ES2387228B2 - Actuator with variable stiffness mechanism and threshold torque - Google Patents
Actuator with variable stiffness mechanism and threshold torque Download PDFInfo
- Publication number
- ES2387228B2 ES2387228B2 ES201200712A ES201200712A ES2387228B2 ES 2387228 B2 ES2387228 B2 ES 2387228B2 ES 201200712 A ES201200712 A ES 201200712A ES 201200712 A ES201200712 A ES 201200712A ES 2387228 B2 ES2387228 B2 ES 2387228B2
- Authority
- ES
- Spain
- Prior art keywords
- actuator
- lever
- fixed
- cables
- link
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000036316 preload Effects 0.000 claims abstract description 7
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/06—Safety devices
- B25J19/068—Actuating means with variable stiffness
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
Actuador con mecanismo de rigidez variable y par umbral, del tipo de los utilizados en articulaciones de revolución de brazos robóticos y que pueden modificar su rigidez. El actuador incorpora un motor (1) que se encarga de controlar la posición de equilibrio del eslabón de salida (13). El mecanismo contiene un resorte (18) y una palanca (12). La rigidez del mecanismo puede ser modificada variando la posición de esta palanca (12) mediante un motor (14). Dicha rigidez determina el valor del giro entre la posición de la polea (2) solidaria al eje de salida del motor (1) y la posición del eslabón (13). Dos tensores (5) y (6) permiten modificar la precarga de dos cables (3) y (4) respectivamente, de forma que el mecanismo no entra en funcionamiento hasta que no se ha sobrepasado un cierto valor de par sobre la articulación.Actuator with variable stiffness mechanism and threshold torque, of the type used in revolution joints of robotic arms and which can modify their stiffness. The actuator incorporates a motor (1) that is responsible for controlling the balance position of the output link (13). The mechanism contains a spring (18) and a lever (12). The rigidity of the mechanism can be modified by varying the position of this lever (12) by means of a motor (14). Said stiffness determines the value of the rotation between the position of the pulley (2) integral with the motor output shaft (1) and the position of the link (13). Two tensioners (5) and (6) make it possible to modify the preload of two cables (3) and (4) respectively, so that the mechanism does not work until a certain torque value has been exceeded on the joint.
Description
ACTUADOR CON MECANISMO DE RIGIDEZ VARIABLE Y PAR UMBRAL ACTUATOR WITH VARIABLE RIGIDITY MECHANISM AND THRESHOLD
CAMPO DE LA INVENCiÓN La presente invención se enmarca de manera general en el sector de maquinaria y equipo mecánico. Específicamente, la presente invención está orientada al campo de los robots de servicio y asistenciales. Concretamente aquellos que presenten articulaciones de revolución. FIELD OF THE INVENTION The present invention is generally framed in the sector of machinery and mechanical equipment. Specifically, the present invention is oriented to the field of service and assistance robots. Specifically those who present articulations of revolution.
ANTECEDENTES DE LA INVENCiÓN Las aplicaciones de los robots manipuladores se están extendiendo a nuevos escenarios en los que pueden interaccionar con entornos desconocidos y realizar tareas cooperativas con los humanos. En este contexto, se han presentado nuevos retos en cuanto a cómo garantizar la seguridad del entorno, de las personas y del propio robot. Recientemente se ha mostrado gran interés en el desarrollo de los llamados Actuadores de Rigidez Variable como medio para reducir el daño en el caso de un choque accidental del robot sobre su entorno [1-18l. Esta reducción se consigue gracias al componente elástico de dicho actuador, donde su función es desacoplar mecánicamente la inercia del rotor del motor de la inercia del eslabón del brazo robot, de manera que la inercia del primero no contribuya en la fuerza generada en el impacto. BACKGROUND OF THE INVENTION The applications of manipulative robots are being extended to new scenarios in which they can interact with unknown environments and perform cooperative tasks with humans. In this context, new challenges have been presented as to how to ensure the safety of the environment, people and the robot itself. Recently, great interest has been shown in the development of the so-called Variable Rigidity Actuators as a means of reducing damage in the event of an accidental crash of the robot on its surroundings [1-18l. This reduction is achieved thanks to the elastic component of said actuator, where its function is to mechanically decouple the inertia of the motor rotor from the inertia of the linkage of the robot arm, so that the inertia of the former does not contribute to the force generated in the impact.
A diferencia de los actuadores rígidos de los robots industriales, con un actuador flexible es más difícil posicionar con exactitud el efecto final del brazo robot o seguir una determinada trayectoria con precisión. En este caso, .un actuador con rigidez variable puede actuar de manera rígida durante movimientos precisos a baja velocidad y aumentar su flexibilidad en desplazamientos a elevada velocidad donde la precisión en la trayectoria seguida es menos importante. Unlike the rigid actuators of industrial robots, with a flexible actuator it is more difficult to accurately position the final effect of the robot arm or follow a certain trajectory with precision. In this case, an actuator with variable stiffness can act rigidly during precise movements at low speed and increase its flexibility in high-speed movements where precision in the path followed is less important.
De entre los actuadores de rigidez variable que se utilizan en articulaciones de revolución de brazos robóticos, el mayor número de ellos presentan el inconveniente de que no permiten adoptar una configuración totalmente rígida [2-17]. Además, ninguno de los actuadores conocidos dispone de algún dispositivo que permita que el actuador se comporte de manera totalmente rígida mientras que no se supere un cierto valor de par sobre la articulación y, una vez superado dicho valor de par umbral entre en funcionamiento el mecanismo que aporta flexibilidad al actuador. La presente invención da solución a estos dos inconvenientes encontrados en los actuadores de rigidez variable conocidos. Among the actuators of variable stiffness that are used in robotic arm revolution joints, the greater number of them have the disadvantage that they do not allow adopting a totally rigid configuration [2-17]. In addition, none of the known actuators have any device that allows the actuator to behave completely rigid while not exceeding a certain torque value over the joint and, once this threshold torque value has been exceeded, the mechanism becomes operational. which brings flexibility to the actuator. The present invention solves these two drawbacks found in known variable stiffness actuators.
[1] V. R. Ham, T. G. Sugar, B. Vanderborght, K. W. Hollander and D. Lefeber, "Compliant actuator designs: Review of actu ato rs with passive adjustable compliance/controllable stiffness for robotic applications," IEEE Robotics and Automation Magazine, vol. 16, pp. 81-94, 2009. [1] V. R. Ham, T. G. Sugar, B. Vanderborght, K. W. Hollander and D. Lefeber, "Compliant actuator designs: Review of actu ato rs with passive adjustable compliance / controllable stiffness for robotic applications," IEEE Robotics and Automation Magazine, vol. 16, pp. 81-94, 2009.
[2] A. Bicchi and G. Tonietti, "Fast and "soft-arm" tactics," IEEE Robotics and Automation Magazine, vol. 11, pp. 22-33, 2004. [2] A. Bicchi and G. Tonietti, "Fast and" soft-arm "tactics," IEEE Robotics and Automation Magazine, vol. 11, pp. 22-33, 2004.
[3] S. A. Migliore, E. A. Brown and S.P. DeWeerth, "Biologically inspired joint stiffness control," IEEE International Conference on Robotics and Automation, pp. 4519-4524, 2005. [3] S. A. Migliore, E. A. Brown and S.P. DeWeerth, "Biologically inspired joint stiffness control," IEEE International Conference on Robotics and Automation, pp. 4519-4524, 2005.
[4] M. Zinn, B. Roth, O. Khatib, and J.K. Dalisbury, "A new actuation approach for human friendly robot design," The International Journal of Robotics Research, vol. 23, pp. 379-398, 2004. [4] M. Zinn, B. Roth, O. Khatib, and J.K. Dalisbury, "A new actuation approach for human friendly robot design," The International Journal of Robotics Research, vol. 23, pp. 379-398, 2004.
[5] A. Albu-Schaffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolf and G. Hirzinger, "Soft robotics," IEEE Robotics and Automation Magazine, vol. 15, pp. 20-30, 2008. [5] A. Albu-Schaffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolf and G. Hirzinger, "Soft robotics," IEEE Robotics and Automation Magazine, vol. 15, pp. 20-30, 2008.
[6] D. Hyun, H. S. Yang, J. Park and Y. Shim, "Variable stiffness mechanism for human-friendly robots," Mechanism and Machine Theory, vol. 45, pp. 880-897, 2010. [6] D. Hyun, H. S. Yang, J. Park and Y. Shim, "Variable stiffness mechanism for human-friendly robots," Mechanism and Machine Theory, vol. 45, pp. 880-897, 2010.
[7] A. Pratt, M.M. Williamson, "Series elastic actuators," IEEE International Conference on Intelligent Robots and Systems, pp. 399-406. 1995. [7] A. Pratt, M.M. Williamson, "Series elastic actuators," IEEE International Conference on Intelligent Robots and Systems, pp. 399-406. nineteen ninety five.
[8] T. Morita, S. Sugano, "Design and development of a new robot joint using a mechanical impedance adjuster,"IEEE International Conference on Robotics and Automation, pp. 2469-2475. 1995. [8] T. Morita, S. Sugano, "Design and development of a new robot joint using a mechanical impedance adjuster," IEEE International Conference on Robotics and Automation, pp. 2469-2475. nineteen ninety five.
[9] R. Schiavi, C. Crioli, S. Sen, and A. Bicchi, "VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans", IEEE International Conference on Robotics and Automation, pp. 2171-2176. 2008. [9] R. Schiavi, C. Crioli, S. Sen, and A. Bicchi, "VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans", IEEE International Conference on Robotics and Automation, pp. 2171-2176. 2008
[10] M. C. Catalano, R. Schiavi, and A. Bicchi, "Mechanism design for variable stiffness actuation based on enumeration and analysis of performance," IEEE International Conference on Robotics and Automation, pp. 3285-3291. 2010. [10] M. C. Catalano, R. Schiavi, and A. Bicchi, "Mechanism design for variable stiffness actuation based on enumeration and analysis of performance," IEEE International Conference on Robotics and Automation, pp. 3285-3291. 2010
[11] B. Vanderborght, N.C. Tsagarakis, C. Semini, R.V. Ham, and D.C. Caldwell, "MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping," IEEE International Conference on Robotics and Automation, pp. 544-549. 2009. [11] B. Vanderborght, N.C. Tsagarakis, C. Semini, R.V. Ham, and D.C. Caldwell, "MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping," IEEE International Conference on Robotics and Automation, pp. 544-549. 2009
[12] A.C. Rodriguez, N.E.N. Rodriguez, and A.C.C. Rodriguez, "Design and validation of a novel actu ato r with adaptable compliance for application in human-like robotics," Industrial Robot, vol. 36, pp. 84-90. 2009. [12] A.C. Rodriguez, N.E.N. Rodriguez, and A.C.C. Rodriguez, "Design and validation of a novel actu ato r with adaptable compliance for application in human-like robotics," Industrial Robot, vol. 36, pp. 84-90. 2009
[13] H.5. Kim, J.J. Park, and J.B. Song, "Safe joint mechanism using double slider mechanism and spring for humanoid robot arm", IEEE-RAS International Conference on Humanoid Robots, pp. 73-78.2008. [13] H.5. Kim, J.J. Park, and J.B. Song, "Safe joint mechanism using double slider mechanism and spring for humanoid robot arm", IEEE-RAS International Conference on Humanoid Robots, pp. 73-78.2008.
[14] O. Hyun, H. S. Yang, J. Park, and Y. Shim, "Variable stiffness mechanism for human-friendly robots," Mechanism and Machine Theory, vol. 45, pp. 880-897, 2010. [14] O. Hyun, H. S. Yang, J. Park, and Y. Shim, "Variable stiffness mechanism for human-friendly robots," Mechanism and Machine Theory, vol. 45, pp. 880-897, 2010.
[15] A. Jafari, N.C. Tsagarakis, B. Vanderborght, and O.C Caldwell, "A novel actuator with adjustable stiffness (AwAS)," IEEE International Conference on Intelligent Robots and Systems, pp .4201-4206, 2010. [15] A. Jafari, N.C. Tsagarakis, B. Vanderborght, and O.C Caldwell, "A novel actuator with adjustable stiffness (AwAS)," IEEE International Conference on Intelligent Robots and Systems, pp. 4201-4206, 2010.
[16] B. S. Kim, and J. B. Song, "Hybrid dual actuator unit: A design of a variable stiffness actuator based on an adjustable moment arm mechanism," IEEE International Conference on Robotics and Automation, pp. 1655-1660, 2010. [16] B. S. Kim, and J. B. Song, "Hybrid dual actuator unit: A design of a variable stiffness actuator based on an adjustable moment arm mechanism," IEEE International Conference on Robotics and Automation, pp. 1655-1660, 2010.
[17] L. Visser, R. Carloni, R. Unal, and S. Stramigioli, "Modeling anddesign of energy efficient variable stiffness actuators," IEEElnternational Conference on Robotics and Automation, pp. 3273-3278, 2010. [17] L. Visser, R. Carloni, R. Unal, and S. Stramigioli, "Modeling and design of energy efficient variable stiffness actuators," IEE International Conference on Robotics and Automation, pp. 3273-3278, 2010.
[18] A. Jafari, N. Tsagarakis, and O. Caldwell, "AwAS-II: A New Actuator with Adjustable Stiffness based on the Novel Principie of Adaptable Pivot point and Variable Lever ratio," IEEE International Conference on Robotics and Automation, pp. 4638-4643,2011. [18] A. Jafari, N. Tsagarakis, and O. Caldwell, "AwAS-II: A New Actuator with Adjustable Stiffness based on the Novel Princie of Adaptable Pivot point and Variable Lever ratio," IEEE International Conference on Robotics and Automation, pp. 4638-4643,2011.
DESCRIPCIÓN DE LA INVENCiÓN La invención objeto de la presente memoria se refiere a un actuador con mecanismo de rigidez variable y par umbral, de entre aquellos actuadores destinados a su uso en articulaciones de revolución de brazos robóticos y que incorporan algún mecanismo que permite variar la rigidez de la articulación. DESCRIPTION OF THE INVENTION The invention object of the present specification refers to an actuator with variable stiffness mechanism and threshold torque, among those actuators intended for use in robotic arm revolution joints and incorporating some mechanism that allows varying rigidity of the joint.
Caracteriza esta invención un especial mecanismo que permite variar la rigidez y adoptar también una configuración totalmente rígida, y que dispone de un dispositivo de par umbral ajustable, el cual evita que entre en funcionamiento el mecanismo hasta que no se haya sobrepasado un cierto valor de par sobre la articulación, siendo este valor de par ajustable a conveniencia. This invention characterizes a special mechanism that allows varying the stiffness and also adopting a totally rigid configuration, and which has an adjustable threshold torque device, which prevents the mechanism from operating until a certain torque value has been exceeded. over the joint, this torque value being adjustable for convenience.
El actuador objeto de la presente invención consta de un primer motor eléctrico que controla la posición de equilibrio del eslabón de salida de la articulación, donde el eje de salida de este motor actúa sobre una polea motriz en la que van fijados por medio de dos tensores, y arrollados en sentidos opuestos, sendos cables; los cuales, tras pasar por unas poleas guías se fijan a una barra. La tensión de cada uno de los cables aumentará según sea el sentido de giro de la polea motriz, quedando el otro cable sin tensión. La barra anterior está articulada en su otro extremo a un rodillo que puede rodar sobre una palanca. Un tercer cable fijado al eje del rodillo es redirigido por medio de una polea guía y fijado al extremo libre de un resorte o elemento elástico por medio de un tensor. Tanto las poleas guías, como la articulación de la palanca y el extremo fijo del resorte o elemento elástico, son solidarios al eslabón de salida de la articulación. El resorte o elemento elástico permite aportar flexibilidad mecánica entre la posición de salida de la polea motriz y la posición del eslabón de salida de la articulación. El valor de esta flexibilidad o rigidez mecánica viene dado por la posición angular de la palanca, la cual se puede modificar por medio de un segundo motor eléctrico. The actuator object of the present invention consists of a first electric motor that controls the equilibrium position of the articulation outlet link, where the output shaft of this motor acts on a driving pulley on which they are fixed by means of two tensioners. , and wound in opposite directions, two wires; which, after going through some guide pulleys, are fixed to a bar. The tension of each of the cables will increase according to the direction of rotation of the drive pulley, leaving the other cable without tension. The front bar is articulated at its other end to a roller that can roll on a lever. A third cable fixed to the axis of the roller is redirected by means of a guide pulley and fixed to the free end of a spring or elastic element by means of a tensioner. Both the guide pulleys, such as the articulation of the lever and the fixed end of the spring or elastic element, are integral to the outlet link of the joint. The spring or elastic element allows to provide mechanical flexibility between the output position of the drive pulley and the position of the output link of the joint. The value of this flexibility or mechanical rigidity is given by the angular position of the lever, which can be modified by means of a second electric motor.
Cuando la palanca se coloca en posición perpendicular a la barra sobre la que está articulado el rodillo, el actuador es totalmente rígido, no pudiendo haber desviación entre posición de la polea motriz y la posición del eslabón de salida. Si la palanca se coloca en posición paralela a la barra, el mecanismo adopta su configuración de mínima rigidez. En posiciones de palanca intermedias a las dos anteriores, el mecanismo adopta rigideces intermedias, pudiendo haber desviación entre la posición de la polea motriz y la posición del eslabón al comprimirse el resorte. When the lever is placed perpendicular to the bar on which the roller is articulated, the actuator is completely rigid, there being no deviation between the position of the driving pulley and the position of the output link. If the lever is placed parallel to the bar, the mechanism adopts its minimum rigidity configuration. In intermediate lever positions to the previous two, the mechanism adopts intermediate rigidities, and there may be deviation between the position of the driving pulley and the position of the link when the spring is compressed.
Otra novedad de la presente invención es la presencia de un par umbral ajustable. Los tensores permiten dar una cierta precarga a los cables, de manera tal que sea necesario un cierto valor de par ejercido sobre la articulación para que el resorte empiece a comprimirse. Esto se explica porque los dos cables que van fijados a la polea motriz tienen inicialmente un mismo valor de carga. Cuando se empieza a aplicar par sobre la articulación, en uno de los cables aumenta la magnitud de su carga mientras que en el otro disminuye. El resorte no empezará a comprimirse, y el mecanismo a actuar, hasta que el par aplicado sobre la articulación no sea suficiente como para hacer que la tensión del cable menos cargado pase a ser nula. Ajustando la magnitud de la precarga de los cables se puede ajustar la magnitud del par necesario para que la tensión del cable menos cargado pase a ser nula y empiece a comprimirse el resorte. Another novelty of the present invention is the presence of an adjustable threshold pair. The tensioners allow the cables to be given a certain preload, so that a certain torque value exerted on the joint is necessary for the spring to begin to compress. This is explained because the two cables that are attached to the drive pulley initially have the same load value. When you start applying torque on the joint, in one of the cables the magnitude of its load increases while in the other it decreases. The spring will not begin to compress, and the mechanism to act, until the torque applied to the joint is not enough to make the tension of the less charged cable becomes zero. By adjusting the magnitude of the cable preload, the magnitude of the necessary torque can be adjusted so that the tension of the less charged cable becomes zero and the spring begins to compress.
El presente invento está orientado preferiblemente a su uso en articulaciones de brazos de robots de servicio y asistenciales, pero igualmente tiene aplicación en articulaciones de prótesis robóticas y robots andadores. The present invention is preferably oriented to its use in joints of arms of service and assistance robots, but also has application in joints of robotic prostheses and walking robots.
BREVE DESCRIPCIÓN DE LAS FIGURAS La presente invención se entenderá mejor con referencia a los siguientes dibujos que ilustran realizaciones preferidas de la invención, proporcionadas a modo de ejemplo, y que no deben interpretarse como limitativas de la invención de ninguna manera. BRIEF DESCRIPTION OF THE FIGURES The present invention will be better understood with reference to the following drawings that illustrate preferred embodiments of the invention, provided by way of example, and which should not be construed as limiting the invention in any way.
La figura 1 muestra una vista en planta del modo de realización preferente del actuador con mecanismo de rigidez variable y par umbral; la figura 2 muestra una vista en sección de la figura anterior; la figura 3 muestra una vista en planta del actuador cuando el mecanismo de rigidez variable ha entrado en funcionamiento. Figure 1 shows a plan view of the preferred embodiment of the actuator with variable stiffness mechanism and threshold torque; Figure 2 shows a sectional view of the previous figure; Figure 3 shows a plan view of the actuator when the variable stiffness mechanism has come into operation.
MODOS DE REALIZACiÓN PREFERENTE A la vista de lo anteriormente enunciado, la presente invención se refiere a un actuador con mecanismo de rigidez variable y par umbral de entre los utilizados en articulaciones de revolución de brazos robóticos y que pueden modificar su rigidez. Está esencialmente caracterizado por incorporar un motor eléctrico (1) cuyo eje de salida es solidario a la polea (2) sobre la que se arrollan en sentidos opuestos una porción de vuelta sendos cables (3) y (4), Y se fijan mediante dos tensores (5) y (6) respectivamente a dicha polea (2). Los cables (3) y (4), tras pasar por las poleas guía (7) y (8) respectivamente, se fijan a un extremo de la barra (9). Esta barra (9) está articulada en su otro extremo al eje (10) de un rodillo (11) que puede rodar sobre la palanca (12). Esta palanca (12) y las poleas (7) y (8) están articuladas sobre el eslabón de salida (13), donde este eslabón (13) puede girar sobre el eje de salida del motor (1). Otro motor eléctrico (14) actúa sobre el eje de giro de la palanca (12) pudiendo modificar la posición angular de la misma. Un extremo del cable (15) va fijado al eje (10) del rodillo (11), el otro extremo del cable (15), tras pasar por la polea guía (16), va fijado por medio del tensor (17) al extremo libre del resorte (18). El otro extremo del resorte (18) va fijado al eslabón (13). PREFERRED EMBODIMENTS In view of the foregoing, the present invention relates to an actuator with variable stiffness mechanism and threshold torque between those used in robotic arm revolution joints and which can modify their stiffness. It is essentially characterized by incorporating an electric motor (1) whose output shaft is integral with the pulley (2) on which a return portion of two cables (3) and (4) are wound in opposite directions, and are fixed by two tensioners (5) and (6) respectively to said pulley (2). The cables (3) and (4), after passing through the guide pulleys (7) and (8) respectively, are fixed to one end of the bar (9). This bar (9) is articulated at its other end to the shaft (10) of a roller (11) that can roll on the lever (12). This lever (12) and the pulleys (7) and (8) are articulated on the output link (13), where this link (13) can rotate on the motor output shaft (1). Another electric motor (14) acts on the axis of rotation of the lever (12) being able to modify its angular position. One end of the cable (15) is fixed to the shaft (10) of the roller (11), the other end of the cable (15), after passing through the guide pulley (16), is fixed by means of the tensioner (17) to the end spring free (18). The other end of the spring (18) is fixed to the link (13).
La presente invención está caracterizada porque la rigidez del mecanismo se puede modificar variando la posición angular de la palanca (12). El eje de giro de la palanca (12) es coincidente con el eje (10) del rodillo (11) mientras el mecanismo de rigidez variable no entra en funcionamiento. La figura 3 muestra una configuración en la que ha entrado en funcionamiento el mecanismo; donde el giro de la polea (2) respecto del eslabón (13) provoca un desplazamiento del rodillo (11) que rueda sobre la palanca (12); este desplazamiento provoca a su vez la compresión del resorte (18) al ser sometido a una fuerza de compresión por el cable (15). The present invention is characterized in that the rigidity of the mechanism can be modified by varying the angular position of the lever (12). The axis of rotation of the lever (12) is coincident with the axis (10) of the roller (11) while the variable stiffness mechanism does not work. Figure 3 shows a configuration in which the mechanism has come into operation; where the rotation of the pulley (2) with respect to the link (13) causes a displacement of the roller (11) that rolls on the lever (12); this displacement in turn causes compression of the spring (18) when subjected to a compression force by the cable (15).
Cuando la posición angular de la palanca (12) es tal que es perpendicular a la When the angular position of the lever (12) is such that it is perpendicular to the
barra (9), el mecanismo es totalmente rígido, no pudiéndose producir giro de la bar (9), the mechanism is totally rigid, unable to produce rotation of the
polea (2) respecto del eslabón (13). pulley (2) with respect to link (13).
5 Los tensores (5) y (6) permiten dar una precarga inicial a los cables (3) y (4), de manera tal que es necesario un cierto valor de par ejercido por el motor (1) para que el resorte (18) empiece a comprimirse. El valor de este par umbral puede ajustarse variando la precarga inicial de los cables (3) y (4). 5 The tensioners (5) and (6) allow to give an initial preload to the cables (3) and (4), so that a certain torque value exerted by the motor (1) is necessary for the spring (18 ) start compressing. The value of this threshold pair can be adjusted by varying the initial preload of the cables (3) and (4).
10 No altera la esencialidad de esta invención variaciones en materiales, forma, tamaño y disposición de los elementos componentes, descritos de manera no limitativa, bastando ésta para proceder a su reproducción por un experto. 10 It does not alter the essentiality of this invention variations in materials, shape, size and arrangement of the component elements, described in a non-limiting manner, this being sufficient to be reproduced by an expert.
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201200712A ES2387228B2 (en) | 2012-06-29 | 2012-06-29 | Actuator with variable stiffness mechanism and threshold torque |
PCT/ES2013/000123 WO2014001585A1 (en) | 2012-06-29 | 2013-05-10 | Actuator including a mechanism having variable stiffness and a threshold torque |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201200712A ES2387228B2 (en) | 2012-06-29 | 2012-06-29 | Actuator with variable stiffness mechanism and threshold torque |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2387228A1 ES2387228A1 (en) | 2012-09-18 |
ES2387228B2 true ES2387228B2 (en) | 2013-02-05 |
Family
ID=46754803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201200712A Active ES2387228B2 (en) | 2012-06-29 | 2012-06-29 | Actuator with variable stiffness mechanism and threshold torque |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2387228B2 (en) |
WO (1) | WO2014001585A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014215315A1 (en) | 2014-08-04 | 2016-02-04 | Fwbi Friedrich-Wilhelm-Bessel-Institut Forschungsgesellschaft Mit Beschränkter Haftung, Bremen | Adjustable compliance drive apparatus for a musculoskeletal system, method of controlling such and motion therapy apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2526726B1 (en) * | 2013-06-13 | 2015-10-20 | Consejo Superior De Investigaciones Científicas (Csic) | ARTICULATION WITH CONTROLLABLE RIGIDITY AND FORCE MEASUREMENT DEVICE |
KR102360823B1 (en) * | 2020-09-01 | 2022-02-08 | 재단법인대구경북과학기술원 | Series Elastic Actuator |
CN115958583B (en) * | 2023-01-05 | 2024-10-18 | 哈尔滨工业大学(深圳) | Rope drives becomes rigidity mechanism and becomes rigidity actuator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100988133B1 (en) * | 2008-04-25 | 2010-10-18 | 엘에스산전 주식회사 | Switching drive device for extra high voltage circuit breaker |
KR101212397B1 (en) * | 2010-08-06 | 2012-12-13 | 고려대학교 산학협력단 | Cam-cam follower type safety unit with nonlinear stiffness |
IT1402194B1 (en) * | 2010-09-23 | 2013-08-28 | Fond Istituto Italiano Di Tecnologia | ROTARY JOINT WITH ADJUSTABLE STIFFNESS. |
-
2012
- 2012-06-29 ES ES201200712A patent/ES2387228B2/en active Active
-
2013
- 2013-05-10 WO PCT/ES2013/000123 patent/WO2014001585A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014215315A1 (en) | 2014-08-04 | 2016-02-04 | Fwbi Friedrich-Wilhelm-Bessel-Institut Forschungsgesellschaft Mit Beschränkter Haftung, Bremen | Adjustable compliance drive apparatus for a musculoskeletal system, method of controlling such and motion therapy apparatus |
Also Published As
Publication number | Publication date |
---|---|
ES2387228A1 (en) | 2012-09-18 |
WO2014001585A1 (en) | 2014-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2387228B2 (en) | Actuator with variable stiffness mechanism and threshold torque | |
Gosselin | Cable-driven parallel mechanisms: state of the art and perspectives | |
Häufle et al. | A clutched parallel elastic actuator concept: Towards energy efficient powered legs in prosthetics and robotics | |
JP5265635B2 (en) | Tendon-driven finger actuation system | |
EP2948276B1 (en) | Robotic device for assisting human force | |
In et al. | Feasibility study of a slack enabling actuator for actuating tendon-driven soft wearable robot without pretension | |
US11246787B2 (en) | Bi-directional underactuated exoskeleton | |
CN111390892B (en) | Full-drive bionic dexterous hand based on pneumatic muscles | |
Plooij et al. | Design and evaluation of the bi-directional clutched parallel elastic actuator (BIC-PEA) | |
Van Ham et al. | MACCEPA: the mechanically adjustable compliance and controllable equilibrium position actuator for'controlled passive walking' | |
Nazma et al. | Tendon driven robotic hands: A review | |
KR20160119960A (en) | Shoulder Joint Assembly of Robot Arm | |
JP2011121163A (en) | Robot | |
US8776632B2 (en) | Low-stroke actuation for a serial robot | |
Shirai et al. | Whole body adapting behavior with muscle level stiffness control of tendon-driven multijoint robot | |
WO2015063524A1 (en) | Twisted cord actuating system for robotic arm | |
JP4442464B2 (en) | Articulated arm mechanism | |
JP5437444B2 (en) | Actuator device and robot device using the same | |
CN108115715B (en) | Differential connecting rod reverse transmission synergistic parallel clamping self-adaptive robot finger device | |
Rossi et al. | Mechanical model of a single tendon finger | |
Rost et al. | The QuadHelix-Drive-An improved rope actuator for robotic applications | |
Ma et al. | Development of a child-oriented social robot for safe and interactive physical interaction | |
Nelson et al. | Variable stiffness mechanism for robotic rehabilitation | |
Kimura et al. | Leg space observer on biarticular actuated two-link manipulator for realizing spring loaded inverted pendulum model | |
Taghia | A Comparison of some famous electromechanical soft actuators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 2387228 Country of ref document: ES Kind code of ref document: B2 Effective date: 20130205 |