiveness of the electric motor (8) and decrease energy costs. Said mechanism contains a reducer (24) fixed to the corresponding robot's leg, a mobile link (23) connected to the input shaft of the reducer (24) and with the possibility of rotation around said connection point, a two pulley system ( 11), (12) and toothed belt (17), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) it slides along the mobile link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the axes of rotation of the mobile link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the mobile link (23) and The axis of rotation of the crank (20) is greater than the length of the crank (20).
La figura 5 hace referencia al robot cuadrúpedo con dos elementos elásticos adicionales (13) y (14), conectados con las patas (1), (2), y (3), (4) respectivamente. Así pues, uno de los extremos del elemento elástico adicional (13) está conectado con la pata (1) por medio de un cable (15) y un rodillo de giro (16) y el otro extremo del elemento elástico adicional (13) está conectado con la pata (2) por medio de otro cable (15) y otro rodillo de giro (16). Del mismo modo, uno de los extremos del elemento elástico adicional (14) está conectado con la pata (4) por medio de un cable (15) y un rodillo de giro (16) y el otro extremo del elemento elástico adicional (13) está conectado con la pata (3) por medio de otro cable (15) y otro rodillo de giro (16). De esta forma, tanto los elementos elásticos principales (6) y (7), como los elementos elásticos adicionales (13) y (14) trabajan estirados siempre, incluso cuando la distancia entre las patas del mismo lado del robot es mínima.Figure 5 refers to the quadruped robot with two additional elastic elements (13) and (14), connected with the legs (1), (2), and (3), (4) respectively. Thus, one end of the additional elastic element (13) is connected to the leg (1) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) is connected to the leg (2) by means of another cable (15) and another turning roller (16). Similarly, one end of the additional elastic element (14) is connected with the leg (4) by means of a cable (15) and a turning roller (16) and the other end of the additional elastic element (13) is connected to the leg (3) by means of another cable (15) and another turning roller (16 ). In this way, both the main elastic elements (6) and (7), as well as the additional elastic elements (13) and (14) work always stretched, even when the distance between the legs of the same side of the robot is minimal.
La figura 6 hace referencia a uno de los dos fijadores en forma de pestillo mecánico que se utilizan para la sujeción de las patas del robot cuadrúpedo en las posiciones extremas. Dicho fijador contiene dos partes que interaccionan (18) y (19), de manera que la parte (18) se conecta a una pata (1) o (3) y la parte (19) se conecta a la otra pata del mismo lado del cuerpo del robot (2) o (4).Figure 6 refers to one of the two fasteners in the form of a mechanical latch that are used for securing the legs of the quadruped robot in the extreme positions. Said fixative contains two interacting parts (18) and (19), so that part (18) is connected to one leg (1) or (3) and part (19) is connected to the other leg of the same side of the robot body (2) or (4).
La figura 7 muestra la dependencia de la relación de transmisión K, del ángulo φ de giro de la manivela (20) . Dicha dependencia presenta un comportamiento periódico, con un período de 360 grados, dentro del cual se pueden distinguir dos partes: una parte donde la relación de transmisión K tiene valores positivos (tramo A - B ) y otra parte donde la relación de transmisión K tiene valores negativos (tramo B - C). El valor negativo de la relación de transmisión K significa que la manivela (20) y el eslabón móvil (23) giran en sentidos contrarios. En los puntos A, B y C la relación de transmisión K tiende a más o a menos infinito. Estos puntos corresponden a las posiciones en las que entre la manivela (20) y el eslabón móvil (23) hay un ángulo de 90 grados. La figura 8 muestra las posiciones extremas del eslabón móvil (23). A cada posición del eslabón móvil (23) dentro de sus límites de traslación (con excepción de los puntos extremos) le corresponden dos posiciones de la manivela (20), una dentro de los límites del ángulo α y otra dentro de los límites del ángulo β . Por tanto, el movimiento del eslabón móvil (23) de una posición a otra puede realizarse de dos maneras: moviendo la manivela (20) dentro de los límites del ángulo α o dentro de los límites del ángulo β . Lista de designaciones 1. Primera pata del robot 2. Segunda pata del robot 3. Tercera pata del robot 4. Cuarta pata del robot 5. Cuerpo del robot 6. Primer elemento elástico 7. Segundo elemento elástico 8. Motor de accionamiento 9. Husillo 10. Tuerca 11. Primera polea 12. Segunda polea 13. Primer elemento elástico adicional 14. Segundo elemento elástico adicional 15. Cable 16. Rodillo de giro 17. Correa dentada 18. Primera parte del fijador 19. Segunda parte del fijador 20. Manivela 21. Dedo 22. Corredera 23. Eslabón móvil 24. Reductor 25. Sistema de control 26. Posición media 27. Reductor del motor MODOS DE REALIZACIÓN DE LA INVENCIÓN.Figure 7 shows the dependence of the transmission ratio K on the angle φ of rotation of the crank (20). This dependence has a periodic behavior, with a period of 360 degrees, within which two parts can be distinguished: one part where the transmission ratio K has positive values (section A - B) and another part where the transmission ratio K has negative values (section B - C). The negative value of the transmission ratio K means that the crank (20) and the mobile link (23) rotate in the opposite direction. At points A, B and C the transmission ratio K tends to be more or less infinite. These points correspond to the positions where there is a 90 degree angle between the crank (20) and the mobile link (23). Figure 8 shows the extreme positions of the mobile link (23). Each position of the movable link (23) within its translation limits (with the exception of the extreme points) corresponds to two positions of the crank (20), one within the limits of the angle α and another within the limits of the angle β. Therefore, the movement of the movable link (23) from one position to another can be done in two ways: by moving the crank (20) within the limits of the angle α or within the limits of the angle β. List of designations 1. First leg of the robot 2. Second leg of the robot 3. Third leg of the robot 4. Fourth leg of the robot 5. Robot body 6. First elastic element 7. Second elastic element 8. Drive motor 9. Spindle 10. Nut 11. First pulley 12. Second pulley 13. First additional elastic element 14. Second additional elastic element 15. Cable 16. Swing roller 17. Timing belt 18. First part of the fixator 19. Second part of the fixator 20. Crank 21. Finger 22. Sliding 23. Mobile link 24. Reducer 25. Control system 26. Average position 27. Motor reducer EMBODIMENTS OF THE INVENTION
La presente invención se ilustra adicionalmente con los siguientes ejemplos, los cuales no pretenden ser limitativos de su alcance.The present invention is further illustrated by the following examples, which are not intended to be limiting in scope.
Ejemplo 1Example 1
El robot cuadrúpedo está compuesto por un cuerpo (5) de 30 Kg., cuatro patas (1), (2), (3), (4) conectadas al cuerpo del robot (5), cuatro motores eléctricos (8) conectados al sistema de control (25), dos resortes que tienen una constante de rigidez de 500N/m, y una longitud de 0.35 m., y dos fijadores. Adicionalmente, al cuerpo del robot (5) va conectado un equipo de soldadura. Las patas (1) y (2) están fijadas en un lado del cuerpo del robot (5), mientras que las patas (3) y (4) están fijadas en el lado contrario del cuerpo del robot (5). Además, cada una de ellas pesa 2 Kg., y tienen posibilidad de desplazarse en trayectorias paralelas. La distancia entre las posiciones extremas de cada pata es de 0.2 m. Uno de los extremos del primer resorte está conectado a la pata (1) del robot, mientras el otro extremo está conectado a la pata (2). Del mismo modo, un extremo del segundo resorte (7) está conectado a la pata (4) y el otro extremo se encuentra conectado a la pata (3). Cada uno de los motores eléctricos (8) está fijado en el cuerpo del robot (5) y conectado cinemáticamente con el husillo (9) de un sistema de transmisión husillo (9) - tuerca (10), de tal manera que el motor (8) está conectado cinemáticamente con el husillo (9), la tuerca (10) está fijada en la pata correspondiente, y el husillo (9) está fijado en el cuerpo del robot (5) con posibilidad de giro y colocado paralelamente a la trayectoria admisible del movimiento de las patas del robot. La conexión cinemática entre el motor eléctrico (8) y su correspondiente husillo (10) contiene un sistema de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada al husillo (10) y la polea (11) conectada al eje de salida del motor eléctrico (8). Los fijadores están realizados en forma de pestillos mecánicos con dispositivos para desfijar la conexión. Cada uno de los fijadores tiene dos posiciones de fijación que corresponden a la distancia máxima y mínima entre las dos patas de un mismo lado del cuerpo (5) del robot. Cada uno de los fijadores tiene dos partes que interaccionan (18) y (19). La primera parte (18) del primer fijador está colocada en la pata (1), y la segunda parte (19) del primer fijador está colocada en la pata (2). Igualmente, la primera parte (18) del segundo fijador está colocada en la pata (3), y la segunda parte (19) del segundo fijador está colocada en la pata (4). El cuerpo del robot se mueve a una velocidad de 0.02m/s, que es la velocidad requerida por el proceso de soldadura. El tiempo de movimiento de cada una de las patas, que depende de la masa de la misma y de la constante de rigidez del resorte, es de 0.2 s. Así pues, la velocidad de cada una de las patas es de 1 m/s.The quadruped robot is composed of a body (5) of 30 Kg., Four legs (1), (2), (3), (4) connected to the body of the robot (5), four electric motors (8) connected to the control system (25), two springs having a stiffness constant of 500N / m, and a length of 0.35 m., and two fasteners. Additionally, welding equipment is connected to the robot body (5). The legs (1) and (2) are fixed on one side of the robot body (5), while the legs (3) and (4) are fixed on the opposite side of the robot body (5). In addition, each of them weighs 2 Kg., And they have the possibility of moving in parallel paths. The distance between the extreme positions of each leg is 0.2 m. One end of the first spring is connected to the leg (1) of the robot, while the other end is connected to the leg (2). Similarly, one end of the second spring (7) is connected to the leg (4) and the other end is connected to the leg (3). Each of the electric motors (8) is fixed on the robot body (5) and kinematically connected with the spindle (9) of a spindle (9) - nut (10) transmission system, such that the motor ( 8) is connected kinematically with the spindle (9), the nut (10) is fixed on the corresponding leg, and the spindle (9) is fixed on the robot body (5) with the possibility of rotation and placed parallel to the path permissible movement of the legs of the robot. The kinematic connection between the electric motor (8) and its corresponding spindle (10) contains a system of two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the spindle (10) and the pulley (11) connected to the output shaft of the electric motor (8). The fasteners are made in the form of mechanical latches with devices to deflect the connection. Each of the fasteners has two fixing positions that correspond to the maximum and minimum distance between the two legs on the same side of the body (5) of the robot. Each of the fixers has two interacting parts (18) and (19). The first part (18) of the first fixator is placed on the leg (1), and the second part (19) of the first fixator is placed on the leg (2). Likewise, the first part (18) of the second fixator is placed in the leg (3), and the second part (19) of the second fixator is placed in the leg (4). The robot body moves at a speed of 0.02m / s, which is the speed required by the welding process. The movement time of each of the legs, which depends on the mass of the legs and the stiffness constant of the spring, is 0.2 s. Thus, the speed of each of the legs is 1 m / s.
Ejemplo 2Example 2
El robot cuadrúpedo está compuesto por un cuerpo (5), cuatro patas (1), (2), (3), (4) conectadas al cuerpo del robot (5), cuatro motores eléctricos (8) conectados al sistema de control (25) y dos resortes. Adicionalmente, al cuerpo del robot (5) va conectado un equipo de soldadura. Las patas (1) y (2) están fijadas en un lado del cuerpo del robot (5), mientras que las patas (3) y (4) están fijadas en el lado contrario del cuerpo del robot (5), y además, todas ellas tienen posibilidad de desplazarse en trayectorias paralelas. Uno de los extremos del primer resorte está conectado a la pata (1) del robot, mientras el otro extremo está conectado a la pata (2). Del mismo modo, un extremo del segundo resorte (7) está conectado a la pata (4) y el otro extremo se encuentra conectado a la pata (3). Cada uno de los motores eléctricos (8) está fijado a su correspondiente pata del robot (5) y conectado cinemáticamente con la tuerca (10) de un sistema de transmisión husillo (9) - tuerca (10), de forma que la tuerca (10) está fijada en la pata del robot con posibilidad de giro pero sin posibilidad de desplazamiento progresivo, y el husillo (9) está fijado rígidamente en el cuerpo del robot (5) y paralelamente a la trayectoria admisible del movimiento de las patas del robot. La conexión cinemática entre cada uno de los motores eléctricos (8) y su correspondiente tuerca (10) se hace con un mecanismo que contiene un reductor (24) fijado a la pata del robot correspondiente, un eslabón móvil (23) conectado al eje de entrada del reductor (24) y con posibilidad de rotación alrededor de dicho punto de conexión, un sistema de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada a la tuerca (10) y la polea (11) conectada al eje de salida del reductor (24), una corredera (22) que se desliza a lo largo del eslabón móvil (23) en dirección radial, y una manivela (20) conectada por medio de un reductor (27) con el eje del motor (8) y unida a charnela por medio del dedo (21) con la corredera (22), de tal manera que los ejes de rotación del eslabón móvil (23), de la manivela (20) y del dedo (21) son paralelos, y la distancia entre el eje de rotación del eslabón móvil (23) y el eje de rotación de la manivela (20) es mayor que la longitud de la manivela (20). Para la realización también se tiene en consideración que cuando cada una de las patas se encuentre en alguna de sus posiciones extremas, la manivela (20) correspondiente esté en posición perpendicular al eslabón móvil (23). Esto asegurará un cambio óptimo en la relación de transmisión K. The quadruped robot is composed of a body (5), four legs (1), (2), (3), (4) connected to the robot body (5), four electric motors (8) connected to the control system ( 25) and two springs. Additionally, welding equipment is connected to the robot body (5). The legs (1) and (2) are fixed on one side of the robot body (5), while the legs (3) and (4) are fixed on the opposite side of the robot body (5), and also, all of them have the possibility of moving in parallel paths. One end of the first spring is connected to the leg (1) of the robot, while the other end is connected to the leg (2). Similarly, one end of the second spring (7) is connected to the leg (4) and the other end is connected to the leg (3). Each of the electric motors (8) is fixed to its corresponding robot leg (5) and kinematically connected with the nut (10) of a spindle (9) - nut (10) transmission system, so that the nut ( 10) is fixed on the robot's leg with the possibility of rotation but without the possibility of progressive displacement, and the spindle (9) is rigidly fixed on the robot body (5) and parallel to the permissible path of movement of the robot's legs . The kinematic connection between each of the electric motors (8) and its corresponding nut (10) is made with a mechanism containing a reducer (24) fixed to the corresponding robot's leg, a movable link (23) connected to the axis of input of the reducer (24) and with the possibility of rotation around said connection point, a system of two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the moving link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the axes of rotation of the movable link (23), of the crank (20) and of the finger (21) are parallel, and the distance between the axis of rotation of the movable link (23) and the axis of rotation of the crank (20) is greater than the length d and the crank (20). For the realization it is also taken into account that when each leg is in one of its positions extreme, the corresponding crank (20) is perpendicular to the movable link (23). This will ensure an optimal change in the transmission ratio K.

Claims

REIVINDICACIONES
1. Robot cuadrúpedo para procesos tecnológicos, compuesto por un cuerpo (5), cuatro patas (1), (2), (3), (4) conectadas al cuerpo del robot (5) de tal manera que las patas (1) y (2) están fijadas en un lado del cuerpo del robot (5), las patas (3) y (4) están fijadas en el lado contrario del cuerpo del robot (5), y además, todas ellas tienen posibilidad de desplazarse en trayectorias paralelas, cuatro motores eléctricos (8), cada uno de los cuales está conectado cinemáticamente con la correspondiente pata del robot y conectados al sistema de control (25), y que se caracteriza porque contiene dos elementos elásticos (6) y (7), con uno de los extremos del primer elemento elástico (6) conectado a la pata (1), y el otro extremo conectado a la pata (2), y con un extremo del segundo elemento elástico (7) conectado a la pata (4) y el otro extremo conectado a la pata (3).1. Quadruped robot for technological processes, consisting of a body (5), four legs (1), (2), (3), (4) connected to the robot body (5) such that the legs (1) and (2) are fixed on one side of the robot body (5), the legs (3) and (4) are fixed on the opposite side of the robot body (5), and in addition, all of them have the possibility of moving in parallel paths, four electric motors (8), each of which is kinematically connected to the corresponding robot leg and connected to the control system (25), and characterized in that it contains two elastic elements (6) and (7) , with one end of the first elastic element (6) connected to the leg (1), and the other end connected to the leg (2), and with one end of the second elastic element (7) connected to the leg (4 ) and the other end connected to the leg (3).
2. Robot cuadrúpedo para procesos tecnológicos según la reivindicación 1, que se caracteriza porque tanto la rigidez como la longitud de los elementos elásticos (6) y (7) es la misma, y porque la longitud se eligió de tal manera que cada uno de los elementos elásticos (6) y (7) esté en estado de equilibrio sin deformación cuando una de las patas a la que está conectado el correspondiente elemento elástico está en una posición extrema y la otra pata está en la posición media (26) de la distancia entre sus posiciones extremas.2. Quadruped robot for technological processes according to claim 1, characterized in that both the stiffness and the length of the elastic elements (6) and (7) are the same, and because the length was chosen such that each of the elastic elements (6) and (7) are in equilibrium state without deformation when one of the legs to which the corresponding elastic element is connected is in an extreme position and the other leg is in the middle position (26) of the distance between their extreme positions.
3. Robot cuadrúpedo para procesos tecnológicos según la reivindicación 1, caracterizado porque - contiene dos elementos elásticos adicionales (13) y (14), cuatro rodillos (16) con posibilidad de giro fijados en el cuerpo del robot (5), y cuatro cables que conectan los extremos de los elementos elásticos adicionales (13) y (14) con las patas (1), (2), y (3), (4) respectivamente - uno de los extremos del elemento elástico adicional (13) está conectado con la pata (1) por medio de un cable (15) y un rodillo de giro (16) y el otro extremo del elemento elástico adicional (13) está conectado con la pata (2) por medio de otro cable (15) y otro rodillo de giro (16) - uno de los extremos del elemento elástico adicional (14) está conectado con la pata (4) por medio de un cable (15) y un rodillo de giro (16) y el otro extremo del elemento elástico adicional (13) está conectado con la pata (3) por medio de otro cable (15) y otro rodillo de giro (16) - los elementos elásticos principales (6) y (7) y los elementos elásticos adicionales (13) y (14) tienen todos la misma rigidez, la misma longitud, y trabajan estirados siempre, incluso cuando la distancia entre las patas del mismo lado del robot es mínima - el diámetro de todos los rodillos es el mismo y los puntos de fijación de los ejes de los rodillos (16) se eligen de tal forma que todos los cables (15) estén colocados paralelamente a las trayectorias admisibles del movimiento de las patas del robot - las longitudes del par de cables (15) que conectan un elemento elástico adicional con dos patas de un mismo lado se eligen de tal manera que garanticen que tanto el elemento elástico principal como el elemento elástico adicional se encuentran estirados cuando la distancia entre las dos patas de un mismo lado es mínima, y que el esfuerzo del elemento elástico principal y el esfuerzo del elemento elástico adicional correspondiente son iguales cuando una de las patas está en la posición extrema y la segunda pata está en la posición media (26).3. Quadruped robot for technological processes according to claim 1, characterized in that - it contains two additional elastic elements (13) and (14), four rollers (16) with the possibility of rotation fixed on the robot body (5), and four cables connecting the ends of the additional elastic elements (13) and (14) with the legs (1), (2), and (3), (4) respectively - one of the ends of the additional elastic element (13) is connected with the leg (1) by means of a cable (15) and a rotating roller (16) and the other end of the additional elastic element (13) is connected with the leg (2) by means of another cable (15) and another turning roller (16) - one end of the additional elastic element (14) is connected to the leg (4) by means of a cable (15) and a turning roller (16) and the other end of the element Additional elastic (13) is connected to the leg (3) by means of another cable (15) and another turning roller (16) - the main elastic elements (6) and (7) and the additional elastic elements (13) and (14) they all have the same stiffness, the same length, and work always stretched, even when the distance between the legs on the same side of the robot is minimal - the diameter of all the rollers is the same and the axes fixing points of the rollers (16) are chosen in such a way that all cables (15) are placed parallel to the allowable paths of movement of the robot's legs - the lengths of the pair of cables (15) that connect an additional elastic element with two legs of the same side are chosen in such a way that they guarantee that both the main elastic element and the additional elastic element are stretched when the distance between the two legs of the same side is minimal, and that the effort of the elastic element pr The incipal and the stress of the corresponding additional elastic element are equal when one of the legs is in the extreme position and the second leg is in the middle position (26).
4. Robot cuadrúpedo para procesos tecnológicos según las reivindicaciones 1-3, caracterizado porque todos los motores eléctricos (8) están fijados en el cuerpo del robot (5), y la conexión cinemática entre cada uno de ellos con su pata correspondiente está realizada con un sistema de transmisión husillo (9) - tuerca (10), de tal manera que el motor está conectado cinemáticamente con el husillo (9), la tuerca (10) está fijada en la pata, y el husillo (9) está fijado en el cuerpo del robot (5) con posibilidad de giro y colocado paralelamente a la trayectoria admisible del movimiento de las patas del robot.4. Quadruped robot for technological processes according to claims 1-3, characterized in that all the electric motors (8) are fixed in the body of the robot (5), and the kinematic connection between each of them with its corresponding leg is made with a spindle transmission system (9) - nut (10), such that the motor is kinematically connected with the spindle (9), the nut (10) is fixed on the leg, and the spindle (9) is fixed on the body of the robot (5) with the possibility of rotation and placed parallel to the permissible path of movement of the robot's legs.
5. Robot cuadrúpedo para procesos tecnológicos según las reivindicaciones 1-3, caracterizado porque cada uno de los motores eléctricos (8) está fijado en la pata correspondiente y conectado cinemáticamente con la tuerca (10) de un sistema de transmisión husillo (9) - tuerca (10), de forma que la tuerca (10) está fijada en la pata del robot con posibilidad de giro, pero sin posibilidad de desplazamiento progresivo, y el husillo (9) está fijado rígidamente en el cuerpo del robot (5) y paralelamente a la trayectoria admisible del movimiento de las patas del robot. 5. Quadruped robot for technological processes according to claims 1-3, characterized in that each of the electric motors (8) is fixed on the corresponding leg and kinematically connected with the nut (10) of a spindle transmission system (9) - nut (10), so that the nut (10) is fixed on the robot's leg with the possibility of turning, but without the possibility of progressive displacement, and the spindle (9) is rigidly fixed on the robot body (5) and parallel to the permissible path of movement of the robot's legs.
6. Robot cuadrúpedo para procesos tecnológicos según las reivindicaciones 4, 5, que se caracteriza porque el sistema de transmisión husillo (9) - tuerca (10), es de auto-frenado.6. Quadruped robot for technological processes according to claims 4, 5, characterized in that the spindle transmission system (9) - nut (10) is self-braking.
7. Robot cuadrúpedo para procesos tecnológicos según las reivindicaciones 1-6, caracterizado porque - contiene dos fijadores con dispositivos para desfijar la conexión - los fijadores están realizados en forma de pestillos mecánicos con dos partes (18) y (19) que interaccionan - la primera parte (18) del primer fijador está colocada en la pata (1), y la segunda parte (19) del primer fijador está colocada en la pata (2) - la primera parte (18) del segundo fijador está colocada en la pata (3), y la otra parte del segundo fijador está colocada en la pata (4) - cada uno de los fijadores tiene dos posiciones de fijación que corresponden a las distancias máxima y mínima entre las patas de un mismo lado del robot.7. Quadruped robot for technological processes according to claims 1-6, characterized in that - it contains two fasteners with devices to deflect the connection - the fasteners are made in the form of mechanical latches with two parts (18) and (19) that interact - the First part (18) of the first fixative is placed on the leg (1), and the second part (19) of the first fixative is placed on the leg (2) - the first part (18) of the second fixative is placed on the leg (3), and the other part of the second fixator is placed on the leg (4) - each of the fasteners has two fixing positions that correspond to the maximum and minimum distances between the legs of the same side of the robot.
8. Robot cuadrúpedo para procesos tecnológicos según las reivindicaciones 1-4, 6-7, caracterizado porque la conexión cinemática entre cada uno de los motores eléctricos (8) con su correspondiente husillo (9) contiene un reductor (24) fijado al cuerpo del robot (5), un eslabón móvil (23) conectado al eje de entrada del reductor (24) y con posibilidad de rotación alrededor de dicho punto de conexión, un sistema de transmisión de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada al husillo (9) y la polea (11) conectada al eje de salida del reductor (24), una corredera (22) que se desliza a lo largo del eslabón móvil (23) en dirección radial, y una manivela (20) conectada por medio de un reductor (27) con el eje del motor (8) y unida a charnela por medio del dedo (21) con la corredera (22), de tal manera que los ejes de rotación del eslabón móvil (23), de la manivela (20) y del dedo (21) son paralelos, y la distancia entre el eje de rotación del eslabón móvil (23) y el eje de rotación de la manivela (20) es mayor que la longitud de la manivela (20).8. Quadruped robot for technological processes according to claims 1-4, 6-7, characterized in that the kinematic connection between each of the electric motors (8) with its corresponding spindle (9) contains a reducer (24) fixed to the body of the robot (5), a mobile link (23) connected to the input shaft of the reducer (24) and with the possibility of rotation around said connection point, a two pulley transmission system (11), (12) and toothed belt (17), with the pulley (12) fixed to the spindle (9) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the movable link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the rotation axes of the mobile link (23), the crank (20) and the finger (21) are parallel, and the distance between the axis of rotation of the link n mobile (23) and the axis of rotation of the crank (20) is greater than the length of the crank (20).
9. Robot cuadrúpedo para procesos tecnológicos según las reivindicaciones 1-3, 5-7, caracterizado porque la conexión cinemática entre cada uno de los motores eléctricos (8) con su correspondiente tuerca (10) contiene un reductor (24) fijado a la pata del robot correspondiente, un eslabón móvil (23) conectado al eje de entrada del reductor (24) y con posibilidad de rotación alrededor de dicho punto de conexión, un sistema de dos poleas (11), (12) y correa dentada (17), con la polea (12) fijada a la tuerca (10) y la polea (11) conectada al eje de salida del reductor (24), una corredera (22) que se desliza a lo largo del eslabón móvil (23) en dirección radial, y una manivela (20) conectada por medio de un reductor (27) con el eje del motor (8) y unida a charnela por medio del dedo (21) con la corredera (22), de tal manera que los ejes de rotación del eslabón móvil (23), de la manivela (20) y del dedo (21) son paralelos, y la distancia entre el eje de rotación del eslabón móvil (23) y el eje de rotación de la manivela (20) es mayor que la longitud de la manivela (20). 9. Quadruped robot for technological processes according to claims 1-3, 5-7, characterized in that the kinematic connection between each of the electric motors (8) with its corresponding nut (10) contains a reducer (24) fixed to the leg of the corresponding robot, a mobile link (23) connected to the input shaft of the reducer (24) and with possibility of rotation around said connection point, a system of two pulleys (11), (12) and toothed belt (17), with the pulley (12) fixed to the nut (10) and the pulley (11) connected to the output shaft of the reducer (24), a slide (22) that slides along the movable link (23) in the radial direction, and a crank (20) connected by means of a reducer (27) with the motor shaft (8) and attached to the hinge by means of the finger (21) with the slide (22), such that the axes of rotation of the movable link (23), of the crank (20) and of the finger (21) are parallel , and the distance between the axis of rotation of the movable link (23) and the axis of rotation of the crank (20) is greater than the length of the crank (20).
PCT/ES2005/070075 2004-05-31 2005-05-30 Quadruped robot for technological processes WO2005118230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200401315A ES2244343B1 (en) 2004-05-31 2004-05-31 QUADRUPED ROBOT FOR TECHNOLOGICAL PROCESSES.
ESP200401315 2004-05-31

Publications (1)

Publication Number Publication Date
WO2005118230A1 true WO2005118230A1 (en) 2005-12-15

Family

ID=35453098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070075 WO2005118230A1 (en) 2004-05-31 2005-05-30 Quadruped robot for technological processes

Country Status (2)

Country Link
ES (1) ES2244343B1 (en)
WO (1) WO2005118230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363523A (en) * 2020-11-10 2021-02-12 北京中科深智科技有限公司 Method and system for simulating quadruped animal motion in real time

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2277777B1 (en) * 2005-12-13 2008-06-16 Consejo Superior Invest.Cientificas DEVICE FOR THE TRANSPORT OF PERSONS OR THINGS AND THE PROCEDURE FOR THEIR CONTROL.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1219341A1 (en) * 1982-02-17 1986-03-23 Институт Машиноведения Им.А.А.Благонравова Drive of resonant powered arm link
SU1682160A1 (en) * 1986-04-28 1991-10-07 Институт Машиноведения Им.А.А.Благонравова Method for control of mechanical resonance arm
JPH07332455A (en) * 1994-06-02 1995-12-22 K S S Kk Opening and closing ball screw device
ES2161184A1 (en) * 1999-12-28 2001-11-16 Consejo Superior Investigacion Device for a work element having two degrees of mobility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1219341A1 (en) * 1982-02-17 1986-03-23 Институт Машиноведения Им.А.А.Благонравова Drive of resonant powered arm link
SU1682160A1 (en) * 1986-04-28 1991-10-07 Институт Машиноведения Им.А.А.Благонравова Method for control of mechanical resonance arm
JPH07332455A (en) * 1994-06-02 1995-12-22 K S S Kk Opening and closing ball screw device
ES2161184A1 (en) * 1999-12-28 2001-11-16 Consejo Superior Investigacion Device for a work element having two degrees of mobility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BABITSKY V.I. AND CHITAYEV M.Y.: "Adaptative-high speed resonant robot", MECHATRONICS, vol. 6, no. 8, 1996, pages 897 - 913 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363523A (en) * 2020-11-10 2021-02-12 北京中科深智科技有限公司 Method and system for simulating quadruped animal motion in real time

Also Published As

Publication number Publication date
ES2244343B1 (en) 2007-03-01
ES2244343A1 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
ES2375074T3 (en) PARALLEL HANDLING DEVICE WITH TWO DEGREES OF FREEDOM.
JP5403303B2 (en) Parallel mechanism
US8950967B2 (en) Articulated joint
US9427866B2 (en) Gear mechanism, speed reducer, and robot arm
US8256320B2 (en) Device for handling and/or performing work operations on objects
CN104608141A (en) Robot hand for gripping cylindrical object and robot having the robot hand
JP5973657B2 (en) Cylinder with offset motor using flexible transmission and robot arm using such cylinder
JP2019513568A (en) Variable stiffness series elastic actuator
WO2012127532A1 (en) Driving method for joint device
JP2009297793A (en) Parallel mechanism
WO2005118230A1 (en) Quadruped robot for technological processes
JP2012045710A (en) Parallel mechanism
CN106041997A (en) Telescopic mechanical arm capable of rotating in omnibearing manner
RU152604U1 (en) SPATIAL MECHANISM WITH SIX DEGREES OF FREEDOM
JP2007307686A (en) Robot arm and robot
ES2387228B2 (en) Actuator with variable stiffness mechanism and threshold torque
JP2018140463A (en) Active manipulator apparatus
US11047369B1 (en) Multiple torques inertial thruster engine and methodology
KR101867763B1 (en) Bending stiffness control device for joint device
JP2021092270A (en) Wave gear device
Nelson et al. Variable stiffness mechanism for robotic rehabilitation
Lavate et al. Variable stiffness actuators: A general review
JP2007078036A (en) Nonlinear elastic element using non-circular gear
JP5798005B2 (en) Link actuator
WO2003099641A1 (en) Actuator for a working element, particularly a walking robot, and the method of controlling said actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase