WO2005116624A1 - 光電流による高感度一塩基多型の検出方法 - Google Patents

光電流による高感度一塩基多型の検出方法 Download PDF

Info

Publication number
WO2005116624A1
WO2005116624A1 PCT/JP2005/009139 JP2005009139W WO2005116624A1 WO 2005116624 A1 WO2005116624 A1 WO 2005116624A1 JP 2005009139 W JP2005009139 W JP 2005009139W WO 2005116624 A1 WO2005116624 A1 WO 2005116624A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
double
single nucleotide
nucleotide polymorphism
stranded dna
Prior art date
Application number
PCT/JP2005/009139
Other languages
English (en)
French (fr)
Inventor
Tetsuro Majima
Tadao Takada
Kiyohiko Kawai
Mamoru Fujitsuka
Original Assignee
Osaka University
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Kansai Technology Licensing Organization Co., Ltd. filed Critical Osaka University
Publication of WO2005116624A1 publication Critical patent/WO2005116624A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Definitions

  • the present invention relates to a method for analyzing single nucleotide polymorphism (hereinafter, also referred to as “SNP”) with high sensitivity using photocurrent.
  • SNP single nucleotide polymorphism
  • Single nucleotide polymorphism means a single nucleotide difference in the gene sequence of an individual, and is known to be related to disease-related genes and individual drug susceptibility. Therefore, the development of a fast, simple and inexpensive SNP typing method is indispensable from the viewpoint of next-generation tailor-made medicine and advanced medicine.
  • SNPs are identified by detecting a signal change such as fluorescence based on hybridization between a target DNA and a probe DNA (for example, Non-Patent Document 1 or 2).
  • Non-Patent Documents 3 and 4 disclose that double-stranded DNA is immobilized on an electrode surface, and is biased electrochemically, so that the speed at which electrons move to the Balta solution electrode is mismatched.
  • a method has been reported for detecting SNP mismatches, which depends on the presence or absence of SNPs. However, the method for detecting SNP mismatch using photocurrent is not described!
  • Non-patent literature l Nature Biotech. 1999, 17, 292
  • Non-Patent Document 2 Genome Res. 2000, 10, 549
  • Non-Patent Document 3 Nature Biotech. 2003, 21, 1192-9.
  • Non-Patent Document 4 Curr.Opin.Chem.Biol. 2001, 5, 209-15.
  • Non-Patent Document 5 J. Am. Chem. Soc. 2004, 126, 1125-1129
  • An object of the present invention is to provide a novel SNP analysis method using a photosensitizer and double-stranded DNA. Specifically, a novel SNP analysis that can efficiently and accurately detect SNP bases in target DNA while forming a double strand by hybridization between probe DNA having an SNP site and target DNA Method (ie, SNP typing method).
  • the present invention provides the following SNP analysis method (SNP typing method) and the like.
  • SNP typing method SNP typing method
  • Item 1 A double-stranded DNA complex is formed by hybridizing a target DNA with a probe DNA having a single nucleotide polymorphism site, and a photocurrent generated in the double-stranded DNA complex is measured.
  • Item 2 A method for detecting a base at a single nucleotide polymorphism site of a target DNA by hybridizing the target DNA to a probe DNA having the nucleotide polymorphism site,
  • Target DNA is hybridized to a probe DNA having a single nucleotide polymorphism site, which is modified with an adenine continuous sequence to which an end is fixed to an electrode and to which a photosensitizer is bound, to form a double-stranded DNA complex.
  • Item 3. A method of detecting a base at a single nucleotide polymorphism site of a target DNA by hybridizing a target DNA with a probe DNA having a nucleotide polymorphism site,
  • Item 4 A method for detecting a base at a single nucleotide polymorphism site of a target DNA by hybridizing a target DNA with a probe DNA having a single nucleotide polymorphism site, (lb) A probe DNA having a single nucleotide polymorphism site modified with an adenine continuous sequence to which a photosensitizer has been bound is hybridized with a target DNA to form a double-stranded DNA, and the end of the double-stranded DNA Forming a double-stranded DNA complex by providing an electrode to the
  • Item 5. A method for detecting a base at a single nucleotide polymorphism site of a target DNA by hybridizing a target DNA with a probe DNA having a nucleotide polymorphism site,
  • target DNA is hybridized to a probe DNA having a single nucleotide polymorphism site modified with a thymine continuous sequence complementary to the adenine continuous sequence.
  • Forming a double-stranded DNA complex by providing an electrode at the end of the double-stranded DNA.
  • Item 6 The method according to any one of Items 1 to 5, wherein the probe DNA has one single nucleotide polymorphism site.
  • Item 7 The method according to claim 6, wherein three or more adenine are consecutively arranged.
  • Item 8 The method according to item 6, wherein the photosensitizer is one selected from the group consisting of naphthalimide, naphthaldiimide, diphenylacetylene, flavin, anthraquinone, benzophenone, benzoin and xanthone.
  • Item 9 A probe DNA having a single nucleotide polymorphism site, the end of which is fixed to an electrode and modified with a continuous sequence of adenine bound to a photosensitizer.
  • Item 10 The probe DNA according to item 9, wherein the terminal is fixed to an electrode via an S atom and modified with a continuous sequence of three or more adenines to which a photosensitizer is bound. Probe DNA.
  • the SNP analysis method (SNP typing method) of the present invention is a method for detecting a base at a single nucleotide polymorphism site of a target DNA, wherein the target DNA is added to a probe DNA having a single nucleotide polymorphism site.
  • a detection method characterized by forming a double-stranded DNA complex by hybridization, and measuring a photocurrent generated in the double-stranded DNA complex by photoexcitation of a photosensitizer.
  • this detection method utilizes the fact that the detection intensity of the photocurrent generated in the double-stranded DNA is caused by a single-base mismatch or mismatch in the double-stranded DNA.
  • the single nucleotide polymorphism site of the target DNA and the single nucleotide polymorphism site of the probe DNA have a complementary positional relationship.
  • the SNP analysis method of the present invention is a method for detecting a base at a single nucleotide polymorphism site of a target DNA by subjecting the target DNA to hybridization with a probe DNA having a single nucleotide polymorphism site,
  • Target DNA is hybridized to a probe DNA having a single nucleotide polymorphism site, which is modified with an adenine continuous sequence to which an end is fixed to an electrode and to which a photosensitizer is bound, to form a double-stranded DNA complex.
  • step (1) adenine having one end fixed to an electrode and a photosensitizer bound thereto is used.
  • the probe DNA having a single nucleotide polymorphism site is a DNA having a base sequence that becomes ⁇ -type with respect to the target DNA, and is composed of four nucleobases, ribose, phosphoric acid, etc. Can be used to synthesize a probe DNA having an arbitrary sequence.
  • the single nucleotide polymorphism (SNP) site of the probe DNA has a complementary positional relationship to the single nucleotide polymorphism site of the target DNA that can be detected by the detection method of the present invention.
  • it is a site that forms a hydrogen bond with the SNP site of the target DNA when both hybridize to form double-stranded DNA.
  • the detection method of the present invention is generally a method for detecting the base of one single nucleotide polymorphism site in a target DNA. Therefore, the target DNA to be detected has one single nucleotide polymorphism site. Are present.
  • the single nucleotide polymorphism site is a force that can be detected at any site in the target DNA strand.In particular, if the single nucleotide polymorphism site is located at the center of the DNA strand, However, since the influence of the mismatch at the center on the formation of DNA duplex is strongly reflected by the current value, the detection sensitivity is improved.
  • the probe DNA has a continuous sequence of adenine to which a photosensitizer is bound. This is because a hole shift reaction based on continuous hopping between adenine of holes generated by the photosensitizer (adenine hotbing) can efficiently generate a charge separation state on the hybridized double-stranded DNA. is there.
  • the number of adenine in the continuous adenine sequence is 3 or more, preferably about 3 to 8, and more preferably about 4 to 6. Within such a range, the charge separation life is at least microseconds and a desired photocurrent can be obtained, which is preferable.
  • the photosensitizer used in the present invention is not particularly limited as long as its photoexcited state is capable of oxidizing adenine.
  • a photosensitizer which is an aromatic compound which is easily reduced, has an absorption in the ultraviolet and ultraviolet visible regions, and has a relatively large singlet energy is preferable.
  • examples include naphthalimide, naphthaldiimide (NI), diphenylacetylene, flavin, anthraquinone, benzophenone, benzoin, xanthone, and the like.
  • NI naphthalimide
  • diphenylacetylene flavin, anthraquinone, benzophenone, benzoin, xanthone, and the like.
  • electron transfer theory suggests that recombination is slow and charge separation efficiency is improved, Naphthalimide and diphenylacetylene, which are expected to increase in degree, are preferred as photosensitizers.
  • adenine is formed in the form of a 5′-phosphate ester via a photosensitizer (eg, naphthalimide) (a hydrocarbon chain having about 2 to 6 carbon atoms).
  • a photosensitizer eg, naphthalimide
  • a linker may be introduced at the 3 ′ end of the continuous adenine sequence, but a linker introduced into adenine in the form of a 5′-phosphate ester is preferred because it is easy to prepare. .
  • a photosensitizer having an alkyl linker to which a hydroxyl group is bonded eg, naphthalimide, diphenylacetylene, etc.
  • the probe DNA can be modified with a photosensitizer by coupling with the 5′-terminal hydroxyl group of the above.
  • the method of immobilizing the terminal of the probe DNA to the electrode may be a known method.
  • the probe DNA may be immobilized with a linker having an electrode fixing portion (a mercapto group (one SH group)) or the like.
  • a method of modifying and fixing this to the electrode is exemplified.
  • the linker include a hydrocarbon chain having a carbon number of ⁇ to 6, such as a C3 or C6 linker commercially available from Glen research.
  • the mercapto group and the terminal of the probe DNA are linked via this linker.
  • the linker may be introduced at the 3 'end or 5' end of the adenine continuous sequence of the probe DNA, but preferably introduced at the 3 'end.
  • an electrode for fixing the probe DNA used in the present invention an electrode to which an electrode fixing portion of the probe DNA can be bonded is used. Specifically, an electrode having at least a surface composed of a gold alloy can be used.
  • an electrode having at least a surface made of gold are a gold electrode made entirely of gold, an electrode in which the surface of a substrate made of a material other than gold is plated with gold, and Examples include an electrode in which a gold layer is provided on a base material by a method or the like.
  • the probe DNA can be fixed to the electrode by a known method. For example, when a gold electrode is used, a gold electrode (table
  • the probe DNA used in the present invention By arranging the probe DNA used in the present invention such that one kind of probe DNA corresponds to one electrode, and using a plurality of electrodes thus obtained, This enables simultaneous detection of SNPs in the target DNA. That is, by using the multi-array electrode, it is possible to detect a plurality of specimens simultaneously.
  • Hybridization is performed with DNA.
  • the hybridization reaction is preferably carried out in a buffer suitable for the reaction, usually at about 40 to 60 ° C., depending on the length of the DNA and the reaction conditions.
  • the buffer include SSC (a buffer solution obtained by mixing sodium chloride and sodium citrate), a phosphate buffer, and a Tris hydrochloride buffer.
  • step (1) the following steps (la) to (lc) may be employed instead of step (1).
  • a target DNA is hybridized to a probe DNA having a single nucleotide polymorphism site modified with a continuous sequence of adenine to which a photosensitizer has been bound to form a double-stranded DNA, and the double-stranded DNA A step of providing an electrode at the end to form a double-stranded DNA complex.
  • a probe DNA having a single nucleotide polymorphism site modified with the thymine continuous sequence complementary to the adenine continuous sequence is added to a target DNA.
  • an electrode is attached to the end of the double-stranded DNA. Forming a double-stranded DNA complex.
  • step (1) the conditions shown in the above step (1) or conditions obtained by appropriately modifying the conditions can be used.
  • steps (la) to (lc) the operation is simple, and in the subsequent steps (2) and (3), the base of the single nucleotide polymorphism of the target DNA is detected with high sensitivity and accuracy. be able to.
  • Step (2) is to irradiate the double-stranded DNA complex formed in the first step with light to excite a photosensitizer to generate a charge separation state on the complex, This is the step of measuring the photocurrent generated in DNA at the electrode.
  • the light source used for light irradiation is not particularly limited as long as it can excite the photosensitizer described above and does not adversely affect the double-stranded DNA.
  • a high-pressure mercury lamp, a high-pressure xenon lamp , A black light, an excimer laser, a deuterium lamp, a Hg-Zn-Pb lamp, or another type of light source, or two types of light sources having different wavelength ranges can be used.
  • a xenon lamp and a high-pressure mercury lamp are preferable because a light source is relatively inexpensive and can extract a wide range of wavelengths having a high light intensity.
  • the photocurrent intensity is detected by electrochemical measurement. Specifically, it can be measured using Bioanalytical Systems, Inc. CV-50W (apparatus name) or the like that can perform high-sensitivity measurement.
  • the measurement conditions are, for example, as described in Example 2, by irradiating light of 366 nm in a phosphate buffer solution containing methyl viologen as an electron mediator and applying a bias of -100 mV to perform the measurement. .
  • the charge separation state generated via adenine hopping from the photosensitizer and guanine hopping are not affected by water molecules as a medium.
  • the flow of electrons in the double-stranded DNA is more obstructed than in the case of Furumatsu, so that the current intensity tends to decrease.
  • Step (3) is a step of detecting a nucleotide at the single nucleotide polymorphism site of the target DNA based on the measured intensity of the current. Based on the photocurrent intensity obtained by irradiating light, Furumachi (normal type) and mismatch (abnormal type) are detected.
  • the term “Furumatsu” means that the base pairs of double-stranded DNA are completely compatible. It is a complementary state, meaning that the target DNA is normal.
  • mismatch refers to a state in which one base pair exists in a complementary relationship with a base pair of a double-stranded DNA, and that the target DNA is abnormal. Means.
  • the present inventors have found that the charge transfer rate in double-stranded DNA greatly depends on a single base, Furumachi, and the mismatch, and furthermore, the photocurrent intensity varies depending on the type of the mismatch base. I found out.
  • the detection method of the present invention it is possible to specify the type of mismatched base in the target DNA by simply measuring the change in the intensity of the photocurrent flowing in the double-stranded DNA complex, and not only detecting the difference between the Furumatsu and the mismatch. Becomes possible.
  • the mismatch disrupts the DNA structure and causes a decrease in charge transfer efficiency, so that any mismatch reduces photocurrent intensity.
  • a single-stranded target DNA in which a single nucleotide polymorphism site is already contributing is used, and a probe DNA complementary to the target DNA is synthesized.
  • the type of base at the single nucleotide polymorphism site of the probe DNA can be identified.
  • a strong photocurrent is observed, it is a full match, and by observing the degree of decrease in the photocurrent intensity, the type of the mismatched base can be identified.
  • SNP analysis can be performed with high accuracy.
  • the DNA is complementary to the SNP site in the target DNA.
  • the intensity of the photocurrent differs depending on the type of base located at a specific position.
  • the SNP site of the probe DNA is guanine (G)
  • the intensity of the photocurrent decreases in the order of C> T, A> G at the complementary position.
  • the SNP site of the probe DNA is cytosine (C)
  • the photocurrent intensity decreases in the order of G> T, C> A
  • the SNP site of the probe DNA is adenine (A).
  • the efficiency can be determined by comparing these intensities. This makes it possible to detect SNP bases in each sample with high precision and accuracy (SNP typing).
  • the intensity of the photocurrent varies depending on the type of the photosensitizer used, the length of the double-stranded DNA, and the like, but the above tendency is maintained.
  • the charge transfer speed in double-stranded DNA is utilized as a change in the signal intensity of the photocurrent by utilizing the fact that the charge transfer speed in DNA is remarkably dependent on the mismatch and mismatch of a single base.
  • the detection enabled rapid, simple, and inexpensive SNP detection (SNP typing). According to this methodology, it can be applied to a DNA chip, and is suitably used for searching for disease-related genes.
  • the present method for simply and quickly detecting SNPs can be applied to the diagnosis of genes of individuals involved in diseases and susceptibility to illness, and can be used to adjust the amount of drugs according to individual differences. You can select the type, which will lead to the development of tailor-made medicine and genetic diagnosis.
  • the SNP analysis method of the present invention can detect a change in photocurrent intensity depending on Furumachi and mismatch at SNP sites of a target DNA and a probe DNA constituting a double-stranded DNA complex with high sensitivity. Therefore, the base at the SNP site can be efficiently detected only by hybridizing the target DNA and the probe DNA, and optimization of complicated conditions is not required. Furthermore, since the electrode reaction is used, application to DNA chips is easy, and SNP detection can be performed quickly, easily, at low cost and with high accuracy.
  • FIG. 1 is a schematic diagram showing a charge separation process in double-stranded DNA via adenine hopping.
  • FIG. 2 is a schematic diagram of hybridization in the SNP analysis method of the present invention.
  • FIG. 3 is a schematic diagram of the hybridization in the SNP analysis method of the present invention.
  • FIG. 4 is a view showing an example of a bond between adenine and a photosensitizer.
  • FIG. 4 is a schematic diagram showing that the intensity of the photocurrent changes.
  • FIG. 6 is a diagram showing double-stranded DNA sequences 1 to 3 used in Example 1.
  • FIG. 7 is a schematic diagram of an electrochemical measurement used in Example 2.
  • naphthaldiimide as a photosensitizer
  • phenothiazine as a positively charged probe molecule are bound to both ends of DNA.
  • Oxynucleotides double-stranded DNA sequences 1-3, see Figure 6) were synthesized and examined for nanosecond laser flash photolysis in aqueous solution.
  • NI site When the NI site is photoexcited by irradiation with a nanosecond pulse laser (wavelength: 355 nm), an excited state of NI is generated, a charge separation reaction occurs between nucleic acid bases in the vicinity, and furthermore, a reaction within the DNA chain occurs. A positive charge transfer reaction occurred. These charge transfer rates were determined by time-resolved transient absorption measurements.
  • the hole movement speed is 31 X 10 5 in the case of Furumatsu (double-stranded DNA sequence 1).
  • the AC mismatch (double-stranded DNA sequence 3) and GT mismatch (double-stranded DNA sequence 2) are calculated as 3.6 x 10 5 0.82 x 10 5 s- 1 respectively, and the hole transfer speed is 10 times or more depending on the presence or absence of the mismatch. It was found to change. In other words, it was revealed that the hole transfer rate in DNA greatly depends on the base sequence.
  • the PTZ terminals of the three types of double-stranded DNA obtained in Example 1 were converted to thiol groups, reacted with a gold electrode, and the double-stranded DNA was bound to the gold electrode via a thiol group. This was irradiated with light, and the above-described photocharge separation occurred. The resulting current in the DNA is Was detected by photoelectrochemical measurement.
  • the optical short-circuit current was observed using a Keithley 2001 digital multimeter on a two-electrode system consisting of a DNA-modified Au working electrode and a Pt counter electrode, and the light intensity was determined using an Anritsu ML9002A or Hamamatsu Si photodiode.
  • Table 1 shows the measurement results of the photocurrent intensity.
  • the charge transfer speed corresponds to the change in the signal intensity of the photocurrent. Therefore, by detecting the photocurrent with high sensitivity, the base at the SNP site can be detected.
  • This method is used as a new SNP typing method and is also useful as a highly sensitive detection method for genetic diagnosis of gene polymorphisms, mismatches, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 本発明は、光増感剤と二本鎖DNAを用いた新規SNP解析方法を提供する。具体的には、SNP部位を有するプローブDNAとターゲットDNAとのハイブリダイゼーションによる二本鎖を形成させたまま、効率的かつ高い精度でターゲットDNA中のSNP塩基の検出が可能な、新規SNP解析方法(即ち、SNPタイピング方法)を提供する。一塩基多型部位を有するプローブDNAに、ターゲットDNAをハイブリダイズさせて二本鎖DNA複合体を形成し、該二本鎖DNA複合体に発生する光電流を測定することにより、ターゲットDNAの一塩基多型部位の塩基を検出する方法に関する。

Description

明 細 書
光電流による高感度一塩基多型の検出方法
技術分野
[0001] 本発明は、光電流を用いた高感度に一塩基多型 (以下、「SNP」とも呼ぶ)を解析す る方法に関する。
背景技術
[0002] 一塩基多型 (SNP)とは、個々の人間における遺伝子配列の 1か所の塩基の違いを 意味し、疾病関連遺伝子や個人の薬剤感受性と関わっていることが知られている。し たがって、迅速、簡便かつ安価な SNPタイピング手法の開発は、次世代テーラーメイ ド医療、高度医療の観点から必要不可欠である。一般的に、 SNPは、ターゲット DNA とプローブ DNAとのハイブリダィゼーシヨンに基づく蛍光等のシグナル変化を検出す ることで識別されて 、る(例えば、非特許文献 1又は 2)。
[0003] しかしながら、二本鎖 DNAにおけるミスマッチ配列とフルマツチ配列との安定性の差 、つまり、複数のターゲット DNAとそれに相補的なプローブ DNAのハイブリダィゼーシ ヨン形成におけるミスマッチとフルマツチのシグナル変化の差異は比較的小さぐその 測定精度も必ずしも満足できるものではな力つた。そのため、ターゲット DNAとプロ一 ブ DNAをハイブリダィズさせた二本鎖を形成させたまま、簡便かつ高精度に SNPのミ スマッチを検出する方法が望まれて 、る。
[0004] なお、非特許文献 3及び 4には、二本鎖 DNAを電極表面に固定し、これに電気化 学的にバイアスをかけて、バルタ溶液力 電極へと電子が移動する速度がミスマッチ の有無に依存することを利用し、 SNPのミスマッチを検出する方法が報告されている。 しかし、光電流を用いた SNPミスマッチの検出方法にっ 、て記載はな!/、。
[0005] また、二本鎖 DNA中、核酸塩基のうちアデニンの連続配列において、連続的なァ デニンホッピング (Adenine-hopping)現象により電荷移動が非常に効率よく起こり、そ の結果、長寿命電荷分離状態が効率よく生じることが報告されている (非特許文献 5
) o
非特許文献 l :Nature Biotech. 1999, 17, 292 非特許文献 2 : Genome Res. 2000, 10, 549
非特許文献 3 :Nature Biotech. 2003, 21, 1192-9.
非特許文献 4: Curr. Opin. Chem. Biol.2001, 5, 209-15.
非特許文献 5 : J. Am. Chem. Soc. 2004, 126, 1125-1129
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、光増感剤と二本鎖 DNAを用いた新規 SNP解析方法を提供するこ とにある。具体的には、 SNP部位を有するプローブ DNAとターゲット DNAとのハイブリ ダイゼーシヨンによる二本鎖を形成させたまま、効率的かつ高 、精度でターゲット DNA中の SNP塩基の検出が可能な、新規 SNP解析方法 (即ち、 SNPタイピング方法) を提供することにある。
課題を解決するための手段
[0007] 本発明者は、前記目的を達成するために鋭意検討を重ねた結果、次の知見を得た 。二本鎖 DNA鎖内に生じたホール (ラジカルカチオン)が、グァニン間のホッピング( 以下、「グァニンホッピング」とも呼ぶ)を経て電極へ移動する際、二本鎖 DNA内にお ける一塩基のフルマツチ、ミスマッチにより、ホール移動速度 (電荷移動速度)に大き な差異が生じることが分力つた。すなわち、電荷移動速度は、該 DNA内における一塩 基のフルマツチ、ミスマッチに大きく依存することを見出した。そして、この DNA内の電 荷移動速度を、光電流のシグナル強度変化として検出することで、効率の良い SNPタ ィビングが可能となると考えた。
[0008] 光電流のシグナル強度変化を、高感度で検出するためには、強 、光電流を得るこ とが望まれ、そのためには、二本鎖 DNA上で効率よく長寿命の電荷分離状態を生成 させることが必要である。これについては、光増感剤に結合したアデニン連続配列を 有する二本鎖 DNA内において、光増感剤の光励起で発生するホール (ラジカルカチ オン)のアデニン間の連続ホッピング(以下、「アデニンホッピング」とも呼ぶ)現象によ り生じる、長寿命電荷分離状態を利用できると考えた (例えば、図 1を参照)。
[0009] かかる知見に基づき、本発明者らは、さらに研究を重ねて本発明を完成するに至つ た。すなわち、本発明は、下記の SNP解析方法 (SNPタイピング方法)等を提供する。 [0010] 項 1.一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさ せて二本鎖 DNA複合体を形成し、該ニ本鎖 DNA複合体に発生する光電流を測定す ることにより、ターゲット DNAの一塩基多型部位の塩基を検出する方法。
[0011] 項 2.—塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさ せてターゲット DNAの一塩基多型部位の塩基を検出する方法であって、
(1)末端が電極に固定され、かつ、光増感剤が結合したアデニン連続配列で修飾さ れてなる一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズ させて二本鎖 DNA複合体を形成する工程、
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む項 1に記載の方法。
[0012] 項 3.—塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさ せてターゲット DNAの一塩基多型部位の塩基を検出する方法であって、
(la)光増感剤が結合したアデニン連続配列の存在下、末端が電極に固定されかつ 該ァデニン連続配列に相補的なチミン連続配列で修飾されてなる一塩基多型部位 を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせて二本鎖 DNA複合体 を形成する工程、
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む項 1に記載の方法。
[0013] 項 4.一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさ せてターゲット DNAの一塩基多型部位の塩基を検出する方法であって、 (lb)光増感剤が結合したアデニン連続配列で修飾されてなる一塩基多型部位を有 するプローブ DNAに、ターゲット DNAをノヽイブリダィズさせて二本鎖 DNAとし、該ニ本 鎖 DNAの末端に電極を設けて二本鎖 DNA複合体を形成する工程、
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む項 1に記載の方法。
[0014] 項 5.—塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさ せてターゲット DNAの一塩基多型部位の塩基を検出する方法であって、
(lc)光増感剤が結合したアデニン連続配列の存在下、該ァデニン連続配列に相補 的なチミン連続配列で修飾されてなる一塩基多型部位を有するプローブ DNAに、タ 一ゲット DNAをハイブリダィズさせて二本鎖 DNAとし、該ニ本鎖 DNAの末端に電極を 設けて二本鎖 DNA複合体を形成する工程。
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む項 1に記載の方法。
[0015] 項 6.プローブ DNAが、 1個の一塩基多型部位を有する項 1〜5のいずれかに記載 の方法。
[0016] 項 7.アデニン連続配列力 アデニンが 3個以上連続配列している請求項 6に記載 の方法。
[0017] 項 8.光増感剤が、ナフタルイミド、ナフタルジイミド、ジフエ-ルアセチレン、フラビ ン、アントラキノン、ベンゾフエノン、ベンゾイン及びキサントンからなる群力も選ばれる 1種である項 6に記載の方法。 [0018] 項 9.一塩基多型部位を有するプローブ DNAであって、その末端が電極に固定さ れ、かつ、光増感剤が結合したアデニン連続配列で修飾されてなるプローブ DNA。
[0019] 項 10.項 9に記載のプローブ DNAであって、その末端が S原子を介して電極に固定 され、かつ、光増感剤が結合した 3個以上のアデニン連続配列で修飾されてなるプロ ーブ DNA。
[0020] 以下、本発明につ 、て詳述する。
[0021] 本発明の SNP解析方法 (SNPタイピング方法)は、ターゲット DNAの一塩基多型部位 の塩基を検出する方法であって、一塩基多型部位を有するプローブ DNAに、ターゲ ット DNAをハイブリダィズさせて二本鎖 DNA複合体を形成し、光増感剤の光励起によ り二本鎖 DNA複合体に発生する光電流を測定することを特徴とする検出方法である 。すなわち、二本鎖 DNAにおける一塩基のフルマツチ又はミスマッチにより、該ニ本 鎖 DNAで発生する光電流の検出強度に差異が生ずることを利用した検出方法であ る。なお、該ターゲット DNAの一塩基多型部位とプローブ DNAの一塩基多型部位と は、相補的な位置関係にある。
[0022] 本発明の SNP解析方法は、一塩基多型部位を有するプローブ DNAに、ターゲット DNAをノヽイブリダィズさせてターゲット DNAの一塩基多型部位の塩基を検出する方 法であって、
(1)末端が電極に固定され、かつ、光増感剤が結合したアデニン連続配列で修飾さ れてなる一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズ させて二本鎖 DNA複合体を形成する工程、
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む方法である。その模式図を図 2に示す。
[0023] 工程(1):
工程(1)は、一方の末端が電極に固定され、かつ、光増感剤が結合したアデニン 連続配列で修飾されてなる一塩基多型部位を有するプローブ DNAと、ターゲット
DNAとの間でハイブリダィゼーシヨンを行う工程である。
[0024] 一塩基多型部位を有するプローブ DNAは、ターゲット DNAに対し铸型となる塩基配 列を有する DNAであり、 4つの核酸塩基、リボース、リン酸力ら、公知の DNA固相合成 機を用いて、任意の配列を有するプローブ DNAを合成することができる。
[0025] ここで、該プローブ DNAの一塩基多型 (SNP)部位とは、本発明の検出法により被検 出対象となりうるターゲット DNAの一塩基多型部位と相補的な位置関係にある。つま り両者がハイブリダィズして二本鎖 DNAとなる際、ターゲット DNAの SNP部位と水素結 合する部位である。
[0026] 本発明の検出法は、通常、ターゲット DNA中における 1個の一塩基多型部位の塩 基を検出する方法であり、そのため被検出対象であるターゲット DNAは一塩基多型 部位が 1個存在するものが選択される。本発明の検出法では、一塩基多型部位は、 ターゲット DNA鎖中のどの部位に存在していても検出は可能である力 特に、一塩基 多型部位が DNA鎖の中心部に位置すれば、 DNA二本鎖形成に対して中心部のミス マッチの影響が電流値により強く反映されるので、検出感度が向上する。
[0027] また、該プローブ DNAは、光増感剤が結合したアデニン連続配列を有して 、る。こ れは、光増感剤により発生したホールのアデニン間の連続ホッピング (アデ-ンホツビ ング)に基づくホールシフト反応により、ハイブリダィズした 2本鎖 DNA上において電 荷分離状態を効率よく発生させるためである。アデニン連続配列におけるアデニンの 数は、 3個以上、好ましくは 3〜8個程度、より好ましくは、 4〜6個程度である。かかる 範囲であれば、電荷分離寿命はマイクロ秒以上となり、所望の光電流が得られるため 好ましい。
[0028] 本発明で用いられる光増感剤としては、その光励起状態がアデニンを酸ィ匕できるも のであれば特に限定はない。具体的には、還元されやすい芳香族化合物であり、紫 外力 紫外可視領域に吸収をもち、比較的大きい一重項エネルギーを有する光増 感剤が好ましい。例えば、ナフタルイミド、ナフタルジイミド (NI)、ジフエ-ルァセチレ ン、フラビン、アントラキノン、ベンゾフエノン、ベンゾイン、キサントン等が挙げられる。 特に、電子移動理論から、再結合が遅く電荷分離効率が向上するので、電流検出感 度が上昇すると予想されるナフタルイミド、ジフエニルアセチレンが光増感剤として好 ましい。
[0029] アデニン連続配列と光増感剤との結合様式は、光増感剤からアデニンへのホール の移動が速やかに行われるものであれば特に限定はない。例えば、図 4にあるように 、光増感剤 (例、ナフタルイミド)カ^ンカ一 (炭素数が 2〜6程度の炭化水素鎖)を介 して 5'—リン酸エステルの形でアデニンに導入されたものが例示される。なお、必要 に応じ、アデニン連続配列の 3'末端にリンカ一が導入されたものであってもよいが、 5 '—リン酸エステルの形でアデニンに導入されたものは調製が容易であり好ましい。
[0030] 光増感剤を、リンカ一を介してアデニン連続配列に結合させる反応は、例えば、 J.
Org. Chem. 2000, 65, 5355-5359又は J. Phys. Chem. B. 2003, 107, 12838-12841 の記載に準じて実施できる。具体的には、水酸基の結合したアルキルリンカ一を有す る光増感剤(例、ナフタルイミド、ジフエ二ルアセチレン等)をアミダイトイ匕反応して活 性化し、合成機上で一本鎖 DNAの 5'末端の水酸基とカップリングさせることで、プロ ーブ DNAを光増感剤で修飾することができる。
[0031] また、プローブ DNAの末端を電極に固定する方法は、公知の方法を採用すればよ ぐ例えば、該プローブ DNAを電極固着部 (メルカプト基(一 SH基))等を有するリンカ 一で修飾し、これを電極に固定する方法等が例示される。リンカ一としては、炭素数 力^〜 6の炭化水素鎖があげられ、例えば、 Glen research (株)より市販されている C3 又は C6のリンカ一が挙げられる。このリンカ一を介して、メルカプト基とプローブ DNA の末端部とが結合している。リンカ一は、プローブ DNAのアデニン連続配列の 3 '末 端又は 5 '末端の 、ずれに導入されて 、てもよ 、が、 3 '末端に導入されたものが好ま しい。
[0032] 本発明に利用されるプローブ DNAを固着させるための電極は、プローブ DNAにお ける電極固着部が結合し得るものを用いる。具体的には、少なくとも表面が金力も構 成される電極などを挙げることができる。
[0033] 少なくとも表面が金力ゝら構成される電極の具体例としては、電極全体が金からなる 金電極や、金以外の材質からなる基材の表面周囲を金でめっきした電極や、蒸着法 等により基材上に金の層を設けた電極などが挙げられる。 [0034] プローブ DNAの電極への固着化処理は、公知の方法を採用できる。例えば、金電 極を用いた場合、 0.1 M MgClを含む 50 mMリン酸緩衝液 (pH 7,0)中で、金電極 (表
2
面)とチオール化 DNAを 1〜10時間インキュベートすればよい。この操作で、プロ一 ブー本鎖 DNAが基板上に固定ィ匕される。
[0035] 本発明に利用されるプローブ DNAを、 1の電極に対して 1種のプローブ DNAが対応 するように配設させ、このようにして得られた電極を複数個用いることにより、多くのタ 一ゲット DNAの SNPを同時に検出することが可能となる。即ち、マルチアレイ電極を用 いることにより、複数の検体を同時に検出することも可能となる。
[0036] 得られた電極に固着させたプローブ DNAを用いて、該プローブ DNAとターゲット
DNAとの間でハイブリダィゼーシヨンを行う。ハイブリダィゼーシヨン反応は、 DNAの長 さや反応条件に依存する力 通常 40〜60°C程度において該反応に適したバッファ 一中で行うことが好ましい。ノ ッファーとしては、例えば、 SSC (塩化ナトリウムとクェン 酸ナトリウムを混合した緩衝溶液)、リン酸バッファー、 Tris塩酸塩バッファーなどを挙 げることができる。
[0037] このようにしてターゲット DNAと、該ターゲット DNAの塩基配列と相補配列を有する プローブ DNAとの間で二本鎖 DNA複合体が形成される。
[0038] さらに、本発明の SNP解析方法では、工程(1)に代えて、次のような工程(la)〜ェ 程(lc)を採用してもよい。
[0039] (la)光増感剤が結合したアデニン連続配列の存在下、一方の末端が電極に固定 されかつ該ァデニン連続配列に相補的なチミン連続配列で修飾されてなる一塩基多 型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせて二本鎖 DNA 複合体を形成する工程。その模式図を図 3に示す。
[0040] (lb)光増感剤が結合したアデニン連続配列で修飾されてなる一塩基多型部位を 有するプローブ DNAに、ターゲット DNAをハイブリダィズさせて二本鎖 DNAとし、該ニ 本鎖 DNAの末端に電極を設けて二本鎖 DNA複合体を形成する工程。
[0041] (lc)光増感剤が結合したアデニン連続配列の存在下、該ァデニン連続配列に相 補的なチミン連続配列で修飾されてなる一塩基多型部位を有するプローブ DNAに、 ターゲット DNAをノヽイブリダィズさせて二本鎖 DNAとし、該ニ本鎖 DNAの末端に電極 を設けて二本鎖 DNA複合体を形成する工程。
[0042] これらの各工程では、上記の工程(1)で示した条件或 、はそれを適宜修飾した条 件を用いることができる。工程(la)〜工程(lc)のいずれの場合も、操作は簡便であ り、続く工程(2)及び(3)において高い感度でかつ正確にターゲット DNAの一塩基多 型の塩基を検出することができる。
[0043] 工程(2):
工程 (2)は、第 1工程で形成された二本鎖 DNA複合体に光照射して、光増感剤を 光励起させて該複合体上に電荷分離状態を生成させて、該ニ本鎖 DNAに発生する 光電流を電極にて測定する工程である。
[0044] 光照射に用いる光源としては、前記した光増感剤を光励起させることができ、二本 鎖 DNAに悪影響を与えないものであれば特に限定はなぐ例えば、高圧水銀ランプ 、高圧キセノンランプ、ブラックライト、エキシマレーザ、重水素ランプ、 Hg-Zn-Pbラン プ等カも選ばれる 1種類の光源または波長域の異なる 2種類の光源を用いることがで きる。特に、光源が比較的安価であり光強度も強ぐ広い範囲の波長を取り出すこと ができる点から、キセノンランプと高圧水銀ランプが好適である。
[0045] 光電流強度の検出は、電気化学的測定による。具体的には、高感度の測定が可能 な Bioanalytical Systems, Inc. CV- 50W (装置名)等を用いて測定できる。測定条件は 、例えば、実施例 2にあるように、電子メディエーターであるメチルビオローゲンを含 むリン酸緩衝溶液中に、 366 nmの光を照射し、 -100 mVのバイアスをかけて測定を行 う。ここで、光増感剤からアデニンホッピングを経て生成する電荷分離状態、及びグァ ニンホッピングは、媒体である水分子の影響を受けない。また、ミスマッチを含む配列 では、フルマツチの場合に比べて 2本鎖 DNA内の電子の流れが妨げられるため、電 流強度が減少する傾向が観測される。
[0046] 工程(3):
工程(3)は、測定される該電流の強度に基づいてターゲット DNAの一塩基多型部 位の塩基を検出する工程である。光を照射して得られる光電流強度から、フルマツチ (正常型)、ミスマッチ (異常型)の検出を行う。
[0047] 本明細書にぉ 、て「フルマツチ」とは、二本鎖を形成した DNAの塩基対が完全に相 補的である状態をいい、ターゲット DNAは正常型であることを意味する。一方、本明 細書において「ミスマッチ」とは、二本鎖を形成した DNAの塩基対に、相補的な関係 にな 、塩基対が一つ存在する状態を 、、ターゲット DNAは異常型であることを意味 する。
[0048] 今回、本発明者らは、二本鎖 DNA内の電荷移動速度が一塩基のフルマツチとミス マッチに大きく依存することを見出し、さらにミスマッチ塩基の種類に応じて光電流強 度が変化することを見出した。本発明の検出法によれば、二本鎖 DNA複合体に流れ る光電流の強度変化を測定することにより、フルマツチとミスマッチの相違の検出だけ でなぐターゲット DNAにおけるミスマッチ塩基の種類を特定することが可能となる。 通常、ミスマッチは DNAの構造を乱し電荷移動効率の減少を引き起こすため、いず れのミスマッチでも光電流強度が減少する。
[0049] 具体的には、被検対象として、あら力じめ一塩基多型部位が分力つている一本鎖タ 一ゲット DNAを用い、該ターゲット DNAに相補的なプローブ DNAを合成し、該プロー ブ DNAの一塩基多型部位の塩基の種類を変えて光増感剤で生じる光電流強度の変 化をモニターすることで、ターゲット DNAの一塩基多型部位の塩基の種類を同定でき る。つまり、強い光電流が観測される場合はフルマツチであり、光電流強度の減少の 程度を観測することでミスマッチとなる塩基の種類を同定できるのである。これにより、 精度の高 、SNPの解析が可能となる。
[0050] 例えば、図 5にあるように、 SNP部位がグァニン(G)であるプローブ DNAに、ターゲッ ト DNAがハイブリダィゼーシヨンしたサンプルにお!/、て、ターゲット DNAの SNP部位に 相補的な位置にくる塩基の種類によって光電流の強度が相違する。
[0051] 具体的には、プローブ DNAの SNP部位がグァニン(G)の場合は、相補位置にくる塩 基が C> >T, A>Gの順で光電流の強度は減少する。また、プローブ DNAの SNP部 位がシトシン (C)の場合は、 G> >T, C> Aの順で光電流の強度が減少し、プロ一 ブ DNAの SNP部位がアデニン (A)の場合は、 T> >C>A, Gの順で光電流の強度 が減少し、プローブ DNAの SNP部位がチミン (T)の場合は、 A> >C>A, Gの順で 光電流の強度が減少する。
[0052] これらの光電流強度の相違は大きいため、これらの強度を比較することにより、効率 的かつ高い精度で各サンプルにおける SNP塩基の検出(SNPタイピング)が可能とな る。なお、光電流の強度は、用いる光増感剤の種類や 2本鎖 DNAの長さ等によっても 変化するが、上記の傾向は保持される。
[0053] 本発明のように、有機化学的に設計された DNAを使って光電流を観測した例は、こ れまで全く報告されていない。本発明の方法によれば、 2本鎖 DNA内の電荷移動速 度力 一塩基のフルマツチ、ミスマッチに顕著に依存することを利用し、 DNA内の電 荷移動速度を光電流のシグナル強度変化として検出することで、迅速、簡便かつ安 価な SNP検出(SNPタイピング)が可能となった。この方法論によれば、 DNAチップへ も適用することが可能であり、疾患関連遺伝子の探索などに好適に用いられる。
[0054] さらに、 SNPを簡便かつ迅速に検出する本方法は、疾病や病気へのかかりやすさな どに関わる個人の遺伝子に対する診断に適用可能であり、個体差に合わせて薬剤 量の調整や種類の選択を行うことができテーラーメイド医療、遺伝子診断法の開発へ とつながる。
発明の効果
[0055] 本発明の SNP解析方法は、二本鎖 DNA複合体を構成するターゲット DNAとプロ一 ブ DNAの SNP部位におけるフルマツチ、ミスマッチに依存した光電流強度変化を高感 度に検出できる。そのため、ターゲット DNAとプローブ DNAをハイブリダィゼーシヨンさ せるだけで、効率よく SNP部位の塩基を検出でき、複雑な条件の最適化は必要となら ない。さらに、電極反応を利用するため、 DNAチップへの適用が容易であり、迅速、 簡便かつ安価に高い精度で SNP検出が可能となる。
図面の簡単な説明
[0056] [図 1]アデニンホッピングを経由した二本鎖 DNA内の電荷分離過程を示す模式図で ある。
[図 2]本発明の SNP解析方法におけるハイブリダィゼーシヨンの模式図である。
[図 3]本発明の SNP解析方法におけるハイブリダィゼーシヨンの模式図である。
[図 4]アデニンと光増感剤との結合の一例を示す図である。
[図 5]SNP部位がグァニン(G)であるプローブ DNAに、ターゲット DNAがハイブリダィ ゼーシヨンした二本鎖 DNAにお!/、て、ターゲット DNAの SNP部位の塩基の種類によつ て光電流の強度が変化することを示す模式図である。
[図 6]実施例 1で用いられる二本鎖 DNA配列 1〜3を示す図である。
[図 7]実施例 2で用いられる電気化学的測定の模式図である。
発明を実施するための最良の形態
[0057] 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実 施例により限定されるものではない。
[0058] 実施例 1
一塩基のフルマツチ、ミスマッチに対し、 DNA内の電荷移動速度がどのような依存 性を示すかにつ!/、て検討した。
[0059] 具体的には、光増感剤としてナフタルジイミド (NI)、及び正電荷のプローブ分子とし てフエノチアジン (PTZ)を DNAの両末端に結合させた DNAとして、 3種類の二本鎖オリ ゴデォキシヌクレオチド(二本鎖 DNA配列 1〜3、図 6を参照)を合成し、その水溶液 中のナノ秒レーザーフラッシュホトリシスについて検討した。
[0060] ナノ秒パルスレーザー(波長 355 nm)照射によって NI部位を光励起すると、 NIの励 起状態が生成し、近傍の核酸塩基との間での電荷分離反応が起こり、さらに DNA鎖 内での正電荷の移動反応が生じた。これらの電荷移動速度を、時間分解過渡吸収 測定法によって決定した。
[0061] その結果、アデニン間の連続ホッピングに基づくホールシフト反応により、 NIと近傍 の Gとの間の電荷分離が効率よく起こることが分力つた (例えば、図 1を参照)。
[0062] ホール移動速度はフルマツチ(二本鎖 DNA配列 1)の場合は 31 X 105
Figure imgf000014_0001
A-Cミス マッチ(二本鎖 DNA配列 3)、 G-Tミスマッチ(二本鎖 DNA配列 2)はそれぞれ 3.6 X 105 0.82 X 105 s—1と求められ、ミスマッチの有無でホール移動速度は 10倍以上変化す ることが見出された。即ち、 DNA内のホール移動速度は、大きく塩基配列に依存する ことが明らかになった。
[0063] 実飾 12
実施例 1で得られた 3種の二本鎖 DNAの PTZ末端をチオール基に変換し、金電極 と反応させて、金電極上にチオール基を介して該ニ本鎖 DNAを結合させた。これに 光照射を行い、上記の光電荷分離が生じた。これにより生じる DNA中の電流を、下記 の光電気化学測定により検出した。
[0064] 具体的には、電気化学測定には、 Bioanalytical Systems, Inc. CV- 50Wを使い、 Au 作用電極、プラチナワイヤー対電極、 Ag/AgCl参照電極を用いた標準的な 3電極方 式を採用した (例えば、図 7を参照)。光電気化学測定は、アルゴン雰囲気下、 150 W キセノンランプからの光を干渉フィルター(MIF- S, Vacuum Optics Corporation of Japan)を通し単色光とした後に、セルへ照射し、電流を検出した。電子メディエータ 一として methyl viologenを存在させた水溶液を電解質溶液として用いた。光短絡電 流は、 DNAを修飾した Au作用電極と Pt対電極の 2電極系において、 Keithley 2001 degital multimeterを用いて観測し、光強度は Anritsu ML9002Aもしくは Hamamatsu Si photodiode 使って求めた。
[0065] 光電流強度の測定結果を、表 1に示す。
[0066] [表 1]
表 1 光電流強度
配列 ピーク電流/ n A cm— 2
本鎖 DNA配列 1 10
(ノノ)1レ 、ツ、/ノ 、ノ
本鎖 DM配列 2 0. 2
(G-Tミスマッチ)
二本鎖 DNA配列 3 1
(A-Cミスマッチ)
[0067] 上記の結果より、電荷移動速度が光電流のシグナル強度変化に対応するので、光 電流を高感度に検出することにより、 SNP部位の塩基を検出することができる。
[0068] この方法は、新 、SNPタイピング法として用いられ、さらに遺伝子多型やミスマッチ 等の遺伝子診断への高感度検出法として有用である。

Claims

請求の範囲 [1] 一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせて 二本鎖 DNA複合体を形成し、該ニ本鎖 DNA複合体に発生する光電流を測定するこ とにより、ターゲット DNAの一塩基多型部位の塩基を検出する方法。 [2] 一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせてタ ーゲット DNAの一塩基多型部位の塩基を検出する方法であつて、
(1)末端が電極に固定され、かつ、光増感剤が結合したアデニン連続配列で修飾さ れてなる一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズ させて二本鎖 DNA複合体を形成する工程、
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む請求項 1に記載の方法。
[3] 一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせてタ ーゲット DNAの一塩基多型部位の塩基を検出する方法であつて、
(la)光増感剤が結合したアデニン連続配列の存在下、末端が電極に固定されかつ 該ァデニン連続配列に相補的なチミン連続配列で修飾されてなる一塩基多型部位 を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせて二本鎖 DNA複合体 を形成する工程、
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む請求項 1に記載の方法。
[4] 一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせてタ ーゲット DNAの一塩基多型部位の塩基を検出する方法であつて、
(lb)光増感剤が結合したアデニン連続配列で修飾されてなる一塩基多型部位を有 するプローブ DNAに、ターゲット DNAをノヽイブリダィズさせて二本鎖 DNAとし、該ニ本 鎖 DNAの末端に電極を設けて二本鎖 DNA複合体を形成する工程、
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む請求項 1に記載の方法。
[5] 一塩基多型部位を有するプローブ DNAに、ターゲット DNAをハイブリダィズさせてタ ーゲット DNAの一塩基多型部位の塩基を検出する方法であつて、
(lc)光増感剤が結合したアデニン連続配列の存在下、該ァデニン連続配列に相補 的なチミン連続配列で修飾されてなる一塩基多型部位を有するプローブ DNAに、タ 一ゲット DNAをハイブリダィズさせて二本鎖 DNAとし、該ニ本鎖 DNAの末端に電極を 設けて二本鎖 DNA複合体を形成する工程。
(2)得られた二本鎖 DNA複合体の光増感剤に光照射して該ニ本鎖 DNA複合体上に 電荷分離状態を生成し、該ニ本鎖 DNAに発生する光電流を電極にて測定する工程 、及び
(3)測定される該光電流の強度に基づ!/、てターゲット DNAの一塩基多型部位の塩基 を検出する工程
を含む請求項 1に記載の方法。
[6] プローブ DNAが、 1個の一塩基多型部位を有する請求項 1〜5のいずれかに記載 の方法。
[7] アデニン連続配列が、アデニンが 3個以上連続配列している請求項 6に記載の方 法。
[8] 光増感剤が、ナフタルイミド、ナフタルジイミド、ジフエニルアセチレン、フラビン、ァ ントラキノン、ベンゾフエノン、ベンゾイン及びキサントン力 なる群力 選ばれる 1種で ある請求項 6に記載の方法。
[9] 一塩基多型部位を有するプローブ DNAであって、その末端が電極に固定され、か つ、光増感剤が結合したアデニン連続配列で修飾されてなるプローブ DNA。
[10] 請求項 9に記載のプローブ DNAであって、その末端が S原子を介して電極に固定さ れ、かつ、光増感剤が結合した 3個以上のアデニン連続配列で修飾されてなるプロ ーブ DNA。
PCT/JP2005/009139 2004-05-28 2005-05-19 光電流による高感度一塩基多型の検出方法 WO2005116624A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-159237 2004-05-28
JP2004159237A JP2007271266A (ja) 2004-05-28 2004-05-28 光電流による高感度一塩基多型の検出方法

Publications (1)

Publication Number Publication Date
WO2005116624A1 true WO2005116624A1 (ja) 2005-12-08

Family

ID=35450991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009139 WO2005116624A1 (ja) 2004-05-28 2005-05-19 光電流による高感度一塩基多型の検出方法

Country Status (2)

Country Link
JP (1) JP2007271266A (ja)
WO (1) WO2005116624A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233878A (ja) * 2011-04-22 2012-11-29 Sysmex Corp 被検物質の電気化学的検出方法
CN105259349A (zh) * 2015-11-03 2016-01-20 青岛农业大学 一种免固定生物传感电极的制备及其在免标记均相光致电化学农残检测与癌症诊断中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7158969B2 (ja) * 2018-09-18 2022-10-24 株式会社東芝 有機物プローブおよび分子検出装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503343A (ja) * 1997-06-11 2002-01-29 エコル・サントラル・ドゥ・リヨン 導電性液体中に存在する生物的物質を同定及び/又は分析する方法と該方法を実行するのに使用される装置及びアフィニティセンサー
WO2003014695A2 (de) * 2001-07-31 2003-02-20 Infineon Technologies Ag Biosensor und verfahren zum erfassen von makromolekularen biopolymeren mittels mindestens einer einheit zum immobilisieren von makromolekularen biopolymeren

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503343A (ja) * 1997-06-11 2002-01-29 エコル・サントラル・ドゥ・リヨン 導電性液体中に存在する生物的物質を同定及び/又は分析する方法と該方法を実行するのに使用される装置及びアフィニティセンサー
WO2003014695A2 (de) * 2001-07-31 2003-02-20 Infineon Technologies Ag Biosensor und verfahren zum erfassen von makromolekularen biopolymeren mittels mindestens einer einheit zum immobilisieren von makromolekularen biopolymeren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAI K. ET AL: "Pulseradiolysis ni Yoru DNA-chu no Hole Ido", HOSHASEN KAGAKU, no. 73, 30 March 2002 (2002-03-30), pages 28 - 31, XP002997657 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233878A (ja) * 2011-04-22 2012-11-29 Sysmex Corp 被検物質の電気化学的検出方法
CN105259349A (zh) * 2015-11-03 2016-01-20 青岛农业大学 一种免固定生物传感电极的制备及其在免标记均相光致电化学农残检测与癌症诊断中的应用

Also Published As

Publication number Publication date
JP2007271266A (ja) 2007-10-18

Similar Documents

Publication Publication Date Title
Miao et al. Electrochemical detection of miRNA combining T7 exonuclease-assisted cascade signal amplification and DNA-templated copper nanoparticles
Hurley et al. Ru (II) and Os (II) nucleosides and oligonucleotides: Synthesis and properties
Kobayashi et al. Direct observation of guanine radical cation deprotonation in duplex DNA using pulse radiolysis
Saito et al. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes
Wang et al. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization
Wang et al. Real-time multiple signal amplification self-powered biosensing platform for ultrasensitive detection of MicroRNA
US20080081329A1 (en) Electrochemical Detection of Substrates
Kurbanyan et al. DNA− protein cross-linking via guanine oxidation: dependence upon protein and photosensitizer
Erdem et al. Electrochemical genosensing of the interaction between the potential chemotherapeutic agent, cis-bis (3-aminoflavone) dichloroplatinum (II) and DNA in comparison with cis-DDP
Gu et al. Gold triangular nanoplates based single-particle dark-field microscopy assay of pyrophosphate
Lee et al. DNA biosensor based on the electrochemiluminescence of Ru (bpy) 32+ with DNA-binding intercalators
TWI592493B (zh) 用於核酸定序之積體光電感測器陣列
Hong et al. DNA–gold nanoparticles network based electrochemical biosensors for DNA MTase activity
Zhang et al. Nano-hybrid luminophores of Ti3C2TX quantum dots-gold nanoparticles based on in situ generation for sensitive electrochemiluminescence biosensing
Bartošík et al. Electrochemical detection of 5-methylcytosine in bisulfite-treated DNA
Song et al. Mononuclear tetrapyrido [3, 2-a: 2′, 3′-c: 3′′, 2′′-h: 2′′′, 3′′′-j] phenazine (tpphz) cobalt complex
WO2005116624A1 (ja) 光電流による高感度一塩基多型の検出方法
Danhel et al. Voltammetric analysis of 5-(4-Azidophenyl)-2′-deoxycytidine nucleoside and azidophenyl-labelled single-and double-stranded DNAs
Suprun et al. Voltammetric oxidation behavior of single-stranded DNA on carbon screen printed electrodes: From short oligonucleotides to ultralong amplification products
Huang et al. Iridium (III) solvent complex-based electrogenerated chemiluminescence and photoluminescence sensor array for the discrimination of bases in oligonucleotides
Chen et al. Enhanced polymeric carbon nitride nanosheet-based fluorescence for biosensing applications
Leung et al. A highly sensitive G-quadruplex-based luminescent switch-on probe for the detection of polymerase 3′–5′ proofreading activity
Poorghasem et al. Closed bipolar electrochemistry for the detection of human immunodeficiency virus short oligonucleotide
Gillard et al. Luminescent Ruthenium (II) Complexes Used for the Detection of 8-Oxoguanine in the Human Telomeric Sequence
Wu et al. Selective fluorescence lighting-up recognition of DNA abasic site environment possessing guanine context

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP